
Towards an Improved Understanding of
Software Vulnerability Assessment Using

Data-Driven Approaches

Author: Triet Huynh Minh Le
Centre for Research on Engineering Software Technologies (CREST)

School of Computer Science
Faculty of Engineering, Computer and Mathematical Sciences

The University of Adelaide

Principal Supervisor: Professor Muhammad Ali Babar
Co-Supervisor: Professor Cheng-Chew Lim

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The University of Adelaide

March 21, 2022

iii

Contents

List of Figures vii

List of Tables ix

Abstract xi

Declaration of Authorship xiii

Acknowledgements xv

Dedication xvii

1 Introduction 1
1.1 Problem Statement and Research Objectives 2
1.2 Thesis Overview and Contributions . 3
1.3 Related Publications . 5
1.4 Thesis Organization . 6

2 Literature Review on Data-Driven Software Vulnerability Assessment 7
2.1 Introduction . 8
2.2 Overview of the Literature Review . 9

2.2.1 Scope . 9
2.2.2 Methodology . 9
2.2.3 Taxonomy of Data-Driven Software Vulnerability Assessment 10

2.3 Exploitation Prediction . 11
2.3.1 Summary of Primary Studies . 13

2.3.1.1 Exploit Likelihood . 13
2.3.1.2 Exploit Time . 14
2.3.1.3 Exploit Characteristics . 15

2.3.2 Theme Discussion . 17
2.4 Impact Prediction . 18

2.4.1 Summary of Primary Studies . 18
2.4.1.1 Confidentiality, Integrity, Availability, and Scope 18
2.4.1.2 Custom Vulnerability Consequences 19

2.4.2 Theme Discussion . 19
2.5 Severity Prediction . 20

2.5.1 Summary of Primary Studies . 20
2.5.1.1 Severe vs. Non-Severe . 20
2.5.1.2 Severity Levels . 21
2.5.1.3 Severity Score . 22

2.5.2 Theme Discussion . 23
2.6 Type Prediction . 23

2.6.1 Summary of Primary Studies . 23
2.6.1.1 Common Weakness Enumeration (CWE) 23

iv

2.6.1.2 Custom Vulnerability Types 25
2.6.2 Theme Discussion . 26

2.7 Miscellaneous Tasks . 26
2.7.1 Summary of Primary Studies . 26

2.7.1.1 Vulnerability Information Retrieval 26
2.7.1.2 Cross-Source Vulnerability Patterns 28
2.7.1.3 Vulnerability Fixing Effort 28

2.7.2 Theme Discussion . 29
2.8 Analysis of Data-Driven Approaches for Software Vulnerability Assessment . 29

2.8.1 Data Sources . 29
2.8.2 Model Features . 31
2.8.3 Prediction Models . 32
2.8.4 Evaluation Techniques . 33
2.8.5 Evaluation Metrics . 33

2.9 Chapter Summary . 34
2.10 Appendix - Ever-Growing Literature on Data-Driven SV Assessment 35

3 Automated Report-Level Software Vulnerability Assessment with Con-
cept Drift 37
3.1 Introduction . 38
3.2 Background . 39
3.3 The Proposed Approach . 40

3.3.1 Approach Overview . 40
3.3.2 Text Preprocessing of SV Descriptions 41
3.3.3 Model Selection with Time-based k-Fold Cross-Validation 41
3.3.4 Feature Aggregation Algorithm . 43

3.4 Experimental Design and Setup . 44
3.4.1 Research Questions . 44
3.4.2 Dataset . 45
3.4.3 Machine Learning Models for Report-Level SV Assessment 45
3.4.4 Evaluation Metrics . 46

3.5 Experimental Results and Discussion . 47
3.5.1 RQ1: Is Our Time-Based Cross-Validation More Effective Than a

Non-Temporal Method to Handle Concept Drift in The Model Se-
lection Step for Report-Level SV Assessment? 47

3.5.2 RQ2: Which are the Optimal Models for Multi-Classification of
Each SV Characteristic? . 49

3.5.3 RQ3: How Effective is Our Character-Word Model to Perform Au-
tomated Report-Level SV Assessment with Concept Drift? 51

3.5.4 RQ4: To What Extent Can Low-Dimensional Model Retain the
Original Performance? . 55

3.6 Threats to Validity . 56
3.7 Related Work . 57

3.7.1 Report-Level SV Assessment . 57
3.7.2 Temporal Modeling of SVs . 57

3.8 Chapter Summary . 58
3.9 Appendix - SVs with All Out-of-Vocabulary Words 58

v

4 Automated Function-Level Software Vulnerability Assessment 59
4.1 Introduction . 60
4.2 Background and Motivation . 61
4.3 Research Questions . 64
4.4 Research Methodology . 64

4.4.1 Data Collection . 65
4.4.2 Vulnerable Code Context Extraction 66
4.4.3 Code Feature Generation . 67
4.4.4 Data-Driven SV Assessment Models 69
4.4.5 Model Evaluation . 69

4.5 Results . 70
4.5.1 RQ1: Are Vulnerable Code Statements More Useful Than Non-

Vulnerable Counterparts for SV Assessment Models? 70
4.5.2 RQ2: To What Extent do Different Types of Context of Vulnerable

Statements Contribute to SV Assessment Performance? 71
4.5.3 RQ3: Does Separating Vulnerable Statements and Context to Pro-

vide Explicit Location of SVs Improve Assessment Performance? . . 74
4.6 Discussion . 75

4.6.1 Function-Level SV Assessment: Baseline Models and Beyond 75
4.6.2 Threats to Validity . 77

4.7 Related Work . 77
4.7.1 Code Granularities of SV Detection 77
4.7.2 Data-Driven SV Assessment . 78

4.8 Chapter Summary . 78

5 Automated Commit-Level Software Vulnerability Assessment 79
5.1 Introduction . 80
5.2 Background and Motivation . 81

5.2.1 Vulnerability in Code Commits . 81
5.2.2 Commit-Level SV Assessment with CVSS 81
5.2.3 Feature Extraction from Commit Code Changes 82

5.3 The DeepCVA Model . 84
5.3.1 Commit Preprocessing, Context Extraction & Tokenization 84
5.3.2 Feature Extraction with Deep AC-GRU 85
5.3.3 Commit-Level SV Assessment with Multi-task Learning 87

5.4 Experimental Design and Setup . 88
5.4.1 Datasets . 88
5.4.2 Evaluation Metrics . 90
5.4.3 Hyperparameter and Training Settings of DeepCVA 91
5.4.4 Baseline Models . 91

5.5 Research Questions and Experimental Results 92
5.5.1 RQ1: How does DeepCVA Perform Compared to Baseline Models

for Commit-level SV Assessment? . 92
5.5.2 RQ2: What are the Contributions of the Main Components in Deep-

CVA to Model Performance? . 94
5.5.3 RQ3: What are the Effects of Class Rebalancing Techniques on

Model Performance? . 96
5.6 Discussion . 97

5.6.1 DeepCVA and Beyond . 97
5.6.2 Threats to Validity . 98

5.7 Related Work . 98

vi

5.7.1 Data-Driven SV Prediction and Assessment 98
5.7.2 SV Analytics in Code Changes . 99

5.8 Chapter Summary . 99

6 Collection and Analysis of Developers’ Software Vulnerability Concerns
on Question and Answer Websites 101
6.1 Introduction . 102
6.2 Related Work . 103

6.2.1 Topic Modeling on Q&A Websites 103
6.2.2 SV Assessment Using Open Sources 103

6.3 Research Method . 103
6.3.1 Research Questions . 103
6.3.2 Software Vulnerability Post Collection 105
6.3.3 Topic Modeling with LDA . 109

6.4 Results . 110
6.4.1 RQ1: What are SV Discussion Topics on Q&A Sites? 110
6.4.2 RQ2: What are the Popular and Difficult SV Topics on Q&A Sites? 113
6.4.3 RQ3: What is the Level of Expertise to Answer SV Questions on

Q&A Sites? . 114
6.4.4 RQ4: What Types of Answers are Given to SV Questions on Q&A

Sites? . 116
6.5 Discussion . 117

6.5.1 SV Discussion Topics on Q&A Sites vs. Existing Security Taxonomies117
6.5.2 Implications for (Data-Driven) SV Assessment 118
6.5.3 Threats to Validity . 120

6.6 Chapter Summary . 120
6.7 Appendix - PUMiner Overview . 120

6.7.1 PUMiner - A Context-aware Two-stage PU Learning Model for Re-
trieving Security Q&A Posts . 120

7 Conclusions and Future Work 123
7.1 Summary of Contributions and Findings . 124

7.1.1 A Systematization of Knowledge of Data-Driven SV Assessment . . . 124
7.1.2 Automated Report-Level Assessment for Ever-Increasing SVs 124
7.1.3 Automated Early SV Assessment using Code Functions 125
7.1.4 Automated Just-in-Time SV Assessment using Code Commits 125
7.1.5 Insights of Developers’ Real-World Concerns on Question and An-

swer Websites for Data-Driven SV Assessment 126
7.2 Opportunities for Future Research . 126

7.2.1 Integration of SV Data on Issue Tracking Systems 126
7.2.2 Improving Data Efficiency for Data-Driven SV Assessment 127
7.2.3 Customized Data-Driven SV Assessment 128
7.2.4 Enhancing Interpretability of SV Assessment Models 128
7.2.5 Data-Driven SV Assessment in Data-Driven Systems 129

References 130

vii

List of Figures

1.1 Phases in a software vulnerability lifecycle. 2
1.2 Overview of the thesis. 3

2.1 Taxonomy of studies on data-driven software vulnerability assessment. . . . 11

3.1 Frequencies of each class of the seven vulnerability characteristics. 39
3.2 Workflow of our proposed model for report-level software vulnerability as-

sessment with concept drift. 40
3.3 Our proposed time-based cross-validation method. 42
3.4 The number of new terms from 2000 to 2017 of SV descriptions in National

Vulnerability Database. 47
3.5 Examples of new terms in National Vulnerability Database corresponding

to new products, software, cyber-attacks from 2000 to 2018. 48
3.6 Performance differences between the validated and testing Weighted F1-

Scores of our time-based validation and a normal cross-validation methods. 49
3.7 Average cross-validated Weighted F1-Scores comparison between ensemble

and single models for each vulnerability characteristic. 52
3.8 The relationship between the size of vocabulary and the maximum number

of character n-grams. 53

4.1 A vulnerable function extracted from the fixing commit b38a1b3 of a soft-
ware vulnerability (CVE-2017-1000487) in the Plexus-utils project. 61

4.2 Methodology used to answer the research questions. 63
4.3 Class distributions of the seven CVSS metrics. 66
4.4 Proportions of different types of lines in a function. 71
4.5 Differences in testing software vulnerability assessment performance (F1-

Score and MCC) between models using different types of lines/context and
those using only vulnerable statements. 73

4.6 Average performance (MCC) of six classifiers and five features for software
vulnerability assessment in functions. 76

5.1 Exemplary software vulnerability fixing commit for the XML external entity
injection (XXE) (CVE-2016-3674) and its respective software vulnerability
contributing commit in the xstream project. 82

5.2 Workflow of DeepCVA for automated commit-level software vulnerability
assessment. 83

5.3 Code changes outside of a method from the commit 4b9fb37 in the Apache
qpid-broker-j project. 85

5.4 Class distributions of seven software vulnerability assessment tasks. 89
5.5 Time-based splits for training, validating & testing. 90
5.6 Differences of testing MCC of the model variants compared to the proposed

DeepCVA. 95

viii

6.1 Workflow of retrieving posts related to software vulnerability on Q&A web-
sites using tag-based and content-based filtering heuristics. 107

6.2 Popularity and difficulty of 13 software vulnerability topics on Stack Over-
flow and Security StackExchange. 113

6.3 Topic correlations between software vulnerability questions & answerers’
software vulnerability specific knowledge on Stack Overflow & Security Stack-
Exchange. 116

ix

List of Tables

2.1 Comparison of contributions between our review and the existing related
surveys/reviews. 9

2.2 Inclusion and exclusion criteria for study selection. 10
2.3 List of the reviewed papers in the Exploit Likelihood sub-theme of the Ex-

ploitation theme. 12
2.4 List of the reviewed papers in the Exploit Time sub-theme of the Exploitation

theme. 14
2.5 List of the reviewed papers in the Exploit Characteristics sub-theme of the

Exploitation theme. 16
2.6 List of the reviewed papers in the Impact theme. 18
2.7 List of the reviewed papers in the Severe vs. Non-Severe sub-theme of the

Severity theme. 20
2.8 List of the reviewed papers in the Severity Levels sub-theme of the Severity

theme. 21
2.9 List of the reviewed papers in the Severity Score sub-theme of the Severity

theme. 22
2.10 List of the reviewed papers in the Type theme. 24
2.11 List of the reviewed papers in the Miscellaneous Tasks theme. 27
2.12 The frequent data sources, features, models, evaluation techniques and eval-

uation metrics used for the five identified SV assessment themes. 30
2.13 The mapping between the themes/tasks and the respective studies collected

from May 2021 to February 2022. 35

3.1 Word and character n-grams extracted from the sentence “Hello World”. ‘_’
represents a space. 41

3.2 The eight configurations of Natural Language Processing representations
used for model selection. 42

3.3 Optimal hyperparameters found for each classifier. 50
3.4 Optimal models and results after the validation step. 50
3.5 Average cross-validated Weighted F-scores of term frequency vs. tf-idf grouped

by six classifiers. 51
3.6 Average cross-validated Weighted F-scores of uni-gram vs. n-grams (2 ≤ n

≤ 4) grouped by six classifiers. 51
3.7 P -values of H0: Ensemble models ≤ Single models for each vulnerability

characteristic. 52
3.8 Performance (Accuracy, Macro F1-Score, Weighted F1-Score) of our character-

word vs. word-only and character-only models. 54
3.9 Weighted F1-Scores of our original Character-Word Model, 300-dimension

Latent Semantic Analysis (LSA-300), fastText trained on SV descriptions
(fastText-300) and fastText trained on English Wikipedia pages (fastText-
300W). 56

4.1 Hyperparameter tuning for software vulnerability assessment models. 69

x

4.2 Testing performance for software vulnerability assessment tasks of vulnera-
ble vs. non-vulnerable statements. 72

4.3 Differences in testing performance for software vulnerability assessment tasks
between double-input models (RQ3) and single-input models (RQ1/2). . . . 75

5.1 The number of commits and projects after each filtering step. 90
5.2 Testing performance of DeepCVA and baseline models. 93
5.3 Testing performance (MCC) of optimal baselines using oversampling tech-

niques and multi-task DeepCVA. 97

6.1 Content-based thresholds (aSO/SSE & bSO/SSE) for the two steps of the
content-based filtering. 108

6.2 The obtained software vulnerability posts using our tag-based and content-
based filtering heuristics. 108

6.3 Top-5 tags of software vulnerability, security and general posts on Stack
Overflow and Security StackExchange. 109

6.4 Software vulnerability topics on Stack Overflow and Security StackExchange
identified by Latent Dirichlet Allocation along with their proportions and
trends over time. 110

6.5 General expertise in terms of average reputation of each topic on Stack
Overflow and Security StackExchange. 115

6.6 Answer types of software vulnerability discussions identified on Q&A websites.117
6.7 Top-1 answer types of 13 software vulnerability topics on Stack Overflow &

Security StackExchange. 117
6.8 The mapping between 13 software vulnerability topics and their Common

Weakness Enumeration (CWE) values. 119

xi

Abstract

Software Vulnerabilities (SVs) can expose software systems to cyber-attacks, potentially
causing enormous financial and reputational damage for organizations. There have been
significant research efforts to detect these SVs so that developers can promptly fix them.
However, fixing SVs is complex and time-consuming in practice, and thus developers usually
do not have sufficient time and resources to fix all SVs at once. As a result, developers
often need SV information, such as exploitability, impact, and overall severity, to prioritize
fixing more critical SVs. Such information required for fixing planning and prioritization
is typically provided in the SV assessment step of the SV lifecycle. Recently, data-driven
methods have been increasingly proposed to automate SV assessment tasks. However, there
are still numerous shortcomings with the existing studies on data-driven SV assessment
that would hinder their application in practice.

This PhD thesis aims to contribute to the growing literature in data-driven SV as-
sessment by investigating and addressing the constant changes in SV data as well as the
lacking considerations of source code and developers’ needs for SV assessment that impede
the practical applicability of the field. Particularly, we have made the following five con-
tributions in this thesis. (1) We systematize the knowledge of data-driven SV assessment
to reveal the best practices of the field and the main challenges affecting its application in
practice. Subsequently, we propose various solutions to tackle these challenges to better
support the real-world applications of data-driven SV assessment. (2) We first demon-
strate the existence of the concept drift (changing data) issue in descriptions of SV reports
that current studies have mostly used for predicting the Common Vulnerability Scoring
System (CVSS) metrics. We augment report-level SV assessment models with subwords
of terms extracted from SV descriptions to help the models more effectively capture the
semantics of ever-increasing SVs. (3) We also identify that SV reports are usually released
after SV fixing. Thus, we propose using vulnerable code to enable earlier SV assessment
without waiting for SV reports. We are the first to use Machine Learning techniques to
predict CVSS metrics on the function level leveraging vulnerable statements directly caus-
ing SVs and their context in code functions. The performance of our function-level SV
assessment models is promising, opening up research opportunities in this new direction.
(4) To facilitate continuous integration of software code nowadays, we present a novel deep
multi-task learning model, DeepCVA, to simultaneously and efficiently predict multiple
CVSS assessment metrics on the commit level, specifically using vulnerability-contributing
commits. DeepCVA is the first work that enables practitioners to perform SV assessment
as soon as vulnerable changes are added to a codebase, supporting just-in-time prioritiza-
tion of SV fixing. (5) Besides code artifacts produced from a software project of interest,
SV assessment tasks can also benefit from SV crowdsourcing information on developer
Question and Answer (Q&A) websites. We automatically retrieve large-scale security/SV-
related posts from these Q&A websites. We then apply a topic modeling technique on
these posts to distill developers’ real-world SV concerns that can be used for data-driven
SV assessment. Overall, we believe that this thesis has provided evidence-based knowledge
and useful guidelines for researchers and practitioners to automate SV assessment using
data-driven approaches.

xiii

Declaration of Authorship

I certify that this work contains no material which has been accepted for the award of
any other degree or diploma in my name, in any university or other tertiary institution
and, to the best of my knowledge and belief, contains no material previously published
or written by another person, except where due reference has been made in the text. In
addition, I certify that no part of this work will, in the future, be used in a submission in
my name, for any other degree or diploma in any university or other tertiary institution
without the prior approval of the University of Adelaide and where applicable, any partner
institution responsible for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis resides
with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the
web, via the University’s digital research repository, the Library Search and also through
web search engines, unless permission has been granted by the University to restrict access
for a period of time.

I acknowledge the support I have received for my research through the provision of
University of Adelaide International Wildcard Scholarship.

Triet Huynh Minh Le

March 2022

xv

Acknowledgements

This thesis would not have been possible without continuous support, guidance, and
encouragement from many people and entities. I would like to hereby acknowledge them.

Firstly, I express my deepest gratitude to my principal supervisor, Professor M. Ali
Babar, for giving me a valuable opportunity to conduct PhD research under his supervision.
His constructive feedback has motivated me to continuously reflect and improve myself to
become a better researcher and a more-rounded person in life. With his kind patience
and persistent guidance, I have also managed to navigate myself through the challenging
COVID-19 pandemic and complete my PhD research to the best of my ability. Besides
research, he has also given me great opportunities to engage in numerous teaching and
supervision activities that have tremendously helped me to enhance my communication and
interpersonal skills. All in all, working under his mentorship has profoundly transformed
me and enabled me to go beyond my limits and better prepare myself for my future career.

Secondly, I sincerely thank my co-supervisor, Professor Cheng-Chew Lim for providing
insightful comments on the research carried out in this thesis.

Thirdly, I am extremely grateful to many current/former members in the Centre for
Research on Engineering Software Technologies (CREST) at the University of Adelaide.
Special thanks to Faheem Ullah, Chadni Islam, Bushra Sabir, Aufeef Chauhan, Huaming
Chen, Bakheet Aljedaani, Mansooreh Zahedi, Hao Chen, Roland Croft, David Hin, and
Mubin Ul Haque for not only academic contributions and feedback on the research papers
related to this thesis, but also for being wonderful colleagues from whom I have learned
a lot. Specifically, I cannot give enough appreciation to Roland Croft and David Hin for
their great technical insights and contributions to improve the quality of many research
endeavours I have pursued during my PhD. In addition, I am happy to be accompanied by
Faheem Ullah and Aufeef Chauhan during weekly Friday dinners, which has helped me to
relax and recharge each week. I also appreciate Nguyen Khoi Tran for introducing me to
the CREST family. Thank you all for making my PhD journey memorable.

Fourthly, I have also had the chance to collaborate with and learn from many world-
class researchers outside of CREST such as Xuanyu Duan, Mengmeng Ge, Shang Gao,
and Xuequan Lu. I am also thankful for all the constructive feedback from the paper and
thesis reviewers that helped significantly improve the research conducted in the thesis.

Fifthly, I fully acknowledge the University of Adelaide for providing me with the Uni-
versity of Adelaide International Wildcard Scholarship and world-class facilities that have
supported me to pursue my doctoral research and activities.

Sixthly, I highly appreciate the Urbanest at the University of Adelaide for providing
me with the best-conditioned accommodation that I can ever ask for so that I can enjoy
my personal life and recharge after working hours during my PhD. I am also extremely
fortunate that Urbanest has also given me sufficient facilities to work effectively from home
during the pandemic. I also want to deeply thank my roommates, especially Zach Li, for
cheering me up during my down days.

Seventhly, I am greatly appreciative of my ASUS laptop for always being my reliable
companion and working restlessly to enable me to obtain experimental results as well as
write research papers and this thesis in a timely manner.

Finally and most importantly, I am immensely and eternally indebted to my family,
especially my grandmother, mother, and father, who always stand by my side during the
ups and downs of my PhD. Without their constant support and unconditional caring, I
would not have been able to pursue my dreams and be where I am now. I love all of you
from the bottom of my heart.

xvii

I would like to dedicate this thesis to my parents.

1

Chapter 1

Introduction

Software has become an integral part of the modern world [1]. Software systems are
rapidly increasing in size and complexity. For example, the whole software ecosystems at
Google, which host many popular applications/services such as Google Search, YouTube,
and Google Maps, contain more than two million lines of code [2]. Quality assurance
of such large systems is a focal point for both researchers and practitioners to minimize
disruptions to millions of people around the world.

Software Vulnerabilities (SVs)1 have been long-standing issues that negatively affect
software quality [3]. SVs are security bugs that are detrimental to the confidentiality,
integrity and availability of software systems, potentially resulting in catastrophic cyber-
security attacks [4]. The exploitation of these SVs such as the Heartbleed [5] or Log4j [6]
attacks can damage the operations and reputation of millions of software systems and or-
ganizations globally. These cyber-attacks caused by SVs have led to huge financial losses as
well. According to the Australian Cyber Security Centre, a loss of more than 30 billion dol-
lars due to cyber-attacks have been reported worldwide from 2020 to 2021 [7]. Therefore,
it is important to remediate critical SVs as promptly as possible.

In practice, different types of SVs have varying levels of security threats to software-
intensive systems [8]. However, fixing all SVs at the same time is not always practical due
to limited resources and time [9]. A common practice in this situation is to prioritize fixing
SVs posing imminent and serious threats to a system of interest. Such fixing prioritization
usually requires inputs from SV assessment [10, 11].

The SV assessment phase is between the SV discovery/detection and SV remedia-
tion/mitigation/fixing/patching phases in the SV management lifecycle [12], as shown in
Fig. 1.1. The assessment phase first unveils the characteristics of the SVs found in the
discovery phase to locate “hot spots” that contain many highly critical/severe SVs and re-
quire higher attention in a system. Practitioners then use the assessment outputs to devise
an optimal remediation plan, i.e., the order/priority of fixing each SV, based on available
human and technological resources. For example, an identified cross-site scripting (XSS) or
SQL injection vulnerability in a web application will likely require an urgent remediation
plan. These two types of SVs are well-known and can be easily exploited by attackers to
gain unauthorized access and compromise sensitive data/information. On the other hand,
an SV that requires admin access or happens only in a local network will probably have a
lower priority since only a few people can initiate an attack. According to the plan devised
in the assessment phase, SVs would be prioritized for fixing in the remediation phase. In
practice, the tasks in the SV assessment phase for ever-increasing SVs are repetitive and
time-consuming, and thus require automation to save time and effort for practitioners.

Given the increasing size and complexity of software systems nowadays, automation
of SV assessment tasks has attracted significant attention in the Software Engineering
community. Traditionally, static analysis tools have been the de-facto approach to SV
assessment [13]. These tools rely on pre-defined rules to determine SV characteristics.

1In this thesis, “software vulnerability” and “security vulnerability” are used interchangeably.

2 Chapter 1. Introduction

1. Discovery 3. Remediation

Addressing Ever-Increasing Software Vulnerabilities

2. Assessment

2.2. Remediation
Prioritization

2.1. Gathering SV
Characteristics

Figure 1.1: Phases in an SV lifecycle. Note: The main focus of this thesis
is SV assessment.

However, these pre-defined rules require significant expertise and effort to define and may be
easily error-prone [14]. In addition, these rules need manual modifications and extensions
to adapt to ever-changing patterns of new SVs [15]. Such manual changes do not scale well
with the fast-paced growth of SVs, potentially leading to delays in SV assessment and in
turn untimely SV mitigation. Hence, there is an apparent need for automated techniques
that can perform SV assessment without using manually-defined rules.

In the last decade, data-driven techniques have emerged as a promising alternative to
static analysis counterparts for SV assessment, as indicated in our extensive review [11]
(to be discussed in-depth in Chapter 2). The emergence of data-driven SV assessment is
mainly because of the rapid increase in size of SV data in the wild (e.g., more than 170,000
SVs were reported on National Vulnerability Database (NVD) [16] from 2002 to 2021 [17]).
These approaches are underpinned by Machine Learning (ML), Deep Learning (DL) and
Natural Language Processing (NLP) models that are capable of automatically extracting
complex patterns and rules from large-scale SV data, reducing the reliance on experts’
knowledge. Overall, these data-driven models have opened up new opportunities for the
field of automated SV assessment.

1.1 Problem Statement and Research Objectives

Data-driven models have many promising applications for SV assessment; however, accord-
ing to our review on data-driven SV assessment [11], there are still several unaddressed yet
important challenges/gaps that affect the practical application of this field. Specifically,
this PhD thesis focuses on the three key practical challenges of data-driven SV assessment.
The first challenge is the missing treatment for changing SV data over time that leads
to degraded robustness and performance of assessment models. The second challenge is
the lack of using rich and relevant knowledge of (vulnerable) source code that can result
in untimely SV assessment. The third challenge is the negligence of incorporating devel-
opers’ needs into data-driven models that limits customized SV assessment. These three
challenges are captured in the problem statement of this thesis, which is stated as follows.

Problem statement: Practical applicability of SV assessment using data-driven
approaches is negatively affected by the changing data of SVs along with the missing
considerations/utilization of source code and developers’ real-world needs. It is
important to investigate, understand, and address these challenges to make data-
driven SV assessment more timely and applicable in practice.

1.2. Thesis Overview and Contributions 3

Challenges with the Current Data-Driven Approaches for SV Assessment

Proposed Solutions for Tackling the Current Challenges

Lack of SV Assessment

using Source Code

Chapter 4

Automated

Function-Level

SV Assessment

Chapter 5

Automated

Commit-Level

SV Assessment

Lack of SV Assessment

using Developers’ SV

Concerns in Practice

Chapter 6

Collection and Analysis of

Developers' SV Concerns

on Q&A Websites

Changing Inputs of

SV Assessment using

SV Reports

Chapter 3

Automated Report-

Level SV Assessment

with Concept Drift

Chapter 2

Literature Review

on Data-Driven

SV Assessment

Background

Key Contributions of My PhD

A Systematization of

Knowledge of Data-

Driven SV Assessment

Report-Level

Assessment for

Ever-Increasing SVs

Insights of Developers'

Real-World Concerns

Useful for SV Assessment

Early and Just-in-Time

SV Assessment using

Source Code

Figure 1.2: Overview of the thesis. Note: SV stands for Software Vul-
nerability.

The objectives of this thesis are to present and evaluate solutions to address
the lack of (1) treatment for changing SV data, (2) usage of SV-related code,
and (3) consideration of developers’ real-world SV concerns to improve the
practicality of data-driven SV assessment .

1.2 Thesis Overview and Contributions

A brief overview of the thesis is given in Fig. 1.2. The research objectives have been
realized in six chapters, which are described hereafter. While I (the author of this thesis)
am mainly responsible for research activities done in this thesis, most of the work was
conducted in collaboration with other researchers. Thus, the pronoun “we” was used in
this thesis to reflect the collaborative research efforts.

Chapter 2: Literature Review on Data-Driven SV Assessment
Chapter 2 (the purple box in Fig. 1.2) provides a background on the topic of data-driven

SV assessment for this thesis. We conduct a literature review and use thematic analysis [18]
to devise a taxonomy of the key SV assessment tasks that have been automated using data-
driven approaches. For each theme of tasks, we identify the key practices that have been
followed by the primary studies and highlighted the challenges with the current approaches
to pave the way for future research. Particularly, we pinpoint three main challenges (the
red boxes in Fig. 1.2) that potentially hinder the practical application of current data-
driven approaches for SV assessment. These challenges lead to the four proposed solutions
(the blue boxes in Fig. 1.2) in this thesis described in Chapters 3, 4, 5, and 6 below.

Chapter 3: Automated Report-Level SV Assessment with Concept Drift
Chapter 3 addresses the first challenge of changing data in the context of report-level

SV assessment. Our review in Chapter 2 has pointed out that data-driven SV assessment
tasks have been most commonly carried out using the information provided in SV reports.
Each of these reports contains an expert-verified summary of an SV, e.g., a brief description
of the type, the associated attack vectors and potential impacts if exploited. However, we
observe that the content of these reports continuously changes in practice as experts usually
need to use different/new terms to describe newly introduced SVs. Such issue is referred

4 Chapter 1. Introduction

to as concept drift [19] that can degrade the performance of SV assessment models over
time. However, most of the existing report-level SV assessment models have not accounted
for this concept drift issue, potentially affecting their performance when deployed in the
wild. Using more than 100,000 SV reports from NVD, Chapter 3 performs a large-scale
investigation of the prevalence and impacts of the concept drift issue on report-level SV
assessment models. Moreover, we present a novel SV assessment model that combines
characters and words extracted from SV descriptions to better capture the semantics of
new terms, increasing the model robustness against concept drift.

Chapter 4: Automated Function-Level SV Assessment
Chapter 4 addresses the second challenge, i.e., the need for SV assessment using source

code. Real-world SVs are usually rooted in source code, but Chapter 2 has found that the
current data-driven SV assessment efforts have been mainly done on the report level. While
report-level models have shown promising performance for various SV assessment tasks [20,
21, 22, 23], these models are still heavily dependent on SV reports that require expertise and
manual effort to generate. Our analysis in Chapter 4 has also found that most (97%) of the
reports used for SV assessment in the previous studies were not available at the fixing time
of respective SVs. Such unavailability of SV reports affects the timeliness of report-level
SV assessment in practice. A promising alternative is to directly utilize vulnerable code
available for SV fixing to enable earlier SV assessment. Thus, in Chapter 4, we propose
to use (vulnerable) code functions instead of SV reports for SV assessment. Using 1,782
vulnerable functions curated from 200 open-source projects, we particularly investigate
the use of different code parts (i.e., (non-)vulnerable statements) in these functions for
building effective function-level SV assessment models. To the best of our knowledge, we
are the first to distill practices of performing data-driven SV assessment using source code.
Such an approach can enable earlier fixing prioritization of SVs than the report-level SV
assessment counterpart.

Chapter 5: Automated Commit-Level SV Assessment
Chapter 5 extends the work in Chapter 4 by addressing another practical scenario of

code-based SV assessment. In real-world software development, developers have increas-
ingly adopted DevOps for continuous integration, in which incremental changes are made
to codebases via code commits to implement new features or fix bugs/SVs [24]. Meneely et
al. [25] showed that such code commits/changes can introduce SVs. However, it is wastage
of resources to use function-level SV assessment for these cases because functions are often
not entirely changed/added in code commits [26]. Instead, performing SV assessment di-
rectly on these changes enables just-in-time, i.e., as soon as SVs are introduced, provision of
SV characteristics for SV fixing. To the best of our knowledge, just-in-time SV assessment
using code commits has never been explored. Therefore, in Chapter 5, we propose Deep-
CVA, the first model that automates commit-level SV assessment. This model leverages
the multi-task DL paradigm [27] to automate various SV assessment tasks simultaneously
in a unified model. We evaluate the effectiveness and efficiency of DeepCVA on 1,229
vulnerability-contributing commits in 246 open-source projects. DeepCVA is expected to
increase the efficiency in model (re-)training and maintenance for continuous integration
using DevOps in practice compared to conventional task-wise models.

Chapter 6: Collection and Analysis of Developers’ SV Concerns on Question
and Answer Websites

Chapter 6 tackles the third challenge of lacking considerations of developers’ real-world
SV concerns for SV assessment. Most of the current data-driven models, including the
ones in Chapter 3, 4, and 5, have automated the SV assessment tasks that are based

1.3. Related Publications 5

on the expert-defined SV taxonomies/standards such as Common Weakness Enumeration
(CWE) [28] or Common Vulnerability Scoring System (CVSS) [29]. While these taxonomies
are designed to be as general as possible, they may not well represent the SV-related
concerns that developers regularly have. For instance, developers often encounter only a
small subset of SVs/SV types rather than all available ones; these SVs should be given
a higher priority during SV assessment as they are of more use/interest to developers.
Chapter 6 conducts the first empirical study on developers’ real-world SV concerns using
more than 70,000 SV-related posts curated from Question and Answer (Q&A) websites. We
use the Latent Dirichlet Allocation topic modeling technique [30] to identify the commonly
encountered issues. We then characterize these posts in terms of their popularity, difficulty,
provided expertise, and available solutions. We also provide implications on leveraging such
characteristics for making (data-driven) SV assessment more practical.

The key contributions of this thesis (the green boxes in Fig. 1.2) from the six afore-
mentioned chapters are summarized as follows.

1. A systematization of knowledge of data-driven SV assessment (Chapter 2):
(i) A taxonomy of five SV assessment tasks. (ii) Detailed analysis of the pros and
cons of frequent data sources, features, prediction models, evaluation techniques and
evaluation metrics used for developing data-driven SV assessment models. (iii) Three
key challenges limiting the practical application of data-driven SV assessment.

2. Report-level assessment for ever-increasing SVs (Chapter 3). (i) Impact
analysis of changing data (concept drift) of SV reports on the development and
evaluation of SV assessment models. (ii) Concept-drift-aware models for automating
report-level SV assessment.

3. Early and just-in-time SV assessment using source code (Chapters 4 and 5).
(i) Practices of developing effective data-driven models using vulnerable code state-
ments and context in functions for early SV assessment without delays caused by
missing SV reports. (ii) Just-in-time and efficient SV assessment using code com-
mits (where SVs are first added) with deep multi-task learning.

4. Insights of developers’ real-world concerns that are useful for SV assess-
ment (Chapter 6). (i) A taxonomy of 13 key SV concerns commonly encountered
by developers in practice. (ii) Analysis of popularity, difficulty, expertise level, solu-
tions provided for these real-world concerns. (iii) Implications of these concerns and
their characteristics for practical data-driven SV assessment.

1.3 Related Publications

All of the core chapters and contributions of this thesis have been published during my
PhD candidature. The list of directly related publications with respect to each chapter is
given below.

1 Triet Huynh Minh Le, Huaming Chen, and Muhammad Ali Babar, “A Survey
on Data-Driven Software Vulnerability Assessment and Prioritization,” ACM Computing
Surveys (CSUR), 2021. [CORE ranking: rank A*, Impact factor (2020): 10.282, SJR
rating: Q1] (Chapter 2)

2 Triet Huynh Minh Le and Muhammad Ali Babar, “On the Use of Fine-Grained
Vulnerable Code Statements for Software Vulnerability Assessment Models”, in Proceedings

6 Chapter 1. Introduction

of the 19th International Conference on Mining Software Repositories (MSR). ACM, 2022.
[CORE ranking: rank A, Acceptance rate: 34%] (Chapter 3)

3 Triet Huynh Minh Le, Bushra Sabir, and Muhammad Ali Babar, “Automated
Software Vulnerability Assessment with Concept Drift,” in Proceedings of the 16th Inter-
national Conference on Mining Software Repositories (MSR). IEEE, 2019, pp. 371–382.
[CORE ranking: rank A, Acceptance rate: 25%] (Chapter 4)

4 Triet Huynh Minh Le, David Hin, Roland Croft, and Muhammad Ali Babar, “Deep-
CVA: Automated Commit-Level Vulnerability Assessment with Deep Multi-Task Learn-
ing,” in Proceedings of the 36th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2021, pp. 717–729. [CORE ranking: rank A*, Acceptance
rate: 19%] (Chapter 5)

5 Triet Huynh Minh Le, David Hin, Roland Croft, and Muhammad Ali Babar,
“PUMiner: Mining Security Posts from Developer Question and Answer Websites with
PU Learning,” in Proceedings of the 17th International Conference on Mining Software
Repositories (MSR). ACM, 2020, pp. 350–361. [CORE ranking: rank A, Acceptance
rate: 25.7%] (Chapter 6)

6 Triet Huynh Minh Le, Roland Croft, David Hin, and Muhammad Ali Babar, “A
Large-Scale Study of Security Vulnerability Support on Developer Q&A Websites,” in
Proceedings of the 25th Evaluation and Assessment in Software Engineering (EASE). ACM,
2021, pp. 109–118. [CORE ranking: rank A, Acceptance rate: 27%, Nominated for
the Best Paper Award] (Chapter 6)

In addition to the six aforementioned publications, I contributed as the first author
or coauthor of the following two publications during my PhD candidature, which are not
directly related to the materials in this thesis.

7 Triet Huynh Minh Le, Hao Chen, and Muhammad Ali Babar, “Deep Learning
for Source Code Modeling and Generation: Models, Applications, and Challenges,” ACM
Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–38, 2020. [CORE ranking: rank A*,
Impact factor (2020): 10.282, SJR rating: Q1, High-impact research work selected by
Faculty of Engineering, Computer & Mathematical Sciences at the University of Adelaide.]

8 Xuanyu Duan, Mengmeng Ge, Triet Huynh Minh Le, Faheem Ullah, Shang Gao,
Xuequan Lu, and Muhammad Ali Babar, “Automated Security Assessment for the Inter-
net of Things,” in 2021 IEEE 26th Pacific Rim International Symposium on Dependable
Computing (PRDC). IEEE, 2021, pp. 47–56. [CORE ranking: rank B]

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 reports a literature review
on the tasks, practices and challenges of data-driven SV assessment. Chapter 3 investigates
the impacts of the concept drift issue on report-level SV assessment models and proposes
an automated technique to address this issue. Chapter 4 explores the practices of building
function-level SV assessment models. Chapter 5 describes DeepCVA, a novel multi-task
DL model for automated commit-level SV assessment. Chapter 6 presents an empirical
study of the common SV concerns encountered by developers on Q&A websites and distills
respective implications for data-driven SV assessment. Finally, Chapter 7 summarizes the
main contributions and findings of the thesis and suggests potential research avenues for
future work in the area of data-driven SV assessment.

7

Chapter 2

Literature Review on Data-Driven
Software Vulnerability Assessment

Related publication: This chapter is based on our paper titled “A Survey on
Data-Driven Software Vulnerability Assessment and Prioritization”, published in
the ACM Computing Surveys journal (CORE A*) [11].

As mentioned in Chapter 1, Software Vulnerabilities (SVs) are increasing in complexity
and scale, posing great security risks to many software systems. Given the limited resources
in practice, SV assessment1 help practitioners devise optimal SV mitigation plans based on
various SV characteristics. The recent surges in SV data sources and data-driven techniques
such as Machine Learning and Deep Learning have taken SV assessment to the next level.
Chapter 2 provides a taxonomy of the key tasks performed by the past research efforts in
the area. We also highlight the best practices, in terms of data sources, features, prediction
models, evaluation techniques and evaluation metrics, for data-driven SV assessment. At
the end of the review, we discuss some of the current and important challenges in the field
that set the stage for the key contributions of this thesis in Chapters 3, 4, 5 and 6.

1In the original review paper [11], we used the term SV assessment and prioritization instead of SV
assessment. However, in Chapter 2, the term SV assessment is used to ensure consistency with the other
parts of the thesis, and it is important to note that SV assessment and SV assessment and prioritization
can be used interchangeably as most SV assessment tasks can be used for prioritizing SV fixing.

8 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

2.1 Introduction

As discussed in Chapter 1, Software Vulnerability (SV) assessment is required to prior-
itize the remediation of critical SVs (i.e., the ones that can lead to devastating cyber-
attacks) [10]. SV assessment includes tasks that determine various characteristics such as
the types, exploitability, impact and severity levels of SVs [31]. Such characteristics help
understand and select high-priority SVs to resolve early given the limited effort and re-
sources. For example, SVs with simple exploitation and severe impacts likely require high
fixing priority.

There has been an active research area to assess and prioritize SVs using increas-
ingly large data from multiple sources. Many studies in this area have proposed different
Natural Language Processing (NLP), Machine Learning (ML) and Deep Learning (DL)
techniques to leverage such data to automate various tasks such as predicting the Com-
mon Vulnerability Scoring System [29] (CVSS) metrics (e.g., [23, 22, 21]) or public exploits
(e.g., [32, 33, 34]). These prediction models can learn the patterns automatically from vast
SV data, which would be otherwise impossible to do manually. Such patterns are utilized
to speed up the assessment processes of ever-increasing and more complex SVs, signifi-
cantly reducing practitioners’ effort. Despite the rising research interest in data-driven SV
assessment, to the best of our knowledge, there has been no comprehensive review on the
state-of-the-art methods and existing challenges in this area. To bridge this gap, we are
the first to review in-depth the research studies that automate data-driven SV assessment
tasks leveraging SV data and NLP/ML/DL techniques.

The contributions of our review are summarized as follows:

1. We categorize and describe the key tasks of data-driven SV assessment performed in
relevant primary studies.

2. We synthesize and discuss the pros and cons of data, features, models, evaluation
methods and metrics commonly used in the reviewed studies.

3. We highlight some key challenges with the current practices.

We believe that our findings can provide useful guidelines for researchers and practitioners
to effectively utilize data to perform SV assessment.
Related Work. There have been several existing surveys/reviews on SV analysis and
prediction, but they are fundamentally different from ours (see Table 2.1). Ghaffarian et
al. [3] conducted a seminal survey on ML-based SV analysis and discovery. Subsequently,
several studies [35, 36, 37, 38] reviewed DL techniques for detecting vulnerable code. How-
ever, these prior reviews did not describe how ML/DL techniques can be used to assess
and prioritize the detected SVs. There have been other relevant reviews on using Open
Source Intelligence (OSINT) (e.g., phishing or malicious emails/URLs/IPs) to make in-
formed security decisions [39, 40, 41]. However, these OSINT reviews did not explicitly
discuss the use of SV data and how such data can be leveraged to automate the assessment
processes. Moreover, most of the reviews on SV assessment have focused on either static
analysis tools [13] or rule-based approaches (e.g., expert systems or ontologies) [9]. These
methods rely on pre-defined patterns and struggle to work with new types and different
data sources of SVs compared to contemporary ML or DL approaches presented in this
chapter [14, 15, 42]. Recently, Dissanayake et al. [43] reviewed the socio-technical chal-
lenges and solutions for security patch management that involves SV assessment after SV
patches are identified. Unlike [43], we focus on the challenges, solutions and practices of
automating various SV assessment tasks with data-driven techniques. We also consider all
types of SV assessment regardless of the patch availability.

2.2. Overview of the Literature Review 9

Table 2.1: Comparison of contributions between our review and the ex-
isting related surveys/reviews.

Study

Contribution
Focus on SV
assessment

Analysis of SV
data sources

Analysis of data-
driven approaches

Ghaffarian et al. 2017 [3] – – ✓(Mostly ML)
Lin et al. 2020 [38]
Semasaba et al. 2020 [37]
Singh et al. 2020 [36]
Zeng et al. 2020 [35]

– – ✓(Mostly DL)

Pastor et al. 2020 [39] – ✓(OSINT) –
Sun et al. 2018 [41]
Evangelista et al. 2020 [40] – ✓(OSINT) ✓

Khan et al. 2018 [9] ✓(Rule-based methods) – –
Kritikos et al.
2019 [13]

✓(Static analysis) ✓ –

Dissanayake et al.
2020 [43]

✓(Socio-technical aspects) – –

Our review ✓ ✓ ✓

Chapter Organization. The remainder of the chapter is organized as follows. Sec-
tion 2.2 presents the scope, methodology and taxonomy covered in this chapter. Sec-
tions 2.3, 2.4, 2.5, 2.6 and 2.7 review the studies in each theme of the taxonomy and
discuss the limitations/gaps and open opportunities at the end of each theme. Section 2.8
identifies and discusses the common practices and respective implications for data-driven
SV assessment. Finally, section 2.9 concludes the review and discusses the open challenges
of this research area.

2.2 Overview of the Literature Review

2.2.1 Scope

This review’s focus is on data-driven SV assessment. Unlike the existing surveys on rule-
based or experience-based SV assessment [13, 9, 43] that hardly utilize the potential of
SV data in the wild, this chapter aims to review research papers that have leveraged such
data to automate tasks in this area using data-driven models. To keep our focus, we
do not consider papers that only perform manual analyses or descriptive statistics (e.g.,
taking mean/median/variation of data) without using any data-driven models as these
techniques cannot automatically assess or prioritize new SVs. We also do not directly
compare the absolute performance of all the related studies as they did not use exactly
the same experimental setup (e.g., data sources and model configurations). While it is
theoretically possible to perform a comparative evaluation of the identified techniques
by establishing and using a common setup, this type of evaluation is out of the scope
of this chapter. However, we still cover the key directions/techniques of the studies in
sections 2.3, 2.4, 2.5, 2.6 and 2.7. We also provide in-depth discussion on the common
practices of these studies in section 2.8 and identify some current challenges with the field
in section 2.9.

2.2.2 Methodology

Study selection. Our study selection was inspired by the Systematic Literature Re-
view guidelines [44]. We first designed the search string: “‘software’ AND vulner* AND
(learn* OR data* OR predict*) AND (priority* OR assess* OR impact* OR exploit* OR
severity*) AND NOT (fuzz* OR dynamic* OR intrusion OR adversari* OR malware* OR
‘vulnerability detection’ OR ‘vulnerability discovery’ OR ‘vulnerability identification’ OR
‘vulnerability prediction’)”. This search string covered the key papers (i.e., with more than

10 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.2: Inclusion and exclusion criteria for study selection. Notes:
We did not limit the selection to only peer-reviewed papers as this is an
emerging field with many (high-quality) papers on Arxiv and most of them
are under-submission. However, to ensure the quality of the papers on

Arxiv, we only selected the ones with at least one citation.

Inclusion criteria
• I1. Studies that focused on SVs rather than hardware or human vulnerabilities
• I2. Studies that focused on assessment task(s) of SVs
• I3. Studies that used data-driven approaches (e.g., ML/DL/NLP techniques) for SV
assessment
Exclusion criteria
• E1. Studies that were not written in English
• E2. Studies that we could not retrieve their full texts
• E3. Studies that were not related to Computer Science
• E4. Studies that were literature review or survey
• E5. Studies that only performed statistical analysis of SV assessment metrics
• E6. Studies that only focused on (automated) collection of SV data

50 citations) in the area and excluded many papers on general security and SV detec-
tion. We then adapted this search string2 to retrieve an initial list of 1,765 papers up to
April 20213 from various commonly used databases such as IEEE Xplore, ACM Digital
Library, Scopus, SpringerLink and Wiley. We also defined the inclusion/exclusion crite-
ria (see Table 2.2) to filter out irrelevant/low-quality studies with respect to our scope in
section 2.2.1. Based on these criteria and the titles and abstracts and keywords of 1,765
initial papers, we removed 1,550 papers. After reading the full-text and applying the cri-
teria on the remaining 215 papers, we obtained 70 papers directly related to data-driven
SV assessment. To further increase the coverage of studies, we performed backward and
forward snowballing [45] on these 70 papers (using the above sources and Google Scholar)
and identified 14 more papers that satisfied the inclusion/exclusion criteria. In total, we
included 84 studies in our review. We do not claim that we have collected all the papers
in this area, but we believe that our selection covered most of the key studies to unveil the
practices of data-driven SV assessment.
Data extraction and synthesis of the selected studies. We followed the steps of
thematic analysis [18] to identify the taxonomy of data-driven SV assessment tasks in
sections 2.3, 2.4, 2.5, 2.6 and 2.7 as well as the key practices of data-driven model building
for automating these tasks in section 2.8. We first conducted a pilot study of 20 papers
to familiarize ourselves with data to be extracted from the primary studies. After that,
we generated initial codes and then merged them iteratively in several rounds to create
themes. Two of the authors performed the analysis independently, in which each author
analyzed half of the selected papers and then reviewed the analysis output of the other
author. Any disagreements were resolved through discussions.

2.2.3 Taxonomy of Data-Driven Software Vulnerability Assessment

Based on the scope in section 2.2.1 and the methodology in section 2.2.2, we identified
five main themes of the relevant studies in the area of data-driven SV assessment (see

2This search string was customized for each database and the database-wise search strings can be found
at https://figshare.com/s/da4d238ecdf9123dc0b8.

3Given the ever-growing nature of this field, we maintain an up-to-date list of papers and resources
on data-driven SV assessment at https://github.com/lhmtriet/awesome-vulnerability-assessment.
More details are also given in Appendix 2.10.

https://figshare.com/s/da4d238ecdf9123dc0b8
https://github.com/lhmtriet/awesome-vulnerability-assessment

2.3. Exploitation Prediction 11

So
ft

w
ar

e
V

u
ln

er
ab

il
it

y
A

ss
es

sm
en

t
T

as
k

s

1. Exploitation

2. Impact

3. Severity

4. Type

5. Miscellaneous Tasks

Exploit Likelihood
Exploit Time
Exploit Characteristics

Confidentiality

Integrity

Availability

Scope

Custom Vulnerability Consequences

Severe vs. Non-severe

Score

Levels

Common Weakness Enumeration (CWE)

Custom Vulnerability Types

Vulnerability Information Retrieval

Cross-source Vulnerability Patterns

Vulnerability Fixing Effort

Themes Sub-themes

Figure 2.1: Taxonomy of studies on data-driven SV assessment.

Figure 2.1). Specifically, we extracted the themes by grouping related SV assessment tasks
that the reviewed studies aim to automate/predict using data-driven models. Note that a
paper is categorized into more than one theme if that paper develops models for multiple
cross-theme tasks.

We acknowledge that there can be other ways to categorize the studies. However, we
assert the reliability of our taxonomy as all of our themes (except theme 5) align with the
security standards used in practice. For example, Common Vulnerability Scoring System
(CVSS) [29] provides a framework to characterize exploitability, impact and severity of SVs
(themes 1-3), while Common Weakness Enumeration (CWE) [28] includes many vulnera-
bility types (theme 4). Hence, we believe our taxonomy can help identify and bridge the
knowledge gap between the academic literature and industrial practices, making it relevant
and potentially beneficial for both researchers and practitioners. Details of each theme in
our taxonomy are covered in subsequent sections.

2.3 Exploitation Prediction

This section covers the Exploitation theme that automates the detection and understand-
ing of both Proof-of-Concept (PoC) and real-world exploits4 targeting identified SVs. This
theme outputs the origin of SVs and how/when attackers would take advantage of such

4An exploit is a piece of code used to compromise vulnerable software [33]. Real-world exploits are
harmful & used in real host/network-based attacks. PoC exploits are unharmful & used to show the
potential threats of SVs in penetration tests.

12 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.3: List of the reviewed papers in the Exploit Likelihood sub-theme
of the Exploitation theme. Note: The nature of task of this sub-theme is
binary classification of existence/possibility of proof-of-concept and/or real-

world exploits.

Study Data source Data-driven technique
Bozorgi
et al.
2010 [32]

CVE, Open Source Vulnerability Database (OS-
VDB)

Linear Support Vector Machine (SVM)

Sabottke
et al.
2015 [33]

NVD, Twitter, OSVDB, ExploitDB, Symantec
security advisories, private Microsoft security
advisories

Linear SVM

Edkrantz
et al.
2015 [46,
47]

NVD, Recorded Future security advisories, Ex-
ploitDB

Naïve Bayes, Linear SVM, Random
forest

Bullough
et al.
2017 [34]

NVD, Twitter, ExploitDB Linear SVM

Almukaynizi
et
al. [48, 49]

NVD, ExploitDB, Zero Day Initiative security
advisories & Darkweb forums/markets

SVM, Random forest, Naïve Bayes,
Bayesian network, Decision tree, Lo-
gistic regression

Xiao et al.
2018 [50]

NVD, SecurityFocus security advisories, Syman-
tec
Spam/malicious activities based on daily black-
lists from abuseat.org, spamhaus.org, spam-
cop.net, uceprotect.net, wpbl.info & list of un-
patched SVs in hosts

Identification of malicious activity
groups with community detection al-
gorithms + Random forest for exploit
prediction

Tavabi
et al.
2018 [51]

NVD, 200 sites on Darkweb, ExploitDB,
Symantec, Metasploit

Paragraph embedding + Radial basis
function kernel SVM

de Sousa
et al.
2020 [52]

NVD, Twitter, ExploitDB, Symantec
Avast, ESET, Trend Micro security advisories

Linear SVM, Logistic regression, XG-
Boost, Light Gradient Boosting Ma-
chine (LGBM)

Fang et al.
2020 [53]

NVD, ExploitDB, SecurityFocus, Symantec fastText + LGBM

Huang
et al.
2020 [54]

NVD, CVE Details, Twitter, ExploitDB,
Symantec security advisories

Random forest

Jacobs
et al.
2020 [55]

NVD, Kenna Security
Exploit sources: Exploit DB, Metasploit, Forti-
Guard Labs, SANS Internet Storm Center, Se-
curewords CTU, Alienvault OSSIM, Canvas/D2
Security’s Elliot Exploitation Frameworks, Con-
tagio, Reversing Labs

XGBoost

Yin et al.
2020 [56]

NVD, ExploitDB, General text: Book Corpus
& Wikipedia for pretraining BERT models

Fine-tuning BERT models pretrained
on general text

Bhatt et al.
2021 [57]

NVD, ExploitDB Features augmented by SV types +
Decision tree, Random forest, Naïve
Bayes, Logistic regression, SVM

Suciu et al.
2021 [58]

NVD, Vulners database, Twitter, Symantec, Se-
curityFocus, IBM X-Force Threat Intelligence
Exploit sources: ExploitDB, Metasploit, Can-
vas, D2 Security’s Elliot, Tenable, Skybox,
AlienVault, Contagio

Multi-layer perceptron

Younis
et al.
2014 [59]

Vulnerable functions from NVD (Apache HTTP
Server project), ExploitDB, OSVDB

SVM

Yan et al.
2017 [60]

Executables (binary code) of 100 Linux applica-
tions

Combining ML (Decision tree) output
& fuzzing with a Bayesian network

Tripathi
et al.
2017 [61]

Program crashes from VDiscovery [62, 63] &
LAVA [64] datasets

Static/Dynamic analysis features +
Linear/Radial basis function kernel
SVM

Zhang
et al.
2018 [65]

Program crashes from VDiscovery [62, 63]
dataset

n-grams of system calls from execu-
tion traces + Online passive-aggressive
classifier

2.3. Exploitation Prediction 13

SVs to compromise a system of interest, assisting practitioners to quickly react to the
more easily exploitable or already exploited SVs. The papers in this theme can be catego-
rized into three groups/sub-themes: (i) Exploit likelihood, (ii) Exploit time, (iii) Exploit
characteristics, as given in Tables 2.3, 2.4 and 2.5, respectively.

2.3.1 Summary of Primary Studies

2.3.1.1 Exploit Likelihood

The first sub-theme is exploit likelihood that predicts whether SVs would be exploited in the
wild or PoC exploits would be released publicly (see Table 2.3). In 2010, Bozorgi et al. [32]
were the first to use SV descriptions on Common Vulnerabilities and Exposures (CVE) [66]
and Open Source Vulnerability Database (OSVDB)5 to predict exploit existence based on
the labels on OSVDB. In 2015, Sabottke et al. [33] conducted a seminal study that used
Linear SVM and SV information on Twitter to predict PoC exploits on ExploitDB [67]
as well as real-world exploits on OSVDB, Symantec’s attack signatures [68] and private
Microsoft’s security advisories [69]. These authors urged to explicitly consider real-world
exploits as not all PoC exploits would result in exploitation in practice. They also showed
SV-related information on Twitter6 can enable earlier detection of exploits than using
expert-verified SV sources (e.g., NVD).

Built upon these two foundational studies [32, 33], the literature has mainly aimed to
improve the performance and applicability of exploit prediction models by leveraging more
exploit sources and/or better data-driven techniques/practices. Many researchers [47, 46,
48, 51, 49, 55] increased the amount of ground-truth exploits using extensive sources other
than ExploitDB and Symantec in [32, 33]. The sources were security advisories such as
Zero Day Initiative [70], Metasploit [71], SecurityFocus [72], Recorded Future [73], Kenna
Security [74], Avast7, ESET [75], Trend Micro [76], malicious activities in hosts based on
traffic of spam/malicious IP addresses [50] and Darkweb sites/forums/markets [77]. In
addition to enriching exploit sources, better data-driven models and practices for exploit
prediction were also studied. Ensemble models (e.g., Random forest, eXtreme Gradient
Boosting (XGBoost) [78], Light Gradient Boosting Machine (LGBM) [79]) were shown
to outperform single-model baselines (e.g., Naïve Bayes, SVM, Logistic regression and
Decision tree) for exploit prediction [53, 55, 52, 54]. Additionally, Bullough et al. [34]
identified and addressed several issues with exploit prediction models, e.g., time sensitivity
of SV data, already-exploited SVs before disclosure and training data imbalance, helping
to improve the practical application of such models. Recently, Yin et al. [56] demon-
strated that transfer learning is an alternative solution for improving the performance of
exploit prediction with scarcely labeled exploits. Specifically, these authors pre-trained a
DL model, BERT [80], on massive non-SV sources (e.g., text on Book Corpus [81] and
Wikipedia [82]) and then fine-tuned this pre-trained model on SV data using additional
pooling and dense layers. Bhatt et al. [57] also suggested that incorporating the types of
SVs (e.g., SQL injection) into ML models can further enhance the predictive effectiveness.
Suciu et al. [58] empirically showed that unifying SV-related sources used in prior work
(e.g., SV databases [32], social media [33], SV-related discussions [51] and PoC code in
ExploitDB [55]) supports more effective and timely prediction of functional exploits [83].

