U8 chuce ul\l‘

THE UNIVERSITY

o ADELAIDE

Machine Learning Approaches to
Automated Mechanism Design for Public

Project Problem

Guanhua Wang

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY
The University of Adelaide

June 26, 2022

Contents

Abstract

List of Abbreviations

Declaration of Authorship

Acknowledgements

Publications

1 Introduction

1.1 Public Project Mechanism Design Motivation and Research Challenges

1.1.1
1.1.2

1.1.3

Unknown Feasible/Optimal Mechanism Characterizations
Neural Network Mechanism Design Challenges for Public Project
Problems

High Variety of Public Project Problems

1.2 Research Summary

1.2.1
1.2.2

1.2.3

Summary of Public Project Problem Variants
Summary of Mechanism Constraints and Objectives

Contributions and Outlines of Individual Chapters

2 Literature Review and Definitions

2.1 Mechanism Design

2.1.1
2.1.2
2.1.3

2.14

Mechanism Properties,
Analytical Mechanism Design
Automated Mechanism Design

Classic Mechanisms

2.2 Machine Learning Methods for Automated Mechanism Design

iii

xi

xiii

XV

xvii

xix

© o o O O

v

2.2.1 Evolutionary Computation

2.2.2 Artificial Neural Network

3 Mechanism Design for Public Projects via Neural Networks

3.1
3.2
3.3

3.4

3.5
3.6

Introduction oo
Model Description
Characterizations and Bounds
3.3.1 Nonexcludable Mechanism Characterization
3.3.2 Excludable Mechanism Characterization
3.3.3 Nomnexcludable Public Project Analysis
3.3.4 Excludable Public Project
Mechanism Design vs Neural Networks
3.4.1 Mechanism Design via Neural Networks
3.4.2 Network Structure L
3.4.3 Cost Function
3.4.4 Supervision as Initialization
Experiments o

Chapter Summary

4 Public Project with Minimum Expected Release Delay

4.1
4.2
4.3
4.4
4.5
4.6

4.7

Introductiono
Model Description
Single Deadline Mechanism
Max-Delay: Asymptotic Optimality
Sum-Delay: Asymptotic Optimality
Automated Mechanism Design for Smaller Number of Agents
4.6.1 Multiple Deadline Mechanisms
4.6.2 Automated Mechanism Design via Evolutionary Computation .
4.6.3 Experiments. o

Chapter Summary

5 Redistribution in Public Project Problems via Neural Networks

5.1

Introduction

29
29
34
35
35
36
38
42
47
47
48
50
54
95
59

61
61
64
66
68
71
75
75
76
80
81

83

5.1.1 VCG Redistribution Mechanisms 83
5.1.2 Designing VCG Redistribution Mechanisms via Neural Networks 85

5.1.3 Improved Neural Networks for Designing VCG Redistribution

Mechanisms for the Public Project Problem 87

5.2 Model Description 90
5.2.1 Worst-case Optimal Mechanism 90
5.2.2 Optimal-in-Expectation Mechanism 91

5.3 Worst-case Optimal Mechanism 92
5.3.1 Network Architecture 92
5.3.2 Details of the Networks and Evaluations 93
5.3.3 Loss Function Lo oo 100

5.4 Optimal-in-Expectation Mechanism 101
5.4.1 Feed Prior Distribution into Loss Function 101
5.4.2 Loss Function o 103

5.5 Experiments and Results o0, 104
5.5.1 Experiment settings00 104
552 Results 105

5.6 Chapter Summary e 108
Revenue-Maximizing Markets for Zero-Day Exploits 109
6.1 Introduction 109
6.1.1 Zero-day Exploit Markets 110
6.1.2 Problem Description 110
6.1.3 Affine Maximizer Auctions Model Description 113

6.2 Optimizing Affine Maximizer Auctions via Neural Networks 115

6.3 Optimizing Affine Maximizer Auctions via Evolutionary Computation 118

6.4 Experiments. 120

6.4.1 Comparison of different AMA solution techniques 124
6.5 Chapter Summary 126
Conclusion 127
7.1 SUMMATY . . . o v ot e e 127

7.2 Future Work 128

vi

Bibliography 131

vii

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3

6.4
6.5

A typical mechanism payoff structure 3
A typical mechanism structure 17
Manisha’s network model oo L 27
Experiment result: Effect of distribution info on training 56
Experiment result: Supervision to different manual mechanisms 57
Experiment result: Maximizing agents’ welfare 58
Genetic algorithm: Crossover 79
Genetic algorithm: Mutation 79
Genetic algorithm: Neighborhood search 79

Manisha’s neural network structure (Manisha, Jawahar, and Gujar, 2018) 86

Our neural network architecture for worst-case optimal scenarios . . . 92
Experiment result: Use vs not use GAN 94
Experiment result: Different dimension reduction methods 97
Experiment result: Speed of dimension reduction 98
Experiment result: Use vs not use dimension reduction 99
Experiment result: Feed vs not feed distribution 102
Neural network representation of the a; when &£ = 1000 117
Experiment result: Ending time t* function 121

Experiment result: Total payment, ending time t*, and a(t) via neural
network 122
Experiment result: Neural network training process 123
Experiment result: Total payment and ending time t* via evolutionary

computation 124

X

List of Tables

1.1
1.2

3.1
3.2

4.1

5.1
5.2

5.3
5.4

6.1

Mechanism Constraints and Objectives for Each Chapter 10

Mechanism Families and Machine Learning Techniques used in Each

Chapter e 11
Public Project Model Variants for Each Chapter 29
Example Log-Concave Distributions 39

Experiment result: Our methods’ sum-delay and max-delay vs state of

the art e 80

Experiment setting: Test data size for differentn 104

Experiment result: GAN+MLP Compare with state of the art for worst

CASE v v e e e e e e e e e e e e e e e e e e 106
Experiment setting: « for Different test size (n =10) 106
Experiment result: Our result for optimal-in-expectation scenario . . 107

Experiment result: Evolutionary computation’s results 124

xi

University of Adelaide

Abstract

Machine Learning Approaches to Automated Mechanism Design for

Public Project Problem

by GUANHUA WANG

Mechanism design is a central research branch in microeconomics. An effective mech-
anism can significantly improve performance and efficiency of social decisions under
desired objectives, such as to maximize social welfare or to maximize revenue for
agents.

However, mechanism design is challenging for many common models including the
public project problem model which we study in this thesis. A typical public project
problem is a group of agents crowdfunding a public project (e.g., building a bridge).
The mechanism will decide the payment and allocation for each agent (e.g., how much
the agent pays, and whether the agent can use it) according to their valuations. The
mechanism can be applied to various economic scenarios, including those related to
cyber security. There are different constraints and optimized objectives for different
public project scenarios (sub-problems), making it unrealistic to design a universal
mechanism that fits all scenarios, and designing mechanisms for different settings
manually is a taxing job. Therefore, we explore automated mechanism design (AMD)
(Sandholm, 2003) of public project problems under different constraints.

In this thesis, we focus on the public project problem, which includes many sub-
problems (excludable/non-excludable, divisible/indivisible, binary/non-binary). We
study the classical public project model and extend this model to other related areas
such as the zero-day exploit markets. For different sub-problems of the public project
problem, we adopt different novel machine learning techniques to design optimal or

near-optimal mechanisms via automated mechanism design.

http://www.adelaide.edu.au

xii

We evaluate our mechanisms by theoretical analysis or experimentally comparing
our mechanisms against existing mechanisms. The experiments and theoretical re-
sults show that our mechanisms are better than state-of-the-art automated or manual

mechanisms.

List of Abbreviations

AMD

GAN

MLP

AMA

LP

IR

SP

SF

DP

PORF

DSIC

CEC

CDF

PDF

SCS

NN

TGA

ATGA

VCG

UB

Automated mechanism design

Generative adversarial network

Multi-layer perceptions

Affine maximizer auctions (Likhodedov and Sandholm, 2005)
Linear programming

Individual rationality

Strategy-proofness

Straight-forwardness (Assumption 6.3)

Dynamic programming

Price-oriented rationing-free (Yokoo, Sakurai, and Terada, 2002)
Dominant-strategy incentive compatible

Conservative equal cost mechanism

Cumulative distribution function

Probability density function

Serial cost sharing mechanism

Neural network

Truthful genetic algorithm (In Chapter 4)

Approximately truthful genetic algorithm (In Chapter 4)
Vickrey-Clarke-Groves mechanism

Upper bound

xiii

XV

Declaration of Authorship

I certify that this work contains no material which has been accepted for the
award of any other degree or diploma in my name, in any university or other tertiary
institution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been made in
the text. In addition, I certify that no part of this work will, in the future, be used in
a submission in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide and where
applicable, any partner institution responsible for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis re-
sides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to

restrict access for a period of time.

Guanhua Wang

December 2021

Acknowledgements

Firstly, I want to thank my supervisor Dr. Mingyu Guo. I am honorable working
with him in these three years. I very much appreciate his help. When I stock in no
research inspiration, he can always figure it out and find a suitable way for me to
solve the problems. Mingyu is a humble scholar. His research foresight and research

inspiration is lifelong treasure for me.

I would thank Dr. Wei Zhang, and professor Muhammad Ali Babar. They provide
some suggestions and comments that helped me to significantly improve the content

of this thesis and papers.

And from my Ph.D. role, I also thank my collaborators, lab meta, and my friends
for the help with the papers. I would like to mention Ba-Dung Le, Runqi Guo, Yuko
Sakurai, Wuli Zuo, Xie Yue, Zhigang Lu for many useful discussions. My study area is
not a hot area in this university. Thanks, you give me many useful discussions. Good
luck to you in the future. And I will thank Wuli Zuo for checking and correcting my

grammar mistakes.

I also want to thank my parents and my grandparents for financially supporting
me during my Ph.D. study. And because of Covid-19, it is a hard time to connect

you only on the internet. Hopefully, we can reunion soon after Covid-19.

Finally, I will thank the university and its staff. They provide a good environment

for my research.

Xix

Publications

This thesis is based on the following research papers that have been published in

peer-reviewed conferences or journals:

e Guanhua Wang, Runqi Guo, Yuko Sakurai, Muhammad Ali Babar and Mingyu
Guo. Mechanism Design for Public Projects via Neural Networks. In Proceed-
ings of the 20th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2021, Conference). (CORE Rank: A*)

e Guanhua Wang, Mingyu Guo. Public Project with Minimum Expected Re-
lease Delay. In the 18th Pacific Rim International Conference on Artificial In-

telligence (PRICAI, Conference) 2021. (CORE Rank: B)

e Guanhua Wang, Wuli Zuo, Mingyu Guo. Redistribution in Public Project
Problems via Neural Networks. In the 20th IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT, Con-
ference), Melbourne, Australia, 2021. (CORE Rank: B)

e Mingyu Guo, Guanhua Wang, Hideaki Hata, M. Ali Babar. Revenue-Maximizing
Markets for Zero-Day Exploits. In Autonomous Agents and Multi-Agent Sys-
tems (AAMAS, Journal) 35, 36, 2021. (CORE Rank: A)

XX

Other research paper that has been published in peer-reviewed conferences but

not used in this thesis:

e Ba-Dung Le; Guanhua Wang; Mehwish Nasim; Muhammad Ali Babar, "Gath-
ering Cyber Threat Intelligence from Twitter Using Novelty Classification," 2019
International Conference on Cyberworlds (CW, Conference), 2019, pp. 316-323,
(CORE Rank: B)

Chapter 1

Introduction

Mechanism design is a fundamental and important research area in economics. Since
2000, the Nobel Memorial Prize in Economic Sciences has been twice awarded for
mechanism design. Nobel Memorial Prize 2007 in Economics was awarded to Leonid
Hurwicz, Eric S. Maskin, and Roger B. Myerson for laying the foundations of mech-
anism design theory (Drobietz, Loerbroks, and Hansson, 2021). Then the Prize
2020 was awarded to Paul Milgrom and Robert Wilson for improving auction the-
ory (Janssen, 2020). Mechanism design takes an objective-first approach to design
economic mechanisms or incentives, toward desired objectives, in strategic settings,

where players are individual rational (Lee, 2016).

Mechanism design theory has applications in a number of computer science sub-
areas. Mechanism design studies how to make social decisions when we need to take
individual preferences into consideration. Many problems in the computer science
domain are related to mechanism design. For example, the popularity of e-commerce
leads to a long list of new Internet-based markets, such as Advertisement auctions
and blockchains. Besides new markets, many sub-areas of computer science involve
mechanism design problems, such as multi-agent coordination in multiagent systems,
distributed computing, and almost all domains involving competition (i.e., cyber secu-
rity) and collaboration (i.e., federated machine learning and multiagent reinforcement
learning). Furthermore, the latest development in computational techniques also leads
to new development of economic results. The main topic of this thesis is along this
line (i.e., using machine learning to develop new mechanisms). In this thesis, there is

also discussion on applying mechanism design theory to cyber security.

2 Chapter 1. Introduction

This thesis focuses on the public project problem. To illustrate the public project
model, we present the following example. Suppose there are n households (often re-
ferred to as n agents) living in a community. They plan to build a public project
(a project shared by all households, e.g., a swimming pool). We assume that the
project costs 1 dollar (without loss of generality). These agents plan to crowdfund
this swimming pool. Only those who pay will have access. Every agent has a different
valuation for the swimming pool, which is private information. We assume that agent
1’s valuation for the swimming pool is v;. v; is the maximum amount agent 7 is willing
to pay to contribute to the pool/access the pool. A mechanism (social decision rule)
maps the agents’ preferences (i.e., the v;) to the social decision (i.e., who can access
the pool and how much each agent pays). One example design goal is to design a
crowdfunding rule that maximizes the number of agents that can access the pool (i.e.,

in expectation with respect to the prior distributions of the v;).

One example mechanism is simply to ask every agent to pay an equal share (%)
If any agent disagrees, then we simply cancel the project. This way, no agents can
benefit by lying (disagree with the proposed payment when the agent can afford it,
or agree with the proposed payment when the agent cannot afford it) and the total
payment collected is exactly 1, which meets the project cost (or 0 when the project is
cancelled). Of course, this rule is not ideal because as long as there is one agent whose
value is lower than %, then the project is not built. Given the goal of maximizing the
number of agents who can consume the project, we want a rule that charges different
agents different amounts (i.e., only agents who have high values for the pool need to
pay more — we need to identify agents who can afford to pay more and force them to

pay more).

The above task isn’t actually easy, because we are designing a function (the crowd-
funding social decision rule) that maps an input vector of dimension n (the v;) to an
output vector that describes every agent’s allocation and payment (output dimension
is 2n). Furthermore, not all functions are feasible. It is a difficult task in itself to
describe what feasible functions look like. We may add a constraint that is, for ex-

ample, “no manipulation” (i.e., if an agent can afford to pay a high payment, then

Chapter 1. Introduction 3

we don’t want this agent to pretend that her value is low by reporting a low value —
recall that the agents’ preferences are private information). It is difficult to mathe-
matically derive the set of all functions that prevent manipulation and this is just for
one mechanism design constraint. Later on in this thesis, we will formalize commonly

used constraints in mechanism design.

In what follows, we present a timeline of mechanism design research.

Mechanism design theory originated from Hurwicz’s pioneering work in 1960 (Hur-
wicz, 1960). For the general problem, it discusses whether and how to design an eco-
nomic mechanism (such as an auction) for any given economic or social goal under
decision-making conditions (such as incentive compatibility). Major mechanisms are
under the incentive compatibility (IC) constraint to align the personal interests of

economic participants with the mechanism design goals.

In 1967, Harsanyi (Harsanyi, 1967) defined the mechanism as a game of informa-
tion involving the agents. The agents receive secret "messages" containing information
relevant to payoffs. For example, a message may contain information about their pref-
erences or the quality of a good for sale. This information is called the agent’s "type".
Agents then report a type to buy the goods. The reported types can be strategic false
valuations or true valuations. After reporting, the agents are allocated according to
the mechanism and are asked to pay accordingly (Figure 1.1). Mechanisms align the
personal interests of agents with the mechanism design goal by encouraging agents to

reveal their true valuations.

Mechanism Payment

~ Allocation
Valuations (

J/

FIGURE 1.1. A typical mechanism payoff structure.

In 1981, Myerson et al. (Myerson, 1981) obtained the optimal auction mechanism

4 Chapter 1. Introduction

for single-item auctions. Since then, intense research has been carried out to solve
optimal auctions in different settings. However, after four decades, for multi-agent
or multi-item revenue-maximizing auctions, the optimal auctions remain unknown
(Curry, Sandholm, and Dickerson, 2022). When it comes to the specific context of
public project problems, designing a multi-agent mechanism meets more difficulties
due to lack of characterisations of feasible mechanisms, as well as the variety of design
objectives and the problem’s high-dimension (when the number of agents is large)
(Maghsoudlou, Afshar-Nadjafi, and Niaki, 2017; Carroll, 2019). For example, when
we crowdfund a public project (i.e., a piece of software), the project could be non-
excludable (the software is open source, therefore can be used by everyone, including
the non-paying agents) or excludable (the software can only be used by agents who
pay), indivisible (the software is a one-time sale for all agents) or divisible (the soft-
ware is a subscription-based and an agent may enjoy “a fraction of the software” —i.e.,

subscribe half of the time).

It is difficult to analytically design public project mechanisms considering the
aforementioned difficulties. We try to automatically design optimal or near-optimal
mechanisms for the public project problem via machine learning methods. We propose
several neural network training techniques for designing public project mechanisms,
which also have the potential to be generalized to other mechanism design models. Be-
sides neural networks, we also develop automated mechanism design techniques based
on evolutionary computation. For instance, for an example application setting on zero-
day exploit markets, we focus on the Affine Mazimizer Auctions (AMA) (Likhodedov
and Sandholm, 2005; Curry, Sandholm, and Dickerson, 2022; Lavi, Ahuva Mu’alem,
and Nisan, 2003) and use the Fourier series to characterize the AMA mechanisms. We

then adjust the AMA mechanism parameters via evolutionary computation.

1.1. Public Project Mechanism Design Motivation and Research Challenges 5

1.1 Public Project Mechanism Design Motivation and Re-

search Challenges

In a public project model, a group of agents need to decide whether or not to crowd-
fund a public project (that is often accessible by every agent once the project is
funded), and the mechanism design task is to design a function that maps the agents’
private preferences to social decisions (i.e., whether the project is built and how much
each agent pays), where the goal is often to maximize agents’ welfare. The social
decision rule is often also subject to a list of application-specific constraints. The
public project model is a well-studied economic model and it also finds application in
the computer science domain (i.e., crowdfunded bug bounty systems). In what fol-
lows, we summarize the research challenges of mechanism design for the public project

problem.

1.1.1 Unknown Feasible/Optimal Mechanism Characterizations

The first difficulty lies in mechanism design itself. Mechanisms collect the valuation
from each agent, and design payment and allocation schemes (Figure 1.1). It is ob-
vious that, in the design of the mechanism, the input side is the valuations from the
agents, which the mechanism designer can never assign or design. To achieve the
desired objectives, the mechanism designer needs to get the true valuations from the
agents. The only way we encourage the agents to tell the truth is by controlling the
two output functions (allocation and payment functions). The designed allocation and
payment functions must ensure that each agent can get the highest utility whenever

she reports the true valuation.

Since Myerson solved the single-item optimal auction design problem in his sem-
inal work (Myerson, 1981), intense research has been taken to solve problems under
different settings. However, the problem is not completely resolved (Sandholm, 2003).
For public project problems, for some variants of the model, we do not know the
exact characterizations of the truthful mechanisms. Even when we know the exact

characterization of the truthful mechanism, the characterization is difficult to work

6 Chapter 1. Introduction

with. For example, the characterization may contain an exponential number of pa-
rameters, and there are no known techniques for efficient optimisation that works with
the characterization. This is different from Myerson’s result for single-item auctions,
where the proposed optimisation technique allows us to focus on very restricted forms

of mechanisms.

1.1.2 Neural Network Mechanism Design Challenges for Public Project

Problems

One of the characteristics of the public project problem is that the mechanism needs
to decide whether or not to build the project (Sen, 2007). When we apply neural
networks to design public project mechanisms, binary decision (build vs not build)
often lead to entirely different gradients for the loss function. In stochastic gradient
descent, we can only use a small batch of type profiles, which means that often the
number of "build" cases plays a more important role than the quality of the mecha-
nism when it comes to calculating the gradient. This causes poor training results and

slow training speed.

1.1.3 High Variety of Public Project Problems

In many mechanism design problems, the typical objectives are to maximize social
welfare or to maximize revenue (Zou, 2009; Manelli and Vincent, 2007; Amanatidis,
Kleer, and Schéfer, 2019; Amanatidis, Birmpas, and Markakis, 2017). In this thesis,
we deal with public project problems with a few more objectives besides maximizing
for welfare and revenue. Our objectives studied also include minimizing the total
and maximum release delay (for public projects where the mechanism designer can
set a release time) and maximizing the number of consumers for the public project.
Existing manual mechanisms designed by the economists perform poorly toward our

proposed objectives.

The performance of mechanisms is often impacted by the number of agents (Zhao,

2014). For example, if there are a large number of agents joining the public project

1.1. Public Project Mechanism Design Motivation and Research Challenges 7

problem, then the project has a high probability to be built. We could even entirely
ignore the “not build” possibility when designing mechanisms. This observation al-
lows us to design asymptotically optimal mechanisms for a few variants of the model.
The challenging design cases are sometimes only about small numbers of agents. This
plays well with our approach of using neural networks and evolutionary computation

to automatically design mechanisms.

8 Chapter 1. Introduction

1.2 Research Summary

In this thesis, we focus on automatically designing mechanisms for the public project
problem (Mezzetti, 2004). In what follows we describe all the variants of the public
project models that are studied in this thesis. We also summarize our mechanism
design constraints, design objectives, and also our high-level mechanism optimisation
techniques. We conclude this section with a detailed list of contribution outlines of
the future chapters. While summarizing our research in this section, we briefly define
the relevant terminologies when necessary. To avoid breaking the presentation flow,
we leave a more detailed discussion of background information and related research

to Chapter 2.

1.2.1 Summary of Public Project Problem Variants

A public project problem is a social decision model where a group of agents have to
decide whether or not to build a public project (e.g., a swimming pool, public library,

open source software, etc., Kaiser, 2007).

Public project problems have many variants. In this thesis we consider all the

following:

1. The project may be non-excludable or excludable (Samuelson, 1954; Ott and

Turnovsky, 2006)
2. The project may be indivisible or divisible (Lipton et al., 2004)

3. We assume that the project is binary and non-rivalrous (Samuelson, 1954; Wad-

hwa and Dong, 2020)

Terminology explanations:

e Non-excludable: it is impossible to exclude any individuals from consuming the

good. (Samuelson, 1954; Ott and Turnovsky, 2006; Ohseto, 2000)

1.2.

Research Summary 9

Excludable: the mechanism designer can specify which agents can consume the
project, for example, it could be that only those who pay for the project have

access to its benefits. (Ott and Turnovsky, 2006)

Non-rivalrous: when one agent consumes the project, others are not prevented

from using it. (Samuelson, 1954; Wadhwa and Dong, 2020)

Binary: a public project is built or not built. A non-binary public project refers
to a project with different provisional levels. For example, the agents may face
building a better swimming pool, a poor-quality swimming pool, or not build

at all. (Lipton et al., 2004)

Indivisible: a public project can not be divided. For example, the allocation
for an agent is either 1 (this agent uses the entire project) or 0 (this agent can
not use the project at all). To be more specific, an agent only has two options,
consumes the entire project or does not consume the project at all. (Lipton

et al., 2004)

Divisible: a public project can be divided. For example, one agent may consume

or use part of the project. The allocation to an agent is in the range from [0,1].

1.2.2 Summary of Mechanism Constraints and Objectives

The mechanism designer expects the agents to report their valuations truthfully so

that the overall system objective can be achieved. However, an individual agent wants

to maximize her own utility (i.e., receive better allocation and pay less). Therefore,

an agent may have the incentive to lie about her true valuation if doing so increases

her utility (Matsushima, 2007). An agent also may refuse to join a mechanism if

she deems that joining the mechanism leads to a worse utility compared to her utility

when staying out. When designing mechanisms, we enforce two constraints: Strategy-

Proofness (SP) (Ma, 1994) and Individual Rationality (IR).

e Strategy-proofness (SP). For any agent ¢, her utility is maximized by reporting

her valuation truthfully.

10

Chapter 1. Introduction

o [ndividual rationality (IR): For any agent ¢, her utility is nonnegative when she

reports truthfully.

As mentioned earlier, for many mechanism design settings, coming up with a char-

acterization of all strategy-proof and individual rational mechanisms is often a difficult

task, which then makes mechanism design under these two constraints difficult.

In the table below, we summarize the mechanism design constraints and objectives

used in each chapter.

SP IR Objectives (goals)
1. Maximize Expected Number of Consumers
Chapter 3 v v
2. Maximize Expected Agents’ Welfare
Study Both SP 1. Minimize Expected Total Delay
Chapter 4 v
and Almost SP 2. Minimize Expected Max Delay
IR in 1. Worst-Case Efficiency Ratio
Chapter 5 v
Expectation 2. Expected Welfare
Chapter 6 v v 1. Revenue-Maximizing

TABLE 1.1. Mechanism Constraints and Objectives for Each Chapter

1.2.3 Contributions and Outlines of Individual Chapters

In this thesis, we discuss various different methods for automatically designing mech-

anisms. Our aim is to improve the performance of public project mechanisms, and

provide optimal or near-optimal public project mechanisms for real-world applica-

tions. We adopt different neural network and evolutionary computation frameworks

to automatically design mechanisms for public project problems, while considering

different objectives, constraints and model variety (Table 3.1 and Table 1.1).

A commonly used approach in this thesis is that for a small number of agents,

we use automated mechanism design to derive mechanisms for our objectives. For

a large number of agents, We try to theoretically analyse the automated designed

mechanisms and calculate the theoretical performance upper bound. We compare our

1.2. Research Summary 11

mechanisms to the theoretical upper bound and/or existing state-of-the-art mecha-

nisms to demonstrate the effectiveness of our proposed mechanisms.

In Table 1.2, we highlight the mechanism families considered (i.e., we would focus
on these families of mechanisms, and then optimize within them) and also our machine

learning techniques used.

Mechanism Families Machine Learning Approach

Chapter 3 Largest Unanimous Mechanisms Neural Networks

Chapter 4 | Sequential Unanimous Mechanisms | Evolutionary Computation

Chapter 5 | VGC Redistribution Mechanisms Neural Networks

Evolutionary Computation
Chapter 6 AMA mechanisms

+ Neural Network

TABLE 1.2. Mechanism Families and Machine Learning Techniques
used in Each Chapter

Below please find a detailed summary of our contributions in future chapters.

e In Chapter 3, we study both the non-excludable and the excludable versions
of the binary non-rivalrous indivisible public project problem. The existing
methods (e.g., serial cost-sharing mechanism, Moulin, 1994) are not optimal
in general. We identify a sufficient condition on the prior distribution for the
conservative equal costs mechanism to be the optimal strategy-proof and in-
dividually rational mechanism. We prove that, in some scenarios, the serial
cost-sharing mechanism is optimal. For other scenarios, we find that the serial
cost-sharing mechanism is far from optimality. For these scenarios, we design

better-performing mechanisms via neural networks.

For non-excludable public project problems, we improve existing mechanisms
by using dynamic programming (DP). For excludable problems, we design a
better-performing price-oriented rationing-free (PORF) mechanisms via neural
networks. We propose three neural network training techniques. The experi-
ments show that our mechanisms are better than previous results and are closer

to the theoretical upper bound.

Chapter 1. Introduction

Contributions:

1. We are the first to use the price-oriented rationing-free (PORF) mech-
anisms to assist the designing of iterative mechanisms via neural net-
works. PORF mechanisms move the mechanism’s complex (e.g., iterative)
decision-making process off the neural network to a separate simulation

process.

