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Abstract

With the current trend toward industrial automation, efficient energy gen-

eration, and electric motor vehicles, permanent magnets are seeing more

widespread use than ever before. They permeate our world, enabling sound

generation through loudspeakers, mass data storage in the server farms keep-

ing us online, and even the vibration motors in our pockets notifying us of

new messages. Never before have permanent magnets seen such widespread

use, and thus it is paramount to understand the interactions between them.

The primary aim of this thesis is to investigate and model the magnetic

fields produced by generalised polyhedral permanent magnets, and the forces

and torques between them. To achieve this aim, two main objectives were

identified.

The first objective was to analytically solve the magnetic charge model

field equations for arbitrary polyhedral permanent magnets with a relative

permeability of unity. This was performed using two unique approaches,

leading to two unique but equivalent sets of field solutions, with the first

being more effective when the field is calculated at few points, and the second

being more effective when the field is calculated at many points. These field

solutions were implemented in MATLAB code with a focus on computation

efficiency, thus reducing calculation time. The solutions may also be used

to numerically integrate over the surface of another magnet to accurately

estimate the force and torque imparted.

The second objective was to derive a methodology to model the field

due to a polyhedral permanent magnet with non-unity relative permeability.

This was done by applying a surface mesh to a magnet, and allowing the

‘magnetic charge’ on each surface element to vary based on the permeability

and magnetic field passing through the element. This was derived in such a

way that the field is calculated only once, with no iteration required. Rather,

a matrix equation is solved to give the surface charge distribution, leading to

calculations of the magnetic fields, forces, and torques based on the previous



objective. This was again implemented in MATLAB code with focus on

computation efficiency, leading to fast calculations.

This thesis begins with a short prologue, giving a brief historical overview

of the development of magnetism as a physical science. Chapter 1 follows,

outlining the theory used for modelling magnets and giving a review of

relevant literature. Chapters 2 and 3 outline two new methods for calculating

the magnetic field produced by general ideal polyhedral permanent magnets,

each with benefits and drawbacks over the other. In addition, Chapter 2

found that a pair of pyramid frustum magnets produce a larger mutual force

than a pair of cuboidal magnets, suggesting further investigation into frustum

magnets. Chapter 4 applies the methodology from Chapter 3 to a planar

array of frustum magnets, finding no significant benefit over traditional

cuboidal planar arrays. Chapter 5 explores magnetic permeability, deriving

a methodology to calculate magnetic fields, forces, and torques imparted

by linear magnetic materials of polyhedral geometry. Finally, the thesis is

concluded in Chapter 6, summarising the preceding chapters and outlining

potential future work to follow this thesis.

The primary outcome of this thesis is the development of a new method-

ology which can accurately and quickly compute the magnetic fields, forces,

and torques imparted by magnetic materials of polyhedral geometry. The

methodology allows for materials with constant non-unity relative permeabil-

ity, more accurately reflecting permanent magnet materials and magnetic

behaviour. Moreover, other geometries may be accurately approximated

by polyhedra and the methodology applied, allowing the fast and accurate

approximation of any current-free magnetostatic system.
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Prologue

Magnetism has captivated the imagination of humanity for thousands of years

and has resulted in some of the greatest innovations humankind has ever

seen. It is a concept so simple at heart, but becomes incredibly complicated

in the details; a child can comprehend the basic ideas, but years of dedication

must be given to understand what magnetism truly is. Given two permanent

magnets, anyone can quickly come to the conclusion that one side of a

magnet attracts one side of another, but repels the other side, and vice versa.

However, understanding, quantifying, and elucidating that attraction or

repulsion has presented a monumental challenge to scientists and engineers.

This short chapter gives a brief overview of the development of our current

understanding of magnetism, dating back to the discovery of the lodestone,

to our current understanding of electron angular momentum.

The lodestone

The first observations of magnetism came with the discovery of the lodestone,

a rare naturally occurring magnet likely magnetised by lightning strikes [2],

but exactly when and where this discovery took place is still debated to this

day. Legend says that the shepherd Magnes, while pasturing his flocks, found

his iron-nailed shoes and iron-tipped cane attracted to a strange stone in the

ground around 1000 BC [6, 17, 20, 21]. However, Magnes was probably a

mythical figure [17], and the discovery of the lodestone is often attributed to

the Greeks around 600 BC based on writings by Thales [14, 15, 20, 21], but

may have been as early as the 26th to the 28th century BC by the Chinese

[6, 11, 15, 21]. While it is unclear whether they had discovered the lodestone

before the Greeks, the Chinese were using the stone for geomancy by the

third or fourth century BC, believing that good fortune could be achieved by

aligning housing, beds, and other structures with the heavens [6, 20]. During

the fourth century BC, the Chinese began using the lodestone for navigation
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purposes, but this was limited to land-based navigation [6]; the magnetic

compass would not be used for sea-based navigation for a further thousand

years.

By the end of the 11th century AD, the Chinese had begun to use the

magnetic compass to navigate the waves [4, 14, 20, 22]. Shortly after, the

technology found its way to Europe, likely due to Arabic traders, with

the Englishman Alexander Neckam writing of it in 1187 AD [4, 6, 14, 21].

The fascinating device likely inspired the Frenchman Petrus Peregrinus de

Maricourt to conduct experiments on magnetism, before writing his treatise

describing the properties of magnets and magnetic forces in 1269 AD [4, 6,

11, 14, 15, 20–22]. Through the next few hundred years, little progress was

made on magnetism, but the magnetic compass almost certainly accelerated

the European discovery of the Americas and aided in building ocean-based

trade routes.

The Renaissance and scientific revolution

After hundreds of years mastering the magnetic compass, the Europeans had

made several observations on magnetism, which would spark new interest

in the science. By about 1450, sundial makers had noticed that magnetic

north did not align perfectly with true north [3, 18], a phenomenon known as

magnetic declination. Shortly after, seafarers noticed this deviation between

magnetic north and true north varied with geographic location, and some

hoped to calculate location based on the deviation between magnetic north

and true north [8, 18]. The value of this deviation was first measured in

Rome in 1510 by Georg Hartmann, who described it in a letter to Duke

Albrech of Prussia in 1544 [3, 7]. In his letter, Hartmann also described

how a magnetic needle does not align with the horizon when suspended

on a pivot. Rather, it dips vertically downward [3, 7, 21] and is known as

magnetic inclination. Although this was the earliest documented writing of

magnetic inclination, it was never published and lay unnoticed in archive

[7]. Instead, Robert Norman is often credited for the discovery of magnetic

inclination, with his first measurement of the phenomenon in 1576 [7, 14, 21].

These discoveries brought about new interest in the science of magnetism and

geomagnetism, leading to more discoveries in the following years, including

one of the most influential books published in magnetism at the beginning

of the 17th century.

In 1600, Englishman William Gilbert published the groundbreaking
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De Magnete, outlining observations he had made over the past years [4, 6,

11, 14, 15, 20–22]. In this book, he defined the poles of a magnet, noticing

that they cannot be separated; cutting a magnet in two leaves two magnets,

each with their own pair of poles. He also noted that a magnet heated

beyond a certain temperature lost its magnetisation altogether, effectively

observing the Curie temperature in action [14]. He described how to increase

the strength of a lodestone by ‘arming’ it with iron at each pole [6, 14],

which was improved in 1613 by Ridley and further in 1616 by Barlowe [14].

Potentially the most interesting finding of the book, however, was that Earth

behaved like a giant magnet [4, 11, 14, 20, 21]. Following this, progress in

magnetism slowed, with many scientists of the time exploring electricity, not

realising the intertwinement between the two sciences.

The marriage of electricity and magnetism

A groundbreaking discovery was made in about 1820 when Ørsted placed

a magnetic compass near a current carrying wire. He noticed the compass

needle align itself perpendicular to the wire, implying electricity and mag-

netism were somehow linked [4, 6, 19–22]. This experiment resulted in the

development of the new science of electromagnetism and acted as a precursor

to some of the most important scientific breakthroughs in history.

Several weeks after Ørsted’s experiment, Ampére calculated the magnetic

force between two current carrying conductors [4, 6, 19–21], theorising that

the magnetism in materials could be caused by small current loops on the

molecular scale [22]. That same year, Biot and Savart formulated the Biot-

Savart law, describing the magnetic field produced by a current carrying wire

which Ørsted had observed [19–21]. The following year, Faraday discovered

electromagnetic induction [4, 22], where the magnetic field produced by one

wire can induce a current in another. Several decades later, a particularly

enlightening discovery was made by Faraday in 1845, when he found a link

between light and magnetism [9, 11, 13, 21]. These discoveries inspired James

Clerk Maxwell to publish the famous set of equations which bear his name in

1864 [12, 13, 19, 22], revolutionising electromagnetic science. Maxwell used

his equations to measure the speed of electromagnetic waves, noticing that it

matches the speed of light very closely [13], and theorised that light is simply

an electromagnetic wave. Toward the end of the century in 1888, Hertz was

able to experimentally prove the existence of electromagnetic waves [13] by

producing radio waves. Interestingly, he believed this discovery insignificant,

iii



not foreseeing the worldwide adoption of electromagnetic waves less than a

century later.

Cathode rays and the electron

The discharge of electricity through various gases had been a topic of scientific

interest since the early 18th century, but it wasn’t until the middle of the 19th

that a bright discovery was made. By applying a large potential difference

across an anode and cathode in a partial vacuum, a brilliant glow would

be produced, the colour of which dictated by the gas and pressure in the

partial vacuum. The first person to have observed this phenomenon was

likely German instrument maker Heinrich Geißler in 1855, who manufactured

and enhanced cathode ray tubes made from glass [1]. Several years later,

Julius Plücker and his student Johann Wilhelm Hittorf had experimented on

the glow produced by electric discharge in a cathode ray tube. Plücker had

noticed a fluorescent patch on the wall of the tube where the cathode rays

had struck, with Hittorf noting an object placed in the path of the rays cast

a ‘shadow’ and that the rays may be deflected by a magnetic field [5]. Over

the next decades, this would excite a new area of science and a fierce debate

on the composition of these cathode rays.

In the late 19th century, there was much scientific discussion whether

cathode rays were waves or streams of particles, with both theories having

experimental observations to support their claims. William Crookes in 1879

postulated that since cathode rays can be deflected by a magnetic field, they

must be streams of negatively charged particles [5]. However, Hertz was

unable to deflect these rays with an electric field in 1883, implying they may

instead be waves [1, 5]. Later, Hertz also noted that the rays could not pass

through thin gold sheets which were impenetrable by atoms. At a time where

atoms were thought to be indivisible and the smallest possible particle, he

reasoned that cathode rays could not possibly be particles. To complicate

matters further, in 1890 Arthur Schuster was able to estimate the charge to

mass ratio of cathode rays based on experimental data, implying they were

particles [1]. Furthermore, in 1895 Jean Perrin conducted an experiment,

showing that cathode rays carry negative electric charge, reasoning that they

must therefore be negatively charged particles.

The debate was finally settled in the 1890s, with experiments conduced by

Joseph J Thomson. Unlike Hertz the previous decade, he was able to deflect

cathode rays with an electric field. Hertz had placed electrically conductive
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plates inside a glass tube to create an electric field. However, the gas in the

partial vacuum had become ionised, with negative charges being attracted

to the positive plate and vice versa. This minimised the potential difference

between the plates, leading to negligible electric field in the tube. Thomson

had created a better vacuum, thus minimising this effect and detecting a

deflection of the rays [5]. Thomson had also measured the velocity of the

rays, showing they were significantly slower than light, before estimating

their charge to mass ratio. These findings heavily suggested the rays were

composed of negatively charged particles, and Thomson is widely regarded

as discovering the electron with these experiments. This discovery would

lead to some of the most significant innovations in science and engineering

ever seen.

The 19th century provided immense progress in the understanding of elec-

tromagnetism. It began with scientists discovering a link between electricity

and magnetism, and ended with the experimental discovery of electromag-

netic waves and the electron. It brought the idea that light was simply

an electromagnetic wave, and followed the equations set out by Maxwell.

This century was possibly the most influential and progressive in terms of

electromagnetic science, and would lead to the quantum age in the following

century.

The quantum electron

It may have been Pieter Zeeman who unknowingly first observed quantum

effects with his discovery of the Zeeman effect. In 1896, he was experimenting

with atomic spectroscopy of sodium atoms under the influence of a magnetic

field [10]. He noticed that without a magnetic field, the spectrum lines

were sharp and narrow, but as soon as a magnetic field was applied, the

lines widened, becoming several times thicker [10, 11, 21]. A magnetic field

had some effect on the spectrum lines, but it was unclear what exactly this

effect was. Several months later, this experiment was repeated for cadmium,

and it was observed that the line was not getting thicker, but was actually

splitting into several lines which were very close together [10]. At the time,

the structure of the atom was unknown, but Zeeman’s teacher, Hendrik

Lorentz, theorised this effect was related to charged particles in the atom

[10, 11]. However, this discovery would be one of the first discoveries related

to the nature of the electron and quantum mechanics.

With the discovery of the electron and the invention of quantum me-
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chanics, the Zeeman effect was partially explained. If energy is imparted

on electrons orbiting a nucleus, they may transition to higher energy states,

before transitioning back and releasing the energy as a photon with a par-

ticular wavelength. However, under the influence of a magnetic field, the

orbital angular momentum of an electron as it rotates about the nucleus

creates its own magnetic field, which interacts with the external field. Thus,

the energy level depends on the angular momentum, and different values of

angular momentum lead to small changes in the photon wavelength. Earlier,

Neils Bohr had predicted that the orbital angular momentum of an electron

had to be quantised, which explained why the spectral lines were splitting

rather than widening. While this explained much of the Zeeman effect, there

were some discrepancies remaining [11], which would require the concept of

electron spin.

Spin

To explain the discrepancies in the Zeeman effect, it was theorised that

electrons not only rotate around a nucleus, but also rotate on their own axis,

therefore creating an additional magnetic field component. Although this

was later found to be false, and this spin was an inherent quantum property

of the electron, the term electron spin stuck and is still used today. To

explore electron spin, Otto Stern proposed an experiment in 1921, which was

successfully conducted by Walther Gerlach in 1922 [11]. In this experiment,

silver atoms were fired through a spatially varying magnetic field before

colliding with a detector. Each silver atom was deflected a small amount due

to the electron spin interacting with the magnetic field. If the spin was not

quantised, the detector would show a continuous distribution of collisions.

However, rather than a distribution, two discrete collision sites were observed,

implying that electron spin must be quantised, and could attain one of two

values: +1/2 or −1/2 [15].

Electron spin forms much of our current understanding of magnetism.

For example, paramagnetic materials such as aluminium contain an unpaired

electron in the outer electron shell which has a spin magnetic moment and

thus interacts with magnetic fields. This electron tends to align its spin

moment with an applied magnetic field, and is therefore weakly attracted

to the source of the field. In contrast, ferromagnetic materials such as

iron exhibit a phenomenon called exchange interaction, where the exchange

energy is minimised if the unpaired electrons of nearby atoms have identical
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spins [21]. Since nearby unpaired electrons have the same spin, their magnetic

moments combine to create a far stronger net magnetic moment, allowing

strong magnetic interactions.

Although much of the journey to discover electron spin was somewhat

unrelated to magnetism, it has allowed us to understand how magnetic

materials behave. Without the monumental discoveries of quantum physicists

in the early 20th century, our understanding of magnetism would be primitive

compared to what it is today.

The development of permanent magnets

Since their inception, significant developments in permanent magnet materials

has enabled stronger magnetisations, greater resistance to demagnetisation,

corrosion resistance, and more. This began when scientists in the 18th

century began manufacturing permanent magnets. The first permanent

magnets to be manufactured were likely produced by Gowin Knight [16] by

grinding iron oxide into fine particles and mixing with water to create a

slurry. He would then combine the slurry with linseed oil to create a paste,

before moulding, baking, and magnetising with a separate magnet. However,

few developments in permanent magnetism would occur throughout the rest

of the 18th and 19th centuries.

During the early 20th century, considerable improvements were made

with the development of cobalt steels in around 1920 [23]. In the following

decade, Alnico magnets were produced, followed by barium ferrites in the

1950s. At this point, permanent magnets were still fairly weak, but this

changed with the invention of strong samarium cobalt magnets in the late

1960s. Unfortunately, these stronger magnets were costly, necessitating

a new permanent magnet material. This material would come to light

in the early 1980s with the introduction of neodymium magnets, which,

to this day, dominate the high-performance permanent magnet market.

Currently, neodymium permanent magnets are able to achieve a remanence

magnetisation of almost 1.5T and are resistant to demagnetisation. However,

they are not perfect and are sensitive to corrosion and temperature.

Magnetism today

Our understanding of magnetism began with the observation that iron

nails were occasionally attracted to some rocks from the ground and would
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often align toward the north pole. A long voyage of experimentation and

discovery later, we understand the quantum effects of magnetism, and how

electrons arranged in particular configurations can drastically affect the

magnetic properties of a material. Materials and manufacturing sciences

have allowed us to create strong permanent magnets, but these are not

perfect. While we currently have some understanding of magnetic materials

and the subatomic and quantum effects responsible for magnetism, there

are still many open questions in the physics of magnetism. Furthermore,

how can we, as engineers, take advantage of these phenomena? Emerging

fields such as spintronics aim to exploit the physical science of magnetism

to further improve current technology. However, these would not have been

possible without the tremendous discoveries of those who have preceded us.

If I have seen further it is by standing on the shoulders of

Giants.

—Isaac Newton
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Chapter 1

Introduction

Although permanent magnets have been used for centuries, it is still difficult

to accurately model them. Many magnetic systems are modelled using

numerical techniques such as finite element analysis, with many others being

modelled using semi-analytic techniques such as the harmonic method, or

fully analytic techniques such as the magnetic charge model. This thesis

aims to present new analytic methodologies for calculating the magnetic field

due to polyhedral permanent magnets with non-unity relative permeability,

and estimate forces and torques between such magnets. However, with the

wide variety of magnetic modelling techniques, it is important to present

a background to the reader on such techniques to frame the work in this

thesis. This chapter includes a brief discussion on electromagnetic theory

in Section 1.2, numerical techniques in Section 1.3, and analytic and semi-

analytic modelling in Section 1.4, with a review of literature relevant to this

thesis commencing in Section 1.4.6

1.1 Motivation

Permanent magnets are found in the electric generators, motors, loudspeakers,

microphones, and countless other devices. Furthermore, electromagnetism

is ubiquitous, finding applications across medicine, in microwave ovens, for

wireless data and power transmission, to name but a few. Advances in elec-

tromagnetism and permanent magnetic materials have enabled improvements

in numerous technologies such as headphones and data storage, and these

improvements are only possible with the understanding of electromagnetic

phenomena.
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Wherever permanent magnets are used, it is necessary to quantify the

fields, forces, and torques produced to further optimise their use case. In

consumer electronics, knowledge of the fields may lead to reduction in magnet

size for a particular field strength, improving the design and reducing cost.

In particularly precise applications such as high performance motors and

hard drives, magnetic analysis permits higher performance by shaping and

positioning magnets appropriately. Furthermore, analysing magnetic systems

with fast modelling techniques and methodologies enables optimisation of

magnetic geometry and configuration. In general, quantification of magnetic

properties allows scientists, engineers, and designers to further optimise

and improve various magnetic systems, leading to reduced waste and better

functionality, and ultimately improved quality of life.

1.2 Background

Maxwell’s equations form the basis of our understanding of the classical

electromagnetism this thesis is based on. However, these equations cannot be

directly solved for generalised magnetic systems, and instead require various

assumptions and tools to compute the fields. Such assumptions and tools are

based on the science of materials, the magnetic configuration of a system,

and the mathematics of vector calculus, and are briefly discussed in this

section.

1.2.1 Maxwell’s equations

In 1864, James Clerk Maxwell published the famous equations bearing his

name [47], relating electricity and magnetism. These equations would go on

to form much of the electromagnetic theory still in use today, and are given

in differential form by

∇×H = Jf +
∂D

∂t
, (1.1) ∇ ·B = 0, (1.2)

∇×E = −∂B

∂t
, (1.3) ∇ ·D = ρ, (1.4)

with the variables summarised in Table 1.1.

While Maxwell’s equations accurately describe the nature of electro-

magnetism, they cannot be used to simply solve for electromagnetic fields.

Rather, other tools and assumptions are necessary to completely solve for
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Table 1.1: Variables used in Maxwell’s equations and corresponding SI

units.

Variable Description Unit

H Magnetic field intensity Am−1

B Magnetic flux density T

E Electric field intensity Vm−1

D Electric flux density Cm−2

Jf Free current density Am−2

ρ Electric charge density Cm−3

the fields. To solve this problem, scalar and vector potential functions may

be introduced into electromagnetic theory.

1.2.2 Scalar and vector potentials

Under certain conditions, Maxwell’s equations imply the existence of poten-

tial functions. While these potential functions are non-physical, they are

an extremely useful tool when solving for the electromagnetic fields. Of

particular interest in this thesis are the two magnetic potentials, the magnetic

vector potential A and the magnetic scalar potential φ.

Magnetic vector potential

The magnetic vector potential is based on the magnetic flux density being

divergence-free, ∇ ·B = 0, under the assumption that B is twice continu-

ously differentiable. The fundamental theorem of vector calculus, known as

Helmholtz decomposition, states that any twice continuously differentiable

divergence-free vector field may be written as the curl of some vector field

A. Thus,

B = ∇×A, (1.5)

where A is known as the magnetic vector potential. While A is not unique,

its curl is, giving a unique solution for B. The magnetic vector potential

may be solved or approximated using various methods, giving a solution for

the magnetic flux density.

Magnetic scalar potential

The magnetic scalar potential, φ, is formulated by assuming no free current

exists in a magnetic system, leading to ∇×H = 0. The Helmholtz decom-

3
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position theorem therefore states that H may be written as the gradient of

some scalar potential φ. Thus,

H = −∇φ, (1.6)

where φ is known as the magnetic scalar potential. While the scalar potential

φ is not unique, the gradient is, giving a unique solution for H. The scalar

potential may be solved or approximated, therefore giving a solution for the

magnetic field intensity.

1.2.3 Magnetic materials

Various categories of magnetic materials exist, with properties dictated by

molecular, atomic, and quantum effects. The magnetic behaviour of a ma-

terial is generally based on which category it belongs to, and thus is an

important consideration in electromagnetic design. Several common mag-

netic material categories are described below, with graphical representations

displayed in Figure 1.1.

Paramagnetism

Paramagnetic materials have atomic magnetic moments caused by unpaired

electrons and their associated spins, but the couplings between these atomic

moments are negligible. Thus, if a magnetic field is applied, each atomic

moment will tend to align slightly with the field, but no bulk magnetisation

occurs due to weak magnetic interaction between adjacent atomic moments.

Rather, the moments tend to orient themselves somewhat randomly. While

these materials do slightly vary their magnetisation with an applied field,

the effect is small and is often neglected. Materials such as aluminium

and titanium, which are often considered non-magnetic, are examples of

paramagnetic materials.

Diamagnetism

Diamagnetic materials consist of atoms with no unpaired electrons, leading

to no net atomic magnetic moment. Due to this, quantum effects become the

strongest magnetic effect, and the material weakly opposes applied magnetic

fields. However, the effect is usually extremely small and difficult to detect.

Pyrolytic carbon is an example of a diamagnetic material, and due to its

low density and opposition to an applied field, it can be passively levitated

above an array of magnets.
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Ferromagnetism

Ferromagnetic materials are what we commonly refer to as ‘magnetic ma-

terials’. They consist of atoms with a net magnetic moment created by

unpaired electrons, but with strong coupling between neighbouring atoms

caused by quantum phenomena. Thus, when an external field is applied,

the atomic moments tend to align together with the field due to the strong

coupling. This causes bulk magnetisation, where all magnetic moments are

aligned in approximately the same direction. Iron is the most well-known

ferromagnetic material, but other materials such as nickel and cobalt are

also ferromagnetic.

Antiferromagnetism and ferrimagnetism

Antiferromagnetic and ferrimagnetic materials consist of atoms which tend to

align antiparallel to neighbouring atoms. In antiferromagnetic materials such

as manganese oxide, these magnetic moments are equal in magnitude, leading

to no overall net magnetic moment. However, in ferrimagnetic materials

such as magnetite, the moments are unequal in magnitude, allowing a net

magnetic moment and a magnetisation can be formed.

1.2.4 Permeability

Magnetic permeability is a property of magnetic materials, where the material

may change its magnetisation state based on a magnetic field. In some

materials, such as aluminium, this effect is so small that it is assumed

negligible. However, in others such as iron, the effect is extremely significant

and must be considered in any electromagnetic design involving the material.

The permeability µ of a material is a non-negative value which describes

the relationship between the B and H fields,

B = µH. (1.7)

Combining Equation (1.7) with the constitutive relationshipB = µ0 (H+M),

where µ0 = 4π × 10−7 Hm−1 is the permeability of a vacuum, gives

M =

(
µ− µ0

µ0

)
H, (1.8)

implying a relationship between the magnetisation M and the permeability

µ. If a permanent magnet has remanence magnetisation Br, this relationship
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(a) Paramagnetism and diamagnetism (b) Ferromagnetism

(c) Antiferromagnetism (d) Ferrimagnetism

Figure 1.1: An example of the magnetisation vector field inside param-

agnetic or diamagnetic materials (a), ferromagnetic materials (b), antifer-

romagnetic materials (c), and ferrimagnetic materials (d). Note that the

magnetisation vector field of ferromagnetic materials (b) is often far larger

in magnitude than the other categories.
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Table 1.2: Relative permeabilities and classifications of common magnetic

materials [27, 28, 39].

Material Relative permeability Classification

Aluminium 1.000023 Paramagnetic

Calcium 1.000019 Paramagnetic

Magnesium 1.000012 Paramagnetic

Copper 0.9999902 Diamagnetic

Diamond 0.999978 Diamagnetic

Gold 0.999964 Diamagnetic

Ceramic magnets 1.05–1 Ferromagnetic

Alnico magnets 2.1–6.4 Ferromagnetic

Samarium cobalt magnets 1.05–1.1 Ferromagnetic

Neodymium magnets 1.05–1.15 Ferromagnetic

Iron 150–5000 Ferromagnetic

Supermalloy 100000–1000000 Ferromagnetic

can be adjusted to

M =

(
µ− µ0

µ0

)
H+

1

µ0
Br. (1.9)

While the permeability of a material µ is measured in units of Henries

per metre, it is often represented as a dimensionless relative permeability µr,

given by the ratio

µr =
µ

µ0
. (1.10)

Several common materials, along with their relative permeability and mag-

netic classification, are given in Table 1.2.

1.3 Numerical techniques

Although this thesis is primarily concerned with analytic methods, numerical

methods are widely used due to their availability, simplicity, and versatility,

especially on difficult problems with complex geometries or non-unity perme-

abilities. The finite difference method and finite element method are common

numerical electromagnetic analysis techniques; these are briefly discussed in

this section, and how they may be applied to solve the field equations.
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(x, y, z) (x+ δx, y, z)

(x− δx, y, z)

(x, y + δy, z)

(x, y − δy, z)

(x, y, z + δz)

(x, y, z − δz)

Figure 1.2: A finite difference grid using seven points. The magnetic scalar

or vector potential may be estimated by applying a finite difference scheme

to each point in a finite difference grid, before being solved for using a large

set of linear equations.

1.3.1 Finite difference method

One of the oldest numerical methods is the finite difference method. This is

performed by applying a rectangular grid on the system geometry, such as

shown in Figure 1.2, to solve Poisson’s equation.

Magnetic scalar potential

Consider a gridpoint at the coordinates (x, y, z). By taking the divergence of

the magnetic scalar potential equation H = −∇φ in a current-free region, and

combining with the divergence of the constitutive equation B = µ0 (H+M),

we obtain

∇2φ (x, y, z) = −∇ ·M (x, y, z) , (1.11)
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where M is either known or approximately known and the Laplacian of φ is

given by

∇2φ (x, y, z) =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
. (1.12)

A central difference scheme can be applied to each of the partial second

derivatives, giving an approximation for the Laplacian of φ,

∇2φ (x, y, z) ≈ φ (x+ δx, y, z)− 2φ (x, y, z) + φ (x− δx, y, z)

δx2

+
φ (x, y + δy, z)− 2φ (x, y, z) + φ (x, y − δy, z)

δy2
(1.13)

+
φ (x, y, z + δz)− 2φ (x, y, z) + φ (x, y, z − δz)

δz2
.

Now, since ∇2φ (x, y, z) = ∇ ·M (x, y, z), the equation can be manipulated

to give

δy2δz2φ (x+ δx, y, z)− 2δy2δz2φ (x, y, z) + δy2δz2φ (x− δx, y, z)

+δx2δz2φ (x, y + δy, z)− 2δx2δz2φ (x, y, z) + δx2δz2φ (x, y − δy, z) (1.14)

+δx2δy2φ (x, y, z + δz)− 2δx2δy2φ (x, y, z) + δx2δy2φ (x, y, z − δz)

≈ δx2δy2δz2∇ ·M (x, y, z) ,

which is simply a linear equation for the magnetic scalar potential at the

central gridpoint and the six adjacent gridpoints.

This same methodology can be used to find equivalent equations for

each gridpoint inside the grid, with similar forward or backward difference

schemes applied to the gridpoints at the edge of the grid. Thus, a linear

equation can be found at each gridpoint, with the number of equations being

equal to the number of gridpoints. A linear solver can be used to calculate

the value of the magnetic scalar potential at each gridpoint, and finally, the

H-field can be found at each gridpoint by approximating the gradient of the

scalar potential,

H = −∇φ. (1.15)

Magnetic vector potential

In cases where free electric current exists in a system, the finite difference

method can be applied to find the magnetic vector potential and the B-field.

Since B is divergence-free, the B-field can be written as the curl of some

vector potential A,

B = ∇×A. (1.16)
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Combining this with the curl of the constitutive relation B = µ0 (H+M)

gives

∇×B = µ0∇×H+ µ0∇×M = ∇× (∇×A) . (1.17)

To simplify this equation, the Lorenz gauge condition, ∇ ·A = 0 is applied,

giving

∇× (∇×A) = ∇ (∇ ·A)−∇2A = −∇2A, (1.18)

where ∇2A is the vector Laplacian of A. In addition, the curl of H can be

replaced with the free current Jf in accordance with Maxwell’s equations.

This yields

∇2A = −µ0Jf − µ0∇×M, (1.19)

where Jf and M are known or approximately known. This can be rewritten

as a set of Poisson equations in each of the three Cartesian directions,

∇2Ax = −µ0Jf,x − µ0

(
∂Mz

∂y
− ∂My

∂z

)
,

∇2Ay = −µ0Jf,y − µ0

(
∂Mx

∂z
− ∂Mz

∂x

)
, (1.20)

∇2Az = −µ0Jf,z − µ0

(
∂My

∂x
− ∂Mx

∂y

)
.

A finite difference grid can be applied to the system, and the finite difference

methodology implemented to calculate Ax, Ay, and Az at each gridpoint.

Once A is known, the B-field can be calculated using

B = ∇×A. (1.21)

1.3.2 Finite element method

The finite element method (FEM) is a commonly used methodology to simu-

late electromagnetic systems due to its versatility and commercial availability.

For three-dimensional FEM, the domain to be solved is often discretised

into a large number of tetrahedral or hexahedral volume elements, each of

which may be linear, quadratic, or higher order. This analysis will explore

linear elements to illustrate the method, but can be readily extended to

quadratic or higher order elements using the same technique.

Potentials inside an element

Consider the linear element shown in Figure 1.3, with nodes placed at each

of the four vertices of the element. The magnetic scalar potential φ at any

10
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φ1

φ2

φ3

φ4

Figure 1.3: A linear tetrahedral volume element used for solving finite

element problems. The value of the magnetic scalar or vector potential is

estimated at each of the vertices by minimising the energy functional over a

global space. The value of the scalar or vector potential may be estimated

at any point inside the element using a linear interpolation.

point in the element may be given by a linear function of position,

φ (x, y, z) = a+ bx+ cy + dz =
[
1 x y z

]
a

b

c

d

 . (1.22)

Therefore, the magnetic scalar potential at each of the nodes φk, where

k = 1, . . . , 4 can be given by the matrix equation
φ1

φ2

φ3

φ4

 =


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4



a

b

c

d

 , (1.23)

where (xk, yk, zk) are the coordinates of node k. If the four vertices form a

positive, finite volume, then a matrix inversion can be performed to find an

expression for a, b, c, and d,
a

b

c

d

 =


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4


−1 

φ1

φ2

φ3

φ4

 , (1.24)
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which can be substituted into Equation (1.22), giving

φ (x, y, z) =
[
1 x y z

]
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4


−1 

φ1

φ2

φ3

φ4

 . (1.25)

Element shape functions α (x, y, z) can be defined by

α (x, y, z) =
[
1 x y z

]
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4


−1

. (1.26)

Note that for a particular point in space (x, y, z), the value of α (x, y, z) is

known since the vertices of the tetrahedron are known. This leads to the

simplification

φ (x, y, z) =

4∑
k=1

φkαk, (1.27)

where αk is the kth element of α (x, y, z).