Besides using SV descriptions as input for exploit prediction, several studies in this
sub-theme have also predicted exploits on the code level. Younis et al. [59] predicted the
exploitability of vulnerable functions in the Apache HTTP Server project. Specifically,

5http://osvdb.org. Note that this database has been discontinued since 2016.
6https://twitter.com
7https://avast.com/exploit-protection.php. This link was provided by de Sousa et al. [52], but it

is no longer available.

http://osvdb.org
https://twitter.com
https://avast.com/exploit-protection.php

14 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.4: List of the reviewed papers in the Exploit Time sub-theme of
the Exploitation theme.

Study Nature of task Data source Data-driven tech-
nique

Bozorgi
et al.
2010 [32]

Binary classification: Likeli-
hood that SVs would be ex-
ploited within 2 to 30 days af-
ter disclosure

CVE, OSVDB Linear SVM

Edkrantz
2015 [46]

Binary classification: Likeli-
hood of SV exploits within 12
months after disclosure

NVD, ExploitDB,
Recorded Future secu-
rity advisories

SVM, K-Nearest
Neighbors (KNN),
Naïve Bayes, Random
forest

Jacobs
et al.
2019 [90,
91]

NVD, Kenna Security
Exploit sources: Exploit
DB, Metasploit, D2 Se-
curity’s Elliot & Canvas
Exploitation Frameworks,
Fortinet, Proofpoint,
AlienVault & GreyNoise

Logistic regression

Chen et al.
2019 [92,
93]

Binary classification: Like-
lihood that SVs would be
exploited within 1/3/6/9/12
months after disclosure
Regression: number of days
until SV exploits after disclo-
sure

CVE, Twitter, ExploitDB,
Symantec security advi-
sories

Graph neural network
embedding + Linear
regression, Bayes, Ran-
dom forest, XGBoost,
Lasso/Ridge regression

these authors used an SVM model with features extracted from the dangerous system
calls [84] in entry points/functions [85] and the reachability from any of these entry points
to vulnerable functions [86]. Moving from high-level to binary code, Yan et al. [60] first
used a Decision tree to obtain prior beliefs about SV types in 100 Linux applications using
static features (e.g., hexdump) extracted from executables. Subsequently, they applied
various fuzzing tools (i.e., Basic Fuzzing Framework [87] and OFuzz [88]) to detect SVs with
the ML-predicted types. They finally updated the posterior beliefs about the exploitability
based on the outputs of the ML model and fuzzers using a Bayesian network. The proposed
method outperformed !exploitable,8 a static crash analyzer provided by Microsoft. Tripathi
et al. [61] also predicted SV exploitability from crashes (i.e., VDiscovery [62, 63] and
LAVA [64] datasets) using an SVM model and static features from core dumps and dynamic
features generated by the Last Branch Record hardware debugging utility. Zhang et al. [65]
proposed two improvements to Tripathi et al. [61]’s approach. These authors first replaced
the hardware utility in [61] that may not be available for resource-constrained devices (e.g.,
IoT) with sequence/n-grams of system calls extracted from execution traces. They also
used an online passive-aggressive classifier [89] to enable online/incremental learning of
exploitability for new crash batches on-the-fly.

2.3.1.2 Exploit Time

After predicting the likelihood of SV exploits in the previous sub-theme, this sub-theme
provides more fine-grained information about exploit time (see Table 2.4). Besides perform-
ing binary classification of exploits, Bozorgi et al. [32] and Edkrantz [46] also predicted the
time frame (2-30 days in [32] and 12 months in [46]) within which exploits would happen
after the disclosure of SVs. Jacobs et al. [90, 91] then leveraged multiple sources con-
taining both PoC and real-world exploits, as given in Table 2.4, to improve the number of
labeled exploits, enhancing the prediction of exploit appearance within 12 months. Chen et
al. [92] predicted whether SVs would be exploited within 1-12 months and the exploit time
(number of days) after SV disclosure using Twitter data. The authors proposed a novel
regression model whose feature embedding was a multi-layer graph neural network [94]

8https://microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6

https://microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6

2.3. Exploitation Prediction 15

capturing the content and relationships among tweets, respective tweets’ authors and SVs.
The proposed model outperformed many baselines and was integrated into the VEST sys-
tem [93] to provide timely SV assessment information for practitioners. To the best of our
knowledge, at the time of writing, Chen et al. [92, 93] have been the only ones pinpointing
the exact exploit time of SVs rather than large/uncertain time-frames (e.g., months) in
other studies, helping practitioners to devise much more fine-grained remediation plans.

2.3.1.3 Exploit Characteristics

Exploit characteristics is the final sub-theme that reveals various requirements/means of
exploits (see Table 2.5), informing the potential scale of SVs; e.g., remote exploits likely
affect more systems than local ones. The commonly used outputs are the Exploitability
metrics provided by versions 2 [110] and 3 [111, 83] of Common Vulnerability Scoring
System (CVSS).

Many studies have focused on predicting and analyzing version 2 of CVSS exploitability
metrics (i.e., Access Vector, Access Complexity and Authentication). Yamamoto et al. [95]
were the first one to leverage descriptions of SVs on NVD together with a supervised Latent
Dirichlet Allocation topic model [112] to predict these CVSS metrics. Subsequently, Wen
et al. [96] used Radial Basis Function (RBF)-kernel SVM and various SV databases/ad-
visories other than NVD (e.g., SecurityFocus, OSVDB and IBM X-Force [113]) to predict
the metrics. Le et al. [23]9 later showed that the prediction of CVSS metrics suffered
from the concept drift issue; i.e., descriptions of new SVs may contain Out-of-Vocabulary
terms for prediction models. They proposed to combine sub-word features with traditional
Bag-of-Word (BoW) features to infer the semantics of novel terms/words from existing
ones, helping assessment models be more robust against concept drift. Besides prediction,
Toloudis et al. [97] used principal component analysis [114] and Spearman’s ρ correlation
coefficient to reveal the predictive contribution of each word in SV descriptions to each
CVSS metric. However, this technique does not directly produce the value of each metric.

Recently, several studies have started to predict CVSS version 3 exploitability metrics
including the new Privileges and User Interactions. Ognawala et al. [98] fed the features
generated by a static analysis tool, Macke [99], to a Random forest model to predict these
CVSS version 3 metrics for vulnerable software/components. Later, Chen et al. [93] found
that many SVs were disclosed on Twitter before on NVD. Therefore, these authors devel-
oped a system built on top of a Graph Convolutional Network [115] capturing the content
and relationships of related Twitter posts about SVs to enable more timely prediction of
the CVSS version 3 metrics. Elbaz et al. [100] developed a linear regression model to
predict the numerical output of each metric and then obtained the respective categorical
value with the numerical value closest to the predicted value. For example, a predicted
value of 0.8 for Attack Vector CVSS v3 is mapped to Network (0.85) [111]. To prepare a
clean dataset to predict these CVSS metrics, Jiang et al. [101] replaced inconsistent CVSS
values in various SV sources (i.e., NVD, ICS CERT and vendor websites) with the most
frequent value.

Instead of building a separate model for each CVSS metric, there has been another
family of approaches predicting these metrics using a single model to increase efficiency.
Gawron et al. [102] and Spanos et al. [22] predicted multiple CVSS metrics as a unique
string instead of individual values. The output of each metric is then extracted from
the concatenated string. Later, Gong et al. [103] adopted the idea of a unified model
from the DL perspective by using the multi-task learning paradigm [116] to predict CVSS
metrics simultaneously. The model has a feature extraction module (based on a Bi-LSTM
model with attention mechanism [117]) shared among all the CVSS metrics/tasks, yet

9This study is presented in Chapter 3.

16 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.5: List of the reviewed papers in the Exploit Characteristics sub-
theme of the Exploitation theme.

Study Nature of task Data source Data-driven tech-
nique

Yamamoto
et al.
2015 [95]

Multi-class classification: CVSS v2
(Access Vector & Access Complex-
ity metrics)

Binary classification: CVSS v2
(Authentication metric)

NVD Supervised Latent
Dirichlet Allocation
(LDA)

Wen et al.
2015 [96]

NVD, OSVDB, Security-
Focus, IBM X-Force

Radial basis function
kernel SVM

Le et al.
2019 [23]

NVD Concept-drift-aware
models with Naïve
Bayes, KNN, Linear
SVM, Random forest,
XGBoost, LGBM

Toloudis
et al.
2016 [97]

Correlation analysis: CVSS v2 NVD Principal component
analysis & Spearman
correlation coefficient

Ognawala
et al.
2018 [98]

Multi-class classification: CVSS v3
(Attack Vector, Attack Complexity
& Privileges Required metrics)

Binary classification: CVSS v3
(User Interaction metric)

NVD (buffer overflow
SVs) & Source code
of vulnerable software/-
components

Combining static anal-
ysis tool (Macke [99])
& ML classifiers (Naïve
Bayes & Random for-
est)

Chen et al.
2019 [93]

CVE, NVD, Twitter Graph convolutional
network

Elbaz et al.
2020 [100]

Multi-class/Binary classification:
CVSS v2/v3

NVD Mapping outputs of
Linear regression to
CVSS metrics with
closest values

Jiang et al.
2020 [101]

NVD, ICS Cert, Vendor
websites (Resolve incon-
sistencies with a major-
ity vote)

Logistic regression

Gawron
et al.
2017 [102]

Multi-target classification: CVSS
v2

NVD Naïve Bayes, Multi-
layer Perceptron
(MLP)

Spanos
et al.
2018 [22]

NVD Random forest, boost-
ing model, Decision
tree

Gong et al.
2019 [103]

Multi-task classification: CVSS v2 NVD Bi-LSTM with atten-
tion mechanism

Chen et al.
2010 [104]

Multi-class classification:
Platform-specific vulnerability
locations (Local, Remote, Local
area network) & vulnerability
causes (e.g., Access/Input/Origin
validation error)

NVD, Secunia vulnera-
bility database, Securi-
tyFocus, IBM X-Force

Linear SVM

Ruohonen
et al.
2017 [105]

Binary classification: Web-related
exploits or not

ExploitDB LDA + Random forest

Aksu et al.
2018 [106]

Multi-class classification: author-
defined pre-/post-condition priv-
ileges (None, OS (Admin/User),
App (Admin/User))

NVD RBF network, Linear
SVM, NEAT [107],
MLP

Liu et al.
2019 [108]

NVD Information gain +
Convolutional neural
network

Kanakogi
et al.
2021 [109]

Multi-class classification: Com-
mon Attack Pattern Enumeration
and Classification (CAPEC)

NVD, CAPEC Doc2vec/tf-idf with co-
sine similarity

2.3. Exploitation Prediction 17

specific prediction head/layer for each metric/task. This model outperformed single-task
counterparts while requiring much less time to (re-)train.

Although CVSS exploitability metrics were most commonly used, several studies used
other schemes for characterizing exploitation. Chen et al. [104] used Linear SVM and
SV descriptions to predict multiple SV characteristics, including three SV locations (i.e.,
Local, LAN and Remote) on SecurityFocus [72] and Secunia [118] databases as well as 11
SV causes10 on SecurityFocus. Regarding the exploit types, Rouhonen et al. [105] used
LDA [30] and Random forest to classify whether an exploit would affect a web application.
This study can help find relevant exploits in components/sub-systems of a large system.
For privileges, Aksu et al. [106] extended the Privileges Required metric of CVSS by
incorporating the context (i.e., Operating system or Application) to which privileges are
applied (see Table 2.5). They found MLP [119] to be the best-performing model for
obtaining these privileges from SV descriptions. They also utilized the predicted privileges
to generate attack graphs (sequence of attacks from source to sink nodes). Liu et al. [108]
advanced this task by combining information gain for feature selection and Convolutional
Neural Network (CNN) [120] for feature extraction. Regarding attack patterns, Kanakogi
et al. [109] found Doc2vec [121] to be more effective than term-frequency inverse document
frequency (tf-idf) when combined with cosine similarity to find the most relevant Common
Attack Pattern Enumeration and Classification (CAPEC) [122] for a given SV on NVD.
Such attack patterns can manifest how identified SVs can be exploited by adversaries,
assisting the selection of suitable countermeasures.

2.3.2 Theme Discussion

In the Exploitation theme, the primary tasks are binary classification of whether Proof-of-
Concept (PoC)/real-world exploits of SVs would appear and multi-classification of exploit
characteristics based on CVSS. PoC exploits mostly come from ExploitDB [67]; whereas,
real-world exploits, despite coming from multiple sources, are still much scarcer than PoC
counterparts. Consequently, the models predicting real-world exploits have generally per-
formed worse than those for PoC exploits. Similarly, the performance of the models de-
termining CVSS v3 exploitability metrics has been mostly lower than that of the CVSS
v2 based models. However, real exploits and CVSS v3 are usually of more interest to
the community. The former can lead to real cyber-attacks and the latter is the current
standard in practice. To improve the performance of these practical tasks, future work can
consider adapting the patterns learned from PoC exploits and old CVSS versions to real
exploits and newer CVSS versions, respectively, e.g., using transfer learning [123].

Besides the above tasks, there are other under-explored tasks targeting fine-grained
prediction of exploits. In fact, mitigation of exploits in practice usually requires more
information besides simply determining whether an SV would be exploited. Information
gathered from predicting when and how the exploits would happen is also needed to devise
better SV fixing prioritization and mitigation plans. VEST [93] is one of the first and few
systems aiming to provide such all-in-one information about SV exploitation. However, this
system currently only uses data from NVD/CVE and Twitter, which can be extended to
incorporate more (exploit-related) sources and more sophisticated data-driven techniques
in the future.

Most of the current studies have used SV descriptions on NVD and other security
advisories to predict the exploitation-related metrics. This is surprising as SV descriptions
do not contain root causes of SVs. Instead, SVs are rooted in source code, yet there is
little work on code-based exploit prediction. So far, Younis et al. [59] have been the only

10Access/Input/Origin validation error, Atomicity/Configuration/Design/Environment/Serialization er-
ror, Boundary condition error, Failure on exceptions, Race condition error

18 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.6: List of the reviewed papers in the Impact theme. Note: We
grouped the first four sub-themes as they were mostly predicted together.

Study Nature of task Data source Data-driven technique

Sub-themes: 1. Confidentiality, 2. Integrity, 3. Availability & 4. Scope (only in CVSS v3)

Yamamoto
et al.
2015 [95]

Multi-class classification:
CVSS v2

NVD Supervised Latent Dirichlet
Allocation

Wen et al.
2015 [96]

NVD, OSVDB, Security-
Focus, IBM X-Force

Radial basis function kernel
SVM

Le et al.
2019 [23]

NVD Concept-drift-aware models
with Naïve Bayes, KNN, Lin-
ear SVM, Random forest,
XGBoost, LGBM

Toloudis
et al.
2016 [97]

Correlation analysis: CVSS
v2

NVD Principal component analysis
& Spearman correlation coef-
ficient

Ognawala
et al.
2018 [98]

Multi-class classification:
CVSS v3

Binary classification: Scope
in CVSS v3

NVD (buffer overflow
SVs) & Source code
of vulnerable software/-
components

Combining static analysis
tool (Macke [99]) & ML
classifiers (Naïve Bayes &
Random forest)

Chen et al.
2019 [93]

CVE, NVD, Twitter Graph convolutional network

Elbaz et al.
2020 [100]

Multi-class classification:
CVSS v2/v3

Binary classification: Scope
in CVSS v3

NVD Mapping outputs of Linear
regression outputs to CVSS
metrics with closest values

Jiang et al.
2020 [101]

NVD, ICS Cert, Vendor
websites (Resolve incon-
sistencies with a major-
ity vote)

Logistic regression

Gawron
et al.
2017 [102]

Multi-target classification:
CVSS v2

NVD Naïve Bayes, MLP

Spanos
et al.
2018 [22]

NVD Random forest, boosting
model, Decision tree

Gong et al.
2019 [103]

Multi-task classification:
CVSS v2

NVD Bi-LSTM with attention
mechanism

Sub-theme: 5. Custom Vulnerability Consequences

Chen et al.
2010 [104]

Multi-label classification:
Platform-specific impacts
(e.g., Gain system access)

NVD, Secunia vulnera-
bility database, Securi-
tyFocus, IBM X-Force

Linear SVM

ones using source code for exploit prediction, but their approach still requires manual
identification of dangerous function calls in C/C++. More work is required to employ
data-driven approaches to alleviate the need for manually defined rules to improve the
effectiveness and generalizability of code-based exploit prediction.

2.4 Impact Prediction

This section describes the Impact theme that determines the (negative) effects that SVs
have on a system of interest if such SVs are exploited. There are five key tasks that the
papers in this theme have automated/predicted: (i) Confidentiality impact, (ii) Integrity
impact, (iii) Availability impact, (iv) Scope and (v) Custom vulnerability consequences
(see Table 2.6).

2.4.1 Summary of Primary Studies

2.4.1.1 Confidentiality, Integrity, Availability, and Scope

A majority of the papers have focused on the impact metrics provided by CVSS, including
versions 2 [110] and 3 [111, 83]. Versions 2 and 3 share three impact metrics Confidentiality,
Integrity and Availability. Version 3 also has a new metric, Scope, that specifies whether

2.4. Impact Prediction 19

an exploited SV would affect only the system that contains the SV. For example, Scope
changes when an SV occurring in a virtual machine affects the whole host machine, in turn
increasing individual impacts.

The studies that predicted the CVSS impact metrics are mostly the same as the ones
predicting the CVSS exploitability metrics in section 2.3. Given the overlap, we hereby
only describe the main directions and techniques of the Impact-related tasks rather than
iterating the details of each study. Overall, a majority of the work has focused on clas-
sifying CVSS impact metrics (versions 2 and 3) using three main learning paradigms:
single-task [95, 96, 23, 98, 93, 100, 101], multi-target [102, 22] and multi-task [103] learn-
ing. Instead of developing a separate prediction model for each metric like the single-
task approach, multi-target and multi-task approaches only need a single model for all
tasks. Multi-target learning predicts concatenated output; whereas, multi-task learning
uses shared feature extraction for all tasks and task-specific softmax layers to determine
the output of each task. These three learning paradigms were powered by applying and/or
customizing a wide range of data-driven methods. The first method was to use single
ML classifiers like supervised Latent Dirichlet Allocation [95], Principal component analy-
sis [97], Naïve Bayes [23, 98, 102], Logistic regression [101], Kernel-based SVM [96], Linear
SVM [23], KNN [23] and Decision tree [22]. Other studies employed ensemble models
combining the strength of multiple single models such as Random forest [23, 98], boosting
model [22] and XGBoost/LGBM [23]. Recently, more studies moved towards more sophis-
ticated DL architectures such as MLP [102], attention-based (Bi-)LSTM [103] and graph
neural network [93]. Ensemble and DL models usually beat the single ones, but there is a
lack of direct comparisons between these two emerging model types.

2.4.1.2 Custom Vulnerability Consequences

To devise effective remediation strategies for a system of interest in practice, practitioners
may want to know custom vulnerability consequences which are more interpretable than
the levels of impact provided by CVSS. Chen et al. [104] curated a list of 11 vulnerability
consequences11 from X-Force [113] and Secunia [118] vulnerability databases. They then
used a Linear SVM model to perform multi-label classification of these consequences for
SVs, meaning that an SV can lead to more than one consequence. To the best of our
knowledge, this is the only study that has pursued this research direction so far.

2.4.2 Theme Discussion

In the Impact theme, the common task is to predict the impact base metrics provided
by CVSS versions 2 and 3. Similar to the Exploitation theme, the models for CVSS v3
still require more attention and effort from the community to reach the same performance
level as the models for CVSS v2. These impact metrics are also usually predicted together
with the exploitability metrics given their similar nature (multi-class classification) using
either task-wise models or a unified (multi-target or multi-task) model. Multi-target and
multi-task learning are promising as they can reduce the time for continuous (re)training
and maintenance when deployed in production.

Besides CVSS impact metrics, other fine-grained SV consequences have also been ex-
plored [104], but there is still no widely accepted taxonomy for such consequences. Thus,
these consequences have seen less adoption in practice than CVSS metrics, despite being
potentially useful by providing more concrete information about what assets/components

11Gain system access, Bypass security, Configuration manipulation, Data/file manipulation, Denial of
Service, Privilege escalation, Information leakage, Session hijacking, Cross-site scripting (XSS), Source
spoofing, Brute-force proneness.

20 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.7: List of the reviewed papers in the Severe vs. Non-Severe sub-
theme of the Severity theme. Note: The nature of task here is binary
classification of severe SVs with High/Critical CVSS v2/v3 severity levels.

Study Data source (software project) Data-driven technique
Kudjo
et al.
2019 [124]

NVD (Mozilla Firefox, Google Chrome, In-
ternet Explorer, Microsoft Edge, Sea Monkey,
Linux Kernel, Windows 7, Windows 10, Mac
OS, Chrome OS)

Term frequency & inverse gravity mo-
ment weighting + KNN, Decision tree,
Random forest

Chen et al.
2020 [125]

NVD (Adobe Flash Player, Enterprise Linux,
Linux Kernel, Foxit Reader, Safari, Windows
10, Microsoft Office, Oracle Business Suites,
Chrome, QuickTime)

Term frequency & inverse gravity mo-
ment weighting + KNN, Decision tree,
Naïve Bayes, SVM, Random forest

Kudjo
et al.
2020 [126]

NVD (Google Chrome, Mozilla Firefox, Inter-
net Explorer and Linux Kernel)

Find the best smallest training dataset
using KNN, Logistic regression, MLP,
Random forest

Malhotra
et al.
2021 [127]

NVD (Apache Tomcat) Chi-square/Information gain + bagging
technique, Random forest, Naïve Bayes,
SVM

in a system that an SV can compromise. We recommend that future work investigate
SV-related issues that practitioners commonly encounter in practice to potentially create
a systematic taxonomy of custom SV consequences.

2.5 Severity Prediction

This section discusses the work in the Severity theme. Severity is often a function/com-
bination of Exploitation (section 2.3) and Impact (section 2.4). SVs with higher severity
usually require more urgent remediation. There are three main prediction tasks in this
theme: (i) Severe vs. Non-severe, (ii) Severity levels and (iii) Severity score, shown in
Tables 2.7, 2.8 and 2.9, respectively.

Similar to the Exploitation and Impact themes, many studies in the Severity theme
have used CVSS versions 2 and 3. According to both CVSS versions, the severity score
shares the same range from 0 to 10, with an increment of 0.1. Based on the score, the
existing studies have either defined a threshold to decide whether an SV is severe (requiring
high attention), or predicted levels/groups of severity score that require a similar amount
of attention or determined the raw score value.

2.5.1 Summary of Primary Studies

2.5.1.1 Severe vs. Non-Severe

The first group of studies have classified whether an SV is severe or non-severe, making
it a binary classification problem (see Table 2.7). These studies have typically selected
severe SVs as the ones with at least High severity level (i.e., CVSS severity score ≥ 7.0).
Kudjo et al. [124] showed that using term frequency (BoW) with inverse gravity moment
weighting [128] to extract features from SV descriptions can enhance the performance of
ML models (i.e., KNN, Decision tree and Random forest) in predicting the severity of SVs.
Later, Chen et al. [125] confirmed that this feature extraction method was also effective for
more projects and classifiers (e.g., Naïve Bayes and SVM). Besides investigating feature
extraction, Kudjo et al. [126] also highlighted the possibility of finding Bellwether, i.e., the
smallest set of data that can be used to train an optimal prediction model, for classifying
severity. Recently, Malhotra et al. [127] revisited this task by showing that Chi-square
and information gain can be effective dimensionality reduction techniques for multiple
classifiers, i.e., bagging technique, Random forest, Naïve Bayes and SVM.

2.5. Severity Prediction 21

Table 2.8: List of the reviewed papers in the Severity Levels sub-theme
of the Severity theme.

Study Nature of task Data source Data-driven technique
Spanos
et al.
2017 [20]

Multi-class classification:
NVD severity levels based on
CVSS v2 & WIVSS (High,
Medium, Low)

NVD Decision tree, SVM, MLP

Wang et al.
2019 [129]

Multi-class classification: NVD
severity levels based on CVSS
v2(High, Medium, Low)

NVD (XSS attacks) XGBoost, Logistic regres-
sion, SVM, Random forest

Le et al.
2019 [23]

NVD Concept-drift-aware models
with Naïve Bayes, KNN, Lin-
ear SVM, Random forest,
XGBoost, LGBM

Liu et al.
2019 [130]

NVD, China National
Vulnerability Database
(XSS attacks)

Recurrent Convolutional
Neural Network (RCNN),
Convolutional Neural Net-
work (CNN), Long-Short
Term Memory (LSTM)

Sharma
et al.
2020 [131]

CVE Details CNN

Han et al.
2017 [21]

Multi-class classification:
Atlassian categories of CVSS
severity score (Critical, High,
Medium, Low)

CVE Details 1-layer CNN, 2-layer CNN,
CNN-LSTM, Linear SVM

Sahin et al.
2019 [132]

NVD 1-layer CNN, LSTM, XG-
Boost, Linear SVM

Nakagawa
et al.
2019 [133]

CVE Details Character-level CNN vs.
Word-based CNN + Linear
SVM

Gong et al.
2019 [103]

Multi-task classification: At-
lassian categories of CVSS
severity score (Critical, High,
Medium, Low)

CVE Details Bi-LSTM with attention
mechanism

Chen et al.
2010 [104]

Multi-class classification:
severity levels of Secu-
nia (Extremely/highly/
moderately/less/non- critical)

CVE, Secunia vulnera-
bility database, Securi-
tyFocus, IBM X-Force

Linear SVM

Zhang
et al.
2020 [134]

Multi-class classification:
Platform-specific levels (High-
/Medium/Low)

China National Vulner-
ability Database

Logistic regression, Linear
discriminant analysis, KNN,
CART, SVM, bagging/boost-
ing models

Khazaei
et al.
2016 [135]

Multi-class classification:
10 severity score bins (one
unit/bin)

CVE & OSVDB Linear SVM, Random forest,
Fuzzy system

2.5.1.2 Severity Levels

Rather than just performing binary classification of whether an SV is severe, several studies
have identified one among multiple severity levels that an SV belongs to (see Table 2.8).
This setting can be considered as multi-class classification. Spanos et al. [20] were to first
one to show the applicability of ML to classify SVs into one of the three severity levels
using SV descriptions. These three levels are provided by NVD and based on the sever-
ity score of CVSS version 2 [110] and WIVSS [136], i.e., Low (0.0 – 3.9), Medium (4.0 –
6.9), High (7.0 – 10.0). Note that WIVSS assigns different weights for the Confidential-
ity, Integrity and Availability impact metrics of CVSS, enhancing the ability to capture
varied contributions of these impacts to the final severity score. Later, Wang et al. [129]
showed that XGBoost [78] performed the best among the investigated ML classifiers for
predicting these three NVD-based severity levels. Le et al. [23] also confirmed that en-
semble methods (e.g., XGBoost [78], LGBM [79] and Random forest) outperformed single
models (e.g., Naïve Bayes, KNN and SVM) for this task. Predicting severity levels has
also been tackled with DL techniques [130, 131] such as Recurrent Convolutional Neural
Network (RCNN) [137], Convolutional Neural Network (CNN) [120], Long-Short Term
Memory (LSTM) [138]. These studies showed potential performance gain of DL models
compared to traditional ML counterparts. Han et al. [21] showed that DL techniques (i.e.,

22 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.9: List of the reviewed papers in the Severity Score sub-theme of
the Severity theme. Notes: †denotes that the severity score is computed
from ML-predicted base metrics using the formula provided by an assess-

ment framework (CVSS and/or WIVSS).

Study Nature of task Data source Data-driven technique
Sahin et al.
2019 [132]

Regression: CVSS v2
(0-10)

NVD 1-layer CNN, LSTM, XGBoost re-
gressor, Linear regression

Wen et al.
2015 [96]

OSVDB, SecurityFocus,
IBM X-Force

Radial basis function kernel SVM†

Ognawala
et al.
2018 [98]

Regression: CVSS v3
(0-10)

NVD (buffer overflow
SVs)

Combining a static analysis tool
(Macke [99]) & ML classifiers
(Naïve Bayes & Random forest)†

Chen et al.
2019 [93,
140]

CVE, NVD, Twitter Graph convolutional network

Anwar
et al.
2020 [141,
142]

NVD Linear regression, Support vector
regression, CNN, MLP

Elbaz et al.
2020 [100]

Regression: CVSS
v2/v3 (0-10)

NVD Mapping outputs of Linear regres-
sion to CVSS metrics with closest
values†

Jiang et al.
2020 [101]

NVD, ICS Cert, Vendor
websites (Resolve incon-
sistencies with a major-
ity vote)

Logistic regression†

Spanos
et al.
2018 [22]

Regression: CVSS v2
& WIVSS (0-10)

NVD Random forest, boosting model,
Decision tree†

Toloudis
et al.
2016 [97]

Correlation analysis:
CVSS v2 & WIVSS
(0-10)

NVD Principal component analysis &
Spearman correlation coefficient

1-layer CNN) also achieved promising results for predicting a different severity categoriza-
tion, namely Atlassian’s levels.12 Such findings were successfully replicated by Sahin et
al. [132]. Nakagawa et al. [133] further enhanced the DL model performance for the same
task by incorporating the character-level features into a CNN model [139]. Complementary
to performance enhancement, Gong et al. [103] proposed to predict these severity levels
concurrently with other CVSS metrics in a single model using multi-task learning [116]
powered by an attention-based Bi-LSTM shared feature extraction model. The unified
model was demonstrated to increase both the prediction effectiveness and efficiency. Be-
sides Atlassian’s categories, several studies applied ML models to predict severity levels on
other platforms such as Secunia [104] and China National Vulnerability Database13 [134].
Instead of using textual categories, Khazaei et al. [135] divided the CVSS severity score
into 10 bins with 10 increments each (e.g., values of 0 – 0.9 are in one bin) and obtained
decent results (86-88% Accuracy) using Linear SVM, Random forest and Fuzzy system.

2.5.1.3 Severity Score

To provide even more fine-grained severity value than the categories, the last sub-theme
has predicted the severity score (see Table 2.9). Using SV descriptions on NVD, Sahin
et al. [132] compared the performance of ML-based regressors (e.g., XGBoost [78] and
Linear regression) and DL-based ones (e.g., CNN [120] and LSTM [138]) for predicting the
severity score of CVSS version 2 [110]. These authors showed that DL-based approaches
generally outperformed the ML-based counterparts. For CVSS version 3 [111, 83], Chen et
al. [93, 140] and Anwar et al. [141, 142] also reported the strong performance of DL-based
models (e.g., CNN and graph convolutional neural network [115]). Some other studies

12https://www.atlassian.com/trust/security/security-severity-levels
13https://www.cnvd.org.cn

https://www.atlassian.com/trust/security/security-severity-levels
https://www.cnvd.org.cn

2.6. Type Prediction 23

did not directly predict severity score from SV descriptions, instead they aggregated the
predicted values of the CVSS Exploitability (see section 2.3) and Impact metrics (see
section 2.4) using the formulas of CVSS version 2 [96, 22, 100, 101], version 3 [98, 100, 101]
and WIVSS [22]. We noticed the papers predicting both versions (e.g., CVSS versions 2
vs. 3 or CVSS version 2 vs. WIVSS) usually obtained better performance for version 3
and WIVSS than version 2 [100, 101]. These findings may suggest that the improvements
made by experts in version 3 and WIVSS compared to version 2 help make the patterns
in severity score clearer and easier for ML models to capture. In addition to predicting
severity score, Toloudis et al. [97] examined the correlation between words in descriptions
of SVs and the severity values of such SVs, aiming to shed light on words that increase or
decrease the severity score of SVs.

2.5.2 Theme Discussion

In the Severity theme, predicting the severity levels is the most prevalent task, followed
by severity score prediction and then binary classification of the severity. In practice,
severity score gives more fine-grained information (fewer SVs per value) for practitioners
to rank/prioritize SVs than categorical/binary levels. However, predicting continuous score
values is usually challenging and requires more robust models as this task involves higher
uncertainty to learn inherent patterns from data than classifying fixed/discrete levels.
We observed that DL models such as graph neural networks [93, 140], LSTM [132] and
CNN [141, 142] have been shown to be better than traditional ML models for predicting
severity score. However, most of these studies did not evaluate their models in a continuous
deployment setting to investigate how the models will cope with changing patterns of new
SVs over time. This issue particularly manifests and requires remediation in the context
of report-level SV assessment (see section 2.9) where SV descriptions, the main input for
SV assessment models, contain changing/new terms to describe ever-increasing SVs.

2.6 Type Prediction
This section reports the work done in the Type theme. Type groups SVs with similar
characteristics, e.g., causes, attack patterns and impacts, and thus facilitating the reuse of
known prioritization and remediation strategies employed for prior SVs of the same types.
Two key prediction outputs are: (i) Common Weakness Enumeration (CWE) and (ii)
Custom vulnerability types (see Table 2.10).

2.6.1 Summary of Primary Studies

2.6.1.1 Common Weakness Enumeration (CWE)

The first sub-theme determines and analyzes the patterns of the SV types provided by
CWE [28]. CWE is currently the standard for SV types with more than 900 entries. The
first group of studies has focused on multi-class classification of these CWEs. Wang et
al. [143] were the first to tackle this problem with a Naïve Bayes model using the CVSS
metrics (version 2) [110] and product names. Later, Shuai et al. [144] used LDA [30] with
a location-aware weighting to extract important features from SV descriptions for building
an effective SVM-based CWE classifier. Na et al. [145] also showed that features extracted
from SV descriptions can improve the Naïve Bayes model in [143]. Ruohonen et al. [146]
studied an information retrieval method, i.e., term-frequency inverse document frequency
(tf-idf) and cosine similarity, to detect the CWE-ID with a description most similar to that
of a given SV collected from NVD and Snyk.14 This method performed well for CWEs

14https://snyk.io/vuln

https://snyk.io/vuln

24 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.10: List of the reviewed papers in the Type theme.

Study Nature of task Data source Data-driven technique

Sub-theme: 1. Common Weakness Enumeration (CWE)

Wang et al.
2010 [143]

Multi-class classification:
CWE classes

NVD, CVSS Naïve Bayes

Shuai et al.
2013 [144]

NVD SVM

Na et al.
2016 [145]

NVD Naïve Bayes

Ruohonen
et al.
2018 [146]

NVD, CWE,
Snyk

tf-idf with 1/2/3-grams and cosine
similarity

Huang
et al.
2019 [147]

NVD, CWE MLP, Linear SVM, Naïve Bayes,
KNN

Aota et al.
2020 [148]

NVD Random forest, Linear SVM, Lo-
gistic regression, Decision tree, Ex-
tremely randomized trees, LGBM

Aghaei
et al.
2020 [149]

NVD, CVE Adaptive fully-connected neural
network with one hidden layer

Das et al.
2021 [150]

NVD, CWE BERT, Deep Siamese network

Zou et al.
2019 [151]

NVD & Software
Assurance Ref-
erence Dataset
(SARD)

Three Bi-LSTM models for ex-
tracting and combining global and
local features from code functions

Murtaza
et al.
2016 [152]

Unsupervised learning: se-
quence mining of SV types
(over time)

NVD (CWE &
CPE)

2/3/4/5-grams of CWEs

Lin et al.
2017 [153]

Unsupervised learning: asso-
ciation rule mining of CWE-
related aspects (prog. lan-
guage, time of introduction &
consequence scope)

CWE FP-growth association rule mining
algorithm

Han et al.
2018 [154]

Binary/Multi-class classifi-
cation: CWE relationships
(CWE links, link types &
CWE consequences)

CWE Deep knowledge graph embedding
of CWE entities

Sub-theme: 2. Custom Vulnerability Types

Venter
et al.
2008 [155]

Unsupervised learning: clus-
tering

CVE Self-organizing map

Neuhaus
et al.
2010 [156]

Unsupervised learning: topic
modeling

CVE Latent Dirichlet Allocation (LDA)

Mounika
et al. [157,
158]

CVE, Open Web
Application Se-
curity Project
(OWASP)

LDA

Aljedaani
et al.
2020 [159]

SV reports
(Chromium
project)

LDA

Williams
et al. [160,
161]

Multi-class classification:
manually coded SV types

NVD Supervised Topical Evolution
Model & Diffusion-based story-
telling technique

Russo et al.
2019 [162]

NVD Bayesian network, J48 tree, Logis-
tic regression, Naïve Bayes, Ran-
dom forest

Yan et al.
2017 [60]

Executables of
100 Linux appli-
cations

Decision tree

Zhang
et al.
2020 [134]

Multi-class classification:
platform-specific vulnerability
types

China National
Vulnerability
Database

Logistic regression, Linear discrim-
inant analysis, KNN, CART, SVM,
bagging/boosting models

2.6. Type Prediction 25

without clear patterns/keywords in SV descriptions. Aota et al. [148] utilized the Boruta
feature selection algorithm [163] and Random forest to improve the performance of base
CWE classification. Base CWEs give more fine-grained information for SV remediation
than categorical CWEs used in [145].

There has been a recent rise in using neural network/DL based models for CWE classi-
fication. Huang et al. [147] implemented a deep neural network with tf-idf and information
gain for the task and obtained better performance than SVM, Naïve Bayes and KNN.
Aghaei et al. [149] improved upon [148] for both categorical (coarse-grained) and base
(fine-grained) CWE classification with an adaptive hierarchical neural network to deter-
mine sequences of less to more fine-grained CWEs. To capture the hierarchical structure
and rare classes of CWEs, Das et al. [150] matched SV and CWE descriptions instead
of predicting CWEs directly. They presented a deep Siamese network with a BERT-
based [80] shared feature extractor that outperformed many baselines even for rare/unseen
CWE classes. Recently, Zou et al. [151] pioneered the multi-class classification of CWE
in vulnerable functions curated from Software Assurance Reference Dataset (SARD) [164]
and NVD. They achieved high performance (∼95% F1-Score) with DL (Bi-LSTM) models.
The strength of their model came from combining global (semantically related statements)
and local (variables/statements affecting function calls) features. Note that this model
currently only works for functions in C/C++ and 40 selected classes of CWE.

Another group of studies has considered unsupervised learning methods to extract
CWE sequences, patterns and relationships. Sequences of SV types over time were iden-
tified by Murtaza et al. [152] using an n-gram model. This model sheds light on both
co-occurring and upcoming CWEs (grams), raising awareness of potential cascading at-
tacks. Lin et al. [153] applied an association rule mining algorithm, FP-growth [165], to
extract the rules/patterns of various CWEs aspects including types, programming lan-
guage, time of introduction and consequence scope. For example, buffer overflow (CWE
type) usually appears during the implementation phase (time of introduction) in C/C++
(programming language) and affects the availability (consequence scope). Lately, Han et
al. [154] developed a deep knowledge graph embedding technique to mine the relationships
among CWE types, assisting in finding relevant SV types with similar properties.

2.6.1.2 Custom Vulnerability Types

The second sub-theme is about custom vulnerability types other than CWE. Venter et
al. [155] used Self-organizing map [166], an unsupervised clustering algorithm, to group SVs
with similar descriptions on CVE. This was one of the earliest studies that automated SV
type classification. Topic modeling is another popular unsupervised learning model [156,
157, 158, 159] to categorize SVs without an existing taxonomy. Neuhaus et al. [156] applied
LDA [30] on SV descriptions to identify 28 prevalent SV types and then analyzed the trends
of such types over time. The identified SV topics/types had considerable overlaps (up to
98% precision and 95% recall) with CWEs. Mounika et al. [157, 158] extended [156] to
map the LDA topics with the top-10 OWASP [167]. However, the LDA topics/keywords
did not agree well (< 40%) with the OWASP descriptions, probably because 10 topics did
not cover all the underlying patterns of SV descriptions. Aljedaani et al. [159] again used
LDA to identify 10 types of SVs reported in the bug tracking system of Chromium15 and
found memory-related issues were the most prevalent topics.

Another group of studies has classified manually defined/selected SV types rather than
CWE as some SV types are encountered more often in practice and require more attention.
Williams et al. [160, 161] applied a supervised topical evolution model [168] to identify the

15https://bugs.chromium.org/p/chromium/issues/list

https://bugs.chromium.org/p/chromium/issues/list

26 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

features that best described the 10 pre-defined SV types16 prevalent in the wild. These
authors then used a diffusion-based storytelling technique [169] to show the evolution of
a particular topic of SVs over time; e.g., increasing API-related SVs requires hardening
the APIs used in a product. To support user-friendly SV assessment using ever-increasing
unstructured SV data, Russo et al. [162] used Bayesian network to predict 10 pre-defined
SV types.17 Besides predicting manually defined SV types using SV natural language
descriptions, Yan et al. [60] used a decision tree to predict 22 SV types prevalent in the
executables of Linux applications. The predicted type was then combined with fuzzers’
outputs to predict SV exploitability (see section 2.3.1.1). Besides author-defined types,
custom SV types also come from specific SV platforms. Zhang et al. [134] designed an
ML-based framework to predict the SV types collected from China National Vulnerability
Database. Ensemble models (bagging and boosting models) achieved, on average, the
highest performance for this task.

2.6.2 Theme Discussion

In the Type theme, detecting and characterizing coarse-grained and fine-grained CWE-
based SV types are the frequent tasks. The large number and hierarchical structure of
classes are the main challenges with CWE classification/analysis. In terms of solutions,
deep Siamese networks [150] are more robust to the class imbalance issue (due to many
CWE classes), while graph-based neural networks [154] can effectively capture the hier-
archical structure of CWEs. Future work can investigate the combination of these two
types of DL architectures to solve both issues simultaneously. Besides model-level solu-
tions, author-selected or platform-specific SV types have been considered to reduce the
complexity of CWE. However, similar to custom SV consequences in section 2.4.1.2, there
is not yet a universally accepted taxonomy for these custom SV types. To reduce the
subjectivity in selecting SV types for prediction, we suggest that future work should focus
on the types that are commonly encountered and discussed by developers in the wild.

2.7 Miscellaneous Tasks

The last theme is Miscellaneous Tasks covering the studies that are representative yet
do not fit into the four previous themes. This theme has three main sub-themes/tasks:
(i) Vulnerability information retrieval, (ii) Cross-source vulnerability patterns and (iii)
Vulnerability fixing effort (see Table 2.11).

2.7.1 Summary of Primary Studies

2.7.1.1 Vulnerability Information Retrieval

The first and major sub-theme is vulnerability information retrieval that studies data-
driven methods to extract different SV-related entities (e.g., affected products/versions)
and their relationships from SV data. The current sub-theme extracts assessment informa-
tion appearing explicitly in SV data (e.g., SV descriptions on NVD) rather than predicting
implicit properties as done in prior sub-themes. For instance, CWE-119, i.e., “Improper
Restriction of Write Operations within the Bounds of a Memory Buffer”, can be retrieved

161. Buffer errors, 2. Cross-site scripting, 3. Path traversal, 4. Permissions and Privileges, 5. Input
validation, 6. SQL injection, 7. Information disclosure, 8. Resources Error, 9. Cryptographic issues, 10.
Code injection.

171. Authentication bypass or Improper Authorization, 2. Cross-site scripting or HTML injection,
3. Denial of service, 4. Directory Traversal, 5. Local/Remote file include and Arbitrary file upload, 6.
Information disclosure and/or Arbitrary file read, 7. Buffer/stack/heap/integer overflow, 8. Remote code
execution, 9. SQL injection, 10. Unspecified vulnerability

2.7. Miscellaneous Tasks 27

Table 2.11: List of the reviewed papers in the Miscellaneous Tasks theme.

Study Nature of task Data source Data-driven tech-
nique

Sub-theme: 1. Vulnerability Information Retrieval

Weeraward-
hana et al.
2014 [170]

Multi-class classification: Extrac-
tion of entities (software name/ver-
sion, impact, attacker/user actions)
from SV descriptions

NVD (210 randomly
selected and manually
labeled SVs)

Stanford Named Entity
Recognizer implement-
ing a CRF classifier

Dong et al.
2019 [171]

Multi-class classification: Vulnera-
ble software names/versions

CVE Details, NVD,
ExploitDB, Security-
Focus, SecurityFocus
Forum, Security-
Tracker, Openwall

Word-level and
character-level Bi-
LSTM with attention
mechanism

Gonzalez
et al.
2019 [172]

Multi-class classification: Extrac-
tion of 19 Vulnerability Description
Ontology [173] classes from SV de-
scriptions

NVD Naïve Bayes, Decision
tree, SVM, Random
forest, Majority voting
model

Binyamini
et al.
2020 [174,
175]

Multi-class classification: Extrac-
tion of entities (attack vector/mean-
s/technique, privilege, impact, vul-
nerable platform/version/OS, net-
work protocol/port) from SV de-
scriptions to generate MulVal [176]
interaction rules

NVD Bi-LSTM with various
feature extractors:
word2vec, ELMo,
BERT (pre-trained or
trained from scratch)

Guo et al.
2020 [177,
178]

Multi-class classification: Extrac-
tion of entities (SV type, root cause,
attack type, attack vector) from SV
descriptions

NVD, SecurityFocus CNN, Bi-LSTM (with
or without attention
mechanism)

Waareus
et al.
2020 [179]

Multi-class classification: Common
Product Enumeration (CPE)

NVD Word-level and
character-level Bi-
LSTM

Yitagesu
et al.
2021 [180]

Multi-class classification: Part-of-
speech tagging of SV descriptions

NVD, CVE, CWE,
CAPEC, CPE, Twit-
ter, PTB corpus [181]

Bi-LSTM

Sun et al.
2021 [182]

Multi-class classification: Extrac-
tion of entities (vulnerable produc-
t/version/component, type, attack
type, root cause, attack vector, im-
pact) from ExploitDB to generate
SV descriptions

NVD, ExploitDB BERT models

Sub-theme: 2. Cross-source Vulnerability Patterns

Horawalavith-
ana et al.
2019 [183]

Regression: Number of software de-
velopment activities on GitHub after
disclosure of SVs

Twitter, Reddit,
GitHub

MLP, LSTM

Xiao et al.
2019 [184]

Knowledge-graph reasoning: model-
ing the relationships among SVs, its
types and attack patterns

CVE, CWE, CAPEC
(Linux project)

Translation-based
knowledge-graph em-
bedding

Sub-theme: 3. Vulnerability Fixing Effort

Othmane
et al.
2017 [185]

Regression: time (days) to fix SVs Proprietary SV data
collected at the SAP
company

Linear/Tree-
based/Neural network
regression

28 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

directly from CVE-2020-28022,18 but not from CVE-2021-2122.19 The latter case requires
techniques from section 2.6.1.1.

Most of the retrieval methods in this sub-theme have been formulated under the multi-
class classification setting. One of the earliest works was conducted by Weerawardhana et
al. [170]. This study extracted software names/versions, impacts and attacker’s/user’s ac-
tion from SV descriptions on NVD using Stanford Named Entity Recognition (NER) tech-
nique, a.k.a. CRF classifier [186]. Later, Dong et al. [171] proposed to use a word/character-
level Bi-LSTM to improve the performance of extracting vulnerable software names and
versions from SV descriptions available on NVD and other SV databases/advisories (e.g.,
CVE Details [187], ExploitDB [67], SecurityFocus [72], SecurityTracker [188] and Open-
wall [189]). Based on the extracted entities, these authors also highlighted the inconsisten-
cies in vulnerable software names and versions across different SV sources. Besides version
products/names of SVs, Gonzalez et al. [172] used a majority vote of different ML mod-
els (e.g., SVM and Random forest) to extract the 19 entities of Vulnerability Description
Ontology (VDO) [173] from SV descriptions to check the consistency of these descriptions
based on the guidelines of VDO. Since 2020, there has been a trend in using DL models
(e.g., Bi-LSTM, CNNs or BERT [80]/ELMo [190]) to extract different information from SV
descriptions including required elements for generating MulVal [176] attack rules [174, 175]
or SV types/root cause, attack type/vector [177, 178], Common Product Enumeration
(CPE) [191] for standardizing names of vulnerable vendors/products/versions [179], part-
of-speech [180] and relevant entities (e.g., vulnerable products, attack type, root cause)
from ExploitDB to generate SV descriptions [182]. BERT models [80], pre-trained on gen-
eral text (e.g., Wikipedia pages [82] or PTB corpus [181]) and fine-tuned on SV text, have
also been increasingly used to address the data scarcity/imbalance for the retrieval tasks.

2.7.1.2 Cross-Source Vulnerability Patterns

The second sub-theme, cross-source vulnerability patterns, finds commonality and/or dis-
covers latent relationships among SV sources to enrich information for SV assessment.
Horawalavithana et al. [183] found a positive correlation between development activities
(e.g., push/pull requests and issues) on GitHub and SV mentions on Reddit20 and Twit-
ter. These authors then used DL models (i.e., MLP [119] and LSTM [138]) to predict
the appearance and sequence of development activities when SVs were mentioned on the
two social media platforms. Xiao et al. [184] applied a translation-based graph embedding
method to encode and predict the relationships among different SVs and the respective
attack patterns and types. This work [184] was based on the DeepWeak model of Han et
al. [154], but it still belongs to this sub-theme as they provided a multi-dimensional view
of SVs using three different sources (NVD [16], CWE [28] and CAPEC [122]). Xiao et
al. [184] envisioned that their knowledge graph can be extended to incorporate the source
code introducing/fixing SVs.

2.7.1.3 Vulnerability Fixing Effort

The last sub-theme is vulnerability fixing effort that focuses on estimating SV fixing effort
through proxies such as the SV fixing time, usually in days. Othmane and the co-authors
were among the first to approach this problem. These authors first conducted a large-scale
qualitative study at the SAP company and identified 65 important code-based, process-
based and developer-based factors contributing to the SV fixing effort [192]. Later, the same

18https://nvd.nist.gov/vuln/detail/CVE-2020-28022
19https://nvd.nist.gov/vuln/detail/CVE-2021-21220
20https://reddit.com

https://nvd.nist.gov/vuln/detail/CVE-2020-28022
https://nvd.nist.gov/vuln/detail/CVE-2021-21220
https://reddit.com

2.8. Analysis of Data-Driven Approaches for Software Vulnerability Assessment 29

group of authors [185] leveraged the identified factors in their prior qualitative study to
develop various regression models such as linear regression, tree-based regression and neural
network regression models, to predict time-to-fix SVs using the data collected at SAP. These
authors found that code components containing detected SVs are more important for the
prediction than SV types.

2.7.2 Theme Discussion

In the Miscellaneous Tasks theme, the key focus is on retrieving SV-related entities and
characteristics from SV descriptions. The retrieval tasks are usually formulated as Named
Entity Recognition from SV descriptions. However, we observed that NVD descriptions
do not follow a consistent template [141, 142], posing significant challenges in labeling the
entities for retrieval. The affected versions and vendor/product names of SVs also contain
inconsistencies [171, 141, 142], making the retrieval tasks difficult. We recommend that
data normalization and cleaning should be performed before labeling entities and building
respective retrieval models to ensure the reliability of results.

Besides information retrieval, other tasks such as linking multi-sources, extracting cross-
source patterns or estimating fixing effort are also useful to obtain richer SV information
for assessment, yet these tasks are still in early stages. Linking multiple sources and their
patterns is the first step towards building an SV knowledge graph to answer different
queries regarding a particular SV (e.g., what systems are affected, exploitation status, how
to fix, or what SVs are similar). In the future, such a knowledge graph can be extended to
capture artifacts of SVs in emerging software types like AI-based systems [193]. Moreover,
to advance SV fixing effort prediction, future work can consider adapting/customizing the
existing practices/techniques used to predict fixing effort for general bugs [194, 195].

2.8 Analysis of Data-Driven Approaches for Software Vul-
nerability Assessment

We extract and analyze the five key elements for data-driven SV assessment: (i) Data
sources, (ii) Model features, (iii) Prediction models, (iv) Evaluation techniques and (v)
Evaluation metrics. These elements correspond to the four main steps in building data-
driven models: data collection (data sources), feature engineering (model features), model
training (prediction models) and model evaluation (evaluation techniques/metrics) [15,
197]. We present the most common practices for each element in Table 2.12.

2.8.1 Data Sources

Identifying and collecting rich and reliable SV-related data are the first tasks to build
data-driven models for automating SV assessment tasks. As shown in Table 2.12, a wide
variety of data sources have been considered to accomplish the five identified themes.

Across the five themes, NVD [16] and CVE [66] have been the most prevalently used
data sources. The popularity of NVD/CVE is mainly because they publish expert-verified
SV information that can be used to develop prediction models. Firstly, many studies
have considered SV descriptions on NVD/CVE as model inputs. Secondly, the SV char-
acteristics on NVD have been heavily used as assessment outputs in all the themes, e.g.,
CVSS Exploitability metrics for Exploitation, CVSS Impact/Scope metrics for Impact,
CVSS severity score/levels for Severity, CWE for Type, CWE/CPE for Miscellaneous tasks.
Thirdly, external sources on NVD/CVE have enabled many studies to obtain richer SV
information (e.g., exploitation availability/time [93] or vulnerable code/crashes [60, 61])
and extract relationships among multiple SV sources to develop a knowledge graph of

30 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

Table 2.12: The frequent data sources, features, models, evaluation tech-
niques and evaluation metrics used for the five identified SV assessment
themes. Notes: The values are organized based on their overall frequency
across the five themes. For the Prediction Model and Evaluation Metric
elements, the values are first organized by categories (ML then DL for
Prediction Model and classification then regression for Evaluation Met-
ric) and then by frequencies. k-CV stands for k-fold cross-validation.
The full list of values and their appearance frequencies for the five el-
ements in the five themes can be found at https://figshare.com/s/

da4d238ecdf9123dc0b8.

Source/Technique/Metric Strengths Weaknesses

Element: Data Source

NVD/CVE/CVE Details
(deprecated OSVDB)

• Report expert-verified information (with CVE-ID)
• Contain CWE and CVSS entries for each SV
• Link to external sources (e.g., official fixes)

• Missing/incomplete links to vulnerable code/fixes
• Inconsistencies due to human errors
• Delayed SV reporting and assignment of CVSS metrics

ExploitDB • Report PoC exploits of SVs (with links to CVE-ID) • May not lead to real exploits in the wild
Other security advisories (e.g.,
SecurityFocus, Symantec or
X-Force)

• Report real-world exploits of SVs
• Cover diverse SVs (including ones w/o CVE-ID)

• Some exploits may not have links to CVE entries for
mapping with other assessment metrics

Informal sources (e.g., Twitter
and darkweb)

• Early reporting of SVs (maybe earlier than NVD)
• Contain non-technical SV information (e.g., financial
damage or socio-technical challenges in addressing SVs)

• Contain non-verified and even misleading information
• May cause adversarial attacks to assessment models

Element: Model Feature

BoW/tf-idf/n-grams
• Simple to implement
• Strong baseline for text-based inputs (e.g., SV
descriptions in security databases/advisories)

• May suffer from vocabulary explosion (e.g., many new
description words for new SVs)
• No consideration of word context/order (maybe needed
for code-based SV analysis)
• Cannot handle Out-of-Vocabulary (OoV) words
(can resolve with subwords [23])

Word2vec • Capture nearby context of each word
• Can reuse existing pre-trained model(s)

• Cannot handle OoV words (can resolve with
fastText [196])
• No consideration of word order

DL model end-to-end trainable
features • Produce SV task-specific features • May not produce high-quality representation for tasks

with limited data (e.g., real-world exploit prediction)

Bidirectional Encoder Repre-
sentations from Transformers
(BERT)

• Capture contextual representation of text (i.e., the
feature vector of a word is specific to each input)
• Capture word order in an input
• Can handle OoV words

• May require GPU to speed up feature inference
• May be too computationally expensive and require too
much data to train a strong model from scratch
• May require fine-tuning to work well for a source task

Source/expert-defined meta-
data features

• Lightweight
• Human interpretable for a task of interest

• Require SV expertise to define relevant features
• Hard to generalize to new tasks

Element: Prediction Model

Single ML models (e.g., Linear
SVM, Logistic regression,
Naïve Bayes)

• Simple to implement
• Efficient to (re-)train on large data (e.g., using the
entire NVD database)

• May be prone to overfitting
• Usually do not perform as well as ensemble/DL models

Ensemble ML models (e.g.,
Random forest, XGBoost,
LGBM)

• Strong baseline (usually stronger than single models)
• Less prone to overfitting • Take longer to train than single models

Latent Dirichlet Allocation
(LDA – topic modeling)

• Require no labeled data for training
• Can provide features for supervised learning models

• Require SV expertise to manually label generated topics
• May generate human non-interpretable topics

Deep Multi-Layer Perceptron
(MLP)

• Work readily with tabular data (e.g., manually defined
features or BoW/tf-idf/n-grams)

• Perform comparably yet are more costly compared to
ensemble ML models
• Less effective for unstructured data (e.g., SV descrip-
tions)

Deep Convolutional Neural
Networks (CNN)

• Capture local and hierarchical patterns of inputs
• Usually perform better than MLP for text-based data

• Cannot effectively capture sequential order of inputs
(maybe needed for code-based SV analysis)

Deep recurrent neural networks
(e.g., LSTM or Bi-LSTM)

• Capture short-/long-term dependencies from inputs
• Usually perform better than MLP for text-based data

• May suffer from the information bottleneck issue
(can resolve with attention mechanism [117])
• Usually take longer to train than CNNs

Deep graph neural networks
(e.g., Graph convolutional
network)

• Capture directed relationships among multiple SV
entities and sources

• Require graph-structured inputs to work
• More computationally expensive than other DL models

Deep transfer learning with
fine-tuning (e.g., BERT with
task-specific classification
layer(s))

• Can improve the performance for tasks with small
data (e.g., real-world exploit prediction) • Require target task to have similar nature as source task

Deep constrastive learning
(e.g., Siamese neural networks)

• Can improve performance for tasks with small data
• Robust to class imbalance (e.g., CWE classes)

• Computationally expensive (two inputs instead of one)
• Do not directly produce class-wise probabilities

Deep multi-task learning
• Can share features for predicting multiple tasks (e.g.,
CVSS metrics) simultaneously
• Reduce training/maintenance cost

• Require predicted tasks to be related
• Hard to tune the performance of individual tasks

Element: Evaluation Technique

Single k-CV without test • Easy to implement
• Reduce the randomness of results with multiple folds

• No separate test set for validating optimized models
(can resolve with separate test set(s))
• Maybe infeasible for expensive DL models
• Use future data/SVs for training, may bias results

Single/multiple random train/
test with/without val (using
val to tune hyperparameters)

• Easy to implement
• Reduce the randomness of results (the multiple
version)

• May produce unstable results (the single version)
• Maybe infeasible for expensive DL models (the multiple
version)
• Use future data/SVs for training, may bias results

Single/multiple time-based
train/test with/without val
(using val to tune
hyper-
parameters)

• Consider the temporal properties of SVs, simulating
the realistic evaluation of ever-increasing SVs in practice
• Reduce the randomness of results (the multiple
version)

• Similar drawbacks for the single & multiple versions as
the random counterparts
• May result in uneven/small splits (e.g., many SVs in a
year)

Element: Evaluation Metric

F1-Score/Precision/Recall
(classification)

• Suitable for imbalanced data (common in SV assess-
ment tasks)

• Do not consider True Negatives in a confusion matrix
(can resolve with Matthews Correlation Coefficient (MCC))

Accuracy (classification) • Consider all the cells in a confusion matrix • Unsuitable for imbalanced data (can resolve with MCC)

Area Under the Curve (AUC)
(classification) • Independent of prediction thresholds

• May not represent real-world settings (i.e., as models
in practice
mostly use fixed classification thresholds)
• ROC-AUC may not be suitable for imbalanced data
(can resolve with Precision-Recall-AUC)

Mean absolute (percentage)
error/Root mean squared error
(regression)

• Show absolute performance of models
• Maybe hard to interpret a value on its own without
domain knowledge (i.e., whether an error of x is sufficiently
effective)

Correlation coefficient (r)/
Coef. of determination (R2)
(regression)

• Show relative performance of models (0 – 1), where 0
is worst & 1 is best

• R2 always increases when adding any new feature
(can resolve with adjusted R2)

https://figshare.com/s/da4d238ecdf9123dc0b8
https://figshare.com/s/da4d238ecdf9123dc0b8

2.8. Analysis of Data-Driven Approaches for Software Vulnerability Assessment 31

SVs (e.g., [154, 184]). However, NVD/CVE still suffer from information inconsisten-
cies [171, 141, 142] and missing relevant external sources (e.g., SV fixing code) [198].
Such issues motivate future work to validate/clean NVD data and utilize more sources for
code-based SV assessment (see section 2.9).