2. We feed prior distribution into the loss function. By feeding the prior distri-
bution’s analytical form into the cost function, we can provide high-quality

gradients.

3. We learn toward existing manual mechanisms as initialization. We use su-
pervision to state-of-the-art manual mechanisms as a systematic way for
initialization. It is also effective in fixing constraint violations for heuristic-

based mechanisms.

e In Chapter 4, we study a divisible public project model, where an agent can
be allocated only part of the project. Specifically, we study settings where the
mechanism can set different project release times for different agents. For an
agent, the higher she pays, the earlier she can use the project. There are two
objectives for this problem: to minimize the expected maximum release delay
and to minimize the expected total release delay. The existing mechanisms
(without delayed release) can be trivially applied to our model by interpreting
them as mechanisms whose release times are either Os or 1s. Nevertheless, as
expected, existing mechanisms do not perform well as they were not designed

for our objectives.

Under our automated mechanism design approach, we first find regularities by
analysing cases involving a small number of agents and then generalise the rule
to a larger number of agents. For small numbers of agents, we propose the

sequential unanimous mechanisms by extending the existing largest unanimous

1.2.

Research Summary 13

mechanisms. We then use evolutionary computation to optimize within the se-
quential unanimous mechanism family. The experiments show that our mecha-
nisms are better than the existing mechanisms. Then we summarize the patterns
of these sequential unanimous mechanisms and apply them to a larger number of
scale. We end up with the single deadline mechanisms. We theoretically prove
that the single deadline mechanisms are asymptotically optimal, regardless of

the prior distributions.

Contributions:

1. For a small number of agents, we propose the sequential unanimous mecha-
nism family and apply automated mechanism design via evolutionary com-

putation.

2. For a large number of agents, we propose a novel single deadline mecha-

nism, which is asymptotically optimal.

In Chapter 5, we focus on the VCG and the VCG redistribution (which is based
on VCG) mechanisms for the public project problem. We design mechanisms via
neural networks with two welfare-maximizing objectives: optimal in the worst
case and optimal in expectation. We design generative adversarial networks and
multi-layer perceptions (GAN + MLP) to find the optimal worst-case perfor-
mance of VCG redistribution mechanisms for public project problems. GAN
is used to generate type profiles with poor worst-case performances, which are
used for training. The experiments show that our mechanism is better than
existing approaches. We use multi-layer perceptions (MLP) to find the optimal-
in-expectation VCG redistribution mechanism. Our innovation is a new way to
construct the cost function for training, by including the prior distribution of
the agent valuations as weights for a training batch. The experiments show that

our mechanisms’ performances are very close to the theoretical upper bound.

Contributions:

14

Chapter 1. Introduction

1. We are the first to utilise a GAN network to generate worst-case type pro-

files for training toward worst-case optimal mechanisms.

2. We feed prior distribution into loss function to provide quality gradients

for the optimal-in-expectation objective.

3. We discuss dimension reduction for handling large agent count. By re-
ducing the input dimension, the neural network converges faster and still

retains good performance.

e In Chapter 6, we focus on a specific scenario called zero-day exploits market. In

such a market, one zero-day exploit (i.e., an exploit that allows cyber attackers
to hack into iOS systems) is sold to multiple offender and defenders. In this
model, for the defensive side, as long as any defender gains access to the exploit,
the exploit is assumed to be immediately fixed, which benefits all defenders. The
defensive side of the our model is very similar to a non-excludable and divisible
public project problem. Nevertheless, the overall model is not a public project

problem.

In order to maximize revenue in zero-day exploit markets, we adopt compu-
tational feasible technical automated mechanism design approaches (Guo and
Conitzer, 2010; Guo, Hata, and Babar, 2017). One commonly used mechanism
family for revenue maximization is the Affine Maximizer Auctions (AMA). For
this particular model, we observe that an AMA mechanism can be characterized
by a single variable function that can be visualized as a curve. We propose two
numerical solution techniques, one is based on neural networks and the other
one is based on evolutionary computation. We use neural networks to auto-
matically design the optimal curve for the Affine Maximizer Auctions (AMA)
mechanisms. We also use evolutionary computation (based on Fourier series) to
optimize for a good AMA curve. The experiments show that our mechanisms

based on neural networks and evolutionary computation are near-optimal and

1.2. Research Summary 15

get better results compared to the state-of-the-art method, which was based on

iterative linear programming (LP).

Contributions:

1. We are the first to use a series of novel techniques to train the AMA mecha-

nisms, including Fourier-series-based evolutionary computation and neural

networks.

e In Chapter 7, we summarize this thesis and discuss future directions.

17

Chapter 2

Literature Review and Definitions

2.1 Mechanism Design

Mechanism design is the art of designing social decision rules so that the agents
are motivated to report their true valuations and a suitable (according to a given
objective) outcome is chosen. The objectives are varied. It could be social welfare,
fairness, or revenue maximization (Cole and Roughgarden, 2014; Morgenstern and

Roughgarden, 2015).

~ Allocation

Valuations (.
L Mechanism

Payment

J/

FIGURE 2.1. A typical mechanism structure.

Generally speaking, mechanisms specify payments and allocations (as outlined in
Figure 2.1). For a certain agent, the higher she pays, the better allocation she gets.

For different agents, they may gain different allocations even if they pay the same.

For example, for the public project problem, a mechanism would specify whether
the project is built or not, who can consume the project (if the project is excludable),

and how much each agent needs to pay.

2.1.1 Mechanism Properties

Self-interested agents may lie about their valuations if doing so increases their own

utilities. Therefore, it is necessary to design mechanisms with desired properties. In

18 Chapter 2. Literature Review and Definitions

this thesis, we focus on designing mechanisms that are strategy-proof and individu-
ally rational (Yokoo, Sakurai, and Matsubara, 2004; Dash, Ramchurn, and Jennings,

2004; Azevedo and Budish, 2019).

Individual Rationality

Individual rationality (IR) means that it is unacceptable for an agent to receive less
utility than that she would have received if not joining in the mechanism. Under indi-
vidually rational mechanisms, each individual weakly prefers to join in the mechanism
rather than not participating (Dash, Ramchurn, and Jennings, 2004; Anand et al.,

1995).

The u; is agent ¢’s utility. wv; is agent i’s type profile. A mechanism is called
individual rationality, if for every player ¢ and for every type profile of the other

players v_;:

ui(vi,v—;) > 0,Vi

The utility for each agent i is greater or equal to 0.

In this thesis, we don’t consider the external utility.

Strategy-proofness

Strategy-proofness (SP) is also called truthfulness or dominant-strategy incentive-
compatibility (DSIC). It means that no agents can benefit by misreporting their pref-
erences (Azevedo and Budish, 2019; Mookherjee and Reichelstein, 1992). Rough-
garden (Roughgarden, 2010) summarized the commonly used definitions of incentive
compatibility. The weaker notion is Bayesian-Nash incentive compatibility and the
stronger notion is dominant-strategy incentive compatibility (also often called strategy-

proofness). Typical examples of SP mechanisms are the VCG mechanisms.

2.1. Mechanism Design 19

A mechanism is called strategyproof, if for every player ¢ and for every type profile
of the other players v_;:

ui(vi, v-i) > ui(vj, v-4), Vi’

The agent i get best or at least not worse by being truthful (report truthful value
v;), regardless v_;.

In 1981, Myerson (Myerson, 1981) solved the optimal auction design problem when
there is a single item for sale. However, after four decades, for multi-item revenue-
maximizing auctions, the optimal solutions remain unknown (Curry, Sandholm, and
Dickerson, 2022). Researchers have developed some elegant partial characterization
results (Manelli and Vincent, 2007; Pavlov, 2011; Yao, 2017) or have developed impres-
sive algorithmic optimal or near-optimal mechanisms (Cai, Daskalakis, and Weinberg,
2012; Hart and Nisan, 2017) for some specific settings. For the public project problem,

there are limited characterization results and also limited existing manual mechanisms.

2.1.2 Analytical Mechanism Design

Mechanism design has traditionally been based on manual effort and human-expert
experience (Sandholm, 2003). The designer manually designs a certain rule set and
then proves that the proposed mechanism is optimal or near-optimal. Often, the
designer studies the mechanism design problem from a mathematical structure per-
spective (Krishna, 2009). Indeed, many impressive and significant mechanisms were
designed this way. Armstrong obtained the revenue optimal mechanisms for selling
two items to one buyer (Armstrong, 1996). Pavlov et al. (Pavlov, 2011) derived opti-
mal results for two items with symmetric uniform distributions. In this thesis, we also
conduct some level of manual mechanism design for certain public projects, and then
theoretically prove by mathematical analysis that the derived mechanism is optimal

in certain situations or under certain technical assumptions.

2.1.3 Automated Mechanism Design

In 2002, Conitzer et al. (Conitzer and Sandholm, 2002) first proposed the idea of

automated mechanism design (AMD). The designer first needs to design a general

20 Chapter 2. Literature Review and Definitions

framework and a given objective for the problem. Then the designer leaves the opti-
misation process to the computer, and the computer will automatically calculate the

suitable parameters and decide on the details of the mechanisms.

Since the proposal of AMD, many researchers used AMD for mechanism design.
In 2006, Jurca and Faltings (Jurca and Faltings, 2006) applied Automated Mecha-
nism Design to compute the minimum payments for a reputation system. In 2007,
Constantin and Parkes (Constantin and Parkes, 2007) studied dynamic single-item
auctions using automated mechanism design for interdependent value agents. The
authors used mixed-integer programming to handle a small number of agents. In
2010, Bhattacharya et al. (Bhattacharya et al., 2010) used AMD to study revenue-
maximizing multi-item auctions for budget-constrained agents. Likhodedov et al.
(Likhodedov and Sandholm, 2005, 2004) applied automated mechanism design to
maximize revenue for combinatorial auctions. The authors focused on the family of
Affine Maximizer Auctions (AMA), and AMD was used to automatically adjust the

mechanism parameters.

2.1.4 Classic Mechanisms

In this section, we will introduce a few well-known /state-of-the-art mechanisms that

are relevant to this thesis.

Cost Sharing Mechanisms

Cost sharing mechanisms are mechanisms that can be applied to binary indivisible
public project models. Cost sharing mechanisms are strategy-proof and individual
rational (Moulin, 2005). We summarize a few existing cost sharing mechanisms as

follows:

1. Largest Unanimous Mechanism (Ohseto, 2000)

For every nonempty coalition of agents S = {S1,S2, ..., Sk}, there is a constant
cost share vector Cs = (cg,,¢s,, ..., cs,) With ¢g;, > 0 and), cs, = 1. cg,

is agent S;’s cost share under coalition S. If agent 7 belongs to two coalitions S

2.1.

Mechanism Design 21

and T with S C T, then ¢’s cost share under S must be greater than or equal
to her cost share under 7. Agents in S unanimously approve the cost share
vector Cy if and only if vg, > cg, for all i € S. The mechanism picks the largest
coalition S* satisfying that Cg+ is unanimously approved. If S* does not exist,
then the decision is not to build. If $* exists, then it is always unique, in which
case the decision is to build. Only agents in S* are consumers and they pay

according to Cg-.

. Serial Cost Sharing Mechanism (SCS) (Moulin, 1994; Guo, Yang,

and Ali Babar, 2018)

The serial cost sharing mechanism is a specific largest unanimous mechanism.

For every nonempty subset of agents S with |S| = k, the cost share vector is
(%, %, ce %) The mechanism picks the largest coalition S* where the agents

are willing to pay equal shares.

e [f S* is empty, then the project will not be built

e [f 5* is not empty, then every agent in S* each pays an equal share and

only those who pay can consume the project.

The serial cost sharing mechanism is elegant and we also prove that in many

situations, they are in fact optimal/near-optimal.

VCG and VCG Redistribution Mechanisms

1. VCG Mechanism

The Vickrey-Clarke-Groves (VCG) mechanism is efficient and strategy-proof but

not budget-balanced (Vickrey, 1961; Clarke, 1971; Groves, 1973).

Under the VCG mechanism, each agent i reports her private type 6;. The
outcome that maximizes the agents’ total valuations is chosen. Every agent is

required to make a VCG payment, which is determined by the other agents’

22 Chapter 2. Literature Review and Definitions

types 0_;. An agent’s VCG payment is usually described as the extent to which
the agent’s existence harms the other agents, in terms of the total valuation
of other agents, which is called the externality in economics. The total VCG
payment may be quite large, leading to decreased welfare for the agents. In
particular, in the context of the public project problem, where the goal is often
to maximize the social welfare (the agents’ total utility considering payments),

having large VCG payments are undesirable.

2. VCG Redistribution Mechanisms

VCG redistribution mechanisms are also efficient, strategy-proof and not budget-
balanced (Guo and Conitzer, 2008; Guo, 2011). They are proposed to address

the social welfare loss due to large VCG payments.

Under a VCG redistribution mechanism, we first run VCG, and then redistribute
the VCG payments back to the agents as much as possible. The amount that
every agent receives (or pays additionally) is called the redistribution payment,
and is characterized by a redistribution payment function h. For agent i, its re-
distribution payment depends on other agents’ types 8_;. In this way, the VCG

redistribution mechanism remains to be strategy-proof (Naroditskiy et al., 2012).

The VCG redistribution mechanism may bring the agents more benefit due
to the redistribution payment, so the total social welfare could be increased

compared to the VCG mechanism.

Affine Maximizer Auctions (AMA)

Myerson’s (Myerson, 1981) solved for the optimal single-item auction. For combi-
natorial auctions, Myerson’s technique does not generalize beyond single-parameter
settings. Revenue maximizing mechanism design remains an open problem. Many
revenue-boosting techniques were proposed by researchers. The Affine Maximizer
Auctions (AMA) mechanisms are a family of strategy-proof mechanisms that are

characterized by a set of parameters (Likhodedov and Sandholm, 2005). By focusing

2.2. Machine Learning Methods for Automated Mechanism Design 23

on the AMA mechanisms, the mechanism designer can focus on tuning the mecha-
nism parameters in order to achieve better revenue. This way, mechanism design is
no longer a functional optimisation process, but rather a value optimisation process,
which is often much easier.

The family of AMA mechanisms for the public project model was formally defined

by Guo et al. (Guo, Hata, and Babar, 2016) as follows:

AMA Mechanisms

e Given a type profile 0, the outcome picked is the following:
n
of = arg 131€aox <Zl U;V; (Qi, 0) = ao>
1=

e Agent i’s payment equals:

max,co (Z#i u;v;(65,0) + ao) — D2 W0 (0,0%) — aor

Uj

Here, O represents the outcome space, ©; represents agent i’s type space, and

v;(0;, 0) represents agent i’s valuation for outcome o € O when her type is 6; € ©;.

2.2 Machine Learning Methods for Automated Mecha-

nism Design

Machine learning is a useful tool for finding an acceptable or near-optimal results for
optimization problems. Typical machine learning methods include evolutionary com-
putation algorithm, particle swarm optimization algorithm, artificial neural network

algorithm, etc. (Mohri, Rostamizadeh, and Talwalkar, 2018)

In 2003, Sandholm (Sandholm, 2003) reported that search algorithms is a new
approach to solve the automated mechanism design problem. In 2005, Balcan et al.
(Balcan et al., 2005) obtained a unified approach for a variety of revenue-maximizing

mechanism design problems. They used sample-complexity techniques in machine

24 Chapter 2. Literature Review and Definitions

learning theory to simplify the design of revenue-maximizing incentive-compatible
mechanisms to standard algorithmic questions. Various novel machine learning meth-
ods have been proposed for AMD (Narasimhan, Agarwal, and Parkes, 2016). In the
current "Era of Neural Networks” (Sharma and Singh, 2017), many researchers used
machine learning methods to find optimal mechanisms (Cai, Daskalakis, and Wein-
berg, 2012; Alaei et al., 2012) or near-optimal mechanisms (Hart and Nisan, 2017;
Hartline and Roughgarden, 2009; Yao, 2014).

In this thesis, we mainly use evolutionary computation and artificial neural net-

works to find optimal /near-optimal mechanisms for public project problems.

2.2.1 Evolutionary Computation

Evolutionary computation techniques can produce highly optimized solutions by mu-
tation and crossover, which generates new genotypes to find good solutions for a given
problem. Evolutionary computation is widely used for a long range of computational
tasks (Neumann et al., 2019; Long et al., 2020; Do et al., 2021). Researchers can apply
evolutionary computation to mechanism design by treating mechanism design as an
engineering problem and bring in engineering design principles (Phelps, McBurney,
and Parsons, 2010). We categorize these approaches under the banner of evolution-
ary mechanism design. Andrews (Andrews, 1994) is the first to apply evolutionary
computation to the double-auction design problem with a view to automating the
mechanism design process. Cliff (Cliff, 1998) used evolutionary search to explore the
parameter space of the zip strategy. After that, more researchers used evolutionary
computations to study mechanism design problems (Conitzer and Sandholm, 2007;

Cliff, 2002; Phelps et al., 2002, 2003).

Evolutionary computation (in the context of mechanism design) usually involves

the following steps:

1. Initialization: An initial batch of mechanisms is created when evolutionary com-

putation starts.

2.2. Machine Learning Methods for Automated Mechanism Design 25

2. Genetic operators (such as crossover and mutation): Small random changes are
introduced to the existing mechanisms in the population (Fox and McMahon,

1991).

3. Selection: As weaker mechanisms are stochastically removed, the mechanism

population becomes refined.

2.2.2 Artificial Neural Network

A neural network is often formed by thousands of neurons, which are grouped into
different layers to pass and process data from the input layer to the output layer. The
internal layers are called hidden layers and usually, they are fully connected with their
neighbour hidden layers. This pattern forms the structure of the network. Activation

functions are often applied to every layer (Sharma and Singh, 2017).

Recent development of automated mechanism design capitalizes on deep learning.
Diitting et al. (Diitting et al., 2019) in 2019 first used the neural network (called Re-
gretNet) to solve automatic mechanism design problems for learning approximately
strategy-proof auctions for multi-bidder multi-item auctions. They also proposed
another neural network (called RochetNet) for a single bidder, which is perfectly
strategy-proof ensured by network construction. Feng et al. (Feng, Narasimhan,
and Parkes, 2018) and Golowich et al. (Golowich, Narasimhan, and Parkes, 2018a)
extended RegretNet to deal with different constraints and objectives. Sakurai et
al. (Sakurai et al., 2019) adopted the idea of RegretNet to design false-name-proof
mechanisms, where false-name-proof violations are added to the cost function, which is
then minimized to remove false-name manipulation. Curry et al. (Curry et al., 2020)
modified RegretNet to be able to verify strategy-proofness of the auction mechanism
learned by neural network. Peri et al. (Peri et al., 2021) developed PreferenceNet

to encode human preference (e.g. fairness) constraints into RegretNet.

Later on, many other researchers explored the use of neural networks in automat-
ing mechanism design (Manisha, Jawahar, and Gujar, 2018; Shen, Tang, and Zuo,

2018; Rahme, Jelassi, and Weinberg, 2020; Duan et al., 2022; Rahme et al., 2020;

26 Chapter 2. Literature Review and Definitions

Zhan and Zhang, 2020; Bichler et al., 2021; Brero et al., 2020).

For example, Shen et al. (Shen, Tang, and Zuo, 2018) used neural networks (called
MenuNet) to automatically design revenue optimal mechanisms for multi-item rev-
enue optimization settings (selling two items to one buyer). They theoretically proved
that the mechanism framework is indeed optimal. Rahme et al. (Rahme, Jelassi, and
Weinberg, 2020) proposed ALGNet to solve two-player game through parameterizing
the misreporter. Then Rahme et al. (Rahme et al., 2020) proposed a permutation-
equivariant architecture called EquivariantNet for symmetric auctions. Duan et al.
(Duan et al., 2022) proposed CITransNet which focused on permutation equivariant
auctions without symmetric constraints. Zhan et al. (Zhan and Zhang, 2020) used a
reinforcement learning-based (DRL-based) solution that can automatically learn the
best pricing strategy. Bichler et al. (Bichler et al., 2021) used neural network to study
Bayesian Nash equilibrium strategies. They developed a neural pseudogradient ascent

(NPGA) methods to learn the equilibrium bid functions.

All evidences suggest that, for many settings, it is possible for the neural network
to find optimal or near-optimal truthful mechanisms with proper loss functions and

network structures.

For example, RegretNet (Diitting et al., 2019) used loss function to ensure ap-
proximate strategy-proofness. Whenever the training samples cause truthfulness vio-
lations, RegretNet reports a large loss so loss function can force the neural network

based mechanism to learn toward strategy-proofness.

Another way to achieve truthfulness is via adopting specific “truthful” neural net-
work structures. Both RochetNet (Diitting et al., 2019) and MenuNet (Shen, Tang,
and Zuo, 2018) were restricted to a single agent, but enforced strategy-proofness at
the architectural level (Curry, Sandholm, and Dickerson, 2022). ALGNet and CIT-
ransNet focused on a small number of agents (such as two bidders) for permutation
or symmetric equivariant settings. In this thesis, we propose a PORF network which

is a strategy-proof neural network enforced by network structure.

2.2. Machine Learning Methods for Automated Mechanism Design 27

As an example truthful neural network, Figure 2.2 shows how Manisha et al. used
the network structure to ensure the strategy-proof constraint (Manisha, Jawahar,
and Gujar, 2018). The input for network is #_; (n-1 dimensions), and the output
(redistribution payment) for agent i is A(f_;) which is independent from agent ¢’s type
0;. Since an agent cannot impact her redistribution function under this network, we
know for sure that no matter how the parameters are trained, the overall mechanism

is always truthful.

FIGURE 2.2. Manisha’s nonlinear network model (Manisha, Jawahar,
and Gujar, 2018)

In this thesis, we proposed a few novel neural networks for automated mechanism
design, such as networks based on price-oriented rationing-free (PORF) interpreta-
tion of strategy-proof iterative (largest unanimous) mechanisms (Yokoo, Sakurai, and
Terada, 2002; Yokoo, 2003), and GAN-assisted networks for worst-case mechanism
design, where generative adversarial network (GAN) is used to generate worst-case

type profiles (Goodfellow et al., 2014, 2020).

28 Chapter 2. Literature Review and Definitions

Unsupervised Neural Network

Traditionally, neural networks are supervised with labeled training data for recogni-
tion tasks. For example, image/face recognition started off as pure supervised but
has become hybrid by adopting unsupervised pre-training (Martins, Pires, and Pires,
2007). Typical unsupervised neural network methods include autoencoders, deep be-
lief networks, generative adversarial networks (GAN), and self-organizing maps, etc.

(Mohri, Rostamizadeh, and Talwalkar, 2018)

Generative Adversarial Network (GAN)

In 2014, Goodfellow et al. (Goodfellow et al., 2014) first proposed a creative neu-
ral network structure to find the “worst cases” for a neural network (discriminator
network). Then it immediately became one of the most important neural network
frameworks (Yu et al., 2017; Yi, Walia, and Babyn, 2019). Generative adversarial
networks (GAN) usually include two different neural networks: a generator network

and a discriminator network.

The generator network generates candidates’ data while the discriminator net-
work evaluates them. Specific labeled training data are not necessary for GAN. The
generator is trained based on whether it succeeds in fooling the discriminator. The
discriminator network is trained with samples from the generator and sometimes from
the initial training data set. The generator and the discriminator are trained alterna-

tively in each epoch.

29

Chapter 3

Mechanism Design for Public

Projects via Neural Networks

3.1 Introduction

Many multiagent system applications (e.g., crowdfunding) are related to the public
project problem. The public project problem is a classic economic model that has
been studied extensively in both economics and computer science (Mas-Colell, Whin-
ston, and Green, 1995; Moore, 2006; Moulin, 1988). Under this model, a group of
agents decide whether or not to fund a nonrivalrous public project — when one agent

consumes the project, it does not prevent others from using it.

Table 3.1 highlights the differences in terms of model settings among the different

chapters. In each chapter, we study a different public project model variant.

Binary | Non-rivalrous | Divisible\Indivisible | Excludable\Non-excludable
Chapter 3 v v Indivisible Study Both
Chapter 4 v v Study Both Excludable
Chapter 5 v v Indivisible Non-excludable
Chapter 6 [*| / / Divisible /

TABLE 3.1. Public Project Model Variants for Each Chapter

[*] In Chapter 6, the general problem is not a public project problem. However,
from the perspective of the defenders, they face a model that highly resembles a

divisible public project model.

30 Chapter 3. Mechanism Design for Public Projects via Neural Networks

In this chapter, We study both the non-excludable and the excludable versions
of the binary non-rivalrous indivisible public project problem. The binary decision is
either to build or not. If the decision is not to build, then no agents can consume the
project. For the nonexcludable version, once a project is built, all agents can consume
it, including those who do not pay. For example, if the public project is an open
source software project, then once the project is built, everyone can consume it. For
the excludable version, the mechanism has the capability to exclude agents from the
built project. For example, if the public project is a swimming pool, then we could

impose the restriction that only the paying agents have access to it.

Our aim is to design mechanisms that maximize expected performances. We con-
sider two design objectives. One is to maximize the expected number of con-
sumers (expected number of agents who are allowed to consume the project).! The
other objective is to maximize the agents’ expected agents’ welfare. We argue
that maximizing the expected number of consumers is more fair in some applications.
When maximizing the number of consumers, agents with lower valuations are treated

as important as high-value agents.

With slight technical adjustments, we adopt the existing characterization results
from Ohseto (Ohseto, 2000) for strategy-proof and individually rational mechanisms
for both the nonexcludable and the excludable public project problems. Under vari-
ous conditions, we show that existing mechanisms or mechanisms derived via classic
mechanism design approaches are optimal or near optimal. When existing mecha-
nism design approaches do not suffice, we propose a neural network based approach,
which successfully identifies better performing mechanisms. Mechanism design via
deep learning/neural networks has been an emerging topic (Manisha, Jawahar, and
Gujar, 2018; Golowich, Narasimhan, and Parkes, 2018b; Duetting et al., 2019; Shen,
Tang, and Zuo, 2019). Duetting et.al. (Duetting et al., 2019) proposed a gen-
eral approach for revenue maximization via deep learning. The high-level idea is to
manually construct often complex network structures for representing mechanisms for

different auction types. The cost function is the negate of the revenue. By minimizing

!For the nonexcludable version, this is simply to maximize the probability of building.

3.1. Introduction 31

the cost function via gradient descent, the network parameters are adjusted, which
leads to better performing mechanisms. The mechanism design constraints (such as
strategy-proofness) are enforced by adding a penalty term to the cost function or us-
ing architecture. The penalty is calculated by sampling the type profiles and adding
together the constraint violations. Due to this setup, the final mechanism is only
approximately strategy-proof. The authors demonstrated that this technique scales
better than the classic mixed integer programming based automated mechanism de-
sign approach (Conitzer and Sandholm, 2002). Shen et.al. (Shen, Tang, and Zuo,
2019) proposed another neural network based mechanism design technique, involving
a seller’s network and a buyer’s network. The seller’s network provides a menu of
options to the buyers. The buyer’s network picks the utility-maximizing menu option.
An exponential-sized hard-coded buyer’s network is used (e.g., for every discretized
type profile, the utility-maximizing option is pre-calculated and stored in the net-

work). The authors mostly focused on settings with only one buyer.

Our approach is different from previous approaches, and it involves three techni-
cal innovations, which can be applied to neural network-based mechanism design in

general.