Using the same procedure, the volume charge density ρ can be calculated

across the linear element, giving

ρ (x, y, z) =
4∑

k=1

ρkαk (x, y, z) , (1.28)

where ρk = −∇ · Mk is the volume charge density at each node with

magnetisation Mk.

Solving by minimising energy

Using the constitutive relation on a magnetic material, it is known that the

scalar potential satisfies the Poisson equation

∇2φ = −ρ. (1.29)

Dirichlet’s principle can be used on this Poisson equation, giving an energy

function to be minimised,

W (φ (x, y, z)) =
1

2

ˆ
|∇φ|2 dv −

ˆ
φρ dv. (1.30)
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Substituting Equations (1.27) and (1.28) into this function gives

W (φ (x, y, z)) =
4∑

k=1

4∑
l=1

[
1

2
φk

(ˆ
∇αk · ∇αl dv

)
φl

−φk

(ˆ
αk αl dv

)
ρl

]
, (1.31)

which can be rewritten as the quadratic matrix equation

W (φ (x, y, z)) =
1

2
φTPφ−φTQρ, (1.32)

where

φ =


φ1

φ2

φ3

φ4

 , ρ =


ρ1

ρ2

ρ3

ρ4

 ,

Pkl =

ˆ
∇αk · ∇αl dv, and

Qkl =

ˆ
αkαl dv.

The above process can be repeated for each element, giving the energy

functional Wi for element i. Summing these gives the total energy of the

system,

W (φ1, φ2, . . . , φN ) =

N∑
i=1

Wi. (1.33)

To minimise the functional W, the partial derivative is taken with respect to

each φi and set to zero,

∂W

∂φi
= 0, ∀ i ∈ {1, 2, . . . , N} (1.34)

According to Equation (1.32), W is a quadratic in φi. Thus, differentiating

W with respect to φi leads to a linear equation in φ being equal to zero.

Therefore, differentiating W with respect to all φi gives N linear equations

in N variables with coefficients defined by the P and Q matrices. This gives

the matrix equation

Cφ = D, (1.35)

13
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where C is the coefficient matrix of the system and D are the constants.

Equation (1.35) can be readily solved with a matrix inverse, giving the

magnetic vector potential at each node,

φ = C−1D. (1.36)

Here, φ is a vector of the approximate magnetic scalar potentials at each of

the four nodes, and the scalar potential at any location inside the node can

be estimated using

φ (x, y, z) ≈ α (x, y, z)φ. (1.37)

Equation (1.35) can be solved for each element in the system, and the

magnetic scalar potential at each node found, allowing the approximation of

the scalar potential at any location inside any element.

Element order and geometry

For a more accurate calculation, a quadratic element can be used rather that

a linear element. In this case, six additional nodes are placed on the centre of

each edge of the tetrahedral element, giving a total of ten nodes per element.

The magnetic scalar potential at a point (x, y, z) inside the element can then

be written as

φ (x, y, z) = a+ bx+ cy + dz + ex2 + fy2 + gz2 + hxy + iyz + jxz, (1.38)

and an extended version of the same problem from Equation (1.25) is per-

formed. A quadratic element gives a more accurate approximation of the

scalar potential and hence any other parameters to be calculated, but comes

at the cost of higher computation effort, leading to longer calculation times.

While tetrahedral elements are extremely versatile, system geometry may

permit the use of hexahedral or cuboidal elements. These use a greater

number of nodes than tetrahedra, leading to a more accurate approximation

of φ.

1.3.3 Permeable materials and iteration

When a permeable material is involved in a numeric calculation, the magneti-

sation vector M is generally unknown. This can be solved by estimating the

value of M and performing a numeric calculation. Once complete, the H and

B fields can be used in conjunction with a BH-curve to find a more accurate

estimation of M, and the process is then repeated. After several iterations,

the value of M converges and an approximate solution for potentials or fields

may be found.
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1.3.4 Numerical techniques in software

Due to their numerical nature, many of the aforementioned techniques

have been implemented in commercially available software packages such

as ANSYS Maxwell. This section briefly discusses several popular numeric

electromagnetics solvers.

ANSYS Maxwell

ANSYS Maxwell is a low frequency two-dimensional and three-dimensional

electromagnetics solver. It can solve for static, frequency domain, and time-

varying magnetic and electric fields, and use these fields to compute force,

torque, capacitance, inductance, resistance, and impedance. As such, it

is versatile and may be coupled with other software to solve multiphysics

problems. One of the main advantages of ANSYS Maxwell is its automatic

meshing feature; the user need not define the mesh, as ANSYS Maxwell will

refine mesh in areas of high energy gradient automatically. ANSYS Maxwell

is the software used for all numeric simulations present in this thesis.

Radia

Radia is a three-dimensional electromagnetics solver initially designed to solve

physical and technical problems relating to insertion devices for synchrotron

light sources. Rather than a more traditional finite element method, Radia

uses a boundary integral method. This method is based on applying a volume

mesh and computing a matrix describing the mutual interactions between the

elements. Once this matrix is computed, an iterative process is performed

to solve for the magnetisation of each element. However, the size of the

matrix scales with the square of the number of elements, leading to large

memory consumption for non-trivial problems. Since Radia uses a boundary

integral method, it is possible to use analytic formulas found in literature. In

addition, the number of elements required for a certain accuracy is generally

smaller than the number required for a finite element method.

COMSOL

COMSOL is a two-dimensional and three-dimensional multiphysics simulation

tool. It supports a wide range of disciplines, including electromagnetics,

structural mechanics, and acoustics. For electromagnetics problems, it uses

a vector-field formulation and a hybrid finite-element and boundary-element
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method, and can be used to compute fields, inductances, and forces. With

its multiphysics approach, it may be used to model and simulate complex

problems such as loudspeakers or wireless power transfer.

Altair Flux

Altair Flux is a two-dimensional and three-dimensional electromagnetics

solver. While its main focus is electromagnetics, it can be coupled with other

software for multiphysics modelling of complex problems. In addition, it can

simulate thermal properties and supports automatic mesh generation.

Numerical techniques are extremely versatile and can solve a wide variety

of electromagnetic problems, but their accuracy is limited and they are often

computationally expensive, taking significant time or resources to compute

a solution. For simple electromagnetic problems, analytic or semi-analytic

methods may be possible, giving higher accuracy and smaller computation

effort.

1.4 Analytic and semi-analytic solutions

While numerical methods such as the finite difference method (Section 1.3.1)

and finite element method (Section 1.3.2) give reasonably accurate solutions,

they can be extremely time-consuming to compute. Indeed, it is impossible

to use them for any real-time application, as they often require minutes of

computation for acceptable accuracy. In recent decades, analytic methods

have seen use due to their exceptional computation speed. However, analytic

methods have significant drawbacks, such as being geometry-dependent and

extremely tedious to derive. Due to their computation speed, analytic models

may be used for applications such as magnetic levitation control [40] and

positioning systems [42]. This section will briefly outline several analytic and

semi-analytic methods.

1.4.1 Boundary value problems

If a magnetic system is current-free and the divergence of the magnetisation

vector field M is zero, the magnetic scalar potential can be approximated

using a semi-analytic boundary value problem. Taking the divergence of the

constitutive relation and substituting H = −∇φ gives a Laplace equation,

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (1.39)
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If the magnetic scalar potential is assumed separable, it can be written as

the product of functions in each of the Cartesian coordinates,

φ (x, y, z) = X(x)Y (y)Z(z) . (1.40)

Substituting this into the Laplace equation yields

Y (y)Z(z)
d2X(x)

dx2
+X(x)Z(z)

d2Y (y)

dy2
+X(x)Y (y)

d2Z(z)

dz2
= 0 (1.41)

Assuming the magnetic scalar potential is non-zero, we can divide by

X(x)Y (y)Z(z), giving

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
+

1

Z(z)

d2Z(z)

dz2
= 0. (1.42)

Here, each term is a function of a single variable, implying that each term

must be equal to a constant. Therefore, three ordinary differential equations

can be derived, and are given by

d2X(x)

dx2
− c2xX(x) = 0,

d2Y (y)

dy2
− c2yY (y) = 0, (1.43)

d2Z(z)

dz2
− c2zZ(z) = 0,

where c2x+ c2y + c2z = 0 and the constants cx, cy, and cz may be complex. The

differential equations can be readily solved using standard methods, giving

the general solutions

X(x) = C1 + C2x+ C3e
cxx + C4e

−cxx,

Y (y) = C5 + C6y + C7e
cyy + C8e

−cyy, (1.44)

Z(z) = C9 + C10z + C11e
czz + C12e

−czz,

where the coefficients C1,...,12 may be evaluated using boundary conditions.

Once the coefficients are solved, an expression for the magnetic scalar

potential φ (x, y, z) can be found using the product of the three differen-

tial equation solutions, allowing a solution to the magnetic field intensity

H (x, y, z) = −∇φ (x, y, z).

1.4.2 Biot-Savart law

The Biot-Savart law, first discovered by Biot and Savart in 1820, with later

contributions by Ampére, describes the differential magnetic field due to a
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current through a differential wire element. Given a current I through a

differential wire element dl, the differential field dB at a point r is given [33]

by

dB =
µ0I

4π

dl× r

|r|3
. (1.45)

Equation (1.45) can be applied to currents in a wire, currents across a

surface, or currents through a volume, by integrating with respect to one,

two, or three spatial coordinates respectively [22]. The magnetic field due to

these currents is therefore given by

Bcontour =
µ0

4π
I

˛
C

dl× r

|r|3
,

Bsurface =
µ0

4π

¨
S

K× r

|r|3
ds, (1.46)

Bvolume =
µ0

4π

˚
V

J× r

|r|3
dv,

where K is the surface current density, J is the volume current density, and

r is the vector from the source point to the observation point. If a magnetic

system has relatively simple geometry, it may be possible to solve these

integrals analytically, leading to fast and accurate field computation.

1.4.3 Dipole model

A magnetic body may be modelled using a large collection of magnetic

dipoles, which behave similarly to extremely small cylindrical permanent

magnets. The magnetic field due to the dipole is given by [27]

Bdipole =
µ0

4π

(
3 (m · r) r

|r|5
− m

|r|3

)
, (1.47)

where m is the dipole moment and r is the vector from the centre of the

dipole to the point at which the field is calculated. The magnetic field due

to a magnetic body may be estimated by superimposing the field due to a

large collection of dipoles. Although this model is only accurate in the far

field of the magnetic body, it provides an extremely fast computation of the

approximate field.

1.4.4 The charge and current models

Two common methods for calculating the magnetic field due to permanent

magnets are the magnetic charge and magnetic current models, based on
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M

Figure 1.4: A cuboidal permanent magnet (left) with its current model

equivalent (right). In this particular case, the magnetisation M is assumed

constant and uniform, leading to surface current but no volume current.

Helmholtz decomposition of the magnetisation vector field (Appendix A).

These models are generally difficult to solve, with most solutions existing

for geometries with surfaces orthogonal to the principal axes of a coordinate

system, such as cuboids [1] and cylinders [11]. However, if a solution is found,

these models are extremely effective due to their high computation speed.

Magnetic current model

The magnetic current model is based on a solenoidal B-field, ∇ · B = 0.

This implies that B can be written as the curl of some vector field A; that

is, B = ∇ × A. As such, B forms the divergence-free component of the

magnetisation vector field M. Therefore, the magnetic flux density B at a

point in space x, due to a magnetic specimen with a volume V ′, bound by

the surface S′ and normal vector n̂′, and with magnetisation vector field M′,

is given by

B (x) =
µ0

4π

˚
V ′

(
∇′ ×M′)× x− x′

|x− x′|3
dv′+

µ0

4π

‹
S′

(
M′ × n̂′)× x− x′

|x− x′|3
ds′.

(1.48)

It can be seen that both integrals in Equation (1.48) are equivalent to the

Biot-Savart law, with one being due to a volume current and the other a

surface current. This implies an equivalence between the magnetisation

vector field M and surface and volume currents (Figure 1.4), leading to the

concept of the fictitious current densities

J (x) = ∇′ ×M′, and (1.49)

K (x) = M′ × n̂′. (1.50)
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M

Figure 1.5: A cuboidal permanent magnet (left) with its charge model

equivalent (right). In this particular case, the magnetisation M is assumed

constant and uniform, leading to surface charges with no volume charges.

Therefore, Equation (1.48) can be written more simply as

B (x) =
µ0

4π

˚
V ′

J× r

|r|3
dv′ +

µ0

4π

‹
S′

K× r

|r|3
ds′, (1.51)

where r = x− x′.

Magnetic charge model

The magnetic charge model is similar in nature to the magnetic current model,

but is based on the H-field rather than the B-field. It is less complicated

to solve due to using scalars rather than vectors, but requires a current-free

system.

If a magnetic system is absent of free current, Ampére’s circuital law

simplifies to

∇×H = 0, (1.52)

implying the H-field is irrotational. Therefore, it can be written as the

gradient of some scalar field φ, and becomes the curl-free component of the

Helmholtz decomposition of M,

H (x) =
1

4π

˚
V ′

(
∇′ ·M′) x− x′

|x− x′|3
dv′ +

1

4π

‹
S′

(
M′ · n̂′) x− x′

|x− x′|3
ds′.

(1.53)

Here, both integrals behave similarly to the electric field equations from

volume or surface charge, implying equivalence between the magnetisation

and charge densities (Figure 1.5). Thus, the concept of fictitious magnetic
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charge densities may be introduced,

ρ′m = −∇′ ·M′, and (1.54)

σ′
m = M′ · n̂′. (1.55)

Therefore, Equation (1.53) simplifies to

H (x) =
1

4π

˚
V ′

ρ′mr

|r|3
dv′ +

1

4π

‹
S′

σ′
mr

|r|3
ds′. (1.56)

The B field may then be calculated using the relation

B = µH+Br. (1.57)

Limitations

If the charge or current model equations can be fully solved for a given

magnetic system, a set of closed-form equations may be derived. These

equations usually consist of trigonometric, square root, and logarithmic

terms, and as such are easily and quickly evaluated computationally.

Due to the surface and volume integrals in the magnetic current and

charge models, the models are highly geometry-dependent. Thus, any solution

to these models is limited only to the geometry used for that solution, and is

generally very difficult to derive. Most published solutions to these models

are applied to simple geometries, as discussed further in Section 1.4.6, with

little work on complicated geometries.

1.4.5 Magnetic forces and torques

Once the magnetic field B is known, the effect of this field on a current

distribution or permanent magnet can be found using the various methods

discussed in this section.

Lorentz formulation

The Lorentz force on an electrically charged particle with charge q and

velocity v moving through an external magnetic field Bext is given by

F = q (v ×Bext) . (1.58)

Since an electric current is analogous to a distribution of moving charged

particles, the Lorentz force on a current-carrying conductor can also be
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calculated. This can be done by integrating the appropriate expression along

the length of the conductor, giving

F = I

˛
C
dl×Bext, (1.59)

where I is the current and dl is the differential conductor element. Further-

more, the force on current-carrying surfaces and volumes may be calculated

in a similar way, giving

Fsurface =

¨
S
K×Bext ds, and (1.60)

Fvolume =

˚
V
J×Bext dv. (1.61)

Similarly, the torque on the conductor may be calculated by taking the

cross product of the moment arm and the differential force element, giving

Tcontour = I

˛
C
r× (dl×Bext) , (1.62)

Tsurface =

¨
S
r× (K×Bext) ds, and (1.63)

Tvolume =

˚
V
r× (J×Bext) dv, (1.64)

where r is the moment arm.

Many systems are composed of more than one type of current distribution.

For example, a solenoid may use wire and permanent magnets. When

activated, a current is applied through the wire, implying the necessity for

the contour integral. However, eddy currents will form on and inside the

magnet, implying use of the surface and volume current force and torque

equations. Here, the principle of superposition applies; the sum of all three

terms may be used to find the force and torque on a magnetic body. This

superposition forms the basis for the force and torque equations based on

the magnetic current model, which are given by

F =

˚
V
∇×M×Bext dv +

‹
S
M× n̂×Bext ds, and (1.65)

T =

˚
V
r× (∇×M×Bext) dv +

‹
S
r× (M× n̂×Bext) ds. (1.66)

Magnetic charge

Since a current-free system exhibits properties similar to that of a system of

charged particles, similar principles can be applied. The force on a charged
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particle in a field is proportional to the charge of the particle and the strength

and direction of the field. Upon integration, the force and torque based on

the magnetic charge model are given by

F =

˚
V
∇ ·M Bext dv +

‹
S
M · n̂ Bext ds, and (1.67)

T =

˚
V
r× (∇ ·M Bext) dv +

‹
S
r× (M · n̂ Bext) ds. (1.68)

Maxwell stress tensor

A generalised approach for the calculation of the magnetic force on a body

is the use of the Maxwell stress tensor. Assuming a magnetically linear

material satisfying the equation B = µH, the Maxwell stress tensor becomes

[
T
]
=

B2
x − 1

2 |B|2 BxBy BxBz

ByBx B2
y − 1

2 |B|2 ByBz

BxBz ByBz B2
z − 1

2 |B|2

 . (1.69)

Once defined, the stress tensor may be used to find the force on a magnetic

body, given by

F =
1

µ

˚
V
∇ · T dv, (1.70)

where the integration is taken over the volume of the magnetic body. To

simplify this, the divergence theorem may be used, reducing the volume

integral to a surface integral,

F =
1

µ

‹
S
T · n̂ ds. (1.71)

The torque on the magnetic body may also be calculated using

T =
1

µ

‹
S
(r× T) · n̂ ds, (1.72)

where r is the torque arm.

1.4.6 Geometry-specific solutions

Considerable research has been conducted on a number of magnetic systems

using a wide range of techniques. This section gives a short review of current

literature on the modelling of various magnet geometries.
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M
M

Figure 1.6: Examples of cuboidal permanent magnets. Both have magneti-

sations which are a linear combination of the three principal unit vectors.

Cuboidal magnets

It was not until the early 1970s, when strong permanent magnet materials

were widely available, that magnetic modelling based on geometry began. In

1972, Tsui et al. [62] attempted to analytically calculate the force between

two parallel cuboidal permanent magnets. This used the Lorentz force

approach, requiring four nested integrals. They were able to analytically

solve the first three integrals, but required numeric integration for the last.

The next decade, Akoun and Yonnet [1] used a different method on the same

problem. Rather than the Lorentz force, they calculated the magnetostatic

energy in the system, also requiring four nested integrals. However, they

were able to solve all four integrals and take the gradient of the energy

expression to calculate the magnetic force. In addition, they presented the

analytic magnetic field produced by one of the magnets. Although these

equations were an important breakthrough in magnetostatics, they had

considerable limitations in their use. These equations assume the magnets

are parallel, with parallel magnetisation vectors along one of the principal

axes. Furthermore, it is assumed that their magnetisations are rigid and

uniform, with both magnets having permeability equal to that of free space.

The following decade, Bancel [6] noticed the aforementioned equations

could be represented in an interesting way. By slightly manipulating the

field and force equations, they could be written as a summation of fields and

forces produced by point charges on the vertices of the magnets, leading to
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the concept of ‘magnetic nodes’. Although this did not lead to any significant

developments, it promoted the idea of mathematical manipulation of these

complicated equations. The concept of magnetic nodes was later expanded by

Yonnet and Allag [67] when these nodes were applied to the torque between

two cuboidal magnets.

A significant implication of stronger magnetic materials in the second

half of the 20th century was the development of stronger permanent magnet

electric motors and torque couplers. The equations published by Akoun and

Yonnet [1] could not be used to analyse these devices, since the magnets had a

relative rotation between them. This inspired a set of publications in the late

1990s by a group at the Laboratoire d’Electrotechnique et de Magnetisme

de Brest [13, 14, 19, 20] which explored the force between cuboidal magnets

with relative rotation about one axis. While this was useful for analysing

rotating cuboidal magnets, these equations were limited similarly to those

published earlier. The magnets must be aligned along the axis of rotation,

which is valid for many motors and torque couplers, but limited use elsewhere.

Furthermore, rotation about only one axis was allowed, and all magnets must

have rigid, uniform magnetisation and have permeability equal to that of

free space.

By the turn of the millennia, rare-earth permanent magnets had become

widespread, leading to more research interest into modelling them. In partic-

ular, researchers were interested in generalising the work done previously by

removing assumptions. In 2009, Ravaud and Lemarquand [53] generalised

the field equations for a cuboidal magnet by allowing arbitrary magnetisation

direction (Figure 1.6). This was done using a superposition approach; three

coincident cuboidal permanent magnets were modelled, with each having

magnetisation in one of the principal axes. The field due to each of these

magnets was summed, giving the total field due to any magnetisation di-

rection. This, again, assumed rigid uniform magnetisation and a relative

permeability of unity.

This trend of generalising the magnetisation direction continued that

same year with two research groups exploring the forces and torques between

cuboidal magnets with arbitrary magnetisations. Between 2009 and 2015,

publications by Janssen et al. [34, 36, 38] and Allag et al. [2–5] found

expressions for the force and torque between cuboidal magnets with arbitrary

magnetisation directions.

While modelling of cuboidal permanent magnets has been greatly im-

proved, many constraints still apply. Fields due to cuboidal magnets are
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M

Figure 1.7: A diametrically-magnetised cylindrical magnet (left) and axially-

magnetised ring magnet (right).

rather simple to calculate based on the work from Akoun and Yonnet [1]

and Ravaud and Lemarquand [53], and forces and torques between parallel

cuboidal magnets may be calculated with arbitrary magnetisation direction.

However, generalisations of these results are limited.

Cylindrical and ring magnets

While cuboidal permanent magnets are often used in a linear or planar

magnetic system, cylindrical and ring magnets (Figure 1.7) have equivalent

use in a rotational system such as in electric motors and magnetic bearings.

Furthermore, ring magnets have constant boundary values in a cylindrical

coordinate system, vastly simplifying the integrals associated with modelling

these magnets. Due to these characteristics, ring magnets have seen extensive

attention in literature, with early work on magnetic bearings by Yonnet [65,

66]. However, these studies used the dipole model on a two-dimensional

space, limiting accuracy. These early publications would lead to more general

formulations over the next decades.

Attempts to accurately model ring magnets began in the last decade of the

20th century, with Furlani [24] using the magnetic vector potential to model

multipole disk magnets created with axially magnetised ring sectors. However,

he was unable to analytically evaluate all integrals, and numeric integration

was required. Shortly after, Furlani et al. [25] modelled bipolar cylindrical

magnets, with the magnetisation vector orthogonal to the cylinder axis.

Again, they could not analytically evaluate all integrals and required numeric

integration. Similarly, Furlani et al. [26] explored radially magnetised ring
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M M

Figure 1.8: A pyramid frustum magnet (left) and a tetrahedral frustum

magnet (right). Both are examples of polyhedral magnets, since they are

composed only of flat faces without any curves. These may be tessellated to

form a planar magnet array, as discussed in Chapter 4.

magnets, but again required numeric integration. Few developments would

follow until the application of elliptic integrals into the analytic expressions

the following decade.

Eventually, expressions for the field components of ring and cylindrical

magnets were made more efficient by using elliptic integrals rather than

numeric integration, since elliptic integrals have efficient computation algo-

rithms. The axially magnetised ring magnet was revisited by Ravaud et al.

[52] using the charge model, with volume charge becoming zero and leaving

only surface charge. The integrals in this model were manipulated, allowing

elliptic integrals to be introduced, leading to faster computation than seen

earlier. Radial magnetisation soon followed by the same authors [54] using

the surface charge model with elliptic integrals. However, volume charge is

nonzero for the radial magnetisation case, and the expressions were adapted

later [55] to incorporate this volume charge and improve the accuracy of the

expressions.

With known field solutions for ring magnets with radial and axial mag-

netisation, one interesting case remained. Diametric magnetisation, where

a cylindrical magnet is magnetised in a straight line orthogonal to its axis,

was explored by Caciagli et al. [11]. They found field equations for a cylin-

der with diametric magnetisation using the magnetic scalar potential, and

combined with the axial magnetisation field equations, were able to evaluate

the magnetic field due to magnetisation in any Cartesian direction.

Polyhedral magnets

As the literature on cuboidal and ring magnet modelling matured, a trend

toward generalising the models was present. However, even with this trend,
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these models are still limited to their specific geometries; any other geometry

requires an alternative bespoke model. To solve this, researchers have

explored polyhedral geometries (Figure 1.8), which applies to any geometry

composed of flat faces.

Prismatic permanent magnets are a type of polyhedral magnet created

by extruding a polygon along an axis and have been modelled using vari-

ous methods. These magnets have been of interest to researchers due to

their potential use in rotational and linear motors. In particular, trapezial

prismatic magnets have seen interest in linear Halbach arrays in place of

more traditional cuboidal magnets. Assuming the magnets are long enough

along the extrusion axis, they can be modelled with relative accuracy using

a two-dimensional approach, such as that taken by Lee and Gweon [44].

However, a three-dimensional approach is more accurate at the cost of more

difficult analysis. Meessen et al. [48] approximated the same trapezial pris-

matic magnets by stacking cuboidal magnets of decreasing (or increasing)

width on top of one another. The analytic field equations [1, 53] for cuboidal

magnets can be summed to give an estimate of the field produced by the

prism. If a sufficient number of cuboidal magnets are used, this presents a

relatively accurate solution at the cost of computation effort. Other prismatic

magnets have also been explored in literature. For example, Soltner and

Blümler [60] examined the field produced by polyhedral prismatic magnets

arranged around a circle in attempt to create a uniform field inside the circle.

However, their approach used a magnetic dipole model, where each magnet

is approximated as a point dipole and magnet geometry has no effect on the

field produced. This approach is relatively accurate when calculating the

field far from the magnet, but becomes inaccurate when calculating the field

close to the magnet.

Although polygonal prismatic magnets have potential in some geometric

configurations, more general polyhedra are far more versatile. General

polyhedral permanent magnets have been considered by several authors,

but have proven difficult to analyse. Bancel [6] suggested stacking cuboidal

magnets as early as 1999, but a large number of small magnets are necessary

to accurately model complicated polyhedral geometries, leading to a high

computational cost.

Recently, researchers have applied various methods to model polyhedral

magnets more accurately. Compter et al. [17] used the current model to

derive field equations for generalised polyhedral magnets by decomposing

the magnet into current-carrying rectangular and triangular sheets. This
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methodology requires the permeability of the magnet to be equal to that

of free space and the magnetisation to be uniform and constant. While

this methodology is more accurate than the cuboid-stacking methodology

outlined by Bancel [6], the nontrivial geometry invokes difficult integrals,

and the resulting equations are complicated. A similar approach was taken

by Janssen et al. [35, 37], who used the charge model rather than the

current model on polyhedral magnets. Their methodology decomposed the

magnets into charged surfaces rather than current-carrying sheets, which

also required magnet permeability equal to that of free space and constant

uniform magnetisation. While their methodology achieved arguably simpler

equations, the expressions were still complicated and required considerable

computational effort to solve.

Several years later, Rubeck et al. [57] used the charge model to derive

considerably simplified field equations. This methodology used a coordinate

transformation based on the location of the point at which the field is to

be calculated at, therefore placing the field point at the origin. Again, this

required magnet permeability equal to that of free space and constant uniform

magnetisation. While this methodology provided simplified field equations,

the relatively slow magnet decomposition process must be undertaken once

for each magnetic field calculation. Thus, this method may be used for fast

computation of the magnetic field at few points, but becomes slow for many

field points.

The methodologies presented by Compter et al. [17], Janssen et al. [35, 37],

and Rubeck et al. [57] require coordinate transforms to calculate the magnetic

field produced by a polyhedral permanent magnet. This may considerably

decrease the speed of field calculations, especially for geometries with a

large number of faces. To alleviate this, Fabbri [21] derived equivalent field

equations without using coordinate transforms. Rather, vector identities were

used to generalise the integrals to arbitrary coordinate systems. While this

removed dependence on coordinate transforms, the expressions are relatively

complicated and computationally demanding.

Generalised methodologies

Some authors have attempted to find expressions for the fields, forces, and

torques between permanent magnets with generalised shape. One team

found integral expressions for the magnetostatic interaction energy between

two magnets of arbitrary shape using a Fourier space approach [7–9, 18].

However, only simple shapes such as cuboids and spheres are analytically
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integrable, and more complicated geometries must be numerically calculated.

Alternatively, a more simple approach may be taken if computation time

and simplicity is more desirable than high accuracy. Yung et al. [68] and

Furlani [27] derived the force between two magnetic dipoles using the field

due to a dipole. A generalised magnetic body may be modelled as a collection

of dipoles and the dipole method applied, giving a fast approximation for the

force between the bodies. However, this method is only accurate when the

bodies are separated by a large distance relative to their size; if the bodies

are close, the dipole model leads to considerable error.

Halbach arrays

Permanent magnets are often seen in arrays for various applications such as

electric motors, generators, and undulators. The most common type of per-

manent magnet array is the Halbach array, first theorised by Mallinson [46]

in 1973, with further research done by Halbach [29] the following decade. The

ideal Halbach configuration (Figure 1.9) consists of a length of ferromagnetic

material with a magnetisation vector which rotates along the length of the

material, leading to an effective doubling of the flux on one side of the array

and zero flux on the other side. However, a constantly rotating magnetisation

vector is not practically realisable. Instead, practical implementations of

Halbach arrays consist of segmented permanent magnets with the magneti-

sation of each rotated with respect to its neighbours (Figure 1.10). In effect,

this almost doubles the field strength on the strong side, while minimising

it on the weak side. In addition, the magnetic field on the strong side is

oscillatory along the length of the array. These two characteristics make the

Halbach array essential for many linear and rotational motors, since they

minimise leakage flux due to their weak side, and allow efficient translation

or rotation with their strong, oscillating field. Additionally, due to the high

field on one side and almost no field on the other, these arrays have seen use

in magnetic latching applications such as refrigerator magnets. Furthermore,

these arrays exhibit a periodic field pattern, and as such are often used for

particle oscillators known as wigglers. Due to its effectiveness in permanent

magnet motors and generators, the Halbach array has received considerable

attention in literature, with many authors attempting to model and optimise

the array.

The periodic magnetisation pattern of the Halbach array allows modelling

with the Fourier series method based on the boundary value problem. Since

the magnetisation pattern is periodic, it can be modelled as a Fourier series.
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Figure 1.9: An idealised linear Halbach array of magnets, with a continu-

ously rotating magnetisation vector field.

Figure 1.10: A segmented linear Halbach array. Generally, an idealised

Halbach array is not practical, and a segmented array is cheap and simple,

while being almost as effective.

Additionally, since the magnetisation pattern is periodic, so too is the

magnetic field distribution along the length of the array, the strength of

which decays with distance from the array. The Fourier series approach for

Halbach arrays is widely used due to its simplicity, but becomes less accurate

near the end of the array where the periodicity halts and ‘end-effects’ become

apparent. An approach often used to remedy this is to use the charge or

current method to model individual magnets, and sum the effects of each for

the total field. However, this may be computationally expensive for large

arrays, since a calculation must be performed for every magnet in the array.

In addition to linear Halbach arrays, circular arrays are often analysed.

These arrays, often referred to as Halbach cylinders, have the advantage of

no end-effects, therefore increasing the accuracy of the Fourier approach.

Halbach arrays arranged with a circular cross sections may be designed

with two full rotations of the magnetisation vector, giving a highly uniform

magnetic field inside the cylinder, and almost zero field outside [31]. Due to

the uniformity of the field, this configuration can be used in medical devices

such as MRI machines. Alternative numbers of rotations of the magnetisation

vector have been investigated, giving interesting field distributions inside the

cylinder [10, 30, 51, 61].

To optimise the segmented linear Halbach array, several approaches have

been considered. One such approach involves modifying the number of

magnets in each full repeating unit; rather than having each magnetisation

an angle of 90° to the neighbouring magnets, the angle can be reduced [32,

58, 63], as shown in Figure 1.11. This reduces degree of rotation of the

magnetisation vector across the segmentation boundary, thus reducing the

effect of segmentation.
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Figure 1.11: A segmented linear Halbach array in which the number of

magnets per pole is larger than four, requiring some magnets with diagonal

magnetisations.

Figure 1.12: A segmented linear Halbach array made using trapezial

prismatic magnets. These are able to achieve a stronger field than traditional

cuboidal Halbach arrays [44, 48].

Rather than magnetisation direction, soft iron may be implemented in

the array [23, 64] to direct or otherwise manipulate the flux, creating a more

desirable field. Alternatively, the relative size of each magnet can be modified

to optimise the array, with some magnets in the array being made longer or

taller [58, 59]. These variations have the effect of manipulating the shape of

the field distribution, and may be desirable under some circumstances.

These variations in the array can be further generalised by considering

magnets of alternative geometries. Trapezoidal prismatic magnets may be

formed into a Halbach array (Figure 1.12), and may provide more desirable

characteristics than a cuboidal magnet Halbach array. While Lee and Gweon

[44] and Meessen et al. [48] used differing methodologies for analysing these

arrays, they both came to the conclusion that trapezoidal prismatic Halbach

arrays can produce a larger actuating force when applied to a linear motor

than that of equivalent cuboidal arrays. Interestingly, these trapezoidal

prismatic arrays can produce a larger maximum field strength than an

equivalent cuboidal array, but at the cost of weaker field strength in other

locations. Furthermore, Lee et al. [43] found that a trapezoidal prismatic

Halbach array distorts the magnetic field, having closer resemblance to a

trapezoidal wave than the desired sine wave. This leads to force ripple when

applied to a linear motor, but can be remedied by shaping the current applied

to the coils [43].