To enrich the SV information on NVD/CVE, many other security advisories and SV
databases have been commonly leveraged by the reviewed studies, notably ExploitDB [67],
Symantec [68, 199], SecurityFocus [72], CVE Details [187] and OSVDB. Most of these
sources disclose PoC (ExploitDB and OSVDB) and/or real-world (Symantec and Security
Focus) exploits. However, real-world exploits are much rarer and different compared to PoC
ones [33, 55]. It is recommended that future work should explore more data sources (other
than the ones in Table 2.3) and better methods to retrieve real-world exploits, e.g., using
semi-supervised learning [200] to maximize the data efficiency for exploit retrieval and/or
few-shot learning for tackling the extreme exploit data imbalance issue [201]. Additionally,
CVE Details and OSVDB are SV databases like NVD yet with a few key differences. CVE
Details explicitly monitors Exploit-DB entries that may be missed on NVD and provides
a more user-friendly interface to view/search SVs. OSVDB also reports SVs that do not
appear on NVD (without CVE-ID), but this site was discontinued in 2016.

Besides official/expert-verified data sources, we have seen an increasing interest in min-
ing SV information from informal sources that also contain non-expert generated content
such as social media (e.g., Twitter) and darkweb. Especially, Twitter has been widely used
for predicting exploits as this platform has been shown to contain many SV disclosures
even before official databases like NVD [33, 140]. Recently, darkweb forums/sites/markets
have also gained traction as SV mentions on these sites have a strong correlation with their
exploits in the wild [48, 49]. However, SV-related data on these informal sources are much
noisier because they neither follow any pre-defined structure nor have any verification and
they are even prone to fake news [33]. Thus, the data integrity of these sources should be
checked, potentially by checking the reputation of posters, to avoid inputting unreliable
data to prediction models and potentially producing misleading findings.

2.8.2 Model Features

Collected raw data need to be represented by suitable features for training prediction
models. There are three key types of feature representation methods in this area: term
frequency (e.g., BoW, tf-idf and n-grams), DL learned features (e.g., BERT and word2vec)
and source/expert-defined metadata (e.g., CVSS metrics and CPE on NVD or tweet prop-
erties on Twitter), as summarized in Table 2.12.

Regarding the term-frequency based methods, BoW has been the most popular one.
Its popularity is probably because it is one of the simplest ways to extract features from
natural language descriptions of SVs and directly compatible with popular ML models
(e.g., Linear SVM, Logistic regression and Random forest) in section 2.8.3. Besides plain
term count/frequency, other studies have also considered different weighting mechanisms
such as inverse document frequency weighting (tf-idf) or tf-igm [128] inverse gravity mo-
ment weighting (tf-igm). Tf-igm has been shown to work better than BoW and tf-idf at
classifying severity [124, 125]. Future work is still needed to evaluate the applicability and
generalizability of tf-igm for other SV assessment tasks.

Recently, Neural Network (NN) or DL based features such as word2vec [202] and
BERT [80] have been increasingly used to improve the performance of predicting CVSS
exploitation/impact/severity metrics [21, 103], CWE types [150] and SV information re-
trieval [177, 178, 179]. Compared to BoW and its variants, NN and DL can extract more
efficient and context-aware features from vast SV data [203]. NN/DL techniques rely on dis-
tributed representation to encode SV-related words using fixed-length vectors much smaller

32 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

than a vocabulary size. Moreover, these techniques capture the sequential order and con-
text (nearby words) to enable better SV-related text comprehension (e.g., SV vs. general
exploit). Importantly, these NN/DL learned features can be first trained in a non-SV do-
main with abundant data (e.g., Wikipedia pages [82]) and then transferred/fine-tuned in
the SV domain to address limited/imbalanced SV data [56]. The main concern with these
sophisticated NN/DL features is their limited interpretability, which is an exciting future
research area [204].

The metadata about SVs can also complement the missing information in descriptions
or code for SV assessment. For example, prediction of exploits and their characteristics
have been enhanced using CVSS metrics [49], CPE [106] and SV types [57] on NVD. Ad-
ditionally, Twitter-related statistics (e.g., number of followers, likes and retweets) have
been shown to increase the performance of predicting SV exploitation, impact and sever-
ity [33, 93]. Recently, alongside features extracted from vulnerable code, the information
about a software development process and involved developers have also been extracted to
predict SV fixing effort [185]. Currently, metadata-based and text-based features have been
mainly integrated by concatenating their respective feature vectors (e.g., [140, 92, 48, 49]).
An alternative yet unexplored way is to build separate models for each feature type and
then combine these models using meta-learning (e.g., model stacking [205]).

2.8.3 Prediction Models

The extracted features enter a wide variety of ML/DL-based prediction models shown in
Table 2.12 to automate various SV assessment tasks. Classification techniques have the
largest proportion, while regression and unsupervised techniques are less common.

Linear SVM [206] has been the most frequently used classifier, especially in the Ex-
ploitation, Impact and Severity themes. This popularity is reasonable as Linear SVM
works well with the commonly used features, i.e., BoW and tf-idf, as mentioned in sec-
tion 2.8.2. Besides Linear SVM, Random forest, Naïve Bayes and Logistic regression have
also been common classification models. In recent years, advanced boosting models (e.g.,
XGBoost [78] and LGBM [79]), and more lately, DL techniques (e.g., CNN [120] and (Bi-
)LSTM with attention [117]) have been increasingly utilized and shown better results than
simple ML models like Linear SVM or Logistic regression. In this area, some DL models are
essential for certain tasks, e.g., building SV knowledge graph from multiple sources with
graph neural networks [115]. DL models also offer solutions to data-related issues such as
addressing class imbalance (e.g., deep Siamese network [207]) or improving data efficiency
(e.g., deep multi-task learning [116]). Whenever applicable, it is recommended that future
work should still consider simple baselines alongside sophisticated ones as simple methods
can perform on par with advanced ones [208].

Besides classification, various prediction models have also been investigated for regres-
sion (e.g., predicting exploit time, severity score and fixing time). Linear SVM has again
been the most commonly used regressor as SV descriptions have usually been the regres-
sion input. Notably, many studies in the Severity theme did not build regression models to
directly obtain the severity score (e.g., [96, 98, 100, 101, 22]). Instead, they used the formu-
las defined by assessment frameworks (e.g., CVSS versions 2/3 [110, 111] or WIVSS [136])
to compute the severity score from the base metrics predicted by respective classification
models. We argue that more effort should be invested in determining the severity score
directly from SV data as these severity formulas can be subjective [209]. We also observe
that there is still limited use of DL models for regression compared to classification.

In addition to supervised (classification/regression) techniques, unsupervised learning
has also been considered for extracting underlying patterns of SV data, especially in the
Type theme. Latent Dirichlet Allocation (LDA) [30] has been the most commonly used

2.8. Analysis of Data-Driven Approaches for Software Vulnerability Assessment 33

topic model to identify latent topics/types of SVs without relying on a labeled taxonomy.
The identified topics were mapped to the existing SV taxonomies such as CWE [156] and
OWASP [157, 158]. The topics generated by topic models like LDA can also be used as
features for classification/regression models [105] or building topic-wise models to capture
local SV patterns [210]. However, definite interpretations for unsupervised outputs are
challenging to obtain as they usually rely on human judgement [211].

2.8.4 Evaluation Techniques

It is important to evaluate a trained model to ensure the model meets certain requirements
(e.g., advancing the state-of-the-art). The evaluation generally needs to be conducted on a
different set of data other than the training set to avoid overfitting and objectively estimate
model generalizability [119]. The commonly used evaluation techniques are summarized in
Table 2.12.

The reviewed studies have mostly used one or multiple validation and/or test sets21 to
evaluate their models, in which each validation/test set has been either randomly or time-
based selected. Specifically, k-fold cross-validation has been one of the most commonly
used techniques. The number of folds has usually been 5 or 10, but less standard values
like 4 [60] have also been used. However, k-fold cross-validation uses all parts of data at
least once for training; thus, there is no hidden test set to evaluate the optimal model with
the highest (cross-)validation performance.

To address the lack of hidden test set(s), a common practice in the studied papers has
been to split a dataset into single training and test sets, sometimes with an additional vali-
dation set for tuning hyperparameters to obtain an optimal model. Recently, data has been
increasingly split based on the published time of SVs to better reflect the changing nature
of ever-increasing SVs [23].22 However, the results reported using single validation/test
sets may be unstable (i.e., unreproducible results using different set(s)) [212].

To ensure both the time order and reduce the result randomness, we recommend us-
ing multiple splits of training and test sets in combination with time-based validation in
each training set. Statistical analyses (e.g., hypothesis testing and effect size) should also
be conducted to confirm the reliability of findings with respect to the randomization of
models/data in multiple runs [213].

2.8.5 Evaluation Metrics

Evaluating different aspects of a model requires respective proper metrics. The popular
metrics for evaluating the tasks in each theme are given in Table 2.12.

Across the five themes, Accuracy, Precision, Recall and F1-Score [214] have been the
most commonly used metrics because of a large number of classification tasks in the five
themes. However, Accuracy is not a suitable measure for SV assessment tasks with imbal-
anced data (e.g., SVs with real-world exploits vs. non-exploited SVs). The sample size of
one class is much smaller than the others, and thus the overall Accuracy would be domi-
nated by the majority classes. Besides these four commonly used metrics, AUC based on
the ROC curve (ROC-AUC) [214] has also been considered as it is threshold-independent.
However, we suggest that ROC-AUC should be used with caution in practice as most de-
ployed models would have a fixed decision threshold (e.g., 0.5). Instead of ROC-AUC, we
suggest Matthews Correlation Coefficient [214] (MCC) as a more meaningful evaluation

21Validation set(s) helps optimize/tune a model (finding the best task/data-specific hyperparameters),
and test set(s) evaluates the optimized/tuned model. Using only validation set(s) means evaluating a
model with default/pre-defined hyperparameters.

22This study is presented in Chapter 3.

34 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

metric to be considered as it explicitly captures all values in a confusion matrix, and thus
has less bias in results.

For regression tasks, various metrics have been used such as Mean absolute error, Mean
absolute percentage error, Root mean squared error [22] as well as Correlation coefficient
(r) and Coefficient of determination (R2) [185]. Note that adjusted R2 should be preferred
over R2 as R2 would always increase when adding a new (even irrelevant) feature.

A model can have a higher value of one metric yet lower values of others.23 Therefore,
we suggest using a combination of suitable metrics for a task of interest to avoid result
bias towards a specific metric. Currently, most studies have focused on evaluating model
effectiveness, i.e., how well the predicted outputs match the ground-truth values. Besides
effectiveness, other aspects (e.g., efficiency in training/deployment and robustness to in-
put changes) of models should also be evaluated to provide a complete picture of model
applicability in practice.

2.9 Chapter Summary

SV assessment is crucial to optimize resource utilization in addressing SVs at scale. This
phase has witnessed radical transformations following the increasing availability of SV data
from multiple sources and advances in data-driven techniques. We presented a taxonomy
to summarize the five main directions of the research work so far in this area. We also
identified and analyzed the key practices to develop data-driven models for SV assessment
in the reviewed studies.

Despite the great potential of data-driven approaches for SV assessment, we highlighted
the following three open challenges limiting the practical application of the field:24

1. Unrealistic evaluation settings for report-level SV assessment models.
Most of the reviewed studies have evaluated their prediction models without captur-
ing many factors encountered during the deployment of such models to production.
Specifically, the models used in practice would require to handle new SV data over
time. In the context of report-level SV assessment, Out-of-Vocabulary (OoV) words
in SV descriptions of new SVs need to be properly accommodated to avoid perfor-
mance degradation of prediction models. The impact of using time-based splits rather
than random splits (e.g., k-fold cross-validation) for these models to avoid leaking
unseen (future) patterns to the model training also requires further investigation.
We address the first challenge in Chapter 3.

2. Untimely SV assessment models. Although SV descriptions have been com-
monly used as model inputs (see section 2.8.1), these descriptions are usually pub-
lished long after SVs introduced/discovered [25] and even after SV are fixed [215, 216]
in codebases. One potential solution to this issue is to directly perform SV assess-
ment using (vulnerable) source code. The key benefit of using vulnerable code for
SV assessment is that such code is always available/required before SV fixing. Thus,
performing code-based SV assessment can be done even when SV reports are not
(yet) available. Version control systems like GitHub25 can provide such vulnerable
code for SV assessment. Leveraging data from these version control systems, we ad-
dress the second challenge in Chapters 4 and 5, in which data-driven SV assessment
is investigated on the code function and code commit levels, respectively.

23https://stackoverflow.com/questions/34698161
24The presented challenges are the ones that have been addressed in this thesis. More challenges related

to data-driven SV assessment can be found in Chapter 7.
25https://github.com

https://stackoverflow.com/questions/34698161
https://github.com

2.10. Appendix - Ever-Growing Literature on Data-Driven SV Assessment 35

Table 2.13: The mapping between the themes/tasks and the respective
studies collected from May 2021 to February 2022.

Theme/Task Studies
Exploitation Prediction [217], [218], [219], [220], [221], [222], [223], [224], [225]
Impact Prediction [218], [219], [220], [222], [225]
Severity Prediction [218], [219], [220], [222], [225]
Type Prediction [226], [227], [228], [229], [230]
Miscellaneous Tasks [218], [231], [232], [233], [234]

3. Lack of utilization of developers’ real-world SV concerns. The current SV
data hardly contain specific developers’ concerns and practices when addressing real-
world SVs. Developer Question & Answer (Q&A) platforms like Stack Overflow26

and Security StackExchange27 contain millions of posts about different challenges and
solutions shared by millions of developers when tackling different software-related
issues in real-world scenarios. The rich data on Q&A sites can be collected and
analyzed to determine the key concerns that practitioners are facing while addressing
SV in practice. Such SV concerns can be incorporated into other technical metrics
like CVSS metrics for more thoroughly assessing and prioritizing SVs. For example,
the fixing effort of SVs may depend on the technical difficulty of implementing the
respective mitigation strategies in a language or system of interest. We address the
third challenge in Chapter 6.

2.10 Appendix - Ever-Growing Literature on Data-Driven
SV Assessment

Given that data-driven SV assessment is an emerging field, there have been many new con-
tributions in this area since this literature review was conducted in April 2021. In this ap-
pendix, we would like to briefly outline the recent trends in data-driven SV assessment from
May 1, 2021 to February 28, 2022 (at the time of writing this thesis). We have also main-
tained a website (https://github.com/lhmtriet/awesome-vulnerability-assessment)
to keep track of the latest contributions of data-driven SV assessment for researchers and
practitioners in the field.

To obtain new papers from May 2021 to February 2022, we followed the same methodol-
ogy of study selection, as described in section 2.2.2. We obtained 228 new studies returned
from the search on the online databases. We then applied the inclusion/exclusion criteria,
as given in Table 2.2, on the titles, abstracts and full-texts of the curated papers to ob-
tain the list of relevant papers. After the filtering steps, we selected 18 papers relevant to
data-driven SV assessment from May 2021 to February 2022.28 The categorization of these
selected papers into the five themes, as described in section 2.2.3, is given in Table 2.13.

The key patterns and practices of these 18 papers are summarized as follows:

• All the tasks tackled by the studies have aligned with the ones presented in this
literature review, reinforcing the robustness of our taxonomy presented in Fig. 2.1.

26https://stackoverflow.com
27https://security.stackexchange.com
28We do not claim that this list of updated papers is complete, yet we believe that we have covered the

representative ones. It should also be noted that we did not include our own papers as these papers would
be presented in subsequent chapters of this thesis.

https://github.com/lhmtriet/awesome-vulnerability-assessment
https://stackoverflow.com
https://security.stackexchange.com

36 Chapter 2. Literature Review on Data-Driven Software Vulnerability Assessment

• Among the themes, Exploitation has attracted the most contributions from these
new studies, similar to that of the reviewed papers prior to May 2021. In addition,
prediction of the CVSS exploitability, impact, and severity metrics is still the most
common task. However, it is encouraging to see that more studies have worked on
CVSS version 3.1, which is closer to the current industry standard.

• Regarding data sources, NVD/CVE is still most prevalently used. Besides CAPEC [122],
MITRE ATT&CK Framework29 is a new source of attack patterns being utilized [217].

• Regarding model features, BERT [80] has been commonly used to extract contextual
feature embeddings from SV descriptions for various tasks.

• Regarding prediction models, DL techniques, which are mainly based on CNN and/or
(Bi-)LSTM with attention, have been increasingly used to improve the performance
of the tasks.

• Regarding evaluation techniques and evaluation metrics, since most of the tasks are
the same as before, evaluation practices have largely stayed the same as the ones
presented in sections 2.8.4 and 2.8.5.

Overall, the three key practical challenges presented in section 2.9 are still not addressed
by the new studies. Thus, we believe that our contributions/solutions to address these
challenges in this thesis would set the foundation for future research to further improve
the practical applicability of SV assessment using data-driven approaches.

29https://attack.mitre.org/

https://attack.mitre.org/

37

Chapter 3

Automated Report-Level Software
Vulnerability Assessment with
Concept Drift

Related publication: This chapter is based on our paper titled “Automated Soft-
ware Vulnerability Assessment with Concept Drift”, published in the 16th Interna-
tional Conference on Mining Software Repositories (MSR), 2019 (CORE A) [23].

In our literature review in Chapter 2, Software Engineering researchers are increasingly
using Natural Language Processing (NLP) techniques to automate Software Vulnerability
(SV) assessment using SV descriptions in public repositories. However, the existing NLP-
based approaches suffer from concept drift. This problem is caused by a lack of proper
treatment of new (out-of-vocabulary) terms for evaluating unseen SVs over time. To per-
form automated SV assessment with concept drift using SV descriptions present in SV
reports, in Chapter 3, we propose a systematic approach that combines both character
and word features. The proposed approach is used to predict seven Vulnerability Charac-
teristics (VCs). The optimal model of each VC is selected using our customized time-based
cross-validation method from a list of eight NLP representations and six well-known Ma-
chine Learning models. We use the proposed approach to conduct large-scale experiments
on more than 100,000 SVs in National Vulnerability Database (NVD). The results show
that our approach can effectively tackle the concept drift issue of the SVs’ descriptions
reported from 2000 to 2018 in NVD even without retraining the model. In addition, our
approach performs competitively compared to the existing word-only method. We also
investigate how to build compact concept-drift-aware models with much fewer features
and give some recommendations on the choice of classifiers and NLP representations for
report-level SV assessment.

38 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

3.1 Introduction

Software Vulnerability (SV) reports in public repositories, such as National Vulnerability
Database (NVD) [16], have been widely leveraged to automatically predict SV character-
istics using data-driven approaches (see Chapter 2). However, data in these SV reports
have the temporal property since many new terms appear in the descriptions of SVs. Such
terms are a result of the release of new technologies/products or the discovery of a zero-day
attack or SV; for example, NVD received more than 13,000 new SVs in 2017 [16]. The
appearance of new concepts makes SV data and patterns change over time [160, 152, 156],
which is known as concept drift [34]. For example, the keyword Android has only started
appearing in NVD since 2008, the year when Google released Android. We assert that
such new SV terms can cause problems for building report-level SV assessment models.

Previous studies [22, 49, 32] have suffered from concept drift as they have usually
mixed new and old SVs in the model validation step. Such approach accidentally merges
new SV information with existing one, which can lead to biased results. Moreover, the
previous work of SV analysis [22, 20, 49, 32, 97, 95, 47] used predictive models with
only word features without reporting how to handle novel or extended concepts (e.g., new
versions of the same software) in new SVs’ descriptions. Research on machine transla-
tion [235, 236, 237, 238] has shown that unseen (Out-of-Vocabulary (OoV)) terms can
make existing word-only models less robust to future prediction due to their missing infor-
mation. For SV prediction, Han et al. [21] did use random embedding vectors to represent
the OoV words, which still discards the relationship between new and old concepts. Such
observations motivated us to tackle the research problem “How to handle the con-
cept drift issue of the SV descriptions in public repositories to improve the
robustness of automated report-level SV assessment?” It appears to us that it
is important to address the issue of concept drift to enable the practical applicability of
automated SV assessment tools. To the best of our knowledge, there has been no existing
work to systematically address the concept drift issue in report-level SV assessment.

To perform report-level SV assessment with concept drift using SV descriptions in
public repositories, we present a Machine Learning (ML) model that utilizes both character-
level and word-level features. We also propose a customized time-based version of cross-
validation method for model selection and validation. Our cross-validation method splits
the data by year to embrace the temporal relationship of SVs. We evaluate the proposed
model on the prediction of seven Vulnerability Characteristics (VCs), i.e., Confidentiality,
Integrity, Availability, Access Vector, Access Complexity, Authentication, and Severity.
Our key contributions are:

1. We demonstrate the concept drift issue of SVs using concrete examples from NVD.

2. We investigate a customized time-based cross-validation method to select the optimal
ML models for SV assessment. Our method can help prevent future SV information
from being leaked into the past in model selection and validation steps.

3. We propose and extensively evaluate an effective Character-Word Model (CWM) to
assess SVs using the descriptions with concept drift. We also investigate the per-
formance of low-dimensional CWM models. We provide our models and associated
source code for future research at https://github.com/lhmtriet/MSR2019.

Chapter organization. Section 3.2 introduces SV descriptions and VCs. Section 3.3
describes our proposed approach. Section 3.4 presents the experimental design of this
work. Section 3.5 analyzes the experimental results and discusses the findings. Section 3.6
identifies the threats to validity. Section 3.7 covers the related works. Section 3.8 concludes
and suggests some future directions.

https://github.com/lhmtriet/MSR2019

3.2. Background 39

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

N
one

P
artial

C
om

plete

N
one

P
artial

C
om

plete

N
one

P
artial

C
om

plete

L
ocal

A
djacent N

etw
ork

N
etw

ork

L
ow

M
edium

H
igh

N
one

S
ingle

M
ultiple

L
ow

M
edium

H
igh

Confidentiality Integrity Availability Access
Vector

Access
Complexity

Authentication Severity

F
re

qu
ne

cy

Figure 3.1: Frequencies of each class of the seven VCs.

3.2 Background

Software Vulnerability (SV) assessment is an important step in the SV lifecycle, which
determines various characteristics of detected SVs [10]. Such characteristics support de-
velopers to understand the nature of SVs, which can inform prioritization and remediation
strategies. For example, if an SV can severely damage the confidentiality of a system, e.g.,
allowing attackers to access/steal sensitive information, this SV should have a high fixing
priority. A fixing protocol to ensure confidentiality can then be followed, e.g., checking/en-
forcing privileges to access the affected component/data.

National Vulnerability Database [16] (NVD) is one of the most popular and trustworthy
sources for SV assessment. NVD is maintained by governmental bodies (National Cyber
Security and Division of the United States Department of Homeland Security). This site
inherits unique SV identifiers and descriptions from Common Vulnerabilities and Exposures
(CVE) [66]. For SV assessment, NVD provides expert-verified assessment metrics, namely
Common Vulnerability Scoring System (CVSS) [29], for each reported SV.

CVSS is one of the most commonly used frameworks by both researchers and practi-
tioners to perform SV assessment. There are two main versions of CVSS, namely versions 2
and 3, in which version 3 only came into effect in 2015. CVSS version 2 is still widely used
as many SVs prior to 2015 can yet pose threats to contemporary systems. For instance, the
SV with CVE-2004-0113 first found in 2004 was exploited in 2018 [239]. Hence, we adopt
the assessment metrics of CVSS version 2 as the outputs for the SV assessment models in
this study.

CVSS version 2 provides metrics to quantify the three main aspects of SVs, namely
exploitability, impact, and severity. We focus on the base metrics because the temporal
metrics (e.g., exploit availability in the wild) and environmental metrics (e.g., potential
impact outside of a system) are unlikely obtainable from project artifacts (e.g., SV code/re-
ports) alone. Specifically, the base Exploitability metrics examine the technique (Access
Vector) and complexity to initiate an exploit (Access Complexity) as well as the authen-
tication requirement (Authentication). The base Impact metrics of CVSS focus on the
system Confidentiality, Integrity, and Availability. The Exploitation and Impact metrics
are used to compute the Severity of SVs. Severity approximates the criticality of an SV.

40 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

Text preprocessing

Vulnerability

descriptions

Vulnerability

Database (NVD)

Character n-

grams generation

Feature

aggregation

New vulnerability

description

Seven vulnerability

characteristics

Character-word

model building

Vulnerability

characteristics prediction

Trained character-

word models

P
re

d
ic

ti
o
n

p
ro

ce
ss

Optimal NLP

configurations

Feature

transformation

Word n-grams

generation

Text preprocessing

Feature

modelsM
o
d

el
 b

u
il

d
in

g

p
ro

ce
ss

Word n-grams

generation

Feature

transformation

Model training and

evaluation

Optimal

classifiers

Time-based k-fold cross-validation

M
o
d

el
 s

e
le

c
ti

o
n

 p
ro

c
e
ss

Data splitting

Figure 3.2: Workflow of our proposed model for report-level software
vulnerability assessment with concept drift.

Nevertheless, relying solely on Severity may be insufficient because an SV with medium
severity may still have high impacts as it is considerably complex to be exploited. It is
important to assign a high fixing priority to such an SV as an affected system would face
tremendous risks in case of a successful cyber-attack. Therefore, in this study, we con-
sider all the base metrics of CVSS version 2 (i.e., Confidentiality, Integrity, Availability,
Access Vector, Access Complexity, Authentication and Severity), as shown in Fig. 3.1, for
developing SV assessment models. From the perspective of ML, predicting CVSS metrics
is a classification problem, which can be solved readily using ML algorithms. It is noted
that Access Vector, Access Complexity and Authentication characteristics suffer the most
from the issue of imbalanced data, in which the number of elements in the minority class
is much smaller compared to those of the other classes.

3.3 The Proposed Approach

3.3.1 Approach Overview

The overall workflow of our proposed approach is given in Fig. 3.2. Our approach consists
of three processes: model selection, model building and prediction. The first two processes
work on the training set, while the prediction process performs on either a separate testing
set or new SV descriptions. The first model selection has two steps: Text preprocessing
and Time-based k-fold cross-validation. The text preprocessing step (see section 3.3.2) is
necessary to reduce noise in text to build a better assessment model. Next, the preprocessed
text enters the time-based k-fold cross-validation step to select the optimal classifier and
Natural Language Processing (NLP) representations for each VC. It should be noted that
this step only tunes the word-level models instead of the combined models of both word
and character features. One reason is that the search space of the combined model is
much larger than that of the word-only model since we at least have to consider different
NLP representations for character-level features. The computational resource to extract

3.3. The Proposed Approach 41

Table 3.1: Word and character n-grams extracted from the sentence “Hello
World”. ‘_’ represents a space.

n-grams Words Characters
1 Hello, World H, e, l, l, o, W, o, r, l, d
2 Hello World He, el, ll, lo, o_, _W, Wo, or, rl, ld

character-level n-grams is also more than that of word-level counterparts. Section 3.3.3
provides more details about the time-based k-fold cross-validation method.

Next comes the model building process with four main steps: (i) word n-grams gener-
ation, (ii) character n-grams generation, (iii) feature aggregation and (iv) character-word
model building. Steps (i) and (ii) use the preprocessed text in the previous process to
generate word and character n-grams based on the identified optimal NLP representations
of each VC. The word n-grams generation step (i) here is the same as the one in the
time-based k-fold cross-validation of the previous process. An example of the word and
character n-grams in our approach is given in Table 3.1. Such character n-grams increase
the probability of capturing parts of OoV terms due to concept drift in SV descriptions.
Subsequently, both levels of the n-grams and the optimal NLP representations are input
into the feature aggregation step (iii) to extract features from the preprocessed text using
our proposed algorithm in section 3.3.4. This step also combines the aggregated character
and word vocabularies with the optimal NLP representations of each VC to create the
feature models. We save such models to transform data of future prediction. In the last
step (iv), the extracted features are trained with the optimal classifiers found in the model
selection process to build the complete character-word models for each VC to perform
automated report-level SV assessment with concept drift.

In the prediction process, a new SV description is first preprocessed using the same text
preprocessing step. Then, the preprocessed text is transformed to create features by the
feature models saved in the model building process. Finally, the trained character-word
models use such features to determine each VC.

3.3.2 Text Preprocessing of SV Descriptions

The text preprocessing is an important step for any NLP task [240]. We use the following
text preprocessing techniques: (i) removal of stop words and punctuations, (ii) conversion
to lowercase and (iii) stemming. The stop words are combined from the default lists of
the scikit-learn [241] and nltk [242] libraries. We only remove the punctuations followed
by at least one space or the ones at the end of a sentence. This punctuation removal
method keeps important words in the software and security contexts such as “input.c”,
“man-in-the-middle”, “cross-site”.

Subsequently, the stemming step is done using the Porter Stemmer algorithm [243] in
the nltk library. Stemming is needed to avoid two or more words with the same meaning
but in different forms (e.g., “allow ” vs. “allows”). The main goal of stemming is to retrieve
consistent features (words), thus any algorithm that can return each word’s root should
work. Researchers may use lemmatization, which is relatively slower as it also considers
the surrounding context.

3.3.3 Model Selection with Time-based k-Fold Cross-Validation

We propose a time-based cross-validation method (see Fig. 3.3) to select the best classifier
and NLP representation for each VC. The idea has been inspired by the time-series do-
main [244]. As shown in Fig. 3.2, our method has four steps: (i) data splitting, (ii) word

42 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

Pass 1

Pass 2

Pass 3

Pass k

.

.

.

x
-

k
 +

 1
x
-

k
 +

 2
x
-

k
 +

 3

... x

Year

Training data

Validation data

Unused data

Training data

Validation data

Unused data
.
.
.

...

...

...

Figure 3.3: Our proposed time-based cross-validation method. Note: x
is the final year in the original training set and k is the number of cross-

validation folds.

Table 3.2: The eight configurations of NLP representations used for model
selection. Note: ‘✓’ is selected, ‘-’ is non-selected.

Configuration Word n-grams tf-idf
1 1 -
2 1 ✓
3 1-2 -
4 1-3 -
5 1-4 -
6 1-2 ✓
7 1-3 ✓
8 1-4 ✓

n-grams generation, (iii) feature transformation, and (iv) model training and evaluation.
Data splitting explicitly considers the time order of SVs to ensure that in each pass/fold,
the new information of the validation set does not exist in the training set, which maintains
the temporal property of SVs. New terms can appear at different time during a year; thus,
the preprocessed text in each fold is split by year explicitly, not by equal sample size as
in traditional time-series splits;1 e.g., SVs from 1999 to 2010 are for training and those in
2011 are for validation in a pass/fold.

After data splitting in each fold, we use the training set to generate the word n-grams.
Subsequently, with each of the eight NLP configurations in Table 3.2, the feature transfor-
mation step uses the word n-grams as the vocabulary to transform the preprocessed text
of both training and validation sets into the features for building a model. We create the
NLP configurations from various values of n-grams combined with either term frequency or
tf-idf measure. Uni-gram with term frequency is also called Bag-of-Words (BoW). These
NLP representations have been selected since they are popular and have performed well for
SV analysis [22, 49, 95]. For each NLP configuration, the model training and evaluation

1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
TimeSeriesSplit.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html

3.3. The Proposed Approach 43

Algorithm 1: Feature aggregation algorithm to transform the documents with
the aggregated word and character-level features.

Input: List of SV descriptions: Din

Set of word-level n-grams: Fw = {f1w, f2w, ..., fnw}
Set of character-level n-grams: Fc = {f1c, f2c, ..., fmc}
The minimum and maximum character n-grams: minn−gram and maxn−gram

The optimal NLP configuration of the current VC: config
Output: The aggregated data matrix: Xagg

The word and character feature models: modelw,modelc
1 slt_chars← ∅
2 foreach fi ∈ Fc do
3 tokens← fi trimmed and split by space
4 if (size of tokens = 1) and ((length of the first element in tokens) > 1) then
5 slt_chars← slt_chars+ {tokens}
6 diff_words← Fw − slt_chars
7 modelw ← Feature_transformation(diff_words, config)
8 modelc ← Feature_transformation(slt_chars,minn−gram− 1,maxn−gram, config)
9 Xword ← Din transformed with modelw

10 Xchar ← Din transformed with modelc
11 Xagg ← horizontal_append(Xword,Xchar)
12 return Xagg, modelw, modelc

step trains six classifiers (see section 3.4.3) on the training set and then evaluates the mod-
els on the validation set using different evaluation metrics (see section 3.4.4). The model
with the highest average cross-validated performance is selected for a VC. The process is
repeated for every VC, then the optimal classifiers and NLP representations are returned
for all seven VCs.

3.3.4 Feature Aggregation Algorithm

We propose Algorithm 1 to combine word and character n-grams in the model building
process to create features for our character-word model. Six inputs of the algorithm are
(i) input descriptions, (ii) word n-grams, (iii) character n-grams, (iv) the minimum, (v)
the maximum number of character n-grams, and (vi) the optimal NLP configuration of a
VC. The main output is a feature matrix containing the term weights of the documents
transformed by the aggregated character and word vocabularies to build the character-
word models. We also output the character and word feature models for future prediction
of VCs.

Steps 2-7 of the algorithm filter the character features. More specifically, step 3 removes
(trims) spaces from both ends of each feature. Then, we split such feature by space(s)
to determine how many words to which the character(s) belongs. Subsequently, steps 4-6
retain only the character features that are parts of single words (size of tokens = 1), except
the single characters such as x, y, z ((length of the first element in tokens) > 1). The
n-gram characters with space(s) in between represent more than one word, which can make
a classifier more prone to overfitting. Similarly, single characters are too short and they can
belong to too many words, which is likely to make a model hardly generalizable. In fact,
‘a’ is a meaningful single character, but it has been already removed as a stop word. The
characters can even represent a whole word (e.g., “attack ” token with maxn−gram ≥ 6). In
such cases, step 8 removes duplicated word-level features (Fw − slt_chars). Based on the
assumption that unseen or misspelled terms can share common characters with existing

44 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

words, such choice can enhance the probability of a model capturing the OoV words in new
descriptions. Retaining only the character features also helps reduce the number of features
and model overfitting. After that, steps 9-10 define the feature models modelw and modelc
using the word (diff_words) and character (slt_chars) vocabularies, respectively, along
with the NLP configurations to transform the input documents into feature matrices for
building an assessment model. Steps 11-12 then use the two defined word and character
models to actually transform the input documents into the feature matrices Xword and
Xword, respectively. Step 13 concatenates the two feature matrices by columns. Finally,
step 14 returns the final aggregated feature matrix Xagg along with the word and character
feature models modelw and modelc.

3.4 Experimental Design and Setup

All the classifiers and NLP representations (n-grams, term frequency and tf-idf) in this
work were implemented in the scikit-learn [241] and nltk [242] libraries in Python. Our
code ran on a fourth-generation Intel Core i7-4200HQ CPU (four cores) running at 2.6
GHz with 16 GB of RAM.

3.4.1 Research Questions

Our research aims at addressing the concept drift issue in SVs’ descriptions to improve
the robustness of both model selection and prediction steps of report-level SV assessment.
Specifically, we evaluate our two-phase character-word models. The first phase selects the
optimal word-only models for each VC. The second phase incorporates character features
to build character-word models. We raise and answer four Research Questions (RQs):

• RQ1: Is our time-based cross-validation more effective than a non-temporal method
to handle concept drift in the model selection step for report-level SV assessment?
To answer RQ1, we first identify the new terms in SV descriptions. We associate
such terms with their release or discovery years. We then use qualitative examples to
demonstrate information leakage in the non-temporal model selection step. We also
quantitatively compare the effectiveness of the proposed time-based cross-validation
method with a traditional non-temporal one for addressing the temporal relationship
in the context of report-level SV assessment.

• RQ2: Which are the optimal models for multi-classification of each SV character-
istic? To answer RQ2, we present the optimal models (i.e., classifiers and NLP
representations) using word features for each VC selected by a five-fold time-based
cross-validation method (see section 3.3.3). We also compare the performance of
different classes of models (single vs. ensemble) and NLP representations to give
recommendations for future use.

• RQ3: How effective is our character-word model to perform automated report-level
SV assessment with concept drift? For RQ3, we first demonstrate how the OoV
phrases identified in RQ1 can affect the performance of the existing word-only models.
We then highlight the ability of the character features to handle the concept drift issue
of SVs. We also compare the performance of our character-word model with those of
the word-only (without handling concept drift) and character-only models.

• RQ4: To what extent can low-dimensional model retain the original performance?
The features of our proposed model in RQ3 are high-dimensional and sparse. Hence,
we evaluate a dimensionality reduction technique (i.e., Latent Semantic Analysis [245])

3.4. Experimental Design and Setup 45

and the sub-word embeddings (i.e., fastText [196, 246]) to show how much informa-
tion of the original model is approximated in lower dimensions. RQ4 findings can
facilitate the building of more efficient concept-drift-aware predictive models.

3.4.2 Dataset

We retrieved 113,292 SVs from NVD in JSON format. The dataset contains the SVs from
1988 to 2018. We discarded 5,926 SVs that contain “** REJECT **” in their descriptions
since they had been confirmed duplicated or incorrect by experts. Seven VCs of CVSS 2
(see section 3.2) were used as our SV assessment metrics. It turned out that there are 2,242
SVs without any value of CVSS 2. Therefore, we also removed such SVs from our dataset.
Finally, we obtained a dataset containing 105,124 SVs along with their descriptions and
the values of seven VCs indicated previously. For evaluation purposes, we followed the
work in [22] to use the year of 2016 to divide our dataset into training and testing sets
with the sizes of 76,241 and 28,883, respectively. The primary reason for splitting the
dataset based on the time order is to consider the temporal relationship of SVs.

3.4.3 Machine Learning Models for Report-Level SV Assessment

To solve our multi-class classification (report-level SV assessment) problem, we used six
well-known ML models. These classifiers have achieved great results in recent data science
competitions such as Kaggle [247]. We provide brief descriptions and the hyperparameters
of each classifier below.

• Naïve Bayes (NB) [248] is a simple probabilistic model that is based on Bayes’ the-
orem. This model assumes that all the features are conditionally independent with
respect to each other. In this study, NB had no tuning hyperparameter during the
validation step.

• Logistic Regression (LR) [249] is a linear classifier in which the logistic function is used
to convert a linear output into a respective probability. The one-vs-rest scheme was
applied to split the multi-class problem into multiple binary classification problems.
In this work, we selected the optimal value of the regularization parameter for LR
from the list of values: 0.01, 0.1, 1, 10, 100.

• Support Vector Machine (SVM) [206] is a classification model in which a maximum
margin is determined to separate the classes. For NLP, the linear kernel is preferred
because of its more scalable computation and sparsity handling [250]. The tuning
regularization values of SVM are the same as LR.

• Random Forest (RF) [251] is a bagging model in which multiple decision trees are
combined to reduce the variance and sensitivity to noise. The complexity of RF is
mainly controlled by (i) the number of trees, (ii) maximum depth, and (iii) maximum
number of leaves. (i) tuning values were: 100, 300, 500. We set (ii) to unlimited,
which makes the model the highest degree of flexibility and easier to adapt to new
data. For (iii), the tuning values were 100, 200, 300 and unlimited.

• XGBoost - Extreme Gradient Boosting (XGB) [78] is a variant Gradient Boosting
Tree Model (GBTM) in which multiple weak tree-based classifiers are combined and
regularized to enhance the robustness of the overall model. Three hyperparameters of
XGB that require tuning were the same as RF. It should be noted that the unlimited
value of the maximum number of leaves is not applicable to XGB.

46 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

• Light Gradient Boosting Machine (LGBM) [79] is a light-weight version of GBTM.
Its main advantage is the scalability since the sub-trees are grown in a leaf-wise
manner rather than depth-wise of other GBT algorithms. Three hyperparameters of
LGBM that require tuning were the same as XGB.

In this work, we considered NB, LR and SVM as single models, while RF, XGB and
LGBM as ensemble models.

3.4.4 Evaluation Metrics

Our multi-class classification problem can be decomposed into multiple binary classification
problems. To define the standard evaluation metrics for a binary problem [22, 20, 21], we
first describe four possibilities as follows.

• True positive (TP): The classifier correctly predicts that an SV has a particular
characteristic.

• False positive (FP): The classifier incorrectly predicts that an SV has a particular
characteristic.

• True negative (TN): The classifier correctly predicts that an SV does not have a
particular characteristic.

• False negative (FN): The classifier incorrectly predicts that an SV does not have a
particular characteristic.

Based on TP, FP, TN, FN, Accuracy, Precision, Recall and F1-Score can be defined
accordingly in (3.1), (3.2), (3.3), (3.4).

Accuracy =
TP + TN

TP + FP + TN + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

F1− Score =
2 × Precision × Recall

Precision + Recall
(3.4)

Whilst Accuracy measures the global performance of all classes, F1-Score (a harmonic
mean of Precision and Recall) evaluates each class separately. Such local estimate like F1-
Score is more favorable to the imbalanced VCs such as Access Vector, Access Complexity,
Authentication, Severity (see Fig. 3.1). In fact, there are several variants of F1-Score for
a multi-class classification problem, namely Micro, Macro and Weighted F1-Scores. In
the case of multi-class classification, Micro F1-Score is actually the same as Accuracy. For
Macro and Weighted F1-Scores, the former does not consider class distribution (the number
of elements in each class) for computing F1-Score of each class; whereas, the latter does.
To account for the balanced and imbalanced VCs globally and locally, we used Accuracy,
Macro, and Weighted F1-Scores to evaluate our models. For model selection, if there was
a performance tie among models regarding Accuracy and/or Macro F1-Score, Weighted
F1-Score would be chosen as the discriminant criterion. The reason is that Weighted F1-
Score can be considered a compromise between Macro F1-Score and Accuracy. If the tie
still existed, the less complex model with the smaller number of hyperparameters would
be selected as per the Occam’s razor principle [252]. In the last tie scenario, the model
with shorter training time would be chosen.

3.5. Experimental Results and Discussion 47

0

2000

4000

6000

8000

10000

12000

14000

16000

20
00
20
01
20
02
20
03
20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15
20
16
20
17

N
u

m
b

er
 o

f
n

ew
 t

er
m

s

Year

Figure 3.4: The number of new terms from 2000 to 2017 of SV descriptions
in NVD.

3.5 Experimental Results and Discussion

3.5.1 RQ1: Is Our Time-Based Cross-Validation More Effective Than
a Non-Temporal Method to Handle Concept Drift in The Model
Selection Step for Report-Level SV Assessment?

We performed both qualitative and quantitative analyses to demonstrate the relationship
between concept drift and the model selection step of report-level SV assessment. Firstly,
it is intuitive that data of SVs intrinsically change over time because of new products,
software and attack vectors. The number of new terms appearing in the NVD descriptions
each year during the period from 2000 to 2017 is given in Fig. 3.4. On average each year,
there were 7345 new terms added to the vocabulary. Moreover, from 2015 to 2017, the
number of new terms had been consistently increasing and achieved an all-time high value
of 14684 in 2017. We also highlight some concrete examples about the terms appearing in
the database after a particular technology, product or attack was released in Fig. 3.5. There
seems to be a strong correlation between the time of appearance of some new terms in the
descriptions and their years of release or discovery. Such unseen terms contained many
concepts about new products (e.g., Firefox, Skype, and iPhone), operating systems (e.g.,
Android, Windows Vista/7/8/10), technologies (e.g., Ajax, jQuery, and Node.js), attacks
(e.g., Code Red, Slammer, and Stuxnet worms). There were also the extended forms of
existing ones such as the updated versions of Java Standard Edition (Java SE) each year.
These qualitative results depict that if the time property of SVs is not considered in the
model selection step, then future terms can be mixed with past ones. Such information
leakage can result in a discrepancy in the real-world model performance.

In fact, the main goal of the validation step is to select the optimal models that can
exhibit similar behavior on unseen data. Next, our approach quantitatively compared the
degree of model overfitting between our time-based cross-validation method and a stratified

48 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

Bugzilla (1998)

Ascii (1999)

JSP (1999)

Tomcat (1999)

2000 2002 2004

Slammer worm

(2002)

Firefox (2002)

asp.net (2002)

Skype

(2003)

Witty worm

(2004)

Ubuntu (2004)

Zotob worm

(2005)

Ajax (2005)

2005

Welchia worm

(2003)

Wordpress

(2003)

2008

VirtualBox

(2007)

Android (2008)

OSSIM (2008)

20092010

HTML5 (2008)

Bitcoin (2009)

Stuxnet (2010)

iPad (2010)

2011

Node.js (2009)

OpenStack

(2010)

Java SE 7 (2011)

GitHub (2008)

Windows 8

(2012)

2012

2003

2018201720162015 Year

2013

2007

jQuery (2006)

Windows Vista

(2006)

iPhone (2007)

OpenSSO

(2008)

Windows 7

(2009)

OpenWave

(2000)

Code Red

worm (2001)

Wireshark

(2006)
2006

JSE 7:

7u60-67-71-72

JSE 8 (2014):

8u20-25-5-6

2014

Java SE

(JSE) 7:
7u25-40-

45-51

Windows 10 (2015)

JSE 7: 7u75-

76-80-85

JSE 8: 8u33-

40-45-51-60

JSE 7: 7u91-95-

97-99-101-111-121

JSE 8: 8u65-71-72-

73-74-77-91-92

JSE 7: 7u131-

141-151

JSE 8: 8u121-

131-144

JSE 7: 7u161-

171-181

JSE 8: 8u151-

152-161-171-172

2001

Figure 3.5: Examples of new terms in NVD corresponding to new prod-
ucts, software, cyber-attacks from 2000 to 2018. Note: The year of re-

lease/discovery is put in parentheses.

non-temporal one used in [22, 20]. For each method, we computed the Weighted F1-Scores
difference between the cross-validated and testing results of the optimal models found in
the validation step (see Fig. 3.6). The model selection and selection criteria procedures
of the normal cross-validation method were the same as our temporal one. Fig. 3.6 shows
that traditional non-temporal cross-validation was overfitted in four out of seven cases
(i.e., Availability, Access Vector, Access Complexity, and Authentication). Especially, the
degrees of overfitting of non-temporal validation method were 1.8, 4.7 and 1.8 times higher
than those of the time-based version for Availability, Access Vector, and Access Complexity,
respectively. For the other three VCs, both methods were similar, in which the differences
were within 0.02. Moreover, on average, the Weighted F1-Scores on the testing set of the
non-temporal cross-validation method were only 0.002 higher than our approach. This
value is negligible compared to the difference of 0.02 (ten times more) in the validation
step. It is worth noting that a similar comparison also held for non-stratified non-temporal
cross-validation. Overall, both qualitative and quantitative findings suggest that the time-
based cross-validation method should be preferred to lower the performance overestimation
and mis-selection of report-level SV assessment models due to the effect of concept drift in
the model selection step.

The summary answer to RQ1: The qualitative results show that many new terms
are regularly added to NVD, after the release or discovery of the corresponding soft-
ware products or cyber-attacks. Normal random-based evaluation methods mixing
these new terms can inflate the cross-validated model performance. Quantitatively,
the optimal models found by our time-based cross-validation are also less overfitted,
especially two to five times for Availability, Access Vector and Access Complexity.
It is recommended that the time-based cross-validation should be adopted in the
model selection step for report-level SV assessment.

3.5. Experimental Results and Discussion 49

0.00

0.04

0.08

0.12

0.16

Con
fid

en
tia

lit
y

In
teg

rit
y

Ava
ila

bil
ity

Acc
es

s V
ec

tor

Acc
es

s C
om

ple
xit

y

Auth
en

tic
ati

on

Sev
eri

ty

Normal Time-based

Figure 3.6: Performance differences between the validated and test-
ing Weighted F1-Scores of our time-based validation and a normal cross-

validation methods.

3.5.2 RQ2: Which are the Optimal Models for Multi-Classification of
Each SV Characteristic?

The answer to RQ1 has shown that the temporal cross-validation should be used for se-
lecting the optimal models in the context of report-level SV assessment. RQ2 presents the
detailed results of the first phase of our model. Specifically, we used our five-fold time-
based cross-validation to select the optimal word-only model for each of the seven VCs
from six classifiers (see section 3.4.3) and eight NLP representations (see Table 3.2). We
followed the guidelines of the previous work [22] to extract only the words appearing in
more than 0.1% of all descriptions as features for RQ2.

Firstly, each classifier was tuned using random VCs to select its optimal set of hyperpa-
rameters. Such selected hyperparameters are reported in Table 3.3. It is worth noting that
we utilized local optimization as a filter to reduce the search space. We found that 0.1 was
a consistently good value of regularization coefficient for SVM. Unlike SVM, for LR, 0.1
was suitable for term frequency representation; whereas, 10 performed better for the case
of tf-idf. One possible explanation is that LR provides a decision boundary that is more
sensitive to hyperparameter. Additionally, although tf-idf with l2-normalization helps a
model converge faster, it usually requires more regularization to avoid overfitting [253].
For ensemble models, more hyperparameters need tuning, as mentioned in section 3.4.3.
Regarding the maximum number of leaves, the optimal value for RF was unlimited, which
is expected since it would give more flexibility to the model.

However, for XGB and LGBM, the unlimited value was not available. In fact, the higher
value did not improve the performance, but significantly increased the computational time.
As a result, we chose 100 to be the number of leaves for XGB and LGBM. Similarly, we
obtained 100 as a good value for the number of trees of each ensemble model. We noticed

50 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

Table 3.3: Optimal hyperparameters found for each classifier.

Classifier Hyperparameters
NB None

LR
Regularization value:
+ 0.1 for term frequency
+ 10 for tf-idf

SVM Kernel: linear
Regularization value: 0.1

RF
Number of trees: 100
Max. depth: unlimited
Max. number of leaf nodes: unlimited

XGB
Number of trees: 100
Max. depth: unlimited
Max. number of leaf nodes: 100

LGBM
Number of trees: 100
Max. depth: unlimited
Max. number of leaf nodes: 100

Table 3.4: Optimal models and results after the validation step. Note:
The NLP configuration number is put in parentheses.

SV
characteristic

Classifier
(config) Accuracy

Macro
F1-Score

Weighted
F1-Score

Confidentiality LGBM (1) 0.839 0.831 0.840
Integrity XGB (4) 0.861 0.853 0.861
Availability LGBM (1) 0.785 0.783 0.782
Access Vector XGB (7) 0.936 0.643 0.914
Access Complexity LGBM (1) 0.771 0.553 0.758
Authentication LR (3) 0.973 0.626 0.972
Severity LGBM (5) 0.814 0.763 0.811

that the maximum depth of ensemble methods was the hyperparameter that affected the
validation result the most; the others did not change the performance dramatically. Finally,
we got a search space of size of 336 in the cross-validation step ((six classifiers) × (eight
NLP configurations) × (seven characteristics)). The optimal validation results after using
our five-fold time-based cross-validation method in section 3.3.3 are given in Table 3.4.

Besides each output, we also examined the validated results across different types of
classifiers (single vs. ensemble models) and NLP representations (n-grams and tf-idf vs.
term frequency). Since the NLP representations mostly affect the classifiers, their validated
results are grouped by six classifiers in Tables 3.5 and 3.6. The result shows that tf-idf did
not outperform term frequency for five out of six classifiers. This result agrees with the
existing work [22, 20]. It seemed that n-grams with n > 1 improved the result. We used a
one-sided non-parametric Wilcoxon signed rank test [254] to check the significance of such
improvement of n-grams (n > 1). The p-value was 0.169, which was larger than 0.01 (the
significance level). Thus, we were unable to accept the improvement of n-grams over uni-
gram. Furthermore, there was no performance improvement after increasing the number
of n-grams. The above-reported three observations implied that the more complex NLP
representations did not provide a statistically significant improvement over the simplest
BoW (configuration 1 in Table 3.2). This argument helped explain why three out of seven
optimal models in Table 3.4 were BoW.

3.5. Experimental Results and Discussion 51

Table 3.5: Average cross-validated Weighted F-scores of term frequency
vs. tf-idf grouped by six classifiers.

Classifier
NB LR SVM RF XGB LGBM

Term
frequency 0.781 0.833 0.835 0.843 0.846 0.846

tf-idf 0.786 0.832 0.831 0.836 0.843 0.844

Table 3.6: Average cross-validated Weighted F-scores of uni-gram vs. n-
grams (2 ≤ n ≤ 4) grouped by six classifiers.

Classifier 1-gram 2-grams 3-grams 4-grams
NB 0.756 0.778 0.784 0.785
LR 0.821 0.835 0.836 0.836
SVM 0.823 0.835 0.836 0.837
RF 0.838 0.840 0.838 0.838
XGB 0.844 0.845 0.846 0.846
LGBM 0.845 0.845 0.845 0.845

Along with the NLP representations, we also investigated the performance difference
between single (NB, LR, and SVM) and ensemble (RF, XGB, and LGBM) models. The
average Weighted F1-Scores grouped by VCs for single and ensemble models are illustrated
in Fig. 3.7. The ensemble models seemed to consistently demonstrate the superior perfor-
mance compared to the single counterparts. We also observed that the ensemble methods
produced mostly consistent results (i.e., small variances) for Access Vector and Authenti-
cation characteristics. We performed the one-sided non-parametric Wilcoxon signed rank
tests [254] to check the significance of the better performance of the ensemble over the
single models. Table 3.7 reports the p-values of the results from the hypothesis testing.
The tests confirmed that the superiority of the ensemble methods was significant since
all p-values were smaller than the significance level of 0.01. The validated results in Ta-
ble 3.4 also affirmed that six out of seven optimal classifiers were ensemble (i.e., LGBM and
XGB). It is noted that the XGB model usually took more time to train than the LGBM
model, especially for tf-idf representation. Our findings suggest that LGBM, XGB and
BoW should be considered as baseline classifiers and NLP representations for report-level
SV assessment.

The summary answer to RQ2: LGBM and BoW are the most frequent optimal
classifiers and NLP representations. Overall, the more complex NLP representa-
tions such as n-grams, tf-idf do not provide a statistically significant performance
improvement than BoW. The ensemble models perform statistically better than sin-
gle ones. It is recommended that the ensemble classifiers (e.g., XGB and LGBM)
and BoW should be used as baseline models for report-level SV assessment.

3.5.3 RQ3: How Effective is Our Character-Word Model to Perform
Automated Report-Level SV Assessment with Concept Drift?

The OoV terms presented in RQ1 actually directly have an impact on the word-only models.
Such missing features can make a model unable to produce reliable results. Especially
when no existing term is found (i.e., all features are zero), a model would have the same
output regardless of the context. To answer RQ3, we first tried to identify such all-zero

52 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

Confidentiality
Integrity

Availability

Access V
ector

Access C
omplexity

Authentication
Severity

0.70

0.75

0.80

0.85

0.90

0.95
Single
Ensemble

Figure 3.7: Average cross-validated Weighted F1-Scores comparison be-
tween ensemble and single models for each VC.

Table 3.7: P -values of H0: Ensemble models ≤ Single models for each
VC.

SV characteristic p-value
Confidentiality 3.261× 10−5

Integrity 9.719× 10−5

Availability 3.855× 10−5

Access Vector 2.320× 10−3

Access Complexity 1.430× 10−5

Authentication 1.670× 10−3

Severity 1.060× 10−7

cases in the SV descriptions from 2000 to 2018. For each year from 2000 to 2018, we
split the dataset into (i) training set (data from the previous year backward) for building
the vocabulary, and (ii) testing set (data from the current year to 2018) for checking
the vocabulary existence. We found 64 cases from 2000 to 2018 in the testing data, in
which all the features were missing (see Appendix 3.9). We used the terms appearing at
least 0.1% in all descriptions. It should be noted that the number of all-zero cases may
be reduced using a larger vocabulary with the trade-off for larger computational time.
We also investigated the descriptions of these vulnerabilities and found several interesting
patterns. The average length of these abnormal descriptions was only 7.98 words compared
to 39.17 of all descriptions. It turned out that the information about the threats and
sources of such SVs was limited. Most of them just included the assets and attack/SV
types. For example, the vulnerabilities with ID of CVE-2016-10001xx had nearly the
same format “Reflected XSS in WordPress plugin” with the only differences were the name
and version of the plugin. This format made it hard for a model to evaluate the impact
of each SV separately. Another issue was due to specialized or abbreviated terms such

3.5. Experimental Results and Discussion 53

200

250

300

350

400

450

500

2 3 4 5 6 7 8 9 10 11

N
u

m
b

er
 o

f
te

rm
s

Maximum number of character n-grams

Figure 3.8: The relationship between the size of vocabulary and the max-
imum number of character n-grams.

as /redirect?url = XSS, SEGV,CSRF without proper explanation. The above issues
suggest that SV descriptions should be written with sufficient information to enhance the
comprehensibility of SVs.