1. Calculating mechanism decisions off the network by interpreting mechanisms as

price-oriented rationing-free (PORF) mechanisms (Yokoo, 2003)
2. Feeding prior distribution into the cost function

3. Supervisions to manual mechanisms as initialization

Calculating mechanism decisions off the network by interpreting mechanisms as price-
oriented rationing-free (PORF) mechanisms (Yokoo, 2003) : A mechanism often
involves binary decisions. A common way to model binary decisions on neural net-
works is by using the sigmoid function (or similar activation functions). A mechanism

may involve a complex decision process, which makes it impractical to model via static

32 Chapter 3. Mechanism Design for Public Projects via Neural Networks

neural networks. For example, for our setting, a mechanism involves iterative decision
making where the number of “rounds” depends on the agents’ types. We could stack
multiple sigmoid functions to model this. However, stacking sigmoid functions leads
to vanishing gradients and significant numerical errors. Instead, we rely on the PORF
interpretation: every agent faces a set of options (outcomes with prices) determined by
the other agents. We single out a randomly chosen agent i, and draw a sample of the
other agents’ types v_;. We use a separate program (off the network) to calculate the
options ¢ would face. For example, the separate program can be any Python function,
so it is trivial to handle complex and iterative decision making. We no longer need
to construct complex network structures like the approach in (Duetting et al., 2019)
or resort to exponential-sized hard-coded buyer networks like the approach in (Shen,
Tang, and Zuo, 2019). After calculating i’s options, we link the options together using
terms that contain network parameters, which enables backpropagation. One effective

way to do this is by making use of the prior distribution as discussed below.

3.1. Introduction 33

Feeding prior distribution into the cost function: In conventional machine learning, we
have access to a finite set of samples, and the process of machine learning is essentially
to infer the true probability distribution of the samples. For existing neural network
mechanism design approaches (Duetting et al., 2019; Shen, Tang, and Zuo, 2019) (as
well as this chapter), it is assumed that the prior distribution is known. After calcu-
lating agent ¢’s options, we make use of i’s distribution to figure out the probabilities
of all the options, and then derive the expected objective value from i’s perspective.
We assume that the prior distribution is continuous. If we have the analytical form
of the prior distribution, then the probabilities can provide quality gradients for our
training process. This is due to the fact that probabilities are calculated based on
neural network outputs. In summary, we combine both samples and distribution in
our cost function. (In classic machine learning, the cost function only involves the

samples.)

Supervision to manual mechanisms as initialization: We start our training by first
conducting supervised learning. We teach the network to mimic an existing manual
mechanism, and then leave it to gradient descent. This is essentially a systematic way
to improve manual mechanisms. In our experiments, besides the serial cost sharing
mechanism, we also considered two heuristic-based manual mechanisms as starting
points. One heuristic is feasible but not optimal, and the gradient descent process
is able to improve its performance. The second heuristic is not always feasible, and
the gradient descent process is able to fix the constraint violations. Supervision to
manual mechanisms is often better than random initializations. For one thing, the
supervision step often pushes the performance to a state that is already somewhat
close to optimality. It may take a long time for random initializations to catch up.
In computational expensive scenarios, it may never catch up. Secondly, supervision
to a manual mechanism is a systematic way to set good initialization point, instead
of trials and errors. It should be noted that for many conventional deep learning
application domains, such as computer vision, well-performing manual algorithms
do not exist. Fortunately, for mechanism design, we often have simple and well-

performing mechanisms to be used as starting points.

34 Chapter 3. Mechanism Design for Public Projects via Neural Networks

3.2 Model Description

n agents need to decide whether or not to build a public project. The project is
binary (build or not build) and nonrivalrous (the cost of the project does not depend
on how many agents are consuming it). We normalize the project cost to 1. Agent
i’s type v; € [0, 1] represents her private valuation for the public project. We assume
that the v; are drawn ¢.7.d. from a known prior distribution. Let F' and f be the
CDF and PDF, respectively. We assume that the distribution is continuous and f is

differentiable.

e For the nonexcludable public project model, agent i’s valuation is v; if the project

is built, and 0 otherwise.

e For the excludable public project model, the outcome space is {0,1}". Un-
der outcome (ai,as,...,a,), agent i consumes the public project if and only if
a; = 1. If for all 4, a; = 0, then the project is not built. As long as a; = 1 for

some %, the project is built.

We use p; > 0 to denote agent i’s payment. We require that p; = 0 for all ¢ if the
project is not built and > p; = 1 if the project is built. An agent’s payment is also
referred to as her cost share of the project. An agent’s utility is v; — p; if she gets to

consume the project, and 0 otherwise.

We focus on strategy-proof and individually rational mechanisms. We study two
objectives. One is to maximize the expected number of consumers. The other is to

maximize the agents’ welfare.

3.3. Characterizations and Bounds 35

3.3 Characterizations and Bounds

We adopt a list of existing characterization results from (Ohseto, 2000), which char-
acterizes strategy-proof and individual rational mechanisms for both nonexcludable
and excludable public project problems. A few technical adjustments are needed
for the existing characterizations to be valid for our problem. The characterizations
in (Ohseto, 2000) were not proved for quasi-linear settings. However, we verify that
the assumptions needed by the proofs are valid for our model setting. One exception
is that the characterizations in (Ohseto, 2000) assume that every agent’s valuation
is strictly positive. This does not cause issues for our objectives as we are maxi-
mizing for expected performances and we are dealing with continuous distributions.?
We are also safe to drop the citizen sovereign assumption mentioned in one of the

characterizations®, but not the other two minor technical assumptions called demand

monotonicity and access independence.

3.3.1 Nonexcludable Mechanism Characterization

Definition 3.1 (Unanimous mechanism (Ohseto, 2000)). There is a constant cost
share vector (c1,c¢,...,c) with ¢; > 0 and > ¢; = 1. The mechanism builds if and
only if v; > ¢; for all i. Agent i pays exactly c; if the decision is to build. The unani-

mous mechanism is strategy-proof and individually rational.

2Let M be the optimal mechanism. If we restrict the valuation space to [e,1], then M is Pareto
dominated by an unanimous/largest unanimous mechanism M’ for the nonexcludable/excludable
setting. The expected performance difference between M and M’ vanishes as € approaches 0. Unan-
imous/largest unanimous mechanisms are still strategy-proof and individually rational when e is set
to exactly 0.

3If a mechanism always builds, then it is not individually rational in our setting. If a mechanism
always does not build, then it is not optimal.

36 Chapter 3. Mechanism Design for Public Projects via Neural Networks

Theorem 3.1 (Nonexcludable mech. characterization (Ohseto, 2000)). For the
nonexcludable public project model, if a mechanism is strategy-proof, individually ra-
tional, and citizen sovereign, then it is weakly Pareto dominated by an unanimous
mechanism.

Clitizen sovereign: Build and not build are both possible outcomes.

Mechanism 1 weakly Pareto dominates Mechanism 2 if every agent weakly prefers

Mechanism 1 under every type profile.

Example 3.1 (Conservative equal costs mechanism (Moulin, 1994)). An example
unanimous mechanism works as follows: we build the project if and only if every

agent agrees to pay %

3.3.2 Excludable Mechanism Characterization

Definition 3.2 (Largest unanimous mechanism (Ohseto, 2000)). For every nonempty
coalition of agents S = {S1,S2,...,Sk}, there is a constant cost share vector Cg =
(csy,€8y, -5 Cs,) with cs; > 0 and Zlgz‘gk cs, = 1. cg; is agent S;’s cost share under
coalition S. If agent i belongs to two coalitions S and T with S C T, then i’s cost
share under S must be greater than or equal to her cost share under T. Agents in S
unanimously approve the cost share vector Cs if and only if vs, > cg, for all i € S.
The mechanism picks the largest coalition S* satisfying that Cg+ is unanimously ap-
proved. If S* does not exist, then the decision is not to build. If S* exists, then it is
always unique, in which case the decision is to build. Only agents in S* are consumers
and they pay according to Cg«. The largest unanimous mechanism is strategy-proof

and individually rational.

3.3. Characterizations and Bounds 37

The mechanism essentially specifies a constant cost share vector for every non-
empty coalition. The cost share vectors must satisfy that if we remove some agents
from a coalition, then under the remaining coalition, every remaining agent’s cost
share must be equal or higher. The largest unanimously approved coalition become
the consumers/winners and they pay according to this coalition’s cost share vector.

The project is not built if there are no unanimously approved coalitions.

Another way to interpret the mechanism is that the agents start with the grand
coalition of all agents. Given the current coalition, if some agents do not approve
their cost shares, then they are forever removed. The remaining agents form a smaller
coalition, and they face increased cost shares. We repeat the process until all remain-

ing agents approve their shares, or when all agents are removed.

Theorem 3.2 (Excludable mech. characterization (Ohseto, 2000)). For the exclud-
able public project model, if a mechanism is strategy-proof, individually rational, and
satisfies the following assumptions, then it is weakly Pareto dominated by a largest
unanimous mechanism.

Demand monotonicity: Let S be the set of consumers. If for every agent i in S,
v; stays the same or increases, then all agents in S are still consumers. If for every
agent i in S, v; stays the same or increases, and for every agent i not in S, v; stays
the same or decreases, then the set of consumers should still be S.

Access independence: For all v_;, there exist v; and v so that agent i is a con-

sumer under type profile (vi,v—_;) and is not a consumer under type profile (v},v_;).

Example 3.2 (Serial cost sharing mechanism (Moulin, 1994)). Here is an ezample
largest unanimous mechanism. For every nonempty subset of agents S with |S| = k,
the cost share vector is (%, %, e %) The mechanism picks the largest coalition where

the agents are willing to pay equal shares.

38 Chapter 3. Mechanism Design for Public Projects via Neural Networks

Deb and Razzolini (Deb and Razzolini, 1999) proved that if we further require
an equal treatment of equals property (if two agents have the same type, then they
should be treated the same), then the only strategy-proof and individually rational
mechanism left is the serial cost sharing mechanism. For many distributions, we are
able to outperform the serial cost sharing mechanism. That is, equal treatment of

equals (or requiring anonymity) does hurt performances.

3.3.3 Nonexcludable Public Project Analysis

We start with an analysis on the nonexcludable public project. The results presented
in this section will lay the foundation for the more complex excludable public project

model coming up next.

Due to the characterization results, we focus on the family of unanimous mech-
anisms. That is, we are solving for the optimal cost share vector (ci,co,...,cp),

satisfying that ¢; > 0 and Y ¢; = 1.

Recall that f and F' are the PDF and CDF of the prior distribution. The reliability
function F is defined as F(z) = 1 — F(z). We define w(c) to be the expected utility

of an agent when her cost share is ¢, conditional on that she accepts this cost share.

fcl (x —c)f(x)dz
J f(x)dz

w(c) =

One condition we will use is log-concavity: if log(f(z)) is concave in x, then f is log-
concave. We also introduce another condition called welfare-concavity, which requires

w to be concave.

Theorem 3.3. If f is log-concave, then the conservative equal costs mechanism mazi-

mizes the expected number of consumers. If f is log-concave and welfare-concave, then

3.3. Characterizations and Bounds 39

the conservative equal costs mechanism mazximizes the expected agents’ welfare.

Proof. Let C = (c1,¢2,...,¢,) be the cost share vector. Maximizing the expected
number of consumers is equivalent to maximizing the probability of C' getting unani-
mously accepted, which equals F(c1)F(ca) ... F(cy). Its log equals D i<i<n log(F(c;)).
When f is log-concave, so is F according to (Bagnoli and Bergstrom, 2005). This

means that when cost shares are equal, the above probability is maximized.

The expected agents’ welfare under the cost share vector C' equals > w(¢;), condi-
tional on all agents accepting their shares. This is maximized when shares are equal.
Furthermore, when all shares are equal, the probability of unanimous approval is also

maximized.

O

f being log-concave is also called the decreasing reversed failure rate condition (Shao
and Zhou, 2016). Bagnoli and Bergstrom (Bagnoli and Bergstrom, 2005) proved log-
concavity for many common distributions, including the distributions in Table 3.2
(for all distribution parameters). All distributions are restricted to [0, 1]. We also list
some limited results for welfare-concavity. We prove that the uniform distribution is
welfare-concave, but for the other distributions, the results are based on simulations.
Finally, we include the conditions for f being nonincreasing, which will be used in the

excludable public project model.

TABLE 3.2. Example Log-Concave Distributions

Welfare-Concavity ~ Nonincreasing

Uniform U(0,1) Yes Yes
Normal No (u=0.5,0 =0.1) nw<o0
Exponential Yes (A=1) Yes
Logistic No (u=0.5,0 =0.1) nw<0

Even when optimal, the conservative equal costs mechanism performs poorly. We

take the uniform U(0, 1) distribution as an example. Every agent’s cost share is %

40 Chapter 3. Mechanism Design for Public Projects via Neural Networks

The probability of acceptance for one agent is ”771, which approaches 1 asymptotically.
However, we need unanimous acceptance, which happens with much lower probability.
For the uniform distribution, asymptotically, the probability of unanimous acceptance

is only é ~ 0.368. In general, we have the following bound:

Theorem 3.4. If f is Lipschitz continuous, then when n goes to infinity, the proba-

bility of unanimous acceptance under the conservative equal costs mechanism is e=¥(0)

Without log-concavity, the conservative equal costs mechanism is not necessarily
optimal. We present the following dynamic program (DP) for calculating the optimal
unanimous mechanism. We only present the formation for welfare maximization.* We
assume that there is an ordering of the agents based on their identities. We define

B(k,u,m) as the maximum expected agents’ welfare under the following conditions:

e The first n — k agents have already approved their cost shares, and their total

cost share is 1 — m. That is, the remaining k agents need to come up with m.

e The first n — k agents’ total expected utility is u.

The optimal agents’ welfare is then B(n,0,1). We recall that F(c) is the proba-

bility that an agent accepts a cost share of ¢, we have

B(k,u,m) = max F(c)B(k —1,u+w(c),m — c)

0<c<m

The base case is B(1,u,m) = F(m)(u + w(m)). In terms of implementation of this
DP, we have 0 < u <n and 0 < m < 1. We need to discretize these two intervals. If
we pick a discretization size of %, then the total number of DP subproblems is about

H?2n?2.

4Maximizing the expected number of consumers can be viewed as a special case where every
agent’s utility is 1 if the project is built

3.3. Characterizations and Bounds 41

To compare the performance of the conservative equal costs mechanism and our
DP solution, we focus on distributions that are not log-concave (hence, uniform and
normal are not eligible). We introduce the following non-log-concave distribution

family:

Definition 3.3 (Two-Peak Distribution (p1, 01, u2,02,p)). With probability p, the
agent’s valuation is drawn from the normal distribution N(u1,01) (restricted to [0,1]).

With probability 1 — p, the agent’s valuation is drawn from N (pe,02) (restricted to

[0,1]).

The motivation behind the two-peak distribution is that there may be two categories
of agents. One category is directly benefiting from the public project, and the other
is indirectly benefiting. For example, if the public project is to build bike lanes, then
cyclists are directly benefiting, and the other road users are indirectly benefiting (e.g.,
less congestion for them). As another example, if the public project is to crowdfund a
piece of security information on a specific software product (e.g., PostgreSQL), then
agents who use PostgreSQL in production are directly benefiting and the other agents
are indirectly benefiting (e.g., every web user is pretty much using some websites
backed by PostgreSQL). Therefore, it is natural to assume the agents’ valuations are
drawn from two different distributions. For simplicity, we do not consider three-peak,

etc.

For the two-peak distribution (0.1,0.1,0.9,0.1,0.5), DP significantly outperforms

the conservative equal costs (CEC) mechanism.

E(no. of consumers) E(welfare)

n =3 CEC 0.376 0.200
n =3 DP 0.766 0.306
n =95 CEC 0.373 0.199

n=25DP 1.426 0.591

42 Chapter 3. Mechanism Design for Public Projects via Neural Networks

3.3.4 Excludable Public Project

Due to the characterization results, we focus on the family of largest unanimous mech-
anisms. We start by showing that the serial cost sharing mechanism is optimal in some

scenarios.

Theorem 3.5. 2 agents case: If f is log-concave, then the serial cost sharing mech-
anism maximizes the expected number of consumers. If f is log-concave and welfare-
concave, then the serial cost sharing mechanism maximizes the expected agents’ wel-
fare.

3 agents case: If f is log-concave and nonincreasing, then the serial cost sharing
mechanism maximizes the expected number of consumers. If f is log-concave, nonin-
creasing, and welfare-concave, then the serial cost sharing mechanism mazimizes the

agents’ welfare.

For 2 agents, the conditions are identical to the nonexcludable case. For 3 agents,
we also need f to be nonincreasing. Example distributions satisfying these conditions

were listed in Table 3.2.

Proof. We only present the proof for welfare maximization when n = 3, which is the
most complex case. (For maximizing the number of consumers, all references to the
w function should be replaced by the constant 1.) The largest unanimous mechanism
specifies constant cost shares for every coalition of agents. We use c123 to denote agent
2’s cost share when the coalition is {1, 2,3}. Similarly, ca3 denotes agent 2’s cost share
when the coalition is {2,3}. If the largest unanimous coalition has size 3, then the

expected agents’ welfare gained due to this case is:

F(c1a3) F(c123) F(c1a3) (w(ci23) +w(c123) + w(c123))

Given log-concavity of F (implied by the log-concavity of f) and welfare-concavity,

and given that ci23 + c123 + c123 = 1. We have that the above is maximized when all

3.3. Characterizations and Bounds 43

agents have equal shares.

If the largest unanimous coalition has size 2 and is {1, 2}, then the expected agents’

welfare gained due to this case is:

F(c12) F(c12) F(c123) (w(er2) 4+ w(ciz))

F(ci123) is the probability that agent 3 does not join in the coalition. The above is
maximized when c¢1p = c12, so it simplifies to 2F(3)?w(3)F(c123). The welfare gain

from all size 2 coalitions is:

2F (5)*w(5)(F(ci23) + Fcizs) + F(c123))

Since f is nonincreasing, we have that F' is concave, the above is again maximized

when all cost shares are equal.

Finally, the probability of coalition size 1 is 0, which can be ignored in our analysis.
Therefore, throughout the proof, all terms referenced are maximized when the cost

shares are equal. O

For 4 agents and uniform distribution, we have a similar result.

Theorem 3.6. Under the uniform distribution U(0, 1), when n = 4, the serial cost
sharing mechanism mazimizes the expected number of consumers and the expected

agents’ welfare.

For n > 4 and for general distributions, we propose a numerical method for calcu-

lating the performance upper bound. A largest unanimous mechanism can be carried

44 Chapter 3. Mechanism Design for Public Projects via Neural Networks

out by the following process: we make cost share offers to the agents one by one
based on an ordering of the agents. Whenever an agent disagrees, we remove this
agent and move on to a coalition with one less agent. We repeat until all agents
are removed or all agents have agreed. We introduce the following mechanism based

on a Markov process. The initial state is {(0,0,...,0),n}, which represents that
——

n
initially, we only know that the agents’ valuations are at least 0, and we have not
made any cost share offers to any agents yet (there are n agents yet to be offered).
We make a cost share offer ¢; to agent 1. If agent 1 accepts, then we move on to

state {(c1,0,...,0),n — 1}. If agent 1 rejects, then we remove agent 1 and move on
———

n—1
to reduced-sized state {(0,...,0),n — 1}. In general, let us consider a state with ¢
——

n—1
users {(ly,l2,...,0;),t}. The i-th agent’s valuation lower bound is l;. Suppose we

make offers cq,ca,...,ci_ to the first ¢t — k agents and they all accept, then we are

in a state {(c1,...,¢—gy le—k+1,---,1t), k}. The next offer is ¢;_r41. If the next agent

t—k k
accepts, then we move on to {(c1,...,¢—k+1,l—k+2,.--,0t), k — 1}. If she disagrees

tfr+1 k-1
(she is then the first agent to disagree), then we move on to a reduced-sized state

{(e1,- -, Ct—k, li—gs2,-..,1t),t —1}. Notice that whenever we move to a reduced-sized

t—k k—1
state, the number of agents yet to be offered should be reset to the total number of

agents in this state. Whenever we are in a state with all agents offered {(cy,...,¢),0},
we have gained an objective value of ¢ if the goal is to maximize the number of con-
sumers. If the goal is to maximize welfare, then we have gained an objective value of
> i<iciw(ci). Any largest unanimous mechanism can be represented via the above
Markov process. So for deriving performance upper bounds, it suffices to focus on this

Markov process.

Starting from a state, we may end up with different objective values. A state
has an expected objective value, based on all the transition probabilities. We de-
fine U(t, k,m,l) as the maximum expected objective value starting from a state that

satisfies:

e There are ¢t agents in the state.

3.3. Characterizations and Bounds 45

e There are k agents yet to be offered. The first ¢ — k agents (those who accepted
the offers) have a total cost share of 1 —m. That is, the remaining k agents are

responsible for a total cost share of m.

e The k agents yet to be offered have a total lower bound of I.

The upper bound we are looking for is then U(n,n, 1,0), which can be calculated

via the following DP process:

jﬁ *
Ul(t,k,m,l) = [max. F(;*)U(t, E—1,m—c"1—-1")
<c<m ()
F(c*)

In the above, there are k agents yet to be offered. We maximize over the next agent’s

possible lower bound [* and the cost share ¢*. That is, we look for the best possible

F(c*)

lower bound situation and the corresponding optimal offer. D)

is the probability
that the next agent accepts the cost share, in which case, we have k — 1 agents left.
The remaining agents need to come up with m — ¢*, and their lower bounds sum up
to Il —I*. When the next agent does not accept the cost share, we transition to a new
state with ¢ — 1 agents in total. All agents are yet to be offered, so t — 1 agents need

to come up with 1. The lower bounds sum up to 1 — m + 1 — [*.

There are two base conditions. When there is only one agent, she has 0 probabil-
ity for accepting an offer of 1, so U(1,k,m,l) = 0. When there is only 1 agent yet
to be offered, the only valid lower bound is I and the only sensible offer is m. Therefore,
F(m)

U(t,1,m,l) = 70) G(t)+ (1 — W)U(t - 1,t—-1,1,1—m)

46 Chapter 3. Mechanism Design for Public Projects via Neural Networks

Here, G(t) is the maximum objective value when the largest unanimous set has

size t. For maximizing the number of consumers, G(t) = ¢. For maximizing welfare,

max
C1,C2,-..,Ct L=
>0 i

c
Sei=1

G(t) =

w(c;)

The above G(t) can be calculated via a trivial DP.

Now we compare the performances of the serial cost sharing mechanism against
the upper bounds. All distributions used here are log-concave. In every cell, the first
number is the objective value under serial cost sharing, and the second is the upper
bound. We see that the serial cost sharing mechanism is close to optimality in all these
experiments. We include both welfare-concave and non-welfare-concave distributions
(uniform and exponential with A = 1 are welfare-concave). For the two distributions

not satisfying welfare-concavity, the welfare performance is relatively worse.

E(no. of consumers) E(welfare)
n=>5U(0,1) 3.559, 3.753 1.350, 1.417
n=10U(0,1) 8.915, 8.994 3.938, 4.037
n=>5 N(0.5,0.1) 4.988, 4.993 1.492, 2.017
n =10 N(0.5,0.1) 10.00, 10.00 3.983, 4.545
n = 5 Exponential A =1 2.799, 3.038 0.889, 0.928
n = 10 Exponential A =1 8.184, 8.476 3.081, 3.163
n =5 Logistic(0.5,0.1) 4744, 4.781 1.451, 1.910
n = 10 Logistic(0.5,0.1) 9.873, 9.886 3.957, 4.487

3.4. Mechanism Design vs Neural Networks 47

Example 3.3. Here we provide an example to show that the serial cost sharing mech-
anism can be far away from optimality. We pick a simple Bernoulli distribution, where
an agent’s valuation is 0 with 0.5 probability and 1 with 0.5 probability.” Under the
serial cost sharing mechanism, when there are n agents, only half of the agents are
consumers (those who report 1s). So in expectation, the number of consumers is 5.
Let us consider another simple mechanism. We assume that there is an ordering of
the agents based on their identities (not based on their types). The mechanism asks
the first agent to accept a cost share of 1. If this agent disagrees, she is removed from
the system. The mechanism then moves on to the next agent and asks the same, until
an agent agrees. If an agent agrees, then all future agents can consume the project for
free. The number of removed agents follows a geometric distribution with 0.5 success

probability. So in expectation, 2 agents are removed. That is, the expected number of

consumers 1S n — 2.

3.4 Mechanism Design vs Neural Networks

For the rest of this chapter, we focus on the excludable public project model and dis-
tributions that are not log-concave. Due to the characterization results, we only need
to consider the largest unanimous mechanisms. We use neural networks and deep
learning to solve for well-performing largest unanimous mechanisms. Our approach

involves several technical innovations as discussed in Section 3.1.

3.4.1 Mechanism Design via Neural Networks

We start with an overview of automated mechanism design (AMD) via neural net-
works. Previous papers on mechanism design via neural networks (Manisha, Jawahar,
and Gujar, 2018; Golowich, Narasimhan, and Parkes, 2018b; Duetting et al., 2019;

Shen, Tang, and Zuo, 2019) all fall into this general category.

5This chapter assumes that the distribution is continuous, so technically we should be considering
a smoothed version of the Bernoulli distribution. For the purpose of demonstrating an elegant
example, we ignore this technicality.

48

Chapter 3. Mechanism Design for Public Projects via Neural Networks

e Use neural networks to represent the full (or a part of the) mechanism. Like

mechanisms, neural networks are essentially functions with multi-dimensional

inputs and outputs.

Training is essentially to adjust the network parameters in order to move toward
a better performing network/mechanism. Training is just parameter optimiza-

tion.

Training samples are not real data. Instead, the training type profiles are gen-
erated based on the known prior distribution. We can generate infinitely many
fresh samples. We use these generated samples to build the cost function, which
is often a combination of mechanism design objective and constraint penalties.

The cost function must be differentiable with respect to the network parameters.

The testing data are also type profiles generated based on the known prior dis-
tribution. Again, we can generate infinitely many fresh samples, so testing is
based on completely fresh samples. We average over enough samples to calculate

the mechanism’s expected performance.

3.4.2 Network Structure

A largest unanimous mechanism specifies constant cost shares for every coalition of

agents. The mechanism can be characterized by a neural network with n binary inputs

and n outputs. The n binary inputs present the coalition, and the n outputs represent

the constant cost shares. We use b to denote the input vector (tensor) and ¢ to denote

—.

the output vector. We use NN to denote the neural network, so NN (b) = ¢ There

are several network constraints:

e All cost shares are nonnegative: ¢ > 0.

e For input coordinates that are 1s, the output coordinates should sum up to 1.

For example, if n = 3 and b = (1,0,1) (the coalition is {1,3}), then & + & = 1

(agent 1 and 3 are to share the total cost).

3.4. Mechanism Design vs Neural Networks 49

e For input coordinates that are 0Os, the output coordinates are irrelevant. We
set these output coordinates to 1s, which makes it more convenient for the next

constraint.

e Every output coordinate is nondecreasing in every input coordinate. This is to
ensure that the agents’ cost shares are nondecreasing when some other agents
are removed. If an agent is removed, then her cost share offer is kept at 1, which

makes it trivially nondecreasing.

-,

All constraints except for the last is easy to achieve. We will simply use OUT'(b)

as output instead of directly using NN (5)6

=, -, -, =,

OUT(b) = softmax(NN () — 1000(1 — b)) + (1 — b)

Here, 1000 is an arbitrary large constant. For example, let b = (1,0,1) and

&= NN(b) = (z,y,2). We have

-,

OUT(b) = softmax((z,y, z) — 1000(0, 1,0)) + (0,1,0)

= softmax((x,y — 1000, 2)) + (0, 1,0)
= (2/,0,2') +(0,1,0) = (', 1,%/)

In the above, softmax((z,y — 1000, z)) becomes (z’,0,y") with 2,y > 0 and
' + 9y = 1 because the second coordinate is very small so it (essentially) vanishes
after softmax. Softmax always produces nonnegtive outputs that sum up to 1. Finally,
the Os in the output are flipped to 1s per our third constraint.

The last constraint is enforced using a penalty function. For b and b/ , where v is

-

obtained from b by changing one 1 to 0, we should have that OQUT(b) < OUT(V),

This is done by appending additional calculation structures to the output layer.