In addition to trapezoidal magnets, some authors have explored arrays

using magnets with triangular cross sections. One such study by Majernik

and Rosenzweig [45] explored several configurations of triangular arrays and

compared these to a simple array with two magnets per pole. They were able
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to achieve up to 13% larger magnetic field strength by using right triangular

magnets in an equivalent configuration. These results show promise in the

variation of magnet geometry to achieve more desirable permanent magnet

arrays.

Planar arrays

In addition to linear arrays, the Halbach magnetisation pattern can be

applied to planar arrays of magnets by superimposing two sets of orthogonal

linear Halbach arrays over one another (Figure 1.13). In this way, a spatially

periodic magnetic field distribution is formed, allowing a coil-based actuator

to move in two orthogonal directions. However, to achieve the Halbach

magnetisation pattern in two dimensions, some parts of the array must be

empty, leading to unused space in the array. Many authors have attempted

to optimise the planar array by modifying the relative size of the magnets,

potentially reducing the unused space (Figure 1.14). Often, the magnets

with magnetisations parallel to the plane are made smaller, while those

with magnetisations orthogonal to the plane are made larger. In this way,

the empty space in the array is reduced, while maintaining the Halbach

magnetisation pattern.

Further variations on planar Halbach geometry have been done, such

as increasing the number of magnets for each repeating unit of the array.

This leads to a more desirable field pattern with a larger field component

orthogonal to the array while reducing the higher order harmonics of the field

produced [49]. In addition, some authors have experimented with triangular

prismatic magnets [15, 16] and frustum permanent magnets (Figure 1.15)

[35, 37, 50], finding more desirable fields by varying and optimising magnet

geometry.

1.4.7 Permeability

The effect of permeability leads to considerable difficulty in modelling per-

manent magnets. In essence, when a permanent magnet is exposed to a

magnetic field, including its own, the magnetisation vector field is altered,

with the effect being more significant for larger permeability. This is de-

picted in Figure 1.16, with the top magnet being ideal, but the remanence

magnetisation Br of the bottom becoming weaker due to its permeability,

and some of the ‘magnetic charge’ leaking to the sides of the magnet. The

alteration of the magnetisation vector field leads to an altered field through
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(a)

(b)

Figure 1.13: Top view (a) and trimetric view (b) of a planar Halbach array

created using cube permanent magnets. These are simple to produce, as

only one configuration of magnet is required.

34



Introduction

(a)

(b)

Figure 1.14: Top view (a) and trimetric view (b) of a planar Halbach array

in which the magnets with magnetisations orthogonal to the array are made

larger, thus reducing the empty space in the array.
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(a)

(b)

Figure 1.15: Top view (a) and trimetric view (b) of a planar Halbach

array using pyramid and tetrahedral frustum magnets. This is the planar

equivalent of the linear Halbach array with trapezial prismatic magnets

shown in Figure 1.12.
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the magnet, leading to further alteration of the magnetic vector field, and so

on. In addition, the field through a magnet is not spatially constant; the field

at one point inside a magnet is usually different from the field at another

point. Thus, the magnetisation vector field is spatially varying, considerably

increasing the modelling difficulty.

Permanent magnets often have low permeabilities, with common values

presented in Table 1.2. Commonly used modern rare-earth neodymium

magnets, for example, have a relative permeability of µr ≈ 1.05. Therefore,

the effect of permeability is small. Due to this, most research models

permanent magnets with a relative permeability of unity, neglecting the effect

of permeability as highlighted earlier in Section 1.4.6. However, Rovers et al.

[56] showed a nontrivial error when neglecting the permeability. Specifically,

they modelled a cuboidal magnet with relative permeability µr = 1.1 and

found an error of approximately 4% in the magnetic field strength. They

were able to mitigate this error by using the method of images to find an

equivalent magnetisation vector. Similarly, Kremers et al. [41] found an

expression for the equivalent magnetisation vector using the properties of

permeability across the boundary of a magnet. It should be noted, however,

that these studies do not consider spatially-varying magnetisation.

Other methods to model magnetic permeability involve subdividing a

magnetic specimen into multiple surface or volume elements. For instance,

Forbes et al. [23] subdivides a ring magnet into ring sector volumes, each

being magnetically linear. This allows the modelling of nonlinear materials

near saturation. Similarly, Zhang et al. [69] subdivides a cuboidal magnet into

a large number of smaller cuboidal magnets and uses the magnetic surface

charge method on each to calculate the total field. In contrast, Casteren et al.

[12] subdivides the surface of a cuboidal magnet into small surface elements,

each with their own surface charge density which is adjusted based on the

field. However, each of these three methods requires iteration, since a change

in the magnetisation vector or surface charge density changes the field, which

requires further adjustment of the magnetisation vector or surface charge

density, and so on, which can lead to considerable computation time.

1.4.8 Literature summary

Three-dimensional magnetostatic modelling of permanent magnets was first

accomplished less than forty years ago. While much work has been done

since, there are still many open problems, such as the force and torque

37



Chapter 1

(a)

(b)

Figure 1.16: An ideal permanent magnet with relative permeability µr = 1

(a), with the equivalent magnet but with permeability µr = 3 (b). In the

latter case, the surface charge is ‘leaking’ onto the sides of the magnet under

its own self-field, resulting in a weaker magnet overall.
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between cuboidal magnets under general rotations, or the most optimal

configuration for magnets in an array. Of particular interest to this thesis

is the magnetic fields produced by polyhedral permanent magnets. While

studies have derived equations for these fields, these equations are often

complicated and computationally expensive, leading to slow force and torque

calculations. Similarly, the magnetostatic modelling of permeability has

been studied over the last decade, and solutions have been presented, but

with a high computational cost. Therefore, this thesis aims to target the

magnetostatic modelling of the magnetic fields, forces, and torques associated

with permeable polyhedral permanent magnets.

1.5 Thesis aims and scope

Much of the current magnetic modelling literature is highly geometry-specific

and requires ideal conditions. For example, the work by Akoun and Yonnet

[1] requires two magnets to be cuboidal with constant, uniform magneti-

sation vectors in the same direction, with both magnets having a relative

permeability of unity. While other research is often more general than this,

most is still rather specific. This thesis aims to further generalise magnetic

modelling techniques by reducing the reliance on both magnet geometry and

magnet permeability in a computationally efficient methodology.

The first primary objective of this thesis is to find new expressions for

the magnetic field produced by general polyhedral permanent magnets, and

to apply these to estimate forces and torques between these magnets. This is

done by solving the magnetostatic charge model for generalised polyhedral

magnets with unity relative permeability. The methodologies found are

applicable to any magnet composed of flat faces, and magnets with curved

faces may be approximated with polyhedra and the methodologies applied.

The methodologies are also used to analyse planar arrays of magnets for use

in a planar actuator.

The second objective of this thesis is to derive a method to model

magnetically linear permeable materials of polyhedral geometry. This is

based on the theory of permeability and uses the methods from the first

objective to estimate the magnetic fields, forces, and torques produced by

magnetically linear polyhedral magnetic materials.

Both objectives are undertaken with computation efficiency in mind.

Vectorised code is used where possible, and mathematical expressions are

simplified to avoid unnecessary computations. The equations and method-

39



Chapter 1

ologies are implemented in interpreted MATLAB code. While compiled

C++ code may be faster, MATLAB code provides far more flexibility and

rapid prototyping of code due to the interpretive nature. While parallelised

code can dramatically increase computation speed of large problems, the

overhead associated with parallelisation may hurt the computation of small

problems. As such, most code is non-parallelised, with the exception of the

large optimisation problem in Chapter 4.

In summary, achieving the main aims and objectives in this thesis will

allow fast and accurate modelling of permanent magnets and other linear

magnetic materials.

1.6 Thesis format

This thesis is presented in a Thesis by publication format, with three articles

(forming Chapters 2 to 4) published, and one article (forming Chapter 5)

submitted. All articles have been submitted to high ranking journals in the

magnetic modelling area of research.

1.7 Thesis outline

This thesis begins with a brief historical overview of the development of

electromagnetism as a science, commencing with the first recordings of

magnetism, and concluding with the discovery of quantum mechanics and

electron spin.

Chapter 1 follows, detailing the mathematical background of magnetism

and giving a review of current literature on magnetic modelling. This

chapter outlines the current gaps in knowledge of the magnetic science, and

summarises the main purpose of this thesis.

The substantive work of the thesis begins in Chapter 2, which details a

methodology to evaluate the magnetic field produced by a polyhedral magnet

and estimate the force and torque between two polyhedral magnets. While

this method is effective when calculating the magnetic field at a single point,

it becomes less efficient when evaluating the field at many points. Therefore,

a new method was found, presented in Chapter 3, which presents solved field

equations which are considerably more effective when calculating the field at

many points. This is useful for force and torque evaluation, since a numeric

surface integral requires the field evaluated at each surface element, with
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a larger number of field evaluations leading to a more accurate force and

torque result.

Chapter 4 presents a case study on planar Halbach arrays by using the

methodology described in Chapter 3. This explores using pyramid and

tetrahedral frustum permanent magnets rather than the more traditional

cuboidal magnets in a planar array.

The work presented in Chapters 2 to 4 require a relative permeability

of unity, limiting their use case in real magnetic systems. To alleviate

this limitation, Chapter 5 investigates magnetic permeability and details a

method for modelling permeable permanent magnets. This method attempts

to alleviate the requirement for iteration by calculating the magnetic field

only once and performing a matrix inversion. This considerably reduces

computation time at the cost of computational memory.

Finaly, the thesis is concluded in Chapter 6, which summarises the thesis

as a whole and outlines potential future work to follow this thesis.
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Magnetic field computation

optimised for few points

In general, the magnetic field produced by a permanent magnet is difficult

to calculate, with the difficulty increasing considerably with complicated

geometries. Polyhedral magnets have been explored in literature, but often

the expressions are long and complicated, and limited work has been done

on force and torque evaluation. This chapter presents the first of two

methodologies for calculating the magnetic field produced by ideal polyhedral

permanent magnets. Field equations are derived based on square root,

logarithmic, and arctangent functions, leading to high computation speed.

In addition, force and torque estimations are presented and validated using

finite element analysis (with unity relative permeability) and past literature

where available. As is discussed in Chapter 3, this methodology is the more

effective of the two when the field is to be computed at few (≤ 10) points in

space.
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Analytic magnetic fields and
semi-analytic forces and torques due to
general polyhedral permanent magnets

James L.G. O’Connell, William S.P. Robertson, and Benjamin S. Cazzolato

Abstract

This paper outlines an algorithm which analytically calculates the mag-

netic field produced by a general polyhedral permanent magnet with any

number of faces and arbitrary face orientations, then uses the algorithm to

semi-analytically calculate the force and torque on a second general polyhe-

dral magnet. The algorithm is validated against both literature and finite

element simulations using cuboids and dodecahedra. It is then used to model

a basic two-magnet repulsive system, where it is shown that frustum magnets

can produce a larger force per unit volume than cuboidal magnets. The

shape of the frustums is optimised to maximise the force between them at

a given separation distance, showing a considerable increase in force when

compared to cuboidal magnets with the same volume. This paper shows

that there is scope to improve performance of magnetic systems by using

novel magnet shapes, and presents an algorithm which can be used for this

optimisation process.

2.1 Introduction

Permanent magnets have many applications in magnetic resonance imaging,

gearing, actuators, and motors [10]. Furthermore, they can be an essential

component in wave energy harvesting [14], vibration isolation [21], and many

other applications. Due to their extensive use in a number of industries, it

is important to understand the interactions between them, improving the

design and optimisation process of electromagnetic systems.

Throughout recent decades, researchers have attempted to understand

interactions between permanent magnets. Akoun and Yonnet [1] started

this trend by calculating the force between two parallel cuboidal permanent

magnets with parallel magnetisation by finding the interaction energy between

the magnets. Janssen et al. [12] used the same energy-based approach, but

instead calculated the torque on one of the magnets. Allag and Yonnet [2]
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extended the force and torque expressions to non-parallel magnetisations.

Engel-Herbert and Hesjedal [8] and Ravaud and Lemarquand [17] have

calculated the magnetic field of cuboidal magnets rather than forces and

torques. However, these studies are limited to cuboidal magnets and cannot

be used for any other shapes.

A number of studies have examined ring and cylindrical magnets rather

than cuboids. Furlani et al. [9] was able to semi-analytically calculate the

field due to radially magnetised ring magnet sectors. Several papers by

Ravaud et al. [16, 18, 19] have found expressions for radially and axially

magnetised ring magnets and sectors. Again, however, these studies are

limited to ring magnets and cannot be used for other geometries.

To mitigate this geometrical limitation, some researchers have explored

polyhedral permanent magnets, generalising the solution to any three dimen-

sional shape with flat facets. Some authors such as Soltner and Blümler [24]

and Meessen et al. [15] have approximated the magnetic field of a polyhe-

dral magnet using assumptions such as the dipole model or discretisation

of shapes into cuboids, but these are not always accurate. Other authors,

however, have been more successful in solving for the exact magnetic field.

Janssen et al. [11] and Rubeck et al. [23] were able to find analytic expres-

sions for the magnetic field of a polyhedral magnet by decomposing it into a

collection of simple two-dimensional planar surfaces. Meessen et al. [15] and

Lee and Gweon [13] studied trapezoidal magnets in a Halbach array using

discretised magnets and magnets of infinite thickness respectively and found

improvement in the maximum magnetic field strength over more traditional

cuboidal Halbach arrays. However, there has been little work on the forces

and torques due to polyhedral permanent magnets.

Several studies by Beleggia and De Graef [3, 4], Beleggia et al. [5], and De

Graef and Beleggia [7] examine magnetic nanoparticles with arbitrary shape.

They found expressions for the demagnetisation tensor field, interaction

energy, force, and torque using a Fourier space approach. However, for most

shapes, these must be calculated numerically, limiting the accuracy and

speed of the solution.

This paper outlines a semi-analytic method for calculating the magnetic

fields, forces, and torques for polyhedral permanent magnets. First, an

algorithm to analytically calculate the magnetic field is presented. This

method is similar to the magnetic field calculation method given by Rubeck

et al. [23] but requires evaluation of fewer terms by using general scalene

triangles rather than right-angled triangles. Then, numeric integration is
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performed to find the force and torque on a second polyhedral magnet due

to the field from the first. This work is validated using past literature

and finite element simulations on the magnetic configuration presented by

Akoun and Yonnet [1]. To further validate the algorithm, finite element

simulations are performed on two perpendicularly magnetised dodecahedral

magnets, which are compared to the semi-analytic solutions from this method.

Once validated, a configuration involving two pyramidal frustum magnets is

presented, where it is shown that the frustums can produce a larger repulsive

force per unit volume than cuboidal magnets. Finally, this algorithm is used

to optimise the geometry of the frustums to maximise the force between

them.

2.2 Methodology

This work uses the charge method outlined by Furlani [10], where a fictitious

magnetic charge is distributed over the surface of each magnet, and assumes

a relative permeability µr of unity with constant uniform magnetisation M.

Recent studies have detailed methods for including the effect of non-unity

permeability in calculations of the magnetic field from permanent magnets

[6]. While out of the scope for the current work, such methods can also be

applied to the results presented here.

In this method, polyhedral permanent magnets are decomposed into the

polygonal facets that make up the surface of the polyhedron. Each polygonal

facet has a fictitious magnetic charge distribution, which creates a magnetic

field and thus induces forces and torques on other magnets.

In this work, two magnets are defined, magnet A and magnet B. The

force and torque on magnet B is calculated due to the field produced by

magnet A. An algorithm to analytically calculate the field due to magnet A

is presented. Then, a mesh is applied to the surface of magnet B and the

field due to magnet A is calculated at each mesh element. Finally, numeric

integration is performed to find the force and torque on magnet B. These

steps are outlined in more detail below.

2.2.1 Calculation of the field due to magnet A

The field due to magnet A is found using a similar method to Rubeck et al.

[23], but the equations are more efficient. Unlike the field equations presented

by Janssen et al. [12], all expressions and sub-expressions here are purely
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Figure 2.1: A simple polyhedral permanent magnet, created by chamfering

one edge of a cuboid (a). The magnet is magnetised vertically upward, as

indicated by the arrow. Each facet is rotated such that it is parallel to the

XY -plane and a line is drawn from the z-axis to each vertex (b), creating

n triangles from the n-sided facet. Each triangle is rotated such that the

edge joining the two vertices is parallel to the y-axis (c). The field of each

rotated triangle is calculated then rotated back to the initial state. Each of

these fields is added to give the total field of the facet. This process is then

repeated for all other facets of the polyhedron to give the total field of the

polyhedron.
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real. The magnetic field is found by first taking a polyhedral permanent

magnet, such as that shown in Figure 2.1a1, and decomposing it into its

polygonal facets. Each facet is rotated about the x- and y-axes, making it

parallel to the XY -plane, using the rotation matrix Rxy, given by

Rxy =


nz√
n2
x+n2

z

0 − nx√
n2
x+n2

z

− nxny√
n2
x+n2

z

√
n2
x + n2

z
nynz√
n2
x+n2

z

nx ny nz

 , (2.1)

where n̂ = [nx, ny, nz] is the outward-facing unit normal vector of each facet.

Once parallel to the XY -plane, a line is drawn from the z-axis to each

polygon vertex, as shown in Figure 2.1b, forming n triangles, where n is

the number of sides of the polygon. It is important that the last triangle is

defined from vertex n to vertex 1. This is because this algorithm calculates

the field due to each triangle, which may include area not covered by the

polygon. For example, the triangle between the z-axis, vertex 1, and vertex 5

of the polygon shown in Figure 2.1b is not part of the polygon, but the field

of it is calculated from the first four triangles. The fifth triangle is defined

from vertex 5 to vertex 1, effectively creating a triangle which subtracts the

field due to this area outside the polygon.

After n triangles have been defined, each one is rotated so that the side

joining the two vertices is parallel to the y-axis, shown in Figure 2.1c. This

is done using the rotation matrix

Rz =


− y2−y1√

(y2−y1)
2+(x2−x1)

2

x2−x1√
(y2−y1)

2+(x2−x1)
2

0

− x2−x1√
(y2−y1)

2+(x2−x1)
2

− y2−y1√
(y2−y1)

2+(x2−x1)
2

0

0 0 1

 , (2.2)

where x1, x2, y1, and y2 are the x and y coordinates of the two vertices not

intersecting the z-axis before the triangle is rotated.

After rotation, the charge model outlined by Furlani [10] can be used to

solve for the magnetic field due to each triangle using the following expression.

B = −µ0

4π

ˆ
V
(∇ ·M)

x− x′

|x− x′|3
dv′ +

µ0

4π

˛
S
(M · n̂) x− x′

|x− x′|3
ds′, (2.3)

where B is the magnetic field, µ0 is the magnetic permeability of free space,

M is the magnetisation vector, x is the point of interest, x′ is a point on

1The magnet shown in Figure 2.1 is a 5 unit (width) by 7 unit (height) by 5 unit (depth)

cuboid, with a chamfer cutting the top face to a width of 2 units and one of the vertical

faces to a height of 5 units.
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or inside the magnet, dv′ is a volume element of the magnet, and ds′ is a

surface element of the magnet.

Assuming constant uniform magnetisation M, the first integral in Equa-

tion (2.3) disappears as ∇ ·M = 0. The magnetic field due to each triangle

can then be found by solving the second integral, giving

Bx∆ =
µ0M · n̂

4π

(
1

2
log

(laz2 + y2) (laz1 − y1)

(laz2 − y2) (laz1 + y1)
+

y1
2la1

log
laz1 + la1
laz1 − la1

− y2
2la2

log
laz2 + la2
laz2 − la2

)

By∆ =
µ0M · n̂

4π

(
a

2la2
log

laz2 + la2
laz2 − la2

− a

2la1
log

laz1 + la1
laz1 − la1

)
(2.4)

Bz∆ = −µ0M · n̂
4π

(
sgn

(
z′
)
arctan

ay2 − ay1
y1y2 + a2

+

arctan
az′y1laz2 − az′y2laz1
z′2y1y2 + a2laz1laz2

)
,

with

la1 =
√

a2 + y21

la2 =
√

a2 + y22

laz1 =
√

a2 + y21 + z′2

laz2 =
√

a2 + y22 + z′2,

where log() is the natural logarithm, sgn() is the sign function, arctan() is

the arctangent, and (0, 0, z′), (a, y1, z
′), and (a, y2, z

′) are the coordinates of

the triangle vertices after rotation. This field can then be rotated back to

the original position using the rotation matrix R−1
z . The field due to each

triangle is summed, giving the field of the polygonal facet. Then, the field

due to the polygonal facet is rotated back to the original position using the

rotation matrix R−1
xy . The total field due to magnet A is then calculated by

summing the field contribution of each polygonal facet. This field calculation

gives the magnetic field at the origin, but the magnetic field at any point can

be calculated using a coordinate translation such that the point of interest

lies on the origin. The magnetic field calculation can be represented using

Algorithm 1.
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Algorithm 1 Calculate the magnetic field of a polyhedral permanent magnet

1: Set B = [0, 0, 0]T.

2: for each n-sided facet of the polyhedron do

3: Define the vertices in an anticlockwise order when looking at the

polyhedron from the outside.

4: Store these in a 3×n matrix P such that each column represents

a vertex.

5: Copy the first column of P and add it as the (n+ 1)th column.

6: Evaluate the matrix Rxy and create a new matrix Pxy given by

Pxy = RxyP .

7: for j = 1, . . . , n do

8: Using the jth and (j + 1)th columns of Pxy, calculate Rz. Create

Pz given by Pz = RzPxy.

9: Evaluate B∆ using the points from Pz and Equation (2.4).

10: Add the value of
(
R−1

xy R
−1
z B∆

)
to B.

11: end for

12: end for

13: The field at the origin is now equal to B.
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Figure 2.2: The magnetic flux lines of the polyhedral magnet shown in

Figure 2.1. The flux lines travel from the north pole (top) of the magnet to

the south pole (bottom) of the magnet. The flux lines behave similarly to

that of a cuboidal magnet in most regions due to the magnet being almost

cuboidal. However, in the top right region, the flux lines differ from those of

a cuboidal magnet due to the chamfer.

Algorithm 1 was implemented on the three-dimensional polyhedral magnet

shown in Figure 2.1. Flux lines were drawn on the plane of symmetry to give

a visual representation of the magnetic field, and are shown in Figure 2.2.

2.2.2 Force and torque on magnet B

The force and torque on magnet B is found using numeric integration of the

magnetic field due to magnet A over the surface of magnet B, as described

by Furlani [10]. This is done by numerically solving the integrals

FB =

˛
SB

(MB · n̂B)BA dsB, (2.5a)

TB =

˛
SB

(MB · n̂B) (rB ×BA) dsB, (2.5b)

where SB is the surface of magnet B, MB is the magnetisation vector of

magnet B, n̂B is the outward-facing normal vector of the surface of magnet

B, BA is the field due to magnet A, and rB is the vector from the point of

rotation of magnet B to the surface of magnet B.

To solve these expressions, a mesh is defined on the surface of magnet B.

This mesh must be defined such that the field due to magnet A is relatively
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constant over each element. The field due to magnet A is evaluated at the

centre of each mesh element using Algorithm 1. The force and torque on

magnet B can be found by numerically integrating the field at each element

with area Ai, as shown in Equation (2.6), where bi is the field due to magnet

A at the centre of each mesh element.

FB =
∑
i

(MB · n̂B)biAi, (2.6a)

TB =
∑
i

(MB · n̂B) (ri × bi)Ai. (2.6b)

This process can be represented programmatically using Algorithm 2.

Algorithm 2 Calculate the force and torque on a polyhedral permanent

magnet

1: Apply a mesh to the surface of magnet B.

2: for each mesh element i on the surface of magnet B do

3: Translate the entire system so the centre of the element lies on

the origin.

4: Calculate the magnetic field strength from magnet A using Algo-

rithm 1.

5: Calculate the cross product of the torque moment arm and the

magnetic field strength r× b.

6: Calculate the quantity M · n̂ for the element.

7: Set fi = (M · n̂)bAi and τi = (M · n̂) (r× b)Ai where Ai is the

area of the element.

8: end for

9: Set F =
∑

i fi and T =
∑

i τi.

10: The force and torque on magnet B are given by F and T respectively.

Thus the exact magnetic field due to a polyhedral permanent magnet has

been analytically calculated, and the force and torque on a second polyhedral

magnet has been numerically calculated using the analytic field solution.

2.3 Validation

The field, force, and torque solutions outlined in Section 2.2 have been

verified using both previous literature and finite element simulations. Firstly,
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Figure 2.3: The geometry used in Akoun and Yonnet’s work in 1984 [1]

with both magnets having parallel magnetisation in the z-direction. Magnet

B moves a distance d along the top of magnet A.

the configuration used by Akoun and Yonnet [1]2 was considered (Figure

2.3). Here, the force on magnet B is measured as it moves a distance d in

the x-direction while magnet A remains fixed. Both magnets have parallel

magnetisation vectors in the z-direction with a value of 0.38 Tesla. The

resulting force and torque depends not only on magnetisation, but also on

the geometry of the magnets.

Algorithms 1 and 2 were implemented in Matlab R2017b (MathWorks,

Inc., Natick, MA, USA), with a basic meshing process using triangular

elements. The mesh was created by repeatedly bisecting each triangle edge

and joining the three bisection points, converting the triangle into four smaller

triangles, until all triangles in the mesh had area less than a threshold value.

Algorithms 1 and 2 were applied to Akoun and Yonnet’s geometry [1] to

calculate force and torque values for varying displacement. The finite element

package Maxwell3D in ANSYS Electronics Desktop 2018.0 (ANSYS, Inc.,

Berkeley, CA, USA) was used with adaptive meshing to obtain finite element

solutions for the force and torque in this configuration. Additionally, the

force solutions presented by Akoun and Yonnet [1] and torque solutions

presented by Janssen et al. [11] were calculated using Matlab code from

Robertson [20, 22], with the torque being evaluated about the centre of

magnet B. These results were compared to those obtained with Algorithms 1

and 2 as well as finite element simulations.

2Akoun and Yonnet [1] used two cuboidal magnets, each of dimensions 20mm by 12mm

by 6mm with a vertical gap of 2mm between them.
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Figure 2.4: Forces and torques on magnet B shown in Figure 2.3 as it

moves a distance d along the top of the magnet A. The dashed lines represent

the results calculated from Algorithms 1 and 2, with circles representing

analytic solutions [1, 11] and dots representing solutions obtained from a

finite element simulation (Maxwell3D, ANSYS Electronics Desktop 2018.0).

The values obtained with Algorithms 1 and 2 are in excellent agreement with

the other two methods, especially the analytic solutions, indicating this work

produces correct results for cuboidal magnets.
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The three sets of results are shown in Figure 2.4. The forces and torques

obtained from Algorithms 1 and 2 align with both the values from the finite

element simulation and from the analytic solution, validating the algorithms

for simple cuboidal magnets with parallel magnetisation. However, this test

does not consider non-cuboidal magnets or non-parallel magnetisation and

these must be considered for further validation.

Algorithms 1 and 2 were significantly faster than the finite element simu-

lations when implemented in Matlab R2017b (MathWorks, Inc., Natick, MA,

USA) on a workstation PC with an Intel Xeon E3-1240 v5 (3.50GHz) with 4

cores. Algorithms 1 and 2 completed each force calculation in approximately

0.65 seconds using 3072 triangular elements on the surface of magnet B,

while the finite element simulations took a minimum of 30-40 seconds using

an adaptive setup with a percent error of 1% and approximately 17000 tetra-

hedral elements. Additionally, Algorithms 1 and 2 were considerably more

accurate, achieving a maximum force error of 4.3 milliNewtons and a maxi-

mum torque error of 0.03 milliNewton-metres when compared to the analytic

solutions, while the finite element solutions gave a maximum force error of

37 milliNewtons and a maximum torque error of 0.14 milliNewton-metres.

To validate Algorithms 1 and 2 for a more general case, two dodecahedral

magnets were considered (Figure 2.5). Both magnets are regular dodecahedra

with edge lengths of 20mm and volumes of 61305mm3. Magnet B has

magnetisation in the x-direction and may move vertically, while magnet A

has magnetisation in the z-direction and is fixed. Both magnets have a unit

magnetisation strength M, i.e. 1 Tesla. The x-force and y-torque on magnet

B are calculated, with the torque calculated about its centre. The y- and

z-forces, as well as the x- and z-torques are almost zero and thus neglected.

The magnetic configuration was input into Algorithms 1 and 2 as well as a

three-dimensional finite element simulation, with the results shown in Figure

2.63. Due to symmetry, the forces in the y and z directions, as well as the

torques about the x and z axes are extremely small and therefore not plotted

in the figure.

The results obtained from Algorithms 1 and 2 align well with the finite

element simulations. This indicates that the algorithms produce accurate

force and torque results for non-cuboidal polyhedral magnets with non-

parallel magnetisation vectors, further validating Algorithms 1 and 2.

3Due to the numeric nature of the force and torque calculations, accuracy is reduced

when magnets are extremely close and an insufficient surface mesh density is used. As

such, the magnets were limited to a minimum separation of 1mm.
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Figure 2.5: Three-dimensional view (a) and side view (b) of two dodecahe-

dral permanent magnets, with magnet B positioned vertically above magnet

A. They have perpendicular magnetisation, with magnet A having vertical

magnetisation and magnet B having horizontal magnetisation. Magnet B

moves a distance d in the vertical direction, with the forces and torques being

calculated as it moves.

No analytic solutions for dodecahedral permanent magnets exist, so

the error of Algorithms 1, 2, and the finite element simulations cannot be

quantified. However, the solution time can still be analysed. Algorithms

1 and 2 were again considerably faster than the finite element simulations,

with solutions being completed in approximately 4.96 seconds using 4608

triangular elements on the surface of magnet B, while each finite element

simulation took approximately 40-50 seconds using an adaptive setup with a

percent error of 1% and approximately 18000 tetrahedral elements.

2.4 Geometric optimisation

Algorithms 1 and 2 can be used for fast optimisation of magnetic systems.

Presented here is one such case, wherein two pyramidal frustums are arranged

with magnet B above magnet A, as shown in Figure 2.7. Both magnets

have a unit magnetisation strength of 1 Tesla. The magnetisation vectors

are oppositely directed with the magnets in repulsion. The wall angle θ is

varied to maximise the force at a given distance while the magnet height and

volume are kept constant at 5cm and 500cm3 respectively. A wall angle of

θ = 90◦ corresponds to a cuboidal magnet with a height of 5cm and both
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Figure 2.6: The x-force and y-torque on magnet B shown in Figure 2.5.

Both magnets are regular dodecahedra with edge lengths of 20mm. The

torque is evaluated about the centre of magnet B. Dashed lines represent the

force and torque evaluated using Algorithms 1 and 2, and dots represent the

results from finite element simulations. The results from both methods are

in agreement, indicating correct results from Algorithms 1 and 2.
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Figure 2.7: Three-dimensional view (a) and side view (b) of two pyramidal

frustum magnets with opposing vertical magnetisations M. Magnet B moves

a distance d in the vertical direction. The wall angle θ is varied while

maintaining a constant magnet volume and height.

width and depth of 10cm.

The frustums were separated by a given distance d and the wall angle

θ varied. For all values of θ, the repulsive force between the magnets was

calculated and divided by the maximum force for each separation to give the

normalised force plot shown in Figure 2.8. The peaks of this plot correspond

to the maximum force at a given separation distance, and hence show the

optimal wall angle for that distance. The optimal angle was calculated for

several separation distances using this method with the results shown in

Table 2.1. It can be seen that the optimal wall angle increases with separation

distance, indicating that as the magnets move further apart, the optimal

shape tends toward a pyramid. On the contrary, as the magnets become

closer, the optimal shape tends toward a cuboid.4

The above test lead to an investigation on optimal angle for a varying

separation distance. For a given separation distance, a golden ratio search

was implemented to find the optimal angle which maximises the repulsive

force. This was repeated for a large range of separation distances, and the

plot shown in Figure 2.9 (left) was obtained. Again, it can be seen that the

optimal angle increases with the separation distance. Interestingly, when the

4Scale cross-sectional diagrams of the optimal frustum magnets for several separation

distances are drawn in Appendix C.1.4.
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Figure 2.8: The normalised force between the two frustum magnets shown

in Figure 2.7 as the wall angle θ is varied. Each plot corresponds to a given

separation distance d shown in the legend. The normalised force is calculated

by dividing the force at each point by the maximum force for each separation

distance. The peak of each plot corresponds to the maximum force attained,

and thus the optimal wall angle. As the separation distance increases, the

peak moves to the right, indicating the optimum wall angle increases with

the separation distance.
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Table 2.1: The optimal wall angle of the pyramidal frustums at a given

distance. This angle maximises the repulsive force between the magnets

while maintaining a constant magnet volume and height.