For RQ3, the solution to the issue of the word-only models using character-level features
is evaluated. We considered the non-stop-words with high frequency (i.e., appearing in
more than 10% of all descriptions) to generate the character features. Using the same
0.1% value as RQ2 increased the dimensions more than 30 times, but the performance
only changed within 0.02. According to Algorithm 1, the output minimum number of
character n-grams was chosen to be two. We first tested the robustness of the character-
only models by setting the maximum number of characters to only three. For each year
y from 1999 to 2017, we used such character model to generate the characters from the
data of the considering year y backward. We then verified the existence of such features
using the descriptions of the other part of the data (i.e., from year y + 1 towards 2018).
Surprisingly, the model using only two-to-three-character n-grams could produce at least
one non-zero feature for all the descriptions even using only training data in 1999 (i.e., the
first year in our dataset based on CVE-ID). Such finding shows that our approach is stable
to SV data changes (concept drift) in testing data from 2000 to 2018 even with the limited
amount of data and without retraining.

Next, to increase the generalizability of our approach, values of 3-10 were considered
for selecting the maximum number of character n-grams based on their corresponding
vocabulary sizes (see Fig. 3.8). Using the elbow method in cluster analysis [255], six
was selected since the vocabulary size did not increase dramatically after this point. The
selected minimum and maximum values of character n-grams matched the minimum and
average word lengths of all NVD descriptions in our dataset, respectively.

We then used the feature aggregation algorithm (see section 3.3.4) to create the ag-
gregated features from the character n-grams (2 ≤ n ≤ 6) and word n-grams to build
the final model set and compared it with two baselines: Word-only Model (WoM) and
Character-only Model (CoM).

54
C

hapter
3.

A
utom

ated
R

eport-LevelSoftw
are

V
ulnerability

A
ssessm

ent
w

ith
C

oncept
D

rift

Table 3.8: Performance (Accuracy, Macro F1-Score, Weighted F1-Score) of our character-word vs. word-only and character-only
models.

SV characteristic Our optimal model (CWM) Word-only model (WoM) Character-only model (CoM)

Accuracy
Macro

F1-Score
Weighted
F1-Score Accuracy

Macro
F1-Score

Weighted
F1-Score Accuracy

Macro
F1-Score

Weighted
F1-Score

Confidentiality 0.727 0.717 0.728 0.722 0.708 0.723 0.694 0.683 0.698
Integrity 0.763 0.749 0.764 0.763 0.744 0.764 0.731 0.718 0.734
Availability 0.712 0.711 0.711 0.700 0.696 0.702 0.660 0.657 0.660
Access Vector 0.914 0.540 0.901 0.904 0.533 0.894 0.910 0.538 0.899
Access Complexity 0.703 0.468 0.673 0.718 0.476 0.691 0.700 0.457 0.668
Authentication 0.875 0.442 0.844 0.864 0.425 0.832 0.866 0.441 0.840
Severity 0.668 0.575 0.663 0.686 0.569 0.675 0.661 0.549 0.652

3.5. Experimental Results and Discussion 55

It should be noted that WoM is the model in which concept drift is not handled. Unfor-
tunately, a direct comparison with the existing WoM [22] was not possible since they used
an older NVD dataset and more importantly, they did not release their source code for
reproduction. However, we tried to set up the experiments based on the guidelines and
results presented in the previous paper [22].

To be more specific, we used BoW predictors and random forest (the best of their three
models used) with the following hyperparameters: the number of trees was 100 and the
number of features for splitting was 40. For CoM, we used the same optimal classifier
of each VC. The comparison results are given in Table 3.8. CWM performed slightly
better than the WoM for four out of seven VCs regarding all evaluation metrics. Also,
4.98% features of CWM were non-zero, which was nearly five-time denser than 1.03% of
WoM. Also, CoM was the worst model among the three, which had been expected since
it contained the least information (smallest number of features). Although CWM did not
significantly outperform WoM, its main advantage is to effectively handle the OoV terms
(concept drift), except new terms without any matching parts. We hope that our solution
to concept drift will be integrated into practitioner’s existing framework/workflow and
future research work to perform more robust report-level SV assessment.

The summary answer to RQ3: The WoM does not handle the new cases well,
especially those with all zero-value features. Without retraining, the tri-gram char-
acter features can still handle the OoV words effectively with no all-zero features
for all testing data from 2000 to 2018. Our CWM performs comparably well with
the existing WoM and provides nearly five-time richer SV information. Hence, our
CWM is better for automated report-level SV assessment with concept drift.

3.5.4 RQ4: To What Extent Can Low-Dimensional Model Retain the
Original Performance?

The n-gram NLP models usually have an issue with the high-dimensional and sparse feature
vectors [240]. The large feature sizes of our CWMs in Table 3.8 were 1,649 for Confiden-
tiality, Availability and Access Complexity; 4,154 for Integrity and Access Vector; 3,062
for Authentication; and 5,104 for Severity. To address such challenge in RQ4, we investi-
gated a dimensionality reduction method (i.e., Latent Semantic Analysis (LSA) [245]) and
recent sub-word embeddings (e.g., fastText [196, 246]) for SV assessment. fastText is an
extension of Word2Vec [202] word embeddings, in which the character-level features are
also considered. fastText is different to traditional n-grams in the sense that it determines
the meaning of a word/subword based on the surrounding context. Here, we computed
the sentence representation as an average fastText embedding of its constituent words and
characters. We implemented fastText using the Gensim [256] library in Python.

For LSA, using the elbow method and total explained variances of the principal com-
ponents, we selected 300 for the dimensions and called it LSA-300. Table 3.9 shows that
LSA-300 retained from 90% to 99% performance of the original model, but used only 300
dimensions (6-18% of original model sizes). More remarkably, with the same 300 dimen-
sions, the fastText model trained on SV descriptions was on average better than LSA-300
(97% vs. 94.5%). fastText model even slightly outperformed our original CWM for Ac-
cess Complexity. Moreover, for all seven cases, the fastText model using SV knowledge
(fastText-300) had higher Weighted F1-Scores than that trained on English Wikipedia
pages (fastText-300W) [257]. The result implied that SV descriptions contain specific
terms that do not frequently appear in general domains. The domain relevance turns
out to be not only applicable to word embeddings [21], but also to character/sub-word

56 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

Table 3.9: Weighted F1-Scores of our original CWM (green-colored
baseline), 300-dimension Latent Semantic Analysis (LSA-300), fastText
trained on SV descriptions (fastText-300) and fastText trained on English

Wikipedia pages (fastText-300W).

SV
characteristic

Our
CWM

LSA-
300

fastText-
300

fastText-
300W

Confidentiality 0.728 0.656 0.679 0.648
Integrity 0.764 0.695 0.719 0.672
Availability 0.711 0.656 0.687 0.669
Access Vector 0.901 0.892 0.893 0.866
Access Complexity 0.673 0.611 0.679 0.678
Authentication 0.844 0.842 0.815 0.765
Severity 0.663 0.656 0.654 0.635

embeddings for SV analysis and assessment. Overall, our findings show that LSA and
fastText are capable of building efficient report-level SV assessment models without too
much performance trade-off.

The summary answer to RQ4: The LSA model with 300 dimensions (6-18% of
the original size) retains from 90% up to 99% performance of the original model.
With the same feature dimensions, the model with fastText sub-word embeddings
provide even more promising results. The fastText model with the SV knowledge
outperforms that trained on a general context (e.g., Wikipedia). LSA and fastText
can help build efficient models for report-level SV assessment.

3.6 Threats to Validity

Internal validity. We used well-known tools such as the scikit-learn [241] and nltk [242]
libraries for ML and NLP. Our optimal models may not guarantee the highest performance
for every SV characteristic since there are infinite values of hyperparameters to tune. How-
ever, even when the optimal values change, a time-based cross-validation method should
still be preferred since we considered the general trend of all SVs. Our models may not
provide the state-of-the-art results, but at least they give the baseline performance for
handling the concept drift of SVs.
External validity. Our work used NVD – one of the most comprehensive public repos-
itories of SVs. The size of our dataset is more than 100,000 with the latest SVs in 2018.
Our character-word model was demonstrated to consistently handle the OoV words well
even with very limited data for all years in the dataset. It is recognized that the model
may not work for extreme rare terms in which no existing parts can be found. However,
our model is totally re-trainable to deal with such cases or incorporate more sources of
SVs’ descriptions.
Conclusion validity. We mitigated the randomness of the results by taking the average
value of five-fold cross-validation. The performance comparison of different types of clas-
sifiers and NLP representations was also confirmed using statistical hypothesis tests with
p-values that were much lower than the significance level of 1%.

3.7. Related Work 57

3.7 Related Work

3.7.1 Report-Level SV Assessment

It is important to patch critical-first SVs [258]. Besides CVSS, there have been many other
assessment schemes for SVs [259, 136, 260]. Recently, there has been a detailed Bayesian
analysis of various SV scoring systems [261], which highlights the good overall performance
of CVSS. Therefore, we used the well-known CVSS as the ground truth for our approach.
We assert that our approach can be generalizable to other SV assessment systems following
the same scheme of multi-class classification.

As mentioned in Chapter 2, Bozorgi et al. [32] pioneered the use of ML models for
report-level SV assessment. Their paper used an SVM model and various features (e.g.,
NVD description, CVSS, published and modified dates) to estimate the likelihood of ex-
ploitation and time-to-exploit of SVs. Another piece of work analyzed the VCs and trends
of SVs by incorporating different SV information from multiple repositories [152, 49], se-
curity advisories [47, 262], darkweb/deepnet [49, 77] and social network (Twitter) [33].
These efforts assumed that all VCs have been available at the time of analysis. However,
our work relaxes this assumption by using only SV descriptions – one of the first pieces
of information appearing in new SV reports. As a result, our model can be used for both
new and old SVs.

Many studies have built upon the work of Bozorgi et al. [32] and used NVD descriptions
for report-level SV assessment, as reviewed in Chapter 2. Here, we focus on several stud-
ies directly related to our current study. Yamamoto et al. [95] used Linear Discriminant
Analysis, Naïve Bayes and Latent Semantic Indexing combined with an annual effect esti-
mation to determine the CVSS-based VCs of more than 60,000 SVs in NVD. The annual
effect focused on recent SVs, but still could not explicitly handle OoV terms in SV descrip-
tions. Spanos et al. [22] worked on the same task as ours using a multi-target framework
with Decision Tree, Random Forest and Gradient Boosting Tree. Note that our approach
also contains the word-only model, but we select the optimal models using our time-based
cross-validation to better address the concept drift issue. SV descriptions were also used
to evaluate SV severity [20], associate the frequent terms with each VC [97], determine
the type of each SV using topic modeling [156] and show SV trends [152]. Recently, Han
et al. [21] have applied deep learning to predict SV severity. The existing literature has
demonstrated the usefulness of description for SV analysis and assessment, but has not
mentioned how to overcome its concept drift challenge. Our work is the first of its kind to
provide a robust treatment for SVs’ concept drift.

3.7.2 Temporal Modeling of SVs

Regarding the temporal relationship of SVs, Roumani et al. [263] proposed a time-series ap-
proach using autoregressive integrated moving average and exponential smoothing methods
to predict the number of SVs in the future. Another time-series work [264] was presented
to model the trend in disclosing SVs. A group of researchers published a series of stud-
ies [265, 266, 267] on stochastic models such as Hidden Markov Models, Artificial Neural
Network, and Support Vector Machine to estimate the occurrence and exploitability of
SVs. The focus of the above studies was on the determination of the occurrence of SVs
over time. In contrast, our work aims to handle the temporal relationship to build more
robust predictive (multi-class classification) models for report-level SV assessment.

58 Chapter 3. Automated Report-Level Software Vulnerability Assessment with Concept
Drift

3.8 Chapter Summary

We observe that the existing studies suffer from concept drift in SV descriptions that affect
both the traditional model selection and prediction steps of report-level SV assessment. We
assert that concept drift can degrade the robustness of these existing predictive models. We
showed that time-based cross-validation should be used for SV analysis to better capture
the temporal relationship of SVs. Then, our main contribution is the Character-Word
Models (CWMs) to improve the robustness of automated report-level SV assessment with
concept drift. CWMs were demonstrated to handle concept drift of SVs effectively for all
the testing data from 2000 to 2018 in NVD even in the case of data scarcity. Our approach
also performed comparably well with the existing word-only models. Our CWMs were also
much less sparse and thus less prone to overfitting. We also found that Latent Semantic
Analysis and sub-word embeddings like fastText help build compact and efficient CWM
models (up to 94% reduction in dimension) with the ability to retain at least 90% of
the predictive performance for all VCs. Besides the strong performance, we also provide
implications on the use of different features and classifiers for building effective report-level
SV assessment models.

3.9 Appendix - SVs with All Out-of-Vocabulary Words

64 vulnerabilities along with their CVD-IDs that had all-zero features of word-only model
from 2000 to 2018, as mentioned in section 3.5.3: CVE-2013-6647, CVE-2015-1000004,
CVE-2016-1000113, CVE-2016-1000114, CVE-2016-1000117, CVE-2016-1000118, CVE-
2016-1000126, CVE-2016-1000127, CVE-2016-1000128, CVE-2016-1000129, CVE-2016-1000130,
CVE-2016-1000131, CVE-2016-1000132, CVE-2016-1000133, CVE-2016-1000134, CVE-
2016-1000135, CVE-2016-1000136, CVE-2016-1000137, CVE-2016-1000138, CVE-2016-1000139,
CVE-2016-1000140, CVE-2016-1000141, CVE-2016-1000142, CVE-2016-1000143, CVE-
2016-1000144, CVE-2016-1000145, CVE-2016-1000146, CVE-2016-1000147, CVE-2016-1000148,
CVE-2016-1000149, CVE-2016-1000150, CVE-2016-1000151, CVE-2016-1000152, CVE-
2016-1000153, CVE-2016-1000154, CVE-2016-1000155, CVE-2016-1000217, CVE-2017-10798,
CVE-2017-10801, CVE-2017-14036, CVE-2017-14536, CVE-2017-15808, CVE-2017-16760,
CVE-2017-16785, CVE-2017-17499, CVE-2017-17703, CVE-2017-17774, CVE-2017-6102,
CVE-2017-7276, CVE-2017-8783, CVE-2018-10030, CVE-2018-10031, CVE-2018-10382,
CVE-2018-11120, CVE-2018-11405, CVE-2018-12501, CVE-2018-13997, CVE-2018-14382,
CVE-2018-5285, CVE-2018-5361, CVE-2018-6467, CVE-2018-6834, CVE-2018-8817, CVE-
2018-9130

59

Chapter 4

Automated Function-Level Software
Vulnerability Assessment

Related publication: This chapter is based on our paper titled “On the Use
of Fine-grained Vulnerable Code Statements for Software Vulnerability Assessment
Models”, published in the 19th International Conference on Mining Software Repos-
itories (MSR), 2022 (CORE A) [268].

The proposed approach in Chapter 3 has improved the robustness of report-level Soft-
ware Vulnerability (SV) assessment models against changing data of SVs in the wild.
Nevertheless, these report-level models still rely on SV descriptions that mostly require
significant expertise and manual effort to create, which may cause delays for SV fixing. On
the other hand, respective vulnerable code is always available before SVs are fixed. Many
studies have developed Machine Learning (ML) approaches to detect SVs in functions and
fine-grained code statements that cause such SVs. However, as shown in Chapter 2, there
is little work on leveraging such detection outputs for data-driven SV assessment to give in-
formation about exploitability, impact, and severity of SVs. The information is important
to understand SVs and prioritize their fixing. Using large-scale data from 1,782 functions of
429 SVs in 200 real-world projects, in Chapter 4, we investigate ML models for automating
function-level SV assessment tasks, i.e., predicting seven Common Vulnerability Scoring
System (CVSS) metrics. We particularly study the value and use of vulnerable statements
as inputs for developing the assessment models because SVs in functions are originated
in these statements. We show that vulnerable statements are 5.8 times smaller in size,
yet exhibit 7.5-114.5% stronger assessment performance (Matthews Correlation Coefficient
(MCC)) than non-vulnerable statements. Incorporating context of vulnerable statements
further increases the performance by up to 8.9% (0.64 MCC and 0.75 F1-Score). Overall,
we provide the initial yet promising ML-based baselines for function-level SV assessment,
paving the way for further research in this direction.

60 Chapter 4. Automated Function-Level Software Vulnerability Assessment

4.1 Introduction

As shown in Chapter 2, previous studies (e.g., [95, 21, 22, 23, 11]) have mostly used SV
reports to develop data-driven models for assigning the Common Vulnerability Scoring
System (CVSS) [29] metrics to Software Vulnerabilities (SVs). Among sources of SV re-
ports, National Vulnerability Database (NVD) [16] has been most commonly used for
building SV assessment models [11]. The popularity of NVD is mainly because it has
SV-specific information (e.g., CVSS metrics) and less noise in SV descriptions than other
Issue Tracking Systems (ITSs) like Bugzilla [269]. The discrepancy is because NVD reports
are vetted by security experts, while ITS reports may be contributed by users/developers
with limited security knowledge [270]. However, NVD reports are mostly released long
after SVs have been fixed. Our analysis revealed that less than 3% of the SV reports with
the CVSS metrics on NVD had been published before SVs were fixed; on average, these
reports appeared 146 days later than the fixes. Note that our findings accord with the
previous studies [215, 216]. This delay renders the CVSS metrics required for SV assess-
ment unavailable at fixing time, limiting the adoption of report-level SV assessment for
understanding SVs and prioritizing their fixes.

Instead of using SV reports, an alternative and more straight-forward way is to directly
take (vulnerable) code as input to enable SV assessment prior to fixing. Once a code
function is confirmed vulnerable, SV assessment models can assign it the CVSS metrics
before the vulnerable code gets fixed, even when its report is not (yet) available. Note
that it is non-trivial to use static application security testing tools to automatically create
bug/SV reports from vulnerable functions for current SV assessment techniques as these
tools often have too many false positives [271, 272]. To develop function-level assessment
models, it is important to obtain input information about SVs in functions detected by
manual debugging or automatic means like data-driven approaches (e.g., [273, 274, 275]).
Notably, recent studies (e.g., [276, 277]) have shown that an SV in a function usually
stems from a very small number of code statements/lines, namely vulnerable statements.
Intuitively, these vulnerable statements potentially provide highly relevant information
(e.g., causes) for SV assessment models. Nevertheless, a large number of other (non-
vulnerable) lines in functions, though do not directly contribute to SVs, can still be useful
for SV assessment, e.g., indicating the impacts of an SV on nearby code. It still remains
largely unknown about function-level SV assessment models as well as the extent to which
vulnerable and non-vulnerable statements are useful as inputs for these models.

We conduct a large-scale study to fill this research gap. We investigate the useful-
ness of integrating fine-grained vulnerable statements and different types of code context
(relevant/surrounding code) into learning-based SV assessment models. The assessment
models employ various feature extraction methods and Machine Learning (ML) classifiers
to predict the seven CVSS metrics (Access Vector, Access Complexity, Authentication,
Confidentiality, Integrity, Availability, and Severity) for SVs in code functions.

Using 1,782 functions from 429 SVs of 200 real-world projects, we evaluate the use
of vulnerable statements and other lines in functions for developing SV assessment mod-
els. Despite being up to 5.8 times smaller in size (lines of code), vulnerable statements
are more effective for function-level SV assessment, i.e., 7.4-114.5% higher Matthews Cor-
relation Coefficient (MCC) and 5.5-43.6% stronger F1-Score, than non-vulnerable lines.
Moreover, vulnerable statements with context perform better than vulnerable lines alone.
Particularly, using vulnerable and all the other lines in each function achieves the best
performance of 0.64 MCC (8.9% better) and 0.75 F1-Score (8.5% better) compared to
using only vulnerable statements. We obtain such improvements when combining vulner-
able statements and context as a single input based on their code order, as well as when
treating them as two separate inputs. Having two inputs explicitly provides models with

4.2. Background and Motivation 61

1 protected String getExecutionPreamble ()
2 {
3 if (getWorkingDirectoryAsString () == null)
4 {return null;}
5 String dir = getWorkingDirectoryAsString();
6 StringBuilder sb = new StringBuilder();
7 sb.append("cd");
8 - sb.append(unifyQuotes(dir));
9 + sb.append(quoteOneItem(dir , false));

10 sb.append("&&");
11 return sb.toString();
12 }

Figure 4.1: A vulnerable function extracted from the fixing commit
b38a1b3 of an SV (CVE-2017-1000487) in the Plexus-utils project. Notes:
Line 8 is vulnerable. Deleted and added lines are highlighted in red and
green, respectively. Blue-colored code lines affect or are affected by line 8

directly.

the location of vulnerable statements and context for the assessment tasks, while single
input does not. Surprisingly, we do not obtain any significant improvement of the double-
input models over the single-input counterparts. These results show that function-level SV
assessment models can still be effective even without knowing exactly which statements
are vulnerable. Overall, our findings can inform the practice of building function-level SV
assessment models.

Our key contributions are summarized as follows:

1. To the best of our knowledge, we are the first to leverage data-driven models for au-
tomating function-level SV assessment tasks that enable SV prioritization/planning
prior to fixing.

2. We study the value of using fine-grained vulnerable statements in functions for build-
ing SV assessment models.

3. We empirically show the necessity and potential techniques of incorporating context
of vulnerable statements to improve the assessment performance.

4. We release our datasets and models for future research at https://github.com/
lhmtriet/Function-level-Vulnerability-Assessment.

Chapter organization. Section 4.2 gives a background on function-level SV assessment.
Section 4.3 introduces and motivates the three RQs. Section 4.4 describes the methods used
for answering these RQs. Section 4.5 presents our empirical results. Section 4.6 discusses
the findings and threats to validity. Section 4.7 mentions the related work. Section 4.8
concludes the study and suggests future directions.

4.2 Background and Motivation

There have been a growing number of studies to detect vulnerable statements in code
functions (e.g., [278, 276, 277]). Fine-grained detection assumes that not all statements
in a function are vulnerable. We confirmed this assumption; i.e., only 14.7% of the lines
in our curated functions were vulnerable (see section 4.4.1). However, it is non-trivial
to manually annotate a sufficiently large dataset of vulnerable functions and statements
for training SV prediction models. Instead, many studies (e.g., [276, 279, 280]) have au-
tomatically obtained vulnerable statements from modified lines in Vulnerability Fixing

https://github.com/lhmtriet/Function-level-Vulnerability-Assessment
https://github.com/lhmtriet/Function-level-Vulnerability-Assessment

62 Chapter 4. Automated Function-Level Software Vulnerability Assessment

Commits (VFCs) as these lines are presumably removed to fix SVs. The functions con-
taining such identified statements are considered vulnerable. Note that VFCs are used
as they can be relatively easy to retrieve from various sources like National Vulnerability
Database (NVD) [16]. An exemplary function and its vulnerable statement are in Fig. 4.1.
Line 8 “sb.append(unifyQuotes(dir));” is the vulnerable statement; this line was re-
placed with a non-vulnerable counterpart “sb.append(quoteOneItem(dir, false));” in
the VFC. The replacement was made to properly sanitize the input (dir), preventing OS
command injection.

Despite active research in SV detection, there is little work on utilizing the output of
such detection for SV assessment. Previous studies (e.g., [95, 20, 22, 23, 11]) have mostly
leveraged SV reports, mainly on NVD, to develop SV assessment models that alleviate
the need for manually defining complex rules for assessing ever-increasing SVs. However,
these SV reports usually appear long after SV fixing time. For example, the SV fix in
Fig. 4.1 was done 1,533 days before the date it was reported on NVD. In fact, such a
delay, i.e., disclosing SVs after they are fixed, is a recommended practice so that attackers
cannot exploit unpatched SVs to compromise systems [281]. One may argue that internal
bug/SV reports in Issue Tracking Systems (ITS) such as JIRA [282] or Bugzilla [269] can
be released before SV fixing and have severity levels. However, ITS severity levels are
often for all bug types, not only SVs. These ITSs also do not readily provide exploitability
and impact metrics like CVSS [29] for SVs, limiting assessment information required for
fixing prioritization. Moreover, SVs are mostly rooted in source code; thus, it is natural to
perform code-based SV assessment. We propose predicting seven base CVSS metrics (i.e.,
Access Vector, Access Complexity, Authentication, Confidentiality, Integrity, Availability,
and Severity)1 after SVs are detected in code functions to enable thorough and prior-fixing
SV assessment. We do not perform SV assessment for individual lines as for a given
function, like Li et al. [283], we observed that there can be more than one vulnerable line
and nearly all these lines are strongly related and contribute to the same SV (having the
same CVSS metrics).

Vulnerable statements represent the core parts of SVs, but we posit that other (non-
vulnerable) parts of a function may also be usable for SV assessment. Specifically, non-
vulnerable statements in a vulnerable function are either directly or indirectly related to the
current SV. We use program slicing [284] to define directly SV-related statements as the
lines affect or are affected by the variables in vulnerable statements. For example, the blue
lines in Fig. 4.1 are directly related to the SV as they define, change, or use the sb and dir
variables in vulnerable line 8. These SV-related statements can reveal the context/usage of
affected variables for analyzing SV exploitability, impact, and severity. For instance, lines
5-6 denote that dir is a directory and sb is a string (StringBuilder object), respectively;
line 7 then indicates that a directory change is performed, i.e., the cd command. This
sequence of statements suggests that sb contains a command changing directory. Line 11
returns the vulnerable command, probably affecting other components. Besides, indirectly
SV-related statements, e.g., the black lines in Fig. 4.1, are remaining lines in a function
excluding vulnerable and directly SV-related statements. These indirectly SV-related lines
may still provide information about SVs. For example, lines 3-4 in Fig. 4.1 imply that
there is only a null checking for directory without imposing any privilege requirement
to perform the command, potentially reducing the complexity of exploiting the SV. It
remains unclear to what extent different types of statements are useful for SV assessment
tasks. Therefore, this study aims to unveil the contributions of these statement types to
function-level SV assessment models.

1These metrics are from CVSS version 2 and were selected based on the same reasons presented in the
study in Chapter 3. More details can be found in section 3.2.

4.2.
B

ackground
and

M
otivation

63

Vulnerability-
Fixing

Commits

protected String getExecutionPreamble(){
if (getWorkingDirectoryAsString() == null)
{return null;}
String dir = getWorkingDirectoryAsString();
StringBuilder sb = new StringBuilder();
sb.append("cd");

- sb.append(unifyQuotes(dir));
+ sb.append(quoteOneItem(dir, false));

sb.append("&&");
return sb.toString();

}

- sb.append(unifyQuotes(dir));

protected String getExecutionPreamble(){
if (getWorkingDirectoryAsString() == null)
{return null;}
String dir = getWorkingDirectoryAsString();
StringBuilder sb = new StringBuilder();
sb.append("cd");
sb.append("&&");
return sb.toString();

}

• Program slicing context
• Surrounding context
• Function context RQ2: Vulnerable + Context

(single input) for SVA

RQ3: Vulnerable + Context
(two inputs) for SVA

RQ1: Vulnerable vs. Non-
vulnerable statements for SVA

Vulnerable statement(s)

Non-vulnerable statement(s)

Code changes in function

Context
Extraction

Repeated 10 times

SV Assessment (SVA)
Model Building

Code Feature
Generation

Model
Training/

Evaluation

1
2

3

Notes on the models in RQ2 and RQ3:
• Single input: implicit location of SVs
• Two inputs: explicit location of SVs

Figure 4.2: Methodology used to answer the research questions. Note: The vulnerable function is the one described in Fig. 4.1.

64 Chapter 4. Automated Function-Level Software Vulnerability Assessment

4.3 Research Questions

To demystify the predictive performance of SV assessment models using vulnerable and
other statements in code functions, we set out to investigate the following three Research
Questions (RQs).

RQ1: Are vulnerable code statements more useful than non-vulnerable
counterparts for SV assessment models? Since vulnerable and non-vulnerable state-
ments are both potentially useful for SV assessment (see section 4.2), RQ1 compares them
for building function-level SV assessment models. RQ1 tests the hypothesis that vul-
nerable statements directly causing SVs would provide an advantage in SV assessment
performance. The findings of RQ1 would also inform the practice of leveraging recent
advances in fine-grained SV detection for function-level SV assessment.

RQ2: To what extent do different types of context of vulnerable statements
contribute to SV assessment performance? RQ2 studies the impact of using directly
and indirectly SV-related statements as context for vulnerable statements, as discussed in
section 4.2, on the performance of SV assessment in functions. We compare the perfor-
mance of models using different types of context lines (see section 4.4.2) that have been
commonly used in the literature. RQ2 findings would unveil what types of context (if any)
would be beneficial to use alongside vulnerable statements for developing function-level SV
assessment models.

RQ3: Does separating vulnerable statements and context to provide ex-
plicit location of SVs improve assessment performance? For SV assessment, RQ2
combines vulnerable statements and their context as a single input following their order in
functions, while RQ3 treats these two types of statements as two separate inputs. Separate
inputs explicitly specify which statements are vulnerable in each function for assessment
models. RQ3 results would give insights into the usefulness of the exact location of vul-
nerable statements for function-level SV assessment models.

4.4 Research Methodology

This section presents the experimental setup we used to perform a large-scale study on
function-level SV assessment to support prioritization of SVs before fixing. We used a
computing cluster with 16 CPU cores and 16GB of RAM to conduct all the experiments.
Workflow overview. Fig. 4.2 presents the workflow we followed to develop function-
level SV assessment models based on various types of code inputs. The workflow has three
main steps: (i) Collection of vulnerable and non-vulnerable statements from Vulnerability-
Fixing Commits (VFCs) (section 4.4.1), (ii) Context extraction of vulnerable statements
(section 4.4.2), and (iii) Model building for SV assessment (sections 4.4.3, 4.4.4, and 4.4.5).
We start with VFCs containing code changes used to fix SVs. As discussed in section 4.2,
we consider the deleted (–) lines in each function of VFCs as vulnerable statements, while
the remaining lines are non-vulnerable statements. Details of the extracted VFCs and
statements are given in section 4.4.1. Both vulnerable and non-vulnerable statements are
used by the Context Extraction module (see section 4.4.2) to obtain the three types of con-
text with respect to vulnerable statements that potentially provide additional information
for SV assessment. The extracted statements along with their context enter the Model
Building module. The first step in this module is to extract fixed-length feature vectors
from code inputs/statements (see section 4.4.3). Subsequently, such feature vectors are
used to train different data-driven models (see section 4.4.4) to support automated SV
assessment, i.e., predicting the seven CVSS metrics: Access Vector, Access Complexity,
Authentication, Confidentiality, Integrity, Availability, and Severity. The model training
and evaluation are repeated 10 times to increase the stability of results (see section 4.4.5).

4.4. Research Methodology 65

RQ-wise method. The methods to collect data, extract features as well as develop and
evaluate models in Fig. 4.2 were utilized for answering all the Research Questions (RQs)
in section 4.3. RQ1 developed and compared two types of SV assessment models, namely
models using only vulnerable statements and those using only non-vulnerable statements.
In RQ2, for each of the program slicing, surrounding, and function context types, we cre-
ated a single feature vector by combining the current context and corresponding vulnerable
statements, based on their appearance order in the original functions, for model building
and performance comparison. In RQ3, for each context type in RQ2, we extracted two
separate feature vectors, one from vulnerable statements and another one from the con-
text, and then fed these vectors into SV assessment models. We compared the two-input
approach in RQ3 with the single-input counterpart in RQ2.

4.4.1 Data Collection

To develop SV assessment models, we need a large dataset of vulnerable functions and
statements curated from VFCs, as discussed in section 4.2. This section describes the
collection of such dataset.
VFC identification. We first scraped VFCs from three popular sources in the liter-
ature: NVD [16], GitHub Advisory Database,2 and VulasDB [285], a manually curated
VFC dataset. The VFCs had dates ranging from July 2000 to September 2021. We only
selected VFCs that had the CVSS version 2 metrics as we needed these metrics for SV
assessment. Following the recommendation of [286], we removed any VFCs that had more
than 100 files and 10,000 lines of code as these VFCs are likely tangled commits, i.e.,
not only fixing SVs. We also discarded VFCs that were not written in the Java pro-
gramming language as Java has been commonly used in both practice3 and the literature
(e.g., [287, 288, 286, 289]). After the filtering process, we obtained 900 VFCs to extract
vulnerable functions/statements for building SV assessment models.
Extraction of vulnerable functions and statements. For each VFC, we obtained
all the affected files (i.e., containing changed lines), excluding test files because we fo-
cused on production code. We followed a common practice [276, 279, 280] to consider all
the functions in each affected file as vulnerable functions and the deleted lines in these
functions as vulnerable statements. We removed functions having only added changes and
non-functional/cosmetic changes such as removing/changing inline/multi-line comments,
spaces, or empty lines. For the former, added lines only exist in fixed code, making it
hard to pinpoint the exact vulnerable statements or root causes leading to such code ad-
ditions [290]. For the latter, cosmetic changes likely do not contribute to SV fixes [286].
We also did not use a function if its entire body was deleted because such a case did
not have any non-vulnerable statements for building SV assessment models in our RQs
(see section 4.3). After the filtering steps, we retrieved 1,782 vulnerable functions and
5,179 vulnerable statements of 429 SVs in 200 Java projects. We also obtained the
seven CVSS metrics from NVD for each vulnerable function (see Fig. 4.3).
Manual validation of vulnerable functions. We randomly selected 317 functions,
i.e., with 95% confidence level and 5% error [291], from our dataset. The author of
this thesis and a PhD student with three-year experience in Software Engineering and
Cybersecurity independently validated the functions. The manual validation was con-
siderably labor-intensive, taking 120 man-hours. We achieved a substantial agreement
with a Cohen’s kappa score [292] of 0.72. Disagreements were resolved through discus-
sion. We found that 9% of the selected functions were not vulnerable, mainly due to
tangled fixes/VFCs. The functions in these VFCs fixed a non-SV related issue, e.g., the

2https://github.com/advisories
3https://bit.ly/stack-overflow-survey-2021

https://github.com/advisories
https://bit.ly/stack-overflow-survey-2021

66 Chapter 4. Automated Function-Level Software Vulnerability Assessment

4.7

95.3

2.1

23.4

74.5

21.8

78.2

4.1

68.7

27.2

4.1

61.2

34.7

5.8

46.6

47.6

25.5

67.9

6.6

Access
Vector

Access
Complexity

Authenti-
cation

Confiden-
tiality

Integrity

Availability

Severity

0 10 20 30 40 50 60 70 80 90 100

Network

Local

Low

Medium

High

Single

None

None

Partial

Complete

None

Partial

Complete

None

Partial

Complete

Low

Medium

High

Percentage (%)

Figure 4.3: Class distributions of the seven CVSS metrics.

nameContainsForbiddenSequence function in the commit cefbb94 of the Eclipse Mojarra
project. The modifier of this function in the ResourceManager.java class was changed
from private to package. This change allowed the reuse of the function in other classes
like ClasspathResourceHelper.java for sanitizing inputs to prevent a path traversal SV
(CVE-2020-6950). We assert that it is challenging to detect all of these cases without man-
ual validation. However, such validation is extremely expensive to scale up to thousands
of functions like the dataset we curated in this study.

4.4.2 Vulnerable Code Context Extraction

This section describes the Context Extraction module that takes vulnerable and non-
vulnerable statements as inputs and then outputs program slicing, surrounding, or function
context. These context types have been previously used for bug/SV-related tasks [283, 293,
275]. However, there is little known about their use and value for function-level SV assess-
ment tasks, which are studied in this work.
Program slicing context. Program slicing captures relevant statements to a point in
a program (line of code) to support software debugging [284]. This concept has been
utilized for SV identification [283, 294]. However, using this context for SV assessment
is fundamentally different. For SV detection, the location of vulnerable statements is
unknown, so program slicing context is usually extracted for all statements including non-
vulnerable ones in a function of pre-defined types (e.g., array manipulations, arithmetic
operations, and function calls) [283]. In contrast, for SV assessment, vulnerable statements
are known; thus, program slicing context is only obtained for these statements. With a

4.4. Research Methodology 67

focus on function-level SV assessment, we considered intra-procedural program slicing, i.e.,
finding relevant lines within the boundary of a function of interest.

Following the common practice in the literature [295, 283], we used Program Depen-
dence Graph (PDG) [296] extracted from source code to obtain program slices for vulner-
able statements in each function. A PDG contains nodes that represent code statements
and directed edges that capture data or control dependencies among nodes. A data de-
pendency exists between two statements when one statement affects/changes the value of
a variable used in another statement. For example, “int b = a + 1;” is data-dependent
on “int a = 1;” as the variable a defined in the second statement is used in the first
statement. A control dependency occurs when a statement determines whether/how often
another statement is executed. For instance, in “if (b == 2) func(c);”, “func(c)” only
runs if “b == 2”, and thus is control-dependent on the former.

Based on data and control dependencies, backward and forward slices are extracted.
Backward slices directly change or control the execution of statements affecting the values
of variables in vulnerable statements; whereas, forward slices are data/control-dependent
on vulnerable statements [297]. In a PDG, backward slices are nodes that can go to
vulnerable nodes through one or more directed edges. In Fig. 4.1, the dir variable is
defined in line 5 and then used in vulnerable line 8, so line 5 is a backward slice. Forward
slices are the nodes that can be reached from vulnerable nodes by following one or more
directed edges in a PDG. In Fig. 4.1, line 11 is data-dependent on vulnerable line 8 as
it uses the value of sb; thus, line 11 is a forward slice. The program slicing context of
vulnerable statements in a function is a combination of all backward and forward slices.
Surrounding context. Another way to define context is to take a fixed number of lines
(n) before and after a vulnerable statement, which is referred to as surrounding context.
These surrounding lines may contain relevant information, e.g., values/usage of variables in
vulnerable statements. This context is also based on an observation that developers usually
first look at nearby code of vulnerable statements to understand how to fix SVs [293]. We
discarded surrounding lines that were just code comments or blank lines as these probably
do not contribute to the functionality of a function [286]. We also limited surrounding
lines to be within-function.
Function context. Contrary to program slicing and surrounding context that may not
use all lines in a function, function context uses all function statements, excluding vulner-
able ones. This scope has been commonly used for SV detection models [273, 275] because
vulnerable statements are unavailable at detection time. This scope contains all the lines
of program slicing/surrounding context and other presumably indirectly related lines to
vulnerable statements. Accordingly, the performance of using indirectly SV-related lines
together with directly SV-relevant lines for SV assessment can be examined. Note that for
a given function, combining function context with vulnerable statements as a single code
block (RQ2 in section 4.3) is equivalent to using the whole function, which would result
in the same input to SV assessment models regardless of which statements are vulnera-
ble. This input combination allows us to evaluate the usefulness of the exact location of
vulnerable statements for function-level SV assessment models.

4.4.3 Code Feature Generation

Raw code from vulnerable statements and their context are converted into fixed-length
feature vectors to be consumable by learning-based SV assessment models. This step
describes five techniques we used to extract features from code inputs.
Bag-of-Tokens. Bag-of-Tokens is based on Bag-of-Words, a popular feature extraction
technique in Natural Language Processing (NLP). This technique has been commonly

68 Chapter 4. Automated Function-Level Software Vulnerability Assessment

investigated for developing SV assessment models based on textual SV descriptions/re-
ports [96, 102, 129]. We extended this technique to code-based SV assessment by counting
the frequency of code tokens. We also applied code-aware tokenization to preserve code
syntax and semantics. For instance, var++ was tokenized into var and ++, explicitly in-
forming a model about incrementing the variable var by one using the operator (++).
Bag-of-Subtokens. Bag-of-Subtokens extends Bag-of-Tokens by splitting extracted code
tokens into sequences of characters (sub-tokens). These characters help a model learn less
frequent tokens better. For instance, an infrequent variable like ThisIsAVeryLongVar is
decomposed into multiple sub-tokens; one of which is Var, telling a model that this is
a potential variable. We extracted sub-tokens of lengths ranging from two to six. Such
values have been previously adopted for SV assessment [133, 23]. We did not use one-letter
characters as they were too noisy, while using more than six characters would significantly
increase feature size and computational cost.
Word2vec. Unlike Bag-of-Tokens and Bag-of-Subtokens that do not consider token con-
text, Word2vec [202] extracts features of a token based on its surrounding counterparts.
The contextual information from surrounding tokens helps produce similar feature vectors
in an embedding space for tokens with (nearly) identical functionality/usage (e.g., average
and mean variables). Word2vec generates vectors for individual tokens, so we averaged the
vectors of all input tokens to represent a code snippet. This averaging method has been
demonstrated to be effective for various NLP tasks [298]. Table 4.1 lists different values for
the window and vector sizes of Word2vec used for tuning the performance of learning-based
SV assessment models.
fastText. fastText [196] enhances Word2vec by representing each token with an aggre-
gated feature vector of its constituent sub-tokens. Technically, fastText combines the
strengths of semantic representation of Word2vec and subtoken-augmented features of
Bag-of-Subtokens. fastText has been shown to build competitive yet compact report-level
SV assessment models [23]. Like Word2vec, the feature vector of a code snippet was aver-
aged from the vectors of all the input tokens. The length of sub-tokens also ranged from
two to six, resembling that of Bag-of-Subtokens. Other hyperparameters of fastText for
optimization are listed in Table 4.1.
CodeBERT. CodeBERT [299] is an adaptation of BERT [80], the current state-of-the-art
feature representation technique in NLP, to source code modeling. CodeBERT is a pre-
trained model using both natural language and programming language data to produce
contextual embedding for code tokens. The same code token can have different CodeBERT
embedding vectors depending on other tokens in an input; whereas, word2vec/fastText
produces a single vector for every token regardless of its context. In addition, the source
code tokenizer of CodeBERT is built upon Byte-Pair Encoding (BPE) [300]. This tokenizer
smartly retains sub-tokens that frequently appear in a training corpus rather than keeping
all of them as in Bag-of-Subtokens and fastText, balancing between performance and cost.
CodeBERT also preserves a special token, [CLS], to represent an entire code input. We
leveraged the vector of this [CLS] token to extract the features for each code snippet.

We trained all the feature models from scratch, except CodeBERT as it is a pre-trained
model. We used CodeBERT’s pre-trained vocabulary and embeddings as commonly done
in the literature [301]. To build the vocabulary for the other feature extraction methods,
we considered tokens appearing at least in two samples in a training dataset to avoid
vocabulary explosion due to too rare tokens. The exact vocabulary depended on the
dataset used in each of the 10 training/evaluation rounds, as described in section 4.4.5.
Note that some code snippets, e.g., vulnerable lines extracted from (partial) code changes,
were not compilable (i.e., did not contain complete code syntax); thus, we did not use
Abstract Syntax Tree (AST) based code representation like Code2vec [288] in this study
as such representation may not be robust for these cases [287, 302]. It is worth noting that

4.4. Research Methodology 69

Table 4.1: Hyperparameter tuning for SV assessment models.

Step Model Hyperparameters
Feature
extraction

Word2vec [298] Vector size: 150, 300, 500
fastText [196] Window size: 3, 4, 5

CVSS
metrics
prediction

Logistic Regression
(LR) [249] Regularization coefficient :

0.01, 0.1, 1, 10, 100Support Vector
Machine (SVM) [206]
K-Nearest
Neighbors
(KNN) [303]

No. of neighbors: 5, 11, 31, 51
Weight : uniform, distance
Distance norm: 1, 2

Random Forest (RF) [251] No. of estimators: 100, 200,
300, 400, 500
Max depth: 3, 5, 7, 9,
unlimited
Max. no. of leaf nodes: 100,
200, 300, unlimited (RF)

Extreme Gradient
Boosting (XGB) [78]
Light Gradient
Boosting Machine
(LGBM) [79]

Bag-of-Tokens, Bag-of-Subtokens, Word2vec, fastText, and CodeBERT can still work with
these cases as these methods operate directly on code tokens.

4.4.4 Data-Driven SV Assessment Models

Features generated from code inputs enter ML models for predicting the CVSS metrics.
The predictions of the CVSS metrics are classification problems (see Fig. 4.3). We used six
well-known Machine Learning (ML) models for classifying the classes of each CVSS metric:
Logistic Regression (LR) [249], Support Vector Machine (SVM) [206], K-Nearest Neighbors
(KNN) [303], Random Forest (RF) [251], eXtreme Gradient Boosting (XGB) [78], and Light
Gradient Boosting Machine (LGBM) [79]. LR, SVM, and KNN are single models, while
RF, XGB, and LGBM are ensemble models that leverage multiple single counterparts
to reduce overfitting. These classifiers have been used for SV assessment based on SV
reports [22, 23]. We also considered different hyperparameters for tuning the performance
of the classifiers, as given in Table 4.1. These hyperparameters have been adapted from the
prior studies using similar classifiers [22, 23, 304]. Here, we mainly focus on ML techniques,
and thus using Deep Learning models [203] for the tasks is out of the scope of this study.

4.4.5 Model Evaluation

Evaluation technique. To develop function-level SV assessment models and evaluate
their performance, we used 10 rounds of training, validation, and testing. We randomly
shuffled the dataset of vulnerable functions in section 4.4.1 and then split it into 10 par-
titions of roughly equal size.4 In round i, for a model, we used fold i + 1 for valida-
tion, fold i + 2 for testing, and all of the remaining folds for training. When i + 1 or
i + 2 was larger than 10, its value was wrapped around. For example, if i = 10, then
(i + 1) mod 10 = 11 mod 10 = 1 and (i + 2) mod 10 = 12 mod 10 = 2. A grid search of
the hyperparameters in Table 4.1 was performed using the validation sets to select optimal
models. The performance of such optimal models on the test sets was reported. It is
important to note that our evaluation strategy improves upon 10-fold cross-validation and
random splitting data into a single training/validation/test set, the two most commonly

4With 1,782 samples in total, folds 1-9 had 178 samples and fold 10 had 180 samples.

70 Chapter 4. Automated Function-Level Software Vulnerability Assessment

used evaluation techniques in (fine-grained) SV detection and report-level SV assessment
studies [305, 306, 278, 276, 277, 11]. Our evaluation technique has separate test sets, which
cross-validation does not, to objectively measure the performance of tuned/optimal models
on unseen data. Using multiple (10) validation/test sets also increases the stability of re-
sults compared to a single set [212]. Moreover, we aim to provide baseline performance for
function-level SV assessment in this study, so we did not apply any techniques like class re-
balancing or feature selection/reduction to augment the data/features. Such augmentation
can be explored in future work. We also did not compare SV assessment using functions
with that using reports as their use cases are different; function-level SV assessment is
needed when SV reports are unavailable/unusable. It may be fruitful to compare/combine
these two artifacts for SV assessment in the future.
Evaluation measures. We used F1-Score5 and Matthews Correlation Coefficient (MCC)
measures to quantify how well developed models perform SV assessment tasks. F1-Score
values are from 0 to 1, and MCC has values from –1 to 1; 1 is the best value for both
measures. These measures have been commonly used for SV assessment (e.g., [22, 124, 23]).
We used MCC as the main measure for selecting optimal models because MCC takes into
account all classes, i.e., all cells in a confusion matrix, during evaluation [307].
Statistical analysis. To confirm the significance of results, we employed the one-sided
Wilcoxon signed rank test [254] and its respective effect size (r = Z/

√
N , where Z is the

Z-score statistic of the test and N is the total count of samples) [308].6 We used the
Wilcoxon signed-rank test because it is a non-parametric test that can compare two-paired
groups of data, and we considered a test significant if its confidence level was more than
99% (p-value < 0.01). We did not use the popular Cohen’s D [310] and Cliff’s δ [311] effect
sizes as they are not suitable for comparing paired data [279].

4.5 Results

4.5.1 RQ1: Are Vulnerable Code Statements More Useful Than Non-
Vulnerable Counterparts for SV Assessment Models?

Based on the extraction process in section 4.4.1, we collected 1,782 vulnerable functions
containing 5,179 vulnerable and 57,633 non-vulnerable statements. The proportions of
these two types of statements are given in the first and second boxplots, respectively, in
Fig. 4.4. On average, 14.7% of the lines in the selected functions were vulnerable, 5.8 times
smaller than that of non-vulnerable lines. Interestingly, we also observed that 55% of the
functions contained only a single vulnerable statement. These values show that vulnerable
statements constitute a very small proportion of functions.

Despite the small size (no. of lines), vulnerable statements contributed more
to the predictive performance of the seven assessment tasks than non-vulnerable
statements (see Table 4.2). We considered two variants of non-vulnerable statements
for comparison. The first variant, Non-vuln (random), randomly selected the same num-
ber of lines as vulnerable statements from non-vulnerable statements in each function.
The second variant, Non-vuln (all) aka. Non-vuln (All - Vuln) in Fig. 4.4, considered
all non-vulnerable statements. Compared to same-sized non-vulnerable statements (Non-
vuln (random)), Vuln-only (using vulnerable statements solely) produced 116.9%, 126.6%,
98.7%, 90.7%, 147.9%, 111.2%, 116.7% higher MCC for Access Vector, Access Complex-
ity, Authentication, Confidentiality, Integrity, Availability, and Severity tasks, respectively.
On average, Vuln-only was 114.5% and 43.6% better than Non-vuln (random) in MCC

5The macro version of F1-Score was used for multi-class classification.
6r ≤ 0.1: negligible, 0.1 < r ≤ 0.3: small, 0.3 < r ≤ 0.5: medium, r > 0.5: large [309]

4.5. Results 71

0 20 40 60 80 100
Proportion of lines in a function (%)

All - Vuln - PS
(Indirectly SV-related)

Surrounding context (n = 6)

Program Slicing (PS) context
(Directly SV-related)

Non-vuln (All - Vuln)

Vuln-only
Ty

pe
of

lin
es

Figure 4.4: Proportions of different types of lines in a function. Notes:
Min proportion of Vuln-only lines is non-zero (0.03%); thus, max of Non-
vuln line proportion is < 100%. Cosmetic lines were excluded from the

computation of ratios.

and F1-Score, respectively. We obtained similar results of Non-vuln (random) when re-
peating the experiment with differently randomized lines. When using all non-vulnerable
statements (Non-vuln (all)), the assessment performance increased significantly, yet was
still lower than that of vulnerable statements. Average MCC and F1-Score of Vuln-only
were 7.4% and 5.5% higher than Non-vuln (all), respectively. The improvements of Vuln-
only over the two variants of non-vulnerable statements were statistically significant across
features/classifiers with p-values < 0.01 (p-valueNon−vuln(random) = 1.7 × 10−36 and p-
valueNon−vuln(all) = 7.2 × 10−11) and non-negligible effect sizes (rNon−vuln(random) = 0.62
and rNon−vuln(all) = 0.32). The low performance of Non-vuln (random) implies that SV
assessment models likely perform worse if vulnerable statements are incorrectly identi-
fied. Moreover, the decent performance of Non-vuln (all) shows that some non-vulnerable
statements are potentially helpful for SV assessment, which are studied in detail in RQ2.

4.5.2 RQ2: To What Extent do Different Types of Context of Vulnerable
Statements Contribute to SV Assessment Performance?

In RQ2, we compared the performance of models using Program Slicing (PS), surrounding
and function context. Notably, we removed 365 cases for which we could not extract PS
context from the dataset in section 4.4.1. Apparently, these cases were the same as using
only vulnerable statements, making comparisons biased, especially against Vuln-only itself.
The vulnerable statements in these cases mainly did not contain any variable, e.g., using
an unsafe function without parameter.7 In this new dataset, PS and surrounding context
approximately constituted 46%, on average, of lines in vulnerable functions (see Fig. 4.4).
We used six lines before and after vulnerable statements (n = 6) as surrounding context
because this value resulted in the closest average context size to that of PS context. It is
impossible to have the exactly same size because PS context is dynamically derived from

7https://bit.ly/3pg36mp

https://bit.ly/3pg36mp

72 Chapter 4. Automated Function-Level Software Vulnerability Assessment

Table 4.2: Testing performance for SV assessment tasks of vulnerable vs.
non-vulnerable statements. Note: Bold and grey-shaded values are the

best row-wise performance.

CVSS metric Evaluation
metric

Input type

Vuln-only Non-vuln
(random)

Non-vuln
(all)

Access Vector F1-Score 0.820 0.650 0.786
MCC 0.681 0.314 0.605

Access
Complexity

F1-Score 0.622 0.458 0.592
MCC 0.510 0.225 0.467

Authentication F1-Score 0.791 0.602 0.765
MCC 0.630 0.317 0.614

Confidentiality F1-Score 0.645 0.411 0.625
MCC 0.574 0.301 0.561

Integrity F1-Score 0.650 0.384 0.616
MCC 0.585 0.236 0.534

Availability F1-Score 0.647 0.417 0.624
MCC 0.583 0.276 0.551

Severity F1-Score 0.695 0.414 0.610
MCC 0.583 0.269 0.523

Average F1-Score 0.695 0.484 0.659
MCC 0.592 0.276 0.551

vulnerable statements, while surrounding context is predefined. The roughly similar size
helps test whether directly SV-related lines in PS context would be better than pre-defined
surrounding lines for SV assessment. The training and evaluation processes on the dataset
in RQ2 were the same as in RQ1.8

Adding context to vulnerable statements led to better SV assessment per-
formance than using vulnerable statements only (see Fig. 4.5). Among the
three, function context was the best, followed by PS and then surrounding con-
text. In terms of MCC, function context working together with vulnerable statements beat
Vuln-only by 6.4%, 6.5%, 9%, 8.2%, 11%, 11.4%, 9.7% for Access Vector, Access Complex-
ity, Authentication, Confidentiality, Integrity, Availability, and Severity tasks, respectively.
The higher F1-Score values when incorporating function context to vulnerable statements
are also evident in Fig. 4.5. On average, combining function context and vulnerable state-
ments attained 0.64 MCC and 0.75 F1-Score, surpassing using vulnerable lines solely by
8.9% in MCC and 8.5% in F1-Score. Although PS context + Vuln performed slightly worse
than function context + Vuln, MCC and F1-Score of PS context + Vuln were still 6.7% and
7.5% ahead of Vuln-only, respectively. The improvements of function and PS context +
Vuln over Vuln-only were significant across features/classifiers, i.e., p-values of 1.2× 10−17

and 2.1× 10−13 and medium effect sizes of 0.42 and 0.36, respectively. Compared to func-
tion/PS context + Vuln, surrounding context + Vuln outperformed Vuln-only by smaller
margins, i.e., 3% for MCC and 5.2% for F1-Score (p-value = 3.7 × 10−8 < 0.01 with a
small effect size (r = 0.27)). These findings show the usefulness of directly SV-related
(PS) lines for SV assessment models, while six lines surrounding vulnerable statements
seemingly contain less related information for the SV assessment tasks.

8The RQ1 findings still hold when using the new dataset in RQ2, yet with a slight (≈2%) decrease in
absolute model performance.

4.5.
R

esults
73

3.3
0.6

4.6
-3.2
-2.4

-3.6

6.4
1.7

5.6
-3.8

-7.4
-10.6

7.8
5.0
6.4

-8.5
-8.8

-12.4

8.3
7.6

10.5
-3.1

-8.2
-6.2

6.0
3.1

5.2
-1.8

-2.7
-5.6

4.1
2.2

4.7
-5.7

-2.2
-17.0

0.6
5.0
4.4

-0.9
-7.2

-12.1

5.2
3.6

5.9
-3.8

-5.5
-9.6

Integrity Availability Severity Average

Access Vector Access Complexity Authentication Confidentiality

-20 -10 0 10 -20 -10 0 10 -20 -10 0 10 -20 -10 0 10

All - PS - Vuln
Surrounding context

PS context
Function context + Vuln

Surrounding context + Vuln
Program Slicing (PS) context + Vuln

All - PS - Vuln
Surrounding context

PS context
Function context + Vuln

Surrounding context + Vuln
Program Slicing (PS) context + Vuln

Performance (F1-Score) difference with respect to Vuln-only (using vulnerable statements only)

T
yp

e
of

 l
in

es
 i

n
 a

 v
u

ln
er

ab
le

 f
u

n
ct

io
n

1.9
-0.4

4.6
-6.1
-5.5
-5.6

3.9
-1.8

5.9
-4.6

-11.3
-12.7

2.1
2.7
3.2

-4.9
-4.4

-11.8

4.8
3.6

6.5
-4.8

-5.7
-15.0

7.0
4.1
5.4

-3.8
-5.2

-19.5

4.2
2.2

5.9
-3.0
-1.9

-20.4

3.4
2.0

4.7
-4.8

-6.0
-16.9

3.9
1.8

5.2
-4.6

-5.7
-14.6

Integrity Availability Severity Average

Access Vector Access Complexity Authentication Confidentiality

-20 -10 0 10 -20 -10 0 10 -20 -10 0 10 -20 -10 0 10

All - PS - Vuln
Surrounding context

PS context
Function context + Vuln

Surrounding context + Vuln
Program Slicing (PS) context + Vuln

All - PS - Vuln
Surrounding context

PS context
Function context + Vuln

Surrounding context + Vuln
Program Slicing (PS) context + Vuln

Performance (MCC) difference with respect to Vuln-only (using vulnerable statements only)

T
yp

e
of

 l
in

es
 i

n
 a

 v
u

ln
er

ab
le

 f
u

n
ct

io
n

Figure 4.5: Differences in testing SV assessment performance (F1-Score and MCC) between models using different types of lines/context
and those using only vulnerable statements. Note: The differences were multiplied by 100 to improve readability.

74 Chapter 4. Automated Function-Level Software Vulnerability Assessment

Further investigation revealed that only 49% of lines in PS context overlapped with those
in surrounding context (n = 6). Note that the performance of surrounding context tended
to approach that of function context as the surrounding context size increased. Using
the dataset in RQ1, we also obtained the same patterns, i.e., function context + Vuln
> surrounding context + Vuln > Vuln-only. This result shows that function context is
generally better than the other context types, indicating the plausibility of building effective
SV assessment models using only the output of function-level SV detection (i.e., requiring
no knowledge about which statements are vulnerable in each function).

Although the three context types were useful for SV assessment when com-
bined with vulnerable statements, using these context types alone significantly
reduced the performance. As shown from RQ1, using only function context (i.e., Non-
vuln (all) in Table 4.2) was 6.9% inferior in MCC and 5.2% lower in F1-Score than Vuln-
only. Using the new dataset in RQ2, we obtained similar reductions in MCC and F1-Score
values. Fig. 4.5 also indicates that using only PS and surrounding context decreased MCC
and F1-Score of all the tasks. Particularly, using PS context alone reduced MCC and
F1-Score by 7.8% and 5.5%, respectively; whereas, such reductions in values for using
only surrounding context were 9.8% and 8%. These performance drops were confirmed
significant with p-values < 0.01 and non-negligible effect sizes. Overall, the performance
rankings of the context types with and without vulnerable statements were the same, i.e.,
function > PS > surrounding context. We also observed that all context types were better
(increasing 20.1-28.2% in MCC and 6.9-17.5% in F1-Score) than non-directly SV-related
lines (i.e., All - PS - Vuln in Fig. 4.5). These findings highlight the need for using context
together with vulnerable statements rather than using each of them alone for function-level
SV assessment tasks.

