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Abstract

The technology of communication systems between population centres has undergone
much change over the last century an a half, but radio links continue to be an important
part of communication networks. A challenging part of their design is allowing for
variations in received signal level, known as radio fading and enhancement, due to the
atmosphere between transmitter and receiver.

At high frequencies rain fading is the limiting factor, but below about 10 GHz, temper-
ature and humidity gradients, in the absence of precipitation, may produce clear-air
fading that becomes the limiting factor. As the refractive index of the air at radio fre-
quencies depends on temperature and humidity, vertical gradients of these parameters
cause bending of ray-paths. Multiple signals may arrive at the receiver over different
paths, resulting in multipath fading. Sometimes almost no signal at all is able to find
its way from transmitter to receiver, resulting in an impairment known as median de-
pression; this may last for an hour or more, with median signal level up to 50 dB below
normal.

Recent long-term observations show this fading to be particularly severe in some parts
of Australia, but not well predicted by pre-existing models. This thesis develops a new
international model for clear-air fading.

Weather forecasting has made significant progress in recent years due to numerical
weather prediction (NWP) models, so radio propagation researchers have aimed to
use thesemodels to predict the state of the atmosphere, and Fourier split-step parabolic
equation modelling (PEM) to predict radio propagation.

Considering this, we begin this thesis by investigating Fourier split-step PEM, develop-
ing new techniques for dealing with finite conductivity lower boundaries, estimating
the absorbing upper boundary height, and for dealing with irregular terrain, in both
two and three dimensions. A brief description of the internationally adopted empirical
model for diffraction over terrain (Rec. ITU-R P526-15, 2019), completes this chapter.

We then examine radio refractivity gradient cumulative distributions derived fromNWP
data, comparing them with measurements from radiosondes, and data from sensors
mounted on towers. We find theNWPprediction of anomalous gradients in the surface
atmospheric layer to be poor, and develop a new parameter, surface refractivity anomaly,
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Abstract

derived from surface weather station time-series data. We find this parameter useful in
predicting vertical radio refractivity gradients in the atmospheric surface layer.

Due to NWP surface gradient accuracy problems, we adopt the empirical regression
model approach to fading severity prediction. This is not new, but we now have the
benefit of more fading data from more regions of the world, and we have our new
prediction parameters, generated from several years of data from thousands of world-
wide weather stations.

We make novel refinements to the modelling of clear-air fading, by first replacing ordi-
nary least squares (OLS) regression with generalised least squares (GLS) regression,
to take spatial correlation into account. We then employ the geostatistical technique of
universal kriging, to further improve prediction accuracy.

Our new fading model, as described in this thesis, is now the internationally approved
terrestrial line-of-sightmodel for fading due tomultipath and relatedmechanisms (Rec.
ITU-R P.530-18, 2021).
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Harvard style is used for referencing and citation in this thesis. Australian English
spelling is adopted, as defined by the Macquarie English Dictionary (Delbridge 2001).

Analysis has been coded, without the use of special toolboxes, generally to run in Mat-
lab or Octave, but the worldwide digital map of terrain elevation area standard devia-
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kcε0
= εr + i 59.9585 λσ, where ε0, λ and k are respectively the absolute

permittivity, wavelength and wavenumber, in a vacuum. The alternative convention,
seen in some texts, has a negative imaginary component.

For consistency with our parabolic equation references in Chapter 2, we use i to repre-
sent

√
−1 rather than the electrical engineering convention of j.
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Chapter 1

Introduction

R ADIO technology has advanced significantly since fixed line-of-sight
radio links started to replace open wire carrier systems to provide
broadband communications between poulation centres, over half a

century ago. Despite the changes from analog to digital modulation, and
increases in the data rate carried by the radio channel bandwidth, one prob-
lem is the same now as it was with the first radio transmission routes of the
1960’s: the unguided medium between transmitter and receiver suffers sig-
nal fading due either to rain attenuation, or resulting from ray bending due
to atmospheric refractivity gradients. The link designer needs to predict the
severity of this fading, choosing antennas with enough gain, i.e. physically
large enough, so the radio link receivers will have sufficient signal in excess
of the minimum to operate satisfactorily (known as fade margin), for reli-
able link performance. At frequencies above 10 GHz, rain attenuation fad-
ing dominates link design, limiting path length, but the focus of this thesis
is instead prediction of the severity of clear air fading, due to anomalous re-
fractivity gradients. This signal fading defines the performance of line-of-
sight links at the lower frequencies, generally required when the distance
between transmitter and receiver exceeds 20 kilometres.
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1.1 Introduction
Terrestrial microwave radio links have been a significant component of communication
networks for over half a century. Empiricalmodels aiming to predict the clear-air fading
events (not associated with rain) that they occasionally suffer, have been of interest to
radio link designers for most of that time. Optical fibre has largely replaced digital
radio on most major long routes in the transmission network, but digital radio is still
important on routes where optical fibre is un-economical, such as off-shore islands, or
niche applications such as low-latency networks. Unguided radio signals travel at the
speed of light, but light signals in optical fibres are slower, due to both the refractive
index of the glass fibre, and the group velocity of the guided mode.

Radio linkdesigndepends on accurate estimation of the severity of fading events, as this
determines the required design fade margin. This is the attenuation of received signal,
compared to median conditions, which may be tolerated before serious transmission
errors occur. Increasing the system fade margin is expensive as it involves costs such
as increased antenna size and stronger support structures, but insufficient fade margin
leads to poor link error performance. Above 10 GHz rain attenuation tends to dominate
terrestrial radio link fading, but below 10 GHz clear-air fading, the subject of this thesis,
tends to dominate, allowing longer radio path lengths than at the higher frequencies.

The following papers cited in this chapter were all produced as part of the work for this
thesis: (Salamon et al. 2013, Salamon et al. 2014a, Salamon et al. 2014b, Salamon et al.
2015, Salamon et al. 2016, Salamon et al. 2019, Salamon et al. 2020).

1.2 Outline of thesis
The fadingmodel developed in this thesis is a revised version of a previously published
model (Salamon et al. 2020), so the thesis outline is largely an expansion on the logical
sequence of that paper, but with some revisions in the source data. We begin in this
chapter, describing the history of line-of-sight radio link clear air fading prediction,
and our motivation for development of a new fading model.

Propagation along a terrestrial radio path is affected by refractive index variations in
the atmosphere, and diffraction and reflection effects of the intervening terrain, so in
Chapter 2 we describe the practical full-wave analysis of these effects, using Fourier
split-step parabolic equation modelling (PEM). We develop practical implementations
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of this analysis, both in two and three dimensions. We conclude this chapter by describ-
ing the internationally agreed empirical general method for estimating terrain diffrac-
tion loss, as this description is not available in the open literature.

In Chapter 3 we describe modelling of atmospheric refractive index variations, by nu-
merical weather prediction (NWP)models, and by empirical models that use only me-
teorological data from surface weather stations.

In Chapter 4 we describe linear regression modelling, and the development of new
models for the line-of-sight fading problem, including taking spatial correlation into
account.

One traditional approach to solving the problem of predicting radio link clear-air fad-
ing severity, has been to implement separate multipath and sub-refraction models. In
Chapter 5we explore this approach, comparing itwith the unified regressionmodelling
approach of Chapter 4.

Chapter 6 extends the regression model, combining it with interpolation, by means of
universal kriging, to provide local adaptation of the world-wide regression model.

1.3 Radio link design and technology
This research relates to the design of fixed terrestrial radio links, and the prediction
of clear-air fading, not due to precipitation, that affects their performance. In order to
clarify the scope of this research, weprovide a brief overviewof the process of designing
radio links, and discussion of various radio link technologies.

1.3.1 Fixed radio link design

The process of designing a radio system may be summarised as meeting the need to
provide communication of required data capacity, between specified locations. The
design engineer will aim to design the system that can be installed for minimum cost,
while satisfying a number of constraints.

Constraints includedigital error performance objectives, systemavailability (howmuch
of the time the system is working acceptably), and considerations of equipment types
and frequency bands available.

Page 3



1.3 Radio link design and technology

The designer may have to consider whether repeater sites need to be established, at
considerable cost, or if the specified end points may be reached satisfactorily with a
single radio link, or “radio hop.”

As radio is an unguided medium, subject to atmosheric variations, fundamental to the
design process is accurate prediction of the severity of level variations in the received
signal, known as fading and enhancement.

1.3.2 Technology generations: analog, digital, and IP radio

All early fixed radio links employed analog technology, typically using FMmodulation
by a baseband signal of up to a few megahertz bandwidth, which might be frequency-
division multiplex of many telephone channels, 4 kHz apart (FM-FDM systems), or a
single analog TV signal.

The prime consideration then was non-selective fading, uniformly affecting the whole
30 to 40 MHz wide channel, as the signal energy tended to be concentrated near the
carrier frequency, and selective fading, varying in fade depth across the channel at any
moment in time, was of secondary importance, although not ignored, as it produced
“intermodulation noise” in FM-FDM systems.

By the early 1980’s, analog broadband radio links were being replaced by digital broad-
band links, typically with data rates of 140 Mbit/s in 40 MHz channels, employing 16
QAM modulation in Australia. The early systems were quite sensitive to inter-symbol
interference, due to the multipath propagation that causes selective fading, so this be-
came the prime consideration in designing high capacity digital radio links.

The emergence of radio equipment since around 2000, where hardware was replaced
with software, enabled quite sophisticated correction for inter-symbol interference, such
as transversal equalisers, routinely provided in even the cheapest radio equipment.
This shifts the focus in performance prediction nowbackmore to predicting non-selective
fading. However, the prediction models in Rec. ITU-R P.530-17, (2017) estimate both
non-selective fading and selective fading performance impairment, as well as signal en-
hancements, from the single prediction of non-selective fading. Providing an accurate
model for non-selective fading is then the prime requirement for predicting all forms
of clear-air impairment to fixed links. That therefore is the focus of this research.

Another important type of link fading is due to precipitation, primarily due to rain in
Australia, but that tends to dominate only at frequencies above 10 GHz, where the rain
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drop size approaches the radio wavelength. We do not deal with that, as it is a separate
area of study.

The traditional digital radio links operated at a constant data rate, so the receive level
threshold for severe errors was a constant, but internet protocol (IP) digital radios do
not have to provide a constant data rate. They may use adaptive code modulation
(ACM) to allow operation at a lower data rate during fading conditions, resulting in
higher receiver threshold. We do not address this either in this research, as our focus
is on the fundamental technology independent problem of accurate fading prediction,
which must be addressed before technology dependent problem such as this, can be
properly studied.

1.4 Worst month radio fading distributions
Fundamental to understanding this research is understanding the Radio Bureau of the
Internation Telecommunications Union (ITU-R) concept of the “worst month.” We de-
tail this here, because it relates to the seasonal variability of atmospheric propagation
impairment, and that these seasonal variations often vary from year to year. Radio link
designers need a measure of the impairment likely to be encountered during the worst
month of a typical year in the location of interest, so ITU-R has produced a carefully
worded relatively unambiguous definition (Rec. ITU-R P.581-2, 1990).

One important definition is “the worst month of a year for a preselected threshold for
any performance degrading mechanism, be that month in a period of twelve consecu-
tive calendar months, during which the threshold is exceeded for the longest time. The
worst month is not necessarily the same month for all threshold levels.” We note that
using this definition, the worst month in one year is not necessarily the same calendar
month as the worst month for that same threshold in another year. Perhaps this should
have been explicitly stated; omitting this may lead to some degree of ambiguity.

Our interpretation is supported by the stated procedure for obtaining the cumulative
fading distribution for the averageworst month (Rec. ITU-R P.530-17, 2017, Attachment
1 to Annex 1): “Obtain the worst calendar month envelope fading distribution for each
year of operation, using the long-term median value as a reference. Average these to
obtain the cumulative fading distribution for the average worst month and plot this on
a semi-logarithmic graph.”
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We provide this clarification to avoid the assumption that the worst month for a par-
ticular threshold is likely to be the same month in all years. This assumption leads
to monthly distributions being be averaged over a number of years for each calendar
month, and then the worst-month distribution obtained by taking the worst-case of
those 12 distributions. An example of this assumption, that we believe is incorrect, is
Hewitt (2003, Figure 4.7).

Contrary to this, we assume the worst month distribution is independently determined
for each year of data recording, and the average year worst month distribution is the
mean of these. This definition avoids under-estimation of propagation impairments
that vary from year to year in which month they are most severe.