Separation distance (mm) Optimal angle (degrees)

25 110

50 117

75 123

100 129

125 134

150 138

separation distance is zero, the optimal angle is not 90◦. Namely, the optimal

geometry is not cuboidal when the magnets are touching. Furthermore, the

optimal angle is always greater than 90◦, implying that cuboidal magnets

are not the optimal geometry for this particular configuration.

In addition to calculating the optimal angle at a given separation distance,

the percentage force increase was calculated. For each separation distance,

the maximum force was found, as well as the force between two cuboidal

magnets of equivalent height and volume. The percentage force increase is

defined as

PFI =
Ffrustum − Fcuboid

Fcuboid
× 100%. (2.7)

This percentage force increase was plotted against separation distance (Figure

2.9, right). This value increases with separation distance, corresponding to a

larger wall angle. Additionally, the force increase is positive for all separation

distances, meaning with a constant magnetic volume, polyhedral magnets

can achieve larger forces than cuboidal magnets. Alternatively, the same

forces can be achieved using a smaller system mass, which could lead to

significant cost savings.

2.5 Conclusion

Permanent magnets are widely used in many industries and as such it

is useful to characterise the interactions between them. This paper has

outlined a fast semi-analytic method to calculate magnetic fields, forces,

and torques of polyhedral permanent magnets. The development of two
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Figure 2.9: The optimal wall angle θ of the frustums at a given distance to

maximise the repulsive force between them (left). At all separation distances,

the optimal angle is larger than 90◦, indicating a cuboid is never the optimal

geometry in this case. The optimal angle increases with separation distance,

and tends toward a pyramid geometry at large separations. These results

were compared to two cuboidal magnets with equal volume and height at the

same separation distances. The force increase as a percentage of the repulsive

force between the cuboids was found (right). A considerable increase in force

was found, especially at larger separations. This implies that a larger force

can be achieved with smaller mass if the system is optimised.
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algorithms were discussed and implemented in Matlab. Several validation

cases were considered, including a basic cuboid case and a more complicated

system with dodecahedral magnets. These results were then validated against

both literature (where possible) and finite element simulations. Then, a

system with two pyramidal frustums was implemented in which the wall

angle and separation distance could be varied while maintaining constant

magnetic volume and height. The algorithms presented in this paper were

used for rapid optimisation5 of this system, maximising the force between

the magnets at a given distance. This resulted in the optimal angle being

calculated over a large number of separations. Additionally, a considerable

improvement in force over cuboidal magnets was found, showing standard

magnetic geometries are not always optimal. The algorithms presented here

can be used to further understand non-standard magnetic geometries, as

well as optimise magnetic systems quickly to increase their performance.

5Here, optimisation refers to maximising the force between two magnets of constant

volume by varying magnet geometry. However, many forms of optimisation, such as

optimisation of force per unit magnet height or torque per unit mass, may be used.
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Author’s remarks on Chapter 2

The field equations presented in this chapter enable the evaluation of the

magnetic field due to any polyhedral permanent magnet with constant

uniform magnetisation and a relative permeability of unity. However, the

methodology has several limitations that reduce the effectiveness of field

evaluation. The most significant limitation is that of scaling; if the number of

points at which the field is calculated is doubled, the methodology will take

approximately twice as long to evaluate the field. This is because the entire

process, including the deconstruction of the geometry, must be performed

uniquely for each field point. In many situations, a large number of field

points is desired, such as estimating forces and torques, optimising the field

due to a magnet array (Chapter 4), or modelling magnetic permeability

(Chapter 5). In addition, singularities in the equations exist for points on the

same plane as the magnet facets. These limitations necessitate an alternative

methodology which scales well with many field calculations and includes

treatment of any singularities in the field equations.
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Magnetic field computation

optimised for many points

While Chapter 2 outlined a method to compute the magnetic field produced

by an ideal polyhedral permanent magnet, several limitations existed in

scaling with number of field points and singularity treatment. This chapter

presents and validates a new field computation methodology which scales

well with the number of field points and treats any singularities present in

the field equations. Validation is performed using finite element analysis on

magnetic systems with unity relative permeability. In contrast to the method

outlined in Chapter 2, the method detailed in this chapter only requires

one deconstruction of geometry, independent of the number of field points.

However, the field equations presented in this chapter are more complicated

than those found in Chapter 2. Therefore, when the field is computed

at few points, the computational cost associated with more complicated

field equations outweighs the advantage of only one deconstruction routine,

and the method in Chapter 2 is preferred. In contrast, when the field is

computed at many points, the method outlined in the current chapter greatly

outperforms that from Chapter 2.

Most applications, including those found in this thesis, are concerned

with field calculations at many points, such as force and torque evaluations,

optimisation of the field distribution (Chapter 4), and permeability modelling

(Chapter 5). Thus, the method detailed in the current chapter is often the

preferred method for magnetic field calculation due to a polyhedral permanent

magnet.
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Simplified equations for the magnetic
field due to an arbitrarily-shaped
polyhedral permanent magnet

James L.G. O’Connell, William S.P. Robertson, and Benjamin S. Cazzolato

Abstract

Due to their wide use in industrial and commercial devices, it is important

to accurately and effectively model permanent magnets, leading to better

magnet designs and more desirable magnetic characteristics. In recent

decades, researchers have derived equations describing magnetic fields, forces,

and torques, but these are usually limited to cuboid or ring-shaped magnets.

Some authors have derived magnetic field equations for polyhedral magnets,

allowing more general magnet shapes, but these are either not fully simplified

or computationally inefficient. This paper presents a new set of simplified

and exact equations describing the magnetic field produced by an arbitrarily-

shaped polyhedral permanent magnet with constant uniform magnetisation

and a relative permeability of unity. These equations were implemented in

Matlab code and validated using finite element simulations and literature.

These equations are significantly faster than finite element simulations,

and can therefore be used for efficient optimisation of magnet geometry or

topology, real-time simulations, and for approximation of curved surfaces of

permanent magnets.

3.1 Introduction

Permanent magnets are used in a wide variety of applications, from mi-

crophones and loudspeakers to energy harvesting devices [5]. They are

an essential component of many electromechanical systems and are seeing

widespread use with the current trend toward electric vehicles. In 2014,

permanent magnets had an annual market of $7bn USD, with hundreds of

thousands of tons of neodymium magnets being manufactured annually [6].

Permanent magnets see wide use in society, and it is therefore important to

understand and model them effectively.

With the development of stronger magnetic materials in the late twentieth

century, mathematical modelling of permanent magnets has become more
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common. Magnetic modelling has a high dependence on geometry, and as

such, most research in this area has been undertaken on simple geometries

such as cuboidal and ring-shaped permanent magnets.

Cuboid magnets are extremely prevalent in society and industry, and have

therefore received considerable attention in literature. Additionally, their

geometry is simple, leading to simple field equations. In 1984, Akoun and

Yonnet [1] published the magnetic field equations for a vertically-magnetised

cuboid magnet by considering a magnetic charge distribution over the surface

of the magnet. Bancel [3] suggested that the magnetic field produced by

a cuboid can be thought of as field contributions from each of the eight

vertices, or ‘nodes’. Several decades later, Ravaud and Lemarquand [17]

extended these equations to include an arbitrary magnetisation direction

by using superposition of mutually perpendicular magnetisations. However,

these equations do not consider mathematical singularities, which often exist

at points inline with a magnet edge. Other authors have gone beyond field

calculations by publishing equations describing forces and torques between

parallel cuboid magnets with parallel magnetisations [1, 2], parallel cuboid

magnets with arbitrary magnetisations [12], and rotated cuboid magnets [8].

However, all aforementioned equations are limited to cuboid magnets, and

are invalid for other magnet geometries.

Like cuboid magnets, cylindrical and ring-shaped magnets have seen wide

use in industry, and have also received considerable attention in literature.

They exhibit simple geometry in a cylindrical coordinate system, leading

to relatively simple field equations. In 1995, Furlani et al. [9] derived the

magnetic field due to radially-magnetised ring sectors, but these equations

are not fully analytic and require some numerical integration. Ravaud et al.

[15, 18] improved these equations by using elliptic integrals, leading to fewer

numeric integrals. In another study, Ravaud et al. [16] considered the simpler

geometry of a full ring magnet rather than a sector. With this assumption,

they found expressions for the magnetic field produced by both radially-

and axially-magnetised ring magnets using elliptic integrals. More recently,

Caciagli et al. [4] derived simpler equations describing the magnetic field

produced by cylindrical magnets. However, these equations are again limited

to a specific geometry and other geometries require separate solutions.

Although cuboidal and ring magnets have been studied extensively, few

other geometries have received attention. Papers by Janssen et al. [11, 13],

Compter et al. [7], Rubeck et al. [19], and O’Connell et al. [14] presented an-

alytic equations for the magnetic field due to a general polyhedral permanent
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magnet with constant uniform magnetisation and unity relative permeability.

These equations can be used for any magnet composed of flat faces, and can

also be used to approximate curved surfaces, allowing approximate solutions

of any magnet geometry. However, the studies by Janssen et al. [11, 13] and

Compter et al. [7] present equations which are not fully simplified, limiting

their computational efficiency. The equations presented by Rubeck et al. [19]

and O’Connell et al. [14] are simpler, but inefficient for a large number of field

evaluations because they require processing of the geometry for every field

point. Furthermore, these studies do not consider mathematical singularities,

which cause the magnetic field evaluations to become undefined at some

locations.

This paper attempts to alleviate both of these issues by presenting new

magnetic field equations for a general polyhedral permanent magnet which are

fully simplified, computationally efficient, and include singularity treatment.

These field equations are derived by the authors in Section 3.2 and validated

using both past literature and finite element simulations in Section 3.3 before

the paper is concluded in Section 3.4.

3.2 Methodology

A permanent magnet with magnetisation vector M can be modelled as a

collection of magnetic charges described by the magnetic charge model [10].

The magnetic field B at a point in space outside the magnet x can be

calculated using the charge model given by

B (x) =
µ0

4π

(˛
S
(M · n̂) x− x′

|x− x′|3
ds′ −

ˆ
V
(∇ ·M)

x− x′

|x− x′|3
dv′
)
, (3.1)

where µ0 is the permeability of free space, V is the magnet volume, S is the

magnet surface, x′ is a point in or on the magnet, and n̂ = [nx, ny, nz] is

the outward-facing unit normal vector of the magnet surface. If the magnet

is assumed ideal; that is, the magnetisation M is assumed uniform and

constant and the relative permeability is assumed unity, the volume integral

disappears as ∇ ·M = 0, leaving only the surface integral

B (x) =
µ0

4π

˛
S
(M · n̂) x− x′

|x− x′|3
ds′. (3.2)

Equation (3.2) implies the magnet can be considered a set of n magnetically

charged surfaces Si, with the total field given by
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B (x) =
n∑

i=1

µ0

4π

ˆ
Si

(M · n̂i)
x− x′

|x− x′|3
ds′i =

n∑
i=1

Bi (x) , (3.3)

where Bi (x) is the magnetic field contribution of the surface Si.

The total magnetic field due to the magnet can be found by solving

Equation (3.3), i.e., summing the field contributions from each surface Si to

give the total magnetic field. To do this, first the polyhedral magnet must

be decomposed into a set of charged surfaces, as described in the following

section.

3.2.1 Polyhedral decomposition

To calculate the magnetic field at a point x = [x, y, z] due to a polyhedral

permanent magnet with surface S, the magnet is considered a collection

of polygonal surfaces Si. The field calculation begins by considering one

polygonal surface Si with magnetic charge density M · n̂i, where n̂i is the

outward-facing unit normal vector of the surface Si. This surface and the

point x are rotated in 3D space about the origin such that Si is parallel to

the XY -plane; that is, Si is rotated such that its normal vector is parallel to

the z-axis. This is done by postmultiplying x and each vertex of Si by the

rotation matrix R, given by

R =


m 0 nx

−nxny/m nz/m ny

−nxnz/m −ny/m nz

 , (3.4)

where m =
√
n2
y + n2

z. A full derivation of R is given in Appendix 3.A.

Note that if n̂i = [±1, 0, 0], then the surface is parallel to the Y Z plane and

ny = nz = 0 =⇒ m = 0 and R is undefined. In this case, the limit as nz

approaches 0 from the positive side is taken and R should instead be defined

as

R =

 0 0 1

0 1 0

−1 0 0

 . (3.5)

After rotation, the point at which the field is to be computed is given

by xr = xR and the surface Si is parallel to the XY -plane. Lines are drawn

through each vertex of the polygonal surface parallel to the y-axis, dividing

the polygon into a series of trapezia Tj , as shown in Figure 3.1. Note that for
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this work, a triangle is considered a degenerate case of a trapezium with one

of the parallel sides having a length of zero. The magnetic field contribution

of each trapezium is computed using the solution to Equation (3.2) described

in Section 3.2.2.

x

y
Si

(a)

x

y T1 T2 T3 T4

(b)

Figure 3.1: After the polygonal surface Si has been rotated such that it is

parallel to the XY -plane (a), lines are drawn through each vertex parallel to

the y-axis, dividing the polygon into trapezia (b).
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x = x1 x = x2

y = m1x+ c1

y = m2x+ c2

x

y

Figure 3.2: A magnetically charged trapezial surface. It is parallel to the

XY -plane with z-coordinate z = z′ and a pair of opposite edges parallel to

the y-axis.

3.2.2 Magnetic field calculation of charged trapezia

Given a magnetically charged trapezium parallel to the XY -plane at z =

z′, with the parallel lines having equations x = x1 and x = x2 and the

non-parallel lines having equations y = m1x+ c1 and y = m2x+ c2 (shown

in Figure 3.2), the magnetic field contribution [Bxj , Byj , Bzj ] at a point

xr = [xr, yr, zr] is given by

[Bxj , Byj , Bzj ] =
µ0

4π

ˆ x2

x1

ˆ m2x′+c2

m1x′+c1

(M · n̂) [Ix, Iy, Iz] dy′ dx′ (3.6)

where

Ix =
[xr − x′](

(xr − x′)2 + (yr − y′)2 + (zr − z′)2
)3/2 ,

Iy =
[yr − y′](

(xr − x′)2 + (yr − y′)2 + (zr − z′)2
)3/2 , (3.7)

Iz =
[zr − z′](

(xr − x′)2 + (yr − y′)2 + (zr − z′)2
)3/2 .
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After solving this difficult integral and simplifying the result1, the authors

derived the following solution to Equation (3.6).

Bxj =
µ0

4π
(M · n̂)

2∑
p=1

2∑
q=1

(−1)p+q

ln (Tpq)−
mp√
1 +m2

p

ln (Spq)


Byj =

µ0

4π
(M · n̂)

2∑
p=1

2∑
q=1

(−1)p+q 1√
1 +m2

p

ln (Spq)


Bzj =

µ0

4π
(M · n̂)

2∑
p=1

2∑
q=1

[
(−1)p+q arctan (Upq)

]
,

(3.8)

with

X = xq − xr

Y = cp +mpxq − yr

Z = z′ − zr

Rpq =
√

X2 + Y 2 + Z2

Spq = X +mpY +
√

1 +m2
pRpq

Tpq = Rpq + Y

Upq =
mp

(
X2 + Z2

)
−XY

ZRpq
.

(3.9)

Equation (3.8) describes the magnetic field produced by the magnetically

charged trapezium shown in Figure 3.2. Further processing is required to

calculate the magnetic field produced by a polyhedral magnet, as described

in the following sections.

Special case when mp = 0

Equation (3.8) can be applied to a cuboidal magnet by using six rectangular

faces with mp = 0 for all p. Substituting mp = 0 into Equations (3.8) and

(3.9) gives the following simplified equations for a cuboidal magnet.

1The full derivation for this solution is outlined in Appendix B
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Bx =
µ0

4π
(M · n̂)

2∑
p=1

2∑
q=1

[
(−1)p+q ln (Tpq)

]
By =

µ0

4π
(M · n̂)

2∑
p=1

2∑
q=1

[
(−1)p+q ln (Spq)

]
Bz =

µ0

4π
(M · n̂)

2∑
p=1

2∑
q=1

[
(−1)p+q arctan (Upq)

]
,

(3.10)

with

X = xq − xr

Y = cp − yr

Z = z′ − zr

Rpq =
√

X2 + Y 2 + Z2

Spq = X +Rpq

Tpq = Rpq + Y

Upq =
−XY

ZRpq
.

(3.11)

It can be shown that these equations are equivalent to those published

by Akoun and Yonnet [1], Bancel [3], and Ravaud and Lemarquand [17],

verifying Equation (3.8) for cuboidal magnets2.

3.2.3 Polyhedral recomposition

Once the magnetic field contributions from each trapezium Tj is computed,

all contributions are summed to give the total field due to the polygonal

surface Si, [
Bxi Byi Bzi

]
=
∑
j

[
Bxj Byj Bzj

]
. (3.12)

This magnetic field vector is then postmultiplied by RT to give the field due

to Si in the original coordinate system,

Bi (x) =
[
Bxi Byi Bzi

]
RT, (3.13)

2The equations in [1], [3], and [17] are of the same form, but with different variable

names.

88



Magnetic field computation optimised for many points

where RT is the transpose of R.

This process is repeated for each face of the polyhedron. Finally, the

field contributions from each polygonal face Si are summed to give the total

magnetic field at the point x due to the polyhedral permanent magnet,

B (x) =
n∑

i=1

Bi (x) . (3.14)

3.2.4 Singularity treatment

Singularities can be found in Equation (3.8) when Spq = 0, when Tpq = 0,

or when Upq = 0/0. The regions in which each of these singularities occur

are shown in Figure 3.3. Under these conditions, the magnetic field given by

Equation (3.8) is undefined, so these singularities must be resolved to give a

robust magnetic field solution.

Solving Spq = 0

Substituting Spq = 0 into Equation (3.9) implies that X < 0, Y = mpX, and

Z = 0. Therefore, any point inline with one of the non-parallel edges and to

the right of any trapezium, shown in Figure 3.3a, will lead to a singularity in

the equations. This can be solved by applying L’Hôpital’s rule twice, giving

Equation (3.15).

When evaluating Equations (3.8) and (3.9), if for any pair (p, q), X < 0,

Y = mpX, and Z = 0, this singularity is solved by the redefinition

Spq =
1

Rpq
. (3.15)

Solving Tpq = 0

Substituting Tpq = 0 into Equation (3.9) implies that X = 0, Y < 0, and

Z = 0. Therefore, if a point is inline with one of the parallel edges of any

trapezium and above it, shown in Figure 3.3b, a singularity will occur. This

can be solved by again applying L’Hôpital’s rule twice, giving Equation

(3.16).

When evaluating Equations (3.8) and (3.9), if for any pair (p, q), X =

Z = 0 and Y < 0, this singularity is solved by the redefinition

Tpq =
1

Rpq
. (3.16)
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(a) (b)

(c)

Figure 3.3: The regions around a trapezium in which singularities occur.

Spq = 0 along the grey lines in (a), Tpq = 0 along the grey lines in (b), and

Upq = 0/0 along the grey lines in (c).
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Solving Upq = 0/0

Setting the denominator of Upq to 0 in Equation (3.9) gives Z = 0 since

Rpq > 0 for any point not coincident with a vertex. If Z = 0, then the

numerator of Upq also goes to 0 when either X = 0 or Y = mpX. Therefore,

this singularity occurs when Z = X = 0, or when Z = Y −mpX = 0. The

singular regions are shown in Figure 3.3c.

Solving the former case, X = Z = 0, requires the use of L’Hôpital’s rule

once, giving Upq = sgn (Y ). However, due to the summation over p and the

term (−1)p+q in Equation (3.8), Upq can simply be set to 0.

The latter case, namely, Z = Y − mpX = 0, has a more trivial so-

lution. Since Y = mpX, the numerator simplifies to −mpZ
2, leaving

Upq = −mpZ/Rpq. Since Z = 0 and Rpq > 0, this becomes Upq = 0.

These two results give Equation (3.17).

When evaluating Equations (3.8) and (3.9), if for any pair (p, q), Z =

X = 0 or Z = Y −mX = 0, this singularity is solved by the redefinition

Upq = 0. (3.17)

3.2.5 Computational considerations

In contrast with previous solutions [14, 19], the solution formulated in this

paper has been derived to allow the computation of a matrix of points P to be

evaluated with only a single polyhedral decomposition and rotation routine.

If n points are defined as [x1, y1, z1] , . . . , [xn, yn, zn], then P is defined by

the (n× 3) matrix

P =


x1 y1 z1
...

...
...

xn yn zn

 . (3.18)

For a given polygonal facet Si with associated rotation matrix R, Pr = PR

gives a list of rotated points at which the magnetic field can be calculated.

Equation (3.8) is applied to each row of Pr, and the magnetic field components

rotated back to the original coordinate system after the computation of the

field at all points in Pr. In this way, polyhedron decomposition occurs only

once, independent of the number of points, therefore reducing overhead and

increasing efficiency.

Using this methodology on a polyhedron with E edges and F faces, a

maximum of 2E − F trapezia are required (see Appendix 3.B), giving an
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upper bound on the number of calculations required. If the magnetic field is

to be evaluated at n points, then Equation (3.8) must be computed a total

of up to n (2E − F ) times with up to 2F total rotations. Therefore, if each

computation of Equation (3.8) takes tn seconds and the average overhead

for each calculation is to, an upper bound for the total expected calculation

time is

texpected ≤ (2E − F ) (to + ntn) . (3.19)

This equation shows that the calculation time scales approximately linearly

with the number of points at which the field is calculated.

This methodology was implemented in vectorised Matlab code without

parallelisation in Matlab R2017b (MathWorks, Inc., Natick, MA, USA). This

was run on a workstation PC with an Intel Xeon E3-1240 v5 at 3.50GHz and

16GB of memory using Windows 10 Enterprise. In an effort to approximate

the constants to and tn, a randomly generated polyhedron was defined,

and the magnetic field calculated at a large number of points near the

polyhedron. On this particular computer hardware, to was in the order

of several milliseconds (10−3 seconds) and tn was in the order of several

hundred nanoseconds (10−7 seconds). These values will vary when using

different computer hardware and software, but the constants stated here give

an approximation of calculation time before the algorithm is executed.

This methodology excels when calculating the magnetic field at a large

number of points. This is because the rotation and decomposition routines

are the slowest parts of the algorithm, but only occur once, no matter the

number of field calculations. The computation of Equation (3.8) is orders of

magnitude faster than the rotation and decomposition routine, and thus a

larger number of field calculations has little effect on the computation time.

The Matlab implementation of the algorithm presented in this paper is

available as the file polyhedronField.m at

github.com/jlgO’Connell/polyhedralMagnet.

3.3 Validation

To validate this methodology, finite element simulations were performed using

the Maxwell3D package from ANSYS Electronics Desktop 2018.0 (ANSYS,

Inc., Berkeley, CA, USA). Two cases were considered, with the magnetic

field of each being calculated analytically using the above methodology and

numerically using Maxwell3D. The second case was further validated using
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Figure 3.4: A square pyramid frustum permanent magnet. It has a base

length of 30mm, a top length of 20mm, a height of 20mm, and a magnetisation

of 1.035× 106Am−1 (1.3T) in the positive z direction.

the analytic solutions presented by Caciagli et al. [4]. The magnetic field for

both cases was also calculated using methodology from previously published

and validated work by the current authors [14]. In the subsequent sections,

the results and computation time from the current methodology are compared

to those of the finite element simulations, literature, and earlier work.

3.3.1 Pyramid frustum magnet

To validate Equation (3.8) for non-cuboid magnets, the magnetic field due to

the pyramid frustum permanent magnet shown in Figure 3.4 was computed.

This frustum has a base length of 30mm, a top length of 20mm, a height of

20mm, and a magnetisation of 1.035× 106Am−1 (1.3T) in the z-direction;

i.e., a magnetisation vector of
[
0, 0, 1.035× 106

]
Am−1. The magnetic field

is measured across a plane positioned 1mm above the top surface of the

frustum using a 301× 301 grid of points on a 30mm × 30mm region (0.1mm

grid spacing using 90601 gridpoints).

The geometry was input into both Maxwell3D and Matlab code, with the

Maxwell3D simulation using approximately 1.2× 106 tetrahedral elements

(approx. 2 × 105 inside the magnet and 1 × 106 in the region outside the

magnet). Both the Matlab code and Maxwell3D simulations were used to

calculate the field across the previously mentioned 301× 301 grid of points

above the frustum magnet, with results shown in Figure 3.5.

The maximum field strength was 0.633T (this work) and 0.636T (FEA),
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giving a difference of 0.5 percent. Over the entire grid of points, the maximum

error was 0.7 percent. This indicates that the analytic work presented in

this paper is giving accurate field results. More detailed results are given in

Appendix 3.C.

The analytic work presented here and the FEA simulations calculate the

magnetic field in very different ways, and as such it is difficult to compare

the computation time for each method. For the frustum above, the FEA

simulation took approximately 40 minutes, but the field can be found at

any number of points after the simulation has been completed. In contrast,

the analytic work presented here requires more computational time as the

number of field points is increased. However, even with a relatively large

number of field calculations, this algorithm took approximately 0.3 seconds

to calculate the field at all 90601 points.

Finally, this calculation was validated using previous published and

validated work by the current authors [14]. The error was within numerical

noise, but the work presented in this paper was able to calculate the field

orders of magnitude faster.

3.3.2 Cylindrical magnet

To further validate the analytic algorithm, a cylindrical geometry was ex-

amined, as shown in Figure 3.6. This magnet is an axially-magnetised

cylindrical magnet with a radius of 10mm, a height of 20mm, and a mag-

netisation strength of 1.035× 106Am−1 (1.3T). The magnetic field is again

measured across a plane positioned z = 1mm above the top surface of the

magnet using a 301× 301 grid of points on a 30mm × 30mm region (0.1mm

grid spacing using 90601 gridpoints).

Firstly, the exact magnetic field was calculated using the analytic equa-

tions published by Caciagli et al. [4]. Then, the geometry was input into

Maxwell3D and a simulation carried out using approximately 9.6× 105 tetra-

hedral elements (approximately 1.7× 105 inside the magnet and 7.9× 105 in

the region outside the magnet). The cylinder was finally approximated as

a polygonal prism, with the cross section being a 32-gon and an equivalent

radius to maintain the same volume as the cylinder. Equation (3.8) was

applied to this polygonal prism to approximate the solution of a cylindrical

magnet using a polyhedral magnet, and the results of all three calculations

shown in Figure 3.7.

The maximum field strength was 0.571T (this work), 0.573T (FEA),
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Figure 3.5: Magnetic field strength 1mm above the pyramid frustum

magnet shown in Figure 3.4, with the top surface of the magnet shown as a

dashed line. The analytic calculation is shown in (a), with the finite element

calculation in (b). The maximum error between the two calculations is 0.7

percent, showing strong agreement.
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x

z

10mm

20mm

Figure 3.6: A cylindrical permanent magnet. It has a radius of 10mm,

a height of 20mm, and a magnetisation of 1.035× 106Am−1 (1.3T) in the

positive z direction.

and 0.571T (exact [4]). When compared to the exact result, the polyhedral

approximation using this work gives a maximum error of less than 0.1 percent.

When compared to the FEA simulation, the polyhedral approximation gave

a maximum error of 0.8 percent. This implies the polyhedron is able to

accurately approximate a cylindrical permanent magnet. More detailed

results are given in Appendix 3.C.

Again, it is difficult to compare the computation time of the algorithm

presented in this paper and FEA simulations. The simulations took approxi-

mately 38 minutes to calculate the field at any number of points, whereas

the algorithm here took approximately 0.9 seconds to calculate the field at

90601 points.

Additionally, this calculation was validated using previous published and

validated work by the current authors [14]. The error was within numerical

noise, but the algorithm presented in this paper calculated the field orders

of magnitude faster.

3.3.3 Polyhedral approximation of curved surfaces

In the previous section, it was shown that an extruded 32-gon magnet is

able to accurately approximate an axially-magnetised cylindrical magnet.

This was validated using slow FEA simulations and the much faster analytic

solution published by Caciagli et al. [4]. However, no analytic field solutions
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Figure 3.7: Magnetic field strength 1mm above the cylindrical magnet

shown in Figure 3.6, with the top surface of the magnet shown as a dashed

line. The analytic cylindrical field [4] is shown in (a), the polyhedral field

shown in (b), and the finite element calculation in (c). The maximum

percentage error between the exact cylinder field [4] and polyhedral field

was less than 0.1 percent, indicating it is an accurate approximation to a

cylindrical magnet.
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for general curved surfaces exist in literature, and FEA is slow and is

impractical for real-time simulations. Instead, polyhedra can be used to

approximate these surfaces for a fast-solving and accurate solution. To

produce more accurate results, a polyhedron with a larger number of faces

can be used; to achieve a faster calculation, a polyhedron with fewer faces

can be used. This section shows an example of this tradeoff between accuracy

and calculation time by approximating a cylindrical magnet with an extruded

polygon with a varying number of sides, n.

To quantify the error of the polyhedral approximation, the cylindrical

magnet defined in Section 3.3.2 was considered. The magnetic field produced

by this magnet was calculated using the equations published by Caciagli et al.

[4] at a point 1mm above the central axis of the magnet, x = [0, 0, 1]mm, and

a point 1mm above the circumference of the top surface, x = [10, 0, 1]mm.

The magnet was then approximated as a regular polygonal prism with a given

number of sides n, and the magnetic field calculated at the two aforementioned

points. As the number of sides of the polygon n was increased, the error

between the fields produced by cylindrical magnet and polyhedral magnet

was calculated and recorded.

At the point x = [0, 0, 1]mm, the exact magnetic field strength [4] is 0.52T.

For a point along the axis of this magnet, the field can also be found using

the difference between two cosines, giving the same result. The percentage

error between this value and the magnetic field strength due to a polyhedral

approximation was calculated for each n and is shown in Figure 3.8a. The

polyhedral approximation is most impactful near the curved surface of the

magnet, since this is where the geometry has been changed most significantly.

Therefore, at the point x = [0, 0, 1]mm, the polyhedral approximation is

negligible and the error small since this point is far from the curved surface.

The n = 32 approximation from Section 3.3.2 takes approximately 28ms to

calculate the field and gives an error of 2.4 × 10−5 percent. Alternatively,

halving the number of sides (n = 16) takes approximately 17ms to calculate

the field while giving a larger error of 4.1× 10−4 percent.

At the point x = [10, 0, 1]mm, the exact magnetic field strength [4] is

0.53T. The error between this field strength and the field strength due to

the polyhedral approximation was again calculated and is shown in Figure

3.8b. This point is significantly closer to the curved surface of the magnet,

and the error is therefore larger than at the point [0, 0, 1]mm. However, the

error is still negligible for sufficiently large n. The n = 32 approximation

from Section 3.3.2 takes approximately 29ms to calculate the field and gives
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an error of 2.8× 10−2 percent. Alternatively, halving the number of sides

(n = 16) takes approximately 16ms to calculate the field while giving a larger

error of 4.5× 10−1 percent.

These results indicate that polyhedral permanent magnets can be used to

approximate curved magnets and that a larger number of polygonal surfaces

leads to a more accurate solution at the cost of a larger calculation time.

Additionally, as the point x approaches a curved magnet surface, a greater

number of polyhedral facets are required for accurate field computations.

This is particularly useful for magnet geometries with no analytic solution

such as general curved surfaces. This approximation is considerably faster

than FEA simulations, while maintaining high accuracy.

3.4 Conclusion

This paper has outlined a new fully analytic and fast method for calculating

the magnetic field produced by a polyhedral permanent magnet. The method-

ology was presented, outlining the process of decomposition and giving the

solution to the charge model for a charged trapezium, leading to the total

field produced by the polyhedral magnet. Singular regions were identified,

and their solutions presented. This was followed by a validation section

showing strong agreement between finite element simulations, literature, and

the work detailed here. The magnetic field equations presented here are less

complicated and more efficient than those in current literature since only

two rotations are required per facet, independent of the number of magnetic

field calculations.

The equations had high accuracy when compared to finite element simu-

lations and literature using both a pyramid frustum magnet and a cylindrical

magnet. The equations were validated against the finite element simulations

and literature, giving a maximum error of less than 1 percent for both the

frustum and cylindrical magnets.

It was shown that curved surfaces can be approximated as polyhedral

surfaces and this methodology applied. A cylindrical magnet was approxi-

mated as a polygonal prism with an arbitrary number of sides. It was shown

that both the accuracy and computation time increased with the number of

sides. For the case considered, it was shown that the error was less than 0.1

percent using a 32-gon prismatic magnet, taking less than 30ms to compute

the field.

Currently, finite element simulations are usually used to analyse compli-
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Figure 3.8: Error in the magnetic field strength produced by a polygonal

prismatic magnet approximation of a cylindrical magnet as the number of

sides of the polygon, n, is increased. The n = 32 approximation from Section

3.3.2 is highlighted. At the point x = [0, 0, 1]mm (a), the magnetic field

strength is 0.52T, leading to an error of 2.4 × 10−5 percent for a 32-gon

approximation. At the point x = [10, 0, 1]mm (b), the magnetic field strength

is 0.53T, leading to an error of 2.8×10−2 percent for a 32-gon approximation.
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cated magnetic systems. However, this is slow and optimisation of magnet

shape or topology can take a considerable amount of time. The methodology

presented here can be used to analyse these complicated magnetic systems

far more quickly than finite element simulations. Furthermore, due to the

simplicity and speed of calculation, it can be used for approximation of

complicated magnet shapes, real-time simulations, or optimisation of magnet

shape and topology to quickly arrive at a desired magnetic field.