4.5.3 RQ3: Does Separating Vulnerable Statements and Context to Pro-
vide Explicit Location of SVs Improve Assessment Performance?

RQ3 evaluated the approach of separating vulnerable statements from their context as two
inputs for building SV assessment models. Theoretically, this double-input method tells a
model the exact vulnerable and context parts in input code, helping the model capture the
information from relevant parts for SV assessment tasks more easily. To separate features,
feature vectors are generated for each of the two inputs and then concatenated to form
a single vector of twice the size of the vector used in RQ2. RQ3 used the same dataset
from RQ2 (i.e., excluding cases without PS context) and the respective model evaluation
procedure to objectively compare PS context with the other context types.

Overall, double-input models improved the performance for all types of con-
text compared to single-input ones, but the improvements were not substan-
tial (≈1%). Table 4.3 clearly indicated the improvement trend; i.e., a majority of the
cells have green color. We noticed that the rankings of double-input models using differ-
ent context types still remained the same as in RQ2, i.e., function > PS > surrounding
context. Specifically, double-input models raised the MCC values of single-input mod-
els using PS, surrounding, and function context by 1.1%, 1.4%, and 0.8%, respectively.
In terms of F1-Score of double-input models, PS and surrounding context had 0.26%
and 0.75% increase, while function context suffered from a 0.04% decline. We found the
absolute performance differences between double-input and single-input models for the
seven tasks were actually small and not statistically significant with negligible effect sizes
(rPS ctx+V uln = 0.059, rSurrounding ctx+V uln = 0.092, and rFunction ctx+V uln = 0.021). We
observed similar changes/patterns of function/surrounding context when using the full
dataset in RQ1. The findings suggest that models using function context + Vuln as a
single-input in RQ2 still perform competitively. This result strengthens the conclusion in

4.6. Discussion 75

Table 4.3: Differences in testing performance for SV assessment tasks
between double-input models (RQ3) and single-input models (RQ1/2).
Notes: The differences were multiplied by 100 to increase readability.
Green and red colors denote value increase and decrease, respectively.
Darker color shows a higher magnitude of increase/decrease. Average per-
formance values (multiplied by 100) of double-input models for the three

context (ctx) types are in parentheses.

CVSS metric Evaluation
metric

Input type (double)
PS

ctx + Vuln
Surrounding
ctx + Vuln

Function
ctx + Vuln

Access
Vector

F1-Score 1.3 1.2 1.2
MCC 2.6 2.7 2.4

Access
Complexity

F1-Score -0.5 0.6 -0.7
MCC 1.5 0.5 2.4

Authentication F1-Score 0.5 0.7 0.3
MCC 1.0 1.7 0.7

Confidentiality F1-Score -0.2 0.01 -0.9
MCC -0.7 -0.5 -1.5

Integrity F1-Score 0.2 0.7 0.2
MCC -0.07 1.1 0.5

Availability F1-Score -0.5 -0.2 -1.0
MCC 0.4 0.4 0.1

Severity F1-Score 0.7 0.9 0.7
MCC 0.2 0.02 0.2

Average F1-Score 0.2 (74.7) 0.5 0.5 (73.4) -0.03 (75.2)
MCC 0.7 (63.1) 0.8 (61.1) 0.5 (64.1)

RQ2 that SV assessment models benefit from vulnerable statements along with (in-)directly
SV-related lines in functions, yet not necessarily where these lines are located.

4.6 Discussion

4.6.1 Function-Level SV Assessment: Baseline Models and Beyond

From RQ1-RQ3, we have shown that vulnerable statements and their context are useful for
SV assessment tasks. In this section, we discuss the performance of various features and
classifiers used to develop SV assessment models on the function level. We also explore
the patterns of false positives of the models used in this work. Through these discussions,
we aim to provide recommendations on building strong baseline models and inspire future
data-driven advances in function-level SV assessment.
Practices of building baselines. Among the investigated features and classifiers,
a combination of LGBM classifier and Bag-of-Subtokens features produced the
best overall performance for the seven SV assessment tasks (see Fig. 4.6). In
addition, LGBM outperformed the other classifiers, and Bag-of-Subtokens was better than
the other features. However, we did not find a single set of hyperparameters that was
consistently better than the others, emphasizing the need for hyperparameter tuning for
function-level SV assessment tasks, as generally recommended in the literature [312, 313].
Regarding the classifiers, the ensemble ones (LGBM, RF, and XGB) were significantly
better than the single counterparts (SVM, LR, and KNN) when averaging across all feature
types, aligning with the previous findings for SV assessment using SV reports [23, 22].

76 Chapter 4. Automated Function-Level Software Vulnerability Assessment

0.5270.4010.4650.4380.455

0.4580.3980.3780.3720.363

0.5020.4740.4280.3580.415

0.4990.4270.2150.2840.208

0.4800.4510.2560.3480.256

0.2730.2600.3290.2630.314KNN

LR

SVM

XGB

RF

LGBM

Word2vec CodeBERT fastText BoT BoST
Feature type

C
la

ss
if

ie
r

ty
p

e

0.2

0.3

0.4

0.5

MCC

Figure 4.6: Average performance (MCC) of six classifiers and five features
for SV assessment in functions. Notes: BoT and BoST are Bag-of-Tokens

and Bag-of-Subtokens, respectively.

Regarding the features, the ones augmented by sub-tokens (Bag-of-Subtokens, fastText,
and CodeBERT) had stronger performance, on average, than the respective feature types
using only word-based representation (Bag-of-Tokens and Word2vec). This observation
suggests that SV assessment models do benefit from sub-tokens, probably because rare
code tokens are more likely to be captured by these features. This result is similar to
Le et al. [23]’s finding for report-level SV assessment models. All of the aforementioned
result comparisons were confirmed statistically significant with p-values < 0.01 and non-
negligible effect sizes; similar patterns were also obtained for F1-Score. Surprisingly, the
latest feature model, CodeBERT, did not show superior performance in this scenario,
likely because the model was originally pre-trained on multiple languages, not only Java
(the main language used in this study). Fine-tuning the weights of CodeBERT using SV
data in a specific programming language is worthy of exploration for potentially improving
the performance of this feature model. Overall, using the aforementioned baseline features
and classifiers, we observed a common pattern in the performance ranking of the seven
CVSS metrics across different input types, i.e., Access Vector > Authentication > Severity
> Confidentiality – Integrity – Availability > Access Complexity. We speculate that the
metric-wise class distribution (see Fig. 4.3) can be a potential explanation for this ranking.
Specifically, Access Vector and Authentication are binary classifications, which have less
uncertainty than the other tasks. In addition, Confidentiality, Integrity, and Availability
are all impact metrics with roughly similar distributions, resulting in similar performance
as well. Access Complexity suffers the most from imbalanced data among the tasks, and
thus this task has the worst performance.
False-positive patterns. We manually analyzed the incorrect predictions by the optimal
models using the best-performing (function) context from RQ2/RQ3. From these cases, we
found two key patterns of false positives. The first pattern concerned SVs affecting
implicit code in function calls. For example, a feature requiring authentication, i.e., the
synchronous mode, was run before user’s password was checked in a function (doFilter),
leading to a potential access-control related SV.9 The execution of such mode was done
by another function, processSync, but its implementation along with the affected com-
ponents inside was not visible to the affected function. Such invisibility hinders a model’s
ability to fully assess SV impacts. A straightforward solution is to employ inter-procedural
analysis [314], but scalability is a potential issue as SVs can affect multiple functions and
even the ones outside of a project (i.e., functions in third-party libraries). Future work can
leverage Question and Answer websites to retrieve and analyze SV-related information of

9https://bit.ly/32vyggM (CVE-2018-1000134)

https://bit.ly/32vyggM

4.7. Related Work 77

third-party libraries [315]. The second type of false positives involved vulnerable
variables with obscure context. For instance, a function used a potentially vulnerable
variable containing malicious inputs from users, but the affected function alone did not
contain sufficient information/context about the origin of the variable.10 Without such
variable context, a model would struggle to assess the exploitability of an SV; i.e., through
which components attackers can penetrate into a system and whether any authentica-
tion is required during the penetration. Future work can explore taint analysis [316] to
supplement function-level SV assessment models with features about variable origin/flow.

4.6.2 Threats to Validity

The first threat concerns the curation of vulnerable functions and statements for building
SV assessment models. We considered the recommendations in the literature to remove
noise in the data (e.g., abnormally large and cosmetic changes). We also performed manual
validation to double-check the validity of our data.

Another threat is about the robustness of our own implementation of the program
slicing extraction. To mitigate the threat, we carefully followed the algorithms and de-
scriptions given in the previous work [297] to extract the intra-procedural backward and
forward slices for a particular code line.

Other threats are related to the selection and optimality of baseline models. We assert
that it is nearly impossible to consider all types of available features and models due
to limited resources. Hence, we focused on the common techniques and their respective
hyperparameters previously used for relevant tasks, e.g., report-level SV assessment. We
are also the first to tackle function-level SV assessment using data-driven models, and
thus our imperfect baselines can still stimulate the development of more advanced and
better-performing techniques in the future.

Regarding the reliability of our study, we confirmed the key findings with p-values
< 0.01 using non-parametric Wilcoxon signed rank tests and non-negligible effect sizes.
Regarding the generalizability of our results, we only performed our study in the Java
programming language, yet we mitigated this threat by using 200 real-world projects of
diverse domains and scales. The data and models were also released at https://github.
com/lhmtriet/Function-level-Vulnerability-Assessment to support reuse and exten-
sion to new languages/applications.

4.7 Related Work

4.7.1 Code Granularities of SV Detection

SV detection has long attracted attention from researchers and there have been many
proposed data-driven solutions to automate this task [3]. Neuhaus et al. [317] were among
the first to tackle SV detection in code components/files. This seminal work has inspired
many follow-up studies on component/file-level SV detection (e.g., [318, 319, 320]). Over
time, function-level SV detection tasks have become more popular [321, 273, 322, 323, 324]
as functions are usually much smaller than files, significantly reducing inspection effort for
developers. For example, the number of code lines in the methods in our dataset was only
35, on average, nearly 10 times smaller than that (301) of files. Recently, researchers have
begun to predict exact vulnerable statements/lines in functions (e.g., [278, 276, 277, 325]).
This emerging research is based on an important observation that only a small number of
lines in vulnerable functions contain root causes of SVs. Instead of detecting SVs as in these
studies, we focus on SV assessment tasks after SVs are detected. Specifically, utilizing the

10https://bit.ly/3plU7QP (CVE-2012-0391)

https://github.com/lhmtriet/Function-level-Vulnerability-Assessment
https://github.com/lhmtriet/Function-level-Vulnerability-Assessment
https://bit.ly/3plU7QP

78 Chapter 4. Automated Function-Level Software Vulnerability Assessment

outputs (vulnerable functions/statements) from these SV detection studies, we perform
function-level SV assessment to support SV understanding/prioritization before fixing.

4.7.2 Data-Driven SV Assessment

SV assessment has been an integral step for addressing SVs. CVSS has been shown to
provide one of the most reliable metrics for SV assessment [261]. According to Chapter 2,
there has been a large and growing body of research work on automating SV assessment
tasks, especially predicting the CVSS metrics for ever-increasing SVs. Most of the current
studies (e.g., [95, 20, 22, 23, 100, 326]) have utilized SV descriptions available in bug/SV
reports/databases, mostly NVD, to predict the CVSS metrics. However, according to our
analysis in section 4.2, NVD reports of SVs are usually released long (up to 1k days)
after SVs have been fixed, rendering report-level SV assessment potentially untimely for
SV fixing. Unlike the current studies, we propose shifting the SV assessment tasks to
the function level, which can help developers assess functions right after they are found
vulnerable and before fixing. Note that we assess all types of SVs in source code, not only
the ones in dependencies [327, 13]. Overall, our study informs the practice of developing
strong baselines for function-level SV assessment tasks by combining vulnerable statements
and their context. It is worth noting that function-level SV assessment does not completely
replace report-level SV assessment. The latter is still useful for assessing SVs in third-party
libraries/software without available source code (e.g., commercial products), to prioritize
the application of security patches provided by vendors.

4.8 Chapter Summary

We motivate the need for function-level SV assessment to provide essential information for
developers before fixing SVs. Through large-scale experiments, we studied the use of data-
driven models for automatically assigning the seven CVSS assessment metrics to SVs in
functions. We demonstrated that strong baselines for these tasks benefited not only from
fine-grained vulnerable statements, but also the context of these statements. Specifically,
using vulnerable statements with all the other lines in functions produced the best perfor-
mance of 0.64 MCC and 0.75 F1-Score. These promising results show that function-level
SV assessment tasks deserve more attention and contribution from the community, espe-
cially techniques that can strongly capture the relations between vulnerable statements
and other code lines/components.

79

Chapter 5

Automated Commit-Level Software
Vulnerability Assessment

Related publication: This chapter is based on our paper titled “DeepCVA: Auto-
mated Commit-level Vulnerability Assessment with Deep Multi-task Learning” pub-
lished in the 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2021 (CORE A*) [289].

In Chapter 4, we have distilled practices of performing Software Vulnerability (SV) as-
sessment on the code function level. While function-level assessment is useful for analyzing
SVs before fixing, some SVs may be detected late in codebases and pose significant security
risks for a long time. Thus, it is increasingly suggested to identify SV in code commits to
give early warnings about potential security risks. However, there is a lack of effort to assess
vulnerability-contributing commits right after they are detected to provide timely informa-
tion about the exploitability, impact and severity of SVs. Such information is important to
plan and prioritize the mitigation for the identified SVs. In Chapter 5, we propose a novel
Deep multi-task learning model, DeepCVA, to automate seven Commit-level Vulnerability
Assessment tasks simultaneously based on Common Vulnerability Scoring System (CVSS)
metrics. We conduct large-scale experiments on 1,229 vulnerability-contributing commits
containing 542 different SVs in 246 real-world software projects to evaluate the effective-
ness and efficiency of our model. We show that DeepCVA is the best-performing model
with 38% to 59.8% higher Matthews Correlation Coefficient than many supervised and un-
supervised baseline models. DeepCVA also requires 6.3 times less training and validation
time than seven cumulative assessment models, leading to significantly less model mainte-
nance cost as well. Overall, DeepCVA presents the first effective and efficient solution to
automatically assess SVs early in software systems.

80 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

5.1 Introduction

As reviewed in Chapter 2, existing techniques (e.g., [328, 21, 22, 23, 11]) to automate bug/-
Software Vulnerability (SV) assessment have mainly operated on bug/SV reports, but these
reports may be only available long after SVs appeared in practice. Our motivating analysis
revealed that there were 1,165 days, on average, from when an SV was injected in a code-
base until its report was published on National Vulnerability Database (NVD) [16]. Our
analysis agreed with the findings of Meneely et al. [25]. To tackle late-detected bugs/SVs,
recently, Just-in-Time (commit-level) approaches (e.g., [287, 26, 329, 330]) have been pro-
posed to rely on the changes in code commits to detect bugs/SVs right after bugs/SVs are
added to a codebase. Such early commit-level SV detection can also help reduce the delay
in SV assessment.

Even when SVs are detected early in commits, we argue that existing automated tech-
niques relying on bug/SV reports still struggle to perform just-in-time SV assessment.
Firstly, there are significant delays in the availability of SV reports, which render the ex-
isting SV assessment techniques unusable. Specifically, SV reports on NVD generally only
appear seven days after the SVs were found/disclosed [331]. Some of the detected SVs may
not even be reported on NVD [332], e.g., because of no disclosure policy. User-submitted
bug/SV reports are also only available post-release and more than 82% of the reports are
filed more than 30 days after developers detected the bugs/SVs [333]. Secondly, code re-
view can provide faster SV assessment, but there are still unavoidable delays (from several
hours to even days) [334]. Delays usually come from code reviewers’ late responses and
manual analyses depending on the reviewers’ workload and code change complexity [335].
Thirdly, it is non-trivial to automatically generate bug/SV reports from vulnerable com-
mits as it would require non-code artifacts (e.g., stack traces or program crashes) that are
mostly unavailable when commits are submitted [328, 336].

Performing commit-level SV assessment provides a possibility to inform committers
about the exploitability, impact and severity of SVs in code changes and prioritize fixing
earlier than current report-level SV assessment approaches. However, to the best of our
knowledge, there is no existing work on automating SV assessment in commits. Prior SV
assessment techniques that analyze text in SV databases (e.g., [21, 22, 23]) also cannot be
directly adapted to the commit level. Contrary to text, commits contain deletions and
additions of code with specific structure and semantics [287, 337]. Additionally, we spec-
ulate that the expert-based Common Vulnerability Scoring System (CVSS) metrics [29],
which are commonly used to quantify the exploitability, impact and severity level of SVs
for SV assessment, can be related. For example, an SQL injection is likely to be highly
severe since attackers can exploit it easily via crafted input and compromise data con-
fidentiality and integrity. We posit that these metrics would have common patterns in
commits that can be potentially shared between SV assessment models. Predicting re-
lated tasks in a shared model has been successfully utilized for various applications [27].
For instance, an autonomous car is driven with simultaneous detection of vehicles, lanes,
signs and pavement [338]. These observations motivated us to tackle a new and important
research challenge, “How can we leverage the common attributes of assessment
tasks to perform effective and efficient commit-level SV assessment?”

We present DeepCVA, a novel Deep multi-task learning model, to automate Commit-
level Vulnerability Assessment. DeepCVA first uses attention-based convolutional gated
recurrent units to extract features of code and surrounding context from vulnerability-
contributing commits (i.e., commits with vulnerable changes). The model uses these fea-
tures to predict seven CVSS assessment metrics (i.e., Confidentiality, Integrity, Availability,
Access Vector, Access Complexity, Authentication, and Severity) simultaneously using the

5.2. Background and Motivation 81

multi-task learning paradigm. The predicted CVSS metrics can guide SV management
and remediation processes.

Our key contributions are summarized as follows:

1. We are the first to tackle the commit-level SV assessment tasks that enable early
security risks estimation and planning for SV remediation.

2. We propose a unified model, DeepCVA, to automate seven commit-level SV assess-
ment tasks simultaneously.

3. We extensively evaluate DeepCVA on our curated large-scale dataset of 1,229 vulnerability-
contributing commits with 542 SVs from 246 real-world projects.

4. We demonstrate that DeepCVA has 38% to 59.8% higher performance (Matthews
Correlation Coefficient (MCC)) than various supervised and unsupervised baseline
models using text-based features and software metrics. The proposed context-aware
features improve the MCC of DeepCVA by 14.8%. The feature extractor with
attention-based convolutional gated recurrent units, on average, adds 52.9% MCC
for DeepCVA. Multi-task learning also makes DeepCVA 24.4% more effective and
6.3 times more efficient in training, validation, and testing than separate models for
seven assessment tasks.

5. We release our source code, models and datasets for future research at https://
github.com/lhmtriet/DeepCVA.

Chapter organization. Section 5.2 introduces preliminaries and motivation. Section 5.3
proposes the DeepCVA model for commit-level SV assessment. Section 5.4 describes our
experimental design and setup. Section 5.5 presents the experimental results. Section 5.6
discusses our findings and threats to validity. Section 5.7 covers the related work. Sec-
tion 5.8 concludes the work and proposes future directions.

5.2 Background and Motivation

5.2.1 Vulnerability in Code Commits

Commits are an essential unit of any version control system (e.g., Git) and record all the
chronological changes made to the codebase of a software project. As illustrated in Fig. 5.1,
changes in a commit consist of deletion(s) (–) and/or addition(s) (+) in each affected file.

Vulnerability-Contributing Commits (VCCs) are commits whose changes contain SVs [25],
e.g., using vulnerable libraries or insecure implementation. We focus on VCCs rather than
any commits with vulnerable code (in unchanged parts) since addressing VCCs helps mit-
igate SVs as early as they are added to a project. VCCs are usually obtained based on
Vulnerability-Fixing Commits (VFCs) [329, 330]. An exemplary VFC and its respective
VCC are shown in Fig. 5.1. VFCs delete, modify or add code to eliminate an SV (e.g.,
disabling external entities processing in the XML library in Fig. 5.1) and can be found in
bug/SV tracking systems. Then, VCCs are commits that last touched the code changes in
VFCs. Our work also leverages VFCs to obtain VCCs for building automated commit-level
SV assessment models.

5.2.2 Commit-Level SV Assessment with CVSS

Similar to the studies in Chapters 3 and 4, we use Common Vulnerability Scoring System
(CVSS) [29] version 2 of base metrics (i.e., Confidentiality, Integrity, Availability, Access

https://github.com/lhmtriet/DeepCVA
https://github.com/lhmtriet/DeepCVA

82 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

...
protected XMLInputFactory createInputFactory() {

- return new MXParserFactory();
+ return new WstxInputFactory();
}
...

Vulnerability-Contributing Commit:

bba4bc2 (Sep 30, 2011)

Commit Message: WstxDriver did not trigger

Woodstox, but BEA StAX implementation

...
protected XMLInputFactory createInputFactory() {

- return new WstxInputFactory();
+ final XMLInputFactory instance = new

WstxInputFactory();
+ instance.setProperty(XMLInputFactory.

IS_SUPPORTING_EXTERNAL_ENTITIES, false);
+ return instance;
}
...

Vulnerability-Fixing Commit:

e4f1457 (Oct 7, 2015)

Commit Message: Disable external entities

for StAX drivers
File: xstream/src/java/com/thoughtworks/

xstream/io/xml/WstxDriver.java

File: xstream/src/java/com/thoughtworks/

xstream/io/xml/WstxDriver.java

Code Diff: Code Diff:

Trace last commit

that touched the

modified line(s)

Figure 5.1: Exemplary SV fixing commit (right) for the XML external
entity injection (XXE) (CVE-2016-3674) and its respective SV contributing

commit (left) in the xstream project.

Vector, Access Complexity, Authentication, and Severity) to assess SVs in this study be-
cause of their popularity in practice. Based on CVSS version 2, the VCC (CVE-2016-3674)
in Fig. 5.1 has a considerable impact on Confidentiality. This SV can be exploited with low
(Access) complexity with no authentication via a public network (Access Vector), making
it an attractive target for attackers.

Despite the criticality of these SVs, there have been delays in reporting, assessing and
fixing them. Concretely, the VCC in Fig. 5.1 required 1,439 and 1,469 days to be reported1

and fixed (in VFC), respectively. Existing SV assessment methods based on bug/SV reports
(e.g., [21, 22, 23]) would need to wait more than 1,000 days for the report of this SV.
However, performing SV assessment right after this commit was submitted can bypass
the waiting time for SV reports, enabling developers to realize the exploitability/impacts
of this SV and plan to fix it much sooner. To the best of our knowledge, there has not
been any study on automated commit-level SV assessment, i.e., assigning seven CVSS base
metrics to a VCC. Our work identifies and aims to bridge this important research gap.

5.2.3 Feature Extraction from Commit Code Changes

The extraction of commit features is important for building commit-level SV assessment
models. Many existing commit-level defect/SV prediction models have only considered
commit code changes (e.g., [287, 337, 339]). However, we argue that the nearby context of
code changes also contributes valuable information to the prediction, as shown in Chapter 4.
For instance, the surrounding code of the changes in Fig. 5.1 provides extra details; e.g.,
the method return statement is modified and the return type is XMLInputFactory. Such
a type can help learn patterns of XXE SV that usually occurs with XML processing.

Besides the context, we speculate that SV assessment models can also benefit from
the relatedness among the assessment tasks. For example, the XXE SV in Fig. 5.1 allows
attackers to read arbitrary system files, which mainly affects the Confidentiality rather
than the Integrity and Availability of a system. This chapter investigates the possibility
of incorporating the common features of seven CVSS metrics into a single model using
the multi-task learning paradigm [27] instead of learning seven cumulative individual mod-
els. Specifically, multi-task learning leverages the similarities and the interactions of the
involved tasks through a shared feature extractor to predict all the tasks simultaneously.
Such a unified model can significantly reduce the time and resources to train, optimize and
maintain/update the model in the long run.

1https://github.com/x-stream/xstream/issues/25

https://github.com/x-stream/xstream/issues/25

5.2.
B

ackground
and

M
otivation

83

protected XMLInputFactory
createInputFactory() {

+ return new
WstxInputFactory();

}

protected XMLInputFactory
createInputFactory() {

- return new MXParserFactory();
}

Vulnerability-

Contributing

Commit

Post-change

Pre-change

protected XMLInputFactory ... {

}
Post-change context

+ return new WstxInputFactory();

Post-change hunk

protected XMLInputFactory ... {
}

- return new MXParserFactory();

Pre-change context

Pre-change hunk

Attention-

based

GRUs

Attention-

based

GRUs

Attention-

based

GRUs

…
…

…
Confidentiality

Integrity

Availability

Access Vector

Access Complexity

Authentication

Severity Level

Shared Input

Embedding

2. Shared Commit Feature Extractor with Attention-based

Convolutional Gated Recurrent Units

3-grams

C
o

d
e-aw

are T
o

k
en

izatio
n

3. Multi-task Learning with

Task-specific Blocks + Softmax Layers

…
…

…

Filters
Feature maps

1. Commit Preprocessing,

Context Extraction &

Tokenization

Figure 5.2: Workflow of DeepCVA for automated commit-level SV assessment. Note: The VCC is the one described in Fig. 5.1.

84 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

5.3 The DeepCVA Model

We propose DeepCVA (see Fig. 5.2), a novel Deep learning model to automate Commit-
level Vulnerability Assessment. DeepCVA is a unified and end-to-end trainable model
that concurrently predicts seven CVSS metrics (i.e., Confidentiality, Integrity, Availabil-
ity, Access Vector, Access Complexity, Authentication, and Severity) for a Vulnerability-
Contributing Commit (VCC). DeepCVA contains: (i) preprocessing, context extraction
and tokenization of code commits (section 5.3.1), (ii) feature extraction from commits
shared by seven assessment tasks using attention-based convolutional gated recurrent units
(section 5.3.2), and (iii) simultaneous prediction of seven CVSS metrics using multi-task
learning [27] (section 5.3.3). To assign the CVSS metrics to a new VCC with DeepCVA,
we first preprocess the commit, obtain its code changes and respective context and tok-
enize such code changes/context. Embedding vectors of preprocessed code tokens are then
obtained, and the commit feature vector is extracted using the trained feature extractor.
This commit feature vector passes through the task-specific blocks and softmax layers to
get the seven CVSS outputs with the highest probability values. Details of each component
are given hereafter.

5.3.1 Commit Preprocessing, Context Extraction & Tokenization

To train DeepCVA, we first obtain and preprocess code changes (hunks) and extract the
context of such changes. We then tokenize them to prepare inputs for feature extraction.
Commit preprocessing. Preprocessing helps remove noise in code changes and reduce
computational costs. We remove newlines/spaces and inline/multi-line comments since
they do not change code functionality. We do not remove punctuations (e.g., “;”, “(”,
“)”) and stop words (e.g., and/or operators) to preserve code syntax. We also do not
lowercase code tokens since developers can use case-sensitivity for naming conventions of
different token types (e.g., variable name: system vs. class name: System). Stemming
(i.e., reducing a word to its root form such as equals to equal) is not applied to code since
different names can change code functionality (e.g., the built-in equals function in Java).
Context extraction algorithm. We customize Sahal et al.’s [340] Closest Enclosing
Scope (CES) to identify the context of vulnerable code changes for commit-level SV assess-
ment (see section 5.2.3). Sahal et al. [340] defined an enclosing scope to be the code within
a balanced amount of opening and closing curly brackets such as if/switch/while/for
blocks. Among all enclosing scopes of a hunk, the one with the smallest size (lines of
code) is selected as CES to reduce irrelevant code. Sahal et al. [340] found CES usually
contains hunk-related information (e.g., variable values/types preceding changes). CES
also alleviates the need for manually pre-defining the context size as in [329, 293]. Some
existing studies (e.g., [280, 288]) only used the method/function scope, but code changes
may occur outside of a method. For instance, changes in Fig. 5.3 do not have any enclosing
method, but we can still obtain its CES, i.e., the PlainNegotiator class.

There are still two main limitations with the definition of CES in [340]. Firstly, a scope
(e.g., for/while in Java) with single-line content does not always require curly brackets.
Secondly, some programming languages do not use curly brackets to define scopes like
Python. To address these two issues, we utilize Abstract Syntax Tree (AST) depth-first
traversal (see Algorithm 2) to obtain CESs of code changes, as AST covers the syntax of
all scope types and generalizes to any programming languages.

Algorithm 2 contains: (i) the extract_scope function for extracting potential scopes
of a code hunk (lines 1-8), and (ii) the main code to obtain the CES of every hunk in
a commit (lines 9-18). The extract_scope function leverages depth-first traversal with
recursion to go through every node in an AST of a file. Line 3 adds the selected part

5.3. The DeepCVA Model 85

public class PlainNegotiator implements SaslNegotiator {
...

- private static final String UTF8 = Standard
Charsets.UTF_8.name();

+ private static final Charset UTF8 = Standard
Charsets.UTF_8;

...
} // End of the PlainNegotiator class

Figure 5.3: Code changes outside of a method from the commit 4b9fb37
in the Apache qpid-broker-j project.

of an AST to the list of potential scopes (potential_scopes) of the current hunk. The
first (root) AST is always valid since it encompasses the whole file. Line 6 then checks
whether each node (sub-tree) of the current AST has one of the following types: class,
interface, enum, method, if/else, switch, for/while/do, try/catch, and is surrounding
the current hunk. If the conditions are satisfied, the extract_scope function would be
called recursively in line 7 until a leaf of the AST is reached. The main code starts to
extract the modified files of the current commit in line 9. For each file, we extract code
hunks (code deletions/additions) in line 12 and then obtain the AST of the current file
using an AST parser in line 13. Line 16 calls the defined extract_scope function to
generate the potential scopes for each hunk. Among the identified scopes, line 17 adds
the one with the smallest size (i.e., the number of code lines excluding empty lines and
comments) to the list of CESs (all_ces). Finally, line 18 of Algorithm 2 returns all the
CESs for the current commit.

We treat deleted (pre-change), added (post-change) code changes and their CESs as
four separate inputs to be vectorized by the shared input embedding, as illustrated in
Fig. 5.2. For each input, we concatenate all the hunks/CESs in all the affected files of a
commit to explicitly capture their interactions.
Code-aware tokenization. The four inputs extracted from a commit are then tokenized
with a code-aware tokenizer to preserve code semantics and help prediction models be more
generalizable. For example, a++ and b++ are tokenized as a, b and ++, explicitly giving
a model the information about one-increment operator (++). Tokenized code is fed into
a shared Deep Learning model, namely Attention-based Convolutional Gated Recurrent
Unit (AC-GRU), to extract commit features.

5.3.2 Feature Extraction with Deep AC-GRU

Deep AC-GRU has a three-way Convolutional Neural Network to extract n-gram features
and Attention-based Gated Recurrent Units to capture dependencies among code changes
and their context. This feature extractor is shared by four inputs, i.e., deleted/added code
hunks/context. Each input has the size of N ×L, where N is the no. of code tokens and L
is the vector length of each token. All inputs are truncated or padded to the same length
N to support parallelization. The feature vector of each input is obtained from a shared
Input Embedding layer that maps code tokens into fixed-length arithmetic vectors. The
dimensions of this embedding layer are |V |×L, where |V | is the code vocabulary size, and
its parameters are learned together with the rest of the model.
Three-way Convolutional Neural Network. We use a shared three-way Convolutional
Neural Network (CNN) [120] to extract n-grams (n = 1,3,5) of each input vector. The
three-way CNN has filters with three sizes of one, three and five, respectively, to capture

86 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

Algorithm 2: AST-based extraction of the Closest Enclosing Scopes (CESs) of
commit code changes.

Input: Current Vulnerability-Contributing Commit (VCC): commit
Scope type: scope_types
Output: CESs of code changes in the current commit: all_ces

1 Function extract_scope(AST, hunk, visited = ∅):
2 global potential_scopes
3 potential_scopes←− potential_scopes+AST
4 visited←− visited+AST
5 foreach node ∈ AST do
6 if node /∈ visited and type(node) ∈ scope_types and

startnode ≤ starthunk and endnode ≥ endhunk then
7 extract_scope(AST, hunk, visited)

8 return
9 files←− extract_files(commit)

10 all_ces←− ∅
11 foreach fi ∈ files do
12 hunks←− extract_hunk(commit, fi)
13 ASTi ←− extract_AST(fi)
14 foreach hi ∈ hunks do
15 potential_scopes←− ∅
16 extract_scopes(ASTi, hi)
17 all_ces←− all_ces+ argmin

size
(potential_scopes)

18 return all_ces

common code patterns, e.g., public class Integer. The filters are randomly initialized
and jointly learned with the other components of DeepCVA. We did not include 2-grams
and 4-grams to reduce the required computational resources without compromising the
model performance, which has been empirically demonstrated in section 5.5.2. To generate
code features of different window sizes with the three-way CNN, we multiply each filter
with the corresponding input rows and apply non-linear ReLU activation function [341],
i.e., ReLU(x) = max(0, x). We repeat the same convolutional process from the start to
the end of an input vector by moving the filters down sequentially with a stride of one.
This stride value is the smallest and helps capture the most fine-grained information from
input code as compared to larger values. Each filter size returns feature maps of the size
(N − K + 1) × F , where K is the filter size (one, three or five) and F is the number of
filters. Multiple filters are used to capture different semantics of commit data.
Attention-based Gated Recurrent Unit. The feature maps generated by the three-way
CNN sequentially enter a Gated Recurrent Unit (GRU) [31]. GRU, defined in Eq. (5.1), is
an efficient version of Recurrent Neural Networks and used to explicitly capture the order
and dependencies between code blocks. For example, the return statement comes after
the function declarations of the VCC in Fig. 5.2.

zt = σ(Wzxt +Uzht−1 + bz)

rt = σ(Wrxt +Urht−1 + br)

ĥt = tanh(Whxt +Uh(rt ⊙ ht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

(5.1)

5.3. The DeepCVA Model 87

where Wz, Wr, Wh, Uz, Ur, Uh are learnable weights, bz, br, bh are learnable biases,
⊙ is element-wise multiplication, σ is the sigmoid function and tanh() is the hyperbolic
tangent function.
To determine the information (ht) at each token (time step) t, GRU combines the current
input (xt) and the previous time step (ht−1) using the update (zt) and reset (rt) gates. ht

is then carried on to the next token until the end of the input to maintain the dependencies
of the whole code sequence.

The last token output of GRU is often used as the whole sequence representation, yet
it suffers from the information bottleneck problem [117], especially for long sequences. To
address this issue, we incorporate the attention mechanism [117] into GRU to explicitly
capture the contribution of each input token, as formulated in Eq. (5.2).

outattention =
m∑
i=1

wihi

wi = softmax(Ws tanh(Wahi + ba))

=
exp(Ws tanh(Wahi + ba))

m∑
j=1

exp(Ws tanh(Wahj + ba))

(5.2)

where wi is the weight of hi; Ws, Wa are learnable weights, ba is learnable bias, and m is
the number of code tokens.

The attention-based outputs (outattention) of the three GRUs (see Fig. 5.2) are con-
catenated into a single feature vector to represent each of the four inputs (pre-/post-change
hunks/contexts). The commit feature vector is a concatenation of the vectors of all four
inputs generated by the shared AC-GRU feature extractor. This feature vector is used for
multi-task prediction of seven CVSS metrics.

5.3.3 Commit-Level SV Assessment with Multi-task Learning

This section describes the multi-task learning layers of DeepCVA for efficient commit-level
SV assessment (i.e., learning/predicting seven CVSS tasks simultaneously) using a single
model as well as how to train the model end-to-end.
Multi-task learning layers. The last component of DeepCVA consists of the multi-
task learning layers that simultaneously give the predicted CVSS values for seven SV
assessment tasks. As illustrated in Fig. 5.2, this component contains two main parts: task-
specific blocks and softmax layers. On top of the shared features extracted by AC-GRU,
task-specific blocks are necessary to capture the differences among the seven tasks. Each
task-specific block is implemented using a fully connected layer with non-linear ReLU
activations [341]. Specifically, the output vector (taski) of the task-specific block for
assessment task i is defined in Eq. (5.3).

taski = ReLU(Wtxcommit + bt) (5.3)

where xcommit is the commit feature vector from AC-GRU; Wt is learnable weights and bt
is learnable bias.

Each task-specific vector goes through the respective softmax layer to determine the
output of each task with the highest predicted probability. The prediction output (predi)

88 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

of task i is given in Eq. (5.4).

predi = argmax(probi)

probi = softmax(Wptaski + bp)

softmax(zj) =
exp(zj)

nlabelsi∑
c=1

exp(zc)

(5.4)

where probi contains the predicted probabilities of nlabelsi possible outputs of task i; Wp

is learnable weights and bp is learnable bias.
Training DeepCVA. To compare DeepCVA’s outputs with ground-truth CVSS labels,
we define a multi-task loss that averages the cross-entropy losses of seven tasks in Eq. (5.5).

lossDeepCV A =
7∑

i=1

lossi

lossi = −
nlabelsi∑
c=1

yci log(prob
c
i), y

c
i = 1 if c is true class else 0

(5.5)

where yci , probci , and nlabelsi are the ground-truth value, predicted probability and all
labels of CVSS task i, respectively.

We minimize this multi-task loss using a stochastic gradient descent method [342] to
optimize the weights of learnable components in DeepCVA. We also use backpropaga-
tion [343] to automate partial differentiation with chain-rule and increase the efficiency of
gradient computation throughout the model.

5.4 Experimental Design and Setup

All the experiments ran on a computing cluster that has 16 CPU cores with 16GB of RAM
and Tesla V100 GPU.

5.4.1 Datasets

To develop commit-level SV assessment models, we built a dataset of Vulnerability-Contributing
Commits (VCCs) and their CVSS metrics. We used Vulnerability-Fixing Commits (VFCs)
to retrieve VCCs, as discussed in section 5.2.1.
VFC identification. We first obtained VFCs from three public sources: NVD [16],
GitHub and its Advisory Database2 as well as a manually curated/verified VFC dataset
(VulasDB) [285]. In total, we gathered 13,310 VFCs that had dates ranging from July
2000 to October 2020. We selected VFCs in Java projects as Java has been commonly
investigated in the literature (e.g., [287, 288, 286]) and also in the top five most popular
languages in practice.3 Following the practice of [286], we discarded VFCs that had more
than 100 files and 10,000 lines of code to reduce noise in the data.
VCC identification with the SZZ algorithm. After the filtering steps, we had 1,602
remaining unique VFCs to identify VCCs using the SZZ algorithm [344]. This algorithm
selects commits that last modified the source code lines deleted or modified to address
an SV in a VFC as the respective VCCs of the same SV (see Fig. 5.1). As in [344],
we first discarded commits with timestamps after the published dates of the respective
SVs on NVD since SVs can only be reported after they were injected in a codebase. We

2https://github.com/advisories
3https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved

https://github.com/advisories
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved

5.4. Experimental Design and Setup 89

28.5

66.8

4.7

32.7

62.9

4.4

51.8

43.2

5.0

3.1

96.9

65.0

33.9

1.1

79.2

20.8

5.4

70.9

23.7

C
on

fi
d

en
-

ti
al

it
y

In
te

gr
it

y
A

va
il

ab
il

it
y

A
cc

es
s

V
ec

to
r

A
cc

es
s

C
om

p
le

xi
ty

A
u

th
en

-
ti

ca
ti

on
S

ev
er

it
y

0 10 20 30 40 50 60 70 80 90 100

Complete

Partial

None

Complete

Partial

None

Complete

Partial

None

Network

Local

High

Medium

Low

Single

None

High

Medium

Low

Percentage (%)

Figure 5.4: Class distributions of seven SV assessment tasks.

then removed cosmetic changes (e.g., newlines and white spaces) and single-line/multi-line
comments in VFCs since these elements do not change code functionality [286]. Like [286],
we also considered copied or renamed files while tracing VCCs. We obtained 1,229 unique
VCCs4 of 542 SVs in 246 real-world Java projects and their corresponding expert-verified
CVSS metrics on NVD. Distributions of curated CVSS metrics are illustrated in Fig. 5.4.
The details of the number of commits and projects retained in each filtering step are also
given in Table 5.1. Note that some commits and projects were removed during the tracing
of VCCs from VFCs due to the issues coined as ghost commits studied by Rezk et al. [290].
We did not remove large VCCs (with more than 100 files and 10k lines) as we found
several VCCs were large initial/first commits. Our observations agreed with the findings
of Meneely et al. [25].
Manual VCC validation. To validate our curated VCCs, we randomly selected 293
samples, i.e., 95% confidence level and 5% error [291], for two researchers (i.e., the au-
thor of this thesis and a PhD student with three-year experience in Software Engineering
and Cybersecurity) to independently examine. The manual VCC validation was consid-
erably labor-intensive, which took approximately 120 man-hours. The Cohen’s kappa (κ)
inter-rater reliability score [345] was 0.83, i.e., “almost perfect” agreement [346]. We also
involved another PhD student having two years of experience in Software Engineering and
Cybersecurity in the discussion to resolve disagreements. Our validation found that 85%
of the VCCs were valid. In fact, the SZZ algorithm is imperfect [347], but we assert that it
is nearly impossible to obtain near 100% accuracy without exhaustive manual validation.
Specifically, the main source of incorrectly identified VCCs in our dataset was that some

4The SV reports of all curated VCCs were not available at commit time.

90 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

Table 5.1: The number of commits and projects after each filtering step.

No. Filtering step No. of commits No. of projects
1 All unfiltered VFCs 13,310 2,864
2 Removing duplicate VFCs 9,989 2,864
3 Removing non-Java VFCs 1,607 361

4 Removing VFCs with more than
100 files & 10k lines 1,602 358

5 Tracing VCCs from VFCs using
the SZZ algorithm 3,742 342

6 Removing VCCs with null
characteristics (CVSS values) 2,271 246

7 Removing duplicate VCCs 1,229 246

Round 1

Round 2

Round 10

Training

Validation

Testing

12 equal folds ordered by time (commit date)

..
..

.

..
..

.

Figure 5.5: Time-based splits for training, validating & testing.

files in VFCs were used to update version/documentation or address another issue instead
of fixing an SV. One such false positive VCC was the commit 87c89f0 in the jspwiki project
that last modified the build version in the corresponding VFC.
Data splitting. We adopted time-based splits [348] for training, validating and testing
the models to closely represent real-world scenarios where incoming/future unseen data
is not present during training [286, 349]. We trained, validated and tested the models in
10 rounds using 12 equal folds split based on commit dates (see Fig. 5.5). Specifically,
in round i, folds 1 → i, i + 1 and i + 2 were used for training, validation and testing,
respectively. We chose an optimal model with the highest average validation performance
and then reported its respective average testing performance over 10 rounds, which helped
avoid unstable results of a single testing set [212].

5.4.2 Evaluation Metrics

To evaluate the performance of automated commit-level SV assessment, we utilized the
F1-Score and Matthews Correlation Coefficient (MCC) metrics that have been commonly
used in the literature (e.g., [21, 22, 349]). These two metrics are suitable for the imbalanced
classes [307] in our data (see Fig. 5.4). F1-Score has a range from 0 to 1, while MCC takes
values from –1 to 1, where 1 is the best value for both metrics. MCC was used to select
optimal models since MCC explicitly considers all classes [307]. To evaluate the tasks
with more than two classes, we used macro F1-Score [22] and the multi-class version of
MCC [350]. MCC of the multi-task DeepCVA model was the average MCC of seven
constituent tasks. Note that MCC is not directly proportional to F1-score.

5.4. Experimental Design and Setup 91

5.4.3 Hyperparameter and Training Settings of DeepCVA

Hyperparameter settings. We used the average validation MCC to select optimal
hyperparameters for DeepCVA’s components. We also ran DeepCVA 10 times each round
to reduce the impact of random initialization on model performance. We first chose 1024
for the input length of the pre-/post-change hunks/context (see Fig. 5.2), which has been
commonly used in the literature (e.g., [80, 351]). Using a shorter input length would
likely miss many code tokens, while a longer length would significantly increase the model
complexity and training time. Shorter commits were padded with zeros, and longer ones
were truncated to ensure the same input size for parallelization with GPU [287, 337]. We
built a vocabulary of 10k most frequent code tokens in the Input Embedding layer as
suggested by [352]. Note that using 20k-sized vocabulary only raised the performance
by 2%, yet increased the model complexity by nearly two times. We selected an input
embedding size of 300, i.e., a standard and usually high limit value for many embedding
models (e.g., [202, 196]), and we randomly initialized embedding vectors [287, 120]. For the
number of filters of the three-way CNN as well as the hidden units of the GRU, Attention
and Task-specific blocks, we tried {32, 64, 128}, similar to [21]. We picked 128 as it had
at least 5% better validation performance than 32 and 64.
Training settings. We used the Adam algorithm [353], the state-of-the-art stochastic
gradient descent method, for training DeepCVA end-to-end with a learning rate of 0.001
and a batch size of 32 as recommended by Hoang et al. [287]. To increase the training
stability, we employed Dropout [354] with a dropout rate of 0.2 and Batch Normaliza-
tion [355] between layers. We trained DeepCVA for 50 epochs, and we would stop training
if the validation MCC did not change in the last five epochs to avoid overfitting [287, 337].

5.4.4 Baseline Models

We considered three types of learning-based baselines for automated commit-level SV as-
sessment, as learning-based models can automatically extract relevant SV patterns/fea-
tures from input data for prediction without relying on pre-defined rules. The baselines
were (i) S-CVA: Supervised single-task model using either software metrics or text-based
features including Bag-of-Words (BoW or token count) and Word2vec [202]; (ii) X-CVA:
supervised eXtreme multi-class model that performed a single prediction for all seven tasks
using the above feature types; and (iii) U-CVA: Unsupervised model using k-means clus-
tering [356] with the same features as S-CVA/X-CVA. Note that there was no existing
technique for automating commit-level SV assessment, so we could only compare Deep-
CVA with the compatible techniques proposed for related tasks, as described hereafter.

Software metrics (e.g., [26, 329, 330]) and text-based features (BoW/Word2vec) (e.g.,
[339, 357]) have been widely used for commit-level prediction. We used 84 software metrics
proposed by [26, 329, 330] for defect/SV prediction. Among these metrics, we converted
C/C++ keywords into Java ones to match the language used in our dataset. The list of
software metrics used in this chapter can be found at https://github.com/lhmtriet/
DeepCVA. As in [26], in each round in Fig. 5.5, we also removed correlated software metrics
that had a Spearman correlation larger than 0.7 based on the training data of that round
to avoid performance degradation, e.g., no. of stars vs. forks of a project. For BoW and
Word2vec, we adopted the same vocabulary size of 10k to extract features from four inputs
described in Fig. 5.2, as in DeepCVA. Feature vectors of all inputs were concatenated into
a single vector. For Word2vec, we averaged the vectors of all tokens in an input to generate
its feature vector, which has been shown to be a strong baseline [298]. Like DeepCVA, we
also used an embedding size of 300 for each Word2vec token.

Using these feature types, S-CVA trained a separate supervised model for each CVSS
task, while X-CVA used a single multi-class model to predict all seven tasks simultaneously.

https://github.com/lhmtriet/DeepCVA
https://github.com/lhmtriet/DeepCVA

92 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

X-CVA worked by concatenating all seven CVSS metrics into a single label. To extract the
results of the individual tasks for X-CVA, we checked whether the ground-truth label of
each task was in the concatenated model output. For S-CVA and X-CVA, we applied six
popular classifiers: Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Random Forest (RF), XGBoost (XGB) [78] and Light Gradient Boosting
Machine (LGBM) [79]. These classifiers have been used for SV assessment based on SV
reports [22, 23]. The hyperparameters for tuning these classifiers were regularization: {l1,
l2}; regularization coefficient : {0.01, 0.1, 1, 10, 100} for LR and {0.01, 0.1, 1, 10, 100,
1,000, 10,000} for SVM; no. of neighbors: {11, 31, 51}, distance norm: {1, 2} and distance
weight : {uniform, distance} for KNN; no. of estimators: {100, 300, 500}, max. depth: {3,
5, 7, 9, unlimited}, max. no. of leaf nodes: {100, 200, 300, unlimited} for RF, XGB and
LGBM. These hyperparameters have been adapted from relevant studies [22, 23, 304].

Unlike S-CVA and X-CVA, U-CVA did not require CVSS labels to operate; therefore,
U-CVA required less human effort than S-CVA and X-CVA. We tuned U-CVA for each
task with the following no. of clusters (k): {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35,
40, 45, 50}. To assess a new commit with U-CVA, we found the cluster with the smallest
Euclidean distance to that commit and assigned it the most frequent class of each task in
the selected cluster.

5.5 Research Questions and Experimental Results

5.5.1 RQ1: How does DeepCVA Perform Compared to Baseline Models
for Commit-level SV Assessment?

Motivation. We posit the need for commit-level Software Vulnerability (SV) assessment
tasks based on seven CVSS metrics. Such tasks would help developers to understand
the SV exploitability and impacts as early as SVs are introduced in a software system
and devise remediation plans accordingly. RQ1 evaluates our DeepCVA for this new and
important task.
Method. We compared the effectiveness of our DeepCVA model with the S-CVA, X-CVA
and U-CVA baselines (see section 5.4.4) on the testing sets. We trained, validated and
tested the models using the time-based splits, as described in section 5.4.1. Because of the
inherent randomness of GPU-based implementation of DeepCVA,5 we ran DeepCVA 10
times in each round and then averaged its performance. The baselines were not affected by
this issue as they did not use GPU. For DeepCVA, we used the hyperparameter/training
settings in section 5.4.3. For each type of baseline, we used grid search on the hyperpa-
rameters given in section 5.4.4 to find the optimal model with the highest validation MCC
(see section 5.4.2).
Results. DeepCVA outperformed all baselines6 (X-CVA, S-CVA and U-CVA)
in terms of both MCC and F1-Score7 for all seven tasks (see Table 5.2). Deep-
CVA got average and best MCC values of 0.247 and 0.286, i.e., 38% and 59.8% better than
the second-best baseline (X-CVA with Word2vec features), respectively. Task-wise, Deep-
CVA had 11.2%, 42%, 42.2%, 20.6%, 69.2%, 24.8% and 39.2% higher MCC than the best
respective baseline models for Confidentiality, Integrity, Availability, Access Vector, Access
Complexity, Authentication and Severity tasks, respectively. Notably, the best DeepCVA
model achieved stronger performance than all baselines with MCC percentage gaps from
24.1% (Confidentiality) to 82.5% (Access Complexity).

5https://keras.io/getting_started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
6MCC values of random and most-frequent-class baselines were all < 0.01.
7Precision (0.533)/Recall (0.445) of DeepCVA were > than all baselines.

https://keras.io/getting_started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development

5.5.
R

esearch
Q

uestions
and

E
xperim

entalR
esults

93

Table 5.2: Testing performance of DeepCVA and baseline models. Notes: Optimal classifiers of S-CVA/X-CVA and optimal cluster
no. (k) of U-CVA are in parentheses. BoW, W2V and SM are Bag-of-Words, Word2vec and Software Metrics, respectively. The best

performance of DeepCVA is from the run with the highest MCC in each round. Best row-wise values are in grey.

CVSS metric Evaluation
metric

Model
S-CVA X-CVA U-CVA DeepCVA (Best

in parentheses)BoW W2V SM BoW W2V SM BoW W2V SM

Confidentiality F1-Score 0.416 0.406 0.423 0.420 0.434 0.429 0.292 0.332 0.313 0.436 (0.475)

MCC 0.174
(LR)

0.239
(LGBM)

0.232
(XGB)

0.188
(LR)

0.241
(LR)

0.203
(XGB)

0.003
(50)

0.092
(45)

0.017
(50) 0.268 (0.299)

Integrity F1-Score 0.373 0.369 0.352 0.391 0.415 0.407 0.284 0.305 0.330 0.430 (0.458)

MCC 0.127
(LGBM)

0.176
(LGBM)

0.146
(RF)

0.114
(LGBM)

0.160
(LR)

0.128
(LGBM)

-0.005
(25)

0.091
(30)

0.084
(25) 0.250 (0.295)

Availability F1-Score 0.381 0.389 0.384 0.424 0.422 0.406 0.254 0.332 0.238 0.432 (0.475)

MCC 0.182
(RF)

0.173
(LGBM)

0.126
(XGB)

0.187
(LR)

0.192
(LR)

0.123
(XGB)

0.064
(10)

0.092
(45)

0.016
(3) 0.273 (0.303)

Access Vector F1-Score 0.511 0.487 0.440 0.499 0.532 0.487 0.477 0.477 0.477 0.554 (0.578)

MCC 0.07
(XGB)

0.051
(LR)

0.018
(LR)

0.044
(LGBM)

0.107
(LR)

0.012
(LGBM)

0.000
(9)

0.000
(40)

0.000
(6) 0.129 (0.178)

Access Complexity F1-Score 0.437 0.448 0.417 0.412 0.445 0.361 0.315 0.365 0.385 0.464 (0.475)

MCC 0.119
(LR)

0.143
(XGB)

0.111
(LGBM)

0.131
(LR)

0.121
(XGB)

0.088
(SVM)

0.000
(4)

0.022
(30)

0.119
(15) 0.242 (0.261)

Authentication F1-Score 0.601 0.584 0.593 0.541 0.618 0.586 0.458 0.526 0.492 0.657 (0.677)

MCC 0.258
(SVM)

0.264
(XGB)

0.268
(LGBM)

0.212
(RF)

0.282
(SVM)

0.208
(XGB)

0.062
(50)

0.162
(30)

0.089
(50) 0.352 (0.388)

Severity F1-Score 0.407 0.357 0.345 0.382 0.381 0.358 0.283 0.288 0.287 0.424 (0.460)

MCC 0.144
(LR)

0.153
(XGB)

0.057
(XGB)

0.130
(LR)

0.149
(LGBM)

0.058
(XGB)

-0.018
(4)

0.010
(15)

0.026
(4) 0.213 (0.277)

Average F1-Score 0.447 0.434 0.422 0.438 0.464 0.433 0.338 0.375 0.360 0.485 (0.514)
MCC 0.153 0.171 0.137 0.144 0.179 0.117 0.015 0.067 0.050 0.247 (0.286)

94 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

The average and task-wise F1-Score values of DeepCVA also beat those of the best base-
line (X-CVA with Word2vec features) by substantial margins. We found that DeepCVA
significantly outperformed the best baseline models in terms of both MCC and F1-score
averaging across all seven tasks, confirmed with p-values < 0.01 using the non-parametric
Wilcoxon signed-rank tests [254]. These results show the effectiveness of the novel design
of DeepCVA.

An example to qualitatively demonstrate the effectiveness of DeepCVA is the VCC
ff655ba in the Apache xerces2-j project, in which a hashing algorithm was added. This
algorithm was later found vulnerable to hashing collision that could be exploited with
timing attacks in the fixing commit 992b5d9. This SV was caused by the order of items
being added to the hash table in the put(String key, int value) function. Such an
order could not be easily captured by baseline models whose features did not consider the
sequential nature of code (i.e., BoW, Word2vec and software metrics) [203]. More details
about the contributions of different components to the overall performance of DeepCVA
are covered in section 5.5.2.

Regarding the baselines, the average MCC value (0.147) of X-CVA was on par with that
(0.154) of S-CVA. This result reinforces the benefits of leveraging the common attributes
among seven CVSS metrics to develop effective commit-level SV assessment models. How-
ever, X-CVA was still not as strong as DeepCVA mainly because of its much lower training
data utilization per output. For X-CVA, there was an average of 39 output combinations
of CVSS metrics in the training folds, i.e., 31 commits per output. In contrast, DeepCVA
had 13.2 times more data per output as there were at most three classes for each task (see
Fig. 5.4). Finally, we found supervised learning (S-CVA, X-CVA and DeepCVA) to be at
least 74.6% more effective than the unsupervised approach (U-CVA). This result shows the
usefulness of using CVSS metrics to guide the extraction of commit features.

5.5.2 RQ2: What are the Contributions of the Main Components in
DeepCVA to Model Performance?

Motivation. We have shown in RQ1 that DeepCVA significantly outperformed all the
baselines for seven commit-level SV assessment tasks. RQ2 aims to give insights into the
contributions of the key components to such a strong performance of DeepCVA. Such
insights can help researchers and practitioners to build effective SV assessment models.
Method. We evaluated the performance contributions of the main components of Deep-
CVA: (i) Closest Enclosing Scope (CES) of code changes, (ii) CNN filter size, (iii) Three-
way CNN, (iv) Attention-based GRU, (v) Attention mechanism, (vii) Task-specific blocks
and (vi) Multi-task learning. For each component, we first removed it from DeepCVA,
retrained the model variant and reported its testing result. When we removed Attention-
based GRU, we used max-pooling [287, 120] after the three-way CNN to generate the
commit vector. When we removed Multi-task learning, we trained a separate model for
each of the seven CVSS metrics. We also investigated an Abstract Syntax Tree (AST)
variant of DeepCVA, in which we complemented input code tokens with their syntax (e.g.,
int a = 1 is a VariableDeclarationStatement, where a is an Identifier and 1 is a
NumberLiteral). This AST-based variant explored the usefulness of syntactical informa-
tion for commit-level SV assessment. We extracted the nodes in an AST that contained
code changes and their CES. If more than two nodes contained the code of interest, we
chose the one at a lower depth in the AST. We then flattened the nodes with depth-first
traversal for feature extraction [321].

5.5.
R

esearch
Q

uestions
and

E
xperim

entalR
esults

95

-4.6

-1.4

-2.8

-0.4 -3.2 -5.6

-4.3-6.7

1.0

-4.2

-2.6

-1.8

0.8

-0.4-3.2

-0.8

-1.9

-3.4 -7.4

-3.9

0.4

-7.4

-4.3 -6.4

-5.1

-5.3

-6.2

-0.5

-5.4

-5.6

-4.8 -7.7

-6.3

-6.1

-4.1

-19.9

-15.0

-18.0

4.0

-18.0 -22.5

-11.9

-0.1

-1.1

-1.2

-7.3

-2.5

-2.0

0.2

-7.2

-6.0

-7.5

0.6

-7.3

-2.1 -4.4

-30

-25

-20

-15

-10

-5

0

5

10

Confidentiality Integrity Availability Access Vector Access Complexity Authentication Severity

M
C

C
 d

if
fe

re
n

ce
 w

it
h

 r
es

p
ec

t
to

D
ee

p
C

V
A

No context (0.215)

AST inputs (0.227)

1-ngrams only (0.218)

No attention-based GRU (0.196)

No three-way CNN (0.189)

No attention mechanism (0.102)

No task-specific blocks (0.227)

No multi-task learning (0.198)

Figure 5.6: Differences of testing MCC (multiplied by 100 for readability) of the model variants compared to the proposed DeepCVA
in section 5.3. Note: The average MCC values (without multiplying by 100) of the model variants are in parentheses.