We define the observed clear-air worst-month fading distribution to be the mean of
these individual worst-month distributions from each year of observation, relative to
themedian receive level, ignoring fading events due to precipitation, such as rain atten-
uation. At frequencies below 10 GHz, severe rain attenuation only occurs with extreme
rain events, so rain gauge data may be inspected to ensure the deep fading tail of the
recorded distribution is not being influenced by rain events. Our aim is to model the
clear-air fading, as this is the dominant limitation to performance of lower-frequency
microwave links.

1.5 Motivation
Electromagnetic wave propagation along the path between a fixed transmitter and a
receiver at the other end of the path, is affected by various mechanisms that the radio
link designer needs to consider, and methods to predict these effects are provided in
Rec. ITU-R P.530-17, (2017). The prediction models provided there for clear air effects
(non-selective fading, selective fading, diversity improvement, signal enhancement)
all depend on the severity of the narrow-band multipath fading distribution. This is
represented by multipath occurrence factor, P0, the proportion of time axis intercept
of the extrapolated tail slope of the average year worst month fading distribution. The
severity of any of these clear air effects may be predicted from this single parameter, P0.
This is demonstrated for one of the radio links in this research, in Figure 1.1.

This multipath occurrence factor has been found empirically to depend on path length
and inclination, local terrain characteristics, and local climatic characteristics. Prior to
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Figure 1.1. Example of multipath occurrence factor, P0. This is the observed fading distribution
for the 50.95 km link from Buckambool to The Cottage at 1.8535 GHz, demonstrating
P0 as the probability axis intercept of the worst month fading distribution tail slope.
The observed distribution shown here is the dB attenuation mean of each of the four
worst month distributions, from the four years of observation.

our current research, no published line-of-sight link multipath fading models included
any long-term measured fading data from the Australian region in their model fitting.

Accurate prediction of P0 is fundamental to the design of links below 10 GHz, as for
a simple non-diversity system (one antenna at each end of the link, and only one fre-
quency channel in each direction of transmission), the amount of time that transmission
is lost (outage time) due to the signal fading below receiver threshold, is proportional
to P0. Alternatively, this fading severity may be expressed in terms of the fade depth
for 0.01% of the worst month, as A0.01 = 10 log(P0) + 40 dB.
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Radio links longer than around 30 km typically employ space diversity, with a second
receiver antenna at each terminal to provide a second receive signal with fading par-
tially uncorrelated with the main antenna signal. This typical arrangement greatly re-
duces the amount of outage time, but this time is now roughly proportional to P 2

0 . This
is because the short-term variation of the signal in the second receiver is only partially
correlated with the short-term variation of the signal in the main receiver. Accurate
prediction of P0 is vital, to allow the designer to reliably estimate if the performance of
the radio link is likely to be acceptable.

Accuracy of the pre-existing multipath model (Rec. ITU-R P.530-17, 2017) is demon-
strated by the Voronoi diagram of residuals in Figure 1.2. This diagram consists of
spherical polygons enclosing all points closer to the radio link location, indicated by
a small white cross, than to any other. The colour of each tile indicates the difference
between observed fade depth and model predicted fade depth for the radio link. Red
indicates fading 15 dB more severe than predicted, which for a link with diversity re-
ception, could mean link outage time up to a thousand times worse than predicted!

In Figure 1.2 (a) we see the diagram for links included in generating the current model
before our research (Rec. ITU-R P.530-17, 2017). In absence of any other information,
it would have been difficult to make any assumptions about accuracy in Australia. The
closest link to Australia involved in fitting that model, one link in Pakistan, had fading
10 dBmore severe than themodel, while next closest, three links inAfrica, had observed
fading within 3 dB of the prediction.
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Figure 1.2. Voronoi diagram of Rec. ITU-R P.530-17 model residuals. The link locations
are shown as small white crosses, and the colour of the surrounding spherical polygon
indicates observed fading minus predicted, for (a) the data available prior to 2007, and
(b) for all current data. The P.530-17 model was fitted to data from the links in (a),
none of which were in or near Australia. The closest was one link in Pakistan (+10
dB residual), and next closest are one in Uzbekistan (+6 dB residual), and three links
in Zimbabwe, Malawi and Mozambique, with between +3 and –3 dB residuals. With
current data we see in (b) that the model under-predicts fade depth by more than 10
dB in eastern Kyrgyzstan and a number of inland areas in Australia. Such an error
may lead to radio link designs with insufficient fade-margin, resulting in extremely poor
performance, severely affecting communities relying on the links for their communica-
tions. Link designers have used local ad-hoc models to avoid these problems, but a new
internationally agreed fading model is badly needed.
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However, we see in Figure 1.2 (b), if we include new data now available, that fading
is severely under-predicted in some parts of Australia, and in eastern Kyrgyzstan. For-
tunately most Australian link designers have been aware of some of the areas of se-
vere fading, such as inland Northern New South Wales, through inland Queensland,
to Northern Territory (Harvey 1987), or across the Nullabor Plain (Shepherd 1979),
and devised ad-hoc local methods to account for these observations, but no worldwide
solution to this problem has been available.

The recent availability of fading data from many line-of-sight links in Australia, makes
it an opportune time to develop a new prediction model, including the new data.

1.6 Background

1.6.1 Early history of clear-air fading models

It has long been recognised that multipath propagation, due to variations in the re-
fractive index of the air at different heights in the surface layer of the atmosphere, is a
significant factor in fading of microwave paths (Pearson 1965). During fading events,
signal strength variations may be approximated by a Rayleigh distribution (Rec. ITU-R
P.1057-6, 2019). This is the distribution of amplitude of the sum of a large number of
components with similar amplitude but each having an independent uniform phase
distribution. As a result, the tail of the fading distribution for small percentages of time
tends to have a slope of 10 dB per decade of probability. The deep-fading distribution
may be estimated in terms of a slope of 10 dB per decade of probability relative to the
fade depth (dB) for 0.01% of the worst month of an average year, A0.01, and this formu-
lation is used throughout this paper.

Based on measurements in the United Kingdom, Pearson (1965) suggested one of the
early prediction models, in terms of distance d (km) and path roughness s (m), which
may be written as

A0.01 = 27.8 log(d)− 12.37 log(s) + 2.43 dB. (1.1)

Curves predicting fading distributions for path lengths of 150 to 250 km, at 4 GHz and
6 GHz (Battesti and Boithias 1964), were based on observed fading on several French
radio links between 1952 and 1963. The 4 GHz curves, with the addition of curves
for 75 and 50 km based on United Kingdom observations, led to the first line-of-sight
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multipath model provided by the International Radio Consultative Committee (CCIR)
(Report CCIR 338, 1966). This model is reproduced at Figure 1.3.

Figure 1.3. The first CCIR line-of-sight multipath model. This fading model, based on observa-
tions in France and the United Kingdom, was recommended for line-of-sight microwave
fading prediction for the worst month of the year, at 4 GHz, in average rolling terrain,
for north-west Europe (after the first version of CCIR Report 338, 1966, Oslo).

Another early example by Morita (1970), had separate models, depending on the ter-
rain or climate type. Expressed in a similar form to (1.1), the version provided inReport
CCIR 338-6, (1990) is, firstly for inland paths:

A0.01 = 12 log(f) + 35 log(d)− 30 dB, (1.2)

or mountainous paths:

A0.01 = 12 log(f) + 35 log(d)− 34.09 dB, (1.3)

or coastal paths, temperate and fairly flat:

A0.01 = 12 log(f) + 35 log(d)

− 5 log(h1 + h2)− 10.04 dB, (1.4)
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where f is the frequency (GHz), and h1, h2 are terminal antenna heights (m) above
mean sea level.

Well known is the Barnett-Vigants model (Barnett 1972, Vigants 1975), again consisting
of different versions, depending on the terrain or climate. For “average terrain”:

A0.01 = 10 log(f) + 30 log(d)− 22.22 dB, (1.5)

or over-water or Gulf Coast:

A0.01 = 10 log(f) + 30 log(d)− 16.2 dB, (1.6)

or mountains or dry climate:

A0.01 = 10 log(f) + 30 log(d)− 28.24 dB. (1.7)

Although expressed above logarithmically in terms of fade depth for 0.01%of the worst
month, the above models are often expressed in a power-law form, in terms of percent-
age p of the worst month that the fade depth exceeds A dB. Thus the Barnett-Vigants
model may be written (Report CCIR 338-6, 1990) as

p = KQfd310−A/10 (1.8)

where K is a factor representing the effect of terrain and climate, and Q is a factor ac-
counting for the effect of path variables other than d and f . We use the equivalent log-
arithmic form of the models in this paper, for simplicity in later discussion of multiple
linear regression models.

Terrain roughness, or standard deviation of terrain height along the radio path, s, was
taken into account in a later version of the US or Barnett-Vigants model, given in Report
CCIR 338-6, (1990); we note the similarity of the following to (1.1) around 4 GHz. In
the case of coastal or over water paths:

A0.01 = 10 log(f) + 30 log(d)− 13 log(s)− 3.87 dB, (1.9)

or maritime subtropical:

A0.01 = 10 log(f) + 30 log(d)− 13 log(s)− 5.09 dB, (1.10)

or inland:
A0.01 = 10 log(f) + 30 log(d)− 13 log(s)− 6.78 dB, (1.11)
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or mountainous:

A0.01 = 10 log(f) + 30 log(d)− 13 log(s)− 10 dB. (1.12)

A fundamental problem with the above models (1.2) to (1.12), is the need to choose
a version of the model, based on the subjective assessment of the terrain or climate
type. This problem remained in the ITU-R prediction model until 1999 (Rec. ITU-R
P.530-8, 1999, Olsen and Tjelta 1999), as the model contained constants to be chosen
according to terrain type (plains, hills or mountains). Comparative testing of the above
models is provided in Olsen et al. (2003).

1.6.2 Line-of-sight radio link fading data
The link fading data used in this research consists of 409 records from the most re-
cently accepted data table the ITU-R line-of-sight link fading databank, DBSG3 Table
I-2 (Rec. ITU-R P.311-17, 2017), “Line-of-sight average worst-month multipath fading
and enhancement in narrow bandwidths.” We exclude 48 of the total 457 records be-
cause of data inconsistencies, or absence of one or more parameters required for this
study. To this we add 126 recently generated Australian records, approved by ITU-R
Sub-Working-Group 3M-1 (Terrestrial Systems) for inclusion in the DBSG3 databank,
resulting in a total of 535 data records for this study. The complete table, including the
new Australian records, is given in Australia: ITU-R doc. 3M/235, (2021). This consists
of 583 records, but records with station numbers 9, 17, 33, 34, 46, 124, 125, 132, 146
to 160, 175, 180, 183, 189, 192, 205, 243, 259, 264, 266, 273 to 280, 291, 295 and 297 are
excluded from our research because essential fields are missing, or there is serious in-
consistency between fields in the table data, or between the table data and known path
profiles.

We divide these records into 21 regions, each including links within 1500 km of centre
coordinates, chosen initially for each region as the link centre coordinates of the first
link encountered that falls outside the 1500 km radii of regions already defined, and
then updated to the median coordinates as more links are added to each region. The
details of these regions are shown in Table 1.1.

The locations of the links in Table 1.1 are shown in Figure 1.4.

In commonwith previous studies (Tjelta et al. 1990, Tjelta et al. 1998, Telenor ASA: ITU-R
doc. 3M/175, 2006), our aim is to predict the Rayleigh fading tail of the multipath fad-
ing distribution, assuming a slope of the cumulative distribution of 10 dB per decade of
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Table 1.1. Fading data records by region, showing coordinates, number of records, and
number of different link locations, for each of the 21 regions. The mid-point
coordinates of all links in each region are within 1500 km of the coordinates in the table.

Region Latitude Longitude Fading Link Region
Number Records Locations

1 +49.06 +1.12 48 42 Western Europe
2 +59.84 +21.11 42 28 Scandinavia
3 +53.01 +37.13 20 16 Russia
4 +39.05 +55.82 3 3 Turkmenistan
5 +45.12 –76.37 13 5 South-East Canada
6 +51.48 –122.1 10 9 South-West Canada
7 +74.78 –98.83 4 4 Arctic Canada
8 –25.27 –49.17 7 6 Brazil
9 +62.53 –65.72 4 4 North-East Canada
10 +24.85 +67.08 1 1 Pakistan
11 +30.84 +31.09 7 7 Egypt
12 +44.40 +10.95 79 55 Southern Europe
13 +5.76 +0.19 3 3 Ghana
14 +12.77 –16.11 3 2 Senegal
15 –16.54 +33.17 3 3 South-East Africa
16 +42.37 +75.20 6 6 Central Asia
17 –20.61 +132.9 50 15 Central-North Australia
18 –32.86 +142.1 91 31 South-East Australia
19 –25.59 +147.7 92 32 Southern Queensland
20 –30.62 +118.7 36 11 South-West Australia
21 –12.48 +142.3 17 7 Far North Queensland

probability, starting at the first tail point of the worst-month distribution, (a1 dB, p1%).
This first tail point is available for all links in the data table, but in most cases additional
fade depths and enhancements at several specific percentage points are available. Fig-
ure 1.5 illustrates this for one link in Denmark. The 10 dB per decade of probability
slope starting from the first tail point and extending to greater fade depths is consistent
with the observed tail of the fading distribution.