Appendix 3.A Derivation of R

The derivation of the rotation matrix R begins by defining a coordinate

system on an arbitrary plane containing the polygonal surface Si. Let [x̂, ŷ, ẑ]

be the global coordinate system and let n̂ = [nx, ny, nz] be the outward-facing

unit normal vector of Si. We want to rotate this normal vector using the

rotation matrix R such that n̂R = ẑ.

To do this, a coordinate system [x̂′, ŷ′, ẑ′] is defined on the arbitrary

plane such that n̂ = ẑ′. To rotate [x̂′, ŷ′, ẑ′] to [x̂, ŷ, ẑ], a rotation matrix

given by

R =
[
x̂′T ŷ′T ẑ′T

]
(3.20)

can be used.

Now, we have already defined

ẑ′ = n̂ = [nx, ny, nz] , (3.21)

and x̂′ and ŷ′ can be defined arbitrarily, provided x̂′, ŷ′, and ẑ′ are mutually

orthogonal unit vectors.

Without loss of generality, define ŷ′ = [0, y2, y3]. We know that the dot

product of ŷ′ and ẑ′ will be 0, since they are orthogonal. Therefore,

ẑ′ · ŷ′ = 0 + nyy2 + nzy3 = 0 =⇒ y2 = −nz

ny
y3. (3.22)

We also know that ŷ′ is a unit vector, so

∣∣ŷ′∣∣ =√y22 + y23 =

√
n2
z

n2
y

y23 + y23 = 1. (3.23)

Solving Equations (3.22) and (3.23) gives
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y2 = ∓ nz√
n2
y + n2

z

(3.24)

y3 = ± ny√
n2
y + n2

z

. (3.25)

Taking the positive square root for y2 leads to

ŷ′ =

0, nz√
n2
y + n2

z

,− ny√
n2
y + n2

z

 . (3.26)

Finally, x̂′ is simply given by x̂′ = ŷ′ × ẑ′. Therefore,

x̂′ =

√n2
y + n2

z,−
nxny√
n2
y + n2

z

,− nxnz√
n2
y + n2

z

 . (3.27)

Combining these gives the total rotation matrix

R =


√

n2
y + n2

z 0 nx

− nxny√
n2
y+n2

z

nz√
n2
y+n2

z

ny

− nxnz√
n2
y+n2

z

− ny√
n2
y+n2

z

nz

 . (3.28)

Solving R for ny = nz = 0

If ny = nz = 0 (and consequently nx = ±1), then R is undefined due to

division by zero. Instead, let ny = 0 and take the limit as nz → 0+. Letting

ny = 0 leads to
√
n2
y + n2

z = |nz|. Substituting ny = 0 into R and taking the

limit of R as nz → 0+ gives

lim
nz→0+

R = lim
nz→0+

 |nz| 0 1

0 sgnnz 0

− sgnnz 0 0

 , (3.29)

where sgnnz is the sign of nz. limnz→0+ sgnnz is unity, and limnz→0+ |nz| is
zero. Therefore,

lim
nz→0+

R =

 0 0 1

0 1 0

−1 0 0

 . (3.30)
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Appendix 3.B Number of trapezia on a

polyhedral surface

Let S be a polyhedron composed of F polygonal surfaces Si, and let ni be

the number of edges of the polygon Si.

Consider one surface Si (with ni edges). Draw parallel lines across the

surface of Si passing through each vertex, creating up to ni − 1 trapezia, Tj ,

as shown in Figure 3.1b. Repeat for all surfaces Si. The maximum total

number of trapezia on the surface of the polyhedron S is then

Ntrapezia =
F∑
i=1

(ni − 1)

=

(
F∑
i=1

ni

)
− F .

Now, the summation term is counting each edge of each face Si. However,

since each edge is shared between two faces, the summation term counts

each edge twice. Therefore,

F∑
i=1

ni = 2E,

where E is the number of edges of the polyhedron. Hence,

Ntrapezia = 2E − F .

Appendix 3.C Detailed validation results

This section includes more detailed information from Section 3.3, where

the algorithm presented in this paper was validated using finite element

simulations (FEA) and literature. The calculation time of each method and

the error associated with each comparison is given.

Pyramid frustum magnet

For this comparison, the field was calculated across a 301×301 grid across a

30mm×30mm region. The maximum field strength and RMS field strength

for both analytical and FEA methods are given by
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Bmax = max (|Bi|) , (3.31)

BRMS =

√√√√ 1

n

n∑
i=1

|Bi|2, (3.32)

where n is the number of points at which the field is calculated and Bi is

the magnetic field at the ith point. The error between FEA and analytic

evaluations is given by

εi =
∣∣∣∣∣Banalytic,i

∣∣− ∣∣BFEA,i

∣∣∣∣∣, (3.33)

with the maximum and RMS error are defined as

εmax = max (εi) , (3.34)

εRMS =

√√√√ 1

n

n∑
i=1

ε2i . (3.35)

The percentage errors were also calculated by dividing the error at each point

by the analytic magnetic field strength at that point,

ε%,i =
εi

|Banalytic,i|
× 100%. (3.36)

The maximum and RMS percentage errors ε%,max and ε%,RMS were also

calculated using equations similar to Equations (3.34) and (3.35). Results

are shown in Table 3.1. These results indicate strong agreement between the

analytic methodology proposed in this paper and FEA simulations, with a

maximum error less than 1 percent, indicating the analytic methodology is

providing correct field computations.

Cylindrical magnet

The maximum and RMS field strengths were defined according to Equations

(3.31) and (3.32), and the polyhedral error and FEA error were defined as

εpolyhedron =
∣∣∣∣∣Bcylinder,i

∣∣− ∣∣Bpolyhedron,i

∣∣∣∣∣, (3.37)

εFEA =
∣∣∣∣∣Bcylinder,i

∣∣− ∣∣BFEA,i

∣∣∣∣∣, (3.38)
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Table 3.1: Results from the frustum magnet field calculation. The analytic

calculation and FEA simulation produce similar results, with a maximum

error of less than 1 percent between the two. The time taken to evaluate the

analytic field is 0.3144s for 90601 field points (averaging 3.470µs per point).

Analytic FEA

Timetotal (s) 0.3144 2462

Bmax (T) 0.6332 0.6362

BRMS (T) 0.4744 0.4743

εmax (T) 4.042× 10−3

εRMS (T) 5.590× 10−4

ε%,max (%) 0.7185

ε%,RMS (%) 0.1316

where Bcylinder is the exact magnetic field [4]. The maximum and RMS errors

were defined according to Equations (3.34) and (3.35), with the percentage

errors being defined as

ε%,i =
εi

|Bcylinder,i|
× 100%. (3.39)

The maximum and RMS percentage errors ε%,max and ε%,RMS were also

calculated using equations similar to Equations (3.34) and (3.35). Results

are shown in Table 3.2. Even though the cylinder was approximated as a

polyhedron, the errors between the cylindrical field results, polyhedral field

results, and FEA results are small. The FEA results had a maximum percent-

age error less than 1 percent when compared to the cylindrical calculation,

whereas the polyhedral approximation had a maximum error less than 0.05

percent when compared to the analytic cylindrical calculation [4]. This indi-

cates that even with a polyhedral approximation of a cylinder, the analytic

methodology proposed in this paper can give more accurate results than

FEA. Additionally, the polyhedral approximation was considerably faster

to evaluate than the FEA simulations. Furthermore, these results suggest

that polyhedral approximations can provide accurate field computations for

curved surfaces.
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Table 3.2: Results from the cylindrical magnet field calculation. The

polyhedral field and FEA field were compared against the analytic cylindrical

field [4]. The FEA results had an error less than 1 percent, whereas the

polyhedral results had an error less than 0.05 percent. The total time taken

to evaluate the magnetic field at 90601 points was 0.1304s (averaging 1.439µs
per point) for the cylindrical calculation and 0.8668s (averaging 9.567µs per
point) for the polyhedral calculation.

Cylinder [4] Polyhedron FEA

Timetotal (s) 0.1304 0.8668 2258

Bmax (T) 0.5710 0.5710 0.5731

BRMS (T) 0.3815 0.3815 0.3814

εmax (T) 2.139× 10−4 3.337× 10−3

εRMS (T) 3.534× 10−5 4.898× 10−4

ε%,max (%) 4.317× 10−2 0.8118

ε%,RMS (%) 7.436× 10−3 0.1612
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Author’s remarks on Chapter 3

In many magnetostatic analyses, the magnetic field is computed at a large

number of points in space. As such, it is necessary to use a method which

scales well with the number of field points. Upon comparison of the methods

detailed in Chapters 2 and 3, it can be seen that although the field equations in

the current chapter are more complicated, the relatively expensive geometric

deconstruction process only occurs once. Thus, when the field is computed

at few points, the method outlined in Chapter 2 is preferred due to the

simplified field equations. In contrast, when the field is to be computed at

many points, the method in the current chapter is greatly preferred due to

the effective scaling as the number of points increases. Furthermore, while

only fields were calculated in this chapter, the force and torque methodology

from Chapter 2 may be applied, leading to fast force and torque calculations.
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Optimisation of frustum

magnet geometry

With the development of fast magnetic field equations in Chapter 3, multi-

variable optimisation of magnetic systems is possible. This chapter presents

two such optimisation cases, where the geometry of a singular frustum mag-

net is varied to maximise the field strength above it for a constant magnet

volume, and the geometry of frustum magnets in a planar array are varied

to produce a more desirable magnetic field distribution above the array

for a constant array volume. Due to the high computation speed of the

methodology presented in Chapter 3, these optimisation routines are able to

quickly find a solution to the convex problem, resulting in fast optimisation

of magnetic systems.
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Optimisation of the magnetic field
Produced by frustum permanent
magnets for single magnet and planar
Halbach array configurations

James L.G. O’Connell, William S.P. Robertson, and Benjamin S. Cazzolato

Abstract

The potential benefits of frustum-shaped magnets over cuboidal magnets

have been seldom studied. This paper compares these magnet shapes by

optimising frustum geometry for both a single magnet and for a multi-magnet

planar Halbach array to produce a desirable field1. This field is compared to

the equivalent field for optimised cuboidal magnets and differences quantified.

A single magnet is considered, where the field strength above the centre of a

magnet is maximised. If the field is measured close to the magnet surface,

an optimised frustum magnet can produce a field stronger than an optimised

cuboidal magnet. If the field is measured further from the magnet, there is

little benefit in using a frustum magnet over a cuboid. Additionally, a planar

magnet array is considered, in which the field strength and how closely the

field resembled a sinusoidal profile are maximised. In this case, no significant

benefit is observed using frustum magnets over cuboidal magnets.

4.1 Introduction

Cuboidal permanent magnets have been studied extensively in literature,

with the first three-dimensional field equations derived in 1984 by Akoun and

Yonnet [1]. Since then, more general equations have been derived describing

the fields produced by cuboidal magnets. Bancel [3] showed that a cuboidal

magnet is equivalent to a set of magnetic point charges located at the vertices

when calculating the field, and Ravaud and Lemarquand [23] presented field

equations for a cuboidal magnet with an arbitrary magnetisation direction.

Other studies have explored the forces between two parallel cuboidal magnets

1In this chapter, optimisation for a single magnet refers to maximising the field strength

per unit magnet volume, and optimisation for an array refers to minimising the cost

function defined in Equation (4.16)
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[1, 13], the torque between two parallel cuboidal magnets [2, 15, 17], and the

force between cuboidal magnets under rotations about a single axis [8].

The geometry of a permanent magnet has a considerable effect on the

field it produces, and as such, modifying the geometry of a six-sided magnet

from a conventional cuboid may lead to a more desirable field. By angling

two pairs of opposite faces of a cuboid, a six-sided frustum is created, such

as the one shown in Figure 4.1. Due to the angled faces being trapezial

instead of rectangular, the field equations become significantly more difficult

to derive, and thus frustum magnets have been seldom studied. However,

several approaches have been used to derive field equations produced by

polyhedral magnets [7, 9, 14, 16, 20, 21, 26], which can be applied to frustum

magnets.

In addition to single magnets, considerable research has been conducted

on magnet arrays. In particular, the linear Halbach array, first theorised by

Mallinson [18], has been studied extensively. In recent years, this has lead to

further investigation into planar Halbach arrays for use in planar actuators,

for which studies have modelled the magnetic field using cuboidal magnets

[4, 25] and triangular prismatic magnets [5] with magnetisations parallel to a

principal axis. Further studies have been conducted to optimise the magnetic

field produced by planar Halbach arrays using cuboidal magnets [11, 12]

and triangular or trapezoidal prismatic magnets [6, 22]. Min et al. [19] has

considered cuboidal magnets with magnetisations which are not parallel to a

principal axis, leading to a field with a stronger z-component with smaller

high-order harmonics. However, all aforementioned studies are limited to

magnets with faces either parallel or orthogonal to the z-axis; i.e. the normal

vector of every magnet face is parallel to the z axis or lies in the XY -plane.

There exists little-to-no research on magnets with faces rotated about the x-

or y-axes.

This paper applies previous polyhedral magnet field equations to frustum

magnets in order to explore potential advantages they have over cuboidal

magnets. In Section 4.2, the method used to calculate the magnetic field

produced by a frustum magnet is outlined. This methodology is applied to

a square-based right frustum permanent magnet in Section 4.3, where the

geometry is varied to optimise the magnetic field strength at a point above the

magnet. Section 4.4 presents a two-dimensional permanent magnet Halbach

array, where the magnetic field is optimised by varying the magnet geometry.

These geometries are compared to the equivalent cuboidal geometries, and

any advantage in frustum magnets quantified.
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4.2 Magnetic field produced by a pyramid

frustum magnet

To calculate the magnetic field produced by a frustum permanent magnet,

it is assumed ideal, with constant uniform magnetisation M and a relative

permeability µr of unity. Under this assumption, a simplified version of the

magnetic charge model outlined by Furlani [10] can be applied to calculate

the magnetic field B at a point x, given by

B (x) =
µ0

4π

˛
S
(M · n̂) x− x′

|x− x′|3
ds′, (4.1)

where µ0 is the permeability of free space, M is the magnetisation vector,

n̂ is the outward-facing unit normal vector of the magnet surface S, x′ is a

point on S, and ds′ is a surface element of S.

This paper uses the field solution presented by the current authors [21], in

which the magnet is deconstructed into each of its polygonal facets. Consider

the rectangular pyramid frustum permanent magnet shown in Figure 4.1.

This is composed of two parallel rectangular surfaces and four trapezial

surfaces joining the rectangles with symmetry in the XZ and Y Z planes.

One rectangular surface lies on the XY -plane, with the origin placed at the

centre of the surface. The magnetic field is given by the sum of the field

contributions from each of the rectangles Brect,i and trapezia Btrap,j ,

B =
2∑

i=1

Brect,i +
4∑

j=1

Btrap,j . (4.2)

The following sections outline the methodology for calculating the field.

4.2.1 Field solution for a magnetically charged

trapezium

Consider the magnetically charged trapezium depicted in Figure 4.2 with

surface charge σ = M · n̂. It lies parallel to the X̃Ỹ -plane with a z̃-coordinate

of z′ and the parallel edges being parallel to the ỹ-axis. The magnetic field

B (x̃) = [Bx, By, Bz] due to this trapezium at the point x̃ = (x̃, ỹ, z̃) is
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x

y

z

Figure 4.1: A pyramid frustum created by joining two parallel rectangular

surfaces with four quadrilateral surfaces. The rectangular surfaces are parallel

to the XY -plane, with the origin at the centre of the top rectangular surface.

presented by the current authors [21] and is given by

Bx̃ (x̃) =
µ0σ

4π

2∑
p=1

2∑
q=1

[
(−1)p+q

(
ln (Tpq)−

mp√
1 +m2

p

ln (Spq)

)]

Bỹ (x̃) =
µ0σ

4π

2∑
p=1

2∑
q=1

(−1)p+q 1√
1 +m2

p

ln (Spq)

 (4.3)

Bz̃ (x̃) =
µ0σ

4π

2∑
p=1

2∑
q=1

[
(−1)p+q arctan (Upq)

]
,

where

X = xq − x̃

Y = cp +mpxq − ỹ

Z = z′ − z̃

Rpq =
√
X2 + Y 2 + Z2

Spq = X +mpY +
√

1 +m2
pRpq

Tpq = Rpq + Y

Upq =
mp

(
X2 + Z2

)
−XY

ZRpq
.

(4.4)

This solution can be applied to each of the six surfaces of the frustum

permanent magnet, as described in Sections 4.2.2 and 4.2.3.
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x̃ = x1 x̃ = x2

ỹ = m1x̃+ c1

ỹ = m2x̃+ c2

x̃

ỹ

Figure 4.2: A trapezial surface parallel to the XY -plane. It has two

parallel edges, x = x1 and x = x2, and two nonparallel edges joining them,

y = m1x+ c1 and y = m2x+ c2.

4.2.2 Rectangular faces

The field solution for the two rectangular faces is a simplified case of the

trapezium. Both rectangular surfaces are already parallel to the XY -plane,

and two edges parallel to the y-axis, so no rotation is necessary. Since two

edges are parallel to the x-axis, mp = 0 and Equation (4.3) is simplified. This

simplification is equivalent to the expressions seen in studies on cuboidal

magnets [1, 24]. The point x and geometric parameters can be substituted

into Equation (4.3) to obtain the magnetic field for each of the rectangular

surfaces,

Brect,i = B (x) . (4.5)

4.2.3 Trapezial faces

The fields produced by the four trapezial surface are more difficult to evaluate

than those produced by the rectangular surfaces since they require rotation

and mp ̸= 0 in general. However, since each of the four trapezia have normal

vectors orthogonal to either the x- or y-axes, the rotation matrices are simple.

If the trapezia are numbered as shown in Figure 4.3, then the rotation

matrices corresponding to each trapezium are given by
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1

2

3

4

x

y

Figure 4.3: A pyramid frustum as viewed from the positive z-axis with the

four angled surfaces numbered.

R1 =

 nz 0 nx

0 1 0

−nx 0 nz

 , R2 =

 0 nz −ny

−1 0 0

0 ny nz

 ,

R3 =

nz 0 −nx

0 1 0

nx 0 nz

 , R4 =

 0 −1 0

nz 0 ny

−ny 0 nz

 ,

(4.6)

where n̂ = [nx, ny, nz] is the outward-facing unit normal vector of each

trapezium.

The rotation matrix Rj defines a temporary coordinate system (x̃, ỹ, z̃)

in which the trapezium is parallel to the X̃Ỹ -plane, allowing the use of

Equation (4.3). In this new coordinate system, the field point is given by

xRj and the vertices of the trapezium in the new coordinate system can

be similarly found by postmultiplying by Rj . Once the field is calculated

in the new coordinate system, it can be transformed back to the original

coordinate system by postmultiplying by R−1
j . Thus, the field contribution

of each trapezium is given by

Btrap,j = B (xRj)R
−1
j . (4.7)
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4.3 Maximising the field above a right pyramid

frustum magnet

Consider the symmetric right square pyramid frustum, herein referred to as

a right frustum, shown in Figure 4.4. It is composed of a pair of parallel

squares centred on the z-axis joined by four identical trapezia. It has constant

uniform magnetisation M = [0, 0,Mz] and a relative permeability µr of unity.

The top surface has a side length of L, the bottom surface has a side length

of l, and the slanted faces form an angle θ with the bottom face. The volume

of the frustum is given by

V =
l − L

6
tan θ

(
L2 + lL+ l2

)
, (4.8)

and a length parameter2 υ is defined as υ = 3
√
V .

If the field is to be evaluated at any point on the z-axis, i.e. at a point

(0, 0, z), symmetry can be exploited and the field produced by the magnet

can be evaluated with a single function, given by

Bx = 0

By = 0

Bz =
µ0Mz

π

[
arctan

(
L2

4zR0

)
− arctan

(
l2

4 (z + h)R1

)
+

1∑
p=0

1∑
q=0

(−1)p+q cos θ
(
arctan (Upq) cos θ

− ln (Tpq) sin θ −
(−1)p sin θ√
1 + sec2 θ

ln (Spq)
)]

, (4.9)

where

lq = L+ 2hq cot θ

Rq =

√
l2q
2
+ (z + qh)2

Spq = lq cos θ + (z + qh) sin θ +
√
1 + cos2 θRq

Tpq = Rq −
(−1)p lq

2

Upq =
(−1)p (z + qh)

Rq
.

2In this section, υ is a length based on the volume, and is used to nondimensionalise

lengths, allowing a dimensionless analysis.
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Figure 4.4: Three-dimensional view (a) and schematic (b) of a right square

pyramid frustum permanent magnet with magnetisation vector M. The

origin is located at the centre of the top surface and both rectangular surfaces

are parallel to the XY -plane. The frustum has a nondimensional height h, a

top surface side length L, and bottom surface side length l. The four angled

surfaces form an angle θ with the bottom surface.
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It should be noted that a cylindrical frustum can produce a stronger field

than that of a rectangular frustum along the axis of symmetry. However,

rectangular frusta have the ability to tessellate well (as discussed in Section

4.4), and as such only rectangular frusta are considered in this work.

A right frustum requires three parameters to fully describe the geometry.

For a magnet with a given volume V , the length dimensions can be normalised

by the length parameter υ. Here, the normalised height h/υ and wall angle θ

are varied for a frustum with volume V . For each pair (h/υ, θ), the magnetic

field produced by the frustum was evaluated at the point (0, 0, z/υ) and

normalised by the magnetisation strength of the magnet.

First, the field was evaluated at z/υ = 0.1 for all physically realisable

pairs (h/υ, θ), where physically realisable refers to all lengths being positive

and real, and a contour plot drawn in Figure 4.5a. The field is maximised

by a frustum with a normalised height of hopt/υ = 0.95 units and a wall

angle of θopt = 57°. The equivalent optimal cuboidal magnet is found in

the same way, but constraining the wall angle to 90°. For z/υ = 0.1, the

optimal frustum produces a field 12.6% stronger than the optimal cuboid.

Schematics of both the optimal frustum and optimal cuboid for z/υ = 0.1 are

shown in Figure 4.6. This optimisation was repeated for a point z/υ = 0.5

units above the magnet (Figure 4.5b), resulting in an optimal frustum with

hopt/υ = 0.83 units and θopt = 94°. This optimal frustum is almost cuboidal

in shape, leading to a field only 0.07% stronger than the equivalent optimal

cuboid.

To give an indication of optimal magnet shape, the z-field was calculated

in the region above a cube magnet, shown in Figure 4.7. In addition, the

optimal cuboid and frustum for z/υ = 0.1 were drawn, with a ‘+’ sign

representing the point at which the field is maximised. All three magnets

have identical volumes and magnetisations, with the field calculated over the

same region; only the shape of the magnet differs. It can be seen that the

cube magnet has the weakest field strength at this point, with the optimal

cuboid having a slightly stronger field. However, the optimal frustum ‘focuses’

the flux through the top surface, leading to a larger magnetic field at the

point of interest.

An interior-point optimisation algorithm was used to calculate the optimal

frustum geometry for a large range of distances z/υ above the magnet.

The optimal parameters hopt/υ and θopt were calculated at each z/υ and

are plotted in Figure 4.8. As z/υ increases, the optimal height hopt/υ

shows a decreasing trend and the wall angle θopt shows an increasing trend.
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Figure 4.5: Normalised magnetic field strength z/υ = 0.1 (a) and z/υ = 0.5

(b) units above the centre of a right frustum magnet with a volume V , a

normalised height of h/υ units and wall angle of θ degrees. The global

maxima (hopt/υ, θopt) for each plot is highlighted with a ‘+’, with the white

regions indicating non-physical geometries.
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0.951

1.580

0.344

(a)

1.514

0.813

(b)

Figure 4.6: Normalised dimensions of the optimal frustum (left) and cuboid

(right) to maximise the field for z/υ = 0.1. Both magnets have identical

volume, but the optimal frustum has a smaller top face, which ‘focuses’ flux,

giving a slightly stronger field in the small region above the centre of the

magnet.

Figure 4.7: The z-field in the region above a cube magnet, the optimal

cuboid magnet, and the optimal frustum magnet for z/υ = 0.1. The point

z/υ = 0.1 is drawn with a ‘+’, showing that the optimal frustum magnet

gives the strongest field at this point.
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Figure 4.8: Optimal frustum height hopt (blue) and wall angle θopt (orange)

to maximise the magnetic field strength a distance z/υ above a right frustum

permanent magnet with a volume of V units3. A small image of the optimal

frustum geometry is displayed at the bottom of the figure for the values

z/υ = 0.1, 0.4, 0.7, and 1.0.

Interestingly, the optimal height hopt/υ < 1 for all values of z/υ, meaning the

optimal geometry is always a ‘flatter’ magnet. The magnetic field strength

for both optimal frustum and optimal cuboid are plotted in Figure 4.9, along

with the percentage increase in field strength using the optimal frustum rather

than the optimal cuboid. This shows a negligible increase in field strength

for large z/υ. However, for small z/υ, the increase in field strength may

allow more effective use in applications such as magnetic power transmission,

linear vibrating systems, and magnetic latching.

4.4 Optimising the field of a planar frustum

Halbach array

The methods detailed in this paper can also be used to analyse multi-

magnet systems. This section focuses on a planar Halbach array created by

tessellating frustum magnets for use in planar motors. These arrays may also

be used in applications such as planar magnetic loudspeakers and 3D printers.

The optimisation routine will vary the geometry to not only increase field
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Figure 4.9: Magnetic field strength produced by an optimal frustum and

cuboid of the same volume (blue) and percentage increase in the field strength

produced by the frustum over the cuboid (orange).

strength, but to create a z-field which closely resembles a desired profile.

4.4.1 Defining array geometry

A planar Halbach array of frustum magnets can be created by tessellating

frusta of square-based pyramids and tetrahedra, shown in Figure 4.10. Figure

4.10 shows the repeating unit for this array, which, when duplicated, creates

the array shown in Figure 4.11.

The square-based pyramid frustum (Figure 4.4) requires three parameters

to fully describe its geometry, while the tetrahedral frustum requires five

parameters, totalling eight parameters. However, for the magnets to tessellate,

two of the length parameters (lp and Lp), the wall angle θ, and height h

are shared between the two, leaving only four parameters required to fully

describe the system geometry. This is reduced to two parameters by keeping

the system volume and pole pitch τ constant.

Consider the repeating unit shown in Figure 4.10 (c and f) with the

magnets having an average volume V . Let the total volume of the three

magnets be 3V units3 and the pole pitch be τ = Lp + Lt = lp + lt units.

Define the parameters h and θ as variables. Thus, the geometry is fully
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Figure 4.10: Three dimensional views and schematics of a pyramid frustum

(a,d), a tetrahedral frustum (b,e), and the repeating unit (c,f).

defined by the relations

lp = τ + h cot θ − S (4.10)

Lp = τ − h cot θ − S (4.11)

lt = −h cot θ + S (4.12)

Lt = h cot θ + S, (4.13)

where

S =

√
τ2 − 3V

h
− h2

3
cot2 θ. (4.14)

Therefore, for constant V and τ , the array geometry can be fully described

using the variables h and θ.

4.4.2 Optimisation of field for a specific case

Consider an array using a repeating unit with length τ/υ = 2 for use in a

planar motor with low force ripple and large maximum force. Selection of a

suitable desired field profile depends on coil geometry specific to each motor,

but this work considers only permanent magnet geometry, and as such a
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Figure 4.11: Planar Halbach array created by replicating the magnetic

subarray from Figure 4.10. The pyramid frusta have magnetisations in the

z-direction (into and out of the page), whereas the tetrahedral frusta have

magnetisations in the x- and y-directions (parallel to the page).
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general sinusoidal profile is chosen as the desired z-field profile. Further

extensions of this work could consider a field profile tailored to a particular

motor design. Although force ripple will not be completely removed using a

sinusoidal profile, it will be reduced when compared to the field produced by

a traditional cuboidal array. In addition, a field profile with a large amplitude

will lead to a larger maximum force for the motor. Thus, a sinusoid with

large amplitude is chosen as the desired field profile for the optimisation

routine. Both the resemblance and amplitude can be quantified using a least

squares analysis on calculated field data and the appropriate two-dimensional

cosine wave f , given by

f (x, y) = A cos
(πx

τ

)
cos
(πy
τ

)
, (4.15)

where A is the amplitude of the sinusoid.

For a given geometry (h/υ, θ) and vertical distance z/υ from the array,

the z-field was calculated over a 2τ/υ × 2τ/υ region across a 32× 32 grid of

points to include one full wavelength of the magnetic field. This calculation

was done using five pole pitches in each direction, giving a large enough

array such that end effects were negligible, but maintaining a relatively

small calculation time. At each point, f was calculated, and the sum of

squared residuals minimised to give the value of the wave amplitude A. The

coefficient of determination r2 was calculated, giving a measure of similarity

between the field data and cosine wave. This process was repeated for a

large range of geometries (θ, h/υ), and contour plots drawn for r2 and A.

These plots show the optimal regions to maximise r2 or A, and are shown

for z/υ = 0.2 in Figure 4.12.

The contour plots indicated that there are relatively large regions which

maximise r2 and A. The region to maximise r2 is a curved stripe, starting

with low θ and h/υ, passing through the cube case (θ = 90°, h/υ = 1), and

tending toward large θ and h/υ. The region to maximise A is a triangular

area in the top left of the plot. There is overlap between the optimal regions

of both plots along the bottom edge of the optimal region of A and the top

edge of the optimal region of r2. Hence, the geometry to maximise both r2

and A will be in this overlap region.

This can be further examined by defining a cost function to maximise

both,

C = Ar2. (4.16)

Maximising C will give large values for both r2 and A, thereby obtaining

a field which closely resembles a cosine wave with large amplitude. The cost
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Figure 4.12: Normalised amplitude A (a) and coefficient of determination

r2 (b) of the cosine wave approximation of the z-field above the planar

magnet array with τ/υ = 2 and z/υ = 0.2. The global maxima are plotted

with a ‘+’, with the white region indicating non-physical geometries.
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Figure 4.13: The value of the cost function C = Ar2 at each point in

the physically realisable region with τ/υ = 2 and z/υ = 0.2. This value is

maximised in the top-left area of the region, with optimal parameters of

hopt/υ = 0.89 and θopt = 93.3°.

function C was calculated at each combination (θ, h/υ) (Figure 4.13). This

plot shows a region coinciding with the overlap of Figures 4.12b and 4.12a

as expected. The maximum value of this plot occurs at hopt/υ = 0.89 and

θopt = 93.3°. This geometry is almost cuboidal, and thus corresponds to an

increase of only 0.04% in C over the optimal cuboidal geometry.

4.4.3 Optimisation of field for a general case

The methodology outlined in Section 4.4.2 can be extended to consider more

general cases. However, rather than evaluating the value of C at each feasible

geometry (θ, h/υ), an optimisation routine is used, substantially reducing

the number of evaluations of C. Additionally, all length parameters can

be normalised by z, allowing a nondimensional analysis, leading to a more

general solution.

A range of values were defined for υ/z and τ/z, and limits on geometries

imposed to discard geometries with extreme aspect ratios. For each combina-

tion (υ/z, τ/z), the region of physically realisable geometries was identified in

terms of h/z and θ. The Matlab function fmincon was then used to maximise
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the cost function C over the physically realisable magnet geometries (θ, h/z).

This process was repeated for each combination (υ/z, τ/z), and the results

plotted on the contour plots in Figure 4.14, with the corresponding value of

the cost function C plotted in Figure 4.15.

Interestingly, the upper half of the plots indicate a magnet geometry

close to a cuboid. However, as the volume decreases or pole pitch increases,

the optimal angle θ grows larger, leading to a highly non-cuboidal geometry.

The optimal height parameter behaves as would be expected, with increasing

height as the volume increases or pole pitch decreases.

The optimal frustum topologies can be directly compared to the corre-

sponding cuboidal topologies. The optimisation routine was run again, but

this time only optimising the height parameter while maintaining the angle

θ at 90°. The cost function Ccuboid was calculated and compared to the

associated frustum cost function C. The percentage increase in C produced

by the optimal frustum over optimal cuboid was plotted for each combination

(υ/z, τ/z) and is shown in Figure 4.16, showing a small but nonzero increase

in field quality.

In most of the region, this increase is less than 1 percent, meaning the

increased difficulty and cost associate with manufacturing frustum magnets

rather than cuboidal magnets is likely not worth the small increase in C.

The bottom right region of the plot shows a more considerable percentage

increase, achieving an increase greater than 10%. However, there are two

main issues with this region. Firstly, the magnets will exhibit an extremely

undesirable aspect ratio. Based on Figure 4.14b, this region has a relatively

small optimal height parameter h/z in a region with large τ/z, leading to a

large value of τ/h and an undesirable aspect ratio of the magnets. Secondly,

this region attains a relatively low value of C according to Figure 4.15. This

is partially because the magnets are very thin due to the large value of τ/h,

leading to weak fields, and partially because the ratio τ/z is large, leading to

the field resembling a square wave rather than a sinusoid. These tendencies

lead to a small field amplitude A, with a low coefficient of determination r2,

leading to a small value of C.