96 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

Results. As depicted in Fig. 5.6, the main components8 uplifted the average
MCC of DeepCVA by 25.9% for seven tasks. Note that 7/8 model variants (except
the model with no attention mechanism) outperformed the best baseline model from RQ1.
These results were confirmed with p-values < 0.01 using Wilcoxon signed-rank tests [254].
Specifically, the components8 of DeepCVA increased the MCC values by 25.3%, 20.8%,
21.5%, 35.8%, 35.5%, 18.9% and 23.6% for Confidentiality, Integrity, Availability, Access
Vector, Access Complexity, Authentication and Severity, respectively.

For the inputs, using the Smallest Enclosing Scope (CES) of code changes resulted in
a 14.8% increase in MCC compared to using hunks only, while using AST inputs had 8.8%
lower performance. This finding suggests that code context is important for assessing SVs
in commits. In contrast, syntactical information is not as necessary since code structure
can be implicitly captured by code tokens and their sequential order using our AC-GRU.

The key components of the AC-GRU feature extractor boosted the performance by
13.2% (3-grams vs. 1-grams), 25.6% (Attention-based GRU), 30.2% (Three-way CNN)
and 142% (Attention). Note that DeepCVA surpassed the state-of-the-art 3-gram [21]
and 1-gram [287] CNN-only architectures for (commit-level) SV/defect prediction. These
results show the importance of combining the (1,3,5)-gram three-way CNN with attention-
based GRUs rather than using them individually. We also found that 1-5 grams did
not significantly increase the performance (p-value = 0.186), confirming our decision in
section 5.3.2 to only use 1,3,5-sized filters.

For the prediction layers, we raised 8.8% and 24.4% MCC of DeepCVA with Task-
specific blocks and Multi-task learning, respectively. Multi-task DeepCVA took 8,988 s
(2.5 hours) and 25.7 s to train/validate and test in 10 rounds × 10 runs, which were 6.3
and 6.2 times faster compared to those of seven single-task DeepCVA models, respectively.
DeepCVA was only 11.3% and 12.7% slower in training/validating and testing than one
single-task model on average, respectively. These values highlight the efficiency of training
and maintaining the multi-task DeepCVA model. Finally, obtaining Severity using the
CVSS formula [22] from the predicted values of the other six metrics dropped MCC by
17.4% for this task. This result supports predicting Severity directly from commit data.

5.5.3 RQ3: What are the Effects of Class Rebalancing Techniques on
Model Performance?

Motivation. Recent studies (e.g., [313, 358]) have shown that class rebalancing techniques
(i.e., equalizing the class distributions in the training set) can improve model effectiveness
for defect/SV prediction. However, these rebalancing techniques can only be applied to
single-task models, not multi-task ones. The reason is that each task has a unique class
distribution (see Fig. 5.4), and thus balancing class distribution of one task will not bal-
ance classes of the others. RQ3 is important to test whether multi-task DeepCVA still
outperforms single-task baselines in RQ1/RQ2 using rebalancing techniques.
Method. We compared the testing performance of multi-task DeepCVA with baselines in
RQ1/RQ2 using two popular oversampling techniques [313]: Random OverSampling (ROS)
and SMOTE [359]. ROS randomly duplicates the existing samples of minority classes,
while SMOTE randomly generates synthetic samples between the existing minority-class
samples and their nearest neighbor(s) based on Euclidean distance. We did not consider
undersampling, as such models performed poorly because of some very small minority
classes (e.g., Low Access Complexity had only 14 samples). We applied ROS and SMOTE
to only the training set and then optimized all baseline models again. Like [313], we also
tuned SMOTE using grid search with different values of nearest neighbors: {1, 5, 10, 15,

8We excluded the DeepCVA variant with no attention mechanism as its performance was abnormally
low, affecting the overall trend of other variants.

5.6. Discussion 97

Table 5.3: Testing performance (MCC) of optimal baselines using over-
sampling techniques and multi-task DeepCVA. Note: †denotes that the
oversampled models outperformed the non-oversampled one reported in

RQ1/RQ2.

CVSS Task S-CVA
(ROS)

S-CVA
(SMOTE)

X-CVA
(ROS)

Single-task
DeepCVA

(ROS)

Multi-task
DeepCVA

Confidentiality 0.220 0.203 0.185 0.250† 0.268
Integrity 0.174 0.168 0.179† 0.206† 0.250
Availability 0.195† 0.187† 0.182 0.209† 0.273
Access Vector 0.115† 0.110† 0.092 0.156† 0.129
Access Comp. 0.172† 0.186† 0.144† 0.190† 0.242
Authentication 0.325† 0.340† 0.299† 0.318 0.352
Severity 0.132 0.124 0.141 0.186† 0.213
Average 0.190† 0.188† 0.175 0.216† 0.247

20}. We could not apply SMOTE to single-task DeepCVA as features were trained end-
to-end and unavailable prior training for finding nearest neighbors. We also did not apply
SMOTE to X-CVA as there was always a single-sample class in each round, producing no
nearest neighbor.
Results. ROS and SMOTE increased the average performance (MCC) of 3/4
baselines except X-CVA (see Table 5.3). However, the average MCC of our
multi-task DeepCVA was still 14.4% higher than that of the best oversampling-
augmented baseline (single-task DeepCVA with ROS). Overall, MCC increased by
8%, 6.9% and 9.1% for S-CVA (ROS), S-CVA (SMOTE) and single-task DeepCVA (ROS),
respectively. These improvements were confirmed significant with p-values < 0.01 using
Wilcoxon signed-rank tests [254]. We did not report oversampling results of U-CVA as they
were still much worse compared to others. We found single-task DeepCVA benefited the
most from oversampling, probably since Deep Learning usually performs better with more
data [274]. In contrast, oversampling did not improve X-CVA as oversampling did not
generate as many samples for X-CVA per class as for S-CVA (i.e., X-CVA had 13 times, on
average, more classes than S-CVA). These results further strengthen the effectiveness and
efficiency of multi-task learning of DeepCVA for commit-level SV assessment even without
the overheads of rebalancing/oversampling data.

5.6 Discussion

5.6.1 DeepCVA and Beyond

DeepCVA has been shown to be effective for commit-level SV assessment in the three
RQs, but our model still has false positives. We analyze several representative patterns
of such false positives to help further advance this task and solutions for researchers and
practitioners in the future.

Some commits were too complex and large (tangled) to be assessed correctly. For
example, the VCC 015f7ef in the Apache Spark project contained 1,820 additions and 146
deletions across 29 files; whereas, the untrusted deserialization SV occurred in just one
line 56 in LauncherConnection.java. Recent techniques (e.g., [279, 360]) pinpoint more
precise locations (e.g., individual files or lines in commits) of defects, especially in tangled
changes. Such techniques can be adapted to remove irrelevant code in VCCs (i.e., changes

98 Chapter 5. Automated Commit-Level Software Vulnerability Assessment

that do not introduce or contain SVs). More relevant code potentially gives more fine-
grained information for the SV assessment tasks. Note that DeepCVA provides a strong
baseline for comparing against fine-grained approaches.

DeepCVA also struggled to accurately predict assessment metrics for SVs related to
external libraries. For instance, the SV in the commit 015f7ef above occurs with the
ObjectInputStream class from the java.io package, which sometimes prevented Deep-
CVA from correctly assessing an SV. If an SV happens frequently with a package in the
training set, (e.g., the XML library of the VCC bba4bc2 in Fig. 5.1), DeepCVA still can infer
correct CVSS metrics. Pre-trained code models on large corpora [288, 80, 302] along with
methods to search/generate code [361] and documentation [362] as well as (SV-related)
information from developer Q&A forums [315] can be investigated to provide enriched
context of external libraries, which would in turn support more reliable commit-level SV
assessment with DeepCVA.

We also observed that DeepCVA, alongside the considered baseline models, performed
significantly worse, in terms of MCC, for Access Vector compared to the remaining tasks
(see Table 5.2). We speculate that such low performance is mainly because Access Vec-
tor contains the most significant class imbalance among the tasks, as shown in Fig. 5.4.
For single-task models, we found that using class rebalancing techniques such as ROS or
SMOTE can help improve the performance, as demonstrated in RQ3 (see section 5.5.3).
However, it is still unclear how to apply the current class rebalancing techniques for multi-
task learning models such as DeepCVA. Thus, we suggest that more future work should
investigate specific class rebalancing and/or data augmentation to address such imbalanced
data in the context of multi-task learning.

5.6.2 Threats to Validity

The first threat is the collection of VCCs. We followed the practices in the literature
to reduce the false positives of the SZZ algorithm. We further mitigated this threat by
performing independent manual validation with three researchers with at least two years
of experience in Software Engineering and Cybersecurity.

Another concern is the potential suboptimal tuning of baselines and DeepCVA. How-
ever, it is impossible to try the entire hyperparameter space within a reasonable amount
of time. For the baseline models, we lessened this threat by using a wide range of hyper-
parameters from the previous studies to reoptimize these models from scratch on our data.
For DeepCVA, we adapted the best practices recommended in the relevant literature to
our tasks.

The reliability and generalizability of our findings are also potential threats. We ran
DeepCVA 10 times to mitigate the experimental randomness. We confirmed our results
using non-parametric statistical tests with a confidence level > 99%. Our results may
not generalize to all software projects. However, we reduced this threat by conducting
extensive experiments on 200+ real-world projects of different scales and domains.

5.7 Related Work

5.7.1 Data-Driven SV Prediction and Assessment

As reviewed in Chapter 2, many studies have developed data-driven approaches that can
harness large-scale SV data from public security databases like NVD to determine different
characteristics of SVs. Specifically, SV information on NVD has been utilized to infer
the types [156], exploitation [32, 34], time-to-exploit [32] and various CVSS assessment
metrics [23, 22, 100, 103] of SVs. Other studies [327, 363] have leveraged code patterns

5.8. Chapter Summary 99

in fixing commits of third-party libraries to assess SVs in such libraries. Our work is
fundamentally different from these previous studies since we are the first to investigate the
potential of performing assessment of all SV types (not only vulnerable libraries) using
commit changes rather than bug/SV reports/fixes. Our approach allows practitioners to
realize the exploitability/impacts of SVs in their systems much earlier, e.g., up to 1,000
days before (see section 5.2.2), as compared to using bug/SV reports/fixes. Less delay
in SV assessment helps practitioners to plan/prioritize SV fixing with fresh design and
implementation in their minds. Moreover, we have shown that multi-task learning, i.e.,
predicting all CVSS metrics simultaneously, can significantly increase the effectiveness and
reduce the model development and maintenance efforts in commit-level SV assessment. It
should be noted that report-level prediction is still necessary for assessing SVs in third-
party libraries/software, especially the ones without available code (commits), to prioritize
vendor-provided patch application, as well as SVs missed by commit-level detection.

5.7.2 SV Analytics in Code Changes

Commit-level prediction (e.g., [26, 337, 364]) has been explored to provide just-in-time
information for developers about code issues, but such studies mainly focused on generic
software defects. However, SV is a special type of defects [365] that can threaten the
security properties of a software project. Thus, SV requires special treatment [366] and
domain knowledge [367]. Meneely et al. [25] and Bosu et al. [368] conducted in-depth
studies on how code and developer metrics affected the introduction and review of VCCs.
Besides analyzing the characteristics of VCCs, other studies [329, 330, 369] also developed
commit-level SV detection models that leveraged software and text-based metrics. Different
from the previous studies that have detected VCCs, we focus on the assessment of such
VCCs. SV assessment is as important as the detection step since assessment metrics help
early plan and prioritize remediation for the identified SVs. It is worth noting that the
existing SV detection techniques can be used to flag VCCs that would then be assessed by
our DeepCVA model.

5.8 Chapter Summary

We introduce DeepCVA, a novel deep multi-task learning model, to tackle a new task of
commit-level SV assessment. DeepCVA promptly informs practitioners about the CVSS
severity level, exploitability, and impact of SVs in code changes after they are committed,
enabling more timely and informed remediation. DeepCVA substantially outperformed
many baselines (even the ones enhanced with rebalanced data) for the seven commit-level
SV assessment tasks. Notably, multi-task learning utilizing the relationship of assessment
tasks helped our model be 24.4% more effective and 6.3 times more efficient than single-
task models. With the reported performance, DeepCVA realizes the first promising step
towards a holistic solution to assessing SVs as early as they appear.

101

Chapter 6

Collection and Analysis of
Developers’ Software Vulnerability
Concerns on Question and Answer
Websites

Related publications: This chapter is based on two of our papers: (1) “PUMiner:
Mining Security Posts from Developer Question and Answer Websites with PU
Learning” published in the 17th International Conference on Mining Software Repos-
itories (MSR), 2020 (CORE A) [304], and (2) “A Large-scale Study of Security Vul-
nerability Support on Developer Q&A Websites” published in the 25th International
Conference on Evaluation and Assessment in Software Engineering (EASE), 2021
(CORE A) [315].

In the previous Chapters 3, 4, and 5, we have proposed different automated solutions
to perform Software Vulnerability (SV) assessment using the knowledge gathered from
software artifacts, i.e., SV reports and source code. In practice, besides relying on these
software artifacts for SV assessment, developers also seek information about SVs, e.g.,
experience/solutions of fixing similar SVs, on developer Question and Answer (Q&A) web-
sites. The SV information provided on Q&A sites also sheds light on developers’ real-world
concerns/challenges with addressing SVs, which can complement other assessment metrics
like CVSS to support better SV understanding and fixing. However, there is still little
known about these SV-specific discussions on different Q&A sites. Chapter 6 presents a
large-scale empirical study to understand developers’ SV discussions and how these dis-
cussions are being supported by Q&A sites. We curate 71,329 SV posts from two large
Q&A sites, namely Stack Overflow (SO) and Security StackExchange (SSE), and then use
topic modeling to uncover the key developers’ SV topics of concern. We then analyze the
popularity, difficulty, and level of expertise for each topic. We also perform a qualitative
analysis to identify the types of solutions to SV-related questions. We identify 13 main SV
discussion topics. Many topics do not follow the distributions and trends in expert-based
security sources, e.g., Common Weakness Enumeration (CWE) and Open Web Application
Security Project (OWASP). We also discover that SV discussions attract more experts to
answer than many other domains. Nevertheless, some difficult SV topics/types still receive
quite limited support from experts, which may suggest it is challenging to fix them in prac-
tice. Moreover, we identify seven key types of answers given to SV questions, in which SO
often provides code and instructions, while SSE usually gives experience-based advice and
explanations. These solutions on Q&A sites may be reused to fix similar SVs, reducing the
SV fixing effort. Overall, the findings of this chapter enable researchers and practitioners
to effectively leverage SV knowledge on Q&A sites for (data-driven) SV assessment.

102Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

6.1 Introduction

It is important to constantly track and resolve Software Vulnerabilities (SVs) to ensure
the availability, confidentiality and integrity of software systems [3]. Developers can seek
assessment information for resolving SVs from sources verified by security experts such as
Common Weakness Enumeration (CWE) [28], National Vulnerability Database (NVD) [16]
and Open Web Application Security Project (OWASP) [167]. However, these expert-based
SV sources do not provide any mechanisms for developers to promptly ask and answer
questions about issues in implementing/understanding the reported SV solutions/concepts.
On the other hand, developer Questions and Answer (Q&A) websites contain a plethora
of such SV-related discussions. Stack Overflow (SO)1 and Security StackExchange (SSE)2

contain some of the largest numbers of SV-related discussions among developer Q&A sites
with contributions from millions of users [304].

The literature has analyzed different aspects of discussions on Q&A sites, but there is
still no investigation of how SO and SSE are supporting SV-related discussions. Specifically,
the main concepts [370], the top languages/technologies and user demographics [371], as
well as user perceptions and interactions [372] of general security discussions on SO have
been studied. However, from our analysis (see section 6.3.2), only about 20% of the
available SV posts on SO were investigated in the previous studies, limiting a thorough
understanding of SV topics (developers’ concerns when tackling SVs in practice) on Q&A
sites. Moreover, the prior studies only focused on SO, and little insight has been given into
the support of SV discussions on different Q&A sites. Such insight would potentially affect
the use of a suitable site (e.g., SO vs. SSE) to obtain necessary SV assessment information
for SV prioritization and fixing.

To fill these gaps, we conduct a large-scale empirical study using 71,329 SV posts
curated from SO and SSE. Specifically, we use Latent Dirichlet Allocation (LDA) [30]
topic modeling and qualitative analysis to answer the following four Research Questions
(RQs) that measure the support of Q&A sites for different SV discussion topics:
RQ1: What are SV discussion topics on Q&A sites?
RQ2: What are the popular and difficult SV topics?
RQ3: What is the level of expertise for supporting SV questions?
RQ4: What types of answers are given to SV questions?
Our findings to these RQs can help raise developers’ awareness of common SVs and enable
them to seek solutions to such SVs more effectively on Q&A sites. We also identify the
areas to which experts can contribute to assist the secure software engineering community.
Moreover, these common developers’ SV concerns and their characteristics can be lever-
aged for making data-driven SV assessment models more practical (closer to developers’
real-world needs) and enabling more effective understanding and fixing prioritization of
commonly encountered SVs. Furthermore, we release one of the largest datasets of SV
discussions that we have carefully curated from Q&A sites for replication and future work
at https://github.com/lhmtriet/SV_Empirical_Study.
Chapter organization. Section 6.2 covers the related work. Section 6.3 describes the
four research questions along with the methods and data used in this chapter. Sections 6.4
presents the results of each research question. Section 6.5 discusses the findings includ-
ing how they can be used for SV assessment, and then mentions the threats to validity.
Section 6.6 concludes and suggests several future directions.

1https://stackoverflow.com/
2https://security.stackexchange.com/

https://github.com/lhmtriet/SV_Empirical_Study
https://stackoverflow.com/
https://security.stackexchange.com/

6.2. Related Work 103

6.2 Related Work

6.2.1 Topic Modeling on Q&A Websites

Q&A websites such as SO and SSE contain a large number of discussion posts. LDA [30]
has been frequently used to extract the taxonomy/topics of various software-related do-
mains from such posts. In 2014, a seminal work of Barua et al. [373] discovered the topics of
all SO posts. They also found that LDA could find more consistent topics than the tags on
SO. Many subsequent studies have leveraged LDA to investigate discussions of specific do-
mains, such as general security [370], concurrent computing [374], mobile computing [375],
big data [376], machine learning [377] and deep learning [378]. Among the aforementioned
studies, Yang et al. [370] is the closest to our work. However, our work is still funda-
mentally different from this previous study. Despite sharing a similar security context to
Yang et al. [370], we focus specifically on the flaws of security implementation/features
since exploitation of such flaws can disclose user’s data and interrupt system operations.
Moreover, we consider the content of both questions and answers of SV posts on two Q&A
sites (SO and SSE) rather than just questions on SO as in [370]. This gives more in-depth
insights into how different Q&A sites are supporting on-going SV discussions. Detailed
discussion on these differences is given in section 6.5.1.

6.2.2 SV Assessment Using Open Sources

SV assessment has long been of interest to researchers. Shahzad et al. [379] conducted a
large-scale study on the characteristics (e.g., risk metrics, exploitation, affected vendors and
products) of reported SVs on NVD. Besides empirical study, there is another active research
trend to build data-driven models to analyze SVs, as mentioned in Chapter 2. Bozorgi et
al. [32] used Support Vector Machine to predict the probability and time-to-exploit of SVs.
There have been many follow-up studies since then on developing learning-based models
(e.g., [23, 21, 132]) to determine various properties of SVs using expert-based SV sources
(e.g., CWE and NVD). A recent study [183] leveraged security mentions on social media
(i.e., Twitter and Reddit) to forecast the SV-related activities on GitHub. Unlike the above
studies, we focus on SV analytics on developer Q&A sites. Several studies (e.g., [380, 381])
analyzed SVs of different programming languages using code snippets on SO. Contrary to
these studies, we do not limit our investigation to any specific programming language, and
we consider every type of SV-related posts, not just the ones with code snippets.

6.3 Research Method

6.3.1 Research Questions

We investigated four RQs to study the support of Q&A websites for SV-related discussions.
To answer these RQs, we retrieved 71,329 SV posts from a general Q&A website (SO) and
a security-centric one (SSE) using both the tags and content of posts (see section 6.3.2).
RQ1: What are SV discussion topics on Q&A sites?
Motivation: To provide fine-grained information about the support of SO and SSE for
different types of SV discussions, we first needed to identify the taxonomy of commonly
discussed SV topics in RQ1. Our taxonomy does not aim to replace the existing ones
provided by experts (e.g., CWE or OWASP), but rather helps to highlight the important
aspects of SVs from developers’ perspectives. Such taxonomy would also provide develop-
ers’ real-world needs to help make SV assessment effort more practical.
Method : Following the standard practice in [373, 370, 375, 374, 376, 377, 378], RQ1 used
the Latent Dirichlet Allocation (LDA) [30] topic modeling technique (see section 6.3.3) to

104Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

select SV discussion topics based on the titles, questions and answers of SV posts on both
SO and SSE. LDA is commonly used since it can produce topic distribution (assigning
multiple topics with varying relevance) for a post, providing more flexibility/scalability
than manual coding. We also used the topic share metric [373] in Eq. (6.1) to compute the
proportion (sharei) of each SV topic and their trends over time.

sharei = 1
N

∑
p∈D

LDA(p, Ti) (6.1)

where p, D and N are a single SV post, the list of all SV posts and the number of such
posts, respectively; Ti is the ith topic and LDA is the trained LDA model.
RQ2: What are the popular and difficult SV topics?
Motivation: After the SV topics were identified, RQ2 identified the popular and difficult
topics on Q&A websites. The results of RQ2 can aid the selection of a suitable (i.e., more
popular and less difficult) Q&A site for respective SV topics.
Method : To quantify the topic popularity, we used four metrics from [375, 370, 376, 374],
namely the average values of (i) views, (ii) scores (upvotes minus downvotes), (iii) favorites
and (iv) comments. Intuitively, a more popular topic would attract more attention (views),
interest (scores/favorites) and activities (comments) per post from users. We also obtained
the geometric mean of the popularity metrics to produce a more consistent result across
different topics. Geometric mean was used instead of arithmetic mean here since the
metrics could have different units/scales. To measure the topic difficulty, we used the
three metrics from [375, 370, 376, 374]: (i) percentage of getting accepted answers, (ii)
median time (hours) to receive an accepted answer since posted, and (iii) average ratio
of answers to views. A more difficult topic would, on average, have a lower number of
accepted answers and ratio of answers to views, but a higher amount of time to obtain
accepted answers. To achieve this, we took reciprocals of the difficulty metrics (i) and (iii)
so that a more difficult topic had a higher geometric mean of the metrics.
RQ3: What is the level of expertise to answer SV questions?
Motivation: RQ3 checked the expertise level available on Q&A websites to answer SV
questions, especially the ones of difficult topics. The findings of RQ3 can shed light on the
amount of support each topic receives from experienced users/experts on Q&A sites and
which topic may require more attention from experts. Note that experts here are users
who frequently contribute helpful (accepted) answers/knowledge.
Method : We measured both users’ general and specific expertise for SV topics on Q&A
sites. For the general expertise, we leveraged the commonly used metric, the reputation
points [382, 380, 381], of users who got accepted answers since reputation is gained through
one’s active participation and appreciation from the Q&A community in different topics.
A higher reputation received for a topic usually implies that the questions of that topic are
of more interest to experts. Similar to [380], we did not normalize the reputation by user’s
participation time since reputation may not increase linearly, e.g., due to users leaving the
sites. However, reputation is not specific to any topic; thus, it does not reflect whether
a user is experienced with a topic. Hence, we represented developers’ specific expertise
with the SV content in their answers on Q&A sites. This was inspired by Dey et al.’s
findings that developers’ expertise/knowledge could be expressed through their generated
content [383]. We determined a user’s expertise in SV topics using the topic distribution
generated by LDA applied to the concatenation of all answers to SV questions given by that
user. The specific expertise of an SV topic (see Eq. (6.2)) was then the total correlation
between LDA outputs of the current topic in SV questions and the specific expertise of
users who got the respective accepted answers. The correlation of LDA values could reveal
the knowledge (SV topics) commonly used to answer questions of a certain (SV) topic [373].

6.3. Research Method 105

Specific_Expertisei =
∑
p∈D

LDA(Q(p), Ti)⊙ LDA(K(UAccept.))

K(UAccept.) = A1
UAccept.

+A2
UAccept.

+ ...+Ak
UAccept.

(k =
∣∣AUAccept.

∣∣) (6.2)

where D is the list SV posts and Ti is the ith topic, while Q(p) and K(UAccept.) are the
question content and SV knowledge of the user UAccept. who gave the accepted answer of
the post p, respectively. ⊙ is the topic-wise multiplication.

∣∣AUAccept.

∣∣ is all SV-related
answers given by user UAccept.. Note that we only considered posts with accepted answers
to make it consistent with the general expertise.
Specifically, for each question, we first extracted the user that gave the accepted answer
(UAccept.). We then gathered all answers, not necessarily accepted, of that user in SV posts
(
∣∣AUAccept.

∣∣). Such answer list was the SV knowledge of UAccept. (K(UAccept.)). Finally, we
computed the LDA topic-wise correlation between the topic Ti in the current SV question
(LDA(Q(p), Ti)) and the user knowledge (LDA(K(UAccept.))) to determine the specific
expertise for post p.
RQ4: What types of answers are given to SV questions?
Motivation: RQ4 extended RQ2 in terms of the solution types given if an SV question is
satisfactorily answered. We do not aim to provide solutions for every single SV. Rather,
we analyze and compare the types of support for different SV topics on SO and SSE, which
can guide developers to a suitable site depending on their needs (e.g., looking for certain
artefacts). To the best of our knowledge, we are the first to study answer types of SVs on
Q&A sites.
Method : We employed an open coding procedure [384] to inductively identify answer types.
LDA is not suitable for this purpose since it relies on word co-occurrences to determine
categories. In contrast, the same type of solutions may not share any similar words. In
RQ4, we only considered the posts with accepted answer to ensure the high quality and
relevance of the answers. We then used stratified sampling to randomly select 385 posts
(95% confidence level with 5% margin error [291]) each from SO and SSE to categorize
the answer types. Stratification ensured the proportion of each topic was maintained.
Following [385], the author of this thesis and a PhD student with three years of experience in
Software Engineering and Cybersecurity first conducted a pilot study to assign initial codes
to 30% of the selected posts and grouped similar codes into answer types. For example,
the accepted answers of SO posts 32603582 (PostgreSQL code), 20763476 (MySQL code)
and 12437165 (Android/Java code) were grouped into the Code Sample category. Similarly
to [386], we also allowed one post to have more than one answer type. The two same people
then independently assigned the identified categories to the remaining 70% of the posts.
The Kappa inter-rater score (κ) [345] was 0.801 (strong agreement), showing the reliability
of our coding. Another PhD student with two-year experience in Software Engineering and
Cybersecurity was involved to discuss and resolve the disagreements. We also correlated
the answer types with the question types on Q&A sites [386].

6.3.2 Software Vulnerability Post Collection

To study the support of Q&A sites for SV discussions, we proposed a workflow (see Fig. 6.1)
to obtain, to the best of our knowledge, the largest and most contemporary set of SV posts
on both SO and SSE. To identify SV-related posts, we started from security posts on Q&A
sites as every SV is a security issue by definition. This decision helped to increase the
relevance of our retrieved SV posts. Specifically, all the posts on SSE were presumably
relevant to security as SSE is a security-centric site; whereas, on SO, we used security posts
automatically collected using our novel tool, PUMiner [304]. PUMiner alleviates the need

106Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

for the non-security (negative) class to predict security posts on Q&A sites based on a two-
stage PU learning framework [387]. Retrieving non-security posts in practice is challenging
since these posts should not contain any security context, which requires significant human
effort to define and verify. It is also worth noting that manual selection of security/non-
security posts also does not scale to millions of posts on Q&A sites. PUMiner has been
demonstrated to be more effective in retrieving security posts on SO than many learning-
based baselines such as one-class SVM [388, 389] and positive-similarity filtering [390] on
unseen posts. PUMiner can also successfully predict the cases where keyword matching
totally missed with an MCC of 0.745. Notably, with only 1% labelled positive posts,
PUMiner is still 160% better than fully-supervised learning. More details of PUMiner
can be found in Appendix 6.7. Using the curated security posts on SO and SSE, we then
employed tag-based and content-based filtering to retrieve SV posts based on their tags and
content of other parts (i.e., title, body and answers), respectively. We considered a post to
be related to SV when it mainly discussed a security flaw and/or exploitation/testing/fixing
of such flaw to compromise a software system (e.g., SO post 290981423). A post was not
SV-related if it just asked how to implement/use a security feature (e.g., SO post 685855)
without any explicit mention of a flaw. All the tags, keywords and posts collected were
released at https://github.com/lhmtriet/SV_Empirical_Study.
Tag-based filtering. We had a vulnerability tag on SSE but not on SO to obtain SV-
related posts, and the security tag on SO used by [370] was too coarse-grained for the
SV domain. Many posts with the security tag did not explicitly mention SV (e.g., SO
post 65983245 about privacy or SO post 66066267 about how to obtain security-relevant
commits). Therefore, we used Common Weakness Enumeration (CWE), which contains
various SV-related terms, to define relevant SV tags. However, the full CWE titles were
usually long and uncommonly used in Q&A discussions. For example, the fully-qualified
CWE name of SQL-injection (CWE-89) is “Improper Neutralization of Special Elements
used in an SQL Command (‘SQL Injection’)”, which appeared only nine times on SO
and SSE. Therefore, we needed to extract shorter and more common terms from the full
CWE titles. We adopted Part-of-Speech (POS) tagging for this purpose, in which we
only considered consecutive (n-grams of) verbs, nouns and adjectives since most of them
conveyed the main meaning of a title. For instance, we obtained the following 2-grams
for CWE-89: improper neutralization, special elements, elements used, sql command, sql
injection. We obtained 2,591 n-gram (1 ≤ n ≤ 3) terms that appeared at least once
on either SO or SSE. To ensure the relevance of these terms, we manually removed the
irrelevant terms without any specific SV context (e.g., special elements, elements used and
sql command in the above example). We found 60 and 63 SV-related tags on SO and SSE
that matched the above n-grams, respectively. We then obtained the initial settag of SV
posts that had at least one of these selected tags.
Content-based filtering. As recommended by some recent studies [391, 304], tag-based
filtering was not sufficient for selecting posts due to wrong tags (e.g., non SV-post 38539393
on SO with stack-overflow tag) or general tags (e.g., SV post 15029849 on SO with only
php tag). Therefore, as depicted in Fig. 6.1, we customized content-based filtering, which
was based on keyword matching, to refine the settag obtained from the tag-based filtering
step and select missing SV posts that were not associated with SV tags. First, we presented
the up-to-date list of 643 SV keywords for matching at https://github.com/lhmtriet/
SV_Empirical_Study. These keywords were preprocessed with stemming and augmented
with American/British spellings, space/hyphen to better handle various types of (mis-
)spellings/plurality.

3stackoverflow.com/questions/29098142 (postid: 29098142). SSE format is secu-
rity.stackexchange.com/questions/postid. Posts in our paper follow these formats.

https://github.com/lhmtriet/SV_Empirical_Study
https://github.com/lhmtriet/SV_Empirical_Study
https://github.com/lhmtriet/SV_Empirical_Study
stackoverflow.com/questions/29098142

6.3.
R

esearch
M

ethod
107

C
o

n
te

n
t-

b
a

se
d

fi
lt

er
in

g

T
a

g
-b

a
se

d

fi
lt

er
in

g

Identify n-grams of

CWE titles

Select n-grams with

count frequency > 0

Part-of-speech tagging

Select matching tags on

SO and SSE

Select all SO/SSE posts with

at least one selected tag
Selected SV tags

SV

keywords

Select the remaining SO/SSE

posts without the selected tags

Remaining SO/

SSE posts

aSO/SSE &

bSO/SSE

Determine kw_ratio (a)

& kw_count (b)

Settag of SV posts

on SO/SSE

2. Select SO/SSE posts with

kw_ratio ≥ aSO/SSE & kw_count ≥ bSO/SSE

Setcontent of SV

posts on SO/SSE

All SV posts =

settag + setcontent

Preprocess keywords

1. Filter

settag

Collect security posts

from SO using PUMiner

Figure 6.1: Workflow of retrieving posts related to SV on Q&A websites using tag-based and content-based filtering heuristics.

108Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

Table 6.1: Content-based thresholds (aSO/SSE & bSO/SSE) for the two
steps of the content-based filtering as shown in Fig. 6.1.

Thres-
hold

Stack Overflow (SO) Security
StackExchange (SSE)

Step 1 Step 2 Step 1 Step 2
a 1 3 2 3
b 0.011 0.017 0.017 0.025

Table 6.2: The obtained SV posts using our tag-based and content-based
filtering heuristics.

Stack Over-
flow (SO)

Security Stack-
Exchange (SSE) SO + SSE

Settag 46,212 9,677 55,889
Setcontent 12,660 2,780 15,440
Total 58,872 12,457 71,329

For instance, we considered the following variants: input(-)sanitization/sanit/sanitisation/
sanitis for “input sanitization”. Similar to [391, 304], we also performed exact matching for
three-character keywords and subword matching for longer ones to reduce false positives.
Subsequently, for each settag (SO and SSE) obtained in the tag-based filtering step, we
computed two content-based metrics (see Eq. (6.3)) [391, 304]: kw_count and kw_ratio,
denoting the count and appearance proportion of SV keywords in a post, respectively.
Kw_count ensured diverse SV-related content in a post, while kw_ratio increased the
confidence that these relevant words did not appear by chance.

kw_countp = |SV _KWsp| , kw_ratiop =
|SV _KWsp|
|Wordsp| (6.3)

where |SV _KWsp| and |Wordsp| are the numbers of SV keywords and total number of
words in post p, respectively.
Based on the post content and human inspection, the thresholds aSO/SSE and bSO/SSE for
filtering settag (step 1) as well as selecting extra posts based on their content (step 2) were
found, as given in Table 6.1. Using these thresholds, we obtained settag and setcontent of
SV posts on SO and SSE, respectively, as shown in Fig. 6.1.
SV datasets and validation. As of June 2020, we retrieved 285,720 and 58,912 secu-
rity posts from SO using PUMiner [304] and SSE using Stack Exchange Data Explorer,
respectively. We then applied the tag-based and content-based filtering steps in Fig. 6.1
and obtained 71,329 SV posts (see Table 6.2) in total including 55,883 and 15,436 ones
for settag and setcontent, respectively. We manually validated four different sets of SV
posts, i.e., settag and setcontent for SO and SSE, respectively. Specifically, we randomly
sampled 385 posts (significant size [291]) in each set for two researchers (i.e., the author of
this thesis and a PhD student with three years of experience in Software Engineering and
Cybersecurity) to examine independently.

For settag, we disagreed on 7/770 cases and only two posts were not related to SV.
The main issue was still the incorrect tag assignment (e.g., SSE post 175264 was about dll
injection but tagged with malware4), though this issue had been significantly reduced by
the content-based filtering. For setcontent, the relevance of the posts was very high as there
was no discrepant case.

4This post was short yet contained many SV keywords (e.g., “injection” and “hijack ”), resulting in high
kw_count and kw_ratio of the content-based filtering.

6.3. Research Method 109

Table 6.3: Top-5 tags of SV, security and general posts on SO and SSE
(in parentheses).

No. SV posts Security posts General posts

1 memory-leaks
(malware)

security
(encryption)

javascript
(encryption)

2
segmentation-

fault (web-appli-
cation)

encryption (tls) java (tls)

3 php (xss) php (authentication) python
(authentication)

4 c (exploit) java (passwords) c#
(passwords)

5 security
(penetration-test)

cryptography
(web-application)

php
(certificates)

Our SV dataset was only 20% overlapping with the existing security dataset [370],
implying that there were significant differences in the nature of the two studies. Note that
we followed the settings in [370] to retrieve the updated security posts from the same SO
data we used in our study. We also reported the top tags of SV posts (see Table 6.3) and
compared them with the ones of security posts [370] and a subset of all the posts containing
an equal number of posts to the SV posts on SO and SSE. SV posts were associated with
many SV-related tags (e.g., memory-leaks, malware, segmentation-fault, xss, exploit and
penetration-test). Conversely, security posts were tagged with general terms that may not
explicitly discuss security flaws such as encryption, authentication and passwords. The tags
of general posts were mostly programming languages on SO and general security terms on
SSE. These findings highlight the importance of obtaining SV-specific posts instead of
reusing the security posts to study the support of Q&A sites for SV-related discussions.

6.3.3 Topic Modeling with LDA

Following the common practice of the existing work (e.g., [370, 373, 376]), we extracted
the topics of the identified SV-related posts on both SO and SSE using Latent Dirichlet
Allocation (LDA) [30].
Preprocessing of SV posts. Following the previous practices of [370, 374], we first
removed the HTML tags and code snippets in each post as these elements were not infor-
mative for topic modeling. We also converted the text to lowercase, removed punctuations,
and then eliminated stop words and performed stemming (reducing a word to its root form)
to avoid irrelevant and multi-form words.
Topic modeling with LDA. We applied LDA to the title, question body and all an-
swers of each Q&A post. Regarding the number of topics (k) of LDA, we examined an
inclusive range from 2 to 80, with an increment of one topic at a time. As suggested
in [373, 375, 374, 376], alongside k, we also tried different values of α (1/k or 50/k) and
β (0.01 or same as α) hyperparameters to optimize the performance of LDA. α controls
the sparsity of the topic-distribution per post and β determines the sparsity of the word-
distribution per topic. For each tuple of (k, α and β), we ran LDA with 1,000 iterations,
then evaluated the coherence metric [392] of the identified topics. Coherence metric has
been recommended by many previous studies (e.g., [393, 394]) to select the optimal num-
ber of LDA topics since it usually highly correlates with human understandability. Topic
coherence is the average correlation between pairs of words that appear in the same topic.
The higher value of the coherence metric means the more coherent content of the posts

110Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

Table 6.4: SV topics on SO and SSE identified by LDA along with their
proportions and trends over time. Notes: The topic proportions on SSE
are in parenthesis. The trends of SO are the top solid sparklines, while the
trends of SSE are the bottom dashed sparklines. Unit of proportion: %.

Topic Name Proportion Trend
Malwares (T1) 1.39 (8.18)
SQL Injection (T2) 11.0 (4.17)
Vulnerability Scanning Tools (T3) 5.42 (3.15)
Cross-site Request Forgery (CSRF) (T4) 9.49 (5.09)
File-related Vulnerabilities (T5) 2.88 (3.24)
Synchronization Errors (T6) 3.79 (0.47)
Encryption Errors (T7) 1.82 (7.81)
Resource Leaks (T8) 10.6 (0.42)
Network Attacks (T9) 1.37 (8.79)
Memory Allocation Errors (T10) 21.6 (2.82)
Cross-site Scripting (XSS) (T11) 7.73 (8.09)
Vulnerability Theory (T12) 10.7 (33.7)
Brute-force/Timing Attacks (T13) 1.08 (1.28)

within the same topic. To avoid insignificant topics like [373], we only considered topics
with a probability of at least 0.1 in a post. We manually read the top-20 most frequent
words and 15 random posts of each topic per site (SO/SSE) obtained by the trained LDA
models to label the name of that topic as done in [376, 374]. The LDA model with the
most relevant set of topics would be used for answering the four RQs.

6.4 Results

6.4.1 RQ1: What are SV Discussion Topics on Q&A Sites?

Following the procedure in section 6.3.3, we identified 13 SV topics (see Table 6.4) on SO
and SSE using the optimal LDA model with α = β = 0.08. We found LDA models having
from 11 to 17 topics produced similar coherence metrics. Three of the authors manually
examined these cases, as in [393]. Duplicate and/or platform-specific topics (e.g., web
and mobile) appeared from 14 topics, making the taxonomy less generalizable. 11 and 12
topics also had high-level topics (e.g., combining XSS and CSRF). Thus, 13 was chosen as
the optimal number of SV topics. All the terms/posts of each SV topic can be found at
https://github.com/lhmtriet/SV_Empirical_Study. We describe each topic hereafter
with example SO/SSE posts. We examined 15 random posts per topic per site. If we
identified some common patterns of discussions (e.g., attack vectors or assets) on a site, we
would extract another 15 random posts of the respective site to confirm our observations.
If a pattern was no longer evident in the latter 15 posts, we would not report it.

Malwares (T1). This topic referred to the detection and removal of malicious soft-
ware. T1 posts on SO were usually about malwares in content management systems such as
Wordpress or Joomla (e.g., post 16397854: “How to remove wp-stats malware in wordpress”
or post 11464297: “How to remove .htaccess virus’). In contrast, SSE often discussed mal-
wares/viruses coming from storage devices such as SSD (e.g., post 227115: “Can viruses of

https://github.com/lhmtriet/SV_Empirical_Study

6.4. Results 111

one ssd transfer to another ssd? ”) or USB (e.g., post 173804: “Can Windows 10 bootable
USB drive get infected while trying to reinstall Windows? ”).

SQL Injection (T2). This topic concerned tactics to properly sanitize malicious
inputs that could modify SQL commands and pose threats (e.g., stealing or changing
data) to databases in various programming languages (e.g., PHP, Java, C#). A commonly
discussed tactic was to use prepared statements, which also helped increase the efficiency
of query processing. For example, developers asked questions like “How to parameterize
complex oledb queries? ” (SO post 9650292) or “How to make this code safe from SQL
injection and use bind parameters” (SSE post 138385).

Vulnerability Scanning Tools (T3). This topic was about issues related to tools
for automated detection/assessment of potential SVs in an application. Discussions of T3
mentioned different tools, and OWASP ZAP was a commonly discussed one. For example,
post 62570277 on SO discussed “Jenkins-zap installation failed ”, while post 126851 on SSE
asked “How do I turn off automated testing in OWASP ZAP? ” One possible explanation
is that OWASP ZAP is a free and easy-to-use tool for detecting and assessing SVs that
appear in the well-known top-10 OWASP list for web applications.

Cross-site Request Forgery (CSRF) (T4). This topic contained discussions on
proper setup and configuration of web application frameworks to prevent CSRF SVs. These
SVs could be exploited to send requests to perform unauthorized actions from an end-user
that a web application trusts. Discussions covered various issues in implementing differ-
ent CSRF prevention techniques recommended by OWASP.5 Some commonly discussed
techniques were anti-CSRF token (e.g., SO post 59664094: “Why Laravel 4 CSRF token
is not working? ”), double submit cookie (e.g., SSE post 203996: “What is double submit
cookie? And how it is used in the prevention of CSRF attack? ”), and SameSite cookie
attribute (e.g., SO post 41841880: “What is the benefit of blocking cookie for clicked link?
(SameSite=strict)”).

File-related Vulnerabilities (T5). Discussions of this topic were about SVs in
files that could be exploited to gain unauthorized access. The common SV types were
Path/Directory Traversal via Symlink (e.g., SSE post 165860: “Symlink file name - possi-
ble exploit? ”), XML External Entity (XXE) Injection (e.g., SO post 51860873: “Is SAX-
ParserFactory susceptible to XXE attacks? ”), and Unrestricted File Upload (e.g., SSE post
111935: “Exploiting a PHP server with a .jpg file upload ”). These SVs usually occurred for
Linux-based systems, suggesting that Linux is more popular for servers.

Synchronization Errors (T6). This topic involved SVs produced through errors in
synchronization logic (usually related to threads), which could slow down system perfor-
mance. Some common SV types being discussed were deadlocks (e.g., SO post 38960765:
“How to avoid dead lock due to multiple oledb command for same table in ssis”) and race
conditions (e.g., SSE post 163209: “What’s the meaning of ‘the some sort of race condition’
here? ”).

Encryption Errors (T7). This topic included cryptographic issues leading to falsified
authentication or retrieval of sensitive data, e.g., Man-in-the-middle (MITM) attack. Many
posts discussed public/private keys for encryption/decryption, especially using SSL/TLS
certificates to defend against MITM attacks (attempts to steal information sent between
browsers and servers). Some example discussions are post 23406005 on SO (“Man In
Middle Attack for HTTPS ”) or post 105773 on SSE (“How is it that SSL/TLS is so secure
against password stealing? ”). This may imply that many developers are still not familiar
with these certificates in practice.

5https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_
Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

112Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

Resource Leaks (T8). This topic considered SVs arising from improper releases of
unused memory which could deplete resources and decrease system performance. Many
discussions of T8 were about memory leaks in mobile app development. Issues were usually
related to Android (e.g., SO post 58180755: “Deal with Activity Destroying and Memory
leaks in Android ”) or IOS (e.g., SO post 47564784: “iOS dismissing a view controller doesn’t
release memory”).

Network Attacks (T9). This topic discussed attacks carried out over an online
computer network, e.g., Denial of Service (DoS) and IP/ARP Spoofing, and potential
mitigations. These network attacks directly affected the availability of a system. For
instance, SSE post 86440 discussed “VPN protection against DDoS ” or SO post 31659468
asked “How to prevent ARP spoofing attack in college? ”.

Memory Allocation Errors (T10). T10 and T8 were both related to memory issues,
but T10 did not consider memory release. Rather, this topic more focused on SVs caused
by accessing or using memory outside of what allocated that could be exploited to access
restricted memory location or crash an application. In this topic, segmentation faults (e.g.,
SO post 31260018: “Segmentation fault removal duplicate elements in unsorted linked list”)
and buffer overflows (e.g., SSE post 190714: “buffer overflow 64 bit issue”) were commonly
discussed by developers.

Cross-site Scripting (XSS) (T11). This topic mentioned tactics to properly neu-
tralize user inputs to a web page to prevent XSS attacks. These attacks could exploit users’
trust in web servers/pages to trick them to execute malicious scripts and perform unwanted
actions. XSS (T11) and CSRF (T4) are both client-side SVs, but XSS is more dangerous
since it can bypass all countermeasures of T4.5 On SO and SSE, discussions covered all
three types of XSS: (i) reflected XSS (e.g., SSE post 57268: “How does the anchor tag
(<a>) let you do an Reflected XSS? ”), (ii) stored/persistent XSS (e.g., SO post 54771897:
“How to defend against stored XSS inside a JSP attribute value in a form”), and (iii)
DOM-based XSS (e.g., SO post 44673283: “DOM XSS detection using javascript(source
and sink detection)”).

Vulnerability Theory (T12). This topic focused on theoretical/social aspects and
best practices in the SV life cycle. Many posts compared different SV-related terminolo-
gies, e.g., SSE post 103018 asked about “In CIA triad of information security, what’s the
difference between confidentiality and availability? ” or SO post 402936 discussed “Bugs
versus vulnerabilities? ”. Several other posts asked about internal SV reporting process
(e.g., SO post 3018198: “How best to present a security vulnerability to a web development
team in your own company? ”) or public SV disclosure policy (e.g., SSE post: “How to
properly disclose a security vulnerability anonymously? ”).

Brute-force/Timing Attacks (T13). T13 and T7 both exploited cryptographic
flaws, but these two topics used different attack vectors/methods. T7 focused on MITM
attacks, while T13 was about attacks making excessive attempts or capturing the timing
of a process to gain unauthorized access. Some example posts of T13 are SO post 3009988
(“What’s the big deal with brute force on hashes like MD5 ”) or SSE post 9192 (“Timing
attacks on password hashes”).
Proportion and Evolution of SV Topics. We analyzed the proportion (share metric
in Eq. (6.1)) and the evolution trend of SV topics from their inception on SO (2008) and
SSE (2010) to 2020 (see Table 6.4). The topic patterns and dynamics of SO were different
from those of SSE. Specifically, Memory Allocation Errors (T10) had the greatest number
of posts on SO, while Vulnerability Theory (T12) had the largest proportion on SSE. Apart
from XSS (T11) and Brute-force/Timing Attacks (T13), topics with many posts in one
source were not common in the other source. Moreover, we discovered three consistent topic
trends on both SO and SSE: Malwares (T1) (↗), CSRF (T4) (↗), File-related SVs (T5)
(↗) and Vulnerability Theory (T12) (↘). Among them, CSRF had the fastest changing

6.4. Results 113

Brute-force / Timing Attacks (T13)

Vulnerability Theory (T12)

Cross-site Scripting (T11)

Memory Allocation Errors (T10)

Network Attacks (T9)

Resource Leaks (T8)

Encryption Errors (T7)

Synchronisation Errors (T6)

File-Related Vulnerabilities (T5)

Cross-site Request Forgery (T4)

Vulnerability Scanning Tools (T3)

SQL Injection (T2)

Malwares (T1)

0.18

0.19

0.19

0.03

0.48

0.29

0.22

0.23

0.28

0.47

1.00

0.00

0.22

1.00

0.76

0.48

0.13

0.16

0.42

0.30

0.63

0.21

0.62

0.26

0.58

0.00

0.00

0.17

0.26

0.80

0.26

-

0.02

1.00

0.32

0.41

0.73

0.40

0.18

1.00

0.96

0.45

0.54

0.54

0.05

0.63

0.82

0.28

0.71

0.00

0.80

0.37

Difficulty (SO) Popularity (SO) Difficulty (SSE) Popularity (SSE)

Figure 6.2: Popularity and difficulty of 13 SV topics on SO and SSE.
Notes: The values were normalized by the max and min values of each
category. Difficulty of T8 on SSE was excluded since it did not have any

accepted answer.

pace. These trends were confirmed significant with p-values < 0.01 using Mann-Kendall
non-parametric trend test [395].

6.4.2 RQ2: What are the Popular and Difficult SV Topics on Q&A
Sites?

As shown in Fig. 6.2, the popularity and difficulty of 13 identified SV topics were different
between SO and SSE. For conciseness, we only report the geometric means of the popu-
larity and difficulty metrics in this section. The complete values of individual metrics (see
section 6.3.1) can be found at https://github.com/lhmtriet/SV_Empirical_Study.

Topic Popularity. Brute-force/Timing attacks (T13) and Vulnerability Theory (T12)
were the top-2 most popular topics. Despite being the most popular topic, T13 only had
1.1% and 1.3% posts on SO and SSE, respectively. Conversely, Memory Allocation Errors
(T10) had the most posts on SO (RQ2), but T10 was only the second least popular topic.
We found no significant correlation between the topic popularity and share metric with
Kendall’s Tau correlation test [396] at 95% confidence level. These findings suggest that

https://github.com/lhmtriet/SV_Empirical_Study

114Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

the share metric does not necessarily reflect the topic popularity since it does not consider
users’ activities on Q&A sites.

Topic Difficulty. The most difficult topics were not popular or associated with many
posts, i.e., Vulnerability Scanning Tools (T3) and Network Attacks (T9) on SO as well
as T3, Synchronization Errors (T6) and Memory Allocation Errors (T10) on SSE. The
high difficulty of T3 on both sites was potentially caused by the low familiarity with a
wide array of vendors and tools available for SV detection and assessment [13]. Some
topics with many posts (high share metric) like Memory Allocation Errors (T10) and SQL
Injection (T2) were the two easiest ones on SO despite being significantly more difficult on
SSE. On the contrary, Malwares (T1) and Network Attacks (T9) were more popular yet
easier on SSE. These numbers suggest that it may be better to ask the topics T2, T8 (only
a few posts on SSE) and T10 on SO to obtain answers faster, while asking T1 and T9 on
SSE would be more optimal. However, the topic difficulty did not correlate with either
the topic popularity or share metric on both SO and SSE, confirmed using Kendall’s Tau
test [396] with a confidence level of 95%. With the same confidence level, no significant
differences in terms of average topic-wise popularity and difficulty between SO and SSE
were recorded using non-parametric Mann-Whitney U-test [397].

6.4.3 RQ3: What is the Level of Expertise to Answer SV Questions on
Q&A Sites?

General Expertise. The average general expertise (reputation) of the accepted answerers
in SV posts was 1.3 to 5.8 times higher than those of generic posts [373], general secu-
rity [370], mobile development [375], concurrency [374], machine learning [377] and deep
learning [378]. The higher reputation values were confirmed with p-values < 0.01 (sig-
nificance level) using non-parametric Mann-Whitney U-test [397]. However, the average
percentage of the same users who got accepted answers on both SO and SSE was quite
small across topics, i.e., 1% to 18%, implying not much SV knowledge sharing between the
two sites. The average topic-wise reputation on SO was higher than that of SSE with a
p-value of 0.001 (Mann-Whitney U-test). This might be because SO users could engage
in many more posts of different topics (not only security). Table 6.5 reports the general
expertise of 13 SV topics. On SO, Brute-force/Timing Attacks (T13), SQL Injection (T2),
Synchronization Errors (T6) and XSS (T11) were the topics that experts focused on the
most. On SSE, T13 again and Encryption Errors (T7) were the topics of interest for ex-
perts. In contrast, Malwares (T1), Vulnerability Scanning Tools (T3) and Network Attacks
(T9) on SO did not attract as much attention from experts. On SSE, T3 was also of the
least interest to experts. Overall, experts on Q&A sites tended to favor the SV topics with
high popularity and low difficulty, confirmed with p-values < 0.01 using Kendall’s Tau
correlation test [396].

Specific Expertise. Fig. 6.3 shows the correlation between the pairs of question SV
topics and answerers’ SV topics (see Eq. (6.2)). The most frequent answerers’ SV topic
was Vulnerability Theory (T12). On SSE, frequent answerers for T12 could answer every
question topic. On SO, besides T12, users specialized in Memory-related Errors (T8 and
T10) also answered the questions of other SV topics. These patterns might be because
of the prevalence (RQ2) of topics T8 and T10 on SO as well as T12 on SSE. Conversely,
Malwares (T1), Network Attacks (T9) and Brute-force/Timing Attacks (T13) on SO as
well as Synchronization Errors (T6), Resource Leaks (T8) and T13 on SSE had unique
answerers (i.e., users who usually answered questions of only one topic in the SV domain).
Furthermore, on SO, most answerers were relevant for each SV topic (dark color on the
diagonal in Fig. 6.3a), but it was not always the case on SSE (see Fig. 6.3b). Such results
suggest that it may be easier to find relevant answerers for different SV topics on SO.

6.4.
R

esults
115

Table 6.5: General expertise in terms of average reputation of each topic on SO and SSE (in parentheses). Notes: The values were
normalized by the max and min values of each category. T8 on SSE was excluded since it did not have any accepted answer.

General
expertise T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

Reputation 0.00
(0.16)

0.93
(0.05)

0.01
(0.00)

0.28
(0.18)

0.43
(0.14)

0.88
(0.04)

0.51
(0.72)

0.49
(–)

0.07
(0.24)

0.62
(0.34)

0.84
(0.22)

0.59
(0.29)

1.00
(1.00)

116Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

(a) Specific Expertise: Question topics (y-axis)
 vs. Answerers' topics (x-axis) (SO)

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

(b) Specific Expertise: Question topics (y-axis)
 vs. Answerers' topics (x-axis) (SSE)

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.3: Topic correlations between SV questions & answerers’ SV
specific knowledge on SO (a) & SSE (b). Notes: Light to dark color shows
weak to strong correlation. Each cell was normalized by the max and min

values of each question topic.

6.4.4 RQ4: What Types of Answers are Given to SV Questions on Q&A
Sites?

Our open coding process in RQ4 identified seven answer categories of SV discussions on
Q&A sites, as shown in Table 6.6. Some answer types provided experience (DC/Co and Er)
or language/platform-specific support (AT, ES and CS), which is hardly found on expert-
based security sites (e.g., CWE or OWASP). We correlated such answer types with the
question categories of Treude et al. [386]. We found reasonable matches between answer
and question types, e.g., (dis)agreeing (DC/Co) with a decision (Decision Help), explaining
(Ex) a concept (Conceptual), and providing different solutions to resolve unexpected situ-
ations (Discrepancy). Discrepancy and Error were also among the most frequent question
types, supporting that our posts were about issues/errors in addressing SVs.

Site-wise answer types. According to Table 6.6, Action to Take (AT) and External
Sources (ES) were the most common answer types on SO and SSE, respectively; whereas,
Self-Answer (SA) was the least frequent one on both sites. We also noticed that both sites
usually referred to external sources (ES). The most common sources included Wikipedia,
other posts (e.g., related answers), GitHub issues/commits, product documentation (e.g.,
PHP, MySQL and Android) and SV sources (e.g., CVE (Common Vulnerabilities and
Exposures) [66], NVD [16], CWE [28], OWASP [167], CVE Details [187] and Exploit-
DB [398]). Note that some provided links were unavailable or no longer maintained (e.g.,
CVE Details). Overall, the answers to SV questions on SO frequently provided detailed
instructions (AT) and/or code samples (CS), while SSE tended to share more experience
(DC/Co and Ex) to help.

Topic-wise answer types. We extend the site-wise findings to individual topics to
enable developers to select the respective site (SO vs. SSE) based on their preferable
SV solution types, as shown in Table 6.7. Specifically, SO highlighted steps (AT) to fix
Malwares (T1), Memory Allocation Errors (T10) and XSS (T11) as well as provided code
snippets for SQL Injection (T2). On the other hand, SSE gave more relevant sources and
explanations for such topics. One may argue that these different answer types were because

6.5. Discussion 117

Table 6.6: Answer types of SV discussions identified on Q&A websites.
Note: An answer can have more than one solution type. Proportions of

SSE (the last column) are in parenthesis.

Answer type of
SV discussions Description & Example Posts Top-3 related

question types [386]
Proportion (%)
on SO & SSE

(Dis-)Confirmation
(DC/Co)

Confirm/agree or refute/disagree
with a major point or concept
made by the asker (e.g., SO post
16155188 or SSE post 31306)

Decision Help, How-to,
Conceptual

11.5 (23.7)

Explanation (Ex) Explain concepts, definitions and
“why” to take certain actions (e.g.,
SO post 53446941 or SSE post
157240)

Decision Help, Concep-
tual, Discrepancy

14.6 (27.1)

Error (Er) Point out an error in the source
code or another attachment of
the initial question (e.g., SO post
29750534 or SSE post 159907)

Discrepancy, Error,
How-to

13.0 (2.3)

Action to Take
(AT)

Describe step/action(s) (“how-to”)
to solve a problem (e.g., SO post
22860382 or SSE post 180053)

How-to, Discrepancy,
Decision Help

22.5 (15.4)

External Source
(ES)

Provide reference/link to external
source(s) (e.g., SO post 445177 or
SSE post 107498)

Decision Help, How-to,
Discrepancy

18.1 (28.7)

Code Sample (CS) Provide an explicit example
of code snippet (e.g., SO post
20763476 or SSE post 36804)

Discrepancy, How-to,
Error

16.6 (2.0)

Self-Answer (SA) Answer given by the same user who
submitted the question (e.g., SO
post 55784402 or SSE post 100761)

Discrepancy, Error,
How-to

3.7 (1.0)

Table 6.7: Top-1 answer types of 13 SV topics on SO & SSE (in paren-
thesis). Note: T8 on SSE was excluded since it did not have any accepted

answer.