50 Chapter 3. Mechanism Design for Public Projects via Neural Networks

which leads to this penalty:

-,

ReLU(OUT(5) — OUT(¥))

Another way to enforce the last constraint is to use the monotonic networks struc-
ture (Sill, 1998). This idea has been used in (Golowich, Narasimhan, and Parkes,
2018b) , where the authors also dealt with networks that take binary inputs and must
be monotone. However, we do not use this approach because it is incompatible with
our design for achieving the other constraints. There are two other reasons for not
using the monotonic network structure. One is that it has only two layers. Some
argue that having a deep model is important for performance in deep learning (Zhou
and Feng, 2017). The other is that under our approach, we only need a fully con-
nected network with ReLLU penalty, which is highly optimized in state-of-the-art deep
learning toolsets (while the monotonic network structure is not efficiently supported
by existing toolsets). In our experiments, we use a fully connected network with four

layers (100 nodes each layer) to represent our mechanism.

3.4.3 Cost Function

For presentation purposes, we focus on maximizing the expected number of consumers.

Only slight adjustments are needed for welfare maximization.

Previous approaches of mechanism design via neural networks used static net-
works (Manisha, Jawahar, and Gujar, 2018; Golowich, Narasimhan, and Parkes,
2018b; Duetting et al., 2019; Shen, Tang, and Zuo, 2019). Given a sample, the mech-
anism simulation is done on the network. Our largest unanimous mechanism involves
iterative decision making, and the number of rounds is not fixed, as it depends on the

users’ inputs.

3.4. Mechanism Design vs Neural Networks 51

To model iterative decision making via a static network, we could adopt the fol-
lowing process. The initial offers are OUT((1,1,...,1)). The remaining agents after
the first round are then S = sigmoid(v — OUT((1,1,...,1))). Here, v is the type
profile sample. The sigmoid function turns positive values to (approximately) 1s and
negative values to (approximately) 0s. The next round of offers are then OUT(S).
The remaining agents afterwards are then sigmoid(v — OUT(S)). We repeat this n
times because the largest unanimous mechanism have at most n rounds. The final
coalition is a converged state, so even if the mechanism terminates before the n-th
round, having it repeat n times does not change the result (except for additional nu-
merical errors). Once we have the final coalition S/, we include >, or 2 (number
of consumers) in the cost function. However, this approach performs abysmally, due
to the vanishing gradient problem and numerical errors caused by stacking n sigmoid

functions.

We would like to avoid stacking sigmoid to model iterative decision making or get
rid of sigmoid altogether. Sigmoid is heavily used in existing works on neural network
mechanism design, but it is the culprit of significant numerical errors. We propose an
alternative approach, where decisions are simulated off the network using a separate
program (e.g., any Python function). The advantage of this approach is that it is
now trivial to handle complex decision making. However, experienced neural network
practitioners may immediately notice a pitfall. Given a type profile sample v and
the current network NN, if we simulate the mechanism off the network to obtain the
number of consumers z, and include z in the cost function, then training will fail
completely. This is because z is not a differentiable function of network parameters

and cannot support backpropagation at all.”

One way to resolve this is to interpret the mechanisms as price-oriented rationing-
free (PORF) mechanisms (Yokoo, 2003). That is, if we single out one agent, then
her options (outcomes combined with payments) are completely determined by the

other agents and she simply has to choose the utility-maximizing option. Under a

"We use PyTorch in our experiments. An overview of Automated Differentiation in PyTorch is
available here (Paszke et al., 2017).

52 Chapter 3. Mechanism Design for Public Projects via Neural Networks

largest unanimous mechanism, an agent faces only two results: either she belongs to
the largest unanimous coalition or not. If an agent is a consumer, then her payment is
a constant due to strategy-proofness, and the constant payment is determined by the
other agents. Instead of sampling over complete type profiles, we sample over v_; with
a random i. To better convey our idea, we consider a specific example. Let ¢ = 1 and
v_g = (- %, %, i, 0). We assume that the current state of the neural network is exactly
the serial cost sharing mechanism. Given a sample, we use a separate program to
calculate the following entries. In our experiments, we simply used Python simulation

to obtain these entries.

e The objective value if i is a consumer (O;). Under the example, if 1 is a con-
sumer, then the decision must be 4 agents each pays %. So the objective value

is O, = 4.

e The objective value if 7 is not a consumer (Oy). Under the example, if 1 is not
a consumer, then the decision must be 2 agents each pay % So the objective

value is Oy = 2.

e The binary vector that characterizes the coalition that decides i’s offer (Op).

Under the example, Op = (1,1,1,1,0).

Os, Oy, and db are constants without network parameters. We link them together

using terms with network parameters, which is then included in the cost function:

(1— F(OUT(O);))Os + F(OUT(Oy);)Oy (3.1)

1 — F(OUT(Op);) is the probability that agent i accepts her offer. F(OUT(Op);) is
then the probability that agent i rejects her offer. OU T(db)i carries gradients as it is
generated by the network. We use the analytical form of F', so the above term carries

gradients.®

8PyTorch has built-in analytical CDFs of many common distributions.

3.4. Mechanism Design vs Neural Networks 53

The above approach essentially feeds the prior distribution into the cost function.
We also experimented with two other approaches. One does not use the prior distri-
bution. It uses a full profile sample and uses one layer of sigmoid to select between

O or Oy:
sigmoid(v; — OUT(0y);)Os + sigmoid(OUT(Op); — v:))O; (3.2)

The other approach is to feed “even more” distribution information into the cost
function. We single out two agents ¢ and j. Now there are 4 options: they both win
or both lose, only ¢ wins, and only j wins. We still use F' to connect these options

together.

In Section 3.5, in one experiment, we show that singling out one agent works the
best. In another experiment, we show that even if we do not have the analytical form

of F', using an analytical approximation also enables successful training.

There is a summary of the loss function:

1. Os, Oy, and O, are constants without gradients. We link them together using

terms with gradients, which is then included in the cost function:

loss = (1 — F(OUT(0,):))Os + F(OUT(Oy);)Oy

2. OUT(Op) is the network output (i.e., cost share offers given coalition Op). 1 —
F(OUT(Op);) is the probability that agent i accepts her offer. F(OUT(Op);) is

then the probability that agent i rejects her offer.

3. OU T(Jb)i carries gradients as it is generated by the network. We use the

analytical form of F', so the above term carries gradients.

Our network uses the 4 layers fully connected network. The network has 100 nodes
in each layer with ReLU active function. The input size is n (the agent number), and

the output size is also n. And the batch size is 1.

54 Chapter 3. Mechanism Design for Public Projects via Neural Networks

3.4.4 Supervision as Initialization

We introduce an additional supervision step in the beginning of the training process
as a systematic way of initialization. We first train the neural network to mimic an
existing manual mechanism, and then leave it to gradient descent. We considered
three different manual mechanisms. One is the serial cost sharing mechanism. The

other two are based on two different heuristics:

Definition 3.4 (One Directional Dynamic Programming). We make offers to the
agents one by one. Every agent faces only one offer. The offer is based on how many
agents are left, the objective value cumulated so far by the previous agents, and how
much money still needs to be raised. If an agent rejects an offer, then she is removed
from the system. At the end of the algorithm, we check whether we have collected 1.
If so, the project is built and all agents not removed are consumers. This mechanism
belongs to the largest unanimous mechanism family. This mechanism is not optimal

because we cannot go back and increase an agent’s offer.

Definition 3.5 (Myopic Mechanism). For coalition size k, we treat it as a nonex-
cludable public project problem with k agents. The offers are calculated based on the
dynamic program proposed at the end of Subsection 5.5.53, which computes the optimal
offers for the nonexcludable model. This is called the myopic mechanism, because it
does not care about the payoffs generated in future rounds. This mechanism is not
necessarily feasible, because the agents’ offers are not necessarily nondecreasing when

some agents are removed.

3.5. Experiments 95

3.5 Experiments

The experiments are conducted on a machine with Intel i5-8300H CPU.” The largest
experiment with 10 agents takes about 3 hours. Smaller scale experiments take only

about 15 minutes.

In our experiments, unless otherwise specified, the distribution considered is two-
peak (0.15,0.1,0.85,0.1,0.5). The x-axis shows the number of training rounds. Each
round involves 5 batches of 128 samples (640 samples each round). Unless otherwise
specified, the y-axis shows the expected number of nonconsumers (so lower values
represent better performances). Random initializations are based on Xavier normal

with bias 0.1.

Figure 3.1 (Left) shows the performance comparison of three different ways for con-
structing the cost function: using one layer of sigmoid (without using distribution)
based on (3.2), singling out one agent based on (3.1), and singling out two agents.
All trials start from random initializations. In this experiment, singling out one agent
works the best. The sigmoid-based approach is capable of moving the parameters,
but its result is noticeably worse. Singling out two agents has almost identical perfor-

mance to singling out one agent, but it is slower in terms of time per training step.

9We experimented with both PyTorch and Tensorflow (eager mode). The PyTorch version runs
significantly faster, because we are dealing with dynamic graphs.

56 Chapter 3. Mechanism Design for Public Projects via Neural Networks

n=5, Two-Peak n=3, Beta(0.1,0.1)
- 1.781 . o OO0,
. —— Sigmoid 4,00 SR 590405
224 % —»= Exclude One Agent | _ 1764
5 { Exclude Two Agents |2 A —— DP
504 A E bona, ‘-,*M —=%= Random
g . gl ~.‘-’, b § 1.74 - -‘_“ n“.‘q sSCS
Q) & "‘-“. .
fia{ 4 5 S L
i 172 A X
“"&--n. $09090000000680080800689090¢ \/ \,
1-6 T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40
Round Round

FIGURE 3.1. Effect of Distribution Info on Training (test set result
during every training step)

Figure 3.1 (Right) considers the Beta (0.1, 0.1) distribution. We use Kumaraswamy
(0.1,0.354)’s analytical CDF to approximate the CDF of Beta (0.1,0.1). The experi-
ments show that if we start from random initializations (Random) or start by supervi-
sion to serial cost sharing (SCS), then the cost function gets stuck. Supervision to one
directional dynamic programming (DP) and Myoptic mechanism (Myopic) leads to
better mechanisms. So in this example scenario, approximating CDF is useful when
analytical CDF is not available. It also shows that supervision to manual mechanisms

works better than random initializations in this case.

3.5. Experiments

o7

n=3 n=>5
1.85 4)Sf s DP
)"f 221 —»=- Random
1804 ! 5 \ scs
3 1 z 204 s-+= Myopic
c 1 c \
81754 | 3 a
c c .4
s o S 1.8 {“ “*-.'
1709 e,
SStetenuategivenents || i
0 10 Lound20 30 0 10 20 30 40
oun Round
n=10 n=10
' |
1.44 ,/)
: [\
v : o “
5 g \
£] £1.43 A \
: A
g 1.6 s .M\\'
5017 21.42 pLaW
z S
"‘..._
0 10 20 30 40 50 0 10 20 30 40 50
Round Round
F1GURE 3.2. Experiment result: Supervision to Different Manual

Mechanisms (test set result during every training step)

Figure 3.2 (Top-Left n = 3, Top-Right n = 5, Bottom-Left n = 10) shows the

performance comparison of supervision to different manual mechanisms. For n = 3,

supervision to DP performs the best. Random initializations is able to catch up but

not completely close the gap. For n = 5, random initializations caught up and actually

became the best performing one. The Myopic curve first increases and then decreases

because it needs to first fix the constraint violations.

For n = 10, supervision to

DP significantly outperforms the others. Random initializations closes the gap with

regard to serial cost sharing, but it then gets stuck. Even though it looks like the DP

curve is flat, it is actually improving, albeit very slowly. A magnified version is shown

in Figure 3.2 (Bottom-Right).

58 Chapter 3. Mechanism Design for Public Projects via Neural Networks

n=3 n=5
o eeeeeeeeee— | 0.79
0.185 - ot
.'l- et i
I9) .‘:ﬁ‘»«*"“‘.“ﬁ.“‘* xfwxxm o 0.78 1
8 - . ot % JRUTTTReo *N,gﬁ;;;;x“x;:(:;:&mﬁ
[} R = J
£ 0.180- 0 —— DP 2077 o0
2 s —»%- Random |§ 00e
X ()]
5 X SCS 20.76 -
=% Myopic
0.175 - secevecesevoveseseescacescncecncee
Txx T T T 0'75 - T T T T
0 10 20 30 0 10 20 30
Round Round

FIGURE 3.3. Experiment result: Maximizing Agents’ Welfare (test
set result during every training step)

Figure 3.3 shows two experiments on maximizing expected agents’ welfare (y-axis)
under two-peak (0.2,0.1,0.6,0.1,0.5). The start of each table is the baseline perfor-
mance after the supervision training for every baseline (DP, Random, SCS, Myopic).
Then we leave it to gradient descent with the loss function. For n = 3, supervision to
DP leads to the best result. For n = 5, SCS is actually the best mechanism we can

find (the cost function barely moves).

It should be noted that all manual mechanisms before training have very similar
welfares: 0.7517 (DP), 0.7897 (SCS), 0.7719 (Myopic). Even random initialization
before training has a welfare of 0.7648. In this case, there is just little room for

improvement.

3.6. Chapter Summary 59

3.6 Chapter Summary

In this chapter, we studied optimal-in-expectation mechanism design for the public
project model. We are the first to use neural networks to design iterative mechanisms.
To avoid modeling iterative decision making via the sigmoid function, we simulate the
different options an agent faces under an iterative mechanism and combine the options
using distribution information to build the cost function for our optimal-in-expectation
objective. We showed that under various conditions, existing mechanisms or mech-
anisms derived via classic mechanism design approaches are optimal. When classic
mechanism design approaches do not suffice, we derived better mechanisms via neural
networks by first training the neural networks to mimic manual mechanisms and then

improving by gradient descent.

Our experiments show that for different the number of agents, the prior probabil-
ity distribution will significantly influence the effect of the agent’s social welfare or
consumers. For example, for uniform or normal distribution, the serial cost-sharing
mechanism is best. However, when the prior probability distribution is two-peak, the

serial cost-sharing mechanism is no longer best.

61

Chapter 4

Public Project with Minimum

Expected Release Delay

In this chapter, we study a public project model where the project can be released
to different agents at different times. The mechanism designer uses “delay in release”
to incentivize the agents to pay for the public project. The goal of the mechanism

design is to minimize the maximum delay or the total delay.

4.1 Introduction

The public project problem is a fundamental mechanism design model with many
applications in multiagent systems. The public project problem involves multiple
agents, who need to decide whether or not to build a public project. The project
can be nonexcludable (i.e., if the project is built, then every agent gets to consume
the project, including the non-paying agents/free riders) or excludable (i.e., the set-
ting makes it possible to exclude some agents from consuming the project) (Ohseto,
2000).! A public project can be indivisible/binary or divisible (Moulin, 1994).
A binary public project is either built or not built (i.e., there is only one level of
provision). In a divisible public project, there are multiple levels of provision (i.e.,

build a project with adjustable quality).

! An example nonexcludable public project is a public airport, and an example excludable public
project is a gated swimming pool.

62 Chapter 4. Public Project with Minimum Expected Release Delay

In this chapter, we study an excludable public project model that is “divisible” in a
different sense. In the model, the level of provision is binary (i.e., the project is either
built or not built), but an agent’s consumption is divisible. The mechanism specifies
when an agent can start consuming the project. High-paying agents can consume the
project earlier, and the free riders need to wait. The waiting time is also called an
agent’s delay. The delay is there to incentivize payments. The model was proposed
by Guo et al. (Guo, Yang, and Ali Babar, 2018). The authors studied the following
mechanism design scenario. A group of agents come together to crowd-fund a piece
of security information. No agent is able to afford the information by herself.? Based
on the agents’ valuations on the information, the mechanism decides whether or not
to crowd-fund this piece of information (i.e., purchase it from the security consulting
firm that is selling this piece of information). If we are able to raise enough payments
to cover the cost of the security information, then ideally we would like to share it
to all agents, including the free riders, in order to maximizes the overall protection of
the community. However, if all agents receive the information regardless of their pay-
ments, then no agents are incentivized to pay. To address this, the mechanism releases
the information only to high-paying agents in the beginning and the non-paying/low-
paying agents need to wait for a delayed release. The mechanism design goal is to
minimize the delay as long as the delay is long enough to incentivize enough payments
to cover the cost of the information. Guo et al. (Guo, Yang, and Ali Babar, 2018)
proposed two design objectives. One is to minimize the maz-delay (i.e., the maximum
waiting time of the agents) and the other is to minimize the sum-delay (i.e., the total
waiting time of the agents). The authors focused on worst-case mechanism design and
proposed a mechanism that has a constant approximation ratio compared to the op-
timal mechanism. The authors also briefly touched upon expected delay. The authors
used simulation to show that compared to their worst-case competitive mechanism,
the serial cost sharing mechanism proposed by Moulin (Moulin, 1994) has much lower

expected maz-delay and sum-delay under various distributions.

In this chapter, we focus on minimizing the expected maz-delay and the expected

sum-delay. We propose a mechanism family called the single deadline mechanisms.

2Zero-day exploits are very expensive (Greenberg, 2012; Fisher, 2015).

4.1. Introduction 63

For both objectives, under minor technical assumptions, we prove that there exists a
single deadline mechanism that is near optimal when the number of agents is large, re-
gardless of the prior distribution. Furthermore, when the number of agents approaches
infinity, the optimal single deadline mechanism approaches optimality asymptotically.
For small number of agents, the single deadline mechanism is not optimal. We extend
the single deadline mechanisms to multiple deadline mechanisms. We also propose a
genetic algorithm based automated mechanism design approach. We use a sequence
of offers to represent a mechanism and we evolve the sequences. By simulating mech-
anisms using multiple distributions, we show that our genetic algorithm successfully

identifies better performing mechanisms for small number of agents.

Ohseto (Ohseto, 2000) characterized all strategy-proof and individually rational
mechanisms for the binary public project model (both excludable and nonexcludable),
under minor technical assumptions. Deb and Razzolini (Deb and Razzolini, 1999)
further showed that on top of Ohseto’s characterization, if we require equal treat-
ment of equals (i.e., if two agents have the same type, then they should be treated
the same), then the only strategy-proof and individually rational mechanisms are the
conservative equal cost mechanism (nonexcludable) and the serial cost sharing mech-
anism (excludable), which were both proposed by Moulin (Moulin, 1994). It should
be noted that Ohseto’s characterization involves exponential number of parameters,
so knowing the characterization does not mean it is easy to locate good mechanisms.
Wang et al. (Wang et al., May 2021) proposed a neural network based approach for

optimizing within Ohseto’s characterization family.

The authors studied two objectives: maximizing the number of consumers and
maximizing the social welfare. It should be noted that Ohseto’s characterization does
not apply to the model in this chapter, as our model has an additional spin that is the
release delay. In this chapter, we propose a family of mechanisms called the sequential
unanimous mechanisms, which is motivated by Ohseto’s characterization. We apply a
genetic algorithm for tuning the sequential unanimous mechanisms. Mechanism design
via evolutionary computation (Phelps, McBurney, and Parsons, 2010) and mecha-

nism design via other computational means (such as linear programming (Conitzer

64 Chapter 4. Public Project with Minimum Expected Release Delay

and Sandholm, 2002) and neural networks (Duetting et al., 2019; Shen, Tang, and
Zuo, 2019; Wang et al., May 2021)) have long been shown to be effective for many

design settings.

4.2 Model Description

There are n agents who decide whether or not to build a public project. The project
is binary (build or not build) and nonrivalrous (the cost of the project does not de-
pend on how many agents are consuming it). We normalize the project cost to 1.
Agent i’s type v; € [0,1] represents her private valuation for the project. We use
v = (v1,v2,...,0,) to denote the type profile. We assume that the v; are drawn i.i.d.
from a known prior distribution, where f is the probability density function. For

technical reasons, we assume f is positive and Lipschitz continuous over [0, 1].

We assume that the public project has value over a time period [0, 1]. For example,
the project could be a piece of security information that is discovered at time 0 and the
corresponding exploit expires at time 1. We assume the setting allows the mechanism
to specify each agent’s release time for the project, so that some agents can consume
the project earlier than the others. Given a type profile, a mechanism outcome consists
of two vectors: (t1,to,...,t,) and (p1,p2,...,pn). Le., agent i starts consuming the
project at time ¢; € [0,1] and pays p; > 0. t; = 0 means agent i gets to consume
the public project right from the beginning and ¢; = 1 means agent i does not get
to consume the public project. We call t; agent i’s release time. We assume the
agents’ valuations over the time period is uniform. That is, agent ¢’s valuation equals
v;i(1 — t;), as she enjoys the time interval [t;, 1], which has length 1 — ¢;. Agent ’s

utility is then v;(1 —t;) — p;. We impose the following mechanism design constraints:

4.2. Model Description 65

e Strategy-proofness: We use t; and p; to denote agent ¢’s release time and pay-
ment when she reports her true value v;. We use t; and p) to denote agent i’s

release time and payment when she reports a false value v,. We should have
vi(l =) —pi 2 vi(l = ;) = pj
e Individual rationality:

v;(1—1t;) —pi >0

e Ex post budget balance:

If the project is not built, then no agent can consume the project and no agent

pays. That is, we must have ¢; = 1 and p; = 0 for all 3.

If the project is built, then the agents’ total payment must cover exactly the

project cost. That is,). p; = 1.

Our aim is to design mechanisms that minimize the following design objectives:

1. Expected Maz-Delay: Ey, ¢ (max{t,ta,...,t,})

2. Expected Sum-Delay: Ey, ¢ (>, t:)

66 Chapter 4. Public Project with Minimum Expected Release Delay

4.3 Single Deadline Mechanism

We first describe the serial cost sharing mechanism (SCS) proposed by Moulin (Moulin,

1994). Under SCS, an agent’s release time is either 0 or 1.%

Let ¢ be the type profile. We first define the following functions:

1 3ke{l,2,....,n}k < [{vi|v; > +}|
1(7) =

0 otherwise

I(?¥) equals 1 if and only if there exist at least k values among ¢ that are at least

%, where k is an integer from 1 to n.

max{k|k < |{vilv; > £}k € {1,2,...,n}} I(7)

)

1

K(¥) =
0 I(

I
o

<y

Given ¥, there could be multiple values for k, where there exist at least k values
among U that are at least % K () is the largest value for k. If such a k value does

not exist, then K(v) is set to 0.

Definition 4.1 (Serial Cost Sharing Mechanism (Moulin, 1994)). Let ¥ be the type

profile. Let k = K (7).

o [fk > 0, then agents with the highest k values are the consumers. The consumers

pay % The non-consumers do not pay.

e If k=0, then there are no consumers and no agents pay.

3Because the concept of release time does not exist in the classic binary excludable public project
model.

4.3. Single Deadline Mechanism 67

Essentially, the serial cost sharing mechanism finds the largest k& where k agents
are willing to equally split the cost. If such a k exists, then we say the cost share is
successful and these k agents are joining the cost share. If such a k does not exist,
then we say the cost share failed.

Next we introduce a new mechanism family called the single deadline mechanisms.

Definition 4.2 (Single Deadline Mechanisms). A single deadline mechanism is char-
acterized by one parameter d € [0,1]. d is called the mechanism’s deadline. We use
M(d) to denote the single deadline mechanism with deadline d. The time interval be-
fore the deadline [0, d] is called the non-free part. The time interval after the deadline

[d, 1] is called the free part.

We run the serial cost sharing mechanism on the non-free part as follows. For the
non-free part, the agents’ valuations are dv = (dvy,dva,...,dv,). Let k = K(dv).
Agents with the highest k£ values get to consume the non-free part, and they each
needs to pay %

The free part is allocated to the agents for free. However, we cannot give out the
free part if the public project is not built.

If we give out the free part if and only if I(dv) = 1, then the mechanism is not
strategy-proof, because the free parts change the agents’ strategies.? Instead, we give
agent ¢ her free part if and only if I(dv_;) = 1. That is, agent i gets her free part if
and only if the other agents can successfully cost share the non-free part without .

If an agent receives both the non-free part and the free part, then her release time
is 0. If an agent only receives the free part, then her release time is d. If an agent does
not receive either part, then her release time is 1. Lastly, if an agent only receives
the non-free part, then her release time is 1 — d, because such an agent’s consumption

interval should have length d (i.e., [1 —d, 1]).

Proposition 4.1. The single deadline mechanisms are strategy-proof, individually

rational, and ex post budget balanced.

4For example, an agent may over-report to turn an unsuccessful cost share into a successful cost
share, in order to claim the free part.

68 Chapter 4. Public Project with Minimum Expected Release Delay

Proof. Whether an agent receives her free part or not does not depend on her report,
so the agents are essentially just facing a serial cost sharing mechanism, where the

item being cost shared is d portion of the public project. B O

4.4 Max-Delay: Asymptotic Optimality

In this section, we show that when the number of agents is large enough, the optimal
single deadline mechanism is asymptotically optimal in terms of expected max-delay,

regardless of the prior distribution.

Theorem 4.1. The optimal single deadline mechanism’s expected maz-delay approaches

0 when the number of agents approaches infinity.

Proof. We consider a single deadline mechanism M (d). Every agent’s valuation is
drawn i.i.d. from a distribution with PDF f. Let V; be the random variable repre-
senting agent ¢’s valuation. Since f is positive and Lipschitz continuous, we have the

following;:

vd, 3k, P(dV; > %) >0

That is, for any deadline d, there always exists an integer k, where the probability
that an agent is willing to pay % for the non-free part is positive. Let p = P(dV; > %)

We define the following Bernoulli random variable:

1 dVi>y
B; =

0 otherwise

4.4. Max-Delay: Asymptotic Optimality 69

B; equals 1 with probability p. It equals 1 if and only if agent i can afford % for
the non-free part. The total number of agents in ¥ who can afford % for the non-free
part then follows a Binomial distribution B(n,p). We use B to denote this Binomial
variable. If B > k41, then every agent receives the free part, because agent ¢ receives
the free part if excluding herself, there are at least k agents who are willing to pay %
for the non-free part. The probability that the max-delay is higher than d is therefore

bounded above by P(B < k). According to Hoeffding’s inequality, when k < np,

P(B < k) < e 2%

We immediately have that when n approaches infinity, the probability that the max-
delay is higher than d is approaching 0. Since d is arbitrary, we have that asymptoti-

cally, the single deadline mechanism’s expected max-delay is approaching 0.

Next, we use an example to show that when n = 500, the optimal single deadline
mechanism’s expected max-delay is close to 0.01. We reuse all notation defined in the

proof of Theorem 4.1. We make use of the Chernoff bound. When k£ < np, we have

—a

-p

1
P(B<k)< e_"D(%”p), where D (a||p) = aln " + (1-a)ln 1
p

When all agents receive the free part, the max-delay is at most d. Otherwise, the

max-delay is at most 1. The expected max-delay is at most

P(B<k)+d(1-P(B<k)<PB<k) +d

70 Chapter 4. Public Project with Minimum Expected Release Delay

Example 4.1. Let us consider a case where n = 500. We set d = 0.01 and k = 250.

o [is the uniform distribution U(0,1): We have p = 0.6 and P(B < 250) <
3.69e—5. M (0.01)’s expected max-delay is then bounded above by 0.01+3.69e—5.

e f is the normal distribution N(0.5,0.1) restricted to [0,1]: We have p = 0.84
and P(B < 250) < 7.45e — 69. M(0.01)’s expected maz-delay is then bounded
above by 0.01 + 7.45e — 69.

On the contrary, the expected max-delay of the serial cost sharing mechanism is
not approaching 0 asymptotically. For example, when n = 500, under the uniform dis-
tribution U(0, 1), the expected max-delay of the serial cost sharing mechanism equals

0.632 which is very close to 1 — %

Proposition 4.2. The expected maz-delay of the serial cost sharing mechanism equals
1
1= ([fa)da)"
1

The above expression approaches 1 — e~ F(0) asymptotically.