An inconsistency has been found in in the first tail point of just one record, station
number 182. It departs from the observed distribution by about one order ofmagnitude
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Figure 1.4. Links in the ITU-R line-of-sight multipath data table. The link locations are shown
as white crosses. Terrain elevation is indicated by colour, from green at sea level to
yellow at 2000 metres, and to red at 4000 metres and above. There is a good density
of links in much of Europe and Australia. In the Americas, fading data is only available
from Canada and Brazil. There are some data records from various countries in Africa
and Asia. Unfortunately there has been no data contributed from Asia from anywhere
east of Kyrgyzstan.

in percentage, or about 10 dB in fade depth. This is the only record available in the
Pakistan region, so we base the assumed 10 dB per decade tail on the observation of
23.5 dB fade depth at 0.1% of the worst month, as shown by the dashed red line in
Figure 1.6.

The complete and corrected link fading data table used in this research is provided in
Australia: ITU-R doc. 3M/235, (2021).

1.6.3 Median depression fading

During multipath fading events, a depression in the median signal level is often seen.
An early description (Pearson 1965) was that “median depression during worst fading
hour is approximately 0.3 × fade depth for 0.1% of the worst month.” This reference,
based on experience in the United Kingdom, even reported “almost complete loss of
signal (space-wave fadeout) that can occur on some paths.”
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Figure 1.5. Lerbjerg-Borups Alle, Denmark. The the dark blue trace shows the fading distribution
at several percentage points. In the data table the first tail point of the distribution,
(a1, p1) is identified for all records; the start of the approximate 10 dB per decade
of probability multipath tail of the fading distribution. The databank first tail point
(a1, p1) = (25 dB, 0.2%) (red diamond) is consistent with the observed distribution,
so assume a 10 dB per decade of probability slope to smaller percentages of the worst
month.

One possible cause identified for median depressions was positive vertical gradients
of radio refractivity in the atmosphere, known as sub-refraction. The upward curvature
of ray-paths caused by a linear gradient of this type, if sufficiently severe, may be ex-
pected to cause terrain obstruction of a radio link that is normally unobstructed. A
ray-path between transmitter and receiver when there is a positive refractivity gradi-
ent will travel closer to the ground than the standard refractivity case of mildly negative
vertical gradient.

While non-linear gradient refractive effects, such as focussing or de-focussing, or even
caustics that cause ray-paths from the transmit antenna to miss the receive antenna
entirely (Boithias and Battesti 1967), may cause median depression fading, a simple
model for the worst sub-refractive gradient likely to be experienced in a temperate cli-
mate (Boithias and Battesti 1967) has been employed as part of clearance criteria for
line-of-sight path design for many years (Report CCIR 338-6, 1990, Rec. ITU-R P.530-
8, 1999, Rec. ITU-R P.530-17, 2017). This model depends on radio path length d (km),
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Figure 1.6. Korangi-Marston Road, Pakistan. In this case the databank first tail point (a1, p1) =
(4.5 dB, 0.5%) (red diamond) is inconsistent with the observed distribution, probably
a typographical error, so we assume a 10 dB per decade slope relative to the observed
0.1% point of the distribution.

and may be expressed as a vertical refractivity gradient:

dN
dz =

2670

d
− 13 N-units per km. (1.13)

However, more severe median depression fading has been observed in some regions;
for example, the coastal region of the Nullabor Plain in southern Australia (Shepherd
1979), inland Queensland in north-eastern Australia (Harvey 1987), or south-eastern
USA (Schiavone 1981, Vigants 1981). A common feature of these studies is the assump-
tion that a linear positive refractivity gradient is the likely worst-case of a sub-refractive
atmosphere. Boundary layer similarity theory (Obukhov 1971) indicates that surface
refractivity gradients are likely to be stronger near the surface than at greater heights.
A sub-refractive profile of this non-linear form has been shown to be capable of greater
attenuation on a terrestrial path than a linear gradient with the same increase in refrac-
tivity over the lowest 100 m of the atmosphere (Salamon et al. 2015).

Nevertheless, the idea of complementing amultipath fadingmodelwith a sub-refractive
diffraction model (Vigants 1981) has been often adopted as a convenient way to esti-
mate the overall fading of radio paths in regions where the available multipath models
alone are insufficient. The necessary data for the Schiavonemodel (Schiavone 1981) has
been produced for the contiguous states of USA, but not for other regions (Kizer 2008).
A sub-refractive model, assuming the main cause to be advection of moist air over a
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1.6 Background

dry nocturnal duct, during the early hours of the morning (Harvey 1987), may in prin-
ciple be applied world-wide, subject to the availability of suitable (preferably 3-hourly
or better) surface weather station data.

1.6.4 Median depression, multipath, and diversity

During the minimum signal conditions in median depression events, received signal
fluctuation suggests that multipath is occurring, and this tends to be supported by a
fading distribution slope of about 10 dB per decade in the region of 0.1% of the worst
month, for the severemedian depression fading 7.5GHzpath fromCooks Tank to Rose-
wood inQueensland, Australia (Australia: ITU-R doc. 3M/186, 2011). Theworstmedian
depression in this month on that path, with a depth of about 50 dB, cannot be created
by multipath cancellation alone, as all four receivers, on two different frequencies for
the two directions of transmission, and with receiver antennas at two different heights
at each terminal, all experience the deep median depression at the same time. This
characteristic is generally seen in other median depression events on other radio paths.

These characteristics suggest that on line-of-sight microwave paths, severe multipath
fading and median depression tend to occur together, as parts of a continuum, rather
than distinct events. This is inherent in the ITU-R multipath model (Rec. ITU-R P.530-
17, 2017), since the multipath occurrence factor P0 (intercept of the extrapolated deep
fading distribution with the zero dB or time axis) is generally greater than the multi-
path activity parameter η, the proportion of the time that multipath is assumed to be
occurring. In the model Rec. ITU-R P.530-17, (2017), the two are related by the expres-
sion

η = 1− exp(−0.2P 0.75
0 ) . (1.14)

Radio links often employ diversity reception to reduce errors and outage during mul-
tipath fading, using two or more receivers with different antenna heights (space diver-
sity) or receiving a second transmission on a different frequency (frequency diversity),
taking advantage of their partially correlated multipath fading. Provided the depth of
the median depression is less than the system fade margin, there may still be some di-
versity improvement duringmedian depression fades, albeit quite limited. Themedian
depressions are generally simultaneous between the different receivers, but the super-
imposed multipath is likely to de-correlated to some extent. A recent revision of the
diversity improvement models in Rec. ITU-R P.530-17, (2017) has ensured that fading
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Chapter 1 Introduction

severity is taken into account in all diversity improvement models, to reflect the degra-
dation in all types diversity improvement seen during severemedian depression fading
events.

1.7 Original Contributions
This summary cites the relevant papers published, and sections of this thesis:

1. Alerted the terrestrial radio propagation community to accuracy problems in ra-
dio refractivity surface gradient data from numerical weather prediction models.
This led to the addition of warning text in Rec. ITU-R P453-14, (2019): Section 3.5.

2. Empirical prediction models for the distribution of surface gradient, with bet-
ter accuracy, using only surface weather station data, were presented, firstly in
(Salamon et al. 2014a), and an improved model (Salamon et al. 2014b): Sub-
section 3.6.3.

3. Described a new extension of the Paulus evaporation duct model for neutral at-
mospheres, to cover stable and unstable atmospheres, and described application
to sub-refraction as well as ducting, (Salamon et al. 2015): Sub-section 3.7.1.

4. Developed a technique to compensate for uncorrelatedmeasurement error, when
producing cumulative distributions from periodic measurements. (Salamon et al.
2014a): Sub-section 3.4.3.

5. Derived an expression providing guidance on the height of the upper bound-
ary absorber, and hence transform size, to avoid spurious reflections in parabolic
equation modelling. This avoids trial-and-error or excessive transform size (un-
published): Sub-section 2.3.8

6. Developed a new approach to parabolic equation modelling of radio propaga-
tion over terrain, not using terrain flattening or the staircase approximation (un-
published): Sub-section: 2.3.11. This method has been extended to 3D modelling
(un-published): Sub-section: 2.3.12

7. Presented a new OLS worldwide multipath model, including Australian fading
data for the first time, successfullymodelling severemedian depression fading by
including parameters generated from the time series of surface weather station
data. (Salamon et al. 2016): Sub-section 4.2.2.
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1.7 Original Contributions

8. Developed an extension of the Durbin-Watson statistic for testing correlation in
one-dimensional (e.g. time series) data, to multiple dimensions, by describing
the new concept of the nearest new neighbour path, (Salamon et al. 2019): Sub-
section 4.4.2.

9. Presented a new worldwide multipath fading model, using, for the first time in
such a model, the technique of universal kriging, to combine the benefits of a
worldwide regression model with interpolation of local fading data, where avail-
able, (Salamon et al. 2020). This new model is the basis of an Australian input to
ITU-R Study-Group 3 (Radiowave Propagation) (Australia: ITU-R doc. 3M/236,
2021), which has been adopted byRadio Study-Group 3 of the International Telecom-
munication Union, as its model for predicting fixed-link multipath fading (Rec.
ITU-R P.530-18, 2021): Chapter 6.
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Chapter 2

Radio Propagation Modelling

R ADIO propagation between fixed radio stations is affected by atmo-
spheric refraction and by diffraction and reflection from the underly-
ing terrain or water surface. A complete solution to this problem re-

quires a full wavemethod based on a solution ofMaxwell’s equations. Fixed
radio links have known transmitter and receiver locations, so the paraxial
approximation of the parabolic equation, is useful, particularly in the form
of the Fourier split-step solution. We describe this, with particular emphasis
on the practical requirements to make it work reliably, including some new
approaches. For completeness, a simple general terrain diffractionmodel for
linear refractivity gradients, in widespread use in recent years, is described.
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2.1 Introduction

2.1 Introduction
The fading prediction models used by radio link designers have been empirical, rather
than scientific. A reasonable atmospheric physics approach may be to predict the state
of the atmosphere with a numerical weather prediction (NWP) model, and then use a
terrain parabolic equation model (PEM)(Barrios 1994, Donohue and Kuttler 2000) to
predict the radio propagation. This idea has been pursued for some time, both for radio
link propagation (Ewenz et al. 2001), and in radar propagation research, but sub-meter
resolution may be required in generating the refractivity profile (Claverie 2019).

A reliable very high resolutionNWPreanalysis product, to accuratelymodel the bound-
ary layer atmosphere would be required, to practically implement fading prediction for
path design, using this approach. Even then, the link designer would have to run a few
years equivalent of simulations, to accurately determine the average year worst month
performance of the link. Despite advances in computing capability, this may be imprac-
tical in the short term.

Nevertheless, this approach deserves to be investigated, with a view to pursuing it, ei-
ther now or in future research. This is because an empirical model is not necessarily
valid beyond the range of conditions represented in the empirical data, while model
based on physics can more confidently be expected to have an extended range of va-
lidity. In any case, a suitable full wave propagation model is an essential tool if we
are to gain an understanding of the impact on radio propagation of physical processes
occurring in the atmosphere.

There are numerous ways to model radiowave propagation. Fixed radio links involve
scattering, diffraction and reflection from objects in the transmit-receive path, as well
as being affected by detailed and complicated refractivity gradients in the propagating
medium. Methods using Geometrical Theory of Diffraction (GTD) or Uniform Theory
of Diffraction (UTD) rely on idealised diffracting objects such as knife edges or wedges,
which do not directly relate to the deep fading process in wave propagation on paths
over real terrain that is the topic of this thesis. Numerical techniques associatedwith in-
tegral equation methods are able to cope with arbitrary terrain, but cannot cope readily
with refractive index variations in the propagating medium (Levy 1990).

In this chapter we provide a description of the Fourier split-step parabolic equation
algorithm. It has the advantage of readily accommodating refractive index variations
in the propagating medium, the atmosphere, in its formal derivation, and therefore
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Chapter 2 Radio Propagation Modelling

it is a most suitable modelling tool for investigating the complex atmospheric effects
responsible for the deep fading events reported in this thesis.