Based on Figure 4.16, optimal frustum magnets are likely not worth the

additional difficulty and cost associated with manufacturing and assembly

for a planar Halbach array. The increase in field amplitude and resemblance

to a sinusoid are negligible in most regions. In the region where the increase

is not insignificant, the amplitude and resemblance to a sinusoid are small

independent of the magnet shape. In this region, it is likely better to redesign
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Figure 4.14: The optimal value of θ (a) and h/z (b) for a given combination

(υ/z, τ/z). The white regions indicate magnet topologies with undesirable

aspect ratios.
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Figure 4.15: The value of the cost function C = Ar2 at each combination

(υ/z, τ/z) normalised by the magnetisation strength of the magnets. This

value approaches unity for large τ/z and υ/z, and becomes small when either

τ/z or υ/z are small.

135



Chapter 4

0.1

0.1

0.1

0
.1 0
.1

0
.1

1

1

1

10

1
0

5 10 15 20 25 30 35 40

2

4

6

8

10

12

14

16

18

20

10
-3

10
-2

10
-1

10
0

10
1

Figure 4.16: Percentage increase in the cost function C using optimal

frustum magnets rather than optimal cuboid magnets. In the centre of the

region, the percentage increase is extremely small, implying no effective

increase in performance using optimal frusta instead of optimal cuboids. In

some regions, this percentage increase is larger. However, these are regions

where the cost function is relatively small whether using frusta or cuboids,

so it is likely more effective to redesign the system than to optimise magnet

geometry.
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the system to increase the magnet volume or decrease the pole pitch of the

array. In general, optimal cuboidal magnets are likely the most effective

solution for a planar Halbach array which aims to attain a sinusoidal magnetic

field with a large amplitude.

4.5 Conclusion

This paper has examined the differences in the magnetic field produced by

frustum permanent magnets and cuboidal permanent magnets. This was

done by applying magnetic field equations currently available in literature

[21] to a six-faced frustum geometry. Two magnetic systems were considered,

allowing a direct comparison between cuboidal magnets and six-faced frustum

magnets.

The first magnetic system consisted of a single magnet, with the field

being computed at a point directly above the centre of the magnet. In this

case, it was shown that an optimised frustum magnet can produce a field

stronger than that of an optimised cuboid magnet. However, this increase in

field strength is only significant when the field point is close to the magnet.

As the field point moves further from the magnet, this increase becomes

negligible.

The second magnetic system was a two-dimensional Halbach array con-

sisting of tessellated frustum magnets. For this configuration, the amplitude

of the field and how closely the field represents a two-dimensional sinusoid

defined a cost function C (to be maximised), which was used to optimise the

system. It was found that most optimal frustum geometries were close to

cuboidal. As a comparison, the optimal cuboidal arrays were found, showing

that in most cases, the optimal frustum topology has negligible effect on

the cost function C. Under certain conditions, the optimal frustum array

leads to a significant increase in C over the optimal cuboid array. However,

these conditions lead to a relatively weak field, and other measures should

be taken to increase C such as increasing magnet volume or decreasing the

array pole pitch.

This paper shows that although frustum magnets can produce more

desirable magnetic fields than cuboidal magnets, this effect is insignificant in

many cases. Additionally, complicated magnet geometries such as frusta are

more expensive to produce than simple geometries such as cuboids. Hence,

the cost associated with the manufacture of these magnets is likely not

worth the advantage of a more desirable field. Measures such as varying
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magnet volume and size are likely to be more effective than using complicated

magnet geometries. Furthermore, for multi-magnet arrays, optimising magnet

topology and magnetisations is likely more effective than varying the geometry

of individual magnets.
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Author’s remarks on Chapter 4

This chapter demonstrated the optimisation of both a singular magnet and

a planar array of magnets. For the singular magnet case, the geometry was

varied to maximise the magnetic field strength at a point above the centre

of the magnet. In the case of the planar magnet array, the array geometry

was varied to maximise a cost function associated with the magnetic field

above the array. The cost function chosen was a simple two-dimensional

sinusoidal pattern, but the choice of cost function has a strong dependence

on the application being optimised. Therefore, the results presented in this

chapter may not be optimal for every application, but give an indication of

the subspace of where the optimal geometry may be. Due to the complexity

of the optimisation problem in this chapter, fast field calculation methods

such as detailed in Chapter 3 were necessary to achieve a solution to the

problem in a reasonable time. This chapter has shown a proof of concept in

magnetostatic geometry optimisation using efficient field calculations.
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Modelling permeable

magnets

While the methodologies presented in previous chapters are fast and accurate,

they are based on idealised permanent magnets with the assumption of a

relative permeability of unity. However, most modern permanent magnet

materials have a relative permeability in the range of 1.05–1.3, leading to

a small overestimation in the fields, forces, and torques associated with

these magnets. To minimise this overestimation, magnetic permeability

must be incorporated into the magnetic model. Past literature has explored

the effect of magnetic permeability, but this is usually done through an

iterative method, in which the field is calculated several times. This chapter

presents and validates a methodology to solve a magnetic system without

iteration. Specifically, the field is calculated only once, with a matrix inversion

performed to solve for the magnetic surface charges, allowing the calculation

of the fields, forces, and torques. Validation is performed using finite element

simulations, but assumes non-unity relative permeability.
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A non-iterative method to solve for
magnetic fields, forces, and torques due
to permanent magnets with non-unity
relative permeability

James L.G. O’Connell, William S.P. Robertson, and Benjamin S. Cazzolato

Abstract

Although the majority of common permanent magnet materials have relative

permeabilities between 1.05 and 1.3, they are often modelled analytically with

the assumption of unity relative permeability. While this greatly simplifies

analysis, it introduces modelling errors, leading to overestimates of magnetic

fields, forces, and torques. This paper presents a new method for modelling

interactions between magnets with non-unity relative permeabilities assuming

constant uniform remanence magnetisation and permeability. In contrast to

other methods which use an iterative approach, this methodology requires

calculating magnetic field information only once, leading to a considerable

reduction in computational effort. Based on a triangular surface mesh, this

method permits the calculation for any magnetic geometry and for magnetic

systems with arbitrarily many magnets. Verification is performed using finite

element simulations, with the proposed method showing high accuracy and

speed.

5.1 Introduction

Magnetic materials are used in many applications found in science and

engineering, including electric motors, loudspeakers, and magnetic data

storage. Each material has a given magnetic relative permeability µr, which

describes how the magnetisation of the material changes when magnetic fields

are present. Most permanent magnet materials have a relative permeability

slightly larger than unity, but are often modelled with µr = 1, ignoring

the effect of permeability. This significantly decreases the complexity of

modelling, but introduces errors as the magnitude of permeability increases.

Some materials such as iron have a high permeability, and are often modelled

by assuming the permeability is infinite, also leading to modelling errors.

To reduce these modelling errors, non-unity finite permeability must be
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considered, but this is difficult to model and analyse, often requiring the use

of finite element simulations or iterative solvers.

Several researchers have attempted to analytically model magnetic perme-

ability with varying levels of success. Kremers et al. [8] modelled a permanent

magnet with non-unity permeability by modifying the magnetisation strength

of the magnet based on the permeability. This approach gives extremely

fast results for the magnetic field produced by a single magnet with low

permeability. However, it does not consider the effect of external fields or

magnets, and is only valid for small and constant permeabilities, limiting

accuracy. Dam et al. [3] extended upon this by calculating the interaction

force in two of the three Cartesian directions as one magnet is rotated with

non-unity relative permeability. However, the third force component was

not derived, and the methodology is only valid for cuboidal magnets. Cast-

eren et al. [2] published a more general iterative methodology applicable to

any magnet geometry, which was more accurate at the cost of considerably

longer calculation times. Their approach assumed constant permeability

and required recalculating the magnetic field for each iteration, but could

incorporate external fields and arbitrarily large permeabilities. In a recent

study, Zhang et al. [12] performed a similar analysis by subdividing cuboidal

permanent magnets into a large number of smaller cuboidal magnets, with

the magnetisation of each augmented by the effects of permeability. The

force equations from Akoun and Yonnet [1], which assume unity relative

permeability, were implemented on each small cuboid, giving accurate force

calculations which incorporate the effect of permeability. Forbes et al. [4]

also subdivided magnetic materials into smaller volumes of material with

similar outcomes. Provided the permeability of each segment remains uni-

form across its volume, the permeability within each sub-volume was able to

vary, allowing the modelling of nonlinear magnetic materials.

Harrington [6, Sec 2.6] presented an interesting methodology in electro-

statics, wherein the polarisability of a dielectric body is calculated under

the assumption of non-unity relative electric permittivity. This is analogous

to finding the magnetisation of a magnetic body with non-unity relative

permeability, but in the electrostatic domain rather than the magnetostatic.

Their method is based on solving a matrix equation based on electric surface

charges and the permittivity of the material, allowing a solution to be found.

However, their method uses approximations of the integral equations for the

field, leading to small but non-trivial errors in the solution.

The current paper introduces a new methodology for calculating mag-
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netic fields, forces, and torques due to magnetic materials with non-unity

permeabilities in a single step, thus avoiding iteration. It is similar in concept

to the aforementioned matrix equation given by Harrington [6, Sec 2.6],

but with several advantages. The method presented in this paper uses the

exact solution to the field equations, leading to high accuracy. In addition, a

constraint is applied to the system to ensure consistency with Gauss’ Law

for Magnetism, further increasing accuracy. Furthermore, systems with

arbitrarily many magnets and systems with external field sources may be

analysed with this method. Finally, the methodology presented in this paper

includes the evaluation of forces and torques on magnetic bodies through

numeric integration, allowing analysis of quasi-static magnetic systems.

This methodology is extremely fast and gives accurate results for any

magnet shape due to the use of a triangular surface mesh. The methodology

begins by calculating surface charge densities in Section 5.2, before using

these results to calculate magnetic fields (Section 5.3), as well as forces

and torques (Section 5.4). Verification is performed on this methodology

using several magnetic configurations in Section 5.5. Finally, computational

considerations are detailed in Section 5.6 before the paper is concluded.

5.2 Magnetic charge density

To calculate the effect of magnetic permeability on magnetic materials, this

paper uses the magnetic charge model [5], where fictitious magnetic charges

exist on the surface of and inside magnetic bodies. An example of this is

depicted in Figure 5.1, where an idealised permanent magnet with unity

relative permeability µr = 1 and a non-ideal permanent magnet with µr = 3

have been drawn, with positive charges shown in red and negative charges

in blue. Both magnets have identical remanence magnetisations, but the

non-ideal magnet has a demagnetising effect on itself due to a relatively large

value of permeability, resulting in weaker surface charges and some charges

migrating from the north and south poles to the sides of the magnet. For

non-unity relative permeability, the distributions of magnetic charge on the

magnet surfaces is unknown and must be solved based on their interaction

with each other and any applied magnetic field. This section outlines an

approach to calculating these charge densities which uses a one-step matrix

inversion rather than the iterative approach commonly seen in literature.
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(a)

(b)

Figure 5.1: A cube magnet with an ideal relative permeability µr =

1 (a) and a non-ideal relative permeability µr = 3 (b). The remanence

magnetisation of both magnets is equal in strength and in the vertical

direction, with the associated surface charges shown in red (positive charge)

and blue (negative charge). The surface charges on the idealised magnet (µr =

1) remain on the poles, whereas the charges on the non-ideal magnet (µr = 3)

migrate from the poles and become weaker due to the self-demagnetising

effect of relatively large permeability.
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5.2.1 Induced magnetisation and surface charge density

At any point in space, magnetic materials satisfy the constitutive relationship

B = µ0 (H+M) (5.1)

and Gauss’ law for magnetism

‹
S
B · ds′, (5.2)

where B is the magnetic flux density, µ0 is the permeability of free space, H

is the magnetic field intensity, M is the magnetisation of the material, and

S is any closed surface in space. In addition, if the material is linear with a

constant permeability µ, the flux density follows

B = µH+Br, (5.3)

where Br is the remanence magnetisation of the material.

Combining Equations (5.1) and (5.3) leads to the equivalent magnetisation

M =
1

µ
Br +

µr − 1

µ
B, (5.4)

where µr = µ/µ0 is the relative permeability of the material (with magnetic

susceptibility χ = µr − 1). Thus, if the magnetic flux density is calculated

and the remanence magnetisation known, the equivalent magnetisation can

be calculated.

To solve Equation (5.4), an expression for the magnetic flux density B

must be found. Here, the magnetic charge model is used due to its accuracy

and simplicity, but a number of other methods may be used. The magnetic

flux density produced by a volume V bounded by a surface S at a location

x is presented by Furlani [5] (pp. 132),

B (x) =
µ0

4π

(‹
S
(M · n̂) x− x′

|x− x′|3
ds′ −

˚
V
(∇ ·M)

x− x′

|x− x′|3
dv′
)
,

(5.5)

where M is the magnetisation of the volume, n̂ is the outward-facing unit

normal vector of the surface S, and x′ is a point on S or in V .

If each volume V is assumed to have constant uniform remanence mag-

netisation and constant permeability, ∇ ·M = 0 (Appendix Appendix 5.A)
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and the volume integral in Equation (5.5) disappears, leaving the simplified

charge model

B (x) =
µ0

4π

‹
S
σ
(
x′) x− x′

|x− x′|3
ds′, (5.6)

where σ = M · n̂ is the magnetic surface charge density.

Combining Equations (5.4) and (5.6) gives the equivalent magnetisation

M =
1

µ
Br +

µr − 1

µ

µ0

4π

‹
S
σ
(
x′) x− x′

|x− x′|3
ds′. (5.7)

To more easily analyse the system, a scalar equation may be employed using

the scalar surface charge density rather than the magnetisation vector field.

The equivalent surface charge density σ (x) can be found by calculating the

dot product of Equation (5.7) and the outward-facing unit normal vector n̂,

σ (x) =
1

µr
σr +

µr − 1

µ

µ0

4π

‹
S
σ
(
x′) x− x′

|x− x′|3
ds′ · n̂, (5.8)

where σr = Br/µ0 · n̂ is defined as the remanence surface charge density.

Solving σ using Equation (5.8) is difficult, because σ is present both inside

and outside of the integral. This problem suggests an iterative approach to

solving σ, such as in [2]. However, this issue can be avoided by applying a

surface mesh to S, as is shown in the following sections.

5.2.2 Surface mesh

By applying a surface mesh with N elements to S, each surface element can

be considered separately with its own surface charge density. When applied

to a surface S, Equation (5.2) implies that (Appendix Appendix 5.C)

‹
S
σ (x) ds = 0. (5.9)

After meshing the surface and assuming that σi is constant across each

surface, we obtain

σ1a1 + σ2a2 + · · ·+ σNaN = 0, (5.10)

where ai is the area of the ith surface element. If Equation (5.10) is false, the

net magnetic charge of the system is non-zero, leading to inconsistency with

Gauss’ law. Thus, Equation (5.10) will form a constraint on the solution of

the magnetic system.
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In addition, applying Equation (5.8) to the element i results in the

definition of the surface charge density of each element σi as

σi (xi) =
1

µr
σir +

µr − 1

µ

∑
j

µ0

4π

¨
Sj

σj
(
x′
j

) xi − x′
j∣∣∣xi − x′
j

∣∣∣3 ds′j · n̂i, (5.11)

where σir is the remanence surface charge density of element i, xi is a point

on element i, and Sj is the surface of element j.

If the surface mesh is chosen such that the surface charge density is

approximately constant over each element, then σj (xj) ≈ σj , which can then

be moved outside the integral,

σi ≈
1

µr
σir +

µr − 1

µ

∑
j

µ0

4π
σj

¨
Sj

xi − x′
j∣∣∣xi − x′
j

∣∣∣3 ds′j · n̂i . (5.12)

The accuracy of each σi calculation increases as the mesh density increases.

In addition, if a triangular surface mesh is used, any polyhedral geometry

can be analysed this way, and curved surfaces may be approximated by a

polyhedral surface with a large number of elements. This allows an accurate

analysis of any magnetic geometry.

To simplify Equation (5.12), B̂ij is defined as

B̂ij =
µ0

4π

¨
Sj

xi − x′
j∣∣∣xi − x′
j

∣∣∣3 ds′j · n̂i, (5.13)

which is equal to the normal magnetic flux density produced by element j

at the centre of element i due to a unit surface charge density. The integral

has been solved for triangular and trapezial elements by the current authors

in a previous publication [11], and can be dot multiplied with the outward-

facing normal vector to give B̂ij . Note that to most efficiently calculate

the force and torque in Section 5.4, it is best to calculate the integral and

store the result in B̂xij , B̂yij , and B̂zij , before calculating the dot product.

Substituting Equation (5.13) into Equation (5.12) leads to

σi ≈
1

µr
σir +

µr − 1

µ

∑
j

B̂ijσj . (5.14)

Equations (5.10) and (5.14) can be used to construct a matrix form of the

problem, allowing the solution of all surface charge densities simultaneously.
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5.2.3 Matrix equations

It can be seen that Equations (5.10) and (5.14) represent a set of linear

equations. Thus, we can write these equations as a set of matrix equations

to manipulate and solve more easily. To do this, a vector of surface charge

densities with length N is defined by

σ =


σ1

σ2
...

σN

 (5.15)

with a similar vector of element surface areas given by

a =
[
a1 a2 . . . aN

]
, (5.16)

Equation (5.10) simplifies to

aσ = 0. (5.17)

To reduce Equation (5.14) to a matrix equation, a matrix B̂ is defined by

B̂ =


B̂11 B̂12 . . . B̂1N

B̂21 B̂22 . . . B̂2N

...
...

. . .
...

B̂N1 B̂N2 . . . B̂NN

 ,

along with the remanence surface charge density vector,

σ0 =


σ1r

σ2r
...

σNr

 . (5.18)

Thus, equation (5.14) becomes the matrix equation

σ ≈ Kσ0 + JB̂σ, (5.19)

where

K =
1

µr
(5.20)

and

J =
µr − 1

µ
. (5.21)
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Assuming the matrix

C = I − JB̂ (5.22)

is invertible (Appendix Appendix 5.B), where I is the (N ×N) identity

matrix, Equation (5.19) can be rearranged to solve for all surface charge

densities,

σ ≈ C−1Kσ0. (5.23)

Here, we have obtained an (N ×N) approximate matrix equation for

the N surface charge densities in Equation (5.23), with the constraint in

Equation (5.17). This suggests using the method of constrained least squares,

where

|Cσ −Kσ0|2 (5.24)

is minimised, subject to the constraint aσ = 0. This is done using the

(N + 1)× (N + 1) matrix equation[
2CTC aT

a 0

][
σ

z

]
=

[
2CTKσ0

0

]
. (5.25)

Thus, an accurate approximation for the surface charge densities which satisfy

Gauss’ Law for Magnetism is given by the first N elements of the solution to[
σ

z

]
=

[
2CTC aT

a 0

]−1 [
2CTKσ0

0

]
. (5.26)

While it is possible to simply solve Equation (5.23) for the surface charge

densities without the inclusion of Gauss’ law, doing so often leads to a non-

zero net surface charge density for the system. This is inconsistent with Gauss’

law, and often leads to unbalanced forces and torques, violating Newton’s

third law. Since the inclusion of Gauss’ law adds insignificant computation

effort, it is beneficial to solve the constrained least squares problem given in

Equation (5.26) to ensure consistency with Maxwell’s equations and improve

accuracy of the final calculations.

5.2.4 Multi-magnet systems

In the previous sections, it is assumed that although the surface charge density

σi of every element can vary, each element shares the same permeability µ.

However, many magnetic systems consist of multiple magnetic objects, each

with differing permeabilities. In this case, a small extension can be made to

Equation (5.26), allowing the calculation of the surface charge densities of
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magnetic objects with differing permeabilities. If J and K are redefined as

the diagonal matrices

J =


µr1−1
µ1

0 · · · 0

0 µr2−1
µ2

· · · 0
...

...
. . .

...

0 0 · · · µrN−1
µN

 (5.27)

and

K =


1

µr1
0 · · · 0

0 1
µr2

· · · 0
...

...
. . .

...

0 0 · · · 1
µrN

 , (5.28)

where µn and µrn are the permeability and relative permeability of element

n respectively, the matrix C may be recalculated.

Once C is recalculated, Equation (5.26) may be solved, but we can impose

further constraints to yield a more accurate solution. Rather than applying

Gauss’ Law for Magnetism to the entire system, it can be applied to each

magnet individually, giving one constraint per magnet. Given a system with

M magnets, the area vector ma may be defined as

ma =
[
ma1 ma2 . . .

]
, (5.29)

where ma1 is the area of the first element of magnet m, ma2 is the area of the

second element of magnet m, and so on. These area vectors may be formed

into an M ×N block diagonal matrix A, given by

A =


ma 0 0 . . . 0

0 2a 0 . . . 0

0 0 3a . . . 0
...

...
...

. . .
...

0 0 0 . . . Ma

 , (5.30)

where each 0 is a zero-values row vector. Applying Gauss’ Law for Magnetism

to each magnet in the system gives the new constraint

Aσ = 0. (5.31)

This may be incorporated into the constrained least squares system, giving

the solution to the (M +N)× (M +N) linear system[
σ

z

]
=

[
CTC AT

A 0

]−1 [
CTKσ0

0

]
. (5.32)
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One considerable advantage of this methodology is that the surface

charges of several magnetic bodies may be solved simultaneously. Here, there

is no need to calculate the effect of magnet 2 on magnet 1, then magnet 3

on magnet 1, and so on. Rather, the information of all magnetic bodies is

encapsulated in the constrained least squares system, and the surface charge

densities of the entire system may be solved with a single matrix inversion.

5.2.5 External fields

Thus far in the derivation, only the fields generated by the magnetic bodies

themselves have been considered; fields generated by other sources such as an

electromagnetic coil or the Earth have not been incorporated. However, the

methodology can be adapted to include these effects. The normal component

of the external field Bext may be calculated at the centre of element n by

calculating the dot product of the field at that point and the outward-facing

unit normal vector, and is denoted by Bnorm,n. An (N × 1) vector can be

defined by concatenating these normal field components, giving the vector of

normal external fields,

Bext,norm =


Bnorm,1

Bnorm,2

...

Bnorm,N

 . (5.33)

This can be incorporated into the constrained least squares, giving the

solution [
σ

z

]
=

[
CTC AT

A 0

]−1 [
CT (Kσ0 + JBext,norm)

0

]
, (5.34)

with J , K, C, and A being defined by Equations (5.27), (5.28), (5.22), and

(5.30) respectively.

5.2.6 Summary

This section has outlined a methodology for calculating the surface charge

densities of magnetic surface elements assuming each element has a constant

permeability and constant uniform remanence magnetisation. A surface

mesh is applied to each magnetic body in a system, and a large matrix B̂

is defined. The (i, j) entry of B̂ is given by the normal component of the

magnetic flux density at the centre of element i due to element j, assuming

element j has unity charge density. In addition, a vector σ0 is defined as the
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initial surface charge densities of each element, diagonal matrices J and K

initialised containing permeability information, and a block diagonal matrix

A defined containing the area of each element. Finally, the surface charges

σ are solved using Equation (5.34). These surface charges are used in the

following sections to calculate magnetic fields (Section 5.3), as well as forces

and torques (Section 5.4).

5.3 Magnetic field calculation

Once the magnetic surface charges σ are known, the magnetic field can be

calculated using the magnetic charge model. The magnetic field B at the

point x, assuming constant permeability and remanence magnetisation, is

given by

B (x) =
µ0

4π

‹
S
σ
(
x′) x− x′

|x− x′|3
ds′. (5.35)

As above, the surface can be discretised and the surface charge term moved

outside the integral to give an approximate solution,

B (x) ≈
∑
i

µ0

4π
σi

¨
Si

x− x′
i

|x− x′
i|
3 ds′i . (5.36)

A 3×N matrix B is defined as

B̂ =
[
B̂1 B̂2 · · · B̂N

]
, (5.37)

where the columns are given by

B̂i (x) =
µ0

4π

¨
Si

x− x′
i

|x− x′
i|
3 ds′i. (5.38)

Here, B̂ is the magnetic flux density at the point x due to every surface

element having unity surface charge density. This can again be calculated

using previously published equations from the current authors [11]. Using

this matrix, the field at x is given by

B (x) ≈ B̂ (x)σ. (5.39)

If an external field is present, given by the 3× 1 vector Bext, this can simply

be added to the field produced by the system, giving

B (x) ≈ B̂ (x)σ +Bext (x) , (5.40)

where Bext (x) is the external magnetic field at the point x.
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5.4 Force and torque

In addition to the magnetic field, the force and torque on each magnet can be

approximated using the surface charge densities. According to the magnetic

charge model described by Furlani [5] (pp. 136,142), the force and torque on

a magnetic body are given respectively by

F =

˚
V
ρBext dv +

‹
S
σBext ds (5.41)

and

T =

˚
V
ρ (r×Bext) dv +

‹
S
σ (r×Bext) ds, (5.42)

where ρ and σ are the volume and surface charge densities of the magnetic

body respectively, Bext is the external magnetic field (including the field

generated by other magnetic bodies in the system), and r is the vector from

the point about which the torque is calculated.

Under the assumptions of constant uniform remanence magnetisation

and constant permeability, the volume integrals disappear, leaving only the

surface integrals. These equations can be applied to the surface mesh defined

earlier, giving equations for the approximate force and torque on magnet m.

To achieve this, the vector of surface charge densities σ is split into a

vector of charge densities of the surface elements of magnet m, mσ, and all

other surface charge densities, mσ. Similarly, the vector from the centre

of each element of magnet m to the point about which the torque is to be

calculated is defined as mr. Submatrices B̂∗
x, B̂

∗
y , and B̂∗

z are constructed

by taking the rows corresponding to elements belonging to magnet m and

the columns corresponding to elements not belonging to magnet m of the

matrices B̂x, B̂y, and B̂z respectively. mBext,x, mBext,y, and mBext,z are

defined as the magnetic field at the centre of each surface element of magnet

m produced by external sources such as coils. In the following equations,

the operator ⊙ is defined as the Hadamard (element-wise) product of two

vectors. If the total field on each element produced by all other magnets and

the external field is defined as

mBx = B̂∗
x mσ + mBext,x,

mBy = B̂∗
y mσ + mBext,y,

mBz = B̂∗
z mσ + mBext,z,
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the force and torque on magnet m can be approximated as

mFx ≈ (mσ ⊙ ma)T mBx, (5.43)

mFy ≈ (mσ ⊙ ma)T mBy, (5.44)

mFz ≈ (mσ ⊙ ma)T mBz, (5.45)

and

mTx ≈ (mσ ⊙ ma)T (mry ⊙ mBz − mrz ⊙ mBy) , (5.46)

mTy ≈ (mσ ⊙ ma)T (mrz ⊙ mBx − mrx ⊙ mBz) , (5.47)

mTz ≈ (mσ ⊙ ma)T (mrx ⊙ mBy − mry ⊙ mBx) . (5.48)

Although these force and torque equations appear complicated, they

consist of element-wise multiplication, vector addition, and matrix multipli-

cation. These are trivial for a personal computer to calculate, and as such

the equations may be implemented in code resulting in fast force and torque

calculations.

5.5 Verification

To verify this methodology, two magnetic configurations are considered. In

the first configuration, two cube magnets are arranged in repulsion, with

one vertically above the other. The force between them is calculated as they

move apart. The second configuration is similar, but the magnets do not

move apart. Instead, one magnet is rotated while the force and torque on

it are calculated. In addition, the magnetic field is calculated across the

plane between the centres of the magnets. In this section, finite element

simulations are used to verify both magnetic configurations with varying

magnetic permeability.

5.5.1 Magnets in repulsion

This section will analyse the magnetic system depicted in Figure 5.2 using

various magnetic materials of varying permeabilities, with finite element

simulations performed to verify the results obtained. In addition, the accuracy

of approximating µr = 1 will be examined.

Consider the cube permanent magnets in Figure 5.2. These magnets have

a side length of l units, are separated by a distance d, and are modelled with

a relative permeability greater than unity, µr > 1. Specifically, these magnets
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Br,top

Br,bot

l

d

l

l

Figure 5.2: Two cube magnets with side length l arranged in repulsion.

The magnets are separated by a distance d and the force between them is

calculated for varying separation distance d.

are first modelled as neodymium magnets (µr = 1.05), before being modelled

as hard ferritic magnets (µr = 1.2), and finally as alnico magnets (µr = 3).

Due to their relative permeabilities being greater than unity, each magnet

slightly demagnetises itself. In addition, the magnets are in repulsion, so each

magnet slightly demagnetises the other. This leads to a weaker repulsion

force than expected.

To verify the work presented in this paper, the force between these

magnets was calculated at a range of separation distances d in MATLAB

R2020b (MathWorks, Inc., Natick, MA, USA) code and a finite element

simulation using the Maxwell package in ANSYS Electronics Desktop 2018.0

(ANSYS, Inc., Berkeley, CA, USA)1. In addition, the force associated with a

relative permeability of unity was calculated using the equations presented

by Akoun and Yonnet [1] to assess the modelling accuracy of assuming unity

relative permeability. The methodology presented in this paper was applied

to a surface mesh with approximately 6,000 triangular elements. In contrast,

25 passes of automatic mesh refinement were performed in ANSYS Maxwell,

resulting in approximately 58,000 tetrahedral elements with quadratic shape

functions, with approximately 4,500 elements per magnet and 49,000 in the

air gap between and around the magnets. An image of the mesh is shown in

1When implementing the cubes in MATLAB and ANSYS Maxwell, a side length of

10mm was used. However, it should be noted that the methodology outlined in this chapter

is dimensionless and any side length may be used with equivalent results.
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Figure 5.3: The mesh generated by ANSYS Maxwell after 25 passes of

automatic mesh refinement for the magnetic configuration shown in Figure 5.2.

This mesh uses approximately 58,000 tetrahedral elements with quadratic

shape functions, with approximately 4,500 elements per magnet and 49,000

elements in the region between and around the magnets.

Figure 5.3, with the percentage energy error and number of mesh elements for

d = 0.5 at each pass shown in Figure 5.4. The forces are nondimensionalised

by the permeability of a vacuum µ0, the characteristic length l, and the

remanence magnetisations Br,top and Br,bot,

F̂ =
µ0

l2Br,topBr,bot
F , (5.49)

and are displayed in Figure 5.5. As can be seen, the finite element results

converge and are in strong agreement with the results from this work. This

indicates accurate results can be obtained from the methodology presented

here.

In this simple repulsion configuration, it can be seen in Figure 5.5 that

modelling neodymium magnets with µr = 1 overestimates the force by at

least 4%. While this is a nontrivial error, it is often accurate enough for

preliminary designs. However, more permeable magnetic materials may give

considerably larger errors. For this configuration, modelling hard ferritic

162



Modelling permeable magnets

0 5 10 15 20 25

0.1%

1%

10%

100%

1000%

10
1

10
2

10
3

10
4

10
5

Figure 5.4: Percentage energy error and number of tetrahedral elements

in the ANSYS Maxwell simulation for d = 0.5 as the number of passes of

automatic mesh generation is increased.

magnets and alnico magnets with µr = 1 overestimates the force by at least

17% and 170% respectively. Thus, consideration of relative permeability in

magnetostatic analysis is of high importance in electromagnetic design.

5.5.2 Rotated magnets

To verify the calculation of torque, a similar example is presented. Two

cuboidal magnets, shown in Figure 5.6, are positioned with a distance of 3l/2

between their centres. Initially, both magnets are parallel and magnetised

along the positive vertical direction. The bottom magnet is rotated about

its centre, and the force and torque on the magnet evaluated as it is rotated.

The forces are nondimensionalised using Equation (5.49) and the torques

nondimensionalised by

T̂ =
µ0

l3Br,topBr,bot
T . (5.50)

In addition, finite element simulations were conducted to examine error in the

solutions found using this methodology. After 25 passes, the finite element

mesh was similar to that obtained in Section 5.5.1, using approximately

58,000 tetrahedral elements, with approximately 4,500 elements per magnet

and 49,000 elements in the region between and around the magnets. The

percentage energy error and number of tetrahedral elements for θ = 60° at
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Figure 5.5: Nondimensionalised force between the two magnets in Figure

5.2 for µr = 1 (calculated using [1]), µr = 1.05, µr = 1.2, and µr = 3. The

forces calculated using the methodology presented in this paper are denoted

with lines, with finite element simulations represented with large dots. The

methodology presented above is in strong agreement with the finite element

simulations, indicating correct force results.
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Br,top

Br,bot

l

l
l

3l
2

θ

Figure 5.6: Two cube magnets with a side length of l maintaining a

constant distance of 3l/2 between their centres. The force and torque on the

bottom magnet is calculated as it is rotated an angle θ about its centre.

each pass is shown in Figure 5.7, indicating convergence in the simulations.