4.5. Sum-Delay: Asymptotic Optimality 71

4.5 Sum-Delay: Asymptotic Optimality

In this section, we show that when the number of agents is large enough, the optimal
single deadline mechanism’s expected sum-delay approaches optimality, regardless of

the prior distribution.

Theorem 4.2. When the number of agents approaches infinity, the optimal single

deadline mechanism is optimal among all mechanisms in terms of expected sum-delay.

Theorem 4.2 can be proved by combining Proposition 4.5 and Proposition 4.6.

Proposition 4.3. The optimal expected sum-delay is finite regardless of the distribu-

tion.

Proof. We consider the following mechanism: Pick an arbitrary integer &k > 1. We
offer % to the agents one by one. An agent gets the whole interval [0, 1] if she agrees
to pay % and if the project is built. Otherwise, she gets nothing. We build the project
only when k agents agree. Since we approach the agents one by one, after k agents
agree to pay %, all future agents receive the whole interval for free. This mechanism’s
expected sum-delay is bounded above by a constant. The constant only depends on

the distribution. W

The following proposition follows from Proposition 4.3.

Proposition 4.4. Given a mechanism M and the number of agents n, let Fail(n)
be the probability of not building under M. We only need to consider M that satisfies
Fail(n) = O(1/n).

We then propose a relaxed version of the ex post budget balance constraint, and

use it to calculate the delay lower bound.

72 Chapter 4. Public Project with Minimum Expected Release Delay

Definition 4.3 (Ex ante budget balance). Mechanism M is ex ante budget balanced if
and only if the expected total payment from the agents equals the probability of building

(times project cost 1).

Proposition 4.5. Let Fail(n) be the probability of not building the project under the
optimal mechanism when there are n agents.

We consider what happens when we offer o for the whole interval [0,1] to an in-
dividual agent. If the agent accepts o then she pays o and gets the whole interval.
Otherwise, the agent pays 0 and receives nothing.

We define the delay versus payment ratio r(0) as follows:

_ Jo f(x)dx
ofol f(x)dx

r is continuous on (0,1). Due to f being Lipschitz continuous, we have lim,_ogr(0) =

r(0)

£(0) and lim,—,1 7(0) = oco. We could simply set r(0) = f(0), then r is continuous on
[0,1).
We define the optimal delay versus payment ratio r* as follows:
*

r* = 0161%2) (o)

The expected sum-delay is bounded below by r*(1 — Fail(n)), which approaches r*

asymptotically according to Proposition /.4.

QOutline. If we switch to ex ante budget balance, then it is without loss of generality
to focus on anonymous mechanisms. We then face a single agent mechanism design

1-Fail(n) - : .
#(n) in expectation and we want to minimize her

problem where an agent pays
expected delay. Based on Myerson’s characterization for single-parameter settings,
here every strategy-proof mechanism works as follows: for each infinitesimal time
interval there is a price and the price increases as an agent’s allocated interval increases
in length. There is an optimal price that minimizes the ratio between the delay caused

by the price and the payment. The total payment is 1 — Fail(n), which means the

total delay is at least r*(1 — Fail(n)). B O

4.5. Sum-Delay: Asymptotic Optimality 73

Proposition 4.6. Let o* be the optimal offer that leads to the optimal delay versus
payment ratio .0

0* = arg min r(o
goG[O,l) ()

Let € > 0 be an arbitrarily small constant. The following single deadline mecha-

nism’s expected sum delay approaches r*(1 + €) asymptotically.

1+e€
no* fol* f(z)dz

Proof. Let p = P(Vi(1+¢€) > 0*). Let k = nfol* f(z)dz. p is the probability that an

M(

1+4e¢
no* fol* flx)dz”

B to denote the Binomial distribution B(n,p). If B > k, then every agent receives

agent is willing to pay % for the non-free part whose length is We use
the free part, because cost sharing is successful even if we remove one agent. The
probability that an agent does not receive the free part is then bounded above by

P(B < k). According to Hoeffding’s inequality, we have that when k < np, we have

*

—2n(f gr fl@)de—[pe f@)de)® U S

P(B<k)<e =) —¢

Let 8= [100;:6 f(x)dx. The expected total delay when some agents do not receive
the free part is then at most ne_2”52, which approaches 0 as n goes to infinity. There-
fore, we only need to consider situations where all agents receive the free part and at
least k agents receive the non-free part. The expected sum delay on the remaining
n — k agents is then at most

1+e€ [fa)da

(n—k)——C — (14

no* fol* f(x)dx a = (er

o* fol* f(x)dx a

5If 0* = 0, then we replace it with an infinitesimally small v > 0. The achieved sum-delay is then
approaching 7(y)(1 + €) asymptotically. When v approaches 0, () approaches r*.

74 Chapter 4. Public Project with Minimum Expected Release Delay

We then use an example to show that when n = 500, under different distributions,
the optimal single deadline mechanism’s expected sum-delay is close to the optimal

value.

Example 4.2. We consider n = 500 which is the same as Example 4.1. Simulations

are based on 100,000 random draws.

o f is the uniform distribution U(0,1): The single deadline mechanism M (1) (es-
sentially the serial cost sharing mechanism) has an expected sum-delay of 1.006,
which is calculated via numerical simulation. Fail(500) is then at most 0.002.

r* = 1. The lower bound is 0.998, which is close to our achieved sum-delay 1.006.

o f is the normal distribution N(0.5,0.1) restricted to [0,1]: The single deadline
mechanism M (1)’s expected sum-delay equals 2.3e — 4 in simulation, which is

obviously close to optimality.

o f is the beta distribution Beta(0.5,0.5): The single deadline mechanism M (0.01)’s
expected sum-delay equals 1.935 in simulation. Fail(500) is then at most 0.00387.
r* = 1.927. The lower bound equals (1 — 0.00387) * r* = 1.920, which is very
close to the achieved sum-delay of 1.935. The serial cost sharing mechanism
M(1) is far away from optimality in this example. The expected sum-delay of

the serial cost sharing mechanism is much larger at 14.48.

4.6. Automated Mechanism Design for Smaller Number of Agents 75

4.6 Automated Mechanism Design for Smaller Number of

Agents

For smaller number of agents, the single deadline mechanism family no longer contains
a near optimal mechanism. We propose two numerical methods for identifying better
mechanisms for smaller number of agents. One is by extending the single deadline

mechanism family and the other is via evolutionary computation.

4.6.1 Multiple Deadline Mechanisms

The first method is fairly straightforward. We could extend the single deadline mech-

anism family as follows:

Definition 4.4 (Multiple Deadline Mechanisms). A multiple deadline mechanism
M(dy,ds, ... ,dy) is characterized by n different deadlines. Agent i’s non-free part is
[0,d;] and her free part is [d;, 1]. The mechanism’s rules are otherwise identical to the

single deadline mechanisms.

We simply use exhaustive search to find the best set of deadlines. Obviously, this

approach only works when the number of agents is tiny.

76 Chapter 4. Public Project with Minimum Expected Release Delay

4.6.2 Automated Mechanism Design via Evolutionary Computation

Ohseto (Ohseto, 2000) characterized all strategy-proof and individually rational
mechanisms for the binary public project model (under several minor technical as-

sumptions). We summarize the author’s characterization as follows:

e Unanimous mechanisms (characterization for the nonexcludable model): Under
an unanimous mechanism, there is a cost share vector (c1, ¢, ..., ¢,) with ¢; > 0
and), ¢; = 1. The project is built if and only if all agents accept this cost share

vector.

e Largest unanimous mechanisms (characterization for the excludable model): Un-
der a largest unanimous mechanism, for every subset/coalition of the agents,
there is a constant cost share vector. The agents initially face the cost share
vector corresponding to the grand coalition. If some agents do not accept the
current cost share vector, then they are forever excluded. The remaining agents
face a different cost share vector based on who are left. If at some point, all
remaining agents accept, then we build the project. Otherwise, the project is

not built.

We extend the largest unanimous mechanisms by adding the release time element.

Definition 4.5 (Sequential unanimous mechanisms). A cost share vector under a

sequential unanimous mechanism includes both the payments and the release time:

TlaBly T27-827) Tann

Agent i accepts the above cost share wvector if and only if her wutility based on her
reported valuation is nonnegative when paying B; for the time interval [T;,1]. That

is, agent i accepts the above cost share vector if and only if her reported valuation

4.6. Automated Mechanism Design for Smaller Number of Agents 7

1s at least 15;% I_B;iri is called the unit price agent i faces. We require B; > 0 and
>, Bi=1

A sequential unanimous mechanism contains m cost share vectors in a sequence. The
mechanism goes through the sequence and stops at the first vector that is accepted by
all agents. The project is built and the agents’ release time and payments are deter-

mined by the unanimously accepted cost share vector. If all cost share vectors in the

sequence are rejected, then the decision is not to build.

The largest unanimous mechanisms (can be interpreted as special cases with binary
T;) form a subset of the sequential unanimous mechanisms. The sequential unanimous
mechanisms’ structure makes it suitable for genetic algorithms — we treat the cost
share vectors as the genes and treat the sequences of cost share vectors as the gene
sequences. The sequential unanimous mechanisms are generally not strategy-proof.

However, they can be easily proved to be strategy-proof in two scenarios:

e A sequential unanimous mechanism is strategy-proof when the sequence con-
tains only one cost share vector (an agent faces a take-it-or-leave-it offer). This
observation makes it easy to generate an initial population of strategy-proof

mechanisms.

o [f for every agent, as we go through the cost share vector sequence, the unit
price an agent faces is nondecreasing and her release time is also nondecreasing,
then the mechanism is strategy-proof. Essentially, when the above is satisfied,
all agents prefer earlier cost share vectors. All agents are incentivized to report
truthfully, as doing so enables them to secure the earliest possible cost share

vector.

78 Chapter 4. Public Project with Minimum Expected Release Delay

The sequential unanimous mechanism family seems to be quite expressive.® Our
experiments show that by optimizing within the sequential unanimous mechanisms,
we are able to identify mechanisms that perform better than existing mechanisms.

Our approach is as follows:

e Initial population contains 200 strategy-proof mechanisms. Every initial mech-
anism is a sequential unanimous mechanism with only one cost share vector.

The B; and the T; are randomly generated by sampling U(0, 1).

e We perform evolution for 200 rounds. Before each round, we filter out mecha-

nisms that are not truthful. We have two different filters:

— Strict filter: we enforce that every agent’s unit price faced and release time
must be nondecreasing. With this filter, the final mechanism produced
must be strategy-proof. We call this variant the Truthful Genetic Algo-
rithm (TGA).

— Loose filter: we use simulation to check for strategy-proofness violations.
In every evolution round, we generate 200 random type profiles. For each
type profile and each agent, we randomly draw one false report and we fil-
ter out a mechanism if any beneficial manipulation occurs. After finishing
evolution, we use 10,000 type profiles to filter out the untruthful mecha-
nisms from the final population. It should be noted that, we can only claim
that the remaining mechanisms are probably truthful. We call this variant

the Approzimately Truthful Genetic Algorithm (ATGA).

e We perform crossover and mutations as follows:

— Crossover (Figure 4.1): We call the top 50% of the population (in terms of
fitness, i.e., expected max-delay or sum-delay) the elite population. For ev-

ery elite mechanism, we randomly pick another mechanism from the whole

5Let M be a strategy-proof mechanism. There exists a sequential unanimous mechanism M’ (with
exponential sequence length). M’ has an approximate equilibrium where the equilibrium outcome is
arbitrarily close to M’s outcome.

4.6. Automated Mechanism Design for Smaller Number of Agents 79

population, and perform a crossover by randomly swapping one gene seg-

ment.

Parent a:
{T:BYar, {T.BYay, {T.Blss{T.B}as, {T.Blss: {T.Beey {T.Blar
New Child:
" {TBYo1, {T.BYs . {T.Blas{T.Blus, {T.Blas, {T.Blas, {T.Blos, {T.Bles
Parent b:
{T.Blo1, {T.Bhv2, {T,Bha,{T.Blos, {T.Bos, {T.Bhe

FIGURE 4.1. Genetic algorithm: Crossover

— Mutation (Figure 4.2): For every elite mechanism, with 20% chance, we
randomly select one gene, modify the offer of one agent. We insert that
new cost share vector into a random position after the original position.

Parent a: New Child:
{T.Bat, {T.B}az, {T.Bhas, {T:Bbas {T:Bles * {TBlat, {T:Ba, {T:Blas, {T+dT.B+0B}., {T,Blay, {TBhas

FIGURE 4.2. Genetic algorithm: Mutation

— Neighbourhood Search (Figure 4.3): For every elite mechanism, with 20%

chance, we randomly perturb one gene uniformly (from —10% to +10%).

Parent a: New Child:
{T.BYat, {TBea, {T.Bla, {T.Blas, {T:Blas * {T.Blat, {T.Baa, {T.Blas, {T+dT,B+dB}.y, {T,Blss

FIGURE 4.3. Neighborhood Search

e Abandon duplication and unused genes: In every evolution round, if a cost share
vector is never unanimously accepted or if two cost share vectors are within

0.0001 in terms of L1 distance. then we remove the duplication/unused genes.

80 Chapter 4. Public Project with Minimum Expected Release Delay

4.6.3 Experiments

We present the expected max-delay and sum-delay for n = 3,5 and for different dis-
tributions. ATGA is only approximately truthful. We recall that in our evolutionary
process, in each round, we only use a very loose filter to filter out the untruthful
mechanisms. After evolution finishes, we run a more rigorous filter on the final pop-
ulation (based on 10,000 randomly generated type profiles). The percentage in the
parenthesis is the percentage of mechanisms surviving the more rigorous test. The
other mechanisms (TGA and Multiple deadlines) are strategy-proof. SCS is the serial
cost sharing mechanism from Moulin (Moulin, 1994). According to Guo et al. (Guo,
Yang, and Ali Babar, 2018)’s experiments, SCS has the best known expected delays,

so we use it as a benchmark.

n=38,sum-delay ATGA TGA Single deadline Multiple deadline ~ SCS
Uniform(0,1) | 1.605(95%) 1.605 1.605 1.605 1.605
Beta(0.5,0.5) 1.756(89%) 1.757 1.757 1.757 1.757
Bernoulli(0.5) | 0.869(100%) 0.868 1.499 1.253 1.498
50% 0, 50% 0.8 | 1.699(98%) 1.873 1.873 1.873 1.873
n=3,mazx-delay ATGA TGA Single deadline Multiple deadline ~ SCS
Uniform(0,1) 0.705(97%) 0.705 0.705 0.705 0.705
Beta(0.5,0.5) 0.754(87%) 0.757 0.782 0.757 0.782
Bernoulli(0.5) 0.5(100%) 0.498 0.687 0.50 0.877
50% 0, 50% 0.8 | 0.676(94%) 0.753 0.749 0.749 0.877
n==5,sum-delay ATGA TGA Single deadline Multiple deadline ~ SCS
Uniform(0,1) 1.462(95%) 1.503 1.415 1.415 1.415
Beta(0.5,0.5) 2.279(92%) 2.12 1.955 1.955 1.955
Bernoulli(0.5) | 1.146(100%) 1.867 2.106 1.711 2.523
50% 0, 50% 0.8 2.432(94%) 2.845 2.323 2.248 2.667
n=>5,mazx-delay ATGA TGA Single deadline Multiple deadline SCS
Uniform(0,1) 0.677(91%) 0.677 0.662 0.662 0.678
Beta(0.5,0.5) 0.754(79%) 0.75 0.73 0.73 0.827
Bernoulli(0.5) 0.506(100%) 0.50 0.577 0.50 0.971
50% 0, 50% 0.8 | 0.666(80%) 0.751 0.736 0.679 0.968

TABLE 4.1. Experiment result: Our methods’ sum-delay and max-
delay vs state of the art.
We see that ATGA performs well in many settings. If we focus on provable
strategy-proof mechanisms, then TGA and the optimal multiple deadline
mechanism also often perform better than the serial cost sharing mechanism.

4.7. Chapter Summary 81

4.7 Chapter Summary

In this chapter, we study the excludable public project model where the decision is
binary (build or not build). In a classic excludable and binary public project model,
an agent either consumes the project in its whole or is completely excluded. We study
a setting where the mechanism can set different project release times for different
agents, in the sense that high-paying agents can consume the project earlier than
the low-paying agents. The mechanism design objective is to minimize the expected
maximum release delay and the expected total release delay. We propose the single
deadline mechanisms. We show that the optimal single deadline mechanism is asymp-
totically optimal for both objectives, regardless of the prior distributions. For a small
number of agents, we propose the sequential unanimous mechanisms by extending the
largest unanimous mechanisms from Ohseto (Ohseto, 2000). We propose an auto-
mated mechanism design approach via evolutionary computation to optimize within

the sequential unanimous mechanisms.

83

Chapter 5

Redistribution in Public Project

Problems via Neural Networks

In this chapter, we discuss VCG redistribution mechanisms (variants of the VCG
mechanism) for the public project problems. We design mechanisms via neural net-
works with two welfare-maximizing objectives: optimal in the worst case and optimal

in expectation.

We combine generative adversarial networks and multi-layer perceptions (GAN -+
MLP) to find the optimal worst-case VCG redistribution mechanisms for the public
project problem. We use multi-layer perceptions (MLP) combined with a cost func-
tion that takes into consideration the agents’ prior distributions to find the optimal-

in-expectation VCG redistribution mechanisms for the public project problem.

5.1 Introduction

5.1.1 VCG Redistribution Mechanisms

Many important problems in multiagent systems are related to resource allocations.
The problem of allocating one or more resources among a group of competing agents
can be solved through economic allocation mechanisms that take the agents’ reported
valuations for the resources as input, and produce an allocation of the resources to the

agents, as well as payments to be made by the agents. As a central research branch in

84 Chapter 5. Redistribution in Public Project Problems via Neural Networks

economics and game theory, mechanism design concerns designing collective decision-
making rules for multiple agents, to achieve desirable objectives, such as maximizing
the social welfare, while each agent pursues her own utility. A mechanism is efficient if
the agents who value the resource the most will get it. A mechanism is strategy-proof
if the agents have the incentives to report their valuations truthfully, which is to say,
an agent’s utility is maximized when reporting her true valuation, no matter how the

other agents report.

The Vickrey-Clarke-Groves (VCG) mechanism is a celebrated efficient and strategy-
proof mechanism. Under the VCG mechanism, each agent ¢ reports her private type
0;. The outcome that maximizes the agents’ total valuations is chosen. Every agent
is required to make a VCG payment t(6_;), which is determined by the other agents’
types. An agent’s VCG payment is often described as how much this agent’s presence
hurts the other agents, in terms of the other agents’ total valuations. The total VCG
payment may be quite large, leading to decreased welfare for the agents. In particu-
lar, in the context of the public project problem, where the goal is often to maximize
the social welfare (the agents’ total utility considering payments), having large VCG

payments are undesirable.

To address the welfare loss due to the VCG payments, Cavallo (Cavallo, 2006) sug-
gested that we first execute the VCG mechanism and then redistribute as much of the
payments back to the agents, without violating the efficiency and strategy-proofness
of the VCG mechanism, and in a weakly budget-balanced way. This is referred to
as the VCG redistribution mechanism. The amount that every agent receives (or
pays additionally) is called the redistribution payment. To maintain efficiency and
strategy-proofness of VCG, the redistribution payment of an agent is required to be
independent of her own valuation. To maintain weakly budget-balance, the total
amount redistributed should never exceed the total VCG payment. The redistribu-
tion payment is characterized by a redistribution function h, where h(6_;) represents

agent ¢’s redistribution payment.

5.1. Introduction 85

There have been many successes on designing redistribution mechanisms for var-
ious multi-unit/combinatorial auction settings (Guo, 2011; Cavallo, 2006; Clippel et
al., 2014; Faltings, 2005; Guo and Conitzer, 2009; Moulin, 2009; Gujar and Narahari,
2011; Guo, 2012; Guo and Conitzer, 2014; Tsuruta et al., 2014), including a long list
of optimal/near-optimal mechanisms. On the other hand, there hasn’t been compa-
rable success in solving for optimal redistribution mechanisms for the public project
problem, despite multiple attempts (Naroditskiy et al., 2012; Guo, 2016; Guo and
Shen, 2017; Guo, 2019; Guo et al., 2011). In terms of optimal results, Naroditskiy et
al. (Naroditskiy et al., 2012) solved for the worst-case optimal mechanism for three
agents. Unfortunately, the authors’ technique does not generalize to more than three
agents. Guo (Guo, 2019) proposed a mechanism that is worst-case optimal when the
number of agents approaches infinity, but for small number of agents, the mechanism
is not optimal. For maximizing expected welfare, there are no existing results, because
it is difficult for traditional mathematical analysis(eg: mixed integer programming)

to maximize the expectation of welfare.

5.1.2 Designing VCG Redistribution Mechanisms via Neural Net-

works

A recent emerging topic in mechanism design is to bring tools such as neural networks
from machine learning to design mechanisms (Manisha, Jawahar, and Gujar, 2018;
Golowich, Narasimhan, and Parkes, 2018b; Duetting et al., 2019; Shen, Tang, and
Zuo, 2019; Wang et al., May 2021). Duetting et al. (Duetting et al., 2019) proposed a
neural network approach for the automated design of optimal auctions. They model
an auction as a multi-layer neural network and frame optimal auction design as a
constrained learning problem which can be solved using standard machine learning
pipelines. The training and testing type profiles are gemerated based on the prior
distribution. The cost function involves the mechanism objective and the penalty for
property violation.

Essentially, neural networks were used as tools for functional optimisation. Shen
et al. (Shen, Tang, and Zuo, 2019) proposed a neural network based framework

to automatically design revenue optimal mechanisms. This framework consists of

86 Chapter 5. Redistribution in Public Project Problems via Neural Networks

a seller’s network, which provides a menu of options to the buyers, and a buyer’s
network, which outputs an action that maximizes her utility. Wang et al. (Wang et
al., May 2021) studied mechanism design for the public project problem and proposed
several technical innovations that can be applied to mechanism design in general to

improve the performance of mechanism design via neural networks.

FiGURE 5.1. Neural network structure reported by Manisha et al.
(Manisha, Jawahar, and Gujar, 2018)

The work by Manisha et al. (Manisha, Jawahar, and Gujar, 2018) is the first and
attempt to design VCG redistribution mechanisms using neural networks, and other
researchers (Tacchetti et al., 2019) study the VCG redistribution by following them.
They focused on multi-unit auctions with unit demand and studied both worst-case

and optimal-in-expectation objectives. By randomly generating a large number of

5.1. Introduction 87

bid profiles, they train a neural network to maximize the total redistribution pay-
ment, while enforcing that the total redistribution should not exceed the total VCG
payment. They modelled the redistribution function as a simple network outlined in
Figure 5.1. It is a fully connected network with one hidden layer using ReLU acti-
vation. It takes the valuations of all the agents other than agent ¢ herself as input,
and outputs the predicted redistribution payment for agent i. Their data is sampled

randomly from uniform distribution (6; € Uniform(0,1)).

5.1.3 Improved Neural Networks for Designing VCG Redistribution

Mechanisms for the Public Project Problem

In this chapter, we train neural networks to design VCG redistribution functions for
the public project problem, which turns out to be a more challenging setting com-
pared to multi-unit auctions studied by Manisha et al. (Manisha, Jawahar, and Gujar,
2018). The public project problem is a classic mechanism design problem that has
been studied extensively in economics and computer science (Mas-Colell, Whinston,
and Green, 1995; Moore, 2006; Moulin, 1988). In this problem, n agents decide
whether or not to build a non-excludable public project, for example, a public bridge
that can be accessed by everyone once built. Without loss of generality, we assume
that the cost of the project is 1, and 6;(0 < 0; < 1) is agent 4’s valuation for the
project if it is built. If the decision is not to build, every agent retains her share of

the cost, which is 1/n.

We first evaluate the simple multilayer perceptron (MLP) model proposed by
Manisha et al. (Manisha, Jawahar, and Gujar, 2018). That is, for each agent i, we
train a neural network that maps 6_; to agent ’s redistribution. The training and
testing samples are randomly generated based on the prior distribution. The cost
function maximizes the mechanism design objective, as well as enforces mechanism
design constraints via penalty. We find that such a simple MLP is not effective enough

for the public project problem for the following reasons:

88

Chapter 5. Redistribution in Public Project Problems via Neural Networks

1. From our experiments, by randomly generating the type profiles, we are not

getting the true worst-case type profiles for the public project problem (it is a
coincidence that for multi-unit auctions with unit demand, it is a lot easier to

hit a worst case).

. Another challenge is the high input dimension when the number of agents is

large. For 100 agents, the neural network has to take a 99-dimensional input,

which is computationally unrealistic.

. In the public project problem, the agents’ collective payments differ significantly

between cases where the decision is to build the public project and cases where
the decision is not to build. The number of “build” samples in a training batch
significantly impacts the parameter gradient, which results in a wild loss fluctu-

ation during the training process.

To solve the aforementioned problems, we propose a novel neural network approach

to design redistribution mechanisms for the public project problems. Our approach

involves the following technical innovations.

GAN Network

For the worst-case objective, we introduce a generative adversarial network (GAN)

to generate worst-case type profiles, and then use these type profiles to train the re-

distribution function. Our experiment shows that a mechanism trained only using

randomly generated data fails when facing type profiles generated by GAN, so GAN

is necessary and effective to derive the worst case.

Dimension Reduction

Instead of feeding 6_; as input to train the mechanism, which has n — 1 dimensions,

we extract a few expressive features from 6_; (e.g. the maximum of types 6_;, the

sum of #_; excluding the maximum, etc.). This reduces the input dimension to 3.

5.1. Introduction 89

This helps the neural network loss converge faster and still retain good performance.

Supervised Learning

Wang et al. (Wang et al., May 2021) suggested that supervision to manual mecha-
nisms often outperforms random initialization in terms of training speed by pushing
the performance to a state that is already somewhat close to optimality. In addition,
unlike many other deep learning problems, for mechanism design, there often exist
simple and well-performing mechanisms that can be used as starting points. In this
particular problem, we first conduct supervised learning to let the network mimic the
state of art manual mechanism (Guo, 2019), and then leave it to gradient descent.

This approach saves time for larger n in our experiments.

Feeding Prior Distribution into Loss Function

We use probability density function (PDF) of the prior distribution to provide quality
gradients. In specific, for each valuation profile § = {6;}(i = 1..n) generated from a
distribution D, we randomly choose 6; to be replaced by a randomly generated 6, from
Uniform(0,1) and update € to be €. This sample is then assigned a weight based
on the PDF. In experiments, we see that this approach significantly reduces the loss
fluctuation during training. One potential explanation (or observation) is that this
approach reduces the fluctuation in the proportion of “build” cases among a batch.
With a more sophisticated network architecture due to the above technical adjust-
ments, we get better results for the worst-case than the state of the art (Guo, 2019).
For the optimal-in-expectation objective, our results are close to the theoretical opti-

mal values.

90 Chapter 5. Redistribution in Public Project Problems via Neural Networks

5.2 Model Description

For the public project problem, VCG redistribution mechanisms have the following

form (Naroditskiy et al., 2012):
e Build the public project if and only if >, 6; > 1.

e If the decision is to build, agent i receives ., 0; — h(6—;).

If the decision is not to build, then agent i receives (n —1)/n — h(6_;).

h is an arbitrary function and 6_; refers to the types from the agents other than

7 herself.

A VCG redistribution mechanism is characterized by the function h.

Due to Guo (Guo, 2019),

o S(0) = max{)_,0;,1} is exactly the first-best total utility. (Le., if the sum of
types is higher than 1, then the efficient decision is to build. Otherwise, the

efficient decision is not to build.)

e The agents’ welfare (total utility considering payments) under type profile 6 is
nS(0) — >, h(f—;), which is obtained via simple algebraic simplification based

on the definition of VCG redistribution mechanisms.