Although many papers have been published on Fourier split-step parabolic equation
modelling, it is difficult to find complete guidance on the practical criteria to be met
for a successful implementation, in order to avoid spurious effects, so this will be a
particular focus of this chapter.

In addition, we describe a new method using convolution, derived from the Fourier
split-step algorithm, which provides greater flexibility in the treatment of the lower
boundary. We describe how these methods relate to finite element methods, and show
how they may be applied to three dimensional terrain.

We conclude the chapter with a description of the general terrain diffraction model
adopted in 2011 by the International Telecommunication Union. Although the model
is completely defined (Rec. ITU-R P526-15, 2019), the theoretical and empirical back-
ground leading to this model is not available in the literature, so we provide it here, as
development of our fading model depends in part on it.

The following paper cited in this chapter was produced as part of the work for this
thesis: (Salamon et al. 2013).

2.2 Maxwell’s equations and the 2D problem
If the medium between transmitter and receiver is known, including relevant bound-
ary conditions, then the radio propagation may be determined by solving Maxwell’s
equations for the current scenario. As we are investigating clear-air fading of terrestrial
fixed radio links, themedium consists of air with refractive index n, and a lower bound-
ary provided by the surface of the ground or water. There is no upper boundary, so a
suitable way must be found to address this in the analysis.

We consider the electromagnetic fields in Cartesian coordinates (x, y, z), where the x
direction is horizontal in the direction of propagation, the y direction is also horizontal,
transverse to the direction of propagation, and the z direction is directed vertically up-
wards, as is the usual convention for this type of analysis. This is depicted in Figure 2.1.

Initially we assume invariance in the y direction, sowe have a two dimensional problem
in the x − z plane. Due to the y independence, there is no depolarisation, so we may
independently consider horizontally polarised fields in terms of the y component of
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2.2 Maxwell’s equations and the 2D problem

Figure 2.1. Orientation of the coordinate system. We follow the ususal convention for parabolic
equation analysis of terrestrial propagation at angles close to the direction of the hori-
zontal x axis, with the z axis being the vertical direction, and the y axis being horizontal
but perpendicular to the direction of propagation. The problem may be simplified to
two dimensions by assuming invariance in the y direction.

electric field Ey as
ψ(x, z) = Ey(x, z) , (2.1)

or horizontally polarised fields in terms of the y component of magnetic field Hy as

ψ(x, z) = Hy(x, z) . (2.2)

The field ψ(x, y) is then a solution to the two-dimensional scalar wave equation

∂2ψ

∂x2
+
∂2ψ

∂z2
+ k2n2ψ = 0 (2.3)

where k is the wave number in vacuum (radians per metre), and n is the refractive
index of the atmosphere.

As we are dealing with paraxial radiation, propagating close to the x direction, we may
replace ψ by u(x, z), which is slowly varying in the x direction:

u(x, z) = e−ikxψ(x, z) . (2.4)
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In terms of u the scalar wave equation is
∂2u

∂x2
+ 2ik

∂u

∂x
+
∂2u

∂z2
+ k2

(
n2 − 1

)
u = 0 . (2.5)

This may be factorised as[
∂

∂x
+ ik (1−Q)

] [
∂

∂x
+ ik (1 +Q)

]
u = 0 (2.6)

where Q is a pseudo-differential operator, such that (Levy 2000)

Q (Q (u)) =
1

k2
∂2u

∂z2
+ n2u , or Q =

√
1

k2
∂2

∂z2
+ n2(x, z) . (2.7)

From (2.6) we have the forward propagation equation
∂u

∂x
= −ik (1−Q)u (2.8)

and the backward propagation equation
∂u

∂x
= −ik (1 +Q)u . (2.9)

However, the factorisation of (2.6) is only correct if n is invariant with range x, so care
is required ensure error is small when this is not the case (Levy 2000).

The forward parabolic wave equation (2.8) has the solution in terms of a marching
algorithm, where the field u(x+∆x, .) is found from the field u(x, ·) as

u(x+∆x, ·) = eik∆x(−1+Q)u(x, ·) . (2.10)

2.2.1 Standard or narrow angle parabolic equations
Practical implementation of (2.8) requires approximation of the square-root operator
Q, and the simplest approximation results from first-order Taylor series expansions of
the square-root and exponential functions. This results in the approximation (Thomson
and Chapman 1983)

Q =

√
1

k2
∂2

∂z2
+ n2 ≈ 1 +

n2 − 1

2
+

1

2k2
∂2

∂z2
(2.11)

and standard parabolic equation (Levy 2000):[
∂2

∂z2
+ 2ik

∂

∂x
+ k2

(
n2 − 1

)]
u(x, z) = 0 . (2.12)

This approximation is accurate for propagation angles within a few degrees of the
paraxial direction, so accuracy is good for our terrestrial fixed link application, on long-
range paths (Levy 2000). It is often referred to as the NarrowAngle Parabolic Equation
(NAPE).
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2.3 Parabolic equation methods

2.2.2 Wide angle parabolic equations

The accuracy of NAPE schemes may not be adequate for short-range paths or strong
multipath effects (Ozgun et al. 2011), so a Wide Angle Parabolic Equation (WAPE)
scheme may be preferred.

We describe here a WAPE scheme having the advantage of efficient numerical evalua-
tion by Fourier split-step techniques. It approximatesQ as (Feit and Fleck 1978, Thom-
son and Chapman 1983, Donohue and Kuttler 2000, Ozgun et al. 2011),

Q =

√
1

k2
∂2

∂z2
+ n2(x, z) ≈ n(x, z)− 1 +

√
1

k2
∂2

∂z2
+ 1 . (2.13)

In the uniformmedium case (constant n), this approximation is an exact representation
of the scalar wave equation (2.3) (Thomson and Chapman 1983).

The practical implementation of this WAPE scheme is described in the following sec-
tion.

2.3 Parabolic equation methods
The parabolic equation solution is efficiently implemented as a marching algorithm by
transforming the field u(x, z) in vertical z-space at range x, into far-field vertical angle
p-space, where p = k sin θ, by means of the Fourier transform F{·}. A phase shift, as a
function of p and step spacing∆x, is applied. This shifts the far-field p-space field to that
corresponding to the next step. An inverse Fourier transform F−1{·} then transforms
back to the field u(x +∆x, z) in vertical z-space at range x +∆x. During each step the
phase of the z-space field u is corrected to account for refractive index of the atmosphere
n, and if required, the curvature of the Earth, and ground elevation in the case of terrain
flattening implementations.

The narrow angle (NAPE) scheme, neglecting curvature of the Earth and terrain flat-
tening, is implemented as (Levy 2000, Ozgun et al. 2011),

u(x+∆x, z) = exp
[
ik(n2 − 1)

∆x

2

]
F−1

{
exp

[
−ip2∆x

2k

]
F
{
u(x, z)

}}
, (2.14)

where p = k sin θ is the transformvariable, as a function of propagation angle θ from the
horizontal, k is the wavenumber, and exp[−ip2/(2k)] accounts for the phase difference
between a ray at angle θ and the paraxial ray.
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We note that while most of the literature uses p = k sin θ = 2π sin θ/λ, where λ is the
wavelength, as we do, Levy uses p = sin θ/λ, resulting in a difference by a factor of 2π.

The wide angle (WAPE) scheme (2.13) may be implemented as (Ozgun et al. 2011)

u(x+∆x, z) = exp
[
ik(n− 1)∆x

]

×F−1

{
exp

−ip2∆x
k

(√
1− p2

k2
+ 1

)−1
F{u(x, z)}} . (2.15)

As sin θ = p/k, (2.15) is identical to Barrios (1994, eq(8) neglecting terrain term):

u(x+∆x, z) = exp
[
ik(n−1)∆x

]
F−1

{
exp

[
i∆x

(√
k2 − p2 − k

)]
F
{
u(x, z)

}}
, (2.16)

so our Fourier split-step algorithms in this research are all based on this expression.

The one-way marching algorithm of (2.16) is not a complete solution for the field on
a terrestrial path, as it ignores back-scattered field. Including this requires a solution
simultaneously solving the coupled system of forward field u+ satisfying (2.8), back-
ward field u− satisfying (2.9), and overall u = u+ + u− (Levy 2000). This is possible by
an iterative process (Ozgun et al. 2011), but for our problem of terrestrial fixed radio
links, is unlikely to significantly affect the end to end transmitter to receiver propagation
path, and would be a potentially significant computational overhead.

2.3.1 The lower boundary

The terrestrial path through the atmosphere is bounded below, either by land or wa-
ter. The lower boundary condition for the Fourier split-step solution must be set up in
a way that represents this. It may be modelled as an interface with an effective com-
plex reflection coefficient Re. For plane waves reflected by a smooth flat surface, we
have Re = R0, the Fresnel refection coefficient, a function of elevation angle θ, effective
relative permittivity εr, and effective conductivity σ (S/m) (Levy 2000, equ.(10.15)):

R0 =
sin θ − δ

sin θ + δ
(2.17)

where surface impedance δ is (Levy 2000, subst.equ.(9.17) into (9.14),(9.15))

δ =
√
η − cos2 θ for horizontal polarisation (2.18)

or
δ =

1

η

√
η − cos2 θ for vertical polarisation, (2.19)
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and relative complex permittivity η is (Levy 2000, equ.(9.6))

η = εr + i
σ

kcε0
= εr + i 59.9585 λσ , (2.20)

where ε0, λ and k are respectively the absolute permittivity, wavelength and wavenum-
ber, in a vacuum. Unity atmospheric refractive index is assumed.

Dirichlet boundary condition

At the grazing angles involved in terrestrial radio links, θ is small, so for horizontal
polarisation, Re = −1 is generally a good approximation to (2.17) for smooth surfaces,
and may be reasonable for vertical polarisation if θ is small enough. This Re = −1 case
is known as the Dirichlet boundary condition (Ozgun et al. 2011), which may be stated
as

u(x, z = 0) = 0 . (2.21)

Due to the odd symmetry of the discrete sine transform (DST), a convenient way to
implement the Dirichlet boundary condition is to use the DST as the Fourier transform
F{} in (2.16), the field elements representing field samples above the surface.

Alternatively a fast Fourier transform (FFT) of double size may be used, with the lower
half of the elements representing image samples below the surface. They are then re-
flected up to super-impose on the above surface samples. Both these methods provide
identical results.

The Dirichlet boundary condition is unsuitable if R0 from (2.17) differs significantly
from −1, or if the surface is sufficiently rough.

Neumann boundary condition

It can be seen from (2.17) that if surface impedance δ is very small compared to sin θ,
the reflection coefficient may approach R0 ≈ +1. This case is known as the Neumann
boundary condition (Ozgun et al. 2011), which may be stated as

∂u(x, z)

∂z
= 0 at z = 0 . (2.22)

Due to the even symmetry of the discrete cosine transform (DCT), a convenient way
to implement the Neumann boundary condition is to use the DCT as the Fourier trans-
form F{} in (2.16). Alternatively a fast Fourier transform (FFT) of double size may be
used, together with reflection of the below-surface field, as for the Dirichlet boundary
condition.
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Over a horizontal surface, the Neumann boundary condition is only relevant to verti-
cally polarised waves at high enough angles for sin θ to be much greater than δ, so this
boundary condition has little practical relevance to our problem of terrestrial point-to-
point radio propagation.

Leontovich boundary condition

In the case of a finite conductivity surface, the boundary condition of zero field at
the surface in (2.21) no longer applies. Instead, the approximation of the Leontovich
boundary condition may be used, provided the refractive index of the ground is suffi-
ciently large (Levy 2000). This boundary condition may be stated as

∂u(x, z)

∂z
+ αu(x, z) = 0 at z = 0 , (2.23)

where, for a smooth surface (Kuttler and Dockery 1991)

α = ik sin θ
(
1−R0

1 +R0

)
. (2.24)

Substituting for R0 from (2.17) gives

α = ikδ , (2.25)

with δ given by (2.18) or (2.19), for horizontal or vertical polarisation respectively.
Hence α is essentially independent of θ for smooth surfaces at grazing angles.

This may be implemented in Fourier split-step parabolic equation modelling by use of
the mixed Fourier transform (MFT) (Kuttler and Dockery 1991), or the discrete mixed
Fourier transform (DMFT) (Dockery andKuttler 1996). Step by step descriptions of the
implementation of DMFT are provided inDockery andKuttler (1996) and Levy (2000).
A forward and inverse DST may be used, as for the Dirichlet boundary condition, but
instead of transforming the field u(x, z), a matched function v(x, z), which is zero at the
boundary, is transformed. The matched function is

v(x, z) =
∂u(x, z)

∂z
+ αu(x, z) . (2.26)

The computational burden in addition to that for the Dirichlet case, involves calculating
the matched function from the field, and then retrieving the field from the propagated
matched function, at each step (Levy 2000).