Topic Top-1 Answer Type Topic Top-1 Answer Type
T1 AT/ES (Ex) T8 ES (–)
T2 CS (ES) T9 DC/Co/ES/SA (Ex)
T3 ES (ES) T10 AT (Ex)
T4 ES (DC/Co) T11 AT (DC/Co)
T5 Ex (ES) T12 Ex (ES)
T6 Ex/ES (DC/Co/ES) T13 Ex/ES (Ex)
T7 Ex/ES (Ex) – –

of the different question types between SO and SSE, but we did not find any such significant
differences for these topics. Instead, the fact that SO and SSE had quite different accepted
answerers, as shown in RQ3, probably led to such different solution types. There were
four topics, namely SV Scanning Tools (T3), Synchronization & Encryption Errors (T6
& T7), Brute-force/Timing Attacks (T13), sharing similar top solutions on both SO and
SSE. The remaining topics (T4, T5, T8 and T9) were mostly answered with explanation
(Ex) or external sources (ES) on both SO and SSE.

6.5 Discussion

6.5.1 SV Discussion Topics on Q&A Sites vs. Existing Security Tax-
onomies

SV-specific topics and their support on Q&A sites. Compared to Yang et al.’s
taxonomy [370], we found related topics: T2, T3, T5, T10, T11 and T13, but we still had
the following important differences. Firstly, our topics were emphasized more on security

118Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

flaws, e.g., issues with encryption/decryption algorithms (T7) than how to implement/use
them as in [370]. Secondly, we identified SV-specific topics previously unreported in [370]:
Malwares (T1), CSRF (T4), Synchronization Errors (T6), Resource Leaks (T8), Network
Attacks (T9) and Vulnerability Theory (T12). These SV topics show the necessity of fo-
cusing on SV-specific posts instead of general security ones. Thirdly, unlike [370], we did
not consider language-dependent topics (i.e., PHP, Flash, Javascript, Java and ASP.NET),
helping our topics be more generalizable (e.g., XSS can occur in both PHP and ASP.NET).
Zahedi et al. [399] also devised a security taxonomy for GitHub issues; however, they fo-
cused on security features and implementation instead of any specific SV types. Note that
we studied SV posts on both SO and SSE, while the existing studies only used one source
of data (SO), enhancing the generalizability of our study. Specifically, we shed light on the
differences between SV discussion topics on SO and those on SSE in terms of their pro-
portions (RQ1), popularity/difficulty (RQ2), level of expertise (RQ3) and types of answers
(RQ4). Our findings can be leveraged to select a suitable site (i.e., more popular/experts,
less difficult or having certain answer types) for asking different SV questions.

Disconnection between SV discussions and expert-based SV sources. Two re-
searchers (i.e., the author of this thesis and a PhD student with three years of experience in
Software Engineering and Cybersecurity) manually mapped 13 SV topics with CWEs, as
shown in Table 6.8. The agreement between the two people was strong (Kappa score [345]
was 0.892), and disagreements were resolved during a discussion section with another re-
searcher (i.e., a PhD student with two-year experience in Software Engineering and Cy-
bersecurity). We found that only seven of them were overlapping with the two well-known
expert-based SV taxonomies: top-25 CWE6 and top-10 OWASP7. The overlapping top-
ics were T2 (SQL Injection), T4 (CSRF), T5 (i.e., Path-traversal and Unrestricted File
Upload), T7 (i.e., Improper Certificate Validation), T8 (Resource Leaks), T10 (Memory
Allocation Errors) and T11 (XSS). There was no CWE for T3 and T12 since they mainly
discussed SV scanning tools and/or socio-technical issues, respectively. In fact, using key-
word matching, we found that only 159 and 71 out of a total of 839 CWEs were mentioned
on SO and SSE, respectively; and only 20 and two CWEs appeared more than 100 times
on SO and SSE, respectively. Other popular SV sources (i.e., CVE, NVD and OWASP)
were also mentioned less than 10% on these two sites. Moreover, the fast increase of CSRF
(T2), as reported in RQ1, is noteworthy given that this SV type has been removed from
the top-10 OWASP since 2013. Our investigation suggested that many developers were
aware of CSRF standard prevention techniques, but it was not always easy to apply these
techniques and/or use built-in CSRF protection of a web framework (e.g., Spring Secu-
rity) in practice. These results imply a strong disconnection in the SV patterns between
expert-based sources and discussions on Q&A sites, supporting our motivation to study
developers’ real-life concerns in addressing SVs.

6.5.2 Implications for (Data-Driven) SV Assessment

From RQ1, we found that Q&A sites (i.e., SO and SSE) do not report zero-day SVs,
but instead they contain the key SV-related issues that developers have been facing in
practice. We have shown that these issues constitute only a small percentage of SVs and
SV types reported in expert-based SV sources such as NVD and CWE. This finding suggests
that more effort should be directed towards performing assessment, e.g., predicting CVSS
metrics, for these commonly encountered types of SVs. It is also recommended to develop
assessment models for each of these types rather than generic models for all SV types to
improve assessment performance.

6https://cwe.mitre.org/top25/
7https://owasp.org/www-project-top-ten/

https://cwe.mitre.org/top25/
https://owasp.org/www-project-top-ten/

6.5. Discussion 119

Table 6.8: The mapping between 13 SV topics and their Common Weak-
ness Enumeration (CWE) values.

Topic Name CWE values
Malwares (T1) 506-512, 904
SQL Injection (T2) 20, 74, 89, 707, 943
Vulnerability Scanning Tools (T3) –
Cross-site Request Forgery (CSRF) (T4) 352, 1173
File-related Vulnerabilities (T5) 23, 34-36, 61, 434
Synchronization Errors (T6) 362, 662, 667, 820, 821, 833
Encryption Errors (T7) 295, 300, 310
Resource Leaks (T8) 400, 401, 404, 772
Network Attacks (T9) 290, 291, 400
Memory Allocation Errors (T10) 119-127, 787, 822-825, 835
Cross-site Scripting (XSS) (T11) 20, 79-87, 707
Vulnerability Theory (T12) –
Brute-force/Timing Attacks (T13) 208, 261, 307, 385, 799, 916

Moreover, from RQ1 and RQ2, we found the prevalent, popular and increasing SV
types like Brute-force/Timing Attacks, Memory/File-related SVs, Malwares and CSRF. In
the context of SV assessment, these common SV types can be prioritized as custom SV
types for prediction using data-driven models (see section 2.6.1.2 in Chapter 2) because
SVs of these types are commonly encountered by developers and have a high possibility of
being exploited in the wild.

From RQ2 and RQ3, the SV types (topics) with low difficulty and high expertise may
also indicate that it is relatively easy to address these SVs in practice, and vice versa. The
difficulty and expertise metrics can be added to the list of currently used technical metrics
(e.g., CVSS metrics and time-to-fix SVs in section 2.7.1.3) to approximate the amount
of effort required to fix the identified SVs of such types. Such approximation using such
external data from Q&A sites is particularly useful for projects that do not have sufficient
project-specific SV data for training reliable models to predict SV fixing time.

RQ4 revealed different types of solutions that have been provided to address the SVs.
We found that Action to Take and Code Sample are among the most actionable solution
types as they can be directly applied or customized to fix SVs found in a codebase. If no
solution of these two types can be found for a detected SV, it may suggest that the SV is
unique and requires more effort to fix (i.e., developing a solution from scratch).

Overall, the findings demonstrate the potential of incorporating SV data from Q&A
sites into (data-driven) SV assessment. However, it is also worth noting that most of the
tools (topic T3 in Table 6.4) currently used by developers for detecting and assessing SVs
are based on static analysis techniques rather than data-driven models. One reason can be
that data-driven approaches are usually black-box compared to static analysis counterparts.
For example, many questions related to these tools on Q&A sites were about configuring
these tools in specific ways to suite developers’ needs, but this is mostly not possible with
the current data-driven models. This implies a potential disconnection between state-of-
the-art and the state-of-the-practice techniques for SV assessment. Future work is required
to make data-driven SV assessment models more interpretable (i.e., why a model makes
certain decisions) and configurable (i.e., controling/changing a rule learned by a model) so
that these models can be more widely adopted in practice.

120Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

6.5.3 Threats to Validity

Our data collection is the first threat. We might have missed some SV posts, but we
followed standard techniques in the literature. It is hard to guarantee 100% relevance of
the retrieved posts without exhaustive manual validation, which is nearly impossible with
more than 70k posts. However, this threat was greatly reduced since the selected posts
were carefully checked by three researchers with at least two years of experience in Software
Engineering and Cybersecurity.

The identified taxonomies can be another concern. Topic modeling with LDA has been
shown effective for processing a large amount of textual posts, but there is still subjectivity
in labeling the topics. We mitigated this threat by manually examining at least 30 posts
per topic and cross-checking with three of the authors. We also performed a similar manual
checking for the answer types in RQ4.

The generalizability of our study may be a threat as well. The patterns we found may
not be the same for other Q&A sites and domains. However, the reported patterns for SV
discussions on SO and SSE were at least confirmed significant using statistical tests with
p-values < 0.01. We also released our code and data at https://github.com/lhmtriet/
SV_Empirical_Study for replication and extension to other domains.

6.6 Chapter Summary

Through a large-scale study of 71,329 posts on SO and SSE, we have revealed the support
of SV-focused discussions on Q&A sites. Using LDA, we devised 13 commonly discussed
SV topics on Q&A sites. We also characterized these topics in terms of their popularity, dif-
ficulty, level expertise and solutions received on these sites. Overall, Q&A sites do support
SV discussions on SO and SSE, and these discussions shed light on the key SV concerns/-
types that are of particular interest to developers. Given their importance/prevalence in
practice, more priority should be given to assess these SV types. Moreover, data about the
popularity, difficulty, expertise level and solution availability on these Q&A sites can be
considered for (automatically) assessing the effort required to fix SVs (e.g., more relevant
resources/support on Q&A sites may make an SV fix easier). Overall, rich data on crowd-
sourcing Q&A sites open up various opportunities for the next generation of data-driven
SV assessment methods that are better tailored to developers’ real-world needs.

6.7 Appendix - PUMiner Overview

In this Appendix, we briefly introduce the PUMiner approach that we used in section 6.3.2
to retrieve security-related posts on SO that can be further refined to obtain the SV-related
posts for the presented empirical study in this chapter. We hereby describe the context-
aware two-stage PU learning model that forms the core of PUMiner. The complete details
and results of PUMiner can be found in the original publication [304].

6.7.1 PUMiner - A Context-aware Two-stage PU Learning Model for
Retrieving Security Q&A Posts

PUMiner is a learning model to distinguish security from non-security posts on Q&A web-
sites. The novelty of PUMiner is that this model does not require negative (non-security)
posts to perform the prediction, saving significant effort for practitioners as it is non-
trivial to define and obtain such non-security posts in practice. Thus, PUMiner operates
on security-related and unlabeled posts. There are two main components in PUMiner: (i)

https://github.com/lhmtriet/SV_Empirical_Study
https://github.com/lhmtriet/SV_Empirical_Study

6.7. Appendix - PUMiner Overview 121

Algorithm 3: Context-aware two-stage PU learning model building.
Input: List of posts: Pin

Labels of posts: labels ∈ {positive, unlabeled}
Size of embeddings and Window size: sz, ws
Classifier and its model configurations: C, config
Output: The trained feature and PU models: feature_model, modelPU

1 word_list, tag_list←− ∅, ∅
2 foreach pi ∈ Pin do
3 words, tags←− tokenize(pi), extract_tags(pi)
4 word_list, tag_list←− word_list+ {words}, tag_list+ {tags}
5 feature_model←− train_doc2vec(word_list, tag_list, sz, ws)
6 Xin ←− obtain_feature(feature_model, word_list)
7 P ←− {xp|xp ∈ Xin ∧ label(p) = positive}
8 U ←− {xp|xp ∈ Xin ∧ label(p) = unlabeled}

9 centroidP , centroidU ←−

∑
p∈P

xp

|P | ,

∑
p∈U

xp

|U |
10 RN ←− ∅
11 foreach xi ∈ Xin do // Stage-1 PU: Identify reliable negatives
12 if d(xi, centroidU) < α ∗ d(xi, centroidP) then
13 RN ←− RN + {xi}
14 modelPU ←− train_classifier(C,P,RN, config) // Stage-2 PU
15 return feature_model, modelPU

feature generation using doc2vec [121] and (ii) PU model building using generated features
for retrieving security posts. These two components are described hereafter.

PUMiner uses doc2vec [121] to represent input features of posts on Q&A sites for
training the PU model. Doc2vec [121] jointly learns the representation/embedding of a
document (paragraph vector) with its constituent words. We choose doc2vec to generate
embeddings as it can capture the semantic relationship of a word, unlike traditional fea-
ture extraction methods such as BoW, n-grams, or tf-idf [21, 400]. Specifically, our work
adopts the distributed memory architecture to train doc2vec models as suggested in [121].
Regarding the label of a document/post, a post may contain multiple tags to describe
complex concepts, e.g., php and security tags represent security issues (sql-injection) in
PHP. Therefore, besides single tags, we also combine all tags to handle the topic mixture.
For example, a post with php and security tags would have php_security alongside php,
security and post id as labels. We also sort labels alphabetically to avoid duplicates (e.g.,
php_security and security_php are the same).

Next, we present the context-aware two-stage PU learning model (see Algorithm 3)
to retrieve security-related posts – the core of our PUMiner framework. This algorithm
requires a list of discussion posts with their respective labels (positive or unlabeled), along
with the configurations of doc2vec (size of embeddings and window size) and classification
models (model hyperparameters). Details of Algorithm 3 are given hereafter.
Lines 1-8: Learning doc2vec context-aware feature vectors. Lines 1-4 tokenize
text and extract tags of each post to prepare the data for training doc2vec models. Line
5 trains a doc2vec embedding model to learn the context of words and posts. Line 6 then
obtains the embedding vector of each post using the trained doc2vec model. Lines 7 and
8 extract the features of both positive and unlabeled posts, respectively.
Lines 9-13: Stage one of PU learning model. Inspired by PU learning in other
domains [401, 402, 403, 404], we assume that the context-aware doc2vec embeddings can

122Chapter 6. Collection and Analysis of Developers’ Software Vulnerability Concerns on
Question and Answer Websites

make posts of the same class stay in close proximity in the embedding space. Stage-one PU
learning first identifies (reliable/pure) negative (non-security) posts in the unlabeled set
that are as different as possible from the positive set. A traditional binary classifier would
work poorly in this case since the negative class is not pure [403]. In line 9 of Algorithm 3,
we propose to approximately locate unknown negative posts using the centroid (average)
vectors of the known positive (centroidP) and unlabeled (centroidU) sets, respectively.
Since the number of non-security posts is dominant (i.e., up to 96% on Stack Overflow as
per our analysis), centroidU would represent the negative class more than the positive
one. Lines 11-13 compute and compare the cosine distances [202, 121, 403] (see Eq. (6.4))
from each post to the two centroids. If the current post is closer to centroidU (i.e., more
towards the negative class), it would be selected as a reliable negative.

cosine_distance = d(i, j) = 1− pi � pj

∥pi∥ × ∥pj∥
(6.4)

where pi and pj are the embedding vectors of the posts ith and jth, respectively. The
range of cosine_distance is [0, 2].
We also propose a scaling factor (α) to increase the flexibility of our centroid-based ap-
proach, which would be jointly optimized with other hyperparameters of binary classifiers
in the second stage. Besides having only one hyperparameter for tuning, this centroid-
based approach can incrementally learn new post(s) very fast with a complexity time of
O(1), as given in Eq. (6.5).

centroidnew =
centroidold ×N + xnew

N + size(xnew)
(6.5)

where centroidold , centroidnew are the centroid vectors before and after learning new
post(s) (xnew), while N is the original number of posts in the positive or unlabeled set.
Lines 14-15: Stage two of PU learning model. Using positive and (reliable) negative
posts from the first stage, the second stage of PU learning (line 14) trains a binary classifier
with its hyperparameters. In the model building process, a PU model is trained with the
optimal classifier and its configurations obtained from a validation process (e.g., k-fold
cross-validation). Finally, line 15 saves the trained feature and PU models to disk for
future inference of whether a post is related to security.

123

Chapter 7

Conclusions and Future Work

Software Vulnerability (SV) assessment is an integral step of software development. There
has been an increasing number of studies on data-driven SV assessment. Data-driven
approaches have the benefits of extracting patterns and rules from large-scale historical
SV data in the wild without manual definition from experts. Such capability of these ap-
proaches enables researchers to automate various SV assessment tasks that were previously
not possible with static analysis and rule-based counterparts. Despite the rising interest
in data-driven SV assessment, the application of these approaches in practice has been
hindered by three key issues: (i) concept drift in SV data used for report-level SV assess-
ment, (ii) lack of code-based SV assessment, and (iii) SV assessment without considering
developers’ real-world SV needs. This thesis has tackled these three challenges to improve
the real-world applicability of data-driven SV assessment. We have first systematized the
knowledge and have identified the key practices of the field. Then, we have developed
various solutions to enhance the performance and applicability of SV assessment models
in real-world settings. These solutions have been based on the customization of recent ad-
vances in Machine Learning, Deep Learning (DL) and Natural Language Processing (NLP),
as well as the utilization of relevant software artifacts (e.g., source code) and open sources
(e.g., Q&A sites) that have been little explored in the literature. We have demonstrated
the potential effectiveness and value of our solutions using real-world SV data. Chapter 7
first summarizes the key contributions and findings of this thesis and then suggests several
avenues for future research1 in the emerging area of data-driven SV assessment.

1Some of the future research directions presented in this chapter are based on our paper “A Survey
on Data-Driven Software Vulnerability Assessment and Prioritization”, ACM Computing Surveys journal
(CORE A*) [11].

124 Chapter 7. Conclusions and Future Work

7.1 Summary of Contributions and Findings

The significant contributions and key findings of the thesis are summarized as follows.

7.1.1 A Systematization of Knowledge of Data-Driven SV Assessment

In Chapter 2, we have reviewed 84 representative primary studies on data-driven SV assess-
ment to systematize the knowledge of the field. Our review has identified a taxonomy of five
key SV assessment tasks/themes that have been automated using data-driven approaches.
The themes are predictions of SV (i) exploitation (probability, time, and characteristics),
(ii) impact (confidentiality, integrity, availability, scope, and custom impacts), (iii) sever-
ity (probability, levels, and score), (iv) type (CWE and custom types), as well as (v) other
tasks (e.g., retrieval of affected product names/vendors, SV knowledge graph construction,
and SV fixing effort prediction).

The review has also shed light on the common data-driven practices adopted by these
studies to automate SV assessment tasks. Regarding the data sources, NVD [16]/CVE [66]
has been most frequently used to provide inputs (mostly SV descriptions) and outputs (e.g.,
CVSS metrics) for SV assessment models. Moreover, Bag-of-words, Word2vec [202] and
more recently BERT [80] have been common methods for extracting features from text-
based descriptions of SVs. In addition, linear Support Vector Machine has been the most
commonly used for building prediction models, while ensemble Machine Learning (ML)
and Deep Learning (DL) models are also on the rise. These models have been mainly
evaluated on random-based splits like k-fold cross-validation using common classification
metrics (e.g., F1-Score and/or Accuracy) or regression metrics (e.g., Mean absolute error
and/or Correlation coefficient).

While data-driven approaches have shown great potential for various SV assessment
tasks, we have identified three key issues affecting their practical applicability. Firstly,
current studies have mostly used SV descriptions/reports, but they have not investigated
the impacts of changing data (concept drift) of these descriptions/reports due to ever-
increasing SVs on their models. Such impacts can affect the robustness and even lower the
performance of these models over time when deployed in practice. Secondly, existing studies
have hardly leveraged (vulnerable) source code in which SVs are usually rooted as inputs
for developing data-driven SV assessment models. In practice, using source code directly
for SV assessment can alleviate the need for SV reports, which in turn supports more
timely SV assessment. Thirdly, the current literature on SV assessment has mainly focused
on characteristics of SVs (e.g., exploitability and impacts) rather than real-world concerns
encountered by developers while addressing SVs (e.g., difficulty of implementing solutions).
Such real-world concerns can facilitate more thorough assessment of SVs by incorporating
developers’ needs. These three challenges have motivated us to devise respective solutions
presented in Chapters 3, 4, 5, and 6.

7.1.2 Automated Report-Level Assessment for Ever-Increasing SVs

In Chapter 3, we have conducted a large-scale analysis of the concept drift issue on report-
level SV assessment models (i.e., predicting seven CVSS version 2 base metrics [110]).
Using data of 105,124 SVs on NVD, we have first shown that concept drift is indeed
an issue in SV descriptions over the years due to releases or discoveries of new software
products and cyber-attacks. Concept drift can make k-fold cross-validation, the most
commonly used evaluation technique, inflate the validation performance up to 4.7 times
compared to that of time-based validation (year-based splits). The main reason is that
k-fold cross-validation mixes future SV data during training (i.e., using data of SVs that
have not yet been reported at training time), while time-based validation does not. Thus,

7.1. Summary of Contributions and Findings 125

we strongly recommend time-based validation instead of k-fold cross-validation for future
work on report-level SV assessment.

We have also proposed using subwords extracted from SV descriptions as features
for report-level SV assessment models to help these models be robust against Out-of-
Vocabulary words caused by concept drift. We have shown that the proposed subword-
based models are much more resilient to all the changes in SV descriptions over time,
while exhibiting competitive or better performance compared to existing word-only models.
We have also demonstrated the possibility of building compact concept-drift-aware SV
assessment models (up to 94% reduction in model size while retaining at least 90% of the
performance) by using fastText [196, 246]. Overall, we have raised the awareness of the
concept drift issue in SV data/reports and proposed an effective data-driven solution to
addressing such issue for report-level SV assessment.

7.1.3 Automated Early SV Assessment using Code Functions

In Chapter 4, we have shown the benefits of performing function-level SV assessment
(automatically assigning the seven CVSS version 2 metrics to SVs in functions) over report-
level SV assessment. We have found that SV reports collected from NVD required for SV
assessment usually appear on average 146 days after the fixing time of respective SVs. Such
a delay makes report-level SV assessment likely untimely. On the other hand, vulnerable
code is available at fixing time by default, thus could be leveraged to support SV assessment
even when SV reports are not (yet) available.

Using 1,782 functions of 429 SVs in 200 real-world projects, we have explored the use of
vulnerable statements containing root causes of SVs together with other (non-vulnerable)
lines in functions as inputs for developing ML models to automate SV assessment. The
optimal function-level SV assessment models, on average, have achieved a promising per-
formance of 0.64 Matthews Correlation Coefficient (MCC) and 0.75 F1-Score using all
statements in each function (i.e., vulnerable statements alongside all the other context
lines). We have highlighted the possibility of performing function-level SV assessment
without knowing exactly where vulnerable statements are located in functions. We have
also recommended high-performing features and classifiers for this task. Overall, we have
distilled the first practices of using data-driven approaches to automate function-level SV
assessment to enable earlier fixing prioritization without waiting for SV reports.

7.1.4 Automated Just-in-Time SV Assessment using Code Commits

In Chapter 5, we have motivated the need for SV assessment in code commits to avoid
assessment and remediation latencies caused by hidden SVs. We have pointed out that in
practice, SVs can stay hidden in codebases for a long time, up to 1,469 days, before being
reported. As a result, performing SV assessment in commits, where vulnerable changes
are first added to a project, provides just-in-time information about SVs for remediation
planning and prioritization. This new assessment task requires a suitable approach that
can directly operate with code changes in commits.

We have proposed DeepCVA, a novel deep multi-task learning model, to tackle commit-
level SV assessment. Specifically, DeepCVA simultaneously predicts the seven base metrics
of CVSS version 2 in a single model using shared context-aware commit features extracted
by attention-based convolutional gated recurrent units. Through large-scale experiments
on 1,229 vulnerability-contributing commits of 542 different SVs in 246 real-world software
projects, we have demonstrated the substantially better performance (38% to 59.8% higher
MCC) of DeepCVA than that of many supervised and unsupervised baseline models. Multi-
task learning has also enabled DeepCVA to require 6.3 times less time for training and

126 Chapter 7. Conclusions and Future Work

maintenance than seven cumulative assessment models. With the reported effectiveness
and efficiency of DeepCVA, we have made the first promising step towards a holistic solution
to assessing SVs as early as they appear, which also contributes to the industrial movement
of shift-left security in DevSecOps (securing software adopting the DevOps paradigm) [24].

7.1.5 Insights of Developers’ Real-World Concerns on Question and An-
swer Websites for Data-Driven SV Assessment

As shown in Chapter 2, there has been a deficiency in considering developers’ real-world SV-
related concerns for SV assessment. Most of the current studies have used expert-defined
taxonomies, e.g., CVSS or CWE, as SV assessment outputs. However, these outputs
usually do not put an emphasis on the challenges that developers commonly encounter
when addressing SVs in practice, e.g., difficulty in implementing a solution proposed by
experts. Such lacking considerations can lead to incomplete assessment of SVs, affecting
the decision making in prioritizing SV remediation.

Given that developers usually seek solutions to these concerns on Question and Answer
(Q&A) sites, in Chapter 6, we have collected 71,329 SV-related posts from two large
Q&A sites, namely Stack Overflow (SO) and Security StackExchange (SSE), to identify
developers’ real-world SV concerns and analyze the support these concerns receive on
these sites for SV assessment. We have used Latent Dirichlet Allocation (LDA) [30] to
semi-automatically identify 13 commonly discussed SV topics/concerns on SO and SSE.
We have discovered that these concerns are only a subset of all SVs/SV types reported by
experts and do not follow the patterns of standard rankings like top-10 OWASP or top-25
CWE. Such differences ask for higher priorities and more specific techniques in assessing
these commonly encountered SV types. We have also characterized these concerns in terms
of their popularity, difficulty, expertise level and solutions received on these sites, which can
be used to estimate the complexity/effort required to fix SVs. For instance, an identified SV
whose similar SVs have received little support on Q&A sites would imply high remediation
difficulty/effort. Overall, crowdsourcing Q&A sites like SO and SSE have much potential
for providing supplementary SV assessment metrics from developers’ perspectives.

7.2 Opportunities for Future Research

As shown in section 7.1, this thesis has made significant contributions to improve the
practicality of data-driven SV assessment. However, there are still many opportunities
for future research to further advance the field. Note that this section does not cover
straightforward extensions of our work in Chapters 3, 4, 5, and 6 such as using more
projects, features, models, and/or programming languages. Rather, we focus on the future
research opportunities that have received little/no attention so far in this area.

7.2.1 Integration of SV Data on Issue Tracking Systems

Existing studies, including ours in Chapters 3, have mainly utilized NVD/CVE for collect-
ing SV reports; whereas, bug/issue tracking systems like JIRA,2 Bugzilla3 or GitHub issues4

also contain an abundance of SV reports, yet have been underexplored for data-driven SV
assessment. Besides providing SV descriptions like CVE/NVD, these issue tracking sys-
tems also contain other artifacts such as steps to reproduce, stack traces and test cases that

2https://www.atlassian.com/software/jira
3https://www.bugzilla.org/
4https://docs.github.com/en/issues

https://www.atlassian.com/software/jira
https://www.bugzilla.org/
https://docs.github.com/en/issues

7.2. Opportunities for Future Research 127

give extra information about SVs [405]. However, it is not trivial to obtain and integrate
these SV-related bug reports with the ones on SV databases.

One way to retrieve SVs on issue tracking systems is to use security bug reports [406].
Much research work has been put into developing effective models to automatically retrieve
security bug reports (e.g., [367, 366, 407]). Among these studies, Wu et al. [407] manually
verified and cleaned the security bug reports to provide a clean dataset for automated
security bug report identification. However, more of such manual effort is still required to
obtain up-to-date data because the original security bug reports in [407] were actually a
part of the dataset collected back in 2014 [408].

It is worth noting that not all security bug reports are related to SVs such as is-
sues/improvements in implementing security features.5 Thus, future studies need to filter
out these cases before using security bug reports for SV assessment. We also emphasize
that some SV-related bug reports are overlapping with the ones on NVD (e.g., the SV
report AMBARI-147806 on JIRA refers to CVE-2016-0731 on CVE/NVD). Such overlaps
would require data cleaning during the integration of reports on issue tracking systems and
SV databases to avoid data duplication (e.g., similar SV descriptions) when developing SV
assessment models.

7.2.2 Improving Data Efficiency for Data-Driven SV Assessment

As shown in Chapter 2, many of the SV assessment tasks being automated by data-driven
approaches, including the prediction of CVSS base metrics in Chapters 3, 4, and 5, suffer
from the data imbalance and data scarcity issues. Moreover, existing work as well as
our studies in Chapters 3, 4, and 5 have mainly used fully-supervised learning models for
automating these tasks, but these models require sufficiently large and fully labeled data
to perform well. To address the data-hungriness of these fully-supervised learning models,
future studies can approach the SV assessment tasks with low-shot learning and/or semi-
supervised learning.

Low-shot learning a.k.a. few-shot learning is designed to perform supervised learning
using only a few examples per class, significantly reducing the labeling effort and increasing
model robustness against imbalanced data [201]. According to Chapter 2, so far, only one
study in this area utilized low-shot learning with a deep Siamese network [150] (i.e., a shared
feature model with similarity learning) to effectively predict SV types (CWE) and even
generalize to unseen classes (i.e., zero-shot learning). There are still many opportunities
for investigating different few-shot learning techniques for other SV assessment tasks, e.g.,
predicting CVSS metrics. Note that the shared features in few-shot learning can also be
enhanced with pre-trained models (e.g., BERT [80]) on another domain/task/project with
more labeled data than the current task/project in the SV domain.

Semi-supervised learning enables training models with limited labeled data yet a large
amount of unlabeled data [200], potentially leveraging hidden/unlabeled SVs in the wild.
Recently, we have seen an increasing interest in using different techniques of this learning
paradigm in the SV domain such as collecting SV patches using multi-view co-training [332],
retrieving SV discussions on developer Q&A sites using positive-unlabeled learning [304],
curating SVs from multiple sources in the wild using self-training [409]. However, it is still
little known about the effectiveness of semi-supervised learning for SV assessment tasks.

5The security bug report AMBARI-1373 on JIRA (https://issues.apache.org/jira/browse/
AMBARI-1373) was about improving the front-end of AMBARI Web by displaying the current logged in
user.

6https://issues.apache.org/jira/browse/AMBARI-14780

https://issues.apache.org/jira/browse/AMBARI-1373
https://issues.apache.org/jira/browse/AMBARI-1373
https://issues.apache.org/jira/browse/AMBARI-14780

128 Chapter 7. Conclusions and Future Work

7.2.3 Customized Data-Driven SV Assessment

Similar to the existing studies reviewed in Chapter 2, in Chapters 3, 4, and 5, we have
used the standard CVSS metrics [29] for assessing the exploitability, impact and severity
levels/score of SVs, but there are increasing concerns that these CVSS outputs are still
generic. Specifically, Spring et al. [209] argued that CVSS tends to provide one-size-fits-all
assessment metrics regardless of the context of SVs; i.e., the same SVs in different domain-
s/environments are assigned the same metric values. For instance, banking systems may
consider the confidentiality and integrity of databases more important than the availability
of web/app interfaces.

In the future, alongside CVSS, prediction models should also incorporate the do-
main/business knowledge to customize the assessment of SVs to a system of interest (e.g.,
the impact of SVs on critical component(s) and/or the readiness of developers/solutions
for mitigating such SVs in the current system). Development environments (e.g., program-
ming language, tools or frameworks) being used are among the key factors that affect the
fixing of a specific SV in an organization. Thus, SV-related issues that developers have en-
countered with these environments discussed on Q&A sites can be considered to enrich SV
assessment information. Particularly, future work can leverage the taxonomy we identified
in Chapter 6 to automatically match detected SVs with similar issues on Q&A sites, and
then follow our framework to indicate the level of support (popularity, difficulty, expertise
level, and solution type) these issues have received. The higher the support is, the more
likely developers will find relevant information to fix the current SV, which in turn reduces
the fixing complexity/effort. In the future, case studies with practitioners will also be
fruitful to correlate the quantitative performance of models and their usability/usefulness
in real-world systems (e.g., reducing more critical SVs yet using fewer resources).

7.2.4 Enhancing Interpretability of SV Assessment Models

As discussed in Chapter 6, the lack of interpretability is one of the key reasons impeding
the adoption of data-driven approaches compared to static analysis tools for SV assess-
ment in practice. Model interpretability is important to increase the transparency of the
predictions made by a model, allowing practitioners to adjust the model/data to meet
certain requirements [204]. According to Chapter 2, very few reviewed papers in this area
(e.g., [97, 21]) have explicitly discussed important features and/or explained why/when
their models worked/failed for a task.

SV assessment can draw inspiration from the related SV detection area where the in-
terpretability of (DL-based) prediction models has been actively explored mainly by using
(i) specific model architectures/parameters or (ii) external interpretation models/tech-
niques [204]. In the first approach, prior studies successfully used the feature activation
maps in a CNN model [410] or leveraged attention-based neural network [411] to highlight
and visualize the important code tokens that contribute to SVs. The second approach uses
separate interpretation models on top of trained SV detectors. The interpretation mod-
els are either domain/model-agnostic [412], domain-agnostic yet specific to a model type
(graph neural network [276]) or SV-specific [413]. The aforementioned approaches pro-
duce local/sample-wise interpretation, which can be aggregated to obtain global/task-wise
interpretation. The global interpretation is similar to the feature importance of tradi-
tional ML models [414] such as the weights of linear models (e.g., Logistic regression) or
the (im)purity of nodes split by each feature in tree-based models (e.g., Random forest).
However, it is still unclear about the applicability/effectiveness of these approaches for
interpreting ML/DL-based SV assessment models, requiring further investigations.

7.2. Opportunities for Future Research 129

7.2.5 Data-Driven SV Assessment in Data-Driven Systems

Like the current literature (see Chapter 2), this thesis has mainly focused on SV assessment
for traditional software, but we envision there is an impending need for SV assessment
in data-driven/Artificial Intelligence (AI)-based systems. Data-driven/AI-based systems
(e.g., smart recommender systems, chatbots, robots, and autonomous cars) are an emerging
breed of systems whose cores are powered by AI technologies, e.g., ML and DL models built
on data, rather than human-defined instructions as in traditional systems [193]. However,
it is challenging to adapt the current practices of SV assessment to data-driven/AI-based
systems. Some of these challenges are presented hereafter.

CVSS [29] is currently the most popular SV assessment framework for traditional sys-
tems, but its compatibility with data-driven systems still requires more investigation. The
current CVSS documentation lacks instructions on how to assign metrics/score for SVs
in data-driven systems. For example, it is unclear how to assign static CVSS metrics to
systems with automatically updated data-driven models [409] because adversarial exam-
ples for exploitation would likely change after the models are updated. Such ambiguities
should be clarified/resolved in future CVSS versions as data-driven systems become more
prevalent. The types of SVs in ML/DL models in data-driven systems are also mostly
different from the ones provided by CWE [28]. The difference is mainly because these new
SVs do not only emerge from configurations/code as in traditional systems, but also from
training data and/or trained models [415]. Thus, we recommend that a new category of
these SVs should be studied and potentially incorporated into CWE, similar to the newly
added category for architectural SVs.7

Existing SV assessment models for traditional systems have not considered unique
data/model-related characteristics/features of data-driven systems [416]. Specifically, data-
driven systems also encompass information about data (e.g., format, type, size and dis-
tribution) and ML/DL model(s) (e.g., configurations, parameters and performance). It is
worth noting that SVs of ML/DL models in data-driven systems can also come from the
frameworks used to develop such models (e.g., Tensorflow8 or Keras9). However, develop-
ers of data-driven systems may not be aware of the (security) issues in the used ML/DL
frameworks [417]. Thus, besides currently used features, future work should also consider
the information about underlying data/models and ML/DL development frameworks to
improve the SV representation for building models to assess SVs in data-driven systems.

7https://cwe.mitre.org/data/definitions/1008.html
8https://github.com/tensorflow/tensorflow
9https://github.com/keras-team/keras

https://cwe.mitre.org/data/definitions/1008.html
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras

131

References

[1] M. Andreessen, “Why software is eating the world,” Wall Street Journal, vol. 20, no.
2011, p. C2, 2011.

[2] Wired, “Google is 2 billion lines of code—and it’s all in one place.” [Online]. Available:
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

[3] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: A survey,” ACM Computing
Surveys (CSUR), vol. 50, no. 4, pp. 1–36, 2017.

[4] NIST, “Vulnerability definition on nvd.” [Online]. Available: https://nvd.nist.gov/
vuln

[5] I. Synopsys, “Heartbleed bug.” [Online]. Available: https://heartbleed.com/

[6] T. Conversation, “What is log4j?” [Online]. Available: https://bit.ly/log4j_the_
conversation

[7] A. C. S. Centre, “Acsc annual cyber threat report 2020-21.” [Online].
Available: https://www.cyber.gov.au/acsc/view-all-content/reports-and-statistics/
acsc-annual-cyber-threat-report-2020-21

[8] K. Nayak, D. Marino, P. Efstathopoulos, and T. Dumitraş, “Some vulnerabilities are
different than others,” in International Workshop on Recent Advances in Intrusion
Detection. Springer, 2014, pp. 426–446.

[9] S. Khan and S. Parkinson, “Review into state of the art of vulnerability assessment
using artificial intelligence,” in Guide to Vulnerability Analysis for Computer Net-
works and Systems. Springer, 2018, pp. 3–32.

[10] V. Smyth, “Software vulnerability management: how intelligence helps reduce the
risk,” Network Security, vol. 2017, no. 3, pp. 10–12, 2017.

[11] T. H. M. Le, H. Chen, and M. A. Babar, “A survey on data-driven software vulner-
ability assessment and prioritization,” ACM Computing Surveys (CSUR), 2021.

[12] P. Foreman, Vulnerability management. CRC Press, 2019.

[13] K. Kritikos, K. Magoutis, M. Papoutsakis, and S. Ioannidis, “A survey on vulnerabil-
ity assessment tools and databases for cloud-based web applications,” Array, vol. 3,
p. 100011, 2019.

[14] M. Z. Bell, “Why expert systems fail,” Journal of the Operational Research Society,
vol. 36, no. 7, pp. 613–619, 1985.

[15] J. Han, M. Kamber, and J. Pei, “Data mining concepts and techniques third edition,”
The Morgan Kaufmann Series in Data Management Systems, vol. 5, no. 4, pp. 83–
124, 2011.

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
https://nvd.nist.gov/vuln
https://nvd.nist.gov/vuln
https://heartbleed.com/
https://bit.ly/log4j_the_conversation
https://bit.ly/log4j_the_conversation
https://www.cyber.gov.au/acsc/view-all-content/reports-and-statistics/acsc-annual-cyber-threat-report-2020-21
https://www.cyber.gov.au/acsc/view-all-content/reports-and-statistics/acsc-annual-cyber-threat-report-2020-21

132 REFERENCES

[16] NIST, “National vulnerability database.” [Online]. Available: https://nvd.nist.gov

[17] ——, “Number of vulnerabilities reported on nvd in 2021.” [Online]. Avail-
able: http://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=
statistics&search_type=all&isCpeNameSearch=false

[18] D. S. Cruzes and T. Dybå, “Research synthesis in software engineering: A tertiary
study,” Information and Software Technology, vol. 53, no. 5, pp. 440–455, 2011.

[19] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on
concept drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4, pp. 1–37,
2014.

[20] G. Spanos, L. Angelis, and D. Toloudis, “Assessment of vulnerability severity using
text mining,” in the 21st Pan-Hellenic Conference on Informatics, 2017, pp. 1–6.

[21] Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict severity of soft-
ware vulnerability using only vulnerability description,” in 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 2017, pp.
125–136.

[22] G. Spanos and L. Angelis, “A multi-target approach to estimate software vulnerability
characteristics and severity scores,” Journal of Systems and Software, vol. 146, pp.
152–166, 2018.

[23] T. H. M. Le, B. Sabir, and M. A. Babar, “Automated software vulnerability assess-
ment with concept drift,” in the 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 371–382.

[24] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges and solutions
when adopting devsecops: A systematic review,” Information and Software Technol-
ogy, vol. 141, p. 106700, 2022.

[25] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates, “When
a patch goes bad: Exploring the properties of vulnerability-contributing commits,” in
2013 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. IEEE, 2013, pp. 65–74.

[26] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and
N. Ubayashi, “A large-scale empirical study of just-in-time quality assurance,” IEEE
Transactions on Software Engineering, vol. 39, no. 6, pp. 757–773, 2012.

[27] Y. Zhang and Q. Yang, “A survey on multi-task learning,” arXiv preprint
arXiv:1707.08114, 2017.

[28] MITRE, “Common weakness enumeration.” [Online]. Available: https://cwe.mitre.
org

[29] FIRST, “Common vulnerability scoring system.” [Online]. Available: https:
//www.first.org/cvss

[30] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of
machine learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[31] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal, “Vulcan:
Vulnerability assessment framework for cloud computing,” in 2013 IEEE 7th Inter-
national Conference on Software Security and Reliability. IEEE, 2013, pp. 218–226.

https://nvd.nist.gov
http://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false
http://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false
https://cwe.mitre.org
https://cwe.mitre.org
https://www.first.org/cvss
https://www.first.org/cvss

REFERENCES 133

[32] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond heuristics: learning to
classify vulnerabilities and predict exploits,” in the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2010, pp. 105–114.

[33] C. Sabottke, O. Suciu, and T. Dumitras, , “Vulnerability disclosure in the age of social
media: Exploiting twitter for predicting real-world exploits,” in 24th {USENIX}
Security Symposium, 2015, pp. 1041–1056.

[34] B. L. Bullough, A. K. Yanchenko, C. L. Smith, and J. R. Zipkin, “Predicting exploita-
tion of disclosed software vulnerabilities using open-source data,” in the 3rd ACM on
International Workshop on Security And Privacy Analytics, 2017, pp. 45–53.

[35] P. Zeng, G. Lin, L. Pan, Y. Tai, and J. Zhang, “Software vulnerability analysis and
discovery using deep learning techniques: A survey,” IEEE Access, 2020.

[36] S. K. Singh and A. Chaturvedi, “Applying deep learning for discovery and analysis of
software vulnerabilities: A brief survey,” Soft Computing: Theories and Applications,
pp. 649–658, 2020.

[37] A. O. A. Semasaba, W. Zheng, X. Wu, and S. A. Agyemang, “Literature survey of
deep learning-based vulnerability analysis on source code,” IET Software, 2020.

[38] G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Software vulnerability detection
using deep neural networks: a survey,” the IEEE, vol. 108, no. 10, pp. 1825–1848,
2020.

[39] J. Pastor-Galindo, P. Nespoli, F. G. Mármol, and G. M. Pérez, “The not yet exploited
goldmine of osint: Opportunities, open challenges and future trends,” IEEE Access,
vol. 8, pp. 10 282–10 304, 2020.

[40] J. R. G. Evangelista, R. J. Sassi, M. Romero, and D. Napolitano, “Systematic lit-
erature review to investigate the application of open source intelligence (osint) with
artificial intelligence,” Journal of Applied Security Research, pp. 1–25, 2020.

[41] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xiang, “Data-driven cyber-
security incident prediction: A survey,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1744–1772, 2018.

[42] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[43] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar, “Software security
patch management–a systematic literature review of challenges, approaches, tools
and practices,” arXiv preprint arXiv:2012.00544, 2020.

[44] S. Keele, “Guidelines for performing systematic literature reviews in software en-
gineering,” Technical report, Ver. 2.3 EBSE Technical Report. EBSE, Tech. Rep.,
2007.

[45] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replica-
tion in software engineering,” in the 18th international conference on evaluation and
assessment in software engineering, 2014, pp. 1–10.

[46] M. Edkrantz, “Predicting exploit likelihood for cyber vulnerabilities with machine
learning,” Master’s thesis, 2015.

134 REFERENCES

[47] M. Edkrantz, S. Truvé, and A. Said, “Predicting vulnerability exploits in the wild,” in
2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing.
IEEE, 2015, pp. 513–514.

[48] M. Almukaynizi, E. Nunes, K. Dharaiya, M. Senguttuvan, J. Shakarian, and
P. Shakarian, “Proactive identification of exploits in the wild through vulnerabil-
ity mentions online,” in 2017 International Conference on Cyber Conflict (CyCon
US). IEEE, 2017, pp. 82–88.

[49] ——, “Patch before exploited: An approach to identify targeted software vulnerabil-
ities,” in AI in Cybersecurity. Springer, 2019, pp. 81–113.

[50] C. Xiao, A. Sarabi, Y. Liu, B. Li, M. Liu, and T. Dumitras, “From patching delays
to infection symptoms: Using risk profiles for an early discovery of vulnerabilities
exploited in the wild,” in 27th {USENIX} Security Symposium ({USENIX} Security
18), 2018, pp. 903–918.

[51] N. Tavabi, P. Goyal, M. Almukaynizi, P. Shakarian, and K. Lerman, “Darkembed:
Exploit prediction with neural language models,” in the AAAI Conference on Arti-
ficial Intelligence, vol. 32, no. 1, 2018.

[52] D. A. de Sousa, E. R. de Faria, and R. S. Miani, “Evaluating the performance of
twitter-based exploit detectors,” arXiv preprint arXiv:2011.03113, 2020.

[53] Y. Fang, Y. Liu, C. Huang, and L. Liu, “Fastembed: Predicting vulnerability ex-
ploitation possibility based on ensemble machine learning algorithm,” Plos one,
vol. 15, no. 2, p. e0228439, 2020.

[54] S.-Y. Huang and Y. Wu, “Dynamic software vulnerabilities threat prediction through
social media contextual analysis,” in the 15th Asia Conference on Computer and
Communications Security, 2020, pp. 892–894.

[55] J. Jacobs, S. Romanosky, I. Adjerid, and W. Baker, “Improving vulnerability reme-
diation through better exploit prediction,” Journal of Cybersecurity, vol. 6, no. 1, p.
tyaa015, 2020.

[56] J. Yin, M. Tang, J. Cao, and H. Wang, “Apply transfer learning to cybersecurity:
Predicting exploitability of vulnerabilities by description,” Knowledge-Based Sys-
tems, vol. 210, p. 106529, 2020.

[57] N. Bhatt, A. Anand, and V. Yadavalli, “Exploitability prediction of software vul-
nerabilities,” Quality and Reliability Engineering International, vol. 37, no. 2, pp.
648–663, 2021.

[58] O. Suciu, C. Nelson, Z. Lyu, T. Bao, and T. Dumitras, “Expected exploitabil-
ity: Predicting the development of functional vulnerability exploits,” arXiv preprint
arXiv:2102.07869, 2021.

[59] A. A. Younis and Y. K. Malaiya, “Using software structure to predict vulnerability
exploitation potential,” in 2014 IEEE Eighth International Conference on Software
Security and Reliability-Companion. IEEE, 2014, pp. 13–18.

[60] G. Yan, J. Lu, Z. Shu, and Y. Kucuk, “Exploitmeter: Combining fuzzing with ma-
chine learning for automated evaluation of software exploitability,” in 2017 IEEE
Symposium on Privacy-Aware Computing (PAC). IEEE, 2017, pp. 164–175.

REFERENCES 135

[61] S. Tripathi, G. Grieco, and S. Rawat, “Exniffer: Learning to prioritize crashes by
assessing the exploitability from memory dump,” in 2017 24th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2017, pp. 239–248.

[62] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on binary
code,” in 2012 IEEE Symposium on Security and Privacy. IEEE, 2012, pp. 380–394.

[63] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier, “Toward large-
scale vulnerability discovery using machine learning,” in the Sixth ACM Conference
on Data and Application Security and Privacy, 2016, pp. 85–96.

[64] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan, “Lava: Large-scale automated vulnerability addition,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 110–121.

[65] L. Zhang and V. L. Thing, “Assisting vulnerability detection by prioritizing crashes
with incremental learning,” in TENCON 2018-2018 IEEE Region 10 Conference.
IEEE, 2018, pp. 2080–2085.

[66] MITRE, “Common vulnerabilities and exposures.” [Online]. Available: https:
//cve.mitre.org/

[67] O. Security, “Exploit database.” [Online]. Available: https://www.exploit-db.com

[68] Broadcom, “Symantec attack signatures.” [Online]. Available: https://bit.ly/
symantec_att_sign

[69] Microsoft, “Microsoft security advisories.” [Online]. Available: https://bit.ly/ms_
sec_advisories

[70] T. Micro, “Zeroday initiative security advisories.” [Online]. Available: https:
//bit.ly/zeroday_sec

[71] Rapid7, “Metasploit security advisories.” [Online]. Available: https://www.rapid7.
com/db/modules

[72] S. Inc, “Bugtraq vulnerability database.” [Online]. Available: http://www.
securityfocus.com

[73] R. Future, “Recorded future security advisories.” [Online]. Available: https:
//bit.ly/rf_sec

[74] I. Kenna Security, “Kenna security.” [Online]. Available: http://www.kennasecurity.
com

[75] ESET, “Eset security advisories.” [Online]. Available: https://bit.ly/eset_virus

[76] T. Micro, “Trend micro security advisories.” [Online]. Available: https:
//bit.ly/trend_micro_sec

[77] E. Nunes, A. Diab, A. Gunn, E. Marin, V. Mishra, V. Paliath, J. Robertson,
J. Shakarian, A. Thart, and P. Shakarian, “Darknet and deepnet mining for proac-
tive cybersecurity threat intelligence,” in 2016 IEEE Conference on Intelligence and
Security Informatics (ISI). IEEE, 2016, pp. 7–12.

[78] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in the 22nd
International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–
794.

https://cve.mitre.org/
https://cve.mitre.org/
https://www.exploit-db.com
https://bit.ly/symantec_att_sign
https://bit.ly/symantec_att_sign
https://bit.ly/ms_sec_advisories
https://bit.ly/ms_sec_advisories
https://bit.ly/zeroday_sec
https://bit.ly/zeroday_sec
https://www.rapid7.com/db/modules
https://www.rapid7.com/db/modules
http://www.securityfocus.com
http://www.securityfocus.com
https://bit.ly/rf_sec
https://bit.ly/rf_sec
http://www.kennasecurity.com
http://www.kennasecurity.com
https://bit.ly/eset_virus
https://bit.ly/trend_micro_sec
https://bit.ly/trend_micro_sec

136 REFERENCES

[79] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural
information processing systems, vol. 30, pp. 3146–3154, 2017.

[80] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[81] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler,
“Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books,” in the IEEE international conference on computer vision,
2015, pp. 19–27.

[82] W. Foundation, “Wikipedia pages.” [Online]. Available: https://www.wikipedia.org

[83] FIRST, “Cvss version 3.1.” [Online]. Available: https://www.first.org/cvss/v3.1/
specification-document

[84] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “Remus: A security-enhanced oper-
ating system,” ACM Transactions on Information and System Security (TISSEC),
vol. 5, no. 1, pp. 36–61, 2002.

[85] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE Transactions
on Software Engineering, vol. 37, no. 3, pp. 371–386, 2010.

[86] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence
graphs,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 12, no. 1, pp. 26–60, 1990.

[87] CERT, “Basic fuzzing framework.” [Online]. Available: https://bit.ly/basic_
fuzzing_framework

[88] S. K. Cha, “Ofuzz.” [Online]. Available: https://github.com/sangkilc/ofuzz

[89] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, “Online passive
aggressive algorithms,” 2006.

[90] J. Jacobs, S. Romanosky, B. Edwards, M. Roytman, and I. Adjerid, “Exploit predic-
tion scoring system (epss),” arXiv preprint arXiv:1908.04856, 2019.

[91] J. Jacobs, S. Romanosky, B. Edwards, I. Adjerid, and M. Roytman, “Exploit predic-
tion scoring system (epss),” Digital Threats: Research and Practice, vol. 2, no. 3, pp.
1–17, 2021.

[92] H. Chen, R. Liu, N. Park, and V. Subrahmanian, “Using twitter to predict when
vulnerabilities will be exploited,” in the 25th International Conference on Knowledge
Discovery & Data Mining, 2019, pp. 3143–3152.

[93] H. Chen, J. Liu, R. Liu, N. Park, and V. Subrahmanian, “Vest: A system for vulner-
ability exploit scoring & timing,” in IJCAI, 2019, pp. 6503–6505.

[94] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter,
“Multilayer networks,” Journal of complex networks, vol. 2, no. 3, pp. 203–271, 2014.

[95] Y. Yamamoto, D. Miyamoto, and M. Nakayama, “Text-mining approach for estimat-
ing vulnerability score,” in 2015 4th International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS). IEEE, 2015,
pp. 67–73.

https://www.wikipedia.org
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://bit.ly/basic_fuzzing_framework
https://bit.ly/basic_fuzzing_framework
https://github.com/sangkilc/ofuzz

REFERENCES 137

[96] T. Wen, Y. Zhang, Y. Dong, and G. Yang, “A novel automatic severity vulnerability
assessment framework,” Journal of Communications, vol. 10, no. 5, pp. 320–329,
2015.

[97] D. Toloudis, G. Spanos, and L. Angelis, “Associating the severity of vulnerabilities
with their description,” in International Conference on Advanced Information Sys-
tems Engineering. Springer, 2016, pp. 231–242.

[98] S. Ognawala, R. N. Amato, A. Pretschner, and P. Kulkarni, “Automatically assessing
vulnerabilities discovered by compositional analysis,” in the 1st International Work-
shop on Machine Learning and Software Engineering in Symbiosis, 2018, pp. 16–25.

[99] S. Ognawala, M. Ochoa, A. Pretschner, and T. Limmer, “Macke: Compositional
analysis of low-level vulnerabilities with symbolic execution,” in the 31st IEEE/ACM
International Conference on Automated Software Engineering, 2016, pp. 780–785.

[100] C. Elbaz, L. Rilling, and C. Morin, “Fighting n-day vulnerabilities with automated
cvss vector prediction at disclosure,” in the 15th International Conference on Avail-
ability, Reliability and Security, 2020, pp. 1–10.

[101] Y. Jiang and Y. Atif, “An approach to discover and assess vulnerability severity au-
tomatically in cyber-physical systems,” in 13th International Conference on Security
of Information and Networks, 2020, pp. 1–8.

[102] M. Gawron, F. Cheng, and C. Meinel, “Automatic vulnerability classification using
machine learning,” in International Conference on Risks and Security of Internet and
Systems. Springer, 2017, pp. 3–17.

[103] X. Gong, Z. Xing, X. Li, Z. Feng, and Z. Han, “Joint prediction of multiple vul-
nerability characteristics through multi-task learning,” in 2019 24th International
Conference on Engineering of Complex Computer Systems (ICECCS). IEEE, 2019,
pp. 31–40.

[104] Z. Chen, Y. Zhang, and Z. Chen, “A categorization framework for common computer
vulnerabilities and exposures,” The Computer Journal, vol. 53, no. 5, pp. 551–580,
2010.

[105] J. Ruohonen, “Classifying web exploits with topic modeling,” in 2017 28th Inter-
national Workshop on Database and Expert Systems Applications (DEXA). IEEE,
2017, pp. 93–97.

[106] M. U. Aksu, K. Bicakci, M. H. Dilek, A. M. Ozbayoglu, and E. ı. Tatli, “Auto-
mated generation of attack graphs using nvd,” in the 8th Conference on Data and
Application Security and Privacy, 2018, pp. 135–142.

[107] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting
topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002.

[108] H. Liu and B. Li, “Automated classification of attacker privileges based on deep neural
network,” in International Conference on Smart Computing and Communication.
Springer, 2019, pp. 180–189.

[109] K. Kanakogi, H. Washizaki, Y. Fukazawa, S. Ogata, T. Okubo, T. Kato, H. Kanuka,
A. Hazeyama, and N. Yoshioka, “Tracing capec attack patterns from cve vulnera-
bility information using natural language processing technique,” in the 54th Hawaii
International Conference on System Sciences, 2021, p. 6996.

138 REFERENCES

[110] FIRST, “Cvss version 2.” [Online]. Available: https://www.first.org/cvss/v2/guide

[111] ——, “Cvss version 3.” [Online]. Available: https://www.first.org/cvss/v3.0/
specification-document

[112] D. M. Blei and J. D. McAuliffe, “Supervised topic models,” in the 20th International
Conference on Neural Information Processing Systems, 2007, p. 121–128.

[113] I. S. Services, “Online database x-force.” [Online]. Available: http://www.iss.net/
xforce

[114] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics
and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[115] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[116] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Transactions on
Knowledge and Data Engineering, 2021.

[117] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[118] S. Inc., “Secunia vulnerability advisories.” [Online]. Available: http://secunia.com

[119] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media, 2009.

[120] Y. Kim, “Convolutional neural networks for sentence classification,” in the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). Associa-
tion for Computational Linguistics, 2014, pp. 1746–1751.

[121] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in
International conference on machine learning. PMLR, 2014, pp. 1188–1196.

[122] MITRE, “Common attack pattern enumeration and classification.” [Online].
Available: https://capec.mitre.org

[123] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[124] P. K. Kudjo, J. Chen, M. Zhou, S. Mensah, and R. Huang, “Improving the accuracy
of vulnerability report classification using term frequency-inverse gravity moment,”
in 2019 IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 2019, pp. 248–259.

[125] J. Chen, P. K. Kudjo, S. Mensah, S. A. Brown, and G. Akorfu, “An automatic
software vulnerability classification framework using term frequency-inverse gravity
moment and feature selection,” Journal of Systems and Software, vol. 167, p. 110616,
2020.

[126] P. K. Kudjo, J. Chen, S. Mensah, R. Amankwah, and C. Kudjo, “The effect of
bellwether analysis on software vulnerability severity prediction models,” Software
Quality Journal, pp. 1–34, 2020.

[127] R. Malhotra, “Severity prediction of software vulnerabilities using textual data,” in
International Conference on Recent Trends in Machine Learning, IoT, Smart Cities
and Applications. Springer, 2021, pp. 453–464.

https://www.first.org/cvss/v2/guide
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.0/specification-document
http://www.iss.net/xforce
http://www.iss.net/xforce
http://secunia.com
https://capec.mitre.org

REFERENCES 139

[128] K. Chen, Z. Zhang, J. Long, and H. Zhang, “Turning from tf-idf to tf-igm for term
weighting in text classification,” Expert Systems with Applications, vol. 66, pp. 245–
260, 2016.