We consider two objectives. One is to find a mechanism that maximizes the worst-

case efficiency ratio, and the other is to maximize the expected efficiency ratio.

5.2.1 Worst-case Optimal Mechanism

The efficiency ratio r is defined as the ratio between the achieved total utility and the

first best total utility:

5.2. Model Description 91

The worst-case efficiency ratio is the worst case ratio between the achieved total utility
and the first best total utility, namely, the minimum of r over all type profiles. Due

to Guo (Guo, 2019), the mechanism has a worst-case efficiency ratio « if and only if:

V0, (n—1) < Z h(6_;)/8(0) < (n— a) (5.1)

In Inequality 5.1, the left side is the constraint for weakly budget-balance, and the
right side corresponds to the definition of «.
Therefore, taking the worst-case ratio as the objective, we need to design an h

function that:

maximize «
subject to (5.2)

V0, (n—1) < Z h(6_3)/8(0) < (n—)

5.2.2 Optimal-in-Expectation Mechanism

For this objective, we maximize the expected efficiency ratio r to 1, which is equivalent
to minimize Y, h(6_;)/S(#) from above to n— 1, with the consideration of the weakly
budget-balance constraint.

We are designing an h function that:

minimize Y h(0_;)/S(0)
subject to (5.3)

V0, (n— 1) < S h(0-)/5(0)

92 Chapter 5. Redistribution in Public Project Problems via Neural Networks

5.3 Worst-case Optimal Mechanism

In this section, we focus on the worst-case optimal mechanism. We first describe our
neural network approach by explaining the network architecture and details of the

relating techniques. Then we define the loss function.

5.3.1 Network Architecture

- o = max{B_y

¢ P
I

sum(_y) = 6 oy MLP h(6_1)

'::Leu“:t:g: -——»O——» 6x100 hidden nodes —’O—~
liea, 6, Fully connected
=0r 0 &
Ideiz’ 8, __’O_’
GAN "O lar gest jump among §_y
4x64 hidden nodes : : -
Fully connected : ' '
Idea, 0, b, 6 pax = max{ty
B
.2..0_,) - MLP h(@-n)
m‘il";:z: -——»O——t 6x100 hidden nodes
Fully connected
9n—1 : :

largest jump among 8_,,

Y 6.

FIGURE 5.2. Our neural network architecture for worst-case optimal
scenarios

We construct a neural network to determine the h function. As illustrated in Fig-
ure 5.2, it is a network system in which a GAN and an MLP interacting with each

other, we call it GAN+MLP.

The GAN works as a Generative Model and is used to generate special samples

(type profiles). It takes n randomly generated values as input ideas, and the output

5.3. Worst-case Optimal Mechanism 93

is 0 = {0;}(i = 1..n). Tt is a fully connected network with 4 hidden layers, and
each hidden layer contains 64 nodes. For a given batch (batch size = b), the GAN
generates b type profiles: 0U) € batch = {9(1), 62, .., Q(b)}, with the aim to maximize
the difference between the maximum and the minimum of), h(a(j})/S(6Y). Tt means

to:

mazximize (Z h(ﬁ(_j;))/S(H(jl)) - Z h(g(_jz?))/s(g(jz)))

where U1 9U2) e batch is the sample that gives the maximum and minimum of

> h(@@)/S(QU)), respectively.

The MLP works as a Discriminative Model that learns the samples generated by
the GAN. The MLP is a fully connected neural network. For each agent i, the network
takes 6_; as the input, and outputs the value of h(6_;). In the MLP, there are 6 hidden
layers, each of which contains 100 nodes and with ReLLU as the activation function.
We first train the MLP under supervision to the best-performing manual mechanism
and then leave it to unsupervised learning. For unsupervised learning, our cost func-

tion is the combination of design objective and also penalty due to constraint violation.

5.3.2 Details of the Networks and Evaluations

To improve the result for the neural network, we adopt some technical adjustments.
We use a GAN instead of uniform to generate special cases in order to find out the
worst case. For cases with a greater number of agents (n > 5), we adopt two technical

tricks: Dimension Reduction and Supervised Learning.

94 Chapter 5. Redistribution in Public Project Problems via Neural Networks

GAN Network

In previous studies, the authors used random generation or fixed data to find the
worst case (Manisha, Jawahar, and Gujar, 2018). As mentioned in Section 3.1, We
propose a new GAN approach to find out the worst case. We conduct a contrast
experiment to verify the validation of the GAN. We use only data generated from

uniform distribution to train a network, and test this network with two sets of data.

e Test Set A: 20000 data drawn from Uniform(0,1)

e Test Set B: 10000 data generated from a trained GAN network and 10000 data

drawn from Uniform(0,1)

Figure 5.3 outlines the experimental results for n = 10 showing the difference of
the the network performance on Test Set A and B. In the left figure, the network is
tested by randomly generated data set A. It gives o = 0.896, and >, h(0_;)/S() is
between 9 and 9.104. However, in the right figure, the network performs poorly with
significant violation of the weakly budget-balance constraint (Y, h(6_;)/S(0) is from
3 t09.2).

Probability density function Probability density function

1000

800

600

400

probability density
probability density

200 2

904 905 906 907 908 909 910 3 4 5 6 7 8 9

2ih(0-)/S(6) 2ih(6-i)/5(0)

FIGURE 5.3. Experiment result: Use vs not use GAN.
Spread of) h(6_;)/S(0) evaluated using random type profiles and GAN
generated type profiles. Random generation fails to generate true worst
cases.

5.3. Worst-case Optimal Mechanism 95

Therefore, random type profile generation as used in Manisha et al. (Manisha,
Jawahar, and Gujar, 2018) does not work for this problem. To get the worst-case
performance, we need a GAN network to generate higher quality worst-case profiles,

and then let the MLP learn these profiles.

Dimension Reduction

The MLP takes a (n — 1)-dimensional input for n agents, resulting in expensive com-
putation when n is large. This motivates us to look for an effective dimension-reducing

technique.
We first manually design a list of features that describe 6_;, and then experi-
mentally search for a good combination of three features to be used for dimension

reduction purposes. (We essentially reduce 6_; to three dimensions this way.)

The features we consider include:

The highest type(s) from 6_;

The the lowest type(s) from 6_;

The sum of some types from 6_;

The standard deviation of some types from 6_;

The largest jump of adjacent types from 6_;
Here jump of adjacent types is defined as: for a sorted list 6_;, there is jump;
between 6; and 0;1:

Jumpj = ;11 — 0;

96

Chapter 5. Redistribution in Public Project Problems via Neural Networks

We first experimentally derive that the following features are more important than

the rest (i.e., removing them results in significant performance loss):

e The highest type from 6_;
e The the lowest type from 6_;

e The sum of some type from 6_;

We then experimentally evaluate different combinations of the above features:

. Combination 1: the highest type(s) from 0_; & the sum of all the other types

. Combination 2: the highest type(s) from 6_; & the difference between the high-

est and the lowest type from 6_;

. Combination 3: the highest type(s) from 6_; & the standard deviation of all

types from 6_;

. Combination 4: the highest type(s) from 6_; & the standard deviation of all the

other types

. Combination 5: the highest type(s) from 6_; & the largest jump of adjacent

types

. Combination 6: the highest type(s) from 6_;, the lowest type from 6_;, & the

largest jump of adjacent types

. Combination 7: the highest type(s) from 6_;, the sum of all the other types &

the largest jump of adjacent types

. Combination 8: the highest type(s) from #_;, the lowest type from 6_;, & the

sum of all the other types

5.3. Worst-case Optimal Mechanism 97

Figure 5.4 shows « of the networks trained with the different input combinations
against the number of agents n. It is found that Combination 1, 7 and 8 performs

better than the other combinations.

1 . e —-AFF"L’:":_I““-.-——-“,
......—-— - -."' Ty =1
Good
0 —4%- Combil
—+= Combi 2
Combi 3
@ 14 -+- Combi 4
% —e=- Combi5s
- .
. —=- Combi6
.______-“H'H‘g—:t_ —+= Combi 7
Bad | *=SSEZISiRue @+ Combi 8
Ll T
I i T - _
‘*‘-:‘.::::::3‘;-:13:.:-_:.%
-10 4 hvﬁ'-ﬂr-
T T T T T T
5 6 7 8 9 10

FIGURE 5.4. Experiment result: Effects of different dimension reduc-
tion methods.

The worst-case ratio o of the models trained with the input generated by
using different feature-combinations against the number of agents

n=5,..,10.

The above dimension-reducing mechanism improves both the training speed and
sometimes the performance. We can infer that by using this dimension-reducing mech-
anism, the training speed would have a more significant improvement with the increase

of the agent number n.

98 Chapter 5. Redistribution in Public Project Problems via Neural Networks

Figure 5.5 shows the difference of the loss of the network between using and not
using dimension-reducing mechanism for n = 10. In the left figure, the training and
test loss is stabilized within 1000 iterations with the application of the dimension-
reducing mechanism, while in the right figure, the losses still vibrate in a wider range

till 2000 iterations.

1.0 1.0
—— training loss — training loss
—— test loss —— test loss
0.8 4 0.8 4 “
0.6 0.6
0 [
wn wn
° ° /
0.2 0.2
0.0 T t T T T T T f T 0.0 T T T T T T T T l
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
iteration iteration

FIGURE 5.5. Experiment result: Speed of dimension reduction.
The loss during the training when using (left) and not using (right) the
dimension-reducing mechanism for n = 10 (6; € Uniform(0,1)). Dimension

reduction leads to faster convergence.

5.3. Worst-case Optimal Mechanism 99

Figure 5.6 shows the difference on the spreading of) . h(6_;)/S(0) between us-
ing and not using dimension-reducing mechanism for n = 10. In the left figure,
when using the dimension-reducing mechanism, we get an expected performance of
> h(6-;)/S(0) = 9.003, which is very close to n — 1 = 9. This indicates the cor-
responding mechanism is close to being optimal. (We recall that for the expected
performance, we want the expected ratio to be as close to n — 1 as possible.) When
not using the dimension-reducing mechanism, our performance is 9.377, which is fur-
ther away fromn — 1 =9.

Frequency Frequency

sample mean sample mean
350 350 i

250 250 1

200 200

150 150

frequency of occurrence
frequency of occurrence

100 100 A

50 50

T T T
9.00 9.05 910 9.15 9.20 9 10 n 12 13 14
:h(6-:)/5(8) X h(6-1)/5(6)

FIGURE 5.6. Experiment result: Use vs not use dimension reduction.
Spreading of), h(6_;)/S(0) when using (left) and not using (right) the
dimension-reducing mechanism for n = 10 (0; € Uniform(0,1)), data size =
10000, bins = 500. Dimension reduction leads to better-performing

mechanism.

Supervised Learning

For a greater number of agents, it takes gradient descent a long time to fix the con-
straint violations. Wang et al. (Wang et al., May 2021) suggested that we first su-
pervise the neural network into the existing best manual mechanism, and then leave
it to unsupervised learning. With the best manual mechanism as the starting point,
better mechanisms can usually be found. The existing best manual mechanism for

worst-case optimal objective is reported by Guo (Guo, 2019).

100 Chapter 5. Redistribution in Public Project Problems via Neural Networks

5.3.3 Loss Function

GAN Network Loss

The GAN network has the following loss:

lossgan =min{ Y h(89Y)/5(6U1)}

—maz{_ h(0Y2)/S(02))}, 09U 02) € batch

Supervised Loss

In supervised learning, we want the predicted h to be as close as possible to the best

manual value h_manual (Guo, 2019), so the loss is:
losssupervised = (h - h_manual)2

Unsupervised Loss

In the unsupervised learning stage, we want all the) . h(6_;)/S(#) to maintain the
weakly budget-balance constraint, and let « to be close to 1, which means to make
the upper bound of), h(6—;)/S(f) as small as possible.

The loss function includes two parts:
e objective loss = (relu(>", h(6—_;) — (n — up_bound)S(0)))?
e constraint_loss = (relu((n —1)S(0) — 3, h(0—;)))?

Since the weakly budget-balance is a strict constraint, while the objective is soft,
we add a multiplier € to weaken the effect of objective loss. For the worst-case

optimal network, we get the best ¢ = 0.01 through experiments.

lossynsupervised = € - objective _loss + constraint _loss

= objective_loss/100 + constraint loss

5.4. Optimal-in-Expectation Mechanism 101

5.4 Optimal-in-Expectation Mechanism

We design the optimal-in-expectation mechanism with slight modifications based on

the worst-case mechanism.

The architecture of the MLP stays the same. We do not need a GAN for gener-
ating the worst-case since the worst-case does not matter. For a large agent number
n, we also adopt dimension reduction and supervised learning as we do for the worst-
case mechanism. In addition, we feed the prior distribution into the loss function to

achieve a high-quality gradient. This network is called MLP+FEED.

5.4.1 Feed Prior Distribution into Loss Function

In this problem, the decision to build or not to build significantly affects the expec-
tation of a training batch. For batches with different amounts of “build” cases, the

gradients fluctuate significantly, causing worse training results and speed.

Wang et al. (Wang et al., May 2021) discovered a way to insert the cumulative
distribution function (CDF) of the prior distribution into the cost function to get
more accurate loss function. The approach was shown to be effective for optimal-in-
expecation mechanism design. We adopt a similar idea, but use probability density
function (PDF) from the prior distribution to provide quality gradients for our training
process. For each valuation profile 8 = {6;}(i = 1..n) generated from a distribution D,
we randomly choose 6; to be replaced by 6 which is regenerated from Uni form(0, 1)

and update 6 to be 6'.

102 Chapter 5. Redistribution in Public Project Problems via Neural Networks

The probability of the profile 6 is proportional to PDFp(6;), so the loss should
also be multiplied by PDFp(6;).

/
lossunsupervised_feeding = lossunsupervised : PDFD (07,)

Here,

PDFp(6}) = 10'9-rob(®?)

log _prob is provided by PyTorch to calculate PDF. PyTorch distributions package
is based on Schulman (Schulman et al., 2015). Our experiments show the difference
between feeding and not feeding the distribution into loss function. Figure 5.7 shows
that for normal distribution (Normal(0.5,0.1), n = 3), feeding distribution into the

loss function helps get a better gradient and thus dramatically improves the test result.

200

—— neural network
175 4 feed distribution

150 1
125 1
100 1

075 1

Testing Expectation

050 4

o | st o

000 T T T T T T
0 2000 4000 G000 8000 10000

Batch Epoch

FIGURE 5.7. Experiment result: Feed vs not feed distribution.
Test loss (the distance from), h(0_;)/S(6) to (n — 1)) during the training
for distribution: Normal(0.5,0.1), n = 3). Feeding prior distribution leads

to faster convergence and better mechanism.

5.4. Optimal-in-Expectation Mechanism 103

5.4.2 Loss Function

The loss for the optimal-in-expectation network is similar to that of the worst-case

MLP.

Supervised Loss

losssupervised = (h - h_manual)2

Unsupervised Loss

We use the square loss to approximate the loss for the expectation, since the derivative
of square loss (f(x) = 2?) is a linear function, and can represent the strength of the
gradient decedent, which is also linear (f’'(z) = ax + b).

Loss function consists of objective loss and constraint loss, where
e objective_loss = (relu(}_; h(0—;) — (n — 1)5(0)))?
e constraint_loss = (relu((n —1)S(0) — >, h(0-,)))?

objective_loss aims to push), h(6_;)/S(0) close to (n—1), so that the mechanism
redistributes as much of the collected VCG payment back to the agents. constraint loss
is for weakly budget-balance, to make the total redistributed amount less than the
total VCG payment.

Similar with the worst-case optimal network, we use a multiplier € to soften

objective loss, and the experimentally best ¢ = 1074, So,

lossynsupervised = € - objective_loss + constraint _loss

= objective 1oss/10000 + constraint loss

With the feeding of prior distribution to loss function as described in Section 4.1,

we have:

lossunsupervised_feeding

= (objective loss/10000 + constraint loss) * PDFp(6;)

104 Chapter 5. Redistribution in Public Project Problems via Neural Networks

5.5 Experiments and Results

We program with python by using the third-party library PyTorch. The experiments
are conducted on a computer with an i5-8300H CPU and an Nvidia 1060 GPU. The
experiment running time varies from a few minutes up to about 1 hour, depending on

different agent numbers and data sizes.

5.5.1 Experiment settings
Generate Data

We randomly generate training and test data from prior distributions, and also use
the GAN network. Half of the test data is generated from the GAN and the other half
is randomly generated data. The test data size is from 10000 to 100000, and increases

with n, as shown in Table 5.1. We generate new test data for each test.

n 4 5 6 7 8 9 10
Data size 10000 20000 20000 20000 50000 50000 100000

TABLE 5.1. Experiment setting: Test data size for different n.

Batch Size

Keskar et al. (Keskar et al., 2016) show that a larger batch leads to a dramatic degra-
dation in the quality of the model. They investigate the cause for this generalization
drop in the large-batch regime and present numerical evidence that supports the view
that large-batch methods tend to converge to sharp minimizers of the training and
testing functions. It shows that the large batch size converges to the sharp minimum,
while the small batch size converges to the flat.

Our experiments support Keskar’s view and we find that the loss does not reduce
with a big batch size (> 1024). We set the batch size to 64 through comparative

experiments.

5.5. Experiments and Results 105

Order input

Arora et al. (Arora et al., 2016) shows that it is hard for ReLU to simulate the func-
tion max{a,b}. A single max{a,b} needs two layers and 5 nodes with exact weights
and biases. So inputting sorted €_; values to the MLP is a necessary and important
step to get good results. We order the valuations such that 6; > 0, > ... > 0,,. For

redistribution problems, sorted input values will not influence strategy-proofness.

Initialization and Optimizer

We use Xavier normal initialization for the weights and Normal(0,0.01) for the bias,
and use Adam optimizer with the learning rate = 0.001 initially, and decays by 0.98

every 100 steps by Pytorch Scheduler.

5.5.2 Results

Worst-case results

We compare our result for the worst-case optimal mechanism(GAN+MLP) with the

previously proposed mechanisms:
e SBR: heuristic-based SBR mechanism (Naroditskiy et al., 2012)
e ABR: heuristic-based ABR mechanism (Guo, 2016)

e AMD: mechanisms derived via Automated Mechanism Design (AMD) (Guo and
Shen, 2017)

AQ: asymptotically optimal (AO) VCG Redistribution (Guo, 2019)

e UB: the conjectured upper bounds (UB) on the efficiency ratios (Naroditskiy
et al., 2012)

106 Chapter 5. Redistribution in Public Project Problems via Neural Networks

The result in Table 5.2 shows that our mechanism achieves better worst-case effi-

ciency ratios than all previous results.

n SBR ABR AMD AO GAN-+MLP UB

4 0.354 0.459 0.600 0.625 0.634 0.666
5 0.360 0.402 0.545 0.600 0.622 0.714
6 0.394 0.386 0.497 0.583 0.592 0.868
7 ntoolarge 0.360 0.465 0.571 0.626 0.748
8 ntoolarge 0.352 0.444 0.563 0.654 0.755
9 ntoolarge 0.339 0.422 0.556 0.682 0.772
10 n too large 0.336 0.405 0.550 0.623 0.882

TABLE 5.2. Experiment result: GAN-+MLP Compare with state of
the art for worst case.

The main downside of our results is that our worst-case is calculated numerically
by trying a large number of type profiles. This is a limitation due to our neural
network based approach. (Manisha et al. (Manisha, Jawahar, and Gujar, 2018)’s
neural network approach also evaluated the worst-case by randomly generating a large
number of type profiles. We showed that our GAN approach is a lot more rigorous
compared to simply random profile generation.) It should be noted that SBR, ABR
and AMD’s worst-cases were also calculated numerically. (AO’s worst-case was derived
analytically.) To test the stability of the worst-case ratios, we experimented with
different test sizes. Table 5.3 shows that for n = 10 with different test sizes of 10000,

20000 and 100000, « is stable at 0.623.

Data size 10000 20000 100000
o 0.623 0.623 0.623

TABLE 5.3. Experiment setting: « for Different test size (n = 10).

5.5. Experiments and Results 107

Optimal-in-expectation results

We evaluate the expectation of >, h(6—;)/S(f) under our mechanism obtained via
MLP-+FEED. As defined in our model, for a case with n agents, the theoretical opti-
mal value for). h(6_;)/S(0) is n — 1, so we want the expectation to be as close to
n — 1 as possible from above (to maintain weakly budget-balance). Our results show
that the obtained mechanisms are near optimal. For example, we get £ = 4.061 vs

n—1=4forn=5 E=5034vsn—1=5forn=206.

MLP+FEED Uniform(0,1) Normal (0.5,0.1) n-1

n—=3 2.079 2.101 2
n=4 3.071 3.111 3
n=>»s 4.061 4.142 4
n=>6 5.027 5.034 5
n="7 6.009 6.067 6
n==8 7.008 7.023 7
n=9 8.002 8.008 8
n=10 9.003 9.023 9

TABLE 5.4. Experiment result: Our result for optimal-in-expectation
scenario.

> ;h(6-;)/S(#) in Expectation for Different Distributions

Table 5.4 shows that for both data generated from uniform distribution and normal
distribution, the average), h(6_;)/S(8) of our MLP+FEED network is very close to
the theoretical optimal value n — 1, which means that the redistribution function will
return the vast majority of the total VCG payment to the agents (particularly for a

great number of agents).

108 Chapter 5. Redistribution in Public Project Problems via Neural Networks

5.6 Chapter Summary

In this chapter, we consider designing optimal redistribution mechanisms for the public
project problem under two objectives: worst-case optimal and optimal-in-expectation.
With effective technical improvements on existing networks, we train a neural network
to design good redistribution functions. We use a GAN network to generate valua-
tion profiles to find the worst case, and feed prior distribution into loss function to
get quality gradients for the optimal-in-expectation objective. To deal with large
numbers of agents, we study different dimension-reducing methods and supervise the
network into the existing manual mechanism as initialization. Our experiments show
that for the worst case, we could find better worst-case mechanisms compared to ex-
isting mechanisms, and for expectation, the neural networks can derive near-optimal

redistribution mechanisms.

109

Chapter 6

Revenue-Maximizing Markets for

Zero-Day Exploits

In this chapter, we study a mechanism design model called zero-day exploit market.
In such a market, one zero-day exploit (i.e., an exploit that allows cyber attackers to
hack into iOS systems) is sold to multiple offender and defenders. In our model, for
the defensive side, as long as any defender gains access to the exploit, the exploit is
assumed to be immediately fixed, which benefits all defenders. The defensive side of
the our model corresponds to a non-excludable public project problem. Otherwise, the
model studied in this paper is only very loosely related to the public project model.
The main goal of this chapter is to maximize revenue. We propose two numerical
solution techniques for tuning the well-studied Affine Mazimizer Auctions (AMA)
mechanisms for revenue maximization, one is based on neural networks and the other

one is based on evolutionary computation.

6.1 Introduction

Revenue-maximizing markets for zero-day exploits were defined in many research pa-
pers (Guo, Hata, and Babar, 2016; Egelman, Herley, and Oorschot, 2013; Hata, Guo,
and Babar, 2017; Kanda et al., 2017). Guo et al. (Guo, Hata, and Babar, 2016)
gave clear definitions for zero-day exploit markets. The authors proposed a Linear
Programming (LP) based approach for tuning the parameters of AMA mechanisms
for the purpose of revenue maximization. However, the authors’ approaches had lim-

itations. For example, it cannot handle too many constraints, and it failed to reach

110 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

optimality in some cases.

Our contributions consist of two machine learning methods (neural networks and
evolutionary computation) for optimizing within the AMA mechanism family for rev-
enue maximization. The experiments show that our mechanisms based on these two

methods are better than the existing LP mechanisms.

6.1.1 Zero-day Exploit Markets

A zero-day exploit refers to a software bug which has not been disclosed to the pub-
lic, and is also unknown to the software vendor. The zero-day exploit market has a
long history and has been accepted by the security community (Egelman, Herley, and
Oorschot, 2013). The market for zero-day exploits is not necessarily a black market.
The buyers like software vendors, police or national agencies typically purchase bugs
through internal or community-run bug bounty reward programs. It has been widely
reported that government agencies use zero-day vulnerabilities to track criminals or
for other national security reasons. Some organisations buy exploits to ensure safety

for themselves.

6.1.2 Problem Description

Guo, Hata, and Babar, 2016 formally described the zero-day exploit market model. In
this model, one exploit can be sold to one or more buyers. The seller is the mechanism
designer, who wants to sell the exploit to maximize revenue. For example, the seller

can be a cyber security company that sells bugs for profit.

Assumption 6.1. One exploit is sold over a time frame from 0 to 1 ([0,1]). The
exploit is available to be traded from time 0 (zero-day), and 1 is the moment that the
exploit’s life ends (e.g., due to the end of life of the affected software, or the update of

a magjor service pack). (Guo, Hata, and Babar, 2016)

6.1. Introduction 111

According to Assumption 6.1, for each buyer i, we use t; € [0,1] to denote the

time agent ¢ receives the information regarding the exploit.

Assumption 6.2. "There are two types of agents (buyers): defenders and offenders. ”

(Guo, Hata, and Babar, 2016)
o A defender is a buyer who would like to fix the exploit.

o An offender is a buyer who buys the exploit in order to to utilize it (or attack it).

For a given exploit, we assume that it can be fixed by any defender. More specifi-
cally, once an exploit is received by any defender, it is immediately fixed, rendering it
worthless to all offenders. All defenders can enjoy a shared ”protected” time interval
from the moment the exploit is fixed (t¢,q) to 1. tepnq is the earliest time any defender
obtains the exploit. We say t¢,q is the ending time of the exploit.

Buyer i’s type is a non-negative value. Function v;(t) is buyer i’s instantaneous

valuation at time t¢.

e If ¢ is an offender, and he/she receives the exploit at ¢; (¢; € [0,1]). Recall
that the exploit gets fixed at tepq. The valuation of the buyer i (offender) is a

integral, which equals

/ ()t (6.1)

e If i is a defender, then her/his value is determined by the interval between ¢4

and the end of the exploit’s life cycle, which equals

/ 1 vi(t)dt (6.2)

tend

112 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

The mechanism should satisfy a few desired properties: strategy-proofness, indi-
vidual rationality and straight-forwardness. These properties are defined below for

zero-day exploit markets:

Definition 6.1. Strategy-proofness (SP): For any buyer i, his/her utility is mazimized

when revealing v;(t) truthfully.

Definition 6.2. Individual rationality (IR): For any buyer i, his/her utility is non-

negative when revealing v;(t) truthfully.

Definition 6.3. Straight-forwardness (SF): A straight-forward mechanism is defined
as follow: before asking for offenders’ valuation functions, the mechanism reveals the

full details of the exploit to all offenders.

Here, SF is a property that is specifically introduced for zero-day exploit markets
and only for this chapter. An exploit can be regarded as a piece of one-time informa-
tion. As a result, if the auctioneer discloses the details of the exploit to the buyers
before the auction, the buyers may immediately walk away with the information for
free. If the auctioneer does not describe what is being sold, it is hard for the buyers

to come up with their valuation functions.

Assumption 6.3. We assume that there are two ways for the seller to describe an
exploit: either describe the full details, or describe what can be achieved with the exploit
(e.g., with this exploit, anyone can seize full control of a Windows 10 system remotely).

(Guo, Hata, and Babar, 2016)

o We assume that it is safe for the seller to disclose what can be achieved with the
exploit. That is, the buyers will not be able to derive “how it is done” based on

“what can be achieved”. (Guo, Hata, and Babar, 2016)

o [fthe seller only discloses what can be achieved, then it is difficult for an offender
to determine whether the exploit is new, or something she already knows, and

thus difficult to come up with their valuation. (Guo, Hata, and Babar, 2016)

6.1. Introduction 113

o We assume that the defenders are able to come up with valuation functions just
based on what can be achieved. This is because all zero-day exploits are by defi-

nition unknown to the defenders. (Guo, Hata, and Babar, 2016)

The above assumption leads to the SF property. It is important to note that SF
does not require the disclosure of exploitation details to the defenders prior to their
bidding. If the seller does so, then the defenders can simply fix the exploit and bid
v;(t) = 0. Due to IR, the defenders can go away without paying. Offenders are given
the details before they bid, but they cannot simply bid v;(t) = 0 to go away without
paying, which is due to the following reasoning.