Although the Leontovich boundary condition is approximately independent of grazing
angle θ for a smooth surface, this is not the case for a rough surface, such as a rough
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2.3 Parabolic equation methods

sea surface. For such a surface it is important to obtain a good estimate of local graz-
ing angle at each step (Dockery and Kuttler 1996, Levy 2000). A technique such as
geometric optics or spectral estimation needs to be employed to estimate the dominant
grazing angle at each step (Dockery and Kuttler 1996); problematic at locations with
multiple rays incident on the surface, or locations where no traced rays are incident on
the surface (Levy 2000).

2.3.2 A new convolutional marching solution, and the lower boundary
TheDMFT standard technique for implementing the Leontovich boundary condition in
Fourier split-step parabolic equation modelling largely overcame the numerical prob-
lems encountered with the inverse transform of the original mixed Fourier transform
(MFT) implementation (Kuttler and Dockery 1991) of the Leontovich boundary condi-
tion, but still in some cases stability problemsmay occur (Kuttler and Janaswamy 2002).

We propose an alternate approach to implementation of the Leontovich boundary con-
dition in parabolic equation modelling, that avoids MFT or DMFT numerical stability
problems, and provides a marching solution to the problem that does not require an
estimate the dominant grazing angle at each step for rough surfaces, as the solution
accepts multiple rays incident on the same part of the surface at different angles.

This newapproach bears some similarity to theKirchhoff integral (KI) technique (Cole-
man 2005), although that original form of KI is not necessarily restricted to paraxial
scenarios. The Leontovich boundary condition has not been implemented in that form
of KI, but it could be, in the same way that we describe here for our new approach.
The later form of KI, implemented with fast Fourier transforms (Coleman 2010), has
an execution speed advantage over the earlier form, but is not suitable for implement-
ing a Leontovich boundary condition, except by approximating it by a fixed reflection
coefficient for all angles of incidence.

Instead of integrating Kirchhoff relations, we derive our new method directly from the
Fourier split step wide angle parabolic equation scheme described above.

Excluding the atmospheric refractive index component of (2.16), we have

u(x+∆x, z) = F−1

{
exp

[
i∆x

(√
k2 − p2 − k

)]
F
{
u(x, z)

}}
. (2.27)

In the discrete implementation, the field u(x, z) is a vector of field samples, vertically
spaced ∆z apart, as u(x, z = ...,−2∆z,−∆z, 0,∆z, 2∆z, ...), and (2.27) may be repre-
sented by first transforming spatial field vector u(x, z) to angular field vector v(x,m)
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with the fast Fourier transform FFT(·):

v(x,m) = FFT(u(x, z)), (2.28)

then propagate to the angular field vector to v(x+∆x, z), noting that p = k sin θ, and θ
is the propagation angle relative to the paraxial for each elementm of vector v:

v(x+∆x,m) = v(x,m) exp(ik∆x(cos θ − 1)). (2.29)

At this point a window function is normally applied to v to attenuate the highest angle
components, rolling off to zero amplitude at the extreme values of θ, to prevent the
generation of spurious aliasing components in the following step. The field at the end
of the step, u(x+∆x, z), is obtained by the inverse fast Fourier transform IFFT():

u(x+∆x, z) = IFFTv(x+∆x,m). (2.30)

Our new alternative method is to replace the marching propagation step of (2.28),
(2.29) and (2.30), with a convolution CONV(·, ·), of field vector u(x, z) with vector w:

u(x+∆x, z) = CONV(u(x, z), w). (2.31)

The convolution vector w may be estimated by applying an input field vector with
u(x, z = 0) = 1 and u(x, z 6= 0) = 0, to (2.28), (2.29) and (2.30), and then the con-
volution vector is w = u(x + ∆x, z). Taking the usual definition of the FFT-IFFT pair,
where this input results in v(x,m) being all ones, this is equivalent to transforming the
Fourier split step propagator, exp(ik∆x(cos θ − 1)), including its anti-aliasing window
function, with the inverse fast Fourier transform (IFFT).

The elements of the output of the IFFT are then re-arranged into a symmetrical con-
volution vector w with an odd number of elements, the bottom element of the IFFT
output becoming the central element of w. If the IFFT has an even number of elements
n, then the (n/2 + 1)-th element is omitted in forming w, as it would be zero due to the
anti-aliasiing window function anyway.

We have described above, the version of Fourier split-step parabolic equationmodelling
that uses a double-height field vector, and FFT Fourier transforms, which may imple-
ment the Dirichlet boundary condition by reflecting the below-surface field. The same
may be done with this new convolutional approach of (2.31), but there is an impor-
tant difference. This new approach can model boundary conditions that have angle
dependent reflection coefficients.
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For boundary conditions other thanDirichlet, theremaybe non-zero field at the surface.
If there is a field sample at the surface, it represents field over the z interval −∆z/2 to
+∆z/2, but only the upper half, z ≥ 0, actually propagates. This must be corrected
by halving the amplitude of this surface sample. Another solution is to offset the field
samples by ∆z/2 relative to the surface. Samples for z > 0 then fully propagate, and
those for z < 0 do not propagate, and are set to zero before starting the next step of the
marching solution.

The new convolution method provides no benefit over Fourier split step in modelling
an infinitely conducting boundary, but it may be able to model non-Leontovich bound-
aries such as rough sea, and it avoids numerical instability that may occur with DMFT
(Kuttler and Janaswamy 2002).

The disadvantage of this convolution method is that its execution speed is generally
slower than the equivalent Fourier split step analysis. Execution speed may be opti-
mised by analysing the direct field for each step with Fourier split-step, as in (2.28),
(2.29) and (2.30), and the reflected field with the convolutional technique, in order to
satisfy the boundary condition.

2.3.3 The Lentovich boundary condition in the convolution method

The Dirichlet boundary condition in 2.3.1 is readily implemented in the convolution
method by reflecting the image field with an effective reflection coefficient Re = −1,
so it might be expected that the Leontovich boundary condition in 2.3.1 would be im-
plemented by using an effective reflection coefficient given by (2.17), but this reflection
coefficient only satisfies the Leontovich boundary condition for plane waves.

If the direct and reflected fields are plane waves, incident on a plane surface at grazing
angle θ, then the variation in resultant field u(x, z)with z, will be purely due to variation
in the phases of the direct and reflected fields, giving the partial derivative

∂u

∂z
= ik sin θ

(
R0 − 1

R0 + 1

)
u(x, 0) . (2.32)

Substituting R0 from (2.17), we have

∂u

∂z
= −ikδ sin θ u(x, 0) = −αu(x, 0) , (2.33)

which is the Leontovich boundary condition of (2.23). However, if we have an incident
wave from a source above the surface and at finite distance, then there will be slight
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amplitude variations, in addition to the phase variations with height z above the sur-
face at distance x. Especially with vertically polarised waves, there may be significant
variation in reflection coefficient with height, due to the change in incidence angle with
height. In this case, the derivation of (2.32) and (2.33) above will not be valid.

It is therefore not surprising that we find in testing our marching convolutional algo-
rithm, that the Leontovich boundary condition is generally not satisfied by using the
reflection coefficient of (2.17), with vertically polarised propagation.

Sommerfeld-Nortonflat-Earth theory (Milsom2003) includes both the spacewave (con-
sisting of the direct wave and the (2.17) reflected wave), and the surface wave (Nor-
ton 1937), which may be considered as a reflected wave, with reflection coefficient Rs,
in addition to the Fresnel plane-wave reflectedwavewith coefficientR0 given by (2.17).

Although there is general agreement in the literature on this broad concept of a surface
wave in addition to the space wave, there has been controversy over some of the finer
detail for many years (Wait 1998, Collin 2004). One of the issues has been whether
Sommerfeld did (Barclay 2008), or did not (Collin 2004), make a sign error in his orig-
inal paper on this subject (Sommerfeld 1909). Contemporary solutions to this problem
have been published (Collin 2004, Green 2007).

We resolve the uncertainty over different solutions to the surface wave problem, by
choosing a published surface wave model for our convolutional technique that empiri-
cally satisfies two simple criteria:

1. When a component of reflection coefficient from the surface wave model, Rs, is
included in the convolutionalmarching analysis, the Leontovich boundary condi-
tion (2.23) must be accurately satisfied at the surface at each step of the analysis.
This may be checked using eBC = 1 + αu(z = 0)/(∂u/∂z), an estimate of bound-
ary condition error, aiming for eBC ≈ 0. The partial derivative may be estimated
from u(z = 0), u(z = ∆z), and u(z = 2∆z). The first two provide an estimate of
the derivative at z = ∆z/2, and the last two give an estimate at z = 3∆z/2, and
an estimate of the partial derivative at z = 0 is obtained by linear extrapolation
of these two estimates. For a smooth surface, α is essentially constant for angles
close to grazing, so we may readily check for eBC ≈ 0 at each step.

2. The results of the analysis must satisfy the parabolic wave equation. This is more
difficult to check, but we compare our results with those from Fourier split-step
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parabolic equation modelling with DMFT (Dockery and Kuttler 1996). This pa-
per reproduced surface wave effects, by applying the mixed Fourier transform
and its inverse, without invoking any specific surface wave model. The results
were in accurate agreement with existing models at both 10 MHz and 10 GHz.

By applying these two criteria in selecting a surface wave model for our marching algo-
rithm, we avoid the controversies over different surface-wave models, and instead rely
on the track-record of DMFT inmodelling surface wave effects, using these two criteria.

We take our expressions for surface wave reflection coefficient Rs directly from a flat-
Earth formulation (Norton 1941), which caters for transmitter and receiver both ele-
vated above the surface, and either vertical or horizontal polarisation. The horizontally
polarised surface wave case is usually ignored, as it is generally quite insignificant, but
has been included in this method.

Although this implementation (Norton 1941), is an early one, we have found it accu-
rately satisfies the Leontovich boundary condition for all the examples we have tested,
over a wide range of frequencies.

Like most surface wave methods, this uses the concept of “numerical distance” p, as

p = π
r2
λ

cos2 b2
x cos b1

(for vertical polarisation) (2.34)

with phase
b = 2b2 − b1 , (2.35)

or
p = π

r2
λ

x

cos b1
(for horizontal polarisation) (2.36)

with phase
b = π − b1 , (2.37)

where r2 is the total reflected path length, λ the wavelength,

b1 = arctan((εr − cos2(θ))/x) , (2.38)

b2 = arctan(εr/x) , and (2.39)

x = 59.9585λσ . (2.40)

Then p and b are combined, including correction for heights of transmitter and receiver
above the surface, in terms of R0 from (2.17), to give p1

p1 =
4p exp(ib)
(1−R0)2

, (2.41)
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and the surface wave attenuation function fs(p1) is (Norton 1941, Appendix II (44)):

fs(p1) = 1 + i
√
πp1 exp(−p1)erfc(−i

√
p1) . (2.42)

There is a potential computational problem in (2.42), as the complimentary error func-
tion erfc(·) has to be evaluated for a complex argument. This is not available in some
computer languages. Where it is available, there may be an upper limit on |p1| in
(2.42). We have addressed this limit by developing the following approximation, using
p2 = p1 exp(−ib), which may be used when erfc(·) fails, detected by (2.42) evaluating
as either infinite, or undefined (Not a Number):

fs(p2, b) ≈ exp[i(π − b)]

(
1

p2

)(
0.5 +

0.75 sin(b+ π/2)

p2

)
. (2.43)

The surface wave contribution Rs to the reflection coefficient is then simply

Rs = fs(p1)(1−R0) , (2.44)

and the overall reflection coefficient is

Rt = R0 +Rs . (2.45)

2.3.4 Validity limits and sources of error

Sample spacing ∆z

The upper limit for vertical field sample spacing is that the phase difference between
adjacent field samples, ∆z apart, must be less than π/2 radians, in order to meet the
Nyquist criterion. In checking this, all factors leading to this phase difference must be
considered: the angle to the horizontal of rays that are required to be accurately rep-
resented, the phase difference between adjacent samples due to strong refractivity gra-
dients, and phase difference introduced for beam steering in order to analyse varying
terrain elevation, which we discuss later in this chapter.

Of those factors, ray angle is the one most commonly considered in determining ∆z,
and if a problem, may only be addressed by reducing∆z accordingly. The other factors
are generally only significant only in the cases of extreme refractivity gradients, or very
rough terrain in the case of terrain flattening.

If strong refractivity gradients are the cause of adjacent field samples having phase dif-
ference exceeding π radians, a better alternative to reducing ∆z, may be to reduce step
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length∆x, which we consider next. This is especially the case in analysing evaporation
ducts, discussed in the next chapter, which have very strong refractivity gradients near
the surface.