The torque results are plotted in Figure 5.8, with the force results in Figures

5.9 and 5.10. Figures 5.8, 5.9, and 5.10 show that the results obtained

match closely with the finite element data. A small error between the

estimated and FEA force results can be seen, with a larger error between

the estimated and FEA torque results. To determine the source of this

error, a special case of this configuration was used by setting θ = 90° and
µr = 1. Since the magnets have parallel faces and a relative permeability of

unity in this particular case, equations published by Akoun and Yonnet [1]

and Janssen et al. [7] can be used to calculate the exact force and torque

respectively. The exact force in the horizontal direction and torque about

the axis of rotation were calculated and compared to the results obtained

using the methodology in this paper and finite element results, and are

shown in Table 5.1. It can be seen that for both force and torque, the results

obtained using this methodology are considerably more accurate than the

finite element results, with a percentage error almost ten times smaller. It

appears that the finite element results are underestimating the force and

torque, which may explain the discrepancy in Figures 5.8, 5.9, and 5.10.

Interestingly, Figures 5.8, 5.9, and 5.10 show asymmetry when µr ̸= 1.

This is particularly visible in Figure 5.8 when µr = 3 between θ = 60° and
θ = 120°, but this asymmetry occurs in all three plots and becomes more

apparent as µr is increased. This asymmetry is a result of the magnets
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Figure 5.7: Percentage energy error and number of tetrahedral elements

in the ANSYS Maxwell simulation for θ = 60° as the number of passes of

automatic mesh generation is increased.
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Figure 5.8: Nondimensional torque on the bottom magnet about the axis

of rotation of the magnet as it rotates for varying relative permeabilities

µr. Finite element results are depicted with large dots, indicating some

agreement with the results using the above methodology, with the FEA

results being approximately 2% smaller in magnitude for low permeabilities.
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Figure 5.9: Nondimensional horizontal force FH on the bottom magnet as

it rotates for varying relative permeabilities µr. Finite element results are

depicted using large dots, indicating strong agreement with the results using

the above methodology.
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Figure 5.10: Nondimensional vertical force FV on the bottom magnet as

it rotates for varying relative permeabilities µr. Finite element results are

depicted using large dots, indicating strong agreement with the results using

the above methodology.
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Method F̂H Error T̂ Error

Exact [4], [8] −0.04127 — −0.04200 —

This work −0.04126 0.02% −0.04201 0.24%

FEA −0.04120 0.17% −0.04107 2.20%

Table 5.1: Nondimensional horizontal force F̂H and torque about the axis

out of the page T̂ on the bottom magnet in Figure 5.6 at an angle of 90° with
both magnets having a relative permeability of µr = 1. The work presented

here uses approximately 6,000 triangular surface elements, whereas the finite

element simulations use approximately 58,000 tetrahedral volume elements.

The work presented here has a considerably smaller percentage error than

the finite element results when compared to the exact analytic results [1, 7],

indicating high accuracy of the work presented in this paper.

producing fields which either strengthen or weaken the magnetisation of

the other. When θ < 90°, the vertical component of the net field produced

by the bottom magnet on the surface of the top magnet is in the same

direction as Br,top, thus strengthening the magnetisation of the top magnet.

In the same way, the top magnet produces a field which strengthens the

magnetisation of the bottom magnet. However, when θ > 90°, the opposite

is true: Each magnet produces a field which weakens the magnetisation of

the other magnet. Thus, each magnet strengthens the magnetisation of the

other for θ < 90° and weakens the magnetisation of the other for θ > 90°,
resulting in an asymmetry across θ = 90°, with a smaller magnitude of force

and torque on the right side of each plot and a larger magnitude on the left.

In addition to verifying the force and torque, the magnetic field calculation

is verified using the magnetic configuration in Figure 5.6 with θ = 90° and
µr = 3 (as seen in Figure 5.11). The magnetic field strength was calculated

on the plane between the two magnets using the methodology in Section 5.3

and nondimensionalised by the remanence magnetisation Br. In addition,

finite element simulations were conducted on the same system using ANSYS

Maxwell. The magnetic field strength computed using Section 5.3 is plotted

in Figure 5.12, along with the magnetic field strength generated by finite

element simulations. The error is negligible, with a maximum error of 0.3% of

the remanence magnetisation, indicating the methodology used is calculating

magnetic fields accurately.
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Figure 5.11: The surface charge densities of the magnets in Figure 5.6

when θ = 90° and µr = 3. Due to the relatively large permeability, the top

surface of the bottom magnet has considerably more positive surface charges

accumulating than negative charges.
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Figure 5.12: The magnetic field strength |B| normalised by Br on the plane

between the two magnets in Figure 5.6 when θ = 90°. The projections of

the magnets onto the plane are displayed using white dashed lines. The field

was calculated using the methodology in this paper (top) and finite element

simulations (middle), with the absolute error between the two calculated

(bottom). This shows strong agreement, with a maximum error of 0.3% of

the remanence magnetisation.
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5.6 Computational performance

In contrast to other methods, this methodology has been designed in such

a way that the magnetic field B needs to be calculated only once, but

requires the inversion of a potentially large non-sparse matrix (performed

using the backslash operator or mldivide function in MATLAB). As such,

it is considerably faster than the iterative methods often seen in literature,

but requires more computational memory. In addition, this method uses an

analytical equation [11] to calculate the magnetic field, making it faster than

finite element methods to obtain an accurate solution.

5.6.1 Computational speed

To assess computation speed, a simple magnetic system was defined using

two cube magnets in repulsion, separated by one magnet width, equivalent

to Figure 5.2 with d = l. To assess accuracy, the relative permeability of the

magnets was set to unity, µr = 1, which allows the use of exact analytic force

equations published by Akoun and Yonnet [1]. The force was calculated using

both the methodology defined in this paper, finite element simulations, and

the exact force equations using MATLAB R2020a on a personal computer

with an Intel Xeon E3-1240 v5 at 3.50GHz with 16GB of memory. The

force calculations using finite element simulations and the methodology in

this paper were repeated with varying mesh densities and timed to give

an indication of computation speed. Both methods were compared to the

exact analytic force equations [1] to give a measure of error, with both

methods showing approximately the same rate of error convergence, but

with the methodology in this paper giving results approximately an order of

magnitude faster for the same accuracy. The percentage error between the

estimated force using the method in this paper and exact force was computed

and is displayed in Figure 5.13.

As expected, the percentage error decreases as calculation time increases.

For this particular magnetic configuration and computation hardware, finite

element simulations generally took more than 5s to achieve an error within

1%. In contrast, the methodology in this paper took less than 100ms to

attain less than 1% error and less than 5s to attain less than 0.1% error.

This will vary depending on magnetic configuration, code implementation,

and computation hardware, but gives an indication of the expected order of

magnitude of calculation time to achieve a desired accuracy.
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Figure 5.13: Percentage error in the calculation of vertical force FV between

the magnets shown in Figure 5.2 with d = l and µr = 1 as mesh density, and

thus calculation time, is increased. The number of surface mesh elements N

is also plotted, showing an inverse trend when compared to the percentage

error.

5.6.2 Memory requirements

This methodology requires more computational memory than other methods

found in literature. Iterative methods, for example, require enough memory to

keep track of the surface charge densities, but must recalculate the magnetic

field information at each step. This can be done using a single N × 1 vector.

In contrast, this method requires storing several large N × N matrices of

floating point numbers, as well as enough memory to invert a large (N +M)×
(N +M) matrix. This is a significantly larger memory requirement than

iterative methods, but results in a considerably faster solution. During

testing by the authors, a high precision calculation may use more than one

gigabyte of memory, with equivalent finite element simulations requiring

tens of gigabytes of memory. While considerable memory requirements are

necessary for the method outlined in this paper, mesh optimisation was not

considered. As such, testing was done using a basic mesh, with all elements

being similar in size. If a more appropriate mesh is chosen, with finer mesh

in areas with large magnetic field gradient, a high precision calculation can

be done using less memory.
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5.6.3 Meshing considerations

In this paper, a surface mesh has been used under the assumption that the

magnetic permeability and remanence magnetisation vector are constant and

uniform. If these assumptions are not valid, a volume mesh may be used

and a similar methodology applied, where the magnetisation vector of each

volume element is computed rather than the scalar surface charge density.

However, the use of a volume mesh rather than surface mesh comes with a

more considerable computation cost. Solving for the magnetisation vector

field requires solving a large linear equation for each of the three Cartesian

directions, while the scalar surface charge density solution only requires a

single linear equation. In addition, calculation of the field produced by each

element would require either using an inaccurate point dipole model, or

calculating the field contribution from each of the surfaces of the element [10,

11]. The use of the point dipole model considerably decreases accuracy for

nearby elements, and the more complicated method considerably increases

calculation time. These factors lead to a significantly larger computation

cost when applying a volume mesh and solving the magnetisation vector field.

Thus, for systems with constant and uniform permeability and remanence

magnetisation, a surface charge density approach is preferred.

The methodology in this work uses a triangular surface mesh generated by

finding the minimum convex hull of a set of vertices using the Geom3D library

in the MatGeom package in MATLAB [9]. Subdivision of the surface mesh is

performed by dividing each triangular element into four congruent triangles

until a desired number of surface elements was achieved. A triangular

surface mesh has been chosen since analytic field equations are available for

these elements [10, 11]. These equations may be used to solve for the field

produced by a triangle with constant surface charge density, and are highly

efficient, especially when many field calculations are performed. In addition,

a triangular surface mesh can represent any polyhedral surface and can be

used to approximate curved surfaces, enabling the approximate solution of

any magnetic configuration. The meshing algorithm itself is out of the scope

of this work, since it is focused only on calculating the charge densities on

each surface element and the resulting fields, forces, and torques. However,

alternative meshing algorithms may be applied, and future analysis could be

done on optimising the meshing process for this methodology.
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5.7 Conclusion

This paper has outlined a new algorithm for modelling magnetic materials

with nonunity relative permeability. Assuming constant uniform magnetisa-

tion and constant permeability, the algorithm uses a one-step matrix inversion

to solve for the surface charge density, magnetic field, force, and torque. In

contrast to other methods available in literature, this method calculates

magnetic field information only once, leading to a considerable increase

in calculation speed. In addition, using a triangular surface mesh gives

this methodology high versatility, allowing the modelling of any polyhedral

magnet, and approximate modelling of any general magnet geometry.

The algorithm was verified against literature and finite element simula-

tions using several magnetic configurations. A simple magnetic configuration

was defined with two cube magnets in repulsion with varying permeabilities,

with the force between the magnets calculated. The force results showed

strong agreement with finite element simulations. In addition, it was shown

that the permeability has a significant effect on the force between the mag-

nets, and as such, care must be taken when assuming a relative permeability

of unity. A similar magnetic configuration was used to verify the torque,

where the magnets maintain a constant distance between their centres, but

one magnet is rotated. The torque results were in agreement with finite

element simulations, and it was again shown that permeability greatly affects

torque. Furthermore, the magnetic field was calculated on the plane between

the magnet centres with θ = 90°. Finite element simulations showed strong

agreement, with a negligible error.

This methodology has allowed fast and accurate results for any magnet

geometry and configuration. This can be used for fast optimisation of

electromagnetic designs, giving more accurate results than analytic methods

which assume unity relative permeability, and faster results than finite

element simulations.

Appendix 5.A Volume charge density

Consider a magnetic material with constant permeability µr and constant

uniform remanence magnetisation Br. According to Equation (5.4), this

material will satisfy the equation

M =
µr − 1

µ
B+

1

µ
Br. (5.51)
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To calculate the volume charge density ∇ ·M, take the divergence of both

sides, giving

∇ ·M = ∇ ·
(
µr − 1

µ
B

)
+∇ ·

(
1

µ
Br

)
. (5.52)

However, under the assumption of constant permeability, the permeability

terms can be taken out of the divergence,

∇ ·M =
µr − 1

µ
∇ ·B+

1

µ
∇ ·Br. (5.53)

Maxwell’s equations state that the B field is solenoidal, ∇ · B = 0. In

addition, the assumption of constant uniform remanence magnetisation leads

to ∇ ·Br = 0. Consequently, the right side of Equation (5.53) becomes zero,

and therefore

∇ ·M = 0. (5.54)

Thus, a material with constant uniform remanence magnetisation and con-

stant permeability has no volume charge density and the volume integral for

the charge method may be neglected.

Appendix 5.B Matrix invertibility

Consider the system defined by the matrix equation

Cσ = Kσ0, (5.55)

where C is an N ×N square matrix and σ and σ0 are N × 1 vectors of final

and initial surface charge densities respectively. This section will show that

the matrix C is invertible using contradiction.

Suppose C has at least one eigenvalue equal to zero, λ = 0. This implies

that there exists a non-zero eigenvector σ of C such that

Cσ = λσ = 0σ = 0. (5.56)

Substituting this into Equation (5.55) leads to

Kσ0 = 0. (5.57)

Since µr is a finite positive value for the magnetic materials considered in

this work, K ̸= 0, and thus,

σ0 = 0. (5.58)

We know that σ ̸= 0 by the definition of an eigenvector. Thus, this implies

that there exists a system with zero initial magnetic charge density, σ0 = 0,
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which becomes spontaneously magnetised, such that σ ̸= 0, with no external

field. This is clearly absurd, and the assumption of any eigenvalues being

equal to zero fails. Thus, all eigenvalues of C must be nonzero and therefore

C must be invertible.

While C is invertible, it may have an undesirable condition number,

leading to errors when inverting. However, this method uses constrained

least squares, and C is never directly inverted; it is simply shown here to be

invertible to imply a solution for σ exists.

Appendix 5.C Surface charge density over a

magnet

Taking the divergence of Equation (5.4) inside the volume V of a magnetic

body gives

∇ ·M = ∇ ·
(
µr − 1

µ
B

)
+∇ ·

(
1

µ
Br

)
. (5.59)

Assuming the permeability µ is constant (and thus µr is also constant), the

permeability terms may be taken out of the divergence operators,

∇ ·M =
µr − 1

µ
∇ ·B+

1

µ
∇ ·Br. (5.60)

However, we know that B is divergence-free from Maxwell’s equations. In ad-

dition, we are assuming that the remanence magnetisation inside the volume

V is constant and uniform, implying it is also divergence-free. Therefore,

inside the volume of a magnet, ∇ ·B = 0 and ∇ ·Br = 0, and

∇ ·M = 0. (5.61)

We can then take the volume integral of this expression inside the volume V ,

giving ˚
V
∇ ·M dv = 0. (5.62)

Finally, since M is assumed to be well-behaved inside the magnet, we can

apply the divergence theorem to the integral, giving‹
S
M · n̂ ds = 0. (5.63)

Since the surface charge density is given by σ = M · n̂, we finally obtain‹
S
σ ds = 0. (5.64)
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Author’s remarks on Chapter 5

This chapter presents the final article submitted in this thesis, and successfully

modelled permanent magnets with non-unity relative permeability using a

semi-analytic approach. While this method is fast and highly accurate, it does

require the assumption of constant permeability, and is unable to accurately

model non-linear magnetic materials. However, permanent magnets are

generally highly linear in their operating regions, and as such this method

models them accurately. While the approaches seen in Chapters 2 and 3

are considerably faster to evaluate than this method, they cannot model

non-unity relative permeability and will see several percentage points of error

when modelling real permanent magnets. This method is slower, but far

more accurate, and when combined with the field equations from Chapter 3,

can accurately model any permanent magnet of any shape.
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Thesis summary

Geometry-based analytic modelling of the magnetostatic fields began in the

late twentieth century, and despite decades of research, limitations in current

models are present to this day. This thesis attempts to address some of

these limitations, with a particular focus on the geometry and permeability

of a permanent magnet. Throughout this project, several milestones were

achieved, but there is still more scope for future projects on the modelling of

permanent magnets. This chapter concludes this thesis by summarising the

work completed to date and outlining potential future work following this

research.

6.1 Primary research outcomes

The overarching outcome of this thesis is the development of accurate and fast

methodologies for the modelling of permanent magnets, and is summarised

in this section.

6.1.1 Magnetic field equations for ideal polyhedral

magnets

The first major outcome of this project was the development of the magnetic

field equations seen in Chapters 2 and 3. These equations describe the

magnetic field produced by any permanent magnet with polyhedral geometry,

constant magnetisation, and a relative permeability of unity. These equations

are derived with emphasis on computational efficiency, with each methodol-

ogy having its own advantages and disadvantages. The first methodology
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(Chapter 2) is most effective when the field is to be calculated at few points

in space, such as when computing the electromagnetic force on a moving

charged particle. In contrast, the second methodology (Chapter 3) is most

effective when calculating the field at many points, such as when finding

the magnetostatic force between several permanent magnets. The equations

present in both methodologies are readily programmable in any language on

a personal computer. They consist only of logarithmic, trigonometric, and

square root terms, and are thus highly computationally efficient, with no

special functions or numeric integrals required to evaluate the magnetic field.

Due to their fast computation speed, these equations may be used for

parametric optimisation studies where geometry or topology is varied. This

can be used on large arrays of magnets while varying the geometry of each

magnet to achieve a desired field pattern, such as that shown in Chapter 4.

In addition, the computation speed of the field equations allows multiple pa-

rameters to be simultaneously varied, such as geometry, magnet arrangement,

and magnetisation state.

Furthermore, this methodology may be applied to any magnet composed

of flat faces. A magnet with curved faces may be approximated with a

polyhedral geometry, and this methodology applied, giving a highly accurate

solution to the field produced by any permanent magnet geometry.

6.1.2 Modelling magnetic permeability in polyhedral

permanent magnets

While it was shown in Chapters 2 and 3 that the magnetic field produced

by a polyhedral magnet may be quickly evaluated, these methodologies do

not consider non-unity relative permeability. Permanent magnets generally

have relative permeabilities close to unity, but are usually between 1.05 and

1.15, leading to a modelling error when evaluating these fields, especially

in the presence of other field sources. The second major outcome of this

thesis was the development of a methodology to model magnetic materials

with non-unity but constant relative permeability, described in Chapter 5.

Again, this methodology was developed with emphasis on computational

efficiency, and attempts to circumvent the drawbacks associated with the

methodologies found in literature. While most methods currently available

are based on an iterative approach, requiring recalculating the magnetic

field several times, this new method involves only a single field evaluation

combined with a matrix inversion to solve the system in a single step. This
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method, in conjunction with the field calculation methodology from Chapter

3, creates a highly effective and fast solution for the magnetic field produced

by permeable polyhedral permanent magnets.

This methodology is based on the field calculation technique detailed in

Chapter 3, and thus may be applied to any magnet geometry. If magnets

in a system have non-polyhedral geometry, they may be approximated

with a polyhedral shape, allowing fast and accurate estimation of the fields

produced by any permanent magnet geometry with constant non-unity

relative permeability.

6.1.3 Forces and torques between permeable polyhedral

magnets

Although the magnetic fields produced by polyhedral magnets are of in-

terest, one of the most prominent applications of permanent magnets is

in electromechanical actuators, where knowledge of the forces and torques

is crucial. Thus, the final outcome of this thesis is the development of an

accurate force and torque evaluation methodology for polyhedral magnets.

This methodology may be applied to any polyhedral magnet geometry with

constant non-unity permeability, as described in Chapter 5, giving fast and

highly accurate solutions for these parameters. In addition, non-polyhedral

geometries may be approximated, allowing the use of this methodology. This

outcome was shown to be significantly faster and more accurate than the

industry standard finite element analysis in Chapter 5 with the assumptions

of constant remanence magnetisation and permeability. This methodology

may also be applied in a system with other magnetic field sources, as shown

in Section 5.2.5, enabling fast and accurate computations of the fields, forces,

and torques of any system composed of permanent magnets and external

field sources.

6.2 Future work

Though this thesis has outlined methodologies to model permanent magnets

of arbitrary geometry and non-unity constant relative permeability, there

are still several open questions in this area. This section will outline current

gaps in knowledge manifested as potential future work following this thesis.
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6.2.1 Analytic force and torque

While the magnetic field equations were found analytically in this thesis by

solving a double integral across triangular and trapezial surfaces, the forces

and torques were evaluated numerically. In general, the forces and torques

may be described by the magnetic charge model, which requires a further

double or triple integral of the magnetic field expressions over a polygonal

surface or polyhedral volume. Due to the rotation matrices involved, and

the highly complicated expressions, these force and torque integrals are

extremely difficult to solve analytically. Further work in this area would

suggest attempting to find a solution to these integrals based on the field

equations presented in this thesis. This would likely be performed again using

triangular or trapezial surfaces, but due to the general rotations involved

with these systems, these integrals may not have a solution. In this case,

the suggested future work would consist of finding accurate approximations

to the field distribution functions which are analytically integrable. This

may consist of Taylor series representations, Fourier series approximations,

or other field estimations. Since magnetic fields are generally well-behaved,

with the B-field being divergence-free, an accurate estimation in terms of

integrable functions is likely attainable. Upon solving these approximate

integrals, a set of force and torque equations may be produced, which would

be extremely quick to evaluate and highly accurate. However, due to the

nature of permeability, it is likely these equations would only be valid for

magnetic materials with a relative permeability of unity.

6.2.2 Non-linear permeability

In Chapter 5, a framework was defined in which the magnetic fields, forces,

and torques may be evaluated quickly and accurately. However, this assumes

a constant permeability in each magnetic material. Future work in this area

would be based on deriving similar methodologies but generalising further to

include non-linear permeability.

This methodology would likely require a volume mesh rather than a

surface mesh, since under non-linear permeability, the assumption that

∇ ·M = 0 is not generally true. If a fine enough volume mesh is applied to

a magnetic specimen such that the magnetisation vector field across each

volume element is approximately constant, then ∇ · M ≈ 0 inside each

element. Thus, the volume integral of the magnetic charge model may be

neglected, and only the integrals across the surfaces of each volume element
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remain. The field equations from Chapters 2 or 3 could be used to calculate

the field from each volume element on each other element, and the total

field at each evaluated. Based on the field, the magnetisation vector of each

element may be estimated based on the BH curve of the material. This

process may be repeated until the magnetisation vectors converge, allowing

the computation of the fields, forces, and torques.

While this methodology is not iteration-free, it allows evaluation of the

magnetic fields due to non-linear permeability. In addition, the forces and

torques may be easily calculated once the magnetisation vectors converge,

similar to the methods found in Chapter 5.

6.2.3 Magnetic geometry and topology optimisation

framework

As seen in Chapter 4, the speed of field calculations presented in this thesis

allows fast parametric optimisation studies. This may be extended to include

the effect of permeability, since magnets in an array often have a strong

demagnetising effect on one another. Future work could involve developing

a generalised framework for optimisation of magnetic systems, allowing

variation of magnet geometry, magnetisation strength, and magnetisation

direction. For example, to reduce force ripple in an iron-less electric motor, a

particular field pattern based on the coil geometry is desired. An optimisation

framework based on the methods found in this thesis could be defined, with

magnet sizes and magnetisation strengths varied until a desired field pattern

is achieved. Due to the emphasis on computational efficiency of the methods

presented in this thesis, optimisation routines could be completed quickly,

even under the effects of permeability, allowing fast optimisation of many

magnetic systems.

6.3 Concluding remarks

This thesis has presented a set of algorithms that allow evaluation of magnetic

fields, forces, and torques due to general permeable polyhedral permanent

magnets with emphasis placed on computation speed. This emphasis permits

fast optimisation of magnetic systems, allowing variations in magnet geometry,

topology, and magnetisation. These methodologies represent a considerable

contribution to the field of computational magnetostatics and magnetic

modelling, with a focus on generalising and relaxing the strong geometry
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and permeability constraints currently found in literature. The author hopes

that this inspires further research into generalised magnetic modelling and

assists designers in further optimising their electromagnetic designs, leading

to a future which is as attractive as a magnet on iron.
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Derivation of the magnetic

charge model

To prove the magnetic charge model, two main steps are performed. First,

Helmholtz decomposition is proven for the magnetisation vector field M.

Once this is done, the magnetic constitutive relation, B = µ0 (H+M), is

used to find expressions for the magnetic flux density B and the magnetic

field intensity H.

Helmholtz decomposition

We begin with a volume V ′ of magnetic material bounded by a surface

S′. The magnetisation vector field M (x) is finite-valued inside V ′ and can

therefore be written as a volume integral over the volume,

M (x) =

˚
V ′

M
(
x′) δ3 (x− x′) d3v′, (A.1)

where δ3 (x− x′) is the three-dimensional delta function. Usually, we con-

strain x to be inside V ′, that is, x ∈ V ′, since the integral is zero-valued if

x /∈ V ′. However, the magnetisation vector field M (x) is also zero-valued

everywhere outside the volume V ′. Thus, Equation (A.1) is valid for all

x ∈ R3.

It is also known that the delta function δ3 is given by the Laplacian of a

Green’s function,

δ3
(
x− x′) = ∇2G

(
x,x′) = ∇′2G

(
x,x′) , (A.2)
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where

G
(
x,x′) = − 1

4π |x− x′|
(A.3)

and ∇′ is the Laplacian with respect to the primed coordinates x′.

Equation (A.2) can be applied to the integral in Equation (A.1), giving

M (x) =

˚
V ′

M′ ∇2G d3v′, (A.4)

where M′ = M (x′) and the arguments of the Green’s function have been

omitted for brevity.

Assuming M is twice continuously differentiable inside the volume V ′,

the identity

∇2
(
GM′) = M′ ∇2G+ 2 (∇G · ∇)M′ +G∇2M′ (A.5)

is true. However, since M′ varies only with the primed coordinates, the

Jacobian and Laplacian terms in Equation (A.5) become zero, leaving

∇2
(
GM′) = M′ ∇2G. (A.6)

Therefore,

M (x) =

˚
V ′

∇2
(
M′G

)
d3v′. (A.7)

The integrand is vector-valued, and the vector Laplacian identity

∇2A = ∇ (∇ ·A)−∇× (∇×A) (A.8)

can be applied, giving

M (x) =

˚
V ′
∇
(
∇ ·
(
M′G

))
d3v′

−
˚

V ′
∇×

(
∇×

(
M′G

))
d3v′. (A.9)

Here, the gradient and curl operate on the unprimed coordinates, so can be

moved inside the integrals, giving

M (x) = ∇
˚

V ′
∇ ·
(
M′G

)
d3v′

−∇×
˚

V ′
∇×

(
M′G

)
d3v′. (A.10)

The first integrand can be expanded using the vector calculus product rule,

∇ ·
(
M′G

)
= G ∇ ·M′ +M′ · ∇G. (A.11)
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However, M′ is constant with respect to the unprimed coordinates, and as

such ∇ ·M′ = 0, and

∇ ·
(
M′G

)
= M′ · ∇G. (A.12)

A similar identity can be used on the second integrand, giving

∇×
(
M′G

)
= M′ ×∇G. (A.13)

Therefore,

M (x) = ∇
˚

V ′
M′ · ∇G d3v′

−∇×
˚

V ′
M′ ×∇G d3v′. (A.14)

For the Green’s function defined in Equation (A.3), the gradient coordi-

nate system can be modified from the unprimed coordinates to the primed

coordinates using the identity ∇G = −∇′G, leading to

M (x) = −∇
˚

V ′
M′ · ∇′G d3v′

+∇×
˚

V ′
M′ ×∇′G d3v′. (A.15)

By rearranging the vector product rule on the divergence of GM′ with respect

to the primed coordinates, we obtain

M′ · ∇′G = ∇′ ·
(
GM′)−G∇′ ·M′. (A.16)

By applying a similar identity to the curl of GM′, we obtain

M′ ×∇′G = −∇′ ×
(
GM′)+G ∇′ ×M′. (A.17)

Substituting these identities into the expression for M (x) gives

M (x) = −∇
(
−
˚

V ′
G ∇′ ·M′ d3v′ +

˚
V ′

∇′ ·
(
GM′) d3v′)

−∇×
(˚

V ′
G ∇′ ×M′d3v′ −

˚
V ′

∇′ ×
(
GM′) d3v′) . (A.18)

The divergence theorem states that for a well-behaved vector field F in a

volume V ′ bounded by a surface S′ with outward-facing unit normal vector

n̂′, ˚
V ′

∇′ · F d3v′ =

‹
S′
F · n̂′ d2s′. (A.19)
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In addition, a corollary of the divergence theorem states

˚
V ′

∇′ × F d3v′ = −
‹

S′
F× n̂′ d2s′. (A.20)

These can be applied to the second and fourth integral in Equation (A.18),

giving

M (x) = −∇
(
−
˚

V ′
G ∇′ ·M′ d3v′ +

‹
S′
GM′ · n̂′ d2s′

)
−∇×

(˚
V ′

G ∇′ ×M′d3v′ +

‹
S′
GM′ × n̂′ d2s′

)
, (A.21)

with G defined as in Equation (A.3).

At this point, the magnetisation vector field is given by the gradient of

some integral added to the curl of another integral. We can define a scalar

potential φ and vector potential A to simplify the expression for M (x), with

φ (x) =
1

4π

˚
V ′

∇′ ·M′

|x− x′|
d3v′ − 1

4π

‹
S′

M′ · n̂′

|x− x′|
d2s′, and (A.22)

A (x) =
1

4π

˚
V ′

∇′ ×M′

|x− x′|
d3v′ +

1

4π

‹
S′

M′ × n̂′

|x− x′|
d2s′, (A.23)

giving

M (x) = −∇φ (x) +∇×A (x) . (A.24)

Now we can apply the magnetostatic Maxwell’s equations to the mag-

netisation vector field. Starting with

B = µ0 (H+M) =⇒ M =
1

µ0
B−H. (A.25)

Therefore,
1

µ0
B−H = −∇φ+∇×A. (A.26)

Solving for the magnetic flux density and

magnetic field intensity

Equation (A.26) implies that some part of the B-field and some part of the

H-field sum to give −∇φ, with the remaining B and H summing to give

∇×A. This can be written using

−∇φ = p
1

µ0
B− qH, and (A.27)
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∇×A = (1− p)
1

µ0
B− (1− q)H. (A.28)

Taking the curl of Equation (A.27) gives

∇× (−∇φ) = p
1

µ0
∇×B− q∇×H. (A.29)

However, we are assuming that ∇ × H = 0. Furthermore, the curl of a

gradient is zero, so ∇× (−∇φ) = 0. Thus,

p∇×B = 0. (A.30)

In general, the curl of B is nonzero, implying that p = 0. Equation (A.28)

then simplifies to

∇×A =
1

µ0
B− (1− q)H. (A.31)

Taking the divergence of this equation gives

∇ · (∇×A) =
1

µ0
∇ ·B− (1− q)∇ ·H. (A.32)

However, according to Maxwell’s equations, ∇ ·B = 0. Therefore,

∇ · (∇×A) = (1− q)∇ ·H. (A.33)

In general, ∇ ·H ̸= 0. Thus, q = 1 since ∇ · (∇×A) = 0 for any vector field

A. Therefore, φ and A can be written

∇φ = H, and (A.34)

∇×A =
1

µ0
B. (A.35)

Thus, we have obtained an equation for the H-field, which is described

by

H = ∇φ. (A.36)

Finally, upon simplification, we obtain the equation for the H-field in the

magnetic charge model,

H =
1

4π

‹
S′

(
∇′ ·M′) x− x′

|x− x′|3
ds′ − 1

4π

˚
V ′

(
M′ × n̂

) x− x′

|x− x′|3
dv′.

(A.37)

In free space, the B and H fields are proportional, and thus

B =
µ0

4π

‹
S′

(
∇′ ·M′) x− x′

|x− x′|3
ds′ − µ0

4π

˚
V ′

(
M′ × n̂

) x− x′

|x− x′|3
dv′.

(A.38)
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Derivation of the magnetic

field equations defined in Chap-

ter 3

The field equations derived in Chapter 3 took a great deal of effort and

analysis to produce. This appendix details the derivation of these field

equations.

B.1 First component of the field equations

To begin, we will solve the x−integral given by

Bx =
µ0M · n̂

4π

ˆ x2

x1

ˆ m2x′+c2

m1x′+c1

xr − x′(
(xr − x′)2 + (yr − y′)2 + (zr − z′)2

) 3
2

dy′ dx′.

(B.1)

We first consider the inner integral Ixy′ ,

Ixy′ =

ˆ m2x′+c2

m1x′+c1

xr − x′(
(xr − x′)2 + (yr − y′)2 + (zr − z′)2

) 3
2

dy′. (B.2)
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The numerator is a constant with respect to y′ and can be taken out of the

integral,

Ixy′ =
(
xr − x′

) ˆ m2x′+c2

m1x′+c1

1(
(xr − x′)2 + (yr − y′)2 + (zr − z′)2

) 3
2

dy′.

(B.3)

We now perform the substitution given by

tan (u) =
yr − y′√

(xr − x′)2 + (zr − z′)2
. (B.4)

Rearranging this substitution yields

y′ = yr − tan (u)

√
(xr − x′)2 + (zr − z′)2, (B.5)

which can be differentiated giving

dy′ = − sec2 (u)

√
(xr − x′)2 + (zr − z′)2 du. (B.6)

Here, the square root term behaves as a constant since x′, y′, and z′ are mutu-

ally independent and we are integrating only with respect to y′. Additionally,

we can rearrange for the term (yr − y′)2, giving(
yr − y′

)2
=
((

xr − x′
)2

+
(
zr − z′

)2)
tan2 (u) . (B.7)

We now substitute Equations (B.6) and (B.7) into Equation (B.3) and

simplify, giving

Ixy′ =
(
xr − x′

) ˆ y′=m2x′+c2

y′=m1x′+c1

− sec2 (u)
√
(xr − x′)2 + (zr − z′)2((

(xr − x′)2 + (zr − z′)2
)
(1 + tan2 (u))

) 3
2

du.