[129] P. Wang, Y. Zhou, B. Sun, and W. Zhang, “Intelligent prediction of vulnerability
severity level based on text mining and xgbboost,” in 2019 Eleventh International
Conference on Advanced Computational Intelligence (ICACI). IEEE, 2019, pp. 72–
77.

[130] K. Liu, Y. Zhou, Q. Wang, and X. Zhu, “Vulnerability severity prediction with deep
neural network,” in 2019 5th International Conference on Big Data and Information
Analytics (BigDIA). IEEE, 2019, pp. 114–119.

[131] R. Sharma, R. Sibal, and S. Sabharwal, “Software vulnerability prioritization using
vulnerability description,” International Journal of System Assurance Engineering
and Management, vol. 12, no. 1, pp. 58–64, 2021.

[132] S. E. Sahin and A. Tosun, “A conceptual replication on predicting the severity of
software vulnerabilities,” in the Evaluation and Assessment on Software Engineering,
2019, pp. 244–250.

[133] S. Nakagawa, T. Nagai, H. Kanehara, K. Furumoto, M. Takita, Y. Shiraishi, T. Taka-
hashi, M. Mohri, Y. Takano, and M. Morii, “Character-level convolutional neural net-
work for predicting severity of software vulnerability from vulnerability description,”
IEICE Transactions on Information and Systems, vol. 102, no. 9, pp. 1679–1682,
2019.

[134] X. Zhang, H. Xie, H. Yang, H. Shao, and M. Zhu, “A general framework to understand
vulnerabilities in information systems,” IEEE Access, vol. 8, pp. 121 858–121 873,
2020.

[135] A. Khazaei, M. Ghasemzadeh, and V. Derhami, “An automatic method for cvss score
prediction using vulnerabilities description,” Journal of Intelligent & Fuzzy Systems,
vol. 30, no. 1, pp. 89–96, 2016.

[136] G. Spanos, A. Sioziou, and L. Angelis, “Wivss: a new methodology for scoring infor-
mation systems vulnerabilities,” in the 17th panhellenic conference on informatics,
2013, pp. 83–90.

[137] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural networks for text
classification,” in the AAAI Conference on Artificial Intelligence, vol. 29, no. 1, 2015.

[138] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[139] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” arXiv preprint arXiv:1509.01626, 2015.

[140] H. Chen, J. Liu, R. Liu, N. Park, and V. Subrahmanian, “Vase: A twitter-based
vulnerability analysis and score engine,” in 2019 IEEE International Conference on
Data Mining (ICDM). IEEE, 2019, pp. 976–981.

[141] A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mohaisen, “Cleaning the nvd:
Comprehensive quality assessment, improvements, and analyses,” arXiv preprint
arXiv:2006.15074, 2020.

140 REFERENCES

[142] ——, “Cleaning the nvd: Comprehensive quality assessment, improvements, and
analyses,” IEEE Transactions on Dependable and Secure Computing, 2021.

[143] J. A. Wang and M. Guo, “Vulnerability categorization using bayesian networks,” in
the sixth annual workshop on cyber security and information intelligence research,
2010, pp. 1–4.

[144] B. Shuai, H. Li, M. Li, Q. Zhang, and C. Tang, “Automatic classification for vul-
nerability based on machine learning,” in 2013 IEEE International Conference on
Information and Automation (ICIA). IEEE, 2013, pp. 312–318.

[145] S. Na, T. Kim, and H. Kim, “A study on the classification of common vulnerabilities
and exposures using naïve bayes,” in International Conference on Broadband and
Wireless Computing, Communication and Applications. Springer, 2016, pp. 657–
662.

[146] J. Ruohonen and V. Leppänen, “Toward validation of textual information retrieval
techniques for software weaknesses,” in International Conference on Database and
Expert Systems Applications. Springer, 2018, pp. 265–277.

[147] G. Huang, Y. Li, Q. Wang, J. Ren, Y. Cheng, and X. Zhao, “Automatic classification
method for software vulnerability based on deep neural network,” IEEE Access, vol. 7,
pp. 28 291–28 298, 2019.

[148] M. Aota, H. Kanehara, M. Kubo, N. Murata, B. Sun, and T. Takahashi, “Automation
of vulnerability classification from its description using machine learning,” in 2020
IEEE Symposium on Computers and Communications (ISCC). IEEE, 2020, pp.
1–7.

[149] E. Aghaei, W. Shadid, and E. Al-Shaer, “Threatzoom: Cve2cwe using hierarchical
neural network,” arXiv preprint arXiv:2009.11501, 2020.

[150] S. S. Das, E. Serra, M. Halappanavar, A. Pothen, and E. Al-Shaer, “V2w-bert: A
framework for effective hierarchical multiclass classification of software vulnerabil-
ities,” in 2021 IEEE 8th International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 2021, pp. 1–12.

[151] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “µvuldeepecker: A deep learning-based
system for multiclass vulnerability detection,” IEEE Transactions on Dependable and
Secure Computing, 2019.

[152] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and A. B. Bener, “Mining trends and
patterns of software vulnerabilities,” Journal of Systems and Software, vol. 117, pp.
218–228, 2016.

[153] Z. Lin, X. Li, and X. Kuang, “Machine learning in vulnerability databases,” in 2017
10th International Symposium on Computational Intelligence and Design (ISCID),
vol. 1. IEEE, 2017, pp. 108–113.

[154] Z. Han, X. Li, H. Liu, Z. Xing, and Z. Feng, “Deepweak: Reasoning common soft-
ware weaknesses via knowledge graph embedding,” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2018, pp. 456–466.

[155] H. S. Venter, J. H. Eloff, and Y. Li, “Standardising vulnerability categories,” Com-
puters & Security, vol. 27, no. 3-4, pp. 71–83, 2008.

REFERENCES 141

[156] S. Neuhaus and T. Zimmermann, “Security trend analysis with cve topic models,”
in 2010 IEEE 21st International Symposium on Software Reliability Engineering.
IEEE, 2010, pp. 111–120.

[157] V. Mounika, X. Yuan, and K. Bandaru, “Analyzing cve database using unsupervised
topic modelling,” in 2019 International Conference on Computational Science and
Computational Intelligence, 2019, pp. 72–77.

[158] M. Vanamala, X. Yuan, and K. Roy, “Topic modeling and classification of common
vulnerabilities and exposures database,” in 2020 International Conference on Artifi-
cial Intelligence, Big Data, Computing and Data Communication Systems (icABCD).
IEEE, 2020, pp. 1–5.

[159] W. Aljedaani, Y. Javed, and M. Alenezi, “Lda categorization of security bug reports
in chromium projects,” in the 2020 European Symposium on Software Engineering,
2020, pp. 154–161.

[160] M. A. Williams, S. Dey, R. C. Barranco, S. M. Naim, M. S. Hossain, and M. Akbar,
“Analyzing evolving trends of vulnerabilities in national vulnerability database,” in
2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018, pp.
3011–3020.

[161] M. A. Williams, R. C. Barranco, S. M. Naim, S. Dey, M. S. Hossain, and M. Akbar,
“A vulnerability analysis and prediction framework,” Computers & Security, vol. 92,
p. 101751, 2020.

[162] E. R. Russo, A. D Sorbo, C. A. Visaggio, and G. Canfora, “Summarizing vulnera-
bilities’ descriptions to support experts during vulnerability assessment activities,”
Journal of Systems and Software, vol. 156, pp. 84–99, 2019.

[163] M. B. Kursa, A. Jankowski, and W. R. Rudnicki, “Boruta–a system for feature
selection,” Fundamenta Informaticae, vol. 101, no. 4, pp. 271–285, 2010.

[164] NIST, “Software assurance reference dataset (sard).” [Online]. Available: https:
//samate.nist.gov/SRD

[165] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,”
ACM sigmod record, vol. 29, no. 2, pp. 1–12, 2000.

[166] T. Kohonen, “The self-organizing map,” the IEEE, vol. 78, no. 9, pp. 1464–1480,
1990.

[167] OWASP, “Open web application security project.” [Online]. Available: https:
//bit.ly/owasp_main

[168] S. M. Naim, A. P. Boedihardjo, and M. S. Hossain, “A scalable model for tracking
topical evolution in large document collections,” in 2017 IEEE International Confer-
ence on Big Data (Big Data). IEEE, 2017, pp. 726–735.

[169] R. C. Barranco, A. P. Boedihardjo, and M. S. Hossain, “Analyzing evolving stories
in news articles,” International Journal of Data Science and Analytics, vol. 8, no. 3,
pp. 241–256, 2019.

[170] S. Weerawardhana, S. Mukherjee, I. Ray, and A. Howe, “Automated extraction of
vulnerability information for home computer security,” in International Symposium
on Foundations and Practice of Security. Springer, 2014, pp. 356–366.

https://samate.nist.gov/SRD
https://samate.nist.gov/SRD
https://bit.ly/owasp_main
https://bit.ly/owasp_main

142 REFERENCES

[171] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, “Towards the detec-
tion of inconsistencies in public security vulnerability reports,” in 28th {USENIX}
Security Symposium, 2019, pp. 869–885.

[172] D. Gonzalez, H. Hastings, and M. Mirakhorli, “Automated characterization of soft-
ware vulnerabilities,” in 2019 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2019, pp. 135–139.

[173] NIST, “Vulnerability description ontology.” [Online]. Available: https://bit.ly/nist_
vdo

[174] H. Binyamini, R. Bitton, M. Inokuchi, T. Yagyu, Y. Elovici, and A. Shabtai, “An
automated, end-to-end framework for modeling attacks from vulnerability descrip-
tions,” arXiv preprint arXiv:2008.04377, 2020.

[175] ——, “A framework for modeling cyber attack techniques from security vulnerability
descriptions,” in the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, 2021, pp. 2574–2583.

[176] X. Ou, S. Govindavajhala, and A. W. Appel, “Mulval: A logic-based network security
analyzer,” in USENIX security symposium, vol. 8. Baltimore, MD, 2005, pp. 113–
128.

[177] H. Guo, Z. Xing, and X. Li, “Predicting missing information of key aspects in vul-
nerability reports,” arXiv preprint arXiv:2008.02456, 2020.

[178] H. Guo, S. Chen, Z. Xing, X. Li, Y. Bai, and J. Sun, “Detecting and augmenting
missing key aspects in vulnerability descriptions,” ACM Transactions on Software
Engineering and Methodology, 2021.

[179] E. Wåreus and M. Hell, “Automated cpe labeling of cve summaries with machine
learning,” in International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2020, pp. 3–22.

[180] S. Yitagesu, X. Zhang, Z. Feng, X. Li, and Z. Xing, “Automatic part-of-speech tag-
ging for security vulnerability descriptions,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 2021, pp. 29–40.

[181] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated
corpus of english: The penn treebank,” 1993.

[182] J. Sun, Z. Xing, H. Guo, D. Ye, X. Li, X. Xu, and L. Zhu, “Generating informative
cve description from exploitdb posts by extractive summarization,” arXiv preprint
arXiv:2101.01431, 2021.

[183] S. Horawalavithana, A. Bhattacharjee, R. Liu, N. Choudhury, L. O. Hall, and
A. Iamnitchi, “Mentions of security vulnerabilities on reddit, twitter and github,”
in IEEE/WIC/ACM International Conference on Web Intelligence, 2019, pp. 200–
207.

[184] H. Xiao, Z. Xing, X. Li, and H. Guo, “Embedding and predicting software security en-
tity relationships: A knowledge graph based approach,” in International Conference
on Neural Information Processing. Springer, 2019, pp. 50–63.

[185] L. B. Othmane, G. Chehrazi, E. Bodden, P. Tsalovski, and A. D. Brucker, “Time for
addressing software security issues: Prediction models and impacting factors,” Data
Science and Engineering, vol. 2, no. 2, pp. 107–124, 2017.

https://bit.ly/nist_vdo
https://bit.ly/nist_vdo

REFERENCES 143

[186] J. R. Finkel, T. Grenager, and C. D. Manning, “Incorporating non-local information
into information extraction systems by gibbs sampling,” in the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL’05), 2005, pp. 363–370.

[187] S. Özkan, “Cve details.” [Online]. Available: https://www.cvedetails.com

[188] SecurityTracker, “Securitytracker vulnerability database.” [Online]. Available:
https://securitytracker.com

[189] O. Project, “Openwall security advisories.” [Online]. Available: https://bit.ly/sec_
openwall

[190] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” arXiv preprint
arXiv:1802.05365, 2018.

[191] MITRE, “Common platform enumeration.” [Online]. Available: https://cpe.mitre.org

[192] L. ben Othmane, G. Chehrazi, E. Bodden, P. Tsalovski, A. D. Brucker, and P. Mis-
eldine, “Factors impacting the effort required to fix security vulnerabilities,” in In-
ternational Conference on Information Security. Springer, 2015, pp. 102–119.

[193] R. S. S. Kumar, J. Penney, B. Schneier, and K. Albert, “Legal risks of adversarial
machine learning research,” arXiv preprint arXiv:2006.16179, 2020.

[194] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time: an empirical study
of commercial software projects,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 1042–1051.

[195] S. Akbarinasaji, B. Caglayan, and A. Bener, “Predicting bug-fixing time: A replica-
tion study using an open source software project,” journal of Systems and Software,
vol. 136, pp. 173–186, 2018.

[196] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the Association for Computational Linguis-
tics, vol. 5, pp. 135–146, 2017.

[197] B. Sabir, F. Ullah, M. A. Babar, and R. Gaire, “Machine learning for detecting data
exfiltration: A review,” ACM Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–47,
2021.

[198] D. Hommersom, A. Sabetta, B. Coppola, and D. A. Tamburri, “Automated mapping
of vulnerability advisories onto their fix commits in open source repositories,” arXiv
preprint arXiv:2103.13375, 2021.

[199] Broadcom, “Symantec threat explorer.” [Online]. Available: https://bit.ly/
symantec_threats

[200] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Machine
Learning, vol. 109, no. 2, pp. 373–440, 2020.

[201] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A
survey on few-shot learning,” ACM Computing Surveys (CSUR), vol. 53, no. 3, pp.
1–34, 2020.

https://www.cvedetails.com
https://securitytracker.com
https://bit.ly/sec_openwall
https://bit.ly/sec_openwall
https://cpe.mitre.org
https://bit.ly/symantec_threats
https://bit.ly/symantec_threats

144 REFERENCES

[202] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” arXiv preprint
arXiv:1310.4546, 2013.

[203] T. H. M. Le, H. Chen, and M. A. Babar, “Deep learning for source code modeling
and generation: Models, applications, and challenges,” ACM Computing Surveys
(CSUR), vol. 53, no. 3, pp. 1–38, 2020.

[204] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, “A survey on neural network inter-
pretability,” arXiv preprint arXiv:2012.14261, 2020.

[205] S. Dzeroski and B. Zenko, “Is combining classifiers better than selecting the best
one?” in ICML, vol. 2002. Citeseer, 2002, p. 123e30.

[206] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,
pp. 273–297, 1995.

[207] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[208] A. Mazuera-Rozo, A. Mojica-Hanke, M. Linares-Vasquez, and G. Bavota, “Shal-
low or deep? an empirical study on detecting vulnerabilities using deep learning,”
in the 2021 IEEE/ACM 29th International Conference on Program Comprehension
(ICPC), 2021, pp. 276–287.

[209] J. Spring, E. Hatleback, A. Householder, A. Manion, and D. Shick, “Time to change
the cvss?” IEEE Security & Privacy, vol. 19, no. 2, pp. 74–78, 2021.

[210] T. Menzies, S. Majumder, N. Balaji, K. Brey, and W. Fu, “500+ times faster than
deep learning:(a case study exploring faster methods for text mining stackoverflow),”
in 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR). IEEE, 2018, pp. 554–563.

[211] J.-O. Palacio-Niño and F. Berzal, “Evaluation metrics for unsupervised learning al-
gorithms,” arXiv preprint arXiv:1905.05667, 2019.

[212] S. Raschka, “Model evaluation, model selection, and algorithm selection in machine
learning,” arXiv preprint arXiv:1811.12808, 2018.

[213] F. G. de Oliveira Neto, R. Torkar, R. Feldt, L. Gren, C. A. Furia, and Z. Huang,
“Evolution of statistical analysis in empirical software engineering research: Current
state and steps forward,” Journal of Systems and Software, vol. 156, pp. 246–267,
2019.

[214] Y. Jiao and P. Du, “Performance measures in evaluating machine learning based
bioinformatics predictors for classifications,” Quantitative Biology, vol. 4, no. 4, pp.
320–330, 2016.

[215] F. Li and V. Paxson, “A large-scale empirical study of security patches,” in 2017
ACM SIGSAC Conference on Computer and Communications Security, 2017, pp.
2201–2215.

[216] V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing of security vulnerabilities in
open source projects: A case study of apache http server and apache tomcat,” in
2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST).
IEEE, 2019, pp. 68–78.

REFERENCES 145

[217] B. Ampel, S. Samtani, S. Ullman, and H. Chen, “Linking common vulnerabilities
and exposures to the mitre att&ck framework: A self-distillation approach,” arXiv
preprint arXiv:2108.01696, 2021.

[218] P. Kuehn, M. Bayer, M. Wendelborn, and C. Reuter, “Ovana: An approach to an-
alyze and improve the information quality of vulnerability databases,” in The 16th
International Conference on Availability, Reliability and Security, 2021, pp. 1–11.

[219] H. Kekül, B. Ergen, and H. Arslan, “A multiclass hybrid approach to estimating
software vulnerability vectors and severity score,” Journal of Information Security
and Applications, vol. 63, p. 103028, 2021.

[220] M. R. Shahid and H. Debar, “Cvss-bert: Explainable natural language processing
to determine the severity of a computer security vulnerability from its description,”
in 2021 20th IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2021, pp. 1600–1607.

[221] J. Lyu, Y. Bai, Z. Xing, X. Li, and W. Ge, “A character-level convolutional neural
network for predicting exploitability of vulnerability,” in 2021 International Sym-
posium on Theoretical Aspects of Software Engineering (TASE). IEEE, 2021, pp.
119–126.

[222] I. Babalau, D. Corlatescu, O. Grigorescu, C. Sandescu, and M. Dascalu, “Severity
prediction of software vulnerabilities based on their text description,” in 2021 23rd
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC). IEEE, 2021, pp. 171–177.

[223] K. Charmanas, N. Mittas, and L. Angelis, “Predicting the existence of exploitation
concepts linked to software vulnerabilities using text mining,” in 25th Pan-Hellenic
Conference on Informatics, 2021, pp. 352–356.

[224] J. Yin, M. Tang, J. Cao, H. Wang, M. You, and Y. Lin, “Vulnerability exploitation
time prediction: an integrated framework for dynamic imbalanced learning,” World
Wide Web, vol. 25, no. 1, pp. 401–423, 2022.

[225] M. F. Bulut and J. Hwang, “Nl2vul: Natural language to standard vulnerability score
for cloud security posture management,” in 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD). IEEE, 2021, pp. 566–571.

[226] V. Ramesh, S. Abraham, P. Vinod, I. Mohamed, C. A. Visaggio, and S. Laudanna,
“Automatic classification of vulnerabilities using deep learning and machine learning
algorithms,” in 2021 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2021, pp. 1–8.

[227] G. Aivatoglou, M. Anastasiadis, G. Spanos, A. Voulgaridis, K. Votis, and D. Tzo-
varas, “A tree-based machine learning methodology to automatically classify software
vulnerabilities,” in 2021 IEEE International Conference on Cyber Security and Re-
silience (CSR). IEEE, 2021, pp. 312–317.

[228] P. Vishnu, P. Vinod, and S. Y. Yerima, “A deep learning approach for classifying vul-
nerability descriptions using self attention based neural network,” Journal of Network
and Systems Management, vol. 30, no. 1, pp. 1–27, 2022.

[229] Q. Wang, Y. Li, Y. Wang, and J. Ren, “An automatic algorithm for software vulner-
ability classification based on cnn and gru,” Multimedia Tools and Applications, pp.
1–22, 2022.

146 REFERENCES

[230] V. Yosifova, A. Tasheva, and R. Trifonov, “Predicting vulnerability type in common
vulnerabilities and exposures (cve) database with machine learning classifiers,” in
2021 12th National Conference with International Participation (ELECTRONICA).
IEEE, 2021, pp. 1–6.

[231] G. Yang, S. Dineen, Z. Lin, and X. Liu, “Few-sample named entity recognition for
security vulnerability reports by fine-tuning pre-trained language models,” in Inter-
national Workshop on Deployable Machine Learning for Security Defense. Springer,
2021, pp. 55–78.

[232] S. Yitagesu, Z. Xing, X. Zhang, Z. Feng, X. Li, and L. Han, “Unsupervised labeling
and extraction of phrase-based concepts in vulnerability descriptions,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 943–954.

[233] L. Yuan, Y. Bai, Z. Xing, S. Chen, X. Li, and Z. Deng, “Predicting entity rela-
tions across different security databases by using graph attention network,” in 2021
IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC).
IEEE, 2021, pp. 834–843.

[234] H. Guo, Z. Xing, S. Chen, X. Li, Y. Bai, and H. Zhang, “Key aspects augmentation of
vulnerability description based on multiple security databases,” in 2021 IEEE 45th
Annual Computers, Software, and Applications Conference (COMPSAC). IEEE,
2021, pp. 1020–1025.

[235] M.-T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, and W. Zaremba, “Addressing the
rare word problem in neural machine translation,” arXiv preprint arXiv:1410.8206,
2014.

[236] C.-C. Huang, H.-C. Yen, P.-C. Yang, S.-T. Huang, and J. S. Chang, “Using sublexical
translations to handle the oov problem in machine translation,” ACM Transactions
on Asian Language Information Processing (TALIP), vol. 10, no. 3, pp. 1–20, 2011.

[237] A. Liu and K. Kirchhoff, “Context models for oov word translation in low-resource
languages,” arXiv preprint arXiv:1801.08660, 2018.

[238] M. Razmara, M. Siahbani, R. Haffari, and A. Sarkar, “Graph propagation for para-
phrasing out-of-vocabulary words in statistical machine translation,” in the 51st An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2013, pp. 1105–1115.

[239] R. Future, “Exploiting old vulnerabilities.” [Online]. Available: https://www.
recordedfuture.com/exploiting-old-vulnerabilities/

[240] A. Kao and S. R. Poteet, Natural language processing and text mining. Springer
Science & Business Media, 2007.

[241] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in
python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[242] E. Loper and S. Bird, “Nltk: the natural language toolkit,” arXiv preprint
cs/0205028, 2002.

[243] M. F. Porter, “An algorithm for suffix stripping.” Program, vol. 14, no. 3, pp. 130–137,
1980.

https://www.recordedfuture.com/exploiting-old-vulnerabilities/
https://www.recordedfuture.com/exploiting-old-vulnerabilities/

REFERENCES 147

[244] C. Bergmeir and J. M. Benítez, “On the use of cross-validation for time series pre-
dictor evaluation,” Information Sciences, vol. 191, pp. 192–213, 2012.

[245] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “In-
dexing by latent semantic analysis,” Journal of the American society for information
science, vol. 41, no. 6, pp. 391–407, 1990.

[246] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” arXiv preprint arXiv:1607.01759, 2016.

[247] Kaggle, “Kaggle.” [Online]. Available: https://www.kaggle.com/

[248] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,” 2002.

[249] S. H. Walker and D. B. Duncan, “Estimation of the probability of an event as a
function of several independent variables,” Biometrika, vol. 54, no. 1-2, pp. 167–179,
1967.

[250] A. Basu, C. Walters, and M. Shepherd, “Support vector machines for text catego-
rization,” in 36th Annual Hawaii International Conference on System Sciences, 2003.
the. IEEE, 2003, pp. 7–pp.

[251] T. K. Ho, “Random decision forests,” in 3rd international conference on document
analysis and recognition, vol. 1. IEEE, 1995, pp. 278–282.

[252] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Occam’s razor,”
Information processing letters, vol. 24, no. 6, pp. 377–380, 1987.

[253] T. H. M. Le, T. T. Tran, and L. K. Huynh, “Identification of hindered internal
rotational mode for complex chemical species: A data mining approach with multi-
variate logistic regression model,” Chemometrics and Intelligent Laboratory Systems,
vol. 172, pp. 10–16, 2018.

[254] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs in
Statistics. Springer, 1992, pp. 196–202.

[255] D. Marutho, S. H. Handaka, E. Wijaya et al., “The determination of cluster number
at k-mean using elbow method and purity evaluation on headline news,” in 2018 in-
ternational seminar on application for technology of information and communication.
IEEE, 2018, pp. 533–538.

[256] R. Rehurek and P. Sojka, “Software framework for topic modelling with large cor-
pora,” in In the LREC 2010 Workshop on New Challenges for NLP Frameworks.
Citeseer, 2010.

[257] Facebook, “Pre-trained word vectors of fasttext.” [Online]. Available: https:
//github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

[258] Y. Hou, X. Ren, Y. Hao, T. Mo, and W. Li, “A security vulnerability threat classifi-
cation method,” in International Conference on Broadband and Wireless Computing,
Communication and Applications. Springer, 2017, pp. 414–426.

[259] Q. Liu and Y. Zhang, “Vrss: A new system for rating and scoring vulnerabilities,”
Computer Communications, vol. 34, no. 3, pp. 264–273, 2011.

[260] R. Sharma and R. Singh, “An improved scoring system for software vulnerability
prioritization,” in Quality, IT and Business Operations. Springer, 2018, pp. 33–43.

https://www.kaggle.com/
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

148 REFERENCES

[261] P. Johnson, R. Lagerström, M. Ekstedt, and U. Franke, “Can the common vul-
nerability scoring system be trusted? a bayesian analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 6, pp. 1002–1015, 2016.

[262] C.-C. Huang, F.-Y. Lin, F. Y.-S. Lin, and Y. S. Sun, “A novel approach to evalu-
ate software vulnerability prioritization,” Journal of Systems and Software, vol. 86,
no. 11, pp. 2822–2840, 2013.

[263] Y. Roumani, J. K. Nwankpa, and Y. F. Roumani, “Time series modeling of vulner-
abilities,” Computers & Security, vol. 51, pp. 32–40, 2015.

[264] M. Tang, M. Alazab, and Y. Luo, “Exploiting vulnerability disclosures: statistical
framework and case study,” in 2016 Cybersecurity and Cyberforensics Conference
(CCC). IEEE, 2016, pp. 117–122.

[265] S. M. Rajasooriya, C. P. Tsokos, and P. K. Kaluarachchi, “Cyber security: Nonlinear
stochastic models for predicting the exploitability,” Journal of information Security,
vol. 8, no. 2, pp. 125–140, 2017.

[266] P. K. Kaluarachchi, C. P. Tsokos, and S. M. Rajasooriya, “Non-homogeneous stochas-
tic model for cyber security predictions,” Journal of Information Security, vol. 9,
no. 1, pp. 12–24, 2017.

[267] N. R. Pokhrel, H. Rodrigo, C. P. Tsokos et al., “Cybersecurity: time series predictive
modeling of vulnerabilities of desktop operating system using linear and non-linear
approach,” Journal of Information Security, vol. 8, no. 04, p. 362, 2017.

[268] T. H. M. Le and M. A. Babar, “On the use of fine-grained vulnerable code statements
for software vulnerability assessment models,” arXiv preprint arXiv:2203.08417,
2022.

[269] M. Foundation, “Bugzilla issue tracking system.” [Online]. Available: https:
//www.bugzilla.org/

[270] R. Croft, A. Babar, and L. Li, “An investigation into inconsistency of software vul-
nerability severity across data sources,” in 2022 29th IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2022.

[271] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software devel-
opers use static analysis tools to find bugs?” in 2013 35th International Conference
on Software Engineering (ICSE). IEEE, 2013, pp. 672–681.

[272] B. Aloraini, M. Nagappan, D. M. German, S. Hayashi, and Y. Higo, “An empirical
study of security warnings from static application security testing tools,” Journal of
Systems and Software, vol. 158, p. 110427, 2019.

[273] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability iden-
tification by learning comprehensive program semantics via graph neural networks,”
arXiv preprint arXiv:1909.03496, 2019.

[274] W. Zheng, J. Gao, X. Wu, F. Liu, Y. Xun, G. Liu, and X. Chen, “The impact factors
on the performance of machine learning-based vulnerability detection: A comparative
study,” Journal of Systems and Software, vol. 168, p. 110659, 2020.

[275] G. Lin, W. Xiao, J. Zhang, and Y. Xiang, “Deep learning-based vulnerable function
detection: A benchmark,” in International Conference on Information and Commu-
nications Security, 2020, pp. 219–232.

https://www.bugzilla.org/
https://www.bugzilla.org/

REFERENCES 149

[276] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-grained inter-
pretations,” in the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2021.

[277] V. Nguyen, T. Le, O. De Vel, P. Montague, J. Grundy, and D. Phung, “Information-
theoretic source code vulnerability highlighting,” in 2021 International Joint Con-
ference on Neural Networks (IJCNN). IEEE, 2021, pp. 1–8.

[278] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: a deep learning-
based fine-grained vulnerability detector,” IEEE Transactions on Dependable and
Secure Computing, 2021.

[279] S. Wattanakriengkrai, P. Thongtanunam, C. Tantithamthavorn, H. Hata, and
K. Matsumoto, “Predicting defective lines using a model-agnostic technique,” IEEE
Transactions on Software Engineering, 2020.

[280] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code transformation learn-
ing for automated program repair,” in The ACM/IEEE 42nd International Confer-
ence on Software Engineering, 2020, pp. 602–614.

[281] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E. Hassan, “Finding
a needle in a haystack: Automated mining of silent vulnerability fixes,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2021.

[282] Atlassian, “Jira issue tracking system.” [Online]. Available: https://www.atlassian.
com/software/jira

[283] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework for using
deep learning to detect software vulnerabilities,” IEEE Transactions on Dependable
and Secure Computing, 2021.

[284] M. Weiser, “Program slicing,” IEEE Transactions on software engineering, no. 4, pp.
352–357, 1984.

[285] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont, “A manually-
curated dataset of fixes to vulnerabilities of open-source software,” in 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
IEEE, 2019, pp. 383–387.

[286] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target? a longitu-
dinal case study of just-in-time defect prediction,” IEEE Transactions on Software
Engineering, vol. 44, no. 5, pp. 412–428, 2017.

[287] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an end-to-end
deep learning framework for just-in-time defect prediction,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
34–45.

[288] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed
representations of code,” the ACM on Programming Languages, vol. 3, no. POPL,
pp. 1–29, 2019.

[289] T. H. M. Le, D. Hin, R. Croft, and M. A. Babar, “Deepcva: Automated commit-level
vulnerability assessment with deep multi-task learning,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 2021,
pp. 717–729.

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira

150 REFERENCES

[290] C. Rezk, Y. Kamei, and S. Mcintosh, “The ghost commit problem when identifying
fix-inducing changes: An empirical study of apache projects,” IEEE Transactions on
Software Engineering, 2021.

[291] W. G. Cochran, Sampling techniques. John Wiley & Sons, 2007.

[292] A. J. Viera, J. M. Garrett et al., “Understanding interobserver agreement: the kappa
statistic,” Fam med, vol. 37, no. 5, pp. 360–363, 2005.

[293] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and T. F. Bissyandé,
“Evaluating representation learning of code changes for predicting patch correctness
in program repair,” in 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2020, pp. 981–992.

[294] W. Zheng, Y. Jiang, and X. Su, “Vulspg: Vulnerability detection based on slice
property graph representation learning,” arXiv preprint arXiv:2109.02527, 2021.

[295] S. Salimi, M. Ebrahimzadeh, and M. Kharrazi, “Improving real-world vulnerability
characterization with vulnerable slices,” in The 16th ACM International Conference
on Predictive Models and Data Analytics in Software Engineering, 2020, pp. 11–20.

[296] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and
its use in optimization,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[297] S. Dashevskyi, A. D. Brucker, and F. Massacci, “A screening test for disclosed vulner-
abilities in foss components,” IEEE Transactions on Software Engineering, vol. 45,
no. 10, pp. 945–966, 2018.

[298] D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, and
L. Carin, “Baseline needs more love: On simple word-embedding-based models and
associated pooling mechanisms,” arXiv preprint arXiv:1805.09843, 2018.

[299] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang et al., “Codebert: A pre-trained model for programming and natural lan-
guages,” arXiv preprint arXiv:2002.08155, 2020.

[300] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words
with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[301] X. Zhou, D. Han, and D. Lo, “Assessing generalizability of codebert,” in 2021 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
2021, pp. 425–436.

[302] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed representations
of code changes,” in the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 518–529.

[303] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric re-
gression,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[304] T. H. M. Le, D. Hin, R. Croft, and M. A. Babar, “Puminer: Mining security posts
from developer question and answer websites with pu learning,” in the 17th Interna-
tional Conference on Mining Software Repositories, 2020, pp. 350–361.

REFERENCES 151

[305] H. Hanif, M. H. N. M. Nasir, M. F. Ab Razak, A. Firdaus, and N. B. Anuar, “The
rise of software vulnerability: Taxonomy of software vulnerabilities detection and
machine learning approaches,” Journal of Network and Computer Applications, p.
103009, 2021.

[306] T. Sonnekalb, T. S. Heinze, and P. Mäder, “Deep security analysis of program code,”
Empirical Software Engineering, vol. 27, no. 1, pp. 1–39, 2022.

[307] A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class im-
balance in classification performance metrics based on the binary confusion matrix,”
Pattern Recognition, vol. 91, pp. 216–231, 2019.

[308] M. Tomczak and E. Tomczak, “The need to report effect size estimates revisited. an
overview of some recommended measures of effect size,” Trends in Sport Sciences,
vol. 1, no. 21, pp. 19–25, 2014.

[309] A. Field, Discovering statistics using IBM SPSS statistics. sage, 2013.

[310] J. Cohen, Statistical power analysis for the behavioral sciences. Academic press,
2013.

[311] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s delta calculator: A non-
parametric effect size program for two groups of observations,” Universitas Psycho-
logica, vol. 10, no. 2, pp. 545–555, 2011.

[312] C. Treude and M. Wagner, “Predicting good configurations for github and stack
overflow topic models,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 2019, pp. 84–95.

[313] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, “The impact of class rebal-
ancing techniques on the performance and interpretation of defect prediction models,”
IEEE Transactions on Software Engineering, vol. 46, no. 11, pp. 1200–1219, 2018.

[314] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong, “Vuldeep-
ecker: A deep learning-based system for vulnerability detection,” arXiv preprint
arXiv:1801.01681, 2018.

[315] T. H. M. Le, R. Croft, D. Hin, and M. A. Babar, “A large-scale study of security
vulnerability support on developer q&a websites,” in Evaluation and Assessment in
Software Engineering, 2021, pp. 109–118.

[316] J. Kim, T. Kim, and E. G. Im, “Survey of dynamic taint analysis,” in 2014 4th IEEE
International Conference on Network Infrastructure and Digital Content. IEEE,
2014, pp. 269–272.

[317] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vulnerable soft-
ware components,” in The 14th ACM Conference on Computer and Communications
Security, 2007, pp. 529–540.

[318] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and cohesion metrics
as early indicators of vulnerabilities,” Journal of Systems Architecture, vol. 57, no. 3,
pp. 294–313, 2011.

[319] Y. Shin and L. Williams, “Can traditional fault prediction models be used for vul-
nerability prediction?” Empirical Software Engineering, vol. 18, no. 1, pp. 25–59,
2013.

152 REFERENCES

[320] Y. Tang, F. Zhao, Y. Yang, H. Lu, Y. Zhou, and B. Xu, “Predicting vulnerable
components via text mining or software metrics? an effort-aware perspective,” in
2015 IEEE International Conference on Software Quality, Reliability and Security.
IEEE, 2015, pp. 27–36.

[321] G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. De Vel, and P. Montague, “Cross-
project transfer representation learning for vulnerable function discovery,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3289–3297, 2018.

[322] V. Nguyen, T. Le, T. Le, K. Nguyen, O. DeVel, P. Montague, L. Qu, and D. Phung,
“Deep domain adaptation for vulnerable code function identification,” in 2019 Inter-
national Joint Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–8.

[323] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, and L. Karaçay, “Vul-
nerability prediction from source code using machine learning,” IEEE Access, vol. 8,
pp. 150 672–150 684, 2020.

[324] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng, L. Bian, and
Z. Wang, “Combining graph-based learning with automated data collection for code
vulnerability detection,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 1943–1958, 2020.

[325] Y. Ding, S. Suneja, Y. Zheng, J. Laredo, A. Morari, G. Kaiser, and B. Ray, “Velvet:
a novel ensemble learning approach to automatically locate vulnerable statements,”
in 2022 29th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2022.

[326] X. Duan, M. Ge, T. H. M. Le, F. Ullah, S. Gao, X. Lu, and M. A. Babar, “Au-
tomated security assessment for the internet of things,” in 2021 IEEE 26th Pacific
Rim International Symposium on Dependable Computing (PRDC). IEEE, 2021, pp.
47–56.

[327] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-centric and usage-
based analysis of known vulnerabilities in open-source software,” in 2018 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
2018, pp. 449–460.

[328] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a re-
ported bug,” in 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010). IEEE, 2010, pp. 1–10.

[329] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar,
“Vccfinder: Finding potential vulnerabilities in open-source projects to assist code
audits,” in the 22nd SIGSAC ACM Conference on Computer and Communications
Security, 2015, pp. 426–437.

[330] L. Yang, X. Li, and Y. Yu, “Vuldigger: A just-in-time and cost-aware tool for dig-
ging vulnerability-contributing changes,” in GLOBECOM 2017-2017 IEEE Global
Communications Conference. IEEE, 2017, pp. 1–7.

[331] L. G. A. Rodriguez, J. S. Trazzi, V. Fossaluza, R. Campiolo, and D. M. Batista,
“Analysis of vulnerability disclosure delays from the national vulnerability database,”
in Anais do I Workshop de Segurança Cibernética em Dispositivos Conectados. SBC,
2018.

REFERENCES 153

[332] A. D. Sawadogo, T. F. Bissyandé, N. Moha, K. Allix, J. Klein, L. Li, and Y. L.
Traon, “Learning to catch security patches,” arXiv preprint arXiv:2001.09148, 2020.

[333] F. Thung, D. Lo, L. Jiang, F. Rahman, P. T. Devanbu et al., “When would this bug
get reported?” in 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 2012, pp. 420–429.

[334] A. Bosu and J. C. Carver, “Peer code review in open source communities using
reviewboard,” in the ACM 4th Annual Workshop on Evaluation and Usability of
Programming Languages and Tools, 2012, pp. 17–24.

[335] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Investigating code review
practices in defective files: An empirical study of the qt system,” in 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories. IEEE, 2015, pp. 168–
179.

[336] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk, “Auto-
completing bug reports for android applications,” in the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 673–686.

[337] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo, “Patchnet: Hierarchical
deep learning-based stable patch identification for the linux kernel,” IEEE Transac-
tions on Software Engineering, 2019.

[338] S. Chowdhuri, T. Pankaj, and K. Zipser, “Multinet: Multi-modal multi-task learn-
ing for autonomous driving,” in 2019 IEEE Winter Conference on Applications of
Computer Vision. IEEE, 2019, pp. 1496–1504.

[339] A. Sabetta and M. Bezzi, “A practical approach to the automatic classification
of security-relevant commits,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp. 579–582.

[340] E. Sahal and A. Tosun, “Identifying bug-inducing changes for code additions,” in the
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, 2018, pp. 1–2.

[341] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Icml, 2010.

[342] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[343] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[344] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1–5, 2005.

[345] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia medica, vol. 22,
no. 3, pp. 276–282, 2012.

[346] H. Hata, C. Treude, R. G. Kula, and T. Ishio, “9.6 million links in source code
comments: Purpose, evolution, and decay,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 1211–1221.

154 REFERENCES

[347] Y. Fan, X. Xia, D. A. Da Costa, D. Lo, A. E. Hassan, and S. Li, “The impact of
changes mislabeled by szz on just-in-time defect prediction,” IEEE Transactions on
Software Engineering, 2019.

[348] D. Falessi, J. Huang, L. Narayana, J. F. Thai, and B. Turhan, “On the need of
preserving order of data when validating within-project defect classifiers,” Empirical
Software Engineering, vol. 25, no. 6, pp. 4805–4830, 2020.

[349] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and M. Harman,
“The importance of accounting for real-world labelling when predicting software vul-
nerabilities,” in 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2019, pp.
695–705.

[350] J. Gorodkin, “Comparing two k-category assignments by a k-category correlation
coefficient,” Computational Biology and Chemistry, vol. 28, no. 5-6, pp. 367–374,
2004.

[351] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[352] M. Pradel and K. Sen, “Deepbugs: A learning approach to name-based bug detec-
tion,” the ACM on Programming Languages, vol. 2, no. OOPSLA, pp. 1–25, 2018.

[353] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[354] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[355] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International Conference on Machine Learning.
PMLR, 2015, pp. 448–456.

[356] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[357] Y. Zhou and A. Sharma, “Automated identification of security issues from commit
messages and bug reports,” in the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, 2017, pp. 914–919.

[358] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin, “A comparative study of deep
learning-based vulnerability detection system,” IEEE Access, vol. 7, pp. 103 184–
103 197, 2019.

[359] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: syn-
thetic minority over-sampling technique,” Journal of Artificial Intelligence Research,
vol. 16, pp. 321–357, 2002.

[360] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-in-time defect pre-
diction,” Journal of Systems and Software, vol. 150, pp. 22–36, 2019.

[361] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering (ICSE). IEEE, 2018, pp. 933–944.

REFERENCES 155

[362] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,” in 2018
IEEE/ACM 26th International Conference on Program Comprehension (ICPC).
IEEE, 2018, pp. 200–210.

[363] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment and mitigation of
vulnerabilities in open source dependencies,” Empirical Software Engineering, vol. 25,
no. 5, pp. 3175–3215, 2020.

[364] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-in-time defect
prediction,” in 2015 IEEE International Conference on Software Quality, Reliability
and Security. IEEE, 2015, pp. 17–26.

[365] F. Camilo, A. Meneely, and M. Nagappan, “Do bugs foreshadow vulnerabilities? a
study of the chromium project,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. IEEE, 2015, pp. 269–279.

[366] F. Peters, T. T. Tun, Y. Yu, and B. Nuseibeh, “Text filtering and ranking for security
bug report prediction,” IEEE Transactions on Software Engineering, vol. 45, no. 6,
pp. 615–631, 2017.

[367] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports via text mining:
An industrial case study,” in 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). IEEE, 2010, pp. 11–20.

[368] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying the character-
istics of vulnerable code changes: An empirical study,” in the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014, pp. 257–
268.

[369] X. Chen, Y. Zhao, Z. Cui, G. Meng, Y. Liu, and Z. Wang, “Large-scale empirical
studies on effort-aware security vulnerability prediction methods,” IEEE Transac-
tions on Reliability, vol. 69, no. 1, pp. 70–87, 2019.

[370] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security questions do
developers ask? a large-scale study of stack overflow posts,” Journal of Computer
Science and Technology, vol. 31, no. 5, pp. 910–924, 2016.

[371] S. Bayati and M. Heidary, “Information security in software engineering, analysis
of developers communications about security in social q&a website,” in Pacific-Asia
Workshop on Intelligence and Security Informatics. Springer, 2016, pp. 193–202.

[372] T. Lopez, T. Tun, A. Bandara, L. Mark, B. Nuseibeh, and H. Sharp, “An anatomy
of security conversations in stack overflow,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS).
IEEE, 2019, pp. 31–40.

[373] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking about?
an analysis of topics and trends in stack overflow,” Empirical Software Engineering,
vol. 19, no. 3, pp. 619–654, 2014.

[374] S. Ahmed and M. Bagherzadeh, “What do concurrency developers ask about? a large-
scale study using stack overflow,” in the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, 2018, pp. 1–10.

156 REFERENCES

[375] C. Rosen and E. Shihab, “What are mobile developers asking about? a large scale
study using stack overflow,” Empirical Software Engineering, vol. 21, no. 3, pp. 1192–
1223, 2016.

[376] M. Bagherzadeh and R. Khatchadourian, “Going big: a large-scale study on what
big data developers ask,” in the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 432–442.

[377] A. A. Bangash, H. Sahar, S. Chowdhury, A. W. Wong, A. Hindle, and K. Ali, “What
do developers know about machine learning: a study of ml discussions on stack-
overflow,” in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 260–264.

[378] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do programmers discuss
about deep learning frameworks,” Empirical Software Engineering, vol. 25, no. 4, pp.
2694–2747, 2020.

[379] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory analysis of
software vulnerability life cycles,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 771–781.

[380] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure coding practices
in java: Challenges and vulnerabilities,” in the 40th International Conference on
Software Engineering, 2018, pp. 372–383.

[381] A. Rahman, E. Farhana, and N. Imtiaz, “Snakes in paradise?: Insecure python-
related coding practices in stack overflow,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp. 200–204.

[382] B. V. Hanrahan, G. Convertino, and L. Nelson, “Modeling problem difficulty and
expertise in stackoverflow,” in the ACM 2012 conference on Computer Supported
Cooperative Work Companion, 2012, pp. 91–94.

[383] T. Dey, A. Karnauch, and A. Mockus, “Representation of developer expertise in open
source software,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 2021.

[384] C. B. Seaman, “Qualitative methods in empirical studies of software engineering,”
IEEE Transactions on software engineering, vol. 25, no. 4, pp. 557–572, 1999.

[385] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A comprehensive study on
challenges in deploying deep learning based software,” in the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 750–762.

[386] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and answer
questions on the web?(nier track),” in the 33rd international conference on software
engineering, 2011, pp. 804–807.

[387] J. Bekker and J. Davis, “Learning from positive and unlabeled data: A survey,” arXiv
preprint arXiv:1811.04820, 2018.

[388] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt,
“Support vector method for novelty detection,” in Advances in neural information
processing systems, 2000, pp. 582–588.

REFERENCES 157

[389] L. M. Manevitz and M. Yousef, “One-class svms for document classification,” Journal
of machine Learning research, vol. 2, no. Dec, pp. 139–154, 2001.

[390] O. Mendsaikhan, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Identification of
cybersecurity specific content using the doc2vec language model,” in 2019 IEEE
43rd Annual Computer Software and Applications Conference (COMPSAC), vol. 1.
IEEE, 2019, pp. 396–401.

[391] M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in docker development: A
large-scale study using stack overflow,” in the 14th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM), 2020, pp. 1–11.

[392] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic coherence mea-
sures,” in the eighth ACM international conference on Web search and data mining,
2015, pp. 399–408.

[393] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and E. Shihab, “Challenges
in chatbot development: A study of stack overflow posts,” in the 17th International
Conference on Mining Software Repositories, 2020, pp. 174–185.

[394] M. Zahedi, R. N. Rajapakse, and M. A. Babar, “Mining questions asked about con-
tinuous software engineering: A case study of stack overflow,” in the Evaluation and
Assessment in Software Engineering, 2020, pp. 41–50.

[395] H. B. Mann, “Nonparametric tests against trend,” Econometrica: Journal of the
Econometric Society, pp. 245–259, 1945.

[396] W. R. Knight, “A computer method for calculating kendall’s tau with ungrouped
data,” Journal of the American Statistical Association, vol. 61, no. 314, pp. 436–439,
1966.

[397] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables
is stochastically larger than the other,” The annals of mathematical statistics, pp.
50–60, 1947.

[398] E. Database, “Exploit database.” [Online]. Available: www.exploit-db.com

[399] M. Zahedi, M. Ali Babar, and C. Treude, “An empirical study of security issues
posted in open source projects,” in the 51st Hawaii International Conference on
System Sciences, 2018.

[400] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk, “Toward deep
learning software repositories,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. IEEE, 2015, pp. 334–345.

[401] C. Elkan and K. Noto, “Learning classifiers from only positive and unlabeled data,”
in the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2008, pp. 213–220.

[402] F. Mordelet and J.-P. Vert, “A bagging svm to learn from positive and unlabeled
examples,” Pattern Recognition Letters, vol. 37, pp. 201–209, 2014.

[403] X. Li and B. Liu, “Learning to classify texts using positive and unlabeled data,” in
IJCAI, vol. 3, no. 2003, 2003, pp. 587–592.

www.exploit-db.com

158 REFERENCES

[404] D. H. Fusilier, M. Montes-y Gómez, P. Rosso, and R. G. Cabrera, “Detecting pos-
itive and negative deceptive opinions using pu-learning,” Information processing &
management, vol. 51, no. 4, pp. 433–443, 2015.

[405] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss,
“What makes a good bug report?” IEEE Transactions on Software Engineering,
vol. 36, no. 5, pp. 618–643, 2010.

[406] F. A. Bhuiyan, M. B. Sharif, and A. Rahman, “Security bug report usage for software
vulnerability research: A systematic mapping study,” IEEE Access, vol. 9, pp. 28 471–
28 495, 2021.

[407] X. Wu, W. Zheng, X. Xia, and D. Lo, “Data quality matters: A case study on data
label correctness for security bug report prediction,” IEEE Transactions on Software
Engineering, 2021.

[408] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Limsettho, K. Fu-
jino, H. Hata, A. Ihara, and K. Matsumoto, “A dataset of high impact bugs:
Manually-classified issue reports,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. IEEE, 2015, pp. 518–521.

[409] Y. Chen, A. E. Santosa, A. M. Yi, A. Sharma, A. Sharma, and D. Lo, “A machine
learning approach for vulnerability curation,” in the 17th International Conference
on Mining Software Repositories, 2020, pp. 32–42.

[410] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood,
and M. McConley, “Automated vulnerability detection in source code using deep
representation learning,” in 2018 17th IEEE international conference on machine
learning and applications (ICMLA). IEEE, 2018, pp. 757–762.

[411] X. Duan, J. Wu, S. Ji, Z. Rui, T. Luo, M. Yang, and Y. Wu, “Vulsniper: Focus your
attention to shoot fine-grained vulnerabilities,” in IJCAI, 2019, pp. 4665–4671.

[412] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck, “Evaluating explanation meth-
ods for deep learning in security,” in 2020 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2020, pp. 158–174.

[413] D. Zou, Y. Zhu, S. Xu, Z. Li, H. Jin, and H. Ye, “Interpreting deep learning-based
vulnerability detector predictions based on heuristic searching,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 30, no. 2, pp. 1–31, 2021.

[414] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers
& Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[415] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Adversarial machine learning
attacks and defense methods in the cyber security domain,” ACM Computing Surveys
(CSUR), vol. 54, no. 5, pp. 1–36, 2021.

[416] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does machine learning change
software development practices?” IEEE Transactions on Software Engineering, 2019.

[417] J. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Is using deep learning
frameworks free? characterizing technical debt in deep learning frameworks,” in
the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Society, 2020, pp. 1–10.

	List of Figures
	List of Tables
	Abstract
	Declaration of Authorship
	Acknowledgements
	Dedication
	1 Introduction
	1.1 Problem Statement and Research Objectives
	1.2 Thesis Overview and Contributions
	1.3 Related Publications
	1.4 Thesis Organization

	2 Literature Review on Data-Driven Software Vulnerability Assessment
	2.1 Introduction
	2.2 Overview of the Literature Review
	2.2.1 Scope
	2.2.2 Methodology
	2.2.3 Taxonomy of Data-Driven Software Vulnerability Assessment

	2.3 Exploitation Prediction
	2.3.1 Summary of Primary Studies
	2.3.1.1 Exploit Likelihood
	2.3.1.2 Exploit Time
	2.3.1.3 Exploit Characteristics

	2.3.2 Theme Discussion

	2.4 Impact Prediction
	2.4.1 Summary of Primary Studies
	2.4.1.1 Confidentiality, Integrity, Availability, and Scope
	2.4.1.2 Custom Vulnerability Consequences

	2.4.2 Theme Discussion

	2.5 Severity Prediction
	2.5.1 Summary of Primary Studies
	2.5.1.1 Severe vs. Non-Severe
	2.5.1.2 Severity Levels
	2.5.1.3 Severity Score

	2.5.2 Theme Discussion

	2.6 Type Prediction
	2.6.1 Summary of Primary Studies
	2.6.1.1 Common Weakness Enumeration (CWE)
	2.6.1.2 Custom Vulnerability Types

	2.6.2 Theme Discussion

	2.7 Miscellaneous Tasks
	2.7.1 Summary of Primary Studies
	2.7.1.1 Vulnerability Information Retrieval
	2.7.1.2 Cross-Source Vulnerability Patterns
	2.7.1.3 Vulnerability Fixing Effort

	2.7.2 Theme Discussion

	2.8 Analysis of Data-Driven Approaches for Software Vulnerability Assessment
	2.8.1 Data Sources
	2.8.2 Model Features
	2.8.3 Prediction Models
	2.8.4 Evaluation Techniques
	2.8.5 Evaluation Metrics

	2.9 Chapter Summary
	2.10 Appendix - Ever-Growing Literature on Data-Driven SV Assessment

	3 Automated Report-Level Software Vulnerability Assessment with Concept Drift
	3.1 Introduction
	3.2 Background
	3.3 The Proposed Approach
	3.3.1 Approach Overview
	3.3.2 Text Preprocessing of SV Descriptions
	3.3.3 Model Selection with Time-based k-Fold Cross-Validation
	3.3.4 Feature Aggregation Algorithm

	3.4 Experimental Design and Setup
	3.4.1 Research Questions
	3.4.2 Dataset
	3.4.3 Machine Learning Models for Report-Level SV Assessment
	3.4.4 Evaluation Metrics

	3.5 Experimental Results and Discussion
	3.5.1 RQ1: Is Our Time-Based Cross-Validation More Effective Than a Non-Temporal Method to Handle Concept Drift in The Model Selection Step for Report-Level SV Assessment?
	3.5.2 RQ2: Which are the Optimal Models for Multi-Classification of Each SV Characteristic?
	3.5.3 RQ3: How Effective is Our Character-Word Model to Perform Automated Report-Level SV Assessment with Concept Drift?
	3.5.4 RQ4: To What Extent Can Low-Dimensional Model Retain the Original Performance?

	3.6 Threats to Validity
	3.7 Related Work
	3.7.1 Report-Level SV Assessment
	3.7.2 Temporal Modeling of SVs

	3.8 Chapter Summary
	3.9 Appendix - SVs with All Out-of-Vocabulary Words

	4 Automated Function-Level Software Vulnerability Assessment
	4.1 Introduction
	4.2 Background and Motivation
	4.3 Research Questions
	4.4 Research Methodology
	4.4.1 Data Collection
	4.4.2 Vulnerable Code Context Extraction
	4.4.3 Code Feature Generation
	4.4.4 Data-Driven SV Assessment Models
	4.4.5 Model Evaluation

	4.5 Results
	4.5.1 RQ1: Are Vulnerable Code Statements More Useful Than Non-Vulnerable Counterparts for SV Assessment Models?
	4.5.2 RQ2: To What Extent do Different Types of Context of Vulnerable Statements Contribute to SV Assessment Performance?
	4.5.3 RQ3: Does Separating Vulnerable Statements and Context to Provide Explicit Location of SVs Improve Assessment Performance?

	4.6 Discussion
	4.6.1 Function-Level SV Assessment: Baseline Models and Beyond
	4.6.2 Threats to Validity

	4.7 Related Work
	4.7.1 Code Granularities of SV Detection
	4.7.2 Data-Driven SV Assessment

	4.8 Chapter Summary

	5 Automated Commit-Level Software Vulnerability Assessment
	5.1 Introduction
	5.2 Background and Motivation
	5.2.1 Vulnerability in Code Commits
	5.2.2 Commit-Level SV Assessment with CVSS
	5.2.3 Feature Extraction from Commit Code Changes

	5.3 The DeepCVA Model
	5.3.1 Commit Preprocessing, Context Extraction & Tokenization
	5.3.2 Feature Extraction with Deep AC-GRU
	5.3.3 Commit-Level SV Assessment with Multi-task Learning

	5.4 Experimental Design and Setup
	5.4.1 Datasets
	5.4.2 Evaluation Metrics
	5.4.3 Hyperparameter and Training Settings of DeepCVA
	5.4.4 Baseline Models

	5.5 Research Questions and Experimental Results
	5.5.1 RQ1: How does DeepCVA Perform Compared to Baseline Models for Commit-level SV Assessment?
	5.5.2 RQ2: What are the Contributions of the Main Components in DeepCVA to Model Performance?
	5.5.3 RQ3: What are the Effects of Class Rebalancing Techniques on Model Performance?

	5.6 Discussion
	5.6.1 DeepCVA and Beyond
	5.6.2 Threats to Validity

	5.7 Related Work
	5.7.1 Data-Driven SV Prediction and Assessment
	5.7.2 SV Analytics in Code Changes

	5.8 Chapter Summary

	6 Collection and Analysis of Developers' Software Vulnerability Concerns on Question and Answer Websites
	6.1 Introduction
	6.2 Related Work
	6.2.1 Topic Modeling on Q&A Websites
	6.2.2 SV Assessment Using Open Sources

	6.3 Research Method
	6.3.1 Research Questions
	6.3.2 Software Vulnerability Post Collection
	6.3.3 Topic Modeling with LDA

	6.4 Results
	6.4.1 RQ1: What are SV Discussion Topics on Q&A Sites?
	6.4.2 RQ2: What are the Popular and Difficult SV Topics on Q&A Sites?
	6.4.3 RQ3: What is the Level of Expertise to Answer SV Questions on Q&A Sites?
	6.4.4 RQ4: What Types of Answers are Given to SV Questions on Q&A Sites?

	6.5 Discussion
	6.5.1 SV Discussion Topics on Q&A Sites vs. Existing Security Taxonomies
	6.5.2 Implications for (Data-Driven) SV Assessment
	6.5.3 Threats to Validity

	6.6 Chapter Summary
	6.7 Appendix - PUMiner Overview
	6.7.1 PUMiner - A Context-aware Two-stage PU Learning Model for Retrieving Security Q&A Posts

	7 Conclusions and Future Work
	7.1 Summary of Contributions and Findings
	7.1.1 A Systematization of Knowledge of Data-Driven SV Assessment
	7.1.2 Automated Report-Level Assessment for Ever-Increasing SVs
	7.1.3 Automated Early SV Assessment using Code Functions
	7.1.4 Automated Just-in-Time SV Assessment using Code Commits
	7.1.5 Insights of Developers' Real-World Concerns on Question and Answer Websites for Data-Driven SV Assessment

	7.2 Opportunities for Future Research
	7.2.1 Integration of SV Data on Issue Tracking Systems
	7.2.2 Improving Data Efficiency for Data-Driven SV Assessment
	7.2.3 Customized Data-Driven SV Assessment
	7.2.4 Enhancing Interpretability of SV Assessment Models
	7.2.5 Data-Driven SV Assessment in Data-Driven Systems

	References