Step length ∆x

In an environment of uniform refractive index and uniformflat lower boundary, there is
no particular requirement for step length∆x for a Dirichlet or Neumann lower bound-
aries implemented as a Fourier split step solution, or our new convolutional method,
and the same applies to a Leontovich lower boundary implemented as a DMFT Fourier
split step solution. However, all these methods are derived from the factorisation of the
scalar wave equation (2.5) into (2.6), which assumes refractive index n is constant over
the step length. Accordingly, some error is expected if n varies over the step length,
which is expected to increase as step length ∆x increases.

The formulation of the split-step solution in (2.16) has the phase correction to account
for refractive index at the end of the step, and in terms of partial derivatives of refractive
index nwith respect to x and z, this can be shown to result in error proportional to ∆x

squared (Levy 2000). Ideally it is a ∆x cubed dependency if half the phase correction
is applied at the beginning of the step, and half at the end (Levy 2000), although in
practice, if the vertical refractivity profile remains the same from step to step, it makes
negligible difference. Either way, when steps are concatenated, the phase correction
occurs every ∆x. The important point is that reducing ∆x significantly reduces error
in the Fourier split step analysis due to non-zero partial derivatives of nwith respect to
both x and z.

As mentioned above, where there are very strong vertical gradients of refractive index
n, it is important to check that the phase difference due to n, over the step, of vertically
adjacent field samples, is less than π radians. The step length should be reduced if
necessary, to meet this.

The above considerations on ∆x and ∆z apply equally to the Fourier split step algo-
rithm, and our new convolutional technique, and to the FFT implementation of the KI
approach (Coleman 2010).
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Reflection coefficient R

This applies to all marching algorithms where the lower boundary is implemented by
reflection or image theory, in cases other than R = −1 or R = +1, although it does not
apply to the DMFT implementation of Leontovich boundaries.

Consider propagation between a transmitter and a receiver, both located above a plane
boundary with reflection coefficient R. The field at the receiver may be modelled as a
direct field from transmitter to receiver, plus a reflected field, which may be considered
as field coming from an image source below the surface, but with its amplitude multi-
plied by R. This is equivalent to modelling this problem as a single step in any of the
marching algorithms we are considering.

Consider now that wemodel the same problem as two steps of one of these algorithms.
The result is equivalent to the sum of four paths, each diffracted by a knife edge with its
top at the point where the surface intersects the join between the two steps, due to the
below-surface field being deleted after it has been reflected up. These four paths are:

1. direct - diffracted - direct

2. direct - diffracted - reflected

3. reflected - diffracted - direct

4. reflected - diffracted - reflected.

The four paths are depicted in Figure 2.2.

Image theory suggests that reflection coefficient R is applied to the single-reflected
paths, and that the double reflected path should have its amplitude multiplied by R2.
However, the correct result is only obtained if the double reflected path is left un-
changed, not multiplied by R2.

This type of error applies to marching algorithms with more that two steps as well, and
may be thought of as diffraction from spurious knife edges embedded in the surface,
produced by discarding the below-surface field at the end of the step, which are only
revealed when the surface has finite conductivity.

An alternative explanation may be that the image theory treatment of finite conduc-
tivity problems deals with the partially-reflected image, but ignores the influence on
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Figure 2.2. A two-step reflecting plane as superposition of 4 paths. Image theory suggests
that if a reflecting plane is split into two steps, propagation above the combined plane
might be considered as the superposition of four paths. However, this approach is not
accurate for a finite conductivity boundary.

the field above the surface, of the refracted field entering the surface. Both of these ex-
planations suggest an error in some sense roughly proportional to the number of steps
used to model a particular problem, and that this type of error will not occur in cases
of infinite conductivity, where there is no refracted field.

This type of error is not a problem for a Leontovich boundary implemented by the
DMFT algorithm, because the original problem is effectively transformed to a Dirichlet
boundary problem, which may be validly implemented by the DST.

2.3.5 Propagation testing the convolution method

Testing of the marching convolution method over a range of frequencies, step lengths,
and surface electrical characteristics, indicates that including the surface wave compo-
nent in the reflection coefficient, as described in (2.34) to (2.45), accurately satisfies
the Leontovich boundary condition. However, this does not guarantee accurate field
strength prediction. We test this by comparing results from our new method with pre-
viously published results.

A sensitive test is likely to be vertically polarised propagation over a finite conductivity
surface, at a low frequency, where the surface wave is likely to be significant.
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Smooth sea, 10 MHz vertical polarisation, linear atmosphere

We take as our example, propagation over a smooth sea, εr = 80 and σ = 4, at 10 MHz,
with linear refractivity gradient of +118 M-units/km. This was modelled (Dockery
and Kuttler 1996, Figure 5) using the Fourier split-step parabolic equationmethodwith
DMFT, which was found to agree within 0.1 dB with their reference method.

Figure 2.3 demonstrates, with a step length∆x = 500m, and sample spacing∆z = 4m,
that the convolutional method, with only plane-wave reflection coefficient R0, severely
under-estimates field strength (dashedmagenta curve), and in this case the Leontovich
boundary condition is not satisfied.

Adding the surface wave component of the reflection coefficient, (2.44) to (2.45), sat-
isfies the boundary condition, and field-strength estimation is in good agreement with
the DMFT result; this supports the noted similarity between theK(x) term in the MFT
inverse transform, and surface wave propagation (Kuttler and Dockery 1991, Dockery
and Kuttler 1996). Repeating our analysis, but with ∆x reduced to 250 m, yields a
similar result, the greatest difference being 0.15 dB less field strength at 493 km.
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Figure 2.3. Convolutional modelling, 10 MHz over sea. The surface wave is important in low
frequency vertically polarised propagation. The fine dashed blue curve is the reference
method: Fourier split-step parabolic equation modelling with DMFT (Dockery and
Kuttler 1996), at 10 MHz with transmitter 30 m above the surface, and receiver at 4 m.
In the convolutional method, the surface wave component of the reflection coefficient,
(2.44), must be included to satisfy the boundary condition, providing estimated field-
strength in close agreement with the DMFT result (green curve). The dashed magenta
curve demonstrates field under-prediction with only plane-wave reflection coefficient.
The green and magenta curves use step length ∆x = 500 m, and sample spacing
∆z = 4 m.

Smooth sea, 10 GHz vertical polarisation, with linear surface duct

Our microwave test-case (Dockery and Kuttler 1996, Figure 3) is 10 GHz vertically po-
larised propagation over sea, again with εr = 80 and σ = 4, both for smooth sea, and
with 1m rmswave height. The implementation of the convolutional technique, is as be-
fore, including the surface wave, although at 10 GHz its contribution is negligible. The
reference method, Fourier split-step parabolic equation method with DMFT (Dockery
and Kuttler 1996), used ∆z = 0.2 m, or 6.67 wavelengths, so we use the same ∆z for
our convolutional method. A step length ∆x = 100 m is used in the reference method,
and we use it here in our test for the smooth sea case (h = 0 m). Different values of

Page 40



Chapter 2 Radio Propagation Modelling

∆x are found to make negligible difference in the smooth sea case, and in Figure 2.4 we
see from the dark blue curve, very close agreement with the reference method for this
case.

It is worth noting that the smooth sea predicted vertically polarised field is slightly less
than the prediction for a reflection coefficientR = −1, theDirichlet boundary condition,
which may often be assumed for grazing angles at 10 GHz.

Rough sea, 10 GHz vertical polarisation, with linear surface duct

In the reference method (Dockery and Kuttler 1996) and in our method, the effect of
waves is implemented by the Miller model (Levy 2000), where the smooth surface re-
flection coefficient R0 is multiplied by a reduction factor ρ to give an effective reflection
coefficient R as

R = ρR0 . (2.46)

The reduction factor in the Miller model is

ρ = exp
(
−1

2
γ2
)
I0

(
1

2
γ2
)
, (2.47)

where I0 is the modified Bessel function of order 0, and γ is Rayleigh roughness param-
eter for rms wave height h, given by

γ = 2kh sin θ . (2.48)

The Fourier split-step method with DMFT assumes the same α for all incident rays
in any particular step, and so in the rough sea case, requires the dominant angle of
incidence to be estimated at each step of the analysis (Dockery and Kuttler 1996, Levy
2000).

Our convolutional method allows Leontovich α to be a function of incidence angle,
as is required for the rough sea case if the step of estimating the dominant grazing
angle is to be avoided. The disadvantage of our method is that image theory is only
strictly valid in a marching analysis method for Dirichlet or Neumann boundaries, and
is only a good approximation for reflection coefficients close to R = −1 or R = +1. In
Figure 2.4 it may be seen to be a poor approximation for the rough sea case, referring to
the dotted and dashed orange trace (∆x = 100 m), or the dotted and dashed magenta
trace (∆x = 200 m).

However, extrapolation of the complex field, taking twice the prediction for ∆x =

200 m, minus the prediction for ∆x = 100 m, yields a moderately accurate result. In
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some cases, extrapolation of the field strengths in dB, rather than the complex ampli-
tude, may be more effective.

2.3.6 Future work on the convolution method

Shortly before a rigorous implementation of the finite conductivity Leontovich bound-
ary in the Fourier split-step method was first published (Kuttler and Dockery 1991), it
was suggested that image theory with plane-wave reflection coefficients might be used
as an approximation (Craig and Levy 1991), and this idea was also incorporated in the
Kirchhoff integral technique (Coleman 2005).

In this thesis we identify two additional considerations, not identified in this earlier
work. Firstly we find that for vertical polarisation above a finite conductivity boundary,
in addition to the Fresnel plane-wave reflection coefficient, an additional component
derived from the Norton surface wave is required, to correctly analyse problems where
the surface wave is significant.

Secondly, we identify that implementing the lower boundary by image theory is not
strictly valid for cases where |1 − R2| > 0, even if the surface is smooth, and that it
may be a poor approximation for rough surfaces. So far we have only identified an
approximate solution to this problem, by extrapolation from different step lengths.

Clearly there is scope for more work to be done on this problem. As this is not essential
to the development of our new fixed link fading model, we do not pursue it further in
this thesis.
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Figure 2.4. Convolutional modelling, 10 GHz over sea. The surface wave is of negligible im-
portance at higher microwave frequencies, although it is included in the convolutional
modelling here. The dashed curves are from the reference method: Fourier split-step
parabolic equation modelling with DMFT (Dockery and Kuttler 1996), at 10 GHz with
transmitter and receiver both 25 m above the surface, with a 50 m surface duct. The
refractivity gradient is -243 M-units/km (-400 N-units/km) below 50 m, and +118 M-
units/km (-39 N-units/km) above that. Two dashed reference curves are shown, for
smooth sea (red dashed), and sea with 1 m rms wave height (brown dashed). At grazing
angles and microwave frequencies, a reflection coefficient R = −1 is often assumed,
shown here as a fine black dotted line, but this appears to over-estimate field, slightly
for smooth sea, and significantly with 1 m waves. The convolutional method shows
excellent agreement with the reference for smooth sea (blue line), but predicts greater
field strength (orange and magenta dashed and dotted lines) than the reference for sea
with 1 m rms wave height. These curves have been generated with a 100 m and 200 m
step lengths respectively, but much better accuracy for the 1 m wave height is achieved
by extrapolating from these step length predictions (green curve).
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2.3.7 The upper boundary
The real physical problem has no upper boundary, but the computer model must have
an upper boundary, to limit the size of the vector of field values. Truncating the field
at a certain height would act as a reflector, reflecting a spurious field back down into
the region of interest. This reflection may be prevented by implementing a perfectly
matched layer (PML) (Bérenger 1994), or by introducing an artificial absorbing layer
above the height of interest; this can be done by adding an imaginary component to the
refractive index, to make it lossy (Ryan 1991).

However, for simplicity and practicality for long grazing angle paths (Levy 2000), we
apply a window function to the field, to introduce gradually increasing loss above the
height of interest. A convenient form of window function is the Tukey window. We
define the window function amplitude A as a function of height z, as

A(z) =


1 if z ≤ h,

0.5 + 0.5 cos
(
π z−h

h

)
if h < z < 2h,

0 if z ≥ 2h.

(2.49)

We choose the vector of field elements to represent the height range 0 ≤ z ≤ 2h, so the
field is un-attenuated for heights below h.

In the Fourier split-step PEM algorithm (2.16), we apply a similar window function
to the p-space field F{u(x, z)}, to prevent aliasing. This has the effect of attenuating
higher angle rays, so thismust be taken into account in the choice of vertical field sample
spacing, ∆z.