(B.8)

Applying the trigonometric identity sec2 (u) = 1 + tan2 (u) and further

simplification gives

Ixy′ =
(
xr − x′

) ˆ y′=m2x′+c2

y′=m1x′+c1

− sec2 (u)
√

(xr − x′)2 + (zr − z′)2√
(xr − x′)2 + (zr − z′)2

3

(sec2 (u))
3
2

du

(B.9)

=
(
xr − x′

) ˆ y′=m2x′+c2

y′=m1x′+c1

− sec2 (u)(
(xr − x′)2 + (zr − z′)2

)2
sec3 (u)

du (B.10)

=
(
xr − x′

) ˆ y′=m2x′+c2

y′=m1x′+c1

− cos (u)(
(xr − x′)2 + (zr − z′)2

)2 du. (B.11)
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Since the square root term in Equation (B.6) behaves as a constant, we can

move the denominator outside the integral,

Ixy′ = − xr − x′(
(xr − x′)2 + (zr − z′)2

)2 ˆ y′=m2x′+c2

y′=m1x′+c1

cos (u) du (B.12)

= − xr − x′(
(xr − x′)2 + (zr − z′)2

)2 [ sin (u) ]y′=m2x′+c2

y′=m1x′+c1
. (B.13)

Now we will convert from u back to y′. Based on the initial definition for u,

we can use basic trigonometry to obtain

sin (u) =
yr − y′√

(xr − x′)2 + (yr − y′)2 + (zr − z′)2
. (B.14)

We can now substitute in the expression for sin (u) and the limits for y′,

giving

Ixy′ =− (xr − x′) (yr −m2x
′ − c2)(

(xr − x′)2 + (zr − z′)2
)√

(xr − x′)2 + (yr −m2x′ − c2)
2 + (zr − z′)2

+
(xr − x′) (yr −m1x

′ − c1)(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −m1x′ − c1)

2 + (zr − z′)2
.

(B.15)

With the first integral for the x-field solved, the expression now becomes

Bx = −µ0M · n̂
4π

ˆ x′=x2

x′=x1

(xr − x′) (yr −m2x
′ − c2)(

(xr − x′)2 + (zr − z′)2
)√

(xr − x′)2 + (yr −m2x′ − c2)
2 + (zr − z′)2

− (xr − x′) (yr −m1x
′ − c1)(

(xr − x′)2 + (zr − z′)2
)√

(xr − x′)2 + (yr −m1x′ − c1)
2 + (zr − z′)2

dx′.

(B.16)

To solve this integral, we will consider the generalised integral

Ixx′ =

ˆ x′=x2

x′=x1

(xr − x′) (yr −mx′ − c)(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

dx′.

(B.17)
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Note that the numerator of this integrand is a quadratic. To solve this

integral, we will split this integrand into two components. By doing this, we

can remove any quadratic terms in the numerator. To begin this process,

consider(
xr − x′

) (
yr −mx′ − c

)
=
(
xr − x′

) (
mxr −mx′ + yr −mxr − c

)
= m

(
xr − x′

)2
+
(
xr − x′

)
(yr −mxr − c)

= m
(
xr − x′

)2
+m

(
zr − z′

)2
+
(
xr − x′

)
(yr −mxr − c)−m

(
zr − z′

)2
= m

((
xr − x′

)2
+
(
zr − z′

)2)
+
(
xr − x′

)
(yr −mxr − c)−m

(
zr − z′

)2
.

While this appears more complicated, it will simplify the integration process.

Substituting this into the expression for Ixx′ gives

Ixx′ =

ˆ x′=x2

x′=x1

m
(
(xr − x′)2 + (zr − z′)2

)
(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

+
(xr − x′) (yr −mxr − c)−m (zr − z′)2(

(xr − x′)2 + (zr − z′)2
)√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2
dx′.

(B.18)

This can be rewritten as

Ixx′ = m

ˆ x′=x2

x′=x1

1√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

dx′

+

ˆ x′=x2

x′=x1

(xr − x′) (yr −mxr − c)−m (zr − z′)2(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

dx′.

(B.19)

We will solve each of these integrals separately, beginning with

Ixx′1 = m

ˆ x′=x2

x′=x1

1√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

dx′. (B.20)

Consider the substitution

u =
√
1 +m2

√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

+
(
1 +m2

)
x′ −myr − xr +mc. (B.21)
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Upon differentiation, we obtain

du =

−

√
1 +m2

(
(xr − x′) +m (yr −mx′ − c)

)
√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

+ 1 +m2

 dx′.

(B.22)

However, this can be manipulated to become

du =

√
1 +m2√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

(
√
1 +m2

√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

+
(
1 +m2

)
x′ −myr − xr +mc

)
dx′, (B.23)

which can be simplified to

du =

√
1 +m2√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2
u dx′. (B.24)

Upon rearrangement to reflect our integral Ixx′1, we can see that

1√
1 +m2

1

u
=

1√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

dx′. (B.25)

Therefore, the integral can be rewritten as

Ixx′1 =
m√

1 +m2

ˆ x′=x2

x′=x1

1

u
du. (B.26)

Solving, we get

Ixx′1 =
m√

1 +m2

[
lnu
]x′=x2

x′=x1

. (B.27)

Substituting the expression for u gives

Ixx′1 =
m√

1 +m2

[
ln
(√

1 +m2

√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

+
(
1 +m2

)
x′ − yr − xr +mc

)]x′=x2

x′=x1

. (B.28)
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Substituting the integration limits gives

Ixx′1 =
m√

1 +m2

(
ln
(√

1 +m2

√
(xr − x2)

2 + (yr −mx2 − c)2 + (zr − z′)2

+
(
1 +m2

)
x2 − yr − xr +mc

)
− ln

(√
1 +m2

√
(xr − x1)

2 + (yr −mx1 − c)2 + (zr − z′)2

+
(
1 +m2

)
x1 − yr − xr +mc

))
Now we may proceed with solving the second integral,

Ixx′2 =

ˆ x′=x2

x′=x1

(xr − x′) (yr −mxr − c)−m (zr − z′)2(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

dx′.

(B.29)

We begin this derivation with the substitutions

u+ =

√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 + yr −mx′ − c, and

u− =

√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 − yr +mx′ + c.

Upon differentiation, we get

du+

dx′
= −m− xr − x′ +myr −m2x′ −mc√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

=⇒ du+

dx′
=

−mu+ − xr + x′√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

. (B.30)

Similarly,

du−

dx′
= m− xr − x′ +myr −m2x′ −mc√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

=⇒ du−

dx′
=

mu− − xr + x′√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

. (B.31)

Now we combine the u+ and u− terms into a single term,

u =
u−

u+
, (B.32)
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which, when differentiated, gives

du

dx′
=

du−

dx′ u+ − du+

dx′ u−

(u+)2
. (B.33)

Simplifying,

du

dx′
=

mu+u−−(xr−x′)u+√
(xr−x′)2+(yr−mx′−c)2+(zr−z′)2

− −mu−u+−(xr−x′)u−√
(xr−x′)2+(yr−mx′−c)2+(zr−z′)2

(u+)2

=
2mu+u− + (u− − u+) (xr − x′)

(u+)2
√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

. (B.34)

For clarity, we define

R =

√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2.

The u+u− and u− − u+ terms can be simplified, giving

u+u− =
(
R+ yr −mx′ − c

) (
R− yr +mx′ + c

)
= R2 −

(
yr −mx′ − c

)2
=
(
xr − x′

)2
+
(
zr − z′

)2
, and

u− − u+ = R− yr −mx′ − c−R− yr −mx′ − c

= −2
(
yr −mx′ − c

)
.

Therefore,

du

dx′
=

2m
(
(xr − x′)2 + (zr − z′)2

)
− 2 (yr −mx′ − c) (xr − x′)

(u+)2
√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

. (B.35)

Dividing both sides by u gives

1

u

du

dx′
= −2

(yr −mx′ − c) (xr − x′)−m (xr − x′)2 −m (zr − z′)2

(u+)2
√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

(
u+

u−

)
.

(B.36)

Cancelling the u+ terms leads to

−1

2

1

u

du

dx′
=

(yr −mx′ − c) (xr − x′)−m (xr − x′)2 −m (zr − z′)2

u+u−
√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2
. (B.37)
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Substituting the u+u− term gives

−1

2

1

u

du

dx′
=

(yr −mx′ − c) (xr − x′)−m (xr − x′)2 −m (zr − z′)2(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

.

(B.38)

Factoring the numerator gives

−1

2

1

u

du

dx′
=

(xr − x′) (yr −mx′ − c−mxr +mx′)−m (zr − z′)2(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

∴ −1

2

1

u

du

dx′
=

(xr − x′) (yr −mxr − c)−m (zr − z′)2(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

(B.39)

Note that the right hand side of this equation is equal to the integrand of

Ixx′2. Thus,

Ixx′2 = −1

2

ˆ x′=x2

x′=x1

1

u

du

dx′
dx′

= −1

2

ˆ x′=x2

x′=x1

1

u
du. (B.40)

Solving this integral gives

Ixx′2 =
[
− 1

2
ln (u)

]x′=x2

x′=x1

= −1

2

[
ln

(
u−

u+

)]x′=x2

x′=x1

= −1

2

[
ln


√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 − yr +mx′ + c√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 + yr −mx′ − c

]x′=x2

x′=x1

Multiplying the argument of the logarithm by√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 − yr +mx′ + c√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 − yr +mx′ + c

(B.41)

leads to

Ixx′2 = −1

2

[
ln


(√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 − yr +mx′ + c

)2

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 − (yr −mx′ − c)2

]x′=x2

x′=x1

.

(B.42)
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Using logarithm laws gives

Ixx′2 = −
[
ln


√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2 − yr +mx′ + c√
(xr − x′)2 + (zr − z′)2

]x′=x2

x′=x1

.

(B.43)

Susbtituting the integration limits gives

Ixx′2 =− ln


√
(xr − x2)

2 + (yr −mx2 − c)2 + (zr − z′)2 − yr +mx2 + c√
(xr − x2)

2 + (zr − z′)2


+ ln


√
(xr − x1)

2 + (yr −mx1 − c)2 + (zr − z′)2 − yr +mx1 + c√
(xr − x1)

2 + (zr − z′)2

 .

(B.44)

With solutions for Ixx′1 and Ixx′2, we can now obtain the x-field,

Bx = −µ0M · n̂
4π

(
Ixx′1|m=m2,c=c2

− Ixx′1|m=m1,c=c1

+ Ixx′2|m=m2,c=c2
− Ixx′2|m=m1,c=c1

)
. (B.45)
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This yields the field given by

Bx =
µ0M · n̂

4π

(
− m2√

1 +m2
2

(
ln
(√

1 +m2
2

√
(xr − x2)

2 + (yr −m2x2 − c2)
2 + (zr − z′)2

+
(
1 +m2

2

)
x2 − yr − xr +m2c2

)
− ln

(√
1 +m2

2

√
(xr − x1)

2 + (yr −m2x1 − c2)
2 + (zr − z′)2

+
(
1 +m2

2

)
x1 − yr − xr +m2c2

))
+

m1√
1 +m2

1

(
ln
(√

1 +m2
1

√
(xr − x2)

2 + (yr −m1x2 − c1)
2 + (zr − z′)2

+
(
1 +m2

1

)
x2 − yr − xr +m1c1

)
− ln

(√
1 +m2

1

√
(xr − x1)

2 + (yr −m1x1 − c1)
2 + (zr − z′)2

+
(
1 +m2

1

)
x1 − yr − xr +m1c1

))

+ ln


√
(xr − x2)

2 + (yr −m2x2 − c2)
2 + (zr − z′)2 − yr +m2x2 + c2√

(xr − x2)
2 + (zr − z′)2


− ln


√
(xr − x1)

2 + (yr −m2x1 − c2)
2 + (zr − z′)2 − yr +m2x1 + c2√

(xr − x1)
2 + (zr − z′)2


− ln


√
(xr − x2)

2 + (yr −m1x2 − c1)
2 + (zr − z′)2 − yr +m1x2 + c1√

(xr − x2)
2 + (zr − z′)2


+ ln


√
(xr − x1)

2 + (yr −m1x1 − c1)
2 + (zr − z′)2 − yr +m1x1 + c1√

(xr − x1)
2 + (zr − z′)2

).
(B.46)
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Note here that the denominators of the arguments of the last four logarithms

cancel due to logarithm laws. In addition, by defining

X = xq − xr

Y = cp +mpxq − yr

Z = z′ − zr

Rpq =
√

X2 + Y 2 + Z2

Spq = X +mpY +
√

1 +m2
pRpq

Tpq = Rpq + Y ,

the equation for Bx simplifies to

Bx =
µ0M · n̂

4π

2∑
p=1

2∑
q=1

(−1)p+q

ln (Tpq)−
mp√
1 +m2

p

ln (Spq)

 . (B.47)
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B.2 Second component of the field equations

To continue, we define the integral for By,

By =
µ0M · n̂

4π

ˆ x2

x1

ˆ m2x′+c2

m1x′+c1

yr − y′(
(xr − x′)2 + (yr − y′)2 + (zr − z′)2

) 3
2

dy′ dx′.

(B.48)

For this integral, we use the substitution

u =
(
xr − x′

)2
+
(
yr − y′

)2
+
(
zr − z′

)2
, (B.49)

implying

du = −2
(
yr − y′

)
dy′. (B.50)

These can be substituted into our integral, giving

By =
µ0M · n̂

4π

ˆ x2

x1

ˆ m2x′+c2

m1x′+c1

−1

2
u−

3
2 du dx′. (B.51)

Evaluating the inner integral gives

By =
µ0M · n̂

4π

ˆ x2

x1

[
u−

1
2

]y′=m2x′+c2

y′=m1x′+c1

dx′

=
µ0M · n̂

4π

ˆ x2

x1

[
1√

(xr − x′)2 + (yr − y′)2 + (zr − z′)2

]y′=m2x′+c2

y′=m1x′+c1

dx′.

(B.52)

Upon substitution for y′, we get

By =
µ0M · n̂

4π

ˆ x2

x1

1√
(xr − x′)2 + (yr −m2x′ − c2)

2 + (zr − z′)2
dx′

−
ˆ x2

x1

1√
(xr − x′)2 + (yr −m1x′ − c1)

2 + (zr − z′)2
dx′.

(B.53)

These integrals are extremely similar to the integral for Ixx′1. Thus, the

y-field may be rewritten as

By =
µ0M · n̂

4π

(
Ixx′1

m

∣∣∣∣
m=m2,c=c2

− Ixx′1

m

∣∣∣∣
m=m1,c=c1

)
. (B.54)
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Upon substitution and simplification, we get

By =
µ0M · n̂

4π

2∑
p=1

2∑
q=1

(−1)p+q 1√
1 +m2

p

ln (Spq)

 . (B.55)
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B.3 Third component of the field equations

Finally, the z-field is given by

Bz =
µ0M · n̂

4π

ˆ x2

x1

ˆ m2x′+c2

m1x′+c1

zr − z′(
(xr − x′)2 + (yr − y′)2 + (zr − z′)2

) 3
2

dy′ dx′.

(B.56)

The numerator is constant with respect to the integration variables, and can

be moved outside the inner integral,

B=
µ0M · n̂

4π

ˆ x2

x1

(
zr − z′

) ˆ m2x′+c2

m1x′+c1

1(
(xr − x′)2 + (yr − y′)2 + (zr − z′)2

) 3
2

dy′ dx′.

(B.57)

Here, the inner integral is a similar integral to that found in the expression

for Ixy′ . By applying this solution but using zr − z′ instead of xr −x′, we get

Bz =
µ0M · n̂

4π

ˆ x2

x1

(

− (zr − z′) (yr −m2x
′ − c2)(

(xr − x′)2 + (zr − z′)2
)√

(xr − x′)2 + (yr −m2x′ − c2)
2 + (zr − z′)2

+
(zr − z′) (yr −m1x

′ − c1)(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −m1x′ − c1)

2 + (zr − z′)2

)
dx′.

(B.58)

To solve this, we will consider the generalised integral

Iz =

ˆ x′=x2

x′=x1

(zr − z′) (yr −mx′ − c)(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

dx′.

(B.59)

To solve this integral we will consider the substitutions

un = m
(
xr − x′

)2
+m

(
zr − z′

)2 − (xr − x′
) (

yr −mx′ − c
)
, and

ud =
(
zr − z′

)
R, (B.60)

where

R =

√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2, (B.61)
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and define

U =
un
ud

. (B.62)

We will note here that

u2d =
(
zr − z′

)2
R2, and (B.63)

u2n + u2d =
(
m
((

xr − x′
)2

+
(
zr − z′

)2)− (xr − x′
) (

yr −mx′ − c
))2

+
(
zr − z′

)2
R2.

(B.64)

By using the fact that(
xr − x′

)2
+
(
zr − z′

)2
= R2 −

(
yr −mx′ − c

)2
, (B.65)

we obtain

u2n + u2d =
(
mR2 −m

(
yr −mx′ − c

)2 − (xr − x′
) (

yr −mx′ − c
))2

+
(
zr − z′

)2
R2

=
(
mR2 −

(
yr −mx′ − c

) (
xr − x′ +m

(
yr −mx′ − c

)))2
+
(
zr − z′

)2
R2

Expansion and factorisation leads to

u2n + u2d = m2R4 − 2mR2
(
yr −mx′ − c

) (
xr − x′ +m

(
yr −mx′ − c

))
+
(
yr −mx′ − c

)2 (
xr − x′ +m

(
yr −mx′ − c

))2
+
(
zr − z′

)2
R2.

(B.66)

With further expansion and factorisation, we obtain

u2n + u2d =
((

xr − x′
)2

+
(
zr − z′

)2)(
R2
(
1 +m2

)
−
(
xr − x′ +m

(
yr −mx′ − c

))2)
.

(B.67)

Therefore,

R2
(
1 +m2

)
−
(
xr − x′ +m

(
yr −mx′ − c

))2
=

u2n + u2d
(xr − x′)2 + (zr − z′)2

,

(B.68)

which will come into use later. Upon differentiation and simplification of un

and ud,

dun
dx′

= yr −mx′ − c−m
(
xr − x′

)
, and

dud
dx′

= −(zr − z′) (xr − x′ +m (yr −mx′ − c))

R
. (B.69)
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Using the quotient rule,

dU

dx′
=

ud
dun
dx′ − un

dud
dx′

(ud)
2 . (B.70)

Substituting in expressions,

dU

dx′
=

zr − z′

R2 (zr − z′)2

((
yr −mx′ − c−m

(
xr − x′

))
R

+
1

R

(
xr − x′ +m

(
yr −mx′ − c

))
(
m
((

xr − x′
)2

+
(
zr − z′

)2)− (xr − x′
) (

yr −mx′ − c
)))

. (B.71)

By using the relationship(
xr − x′

)2
+
(
zr − z′

)2
= R2 −

(
yr −mx′ − c

)2
, (B.72)

further manipulation leads to

dU

dx′
=

1

R3 (zr − z′)

((
yr −mx′ − c−m

(
xr − x′

))
R2

+
(
xr − x′ +m

(
yr −mx′ − c

)) (
mR2 −m

(
yr −mx′ − c

)2 − (xr − x′
) (

yr −mx′ − c
)))

.

(B.73)

By taking (yr −mx′ − c) as a common factor in the last section of the

equation, we obtain

dU

dx′
=

1

R3 (zr − z′)

((
yr −mx′ − c−m

(
xr − x′

))
R2

+
(
xr − x′ +m

(
yr −mx′ − c

)) (
mR2 −

(
yr −mx′ − c

) (
xr − x′ +m

(
yr −mx′ − c

))))
.

(B.74)

By manipulating the expression on the right side of the equation, we obtain

dU =
(yr −mx′ − c)

(
1 +m2

)
R2 − (yr −mx′ − c) (xr − x′ +m (yr −mx′ − c))2

(zr − z′)R3
dx′.

(B.75)

By taking (yr −mx′ − c) as a common factor, we get

dU =
(yr −mx′ − c) (zr − z′)

R

1

(zr − z′)2R2

(
(
1 +m2

)
R2 −

(
xr − x′ +m

(
yr −mx′ − c

))2)
dx′ (B.76)
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Here, we can substitute Equations (B.63) and (B.68), giving

dU =
(yr −mx′ − c) (zr − z′)(
(xr − x′)2 + (zr − z′)2

)
R

(
u2n + u2d

u2d

)
dx′. (B.77)

Rearranging and substituting the expression for R gives

u2d
u2n + u2d

dU =
(yr −mx′ − c) (zr − z′)(

(xr − x′)2 + (zr − z′)2
)√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2
dx′.

(B.78)

Manipulating the left side of the equation gives

u2d
u2n + u2d

×
1
u2
d

1
u2
d

dU =
1

1 +
(
un
ud

)2 dU =
1

1 + U2
dU . (B.79)

Thus,

1

1 + U2
dU =

(yr −mx′ − c) (zr − z′)(
(xr − x′)2 + (zr − z′)2

)√
(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

dx′

(B.80)

Notice here that the right hand side is our integrand in the expression for Iz.

Thus, we can rewrite the integral as

Iz =

ˆ x′=x2

x′=x1

1

1 + U2
dU . (B.81)

It is well known that ˆ
1

1 + U2
dU = arctan (U) + C, (B.82)

where C is an integration constant. Therefore,

Iz =

[
arctan (U)

]x′=x2

x′=x1

. (B.83)

Substituting for U gives

Iz =

[
arctan

m
(
(xr − x′)2 + (zr − z′)2

)
− (xr − x′) (yr −mx′ − c)

(zr − z′)
√

(xr − x′)2 + (yr −mx′ − c)2 + (zr − z′)2

]x′=x2

x′=x1

.

(B.84)
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By applying the integration limits,

Iz =arctan

m
(
(xr − x2)

2 + (zr − z′)2
)
− (xr − x2) (yr −mx2 − c)

(zr − z′)
√
(xr − x2)

2 + (yr −mx2 − c)2 + (zr − z′)2


− arctan

m
(
(xr − x1)

2 + (zr − z′)2
)
− (xr − x1) (yr −mx1 − c)

(zr − z′)
√
(xr − x1)

2 + (yr −mx1 − c)2 + (zr − z′)2

 .

(B.85)

This can be substituted into the expression for Bz, giving

Bz =
µ0M · n̂

4π

(
− Iz|m=m2,c=c2

+ Iz|m=m1,c=c1

)
. (B.86)

Finally, we can state

Bz =
µ0M · n̂

4π

(

− arctan

m2

(
(xr − x2)

2 + (zr − z′)2
)
− (xr − x2) (yr −m2x2 − c2)

(zr − z′)
√

(xr − x2)
2 + (yr −m2x2 − c2)

2 + (zr − z′)2


+ arctan

m2

(
(xr − x1)

2 + (zr − z′)2
)
− (xr − x1) (yr −m2x1 − c2)

(zr − z′)
√

(xr − x1)
2 + (yr −m2x1 − c2)

2 + (zr − z′)2


+ arctan

m1

(
(xr − x2)

2 + (zr − z′)2
)
− (xr − x2) (yr −m1x2 − c)

(zr − z′)
√
(xr − x2)

2 + (yr −m1x2 − c1)
2 + (zr − z′)2


− arctan

m1

(
(xr − x1)

2 + (zr − z′)2
)
− (xr − x1) (yr −m1x1 − c1)

(zr − z′)
√

(xr − x1)
2 + (yr −m1x1 − c1)

2 + (zr − z′)2

).
(B.87)

By defining

Upq =
mp

(
X2 + Z2

)
−XY

ZRpq
, (B.88)

the expression for Bz is simplified greatly,

Bz =
µ0M · n̂

4π

2∑
p=1

2∑
q=1

[
(−1)p+q arctan (Upq)

]
. (B.89)
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B.4 Summary of field equations

To compactly express the solutions for the field components of this derivation,

we define

X = xq − xr

Y = cp +mpxq − yr

Z = z′ − zr

Rpq =
√

X2 + Y 2 + Z2

Spq = X +mpY +
√

1 +m2
pRpq

Tpq = Rpq + Y

Upq =
mp

(
X2 + Z2

)
−XY

ZRpq
,

which then gives

Bx =
µ0M · n̂

4π

2∑
p=1

2∑
q=1

(−1)p+q

ln (Tpq)−
mp√
1 +m2

p

ln (Spq)

 , (B.90)

By =
µ0M · n̂

4π

2∑
p=1

2∑
q=1

(−1)p+q 1√
1 +m2

p

ln (Spq)

 , and (B.91)

Bz =
µ0M · n̂

4π

2∑
p=1

2∑
q=1

[
(−1)p+q arctan (Upq)

]
. (B.92)
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Further geometric, magnetic,

and finite-element informa-

tion

This appendix details further geometric, magnetic, and finite-element data

for most magnetic computations found in this thesis. The data is presented

as an annotated diagram, showing the geometry of any magnets, along with

a table (if relevant) stating magnetic properties, number of mesh elements,

and finite-element computation time.

213



Appendix C

C.1 Chapter 2

C.1.1 Chamfered cuboidal magnet

x

y

z

M
7 units

5 units

2 units

5 units

5 units

Magnetic parameters

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength 1T

Relative permeability 1

Finite-element simulation

Approx. number of mesh elements N/A

Approx. computation time N/A
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C.1.2 Two cuboidal magnets used by Akoun and Yonnet

A

B

x y

z

6mm

12mm 20mm

6mm

12mm

20mm

Magnetic parameters for magnet A

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength 0.38T

Relative permeability 1

Magnetic parameters for magnet B

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength 0.38T

Relative permeability 1

Finite-element simulation

Approx. number of mesh elements 17,000

Approx. computation time 30-40 seconds
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C.1.3 Two identical regular dodecahedron magnets

A

B

x

y

z

20mm

Magnetic parameters for magnet A

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength 1T

Relative permeability 1

Magnetic parameters for magnet B

Remanent magnetisation direction (1, 0, 0)

Remanent magnetisation strength 1T

Relative permeability 1

Finite-element simulation

Approx. number of mesh elements 18,000

Approx. computation time 40-50 seconds
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C.1.4 Cross sections of optimal frustum magnets

This section shows cross sections for the optimal frustum magnets detailed

in Table 2.1.

Optimal frustum magnets for 25mm separation

50mm

25mm

81.25mm

110°

Optimal frustum magnets for 50mm separation

50mm

50mm

73.44mm

117°
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Optimal frustum magnets for 75mm separation

50mm

75mm

65.76mm

123°

Optimal frustum magnets for 100mm separation

50mm

100mm

56.74mm

129°
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Optimal frustum magnets for 125mm separation

50mm

125mm

47.75mm

134°
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Optimal frustum magnets for 150mm separation

50mm

150mm

39.19mm

138°
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C.2 Chapter 3

C.2.1 Pyramid frustum magnet

x

y

z

30mm30mm

20mm

20mm
20mm

Magnetic parameters

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength 1.3T

Relative permeability 1

Finite-element simulation

Approx. number of mesh elements 1,200,000

Approx. computation time 41 minutes
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C.2.2 Cylindrical magnet

x

z

10mm

20mm

Magnetic parameters

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength 1.3T

Relative permeability 1

Finite-element simulation

Approx. number of mesh elements 960,000

Approx. computation time 38 minutes
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C.3 Chapter 4

C.3.1 Cube magnet

x

y

z

ll

l

Magnetic parameters

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength N/A

Relative permeability 1

Finite-element simulation

Approx. number of mesh elements N/A

Approx. computation time N/A
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C.3.2 Optimal cuboid

x

y

z

0.813l0.813l

1.514l

Magnetic parameters

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength N/A

Relative permeability 1

Finite-element simulation

Approx. number of mesh elements N/A

Approx. computation time N/A
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C.3.3 Optimal frustum

x

y

z

1.580l1.580l

0.344l

0.344l
0.951l

Magnetic parameters

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength N/A

Relative permeability 1

Finite-element simulation

Approx. number of mesh elements N/A

Approx. computation time N/A
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C.4 Chapter 5

C.4.1 Cube magnets in repulsion

Br,top

Br,bot

10mm

d

10mm

10mm

x

z

Magnetic parameters for top magnet

Remanent magnetisation direction (0, 0,−1)

Remanent magnetisation strength 1T

Relative permeability 1, 1.05, 1.2, or 3

Magnetic parameters for bottom magnet

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength 1T

Relative permeability 1, 1.05, 1.2, or 3

Finite-element simulation

Approx. number of mesh elements 58,000

Approx. computation time 60-70 seconds
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C.4.2 Cube magnets with one rotating

Br,top

Br,bot

10mm

10mm

10mm

15mm

x

z

θ

Magnetic parameters for top magnet

Remanent magnetisation direction (0, 0, 1)

Remanent magnetisation strength 1T

Relative permeability 1, 1.05, 1.2, or 3

Magnetic parameters for bottom magnet

Remanent magnetisation direction (− sin θ, 0, cos θ)

Remanent magnetisation strength 1T

Relative permeability 1, 1.05, 1.2, or 3

Finite-element simulation

Approx. number of mesh elements 58,000

Approx. computation time 60-70 seconds
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Appendix D

Conference on Electromag-

netic Field Computation

Before starting work on Chapter 4, an investigation was conducted on planar

magnetic arrays and submitted to the Conference on Electromagnetic Field

Computation in Italy, 2020. The work was presented as a poster, and is

included on the following page.
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Figure 4: The magnetic field in the 𝑧-direction above the Halbach array in Figure 3.

Comparison of the magnetic field 
strength between frusta and cuboidal 

permanent magnets

Introduction
Cuboidal permanent magnets have been studied extensively, with the
first three-dimensional field and force equations being derived in 1984
[1]. In addition, cuboids are simple to manufacture and therefore see
wide use in industry. However, numerous studies have indicated that
alternative magnet geometries may produce more desirable magnetic
fields than cuboidal magnets.

This concept has been explored by several authors examining
planar Halbach arrays by incorporating triangular prismatic magnets
in addition to cuboidal magnets. However, no research has been
conducted on using frustum magnets in planar arrays. Presented here
is an investigation into potential advantages in planar Halbach arrays
using frustum magnets rather than cuboidal magnets.

Motivation
Consider the symmetric pyramid frustum permanent magnet shown in
Figure 1. It has magnetisation in the 𝑧-direction, a height of ℎ units,
and a wall angle of 𝜃 . The magnetic field it produces can be
calculated by solving the associated polyhedral magnet field
equations published by several authors [2,3].

The magnetic field in the 𝑧-direction was calculated across the 𝑋𝑍
plane and is plotted as a contour plot in Figure 2. As a comparison,
the field along the 𝑋𝑍 plane of an equivalent cube magnet with the
same height and volume was also calculated, and is plotted alongside
the field produced by the frustum.

Figure 2 suggests that a frustum is able to focus magnetic flux
through the smaller parallel face, thus producing more flux over a
smaller area above the magnet. However, the larger parallel face
distributes the flux over a larger space, resulting in weaker flux across
a larger area below the magnet. This disparity suggests that the
magnetic field produced by a planar Halbach array can be
manipulated using frustum magnets rather than cuboidal magnets.

Optimising the field produced by a planar
Halbach frustum magnet array
Frustum permanent magnets can be tesselated using frusta of
pyramids and tetrahedra, and can be adapted to a two-dimensional
Halbach array as shown in Figure 3.

This array was defined for frusta with an average volume of 1 unit3

and the magnetic field in the 𝑧-direction calculated 0.1 units above the
array, shown in Figure 4.

In a planar motor, force ripple can be reduced by creating a sinusoidal
field shape and moving force can be increased by creating a field with
a large amplitude. The similarity between the field produced by a
planar array and a sinusoid can be quantified using a least squares
method, giving a coefficient of determination 𝑟2 and an equivalent
sinusoid amplitude 𝐴. Thus, a desirable field for a planar motor has a
large coefficient of determination, leading to reduced force ripple, and
a large amplitude, leading to increased moving force.

The cost function to be maximised was defined as 𝐶 = 𝐴𝑟2 .
Constraining magnet volume and array size, an optimisation routine
was run, allowing the wall angle 𝜃 and magnet height ℎ to vary while
maximising the cost function, giving the optimal frustum geometry.
This was repeated for cuboidal magnets by constraining the wall
angle to 𝜃 = 90°, giving the optimal cuboidal geometry.

The obtained results showed that under most conditions, the
improvement in 𝐶 using optimal frustum magnets rather than optimal
cuboidal magnets was less than one percent.

Conclusion
This research has investigated differences in the magnetic field
produced by frustum and cuboidal permanent magnets in a planar
Halbach array. A cost function was defined, quantifying the similarity
of the field to a sinusoid and the strength of the field. This cost
function was maximised for both frustum and cuboidal magnet
configurations to obtain the optimal magnet geometry for each
configuration. The results showed that the optimal frustum geometry
had no significant improvement over the optimal cuboid geometry
when maximising the cost function.
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Figure 2: The magnetic field in the 𝑧-direction measured across the 
𝑋𝑍 plane of both a frustum and cube permanent magnet.

Figure 1: A frustum permanent magnet with magnetisation in the 𝑧-direction.

Figure 3: A planar Halbach array using pyramid and tetrahedral frustum magnets.
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