Guo et al. (Guo, Hata, and Babar, 2016) used the defenders as a "THREAT”.
That is, if offenders bid low, the auctioneer will disclose the exploit to the defenders
early (teng would be smaller). The exploit then becomes less valuable for the offenders
according to Equation 6.1. Essentially, the offenders are encouraged to bid/pay more

to keep the exploit alive. The higher they bid, the longer the exploit remains alive.

6.1.3 Affine Maximizer Auctions Model Description

For revenue maximization, many researchers developed well performing mechanisms.
Myerson (Myerson, 1981)’s optimal auction is optimal for selling a single item. For
combinatorial auctions, Myerson’s technique does not generalize beyond single-parameter
settings. Revenue maximizing mechanism design remains an open problem for gen-
eral combinatorial auctions. Many revenue-boosting techniques were proposed by
researchers (Guo, Deligkas, and Savani, 2014; Guo and Deligkas, 2013; Guo et al.,
2015). One particular revenue-boosting technique is the Affine Maximizer Auctions
(AMA) mechanisms (Likhodedov and Sandholm, 2005). The AMA mechanism family
is a rich family of mechanisms. AMA mechanisms are all strategy-proof and they are
characterized by a set of parameters. By focusing on the AMA mechanisms, the origi-
nal zero-day market design problem is transformed into a value optimization problem

where the mechanism designer only needs to adjust the AMA parameters.

114 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

The family of AMA mechanisms is formally defined by Guo et al. (Guo, Hata,

and Babar, 2016) as follows:

AMA Mechanisms

e Given a type profile 0, the outcome picked is the following:
n
¥ = argma sk
o rgrgleox (;uzvz(Z,o)+ao>

e Agent i’s payment equals:

max,co (Zj# u;v;(0;,0) + (10) — Dz 450 (0,0%) — aor

Uj

Here, O represents the outcome space, ©; represents agent i’s type space, and
v;(0;,0) represents agent i’s valuation for outcome o € O when her type is 0; € ©;.
Under the model described in 6.1.2, the outcome space is [0, 1]. To be more specific,
an outcome o € [0, 1] represents when the exploit ends (revealed to the defenders).
Our techniques require that the outcome space be finite, so the outcome space is dis-

cretized into a set ({0, %, %, ...,1}). The outcome space size is |O| = k + 1.

By focusing on AMA mechanisms defined like the above, we only need to adjust

the u; and the a,, which are the AMA mechanism parameters.

6.2. Optimizing Affine Maximizer Auctions via Neural Networks 115

6.2 Optimizing Affine Maximizer Auctions via Neural Net-

works

Mechanism design via neural networks has recently drawn significant attention in the
algorithmic game theory community (Manisha, Jawahar, and Gujar, 2018; Duetting
et al., 2019; Shen, Tang, and Zuo, 2019; Wang et al., May 2021). In the context of
our model, the high-level approach of tuning AMA parameters using neural networks

is as follows:

e Treat the u; and the a; as model parameters.

e Initialize the model parameters randomly or start from a known mechanism such

as the VCG mechanism.

e In each learning step, we generate a batch of type profiles based on the prior
distribution. We evaluate the current AMA mechanism’s average revenue on
this batch. Parameter gradient is calculated based on this average. Model pa-

rameters are adjusted via gradient descent.

116 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

The training data are randomly sampled based on the prior distribution. In each
learning step, we generate a fresh batch of type profiles. After we finish training, we
generate another (much larger) fresh batch of type profiles to be the testing data. It
should be noted that we never need to reuse any type profile, so there is a separation

between training and testing data.

One limitation of the neural network approach is that the batch size in each learn-
ing step needs to small (e.g., we set the batch size to be 16). If the batch size is very
large, the time consumption of each learning step gets too long, and it actually hurts
the learning performance (Keskar et al., 2016). Obviously, it is insufficient to use only
16 type profiles to accurately estimate a mechanism’s expected revenue, but generally
speaking, we do not need every learning step to move toward the correct direction.
We only need that in most learning steps we are moving toward the correct direction.
In addition, we divide the timeframe into p small pieces(e.g., p = 1000 pieces). We
calculate the loss and argmax/min/sum these pieces’ gradients according to the loss
function. Then if the batch size is large, we need GPU resources out of my computer
limitations (we need p X batchsize rather than batchsize). Moreover, our next job is

to study the different neural network structures for the mechanism design problem.

Due to the batch size limitation, for our neural network based approach, we focus
on the case with only two agents (one defender and one offender). A batch of 16 type

profiles can be generated by drawing 4 sample types for each agent.

With two agents, an AMA mechanism can be expressed as

M(uoffendem Udefendery A0, A1y - - - ak)

It is without loss of generality to set ot ender = 1. Besides the model parameter

Ude fender, the only other mechanism parameters are the a;. We recall that a; repre-

sents the constant term in the AMA mechanism for outcome % That is, the a; can

naturally be represented using a curve a(t) with ¢ € [0, 1], where a(t) is the constant

6.2. Optimizing Affine Maximizer Auctions via Neural Networks 117

term for outcome t. The function a(t) can be expressed using the following neural

network:
t = 0.000 a(0.000)
t = 0.001 a(0.001)
: t —_— a(t) :
t = 1.000 a(1.000)

FIGURE 6.1. Neural network representation of the a; when k& = 1000

In the context of the above representation, the AMA mechanism’s allocation (the

ending time) equals

t* = Zlelat
= arg trél[(z]x)lc] Zu v;(0i,t) + a(t))

N = {of fender,de fender}

Agent i’s payment equals (i € {of fender,defender}):

max {32, 4505005, 0) + a(t) } — {4 w5056, + a(t) }

t€(0,1]

pi =
Us;

To maximise the total revenue, the loss function is set to be:

minimise : loss = _(poffender + pdefender)

In training, we set Uge fender as an autograd ! parameter, and we use a fully connected

network to represent the function a(t). We assume that we have the analytical form of

the agents’ valuation function v;(6;,t), which is to facilitate automatic differentiation

needed by gradient descent. We will present the experimental results in Section 6.4.

'For an overview of automatic differentiation in PyTorch, please refer to (Paszke et al., 2017).

118 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

6.3 Optimizing Affine Maximizer Auctions via Evolution-

ary Computation

As discussed in the above section, an AMA mechanism is characterized by a curve a(t)
with ¢ € [0,1].? In the previous section on neural networks, we used neural networks
to model the curve a(t). A natural idea is to consider other methods for expressing

curves, such as:

e Piece-wise linear segments: We may join k straight-line segments to form a
curve. The coordinates for the end points are (%,cj) for j = 0,1,..., k. To

optimize for the best piece-wise linear segments, we just need to adjust the c;.

e Polynomial:

a(t) = cpt* +ep 1 tFL+ L et 4

To optimize for the best polynomial representation of a(t), again, we just need

to adjust the c;.

e Fourier series:
C N 2w 2
a(t) = 50 4 ;(CjCOS(pjt) + c}sin(?jt))

To optimize for the best Fourier series representation of a(t), we need to adjust

the ¢; and the c;-.

For all the above representation models, we use the following genetic algorithm to

adjust the parameters:

2For two agents, besides the curve a(t), we also have another model parameter uge fender, Which
is a single parameter that can be dealt with separately (using a naive for loop).

6.3. Optimizing Affine Maximizer Auctions via Evolutionary Computation 119

Algorithm 1: Genetic Algorithm
Step 1: Create an initial population of 60 curves (PopSize = 60). All initial

curves are randomly generated. For piece-wise linear segments, the initial
random curves are straight lines a(t) = st + b where s,b are drawn randomly
from U(—100,100). We choose a random slope from U(—100,100) so that
the resulting straight lines have similar vertical swings to the curves
obtained via linear programming and neural networks. For polynomials and
Fourier series, all parameters are drawn randomly from U(—10, 10).

Step 2: Evolution:

while Have not reached the 100-th round do

for Fach Individual do

L Randomly choose 200 type profiles to test fitness (revenue);

Sort individuals according to fitness;

Selection:
Keep the top 20 individuals in terms of fitness (EliteSize = 20);

Add new individuals through Crossover and Mutation until we reach
Popsize;

1. Crossover: Generate 20 new curves via standard two-point crossover.

2. Mutation: Generate 20 new curves via perturbing existing curves

| (with 0.1 probability, a parameter is increased or decreased by ¢ = 0.5).
Step 3: Testing:

Average over 10000 random type profiles to choose the best individual.

We will present the experimental results in Section 6.4.

120 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

6.4 Experiments

According to (Greenberg, 2012), an exploit that attacks the Chrome browser sells for
at most 200k for offensive clients (USD). According to Google’s official bug bounty
reward program for the Chrome browser (Projects, 2015), a serious exploit is priced
for at most 15k. We adopt an experimental setting based on the numbers above.

There are two agents. Obviously, the offender’s valuation function is

v(0o, 1) = /Ot bo(1 — 2)dx

0o is drawn uniformly at random from U(0,400). That is, the offender’s valuation for
the whole time interval [0, 1] is at most 200. The offender gets less and less interested
in the exploit as time goes on (the instantaneous valuation gets to 0 as 1 —x approaches
0 when x approaches 1).

The defender’s valuation function is

1
v(QD,t)—/ Opxdx
t

fp is drawn uniformly at random from U (0, 15). That is, the defender’s valuation for
the whole time interval [0, 1] is at most 15. The defender’s instantaneous valuation in

the exploit does not change over time.

Optimal revenue: 50.55

Since the valuation functions satisfy all the conditions needed for the single-
parameter model introduced in Guo, Hata, and Babar, 2016, we are able to derive the
revenue-maximizing mechanism. The ending time is based on the following rule:

t* = arg n1[3>1(]{(2 X 0o —400)(t —t*xt/2) + (2 x Op — 15)(1 —¢)}
telo,

6.4. Experiments 121

o

400 10
350
0.8
300
200
150 0.4
100
0.2
50
0 0.0

0 2 4 = 8 10 12 14
Defender type ad

offender type Bo

FIGURE 6.2. Experiment result: Ending time ¢* function.

Ending time t* as a function of type profiles for the optimal mechanism

The optimal revenue equals 50.55.

Revenue via neural networks: 50.31

We use the following setup:

We use a fully connected network with three hidden layers (200 nodes per layer)

to represent a(t).

We use the Adam optimizer with a learning rate of 0.0001.

The batch size is set to 16.

The training set consists of 80000 randomly generated type profiles.

The testing set consists of 20000 randomly generated type profiles.

The achieved expected revenue equals 50.31.

122 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

i
400 payment 400 10
350 100 350
08
300 80 300
B]
‘; 250 y 20 06
60
2 200 2 200
3 g
g 150 o 150 D4
5 5
100 100
0 02
50 50
o o o 00
o 2 4 6 8 10 12 14 o 2 4 & B 10 12 14
Defender type ad Defender type ad
alt)
40
20
_ o
i=
m
=20
-40
0.0 0.2 04 06 0.3 10

FIGURE 6.3. Experiment result: Total payment, ending time ¢*, and
a(t) via neural network.

Total payment, ending time t*, and a(t) as functions of type profiles for

the AMA mechanism derived via neural network

6.4. Experiments 123

Main computational challenges for the neural networks

Setting aside Uge fender, every AMA mechanism is characterized by a curve a(t), where
t € [0,1]. We note that the main computational bottleneck is due to the learning batch
size. Our fully-connected network structure with 3 layers and 200 nodes per layer is
more than erpressive enough to represent curves. In our experiments, we generate
20,000 type profiles to evaluate an AMA mechanism’s expected revenue. We cannot
afford to do this in every learning iteration. Instead, we use a batch size of 16 during
learning. That is, we use the average revenue of 16 randomly generated type profiles
to estimate the parameter gradient. Certainly, the gradient direction obtained this
way is not very accurate. Fortunately, as long as the learning rate is small, and as
long as most of the time, the gradient direction is generally correct, then we still are
able to successfully train the neural network. Figure 6.4 is an illustration of the neural
network training process. As shown in Figure 6.4, the average revenue of 16 randomly
generated type profiles perturbs wildly?, but the mechanism is still improving steadily

during the training, which shows that a small batch is good enough for training.

Training Revenue

70 1 =—— Batch Data Revenue
st Data Revenue
m -
y V
£ w0
=
&
. /\/\/
20 1
10 1 |
=
0 1000 2000 3000 4000

Batches

FIGURE 6.4. Experiment result: Neural network training process.

3In Figure 6.4, the presented data points for the batch data revenue are the average revenue for
every 100 batches.

124 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

Revenue via evolutionary computation: 47.67

Our last numerical technique approximates a(t) using segmented straight lines,
polynomials, and Fourier series. The parameters (i.e., polynomial coefficients) are
adjusted according to an evolutionary algorithm (Algorithm 1).

TABLE 6.1. Experiment result: Evolutionary computation’s results.

Segmented straight line (50 segments):
Quartic polynomial:

Sextic polynomial:

Fourier series (N=5, p=2) :

Fourier series (N=30, p=2) :

Revenue via evolutionary computation: different representations of a(t)

We present all the a(t) functions in the figure that follows.

For Fourier series (N=30), the payment and ending time are as follows:

t
200 payment 200
350 100 350 08
300
. 300 - .
"i 250 "}é 250 06
‘E 200 @ £ 20
ﬁ ﬁ 04
o 150 o150
£ © 5
100 100
0 02
50 50
o o o
o 2 4 6 8 10 12 14 o 2 4 & & 10 12 14
Defender type ad Defender type &d

FIGURE 6.5. Experiment result: Total payment and ending time ¢*
via evolutionary computation.

Total payment and ending time t* as functions of type profiles for the
AMA mechanism derived via evolutionary computation (Fourier series

N=30)

6.4.1 Comparison of different AMA solution techniques

The neural network based approach produces slightly better result than the linear pro-
gramming based approach. On the other hand, the neural network based approach
realistically only works for two agents and cannot deal with black-box valuation func-

tions, as it requires the valuation functions’ analytical forms for auto differentiation.

47.67
38.80
37.20
44.54
46.88

6.4. Experiments 125

alt) alt)

— alt) — alt)
50 40
n 30
—_ B —_
b w0
0
10 10
o
o
00 02 04 06 08 10 00 02 04 06 08 10
t t
(a) Segmented straight lines (50 seg- (b) Quartic
ments)
alt) alt)
» — i) & —)
5 o
&0
20
50
o 15 =)
10 0
20
5
10
o o
0o 02 0.4 06 08 10 0o 02 0.4 06 08 10
t t
(c) Sextic (d) Fourier series N=5
alt)
- — alt)
&0
50
=40
30
0
10
o

00 02 04 0.6 0.8 10
t

(e) Fourier series N=30

The evolutionary computation technique scales the best if we adopt a representation
with small number of parameters (i.e., if we approximate a(t) using a quadratic poly-
nomial such as a(t) = cat? + c1t + co, then we only need to adjust three parameters).
The down-side of the evolutionary computation technique is that all the represen-
tations we have tried (polynomials or Fourier series) are not as expressive as neural
networks, so the achieved revenue using the evolutionary computation technique is

slightly worse.

126 Chapter 6. Revenue-Maximizing Markets for Zero-Day Exploits

6.5 Chapter Summary

In this chapter, we study markets for zero-day exploits from a revenue-maximizing
mechanism design perspective. For the defenders, as long as any defender receives
the exploit, all defenders are protected. So from the perspective of the defenders, the
model studied in this chapter can be viewed as a public project model that is not
excludable. Nevertheless, otherwise the model studied in this chapter is not related
to a typical public project model.

We adopted the computationally feasible automated mechanism design approach.
We focused on the AMA mechanisms. To identify an AMA mechanism with high
revenue, we need to design an allocation “curve”. We propose two numerical solution
techniques, one is based on neural networks and the other one is based on evolutionary

computation. All techniques are able to produce near-optimal mechanisms.

127

Chapter 7

Conclusion

7.1 Summary

In this thesis, we used different machine learning methods to design optimal or near-
optimal strategy-proof and individual rational mechanisms for public project prob-

lems. Specifically, we addressed the following problems:

e In Chapter 3, we study the public project that is indivisible and binary (e.g., a
bridge). Indivisible means that an agent either consumes the project in its whole
or is completely excluded. Binary means that this project is built or not built.
We identified a sufficient condition on the prior distribution for the conservative
equal costs mechanism to be the optimal strategy-proof and individually ratio-
nal mechanism. For the non-excludable model, we designed novel mechanisms,
such as dynamic programming, to get optimal results. For the excludable in-
divisible public project models, we involved several technical innovations that
can be applied to mechanism design in general. We interpreted the mechanisms
as price-oriented rationing-free (PORF) mechanisms. The experiments showed
that our mechanisms are better than previous results and more close to the the-

oretical upper bound.

e In Chapter 4, we focused on the divisible public projects. In a classic excludable
and binary public project model, we study a setting where the mechanism can
set different project release times for different agents, which means that for a
certain agent, the higher he/she pays, the earlier he/she can use the project. For

a small number of agents, we proposed the sequential unanimous mechanisms

128 Chapter 7. Conclusion

by extending the existing mechanisms and used evolutionary computation to
optimize them. We proposed the single deadline mechanisms which are shown
to be asymptotically optimal. The experiments showed that our mechanisms

are better than existing mechanisms.

e In Chapter 5, we studied the VCG redistribution mechanisms for the classic
public project problem. Multi-layer perceptrons (MLP) were used in combina-
tion with a carefully designed cost function that takes into consideration of the
agents’ prior distributions for the optimal-in-expectation objective. We designed
generative adversarial networks (GAN + MLP) to find the optimal worst-case
VCG redistribution mechanisms. The experiments showed that our mechanisms
are very close to the theoretical upper bounds and are better than existing mech-

anisms.

e In Chapter 6, we studied markets for zero-day exploits from a revenue-maximizing
mechanism design perspective. We used a neural network to get the optimal
curve that characterizes the optimal Affine Maximizer Auctions (AMA) mech-
anism. A second technique used evolutionary computation to evolve mathe-
matical expressions for representing the optimal AMA curve. The experiments
showed that our neural networks and evolutionary computation based techniques

both produce near-optimal revenue.

7.2 Future Work

In addition to the public project problems addressed in this thesis, we point out the

following open problems that we expect to explore in the future:

e Apply our methods to other models: The techniques proposed in this thesis

can not only be used in public project problems, but also have the potential

7.2. Future Work 129

to be applied to other economic models. One future direction is to extend our

methods to other models such as cake cutting, facility location, and auctions.

e Design better neural network structures for mechanism design: In this thesis, we
carefully designed our neural networks to ensure strategy-proofness and individ-
ual rationality. However, most of our design focused on the mechanism design
aspect, not on the neural networks themselves. That is, neural network is used
as an assisting tool and it is heavily guided by manual human inputs. Most of
our networks are straight-forward feed-forward fully-connected networks. One
future direction is to consider more sophisticated neural network structures such

as pointer networks, LSTM, permutation invariant networks, etc.

e Combinatorial public project model: Through out this thesis, we assumed that
there is only one public project. However, in practise, it is common that we
face many public projects and the agents face combinatorial decision making.
One future research direction is to see to what extent our techniques and results

generalise beyond a single public project.

131

Bibliography

1]

2]

3]

[4]

[5]

[6]

7]

Tuomas Sandholm. “Automated mechanism design: A new application area for
search algorithms”. In: International Conference on Principles and Practice of

Constraint Programming. Springer. 2003, pp. 19-36.

Anton Likhodedov and Tuomas Sandholm. “ Approximating Revenue-Maximizing
Combinatorial Auctions”. In: Proceedings, The Twentieth National Conference
on Artificial Intelligence and the Seventeenth Innovative Applications of Arti-
ficial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA.
Ed. by Manuela M. Veloso and Subbarao Kambhampati. AAAI Press / The
MIT Press, 2005, pp. 267-274. URL: http://www.aaai.org/Library/AAAI/

2005/aaai05-043. php.

Makoto Yokoo, Yuko Sakurai, and Kenji Terada. “Price-oriented, Rationing-
free Protocol: Guideline for Designing Strategy /False-name Proof Auction Pro-

tocols”. In: (2002).

Marie Drobietz, Adrian Loerbroks, and Nils Hansson. “Who is who in cardio-
vascular research? What a review of Nobel Prize nominations reveals about

scientific trends”. In: Clinical Research in Cardiology (2021), pp. 1-10.

Maarten CW Janssen. “Reflections on the 2020 Nobel Memorial Prize Awarded
to Paul Milgrom and Robert Wilson”. In: Erasmus Journal for Philosophy and
Economics 13.2 (2020), pp. 177-184.

SangMok Lee. “Incentive compatibility of large centralized matching markets”.

In: The Review of Economic Studies 84.1 (2016), pp. 444-463.

Leonid Hurwicz. “Optimality and informational efficiency in resource allocation

processes”. In: Mathematical methods in the social sciences (1960).

http://www.aaai.org/Library/AAAI/2005/aaai05-043.php
http://www.aaai.org/Library/AAAI/2005/aaai05-043.php

132 Bibliography

[8] John C Harsanyi. “Games with incomplete information played by “Bayesian”
players, I-III Part I. The basic model”. In: Management science 14.3 (1967),
pp. 159-182.

[9] Roger B Myerson. “Optimal auction design”. In: Mathematics of operations
research 6.1 (1981), pp. 58-73.

[10] Michael Curry, Tuomas Sandholm, and John Dickerson. “Differentiable Eco-
nomics for Randomized Affine Maximizer Auctions”. In: arXiv preprint arXiv:2202.02872
(2022).

[11] Hamidreza Maghsoudlou, Behrouz Afshar-Nadjafi, and Seyed Taghi Akhavan
Niaki. “Multi-skilled project scheduling with level-dependent rework risk; three
multi-objective mechanisms based on cuckoo search”. In: Applied Soft Comput-

ing 54 (2017), pp. 46-61.

[12] Gabriel Carroll. “Robustness in mechanism design and contracting”. In: Annual

Review of Economics 11 (2019), pp. 139-166.

[13] R. Lavi, Ahuva Mu’alem, and N. Nisan. “Towards a characterization of truthful
combinatorial auctions”. In: 44th Annual IEEE Symposium on Foundations of

Computer Science, 2003. Proceedings. 2003, pp. 574-583.

[14] Arunava Sen. “The theory of mechanism design: An overview”. In: Economic

and Political Weekly (2007), pp. 8-13.

[15] Xiaoyan Zou. “Double-sided auction mechanism design in electricity based on

maximizing social welfare”. In: Energy Policy 37.11 (2009), pp. 4231-4239.

[16] Alejandro M Manelli and Daniel R Vincent. “Multidimensional mechanism
design: Revenue maximization and the multiple-good monopoly”. In: Journal

of Economic theory 137.1 (2007), pp. 153-185.

[17] Georgios Amanatidis, Pieter Kleer, and Guido Schéfer. “Budget-feasible mech-
anism design for non-monotone submodular objectives: Offline and online”.
In: Proceedings of the 2019 ACM Conference on Economics and Computation.
2019, pp. 901-919.

Bibliography 133

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

28]

Georgios Amanatidis, Georgios Birmpas, and Evangelos Markakis. “On budget-
feasible mechanism design for symmetric submodular objectives”. In: Interna-

tional Conference on Web and Internet Economics. Springer. 2017, pp. 1-15.

Xuanhe Zhao. “Multi-scale multi-mechanism design of tough hydrogels: build-
ing dissipation into stretchy networks”. In: Soft matter 10.5 (2014), pp. 672—

687.

Claudio Mezzetti. “Mechanism design with interdependent valuations: Effi-

ciency”. In: Econometrica 72.5 (2004), pp. 1617-1626.

Brooks A Kaiser. “The Athenian trierarchy: Mechanism design for the private
provision of public goods”. In: The Journal of economic history 67.2 (2007),
pp. 445-480.

Paul A Samuelson. “The pure theory of public expenditure”. In: The review of

economics and statistics (1954), pp. 387-389.

Ingrid Ott and Stephen J Turnovsky. “Excludable and non-excludable pub-
lic inputs: Consequences for economic growth”. In: Economica 73.292 (2006),

pp. 725-748.

Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi.
“On approximately fair allocations of indivisible goods”. In: Proceedings of the

5th ACM Conference on FElectronic Commerce. 2004, pp. 125-131.

Samir Wadhwa and Roy Dong. “Failure of Equilibrium Selection Methods for
Multiple-Principal, Multiple-Agent Problems with Non-Rivalrous Goods: An
Analysis of Data Markets”. In: arXiv preprint arXiv:2004.00196 (2020).

Shinji Ohseto. “Characterizations of Strategy-Proof Mechanisms for Exclud-
able versus Nonexcludable Public Projects”. In: Games and Economic Behavior

32.1 (2000), pp. 51 ~66. 1SSN: 0899-8256.

Hitoshi Matsushima. “Mechanism design with side payments: Individual ratio-
nality and iterative dominance”. In: Journal of Economic Theory 133.1 (2007),

pp- 1-30.

Jinpeng Ma. “Strategy-proofness and the strict core in a market with indivisi-

bilities”. In: International Journal of Game Theory 23.1 (1994), pp. 75-83.

134

Bibliography

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Hervé Moulin. “Serial Cost-Sharing of Excludable Public Goods”. In: The Re-
view of Economic Studies 61.2 (1994), pp. 305-325. 1SSN: 00346527, 1467937X.

Mingyu Guo and Vincent Conitzer. “Computationally Feasible Automated
Mechanism Design: General Approach and Case Studies”. In: Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010,
Atlanta, Georgia, USA, July 11-15, 2010. Ed. by Maria Fox and David Poole.
AAAI Press, 2010. URL: http://www . aaai.org/ocs/index . php/AAAL/

AAAT10/paper/view/1868.

Mingyu Guo, Hideaki Hata, and M. Ali Babar. “Optimizing Affine Maximizer
Auctions via Linear Programming: An Application to Revenue Maximizing
Mechanism Design for Zero-Day Exploits Markets”. In: PRIMA 2017: Prin-
ciples and Practice of Multi-Agent Systems - 20th International Conference,
Nice, France, October 30 - November 3, 2017, Proceedings. 2017, pp. 280-292.

Richard Cole and Tim Roughgarden. “The sample complexity of revenue maxi-
mization”. In: Proceedings of the forty-sizth annual ACM symposium on Theory

of computing. 2014, pp. 243-252.

Jamie H Morgenstern and Tim Roughgarden. “On the pseudo-dimension of
nearly optimal auctions”. In: Advances in Neural Information Processing Sys-

tems 28 (2015).

Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. “The effect of false-name
bids in combinatorial auctions: New fraud in Internet auctions”. In: Games and

Economic Behavior 46.1 (2004), pp. 174-188.

Rajdeep K Dash, Sarvapali D Ramchurn, and Nicholas R Jennings. “Trust-
based mechanism design”. In: Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004.
IEEE. 2004, pp. 748-755.

Eduardo M Azevedo and Eric Budish. “Strategy-proofness in the large”. In:
The Review of Economic Studies 86.1 (2019), pp. 81-116.

Paul Anand et al. “Foundations of rational choice under risk”. In: OUP Cata-

logue (1995).

http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1868
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1868

Bibliography 135

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

Dilip Mookherjee and Stefan Reichelstein. “Dominant strategy implementation
of Bayesian incentive compatible allocation rules”. In: Journal of Economic

Theory 56.2 (1992), pp. 378-399.

Tim Roughgarden. “Algorithmic game theory”. In: Communications of the

ACM 53.7 (2010), pp. 78-86.