The choice of the height h of the start of the upper absorber in (2.49) is not as simple as
it might seem. Obviously h must be above the greatest height of interest, but we find
that particularly at lower frequencies and grazing angles, substantial spurious reflection
may still occur, due to the rate of onset of attenuation with height, relative to Fresnel
zone spacing, althoughwe have not seen this effect mentioned in the existing literature.

Our initial solution to this problem (Salamon et al. 2013) was to apply filtering to the
p-space field to attenuate high angle spurious rays reflected from the upper absorber,
but this risks attenuating ground reflected rays that may be significant.

A successful, but somewhat inefficient approach thatwe have used, is to implement two
parallel PEM solutions, each with Tukey window functions (2.49) applied to the field,
but with slightly different height h, differing by one Fresnel zone, such that any spuri-
ous upper boundary reflection will be anti-phase in the two solutions. The displayed
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solution is themean of the two, but if the difference between the two amplitudes exceeds
a threshold, such as 1 dB, the field display is partially greyed to indicate uncertainty. If
the areas of uncertainty are excessive, the absorber heights are increased.

2.3.8 Estimation of required absorber height

In much of the published literature, the interest is in propagation at field strengths not
far below free-space propagation, or even stronger than free-space field strengths with
ducting propagation, so choosing the characteristics of the upper absorber is of minor
importance. In this research we aim to model field strengths 50 dB or more below free-
space levels, so it may be vital to suppress spurious reflections from the upper absorber
to 70 dB or more below free-space levels.

While the solution of dual analysis with different absorber heights described above has
been found to be very effective, a more efficient solution may be to derive an approx-
imate expression for the required height to ensure spurious reflection is insignificant,
as follows.

We derive this solution for a Tukey window, but it could be adapted to other window
functions, or even to the technique of lossy refractive index, provided the imaginary
component of the refractive index is introduced gradually as a parabolic function of
height above the base of the absorber. Abrupt introduction of the imaginary component
would lead to more severe spurious reflections.

The assumption in this method, is that the absorber height is significantly greater than
the transmitters and receivers of interest, and that although anomalous refractivity gra-
dients may exist in the atmosphere, their vertical extent is small compared to the ab-
sorber height. Accordingly the incidence angle at the absorber is assumed to be similar
to the incidence angle under standard refractivity gradient conditions.

Although the surface of the Earth is curved, for convenience PEM analysis replaces the
refractivity profiles, or N-profiles, in terms of N-units (ppm exceeding unity refractive
index) as a function of height, with M-profiles, where M-units are modified N-units.
Themodification isM = N+0.157zwhere z is the elevation inmetres. Thismodification
provides an equivalent problem, where the Earth is flat, which is very convenient for
the analysis.

Under this flat-Earth scheme, ray paths generally curve upwards, unless trapped in a
duct, so their incidence angle on the lower edge of the upper absorber will generally
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be greater than if the rays travelled in straight lines from the transmitter. The spurious
reflection problem will be more severe at lower values of the grazing angle θ, so we
assume rays travelling in straight lines in the modified refractivity environment, as a
likely worst-case for analysing this problem.

Referring to Figure 2.5, for a path of length d and wavelength λ, the mid-path first
Fresnel zone radius is r1 = 0.5

√
λd, or the N -th zone has a radius of rN = 0.5

√
Nλd.
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Figure 2.5. Fresnel zones. The N -th Fresnel zone is the locus of points such that the total distance
from transmitter (Tx) to that point to receiver (Rx), is N half wavelengths longer than
the direct path from Tx to Rx.

If an aperture of height r1 and infinite width is placed at the mid-path, the field ampli-
tude at the receiver will be approximately the same as free space.

Therefore, for a grazing angle reflection from a flat surface, assumed to be height h
above transmitter and receiver, we may consider the effective length of the reflection l,
along that surface in the direction of propagation, to be

l =

√
λd

2 sin θ ≈
√
λd3

4h
, (2.50)
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so with step length ∆x the number of steps Nsr involved in the spurious reflection is of
the order of

Nsr ≈
√
λd3

4h∆x
. (2.51)

The Fresnel zone spacing s at the reflection point will be

s ≈ λd

8h
. (2.52)

We find the solution by considering the amount of absorber attenuation∆A introduced
between height h and height h+s over theNsr steps likely to be involved in the spurious
reflection. If ∆A is negligible, then the spurious reflection is likely to be insignificant.

For one step, from (2.49), A(h+ s) is

A(h+ s) = 0.5 + 0.5 cos
(
π
s

h

)
≈ 1− 1

4

(πs
h

)2
, (2.53)

so for Nsr steps we have

∆A ≈
√
λd3

4h∆x

(
πλd

16h2

)2

=
π2
√
λ5d7

1024h5∆x
, (2.54)

or in terms of h
h =

(
π2
√
λ5d7

1024∆A∆x

)0.2

. (2.55)

The expression (2.55) suggests the required absorber height may depend on the weak-
est field required to be predicted with reasonable accuracy. We find that this is the case,
and that the minimum absorber start height hmin, to reproduce propagation factors (dB
relative to free space) down to dBmin, is empirically approximately given by

hmin ≈ 10
−
(

dBmin+80
100

)(
π2
√
λ5d7

∆x

)0.2

. (2.56)

All length parameters in (2.49) to (2.56), z, h, l, d, λ, s, ∆x and hmin, are in the same
units. The effect of differing absorber lower edge heights is shown in Figure 2.6, ranging
from 574m in (a), just above the displayed field, as predicted by (2.56) for validity to 20
dB below free space, to 3623 m, as indicated by (2.56) for predictions to 100 dB below
free space field.

These plots are for vertical polarisation, 300 MHz, with linear refractivity gradient of
+118 M-units per km, over average ground, εr = 15, σ = 0.001 S/m.
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Figure 2.6. The effect of varying upper absorber height. The five examples (a) to (e) are as
suggested by (2.56) for dBmin values of -20, -40, -60, -80 and -100 dB respectively.
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2.3.9 Terrain flattening

The simplest approach to modelling irregular terrain is to take the Fourier split-step
solution for a flat lower boundary (2.16), and add the secondderivative of terrain height
t′′ with respect to range x to the refractive index correction (Barrios 1994):

u(x+∆x, z) = exp
[
ik(10−6M(z)− zt′′)∆x

]
×F−1

{
exp

[
i∆x

(√
k2 − p2 − k

)]
F
{
u(x, z)

}}
. (2.57)

Here modified refractivity M(z) = (n − 1 + z/a) × 106 replaces refractivity n, with z
being elevation above a height datum such as mean sea level, t terrain elevation above
that datum, and a the radius of the Earth. The idea of terrain flattening is to replace
variations in terrain elevation, by equal and opposite variations in ray paths, by beam
steering. This is an extension of the principle of replacing refractivity by modified re-
fractivity, so that with uniform modified refractivity, ray paths follow the curvature of
the Earth.

If the terrain variation is approximated by a piece-wise linear model, the idea of terrain
flattening is as demonstrated in Figure 2.7.

Figure 2.7. Propagation over terrain by terrain flattening. The terrain may be approximated
by a piece-wise linear model, the brown heavy line in (a). The PEM analysis may be
performed by replacing the bends in the terrain by beam-steering of the PEM analysis,
to obtain a flat lower boundary (b). Tx is the transmitter.
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The success of terrain flattening depends on the success of the beam steering, especially
when an abrupt change in direction occurs within one step of the marching algorithm.

The choice of ∆z

The Fourier transforms in (2.16) and (2.57) are implemented in practice as discrete
transforms, such as fast Fourier transforms (FFT) or discrete sine transforms (DST).
This requires a suitable choice for the vertical field sample spacing ∆z. The generally
stated requirement is the Nyquist criterion

∆z ≤ λ

2 sin θmax
, (2.58)

where θmax is the maximum ray angle to the horizontal to be modelled.

We note that if a window function is applied to attenuate the upper half of the p-space
transformed field to prevent aliasing, accurate representation of all rays present re-
quires an amendment to (2.58):

∆z ≤ λ

4 sin θmax
. (2.59)

This still allows∆z > λ if sin θmax < 0.25, but in the case of piece-wise linear approxima-
tion of the terrain, it has been noted (Donohue and Kuttler 2000) that the abrupt beam
steering occurring where the terrain slope changes, is equivalent to beam-steering an
antenna array. This imposes the additional requirement

∆z <
λ

1 + sin θM
, (2.60)

where θM is the largest angle through which the field is steered. This limitation avoids
loss of signal that may occur due to grating lobes.

Piece-wise linear terrain implementation

For a piece-wise linear terrain model, the second derivative of terrain, t′′ in (2.57), is
replaced by beam steering at the range x where the terrain changes slope. Accurate
implementation, to steer rays by the same angle as the change in slope of the terrain,
from u1(x, z) before the change, to u2(x, z) afterwards, is (Donohue and Kuttler 2000)

u2(x, z) = u1(x, z) exp [ikz(sin β1 − sin β2)] , (2.61)

where β1 and β2 are the angles of the terrain to the horizontal, before and after the
terrain slope change respectively.
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This modification to the phase of the field samples is applied after the end of one
step (after reflecting image samples to obtain the Dirichlet boundary condition if using
FFT instead of DST) and before the beginning of the next, assuming the terrain slope
changes are coincident with the Fourier split-step marching algorithm steps. However,
there is a limit to terrain slope changes that may be handled by this method (Donohue
and Kuttler 2000).

2.3.10 Modelling terrain without flattening

Although the Dirichlet boundary condition (reflection coefficient R = −1) may be au-
tomatically implemented by use of the DST as the Fourier transform in the split-step
algorithm, the use of a fast Fourier transform (FFT) with twice as many elements, is an
alternative that facilitates techniques to avoid terrain flattening. The lower elements in
the field vector, elements 1, 2, 3, ... N/2, can be used to represent heights z = 0, z = ∆z,
z = 2∆z, ... z = (N/2−1)∆z respectively, while the upper elementsN ,N−1, ... N/2+1

represent negative heights z = −∆z, z = −2∆z, ... z = (1 − N/2)∆z respectively. A
boundary condition at z = 0 may be imposed by taking the field u1(x, z) and reflecting
the z < 0 field up and multiplying by R, to give field u2(x, z) as

u2(x, z) =

u1(x, z) +Ru1(x,−z) if z ≥ 0,

0 if z < 0.
(2.62)

This is valid for R = −1, the Dirichlet boundary condition, or R = +1, the Neumann
boundary condition. It is also valid for R = 0, although in this case the marching
algorithm models a series of knife edge obstructions, with their tops at z = 0, placed at
the end of each step. It is not valid for finite conductivity boundaries as it fails to model
the surface wave that exists on finite conductivity plane surfaces (Norton 1941).

This idea can be extended to the conventional techniques of the terrain masking ap-
proximation, the staircase approximation, and our new technique to model piece-wise
linear terrain without terrain flattening.

Terrain masking approximation

Rough terrain may be usefully modelled as a series of knife-edge obstructing screens,
with their tops at the terrain height t(x) at the end of each step. This may be achieved
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by a modification of (2.62), with R = 0:

u2(x, z) =


u1(x, z) if z > t(x),

0.5u1(x, z) if z = t(x),

0 if z < t(x).

(2.63)

For clarity, this expression assumes terrain t(x) is quantised in the same∆z steps as the
field samples, but in the case of continuous t, the z = t(x) case is amended to be the
|z − t(x)| < ∆z/2 case, with value [0.5 + (z − t(x))/∆z]u1(x, z). The terrain masking
approximation avoids any spurious reflections due to steep terrain slopes, as reflections
are ignored. However, this approach may over-predict the field in valleys, and should
not be used where surface reflections may be important (Donohue and Kuttler 2000).

Staircase approximation

This approximation replaces the terrain by a series of horizontal flat surfaces, to model
terrain of varying heights along the path, without needing terrain flattening. Unlike
terrain masking, the staircase approximation includes surface reflection, so it has the
potential to more accurately model the field in valleys. Reflection from the front faces
of steps is ignored, as it would be spurious if included, so at the end of each step in the
marching algorithm, surface reflection is implemented at the height of the terrain:

u2(x, z) =

u1(x, z) +Ru1(x, 2t(x)− z) if z ≥ t(x),

0 if z < t(x).
(2.64)

However, this implementation of the surface reflection is only valid if the terrain height
difference from one step to the next is a negligible fraction of a wavelength.