Gregory Pavlov. “Optimal mechanism for selling two goods”. In: The BE Jour-

nal of Theoretical Economics 11.1 (2011).

Andrew Chi-Chih Yao. “Dominant-strategy versus bayesian multi-item auc-
tions: Maximum revenue determination and comparison”. In: Proceedings of

the 2017 ACM Conference on Economics and Computation. 2017, pp. 3-20.

Yang Cai, Constantinos Daskalakis, and S Matthew Weinberg. “An algorithmic
characterization of multi-dimensional mechanisms”. In: Proceedings of the forty-

fourth annual ACM symposium on Theory of computing. 2012, pp. 459-478.

Sergiu Hart and Noam Nisan. “Approximate revenue maximization with mul-

tiple items”. In: Journal of Economic Theory 172 (2017), pp. 313-347.
Vijay Krishna. Auction theory. Academic press, 2009.

Mark Armstrong. “Multiproduct nonlinear pricing”. In: Econometrica: Journal

of the Econometric Society (1996), pp. 51-75.

Vincent Conitzer and Tuomas Sandholm. “Complexity of Mechanism Design”.
In: UAI ’02, Proceedings of the 18th Conference in Uncertainty in Artificial
Intelligence, University of Alberta, Edmonton, Alberta, Canada, August 1-4,
2002. Ed. by Adnan Darwiche and Nir Friedman. Morgan Kaufmann, 2002,
pp- 103-110.

Radu Jurca and Boi Faltings. “Minimum payments that reward honest rep-
utation feedback”. In: Proceedings of the 7th ACM Conference on FElectronic

Commerce. 2006, pp. 190-199.

Florin Constantin and David C Parkes. “On revenue-optimal dynamic auctions
for bidders with interdependent values”. In: Agent-Mediated Electronic Com-

merce and Trading Agent Design and Analysis. Springer, 2007, pp. 1-15.

136

Bibliography

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Sayan Bhattacharya, Gagan Goel, Sreenivas Gollapudi, and Kamesh Munagala.
“Budget constrained auctions with heterogeneous items”. In: Proceedings of the

forty-second ACM symposium on Theory of computing. 2010, pp. 379-388.

Anton Likhodedov and Tuomas Sandholm. “Methods for Boosting Revenue in
Combinatorial Auctions”. In: Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence, Sixteenth Conference on Innovative Applications
of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA. Ed. by
Deborah L. McGuinness and George Ferguson. AAAI Press / The MIT Press,
2004, pp. 232-237. URL: http://www.aaai.org/Library/AAAI/2004/aaai04-

037 .php.

Hervé Moulin. The price of anarchy of serial cost sharing and other methods.

Tech. rep. Citeseer, 2005.

Mingyu Guo, Yong Yang, and Muhammad Ali Babar. “Cost Sharing Secu-
rity Information with Minimal Release Delay”. In: PRIMA 2018: Principles
and Practice of Multi-Agent Systems. Cham: Springer International Publish-
ing, 2018, pp. 177-193. 1SBN: 978-3-030-03098-8.

William Vickrey. “Counterspeculation, Auctions, and Competitive Sealed Ten-

ders”. In: Journal of Finance 16 (1961), pp. 8-37.

Edward H Clarke. “Multipart pricing of public goods”. In: Public choice (1971),

pp. 17-33.

Theodore Groves. “Incentives in teams”. In: Econometrica: Journal of the Econo-

metric Society (1973), pp. 617-631.

Mingyu Guo and Vincent Conitzer. “Undominated VCG redistribution mecha-
nisms”. In: Proceedings of the 7th international joint conference on Autonomous

agents and multiagent systems-Volume 2. Citeseer. 2008, pp. 1039-1046.

Mingyu Guo. “VCG Redistribution with Gross Substitutes”. In: Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA, August 7-11, 2011. Ed. by Wolfram Burgard and
Dan Roth. AAAI Press, 2011. URL: http://www.aaai.org/ocs/index.php/

AAAT/AAAT11/paper/view/3733.

http://www.aaai.org/Library/AAAI/2004/aaai04-037.php
http://www.aaai.org/Library/AAAI/2004/aaai04-037.php
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3733
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3733

Bibliography 137

[58] Victor Naroditskiy, Mingyu Guo, Lachlan Dufton, Maria Polukarov, and Nicholas
R. Jennings. “Redistribution of VCG Payments in Public Project Problems”. In:
Internet and Network Economics - 8th International Workshop, WINE 2012,
Liverpool, UK, December 10-12, 2012. Proceedings. Ed. by Paul W. Goldberg.

Vol. 7695. Lecture Notes in Computer Science. Springer, 2012, pp. 323-336.

[59] Mingyu Guo, Hideaki Hata, and M. Ali Babar. “Revenue Maximizing Mar-
kets for Zero-Day Exploits”. In: PRIMA 2016: Princiles and Practice of Multi-
Agent Systems - 19th International Conference, Phuket, Thailand, August 22-
26, 2016, Proceedings. 2016, pp. 247-260.

[60] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

machine learning. MIT press, 2018.

[61] M-F Balcan, Avrim Blum, Jason D Hartline, and Yishay Mansour. “Mechanism
design via machine learning”. In: 46th Annual IEEE Symposium on Foundations

of Computer Science (FOCS’05). IEEE. 2005, pp. 605-614.

[62] Harikrishna Narasimhan, Shivani Brinda Agarwal, and David C Parkes. “ Auto-
mated mechanism design without money via machine learning”. In: Proceedings

of the 25th International Joint Conference on Artificial Intelligence. 2016.

[63] Poonam Sharma and Akansha Singh. “Era of deep neural networks: A review”.
In: 2017 8th International Conference on Computing, Communication and Net-

working Technologies (ICCCNT). IEEE. 2017, pp. 1-5.

[64] Saeed Alaei, Hu Fu, Nima Haghpanah, Jason Hartline, and Azarakhsh Malekian.
“Bayesian optimal auctions via multi-to single-agent reduction”. In: arXiv preprint

arXiv:1203.5099 (2012).

[65] Jason D Hartline and Tim Roughgarden. “Simple versus optimal mechanisms”.
In: Proceedings of the 10th ACM conference on FElectronic commerce. 2009,
pp. 225-234.

[66] Andrew Chi-Chih Yao. “An n-to-1 bidder reduction for multi-item auctions
and its applications”. In: Proceedings of the twenty-sizth annual ACM-SIAM

symposium on Discrete algorithms. STAM. 2014, pp. 92-109.

138

Bibliography

[67]

[68]

[69]

[70]

[71]

72]

73]

[74]

Aneta Neumann, Wanru Gao, Markus Wagner, and Frank Neumann. “Evo-
lutionary diversity optimization using multi-objective indicators”. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO 2019,
Prague, Czech Republic, July 13-17, 2019. Ed. by Anne Auger and Thomas
Stiitzle. ACM, 2019, pp. 837-845. DOI: 10 . 1145 /3321707 . 3321796. URL:

https://doi.org/10.1145/3321707.3321796.

Qian Long, Zihan Zhou, Abhinav Gupta, Fei Fang, Yi Wu, and Xiaolong
Wang. “Evolutionary Population Curriculum for Scaling Multi-Agent Rein-
forcement Learning”. In: 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. 2020. URL: https:

//openreview.net/forum?id=SJxbHkrKDH.

Viet Anh Do, Mingyu Guo, Aneta Neumann, and Frank Neumann. “Analysis
of Evolutionary Diversity Optimisation for Permutation Problems”. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO
2021. 2021.

Steve Phelps, Peter McBurney, and Simon Parsons. “Evolutionary mechanism
design: a review”. In: Autonomous agents and multi-agent systems 21.2 (2010),

pp. 237-264.

Martin Andrews. “Genetic programming for the acquisition of double auction

market strategies”. In: Advances in genetic programming (1994).

Dave Cliff. “Evolving parameter sets for adaptive trading agents in continu-
ous double-auction markets”. In: Agents-98 workshop on artificial societies and

computational markets, Minneapolis, MN. 1998, pp. 38—47.

Vincent Conitzer and Tuomas Sandholm. “Incremental Mechanism Design.”

In: IJCAL 2007, pp. 1251-1256.

Dave Cliff. “Evolution of market mechanism through a continuous space of
auction-types”. In: Proceedings of the 2002 Congress on Fvolutionary Compu-

tation. CEC’02 (Cat. No. 02THS600). Vol. 2. IEEE. 2002, pp. 2029-2034.

https://doi.org/10.1145/3321707.3321796
https://doi.org/10.1145/3321707.3321796
https://openreview.net/forum?id=SJxbHkrKDH
https://openreview.net/forum?id=SJxbHkrKDH

Bibliography 139

[75]

[76]

[77]

(78]

[79]

[30]

[81]

[82]

Steve Phelps, Peter McBurney, Simon Parsons, and Elizabeth Sklar. “Co-

evolutionary auction mechanism design: A preliminary report”. In: Interna-

tional Workshop on Agent-Mediated Electronic Commerce. Springer. 2002, pp. 123—

142.

Steve Phelps, Peter McBurney, Simon Parsons, and Elizabeth Sklar. “Applying
genetic programming to economic mechanism design: evolving a pricing rule for
a continuous double auction”. In: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems. 2003, pp. 1096—

1097.

BR Fox and MB McMahon. “Genetic operators for sequencing problems”. In:

Foundations of genetic algorithms. Vol. 1. Elsevier, 1991, pp. 284-300.

Paul Diitting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Sri-
vatsa Ravindranath. “Optimal auctions through deep learning”. In: Interna-

tional Conference on Machine Learning. PMLR. 2019, pp. 1706-1715.

Zhe Feng, Harikrishna Narasimhan, and David C Parkes. “Deep learning for
revenue-optimal auctions with budgets”. In: Proceedings of the 17th Inter-
national Conference on Autonomous Agents and Multiagent Systems. 2018,

pp. 354-362.

Noah Golowich, Harikrishna Narasimhan, and David C Parkes. “Deep Learning
for Multi-Facility Location Mechanism Design.” In: IJCAI 2018, pp. 261-267.

Yuko Sakurai, Satoshi Oyama, Mingyu Guo, and Makoto Yokoo. “Deep False-
Name-Proof Auction Mechanisms”. In: PRIMA 2019: Principles and Practice
of Multi-Agent Systems - 22nd International Conference, Turin, Italy, Octo-
ber 28-81, 2019, Proceedings. Vol. 11873. Lecture Notes in Computer Science.
Springer, 2019, pp. 594-601. DOI: 10.1007/978-3-030-33792-6_45. URL:

https://doi.org/10.1007/978-3-030-33792-6_45.

Michael Curry, Ping-Yeh Chiang, Tom Goldstein, and John Dickerson. “Cer-
tifying strategyproof auction networks”. In: Advances in Neural Information

Processing Systems 33 (2020), pp. 4987-4998.

https://doi.org/10.1007/978-3-030-33792-6_45
https://doi.org/10.1007/978-3-030-33792-6_45

140

Bibliography

[83]

[84]

[85]

[36]

[87]

[33]

[89]

[90]

[91]

Neehar Peri, Michael Curry, Samuel Dooley, and John Dickerson. “Prefer-
enceNet: Encoding Human Preferences in Auction Design with Deep Learning”.

In: Advances in Neural Information Processing Systems 34 (2021).

Padala Manisha, C. V. Jawahar, and Sujit Gujar. “Learning Optimal Redis-
tribution Mechanisms Through Neural Networks”. In: Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS 2018, Stockholm, Sweden, July 10-15, 2018. Ed. by Elisabeth André,
Sven Koenig, Mehdi Dastani, and Gita Sukthankar. International Foundation
for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM,
2018, pp. 345-353.

Weiran Shen, Pingzhong Tang, and Song Zuo. “Automated mechanism design

via neural networks”. In: arXiv preprint arXiv:1805.03382 (2018).

Jad Rahme, Samy Jelassi, and S Matthew Weinberg. “Auction learning as a

two-player game”. In: arXiv preprint arXiv:2006.05684 (2020).

Zhijian Duan, Jingwu Tang, Yutong Yin, Zhe Feng, Xiang Yan, Manzil Zaheer,
and Xiaotie Deng. “A Context-Integrated Transformer-Based Neural Network

for Auction Design”. In: arXiv preprint arXiv:2201.12489 (2022).

Jad Rahme, Samy Jelassi, Joan Bruna, and S Matthew Weinberg. “A permutation-
equivariant neural network architecture for auction design”. In: arXiv preprint

arXiv:2003.01497 (2020), p. 4.

Yufeng Zhan and Jiang Zhang. “An incentive mechanism design for efficient
edge learning by deep reinforcement learning approach”. In: IEEE INFOCOM
2020-1EEE Conference on Computer Communications. IEEE. 2020, pp. 2489—
2498.

Martin Bichler, Maximilian Fichtl, Stefan Heidekriiger, Nils Kohring, and Paul
Sutterer. “Learning equilibria in symmetric auction games using artificial neu-

ral networks”. In: Nature Machine Intelligence 3.8 (2021), pp. 687-695.

Gianluca Brero, Alon Eden, Matthias Gerstgrasser, David C Parkes, and Dun-
can Rheingans-Yoo. “Reinforcement learning of simple indirect mechanisms”.

In: arXiv preprint arXiv:2010.01180 (2020).

Bibliography 141

[92] Makoto Yokoo. “Characterization of Strategy/False-name Proof Combinatorial
Auction Protocols: Price-oriented, Rationing-free Protocol”. In: Proceedings of
the 18th International Joint Conference on Artificial Intelligence. IJCAI’03.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 733—
739.

[93] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adver-

sarial nets”. In: Advances in neural information processing systems 27 (2014).

[94] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative ad-
versarial networks”. In: Communications of the ACM 63.11 (2020), pp. 139

144.

[95] Joao F Martins, V Ferno Pires, and Armando J Pires. “Unsupervised neural-
network-based algorithm for an on-line diagnosis of three-phase induction mo-
tor stator fault”. In: IEEE Transactions on Industrial Electronics 54.1 (2007),

pp- 259-264.

[96] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. “Seqgan: Sequence gen-
erative adversarial nets with policy gradient”. In: Proceedings of the AAAI

conference on artificial intelligence. Vol. 31. 1. 2017.

[97] Xin Yi, Ekta Walia, and Paul Babyn. “Generative adversarial network in med-

ical imaging: A review”. In: Medical image analysis 58 (2019), p. 101552.

[98] Andreu Mas-Colell, Michael Whinston, and Jerry R. Green. Microeconomic

Theory. Oxford University Press, 1995.

[99] J. Moore. General Equilibrium and Welfare Economics: An Introduction. Springer,

2006.

[100] H. Moulin. Azioms of Cooperative Decision Making. Cambridge University
Press, 1988.

[101] Noah Golowich, Harikrishna Narasimhan, and David C. Parkes. “Deep Learn-
ing for Multi-Facility Location Mechanism Design”. In: Proceedings of the Twenty-

Seventh International Joint Conference on Artificial Intelligence, 1JCAI-18.

142

Bibliography

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

International Joint Conferences on Artificial Intelligence Organization, July

2018, pp. 261-267.

Paul Duetting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Sri-
vatsa Ravindranath. “Optimal Auctions through Deep Learning”. In: Proceed-
ings of the 36th International Conference on Machine Learning. Ed. by Ka-
malika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. Long Beach, California, USA: PMLR, 2019, pp. 1706-1715.

Weiran Shen, Pingzhong Tang, and Song Zuo. “Automated Mechanism De-
sign via Neural Networks”. In: Proceedings of the 18th International Confer-
ence on Autonomous Agents and MultiAgent Systems. AAMAS ’19. Montreal
QC, Canada: International Foundation for Autonomous Agents and Multiagent

Systems, 2019, pp. 215-223. ISBN: 978-1-4503-6309-9.

Rajat Deb and Laura Razzolini. “Voluntary cost sharing for an excludable
public project”. In: Mathematical Social Sciences 37.2 (1999), pp. 123 —138.

ISSN: 0165-4896.

Mark Bagnoli and Ted Bergstrom. “Log-concave probability and its applica-
tions”. In: Economic Theory 26.2 (2005), pp. 445-469. 1SSN: 1432-0479. DOI:

10.1007/s00199-004-0514-4.

Ran Shao and Lin Zhou. “Optimal allocation of an indivisible good”. In: Games

and Economic Behavior 100 (2016), pp. 95 —112. 1SSN: 0899-8256.

Joseph Sill. “Monotonic Networks”. In: Proceedings of the 1997 Conference on
Advances in Neural Information Processing Systems 10. NIPS ’97. Denver,

Colorado, USA: MIT Press, 1998, pp. 661-667. 1SBN: 0-262-10076-2.

Zhi-Hua Zhou and Ji Feng. “Deep Forest: Towards an Alternative to Deep
Neural Networks”. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence. IJCAI’17. Melbourne, Australia: AAAI Press, 2017,
pp- 3553-3559. 1SBN: 978-0-9992411-0-3.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
“Automatic Differentiation in PyTorch”. In: NIPS Autodiff Workshop. 2017.

https://doi.org/10.1007/s00199-004-0514-4

Bibliography 143

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Andy Greenberg. Shopping For Zero-Days: A Price List For Hackers’ Secret
Software Exploits. 2012.

Dennis Fisher. VUPEN Founder Launches New Zero-Day Acquisition Firm
Zerodium. July 24, 2015 online: https://threatpost.com/vupen-launches-new-

zero-day-acquisition-firm-zerodium /113933/. 2015.

Guanhua Wang, Rungi Guo, Yuko Sakurai, Ali Babar, and Mingyu Guo.
“Mechanism Design for Public Projects via Neural Networks”. In: 20th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2021, online). May 2021.

Ruggiero Cavallo. “Optimal Decision-making with Minimal Waste: Strategyproof
Redistribution of VCG Payments”. In: Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS ’06.
Hakodate, Japan: ACM, 2006, pp. 882-889. ISBN: 1-59593-303-4. DOI: 10.1145/

1160633.1160790. URL: http://doi.acm.org/10.1145/1160633.1160790.

Geoffroy de Clippel, Victor Naroditskiy, Maria Polukarov, Amy Greenwald,
and Nicholas R. Jennings. “Destroy to save”. In: Games and Economic Behavior

86 (2014), pp. 392-404.

Boi Faltings. “A Budget-Balanced, Incentive-Compatible Scheme for Social
Choice”. eng. In: Lecture notes in computer science. Berlin: Springer, 2005,

pp- 30-43. 1SBN: 9783540297376.

Mingyu Guo and Vincent Conitzer. “ Worst-case optimal redistribution of VCG
payments in multi-unit auctions”. In: Games and FEconomic Behavior 67.1

(2009), pp. 69-98.

Hervé Moulin. “Almost budget-balanced VCG mechanisms to assign multiple

objects”. In: JET 144.1 (2009), pp. 96-119.

Sujit Gujar and Y. Narahari. “Redistribution Mechanisms for Assignment of

Heterogeneous Objects”. In: J. Artif. Intell. Res. 41 (2011), pp. 131-154.

Mingyu Guo. “Worst-case optimal redistribution of VCG payments in heterogeneous-
item auctions with unit demand”. In: International Conference on Autonomous

Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, June 4-8, 2012

https://doi.org/10.1145/1160633.1160790
https://doi.org/10.1145/1160633.1160790
http://doi.acm.org/10.1145/1160633.1160790

144 Bibliography

(8 Volumes). Ed. by Wiebe van der Hoek, Lin Padgham, Vincent Conitzer, and
Michael Winikoff. IFAAMAS, 2012, pp. 745-752. URL: http://dl.acm.org/

citation.cfm?7id=2343803.

[120] Mingyu Guo and Vincent Conitzer. “Better redistribution with inefficient allo-
cation in multi-unit auctions”. In: Artificial Intelligence 216 (2014), pp. 287—
308.

[121] Shunsuke Tsuruta, Masaaki Oka, Taiki Todo, Yujiro Kawasaki, Mingyu Guo,
Yuko Sakurai, and Makoto Yokoo. “Optimal false-name-proof single-item re-

distribution mechanisms.” In: AAMAS. Citeseer. 2014, pp. 221-228.

[122] Mingyu Guo. “Competitive VCG Redistribution Mechanism for Public Project
Problem”. In: PRIMA 2016: Princiles and Practice of Multi-Agent Systems -
19th International Conference, Phuket, Thailand, August 22-26, 2016, Proceed-
ings. Vol. 9862. Lecture Notes in Computer Science. Springer, 2016, pp. 279—
294.

[123] Mingyu Guo and Hong Shen. “Speed up Automated Mechanism Design by
Sampling Worst-Case Profiles: An Application to Competitive VCG Redistri-
bution Mechanism for Public Project Problem”. In: PRIMA 2017: Principles
and Practice of Multi-Agent Systems - 20th International Conference, Nice,
France, October 30 - November 3, 2017, Proceedings. Vol. 10621. Lecture Notes

in Computer Science. Springer, 2017, pp. 127-142.

[124] Mingyu Guo. “An Asymptotically Optimal VCG Redistribution Mechanism
for the Public Project Problem”. In: Proceedings of the Twenty-FEighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-19. International
Joint Conferences on Artificial Intelligence Organization, July 2019, pp. 315—
321.

[125] Mingyu Guo, Victor Naroditskiy, Vincent Conitzer, Amy Greenwald, and Nicholas
R. Jennings. “Budget-Balanced and Nearly Efficient Randomized Mechanisms:
Public Goods and beyond”. In: Internet and Network Economics - Tth Interna-
tional Workshop, WINE 2011, Singapore, December 11-14, 2011. Proceedings.
Ed. by Ning Chen, Edith Elkind, and Elias Koutsoupias. Vol. 7090. Lecture

Notes in Computer Science. Springer, 2011, pp. 158-169.

http://dl.acm.org/citation.cfm?id=2343803
http://dl.acm.org/citation.cfm?id=2343803

Bibliography 145

[126] Andrea Tacchetti, DJ Strouse, Marta Garnelo, Thore Graepel, and Yoram
Bachrach. “A neural architecture for designing truthful and efficient auctions”.

In: arXiv preprint arXiv:1907.05181 (2019).

[127] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. “Gradi-
ent estimation using stochastic computation graphs”. In: arXiv preprint arXiv:1506.0525

(2015).

[128] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. “On large-batch training for deep learning:

Generalization gap and sharp minima”. In: JCLR 2017 (2016).

[129] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. “Under-
standing deep neural networks with rectified linear units”. In: arXiv preprint

arXiv:1611.01491 (2016).

[130] Serge Egelman, Cormac Herley, and Paul C. van Oorschot. “Markets for Zero-
Day Exploits: Ethics and Implications”. In: Proceedings of the 2013 New Se-
curity Paradigms Workshop. NSPW ’13. Banff, Alberta, Canada: Association
for Computing Machinery, 2013, 41-46. 1SBN: 9781450325820. DOI: 10.1145/

2535813.2535818. URL: https://doi.org/10.1145/2535813.2535818.

[131] Hideaki Hata, Mingyu Guo, and M. Ali Babar. “Understanding the Hetero-
geneity of Contributors in Bug Bounty Programs”. In: 2017 ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement,
ESEM 2017, Toronto, ON, Canada, November 9-10, 2017. Ed. by Ayse Bener,
Burak Turhan, and Stefan Biffl. IEEE, 2017, pp. 223-228.

[132] Tetsuya Kanda, Mingyu Guo, Hideaki Hata, and Kenichi Matsumoto. “To-
wards understanding an open-source bounty: Analysis of bountysource”. In:
2017 IEEE 2/th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE. 2017, pp. 577-578.

[133] Mingyu Guo, Argyrios Deligkas, and Rahul Savani. “Increasing VCG Revenue
by Decreasing the Quality of Items”. In: Proceedings of the Twenty-FEighth
AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada. Ed. by Carla E. Brodley and Peter Stone. AAAI Press, 2014,

https://doi.org/10.1145/2535813.2535818
https://doi.org/10.1145/2535813.2535818
https://doi.org/10.1145/2535813.2535818

146

Bibliography

[134]

[135]

[136]

pp. 705-711. URL: http://www.aaai.org/ocs/index.php/AAAT/AAAT14/

paper/view/8186.

Mingyu Guo and Argyrios Deligkas. “Revenue Maximization via Hiding Item
Attributes”. In: IJCAI 2013, Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, Beijing, China, August 3-9, 2013. Ed. by
Francesca Rossi. [JCAI/AAAI 2013, pp. 157-163. URL: http://www.aaai .

org/ocs/index.php/IJCAI/IJCAI13/paper/view/6909.

Mingyu Guo, Hong Shen, Taiki Todo, Yuko Sakurai, and Makoto Yokoo. “So-
cial Decision with Minimal Efficiency Loss: An Automated Mechanism De-
sign Approach”. In: Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey,
May 4-8, 2015. Ed. by Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and
Edith Elkind. ACM, 2015, pp. 347-355. URL: http://dl.acm.org/citation.

cfm?id=2772925.

The Chromium Projects. Severity Guidelines for Security Issues. Accessed
September 15, 2015 online: https://www.chromium.org/developers/severity-

guidelines. 2015.

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8186
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8186
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6909
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6909
http://dl.acm.org/citation.cfm?id=2772925
http://dl.acm.org/citation.cfm?id=2772925

	Abstract
	List of Abbreviations
	Declaration of Authorship
	Acknowledgements
	Publications
	Introduction
	Public Project Mechanism Design Motivation and Research Challenges
	Unknown Feasible/Optimal Mechanism Characterizations
	Neural Network Mechanism Design Challenges for Public Project Problems
	High Variety of Public Project Problems

	Research Summary
	Summary of Public Project Problem Variants
	Summary of Mechanism Constraints and Objectives
	Contributions and Outlines of Individual Chapters

	Literature Review and Definitions
	Mechanism Design
	Mechanism Properties
	Analytical Mechanism Design
	Automated Mechanism Design
	Classic Mechanisms

	Machine Learning Methods for Automated Mechanism Design
	Evolutionary Computation
	Artificial Neural Network

	Mechanism Design for Public Projects via Neural Networks
	Introduction
	Model Description
	Characterizations and Bounds
	Nonexcludable Mechanism Characterization
	Excludable Mechanism Characterization
	Nonexcludable Public Project Analysis
	Excludable Public Project

	Mechanism Design vs Neural Networks
	Mechanism Design via Neural Networks
	Network Structure
	Cost Function
	Supervision as Initialization

	Experiments
	Chapter Summary

	Public Project with Minimum Expected Release Delay
	Introduction
	Model Description
	Single Deadline Mechanism
	Max-Delay: Asymptotic Optimality
	Sum-Delay: Asymptotic Optimality
	Automated Mechanism Design for Smaller Number of Agents
	Multiple Deadline Mechanisms
	Automated Mechanism Design via Evolutionary Computation
	Experiments

	Chapter Summary

	Redistribution in Public Project Problems via Neural Networks
	Introduction
	VCG Redistribution Mechanisms
	Designing VCG Redistribution Mechanisms via Neural Networks
	Improved Neural Networks for Designing VCG Redistribution Mechanisms for the Public Project Problem

	Model Description
	Worst-case Optimal Mechanism
	Optimal-in-Expectation Mechanism

	Worst-case Optimal Mechanism
	Network Architecture
	Details of the Networks and Evaluations
	Loss Function

	Optimal-in-Expectation Mechanism
	Feed Prior Distribution into Loss Function
	Loss Function

	Experiments and Results
	Experiment settings
	Results

	Chapter Summary

	Revenue-Maximizing Markets for Zero-Day Exploits
	Introduction
	Zero-day Exploit Markets
	Problem Description
	Affine Maximizer Auctions Model Description

	Optimizing Affine Maximizer Auctions via Neural Networks
	Optimizing Affine Maximizer Auctions via Evolutionary Computation
	Experiments
	Comparison of different AMA solution techniques

	Chapter Summary

	Conclusion
	Summary
	Future Work

	Bibliography