2.3.11 Piece-wise linear terrain by reflection steering

Terrain flattening, with the beam steering of (2.61), accuratelymodels propagation over
a piecewise linear model of the terrain, provided the changes in terrain slopes are not
too severe. We present a new alternative, providing the same results for moderate ter-
rain, but without terrain flattening, by applying a terrain slope correction to (2.64).
The reflecting surface is at an angle β to the horizontal, resulting in the image of source
points at the beginning of the step rotating by an angle 2β around the surface point at
the end of the step. This is accounted for, by applying beam steering by an angle 2β to
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the reflected image only. At the end of each step in the marching algorithm, at range x,
surface reflection is implemented by including a phase correction factor α(z) as

u2(x, z) =

u1(x, z) +Rα(z)u1(x, 2t(x)− z) if z ≥ t(x),

0 if z < t(x),
(2.65)

with
α(z) = exp

[
ik sin(2β)(z − t(x))

]
, (2.66)

and
β = arctan

(
t(x)− t(x−∆x)

∆x

)
. (2.67)

Unlike the terrain flattening implementation of a piece-wise linear terrain model, here
the beam steering is only applied to the reflected field, not the direct field, so if terrain
slopes exceed the beam steering limit, the reflected field may be omitted. If that hap-
pens, the terrain is modelled as a series of knife-edges, an appropriate model for such
rough terrain. Therefore it is useful to attenuate α as the steering angle 2β approaches
a limit. We find it sufficient to apply a Tukey window function, such that α falls to zero
at the Nyquist limit (2.58), when s = | sin(2β)| reaches smax = λ/(2∆z). We then have

α(z) = w exp
[
ik sin(2β)(z − t(x))

]
, (2.68)

with

w =


1 if s ≤ 0.5smax,

0.5 + 0.5 cos
(
π 2s−smax

smax

)
if 0.5smax < s < smax,

0 if s ≥ smax.

(2.69)

Although this implementation of a piece-wise linear terrain model provides the same
results for moderate terrain as the conventional approach (Donohue and Kuttler 2000),
this new method is robust in very rough terrain where terrain flattening is not.

Figure 2.8 is an example of terrain with moderate slopes, within the terrain flattening
limit of 0.2 radians set by (2.60). Plot (a) uses terrain flattening to accurately implement
the piece-wise linear terrain, while (c) uses the slope correction of (2.65) to achive the
same result without terrain flattening. Given the simplicity of (2.65), the well-known
staircase approximation (b), cannot be recommended, due to missing angled reflec-
tions from terrain, and spurious fringing from non-existent horizontal surfaces. The
terrain masking approximation is shown at (d); a robust option for rough terrain, but
over-predicts field in valley bottoms, and cannot model reflections from terrain facets.
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Figure 2.8. Terrain modelling, with and without flattening. The four examples (a) to (d) are
for the same terrain consisting of five wedges, shown in brown. All have apex angles
of 0.15 radians, within the limit from (2.60) for ∆z = 0.025 m at 10 GHz. Plot (a)
uses terrain flattening to implement the piece-wise linear terrain, while (c) achieves the
same result without terrain flattening, by beam-steering the reflection, using (2.65).
Both (a) and (c) show the high-angle reflection from the front face of the wedge (the
dotted appearance is an artifact of the field display interpolating 200 m analysis steps
to 8 pixel width). These reflections are missing from the staircase approximation (b)
due to its horizontal reflecting surfaces, which result in spurious fringing, seen towards
the end of the path. Plot (d) is the terrain masking option, modelling the terrain as
knife edges at the end of each step, every 0.2 km. Reflections from the front faces of
wedges are missing, and the field-strength in valleys is stronger than in (a) or (c).
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Figure 2.9 (a) shows the failure of terrain flatteningwith extreme terrain slope changes.
This becomes catastrophic once they exceed the Nyquist criterion limit of 0.643 radians,
set by (2.58). Loss of the line of sight signal is prevented by not using terrain flattening,
and implementing the reflection steering of (2.65), in Figure 2.9 (b) and (c). Spurious
products appear for the extreme slopes in (b) with α from (2.66), but applying win-
dowing to attenuate reflections from extreme slopes, using (2.68) and (2.69), eliminates
the spurious products, as demonstrated in (c). The field plots of Figures 2.8 and 2.9 are
with a narrow beamwidth transmit antenna with a raised cosine aperture, for clarity in
showing the effect of different analysis options.

Figure 2.9. Rough terrain, with and without flattening. The three examples (a) to (c) are for
the same terrain consisting of 25 wedges, with apex angles increasing in 0.032 radian
steps to a maximum of 0.8 radians. Plot (a) uses terrain flattening to implement the
piece-wise linear terrain, demonstrating propagation failure with rough terrain. Line-of-
sight signal loss is prevented by not using terrain flattening in (b) and (c), but reflection
windowing using (2.69), shown in (c), avoids spurious products.
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2.3.12 Extension to 3 dimensions

The reflection steering approach for terrainwithout flattening, may be readily extended
to a three-dimensional approach for point to point propagation, by replacing the one-
dimensional field vector of samples at range x, u(x, z) in (2.16), by a two-dimensional
array of samples at range x, u(x, y, z). The two dimensional analysis of (2.16) or (2.57)
assumed complete uniformity in the y-direction of space, or in other words, cylindrical
wave-fronts emerging from the transmitter, andparallel cylindrical terrain obstructions.
Where there is significant variation in terrain elevation in the y-direction, that simpli-
fying assumption may not be valid, so we present here a method for three dimensional
analysis over terrain, with elevation variations in both x and y directions.

For convenience and simplicity in our point-to-point application, we retain Cartesian
coordinates (x, y, z) for three dimensions, although in other applications, such as area
coverage, polar coordinates may be preferred.

Taking (2.16), and including a vertical modified refractivity profile M(z) as in (2.57),
but not including terrain flattening, and replacing p/k with sin θ we have

u(x+∆x, y, z) = exp
[
ik10−6M(z)∆x

]
×F−1

{
exp

[
ik∆x (cos θ − 1)

]
F
{
u(x, y, z)

}}
, (2.70)

where θ, as before, is the angle between the ray and the paraxial direction, but this time
evaluated in 3 dimensions.

The Fourier transform F is now implemented as a two-dimensional FFT instead of a
one-dimensional FFT, with equal sample spacings in y and z directions, so ∆y = ∆z.

We are now dealing with spherical wave-fronts instead of cylindrical. In order to pro-
vide the best insight in field plots Figures 2.6, 2.8 and 2.9, we have shown the field
strength in terms of propagation factor, or relative to free-space propagation for the
range. This is readily achieved by scaling the field at the end of the step u(x + ∆x, z)

by a factor
√

(x+∆x)/x, the square root resulting from the cylindrical wave-fronts. In
3D we have spherical wave-fronts, so the scaling factor is simply ((x+∆x)/x), as field
strength is inversely proportional to range for a spherical wave-front.
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Terrain masking approximation in 3D

Considering first terrain masking, or obstruction without reflection, we re-write (2.63),
with field quantised vertically in ∆z steps, but terrain height t(x, y) not quantised, as

u2(x, y, z) =


u1(x, y, z) if z > t(x, y) + ∆z/2,(
0.5 + z−t(x,y)

∆z

)
u1(x, y, z) if |z − t(x, y)| < ∆z/2,

0 if z < t(x, y)−∆z/2.

(2.71)

In addition to the upper boundary, artificial aborbing boundaries are required either
side of the problem to limit the size of the field arrays. For our point-to-point appli-
cation, a convenient boundary is a cylindrical one, centred on the line y = 0, z = zt

in the paraxial direction, where zt is a convenient elevation, such as minimum terrain
height along the path. We attenuate extreme off-axis fields as before, with attenuation
progressively introduced from radius hmin from the y = 0, z = zt line, with hmin set by
(2.56). A Tukey window function, in terms of distance from the centre line, results in
field falling to zero at radius 2hmin. The size of the 2D field array u(x, y, z) at range x is
then 4hmin × 4hmin.

The remaining problem is the terrain t(x, y), as it typically will be interpolated from a
digital terrain model at resolution much coarser than ∆y. This is not generally a prob-
lem for 2D analysis, because the analysis step size may be simply chosen to match the
sampling of the terrain in the x-direction. For 3D analysis, interpolation of the terrain
data in the y-direction at ∆y spacing is required. The simplest alternative for terrain
masking would be linear interpolation, but when we later consider surface reflection, a
continuous estimate of surface slope in the y-directionmaybepreferred. As cubic spline
interpolation functions are readily available in scientific programming languages, for
each step in the analysis we interpolate the transverse (y-direction) terrain profile at
field array grid points, or ∆y spacing, with cubic splines.

Irregular terrain in 3D by reflection steering

Reflection steering, readily implemented for 2D in (2.65) to (2.69), is more complicated
to implement in 3D, because terrain variation in the y-direction, transverse to the direc-
tion of propagation, now needs to be considered, so we potentially have terrain slope
in both x and y directions.
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We retain the coarse ∆x terrain resolution in the x-direction, and again in 3D assume
piece-wise linear variation in that direction, but in the y-direction we smoothly inter-
polate to ∆y spacing, by cubic splines, to approximate transverse curvature that may
be present. This may seem inconsistent, but is consistent with the differing transverse
and longitudinal nature of Fresnel zones. Their transverse radius of curvature is equal
to the zone radius as they are circles around the line-of-sight, while their longitudinal
radius of curvature is much greater than the zone radius for most of the path, as they
are elongated ellipses, with transmitter at one focus and receiver at the other.

At range x and transverse coordinate y, the longitudinal angle of the terrain over the
previous step, βL, is then

βL = arctan
(
t(x, y)− t(x−∆x, y)

∆x

)
. (2.72)

For the analysis step ending at range x, there are two transverse terrain angles to con-
sider, βS at the beginning of the step, and βE at the end, given by

βS = arctan
(
t(x−∆x, y +∆y)− t(x−∆x, y −∆y)

2∆y

)
, and (2.73)

βE = arctan
(
t(x, y +∆y)− t(x, y −∆y)

2∆y

)
. (2.74)

The overall terrain angle β for use in (2.68) is given by

tan(β) =

tan βL cos βE if βS = βE,

tanβL tan(βE−βS)
(tanβE−tanβS) cosβE

otherwise,
(2.75)

using the simplifying assumption that transverse terrain slope is constant at the begin-
ning and end of the step.

The 3D methods we have described here may be implemented either by Fourier split-
step PEM, using 2D Fourier transforms, or our new convolutional method in 2.3.2, by
using 2D convolution, but the latter requires field sample spacing∆z of approximately
half a wavelength or less, whichmay be computationally onerous at higher frequencies.

2.3.13 The finite element approach

We have so far described conventional Fourier split-step parabolic equation methods,
and our new convolutional approach, which although derived fromwide-angle Fourier
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split-step, allows the lower boundary to be configured in terms of a complex reflection
coefficient as a function of grazing angle. However it is an approximation that loses ac-
curacy if the reflection coefficient departs too far from Dirichlet or Neumann boundary
conditions. An accurate solution to this problem with the convolutional approach is
yet to be found.

In contrast, the DMFT technique (Dockery and Kuttler 1996) accuratelymodels a Leon-
tovich boundary condition, but only with single value of α at each step of the analysis,
and may suffer stability problems at some values of α (Kuttler and Janaswamy 2002).

For completeness, we should mention another parabolic equation method, providing
greater flexibility in the treatment of the lower boundary than Fourier split-step with
DMFT. It is the finite element approach (Levy 1990, Levy 2000, Holm 2007), which
represents the partial differential wave equation in terms of differences between points
on a regular grid of field sample points.

The difference scheme for a marching analysis method may be represented as (Holm
2007)

AmUm = BmUm−1 , (2.76)

where Um−1 is the vector of field samples at the end of the previous step, Am and Bm

are tri-diagonal matrices derived from the wave equation and boundary condition, and
Um is the vector of field samples at the end of the current step.

Solution of (2.76) for Um requires inversion of Am, and the inversion propagates the
boundary condition through the inverted matrix. Although the matrix inversion may
be carried out efficiently, provided it is non-singular (Levy 2000), if step parameters
such as step length or boundary condition change from step to step, thematrix inversion
must be repeated at each step. This may result in a considerable execution overhead,
compared to Fourier split-step, or our new convolutional approach.

2.4 The ITU-R general terrain diffraction model
The current ITU-R general model for terrain diffraction (Rec. ITU-R P526-15, 2019),
known as the delta-Bullington model, is empirically based on many measurements of
obstructed VHF and UHF radio paths in a number of countries. It was adopted in
2011 by ITU-R Study Group 3 (Radiowave Propagation), and internationally approved
in Rec. ITU-R P526-12, (2012), as the general terrain diffraction model for all P-series
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Recommendations of the ITU-R, after intense international discussion in the previous
few years. We provide here a brief summary of the development of this model, as a full
description is not available in the literature.

The “Bullington” part of the model name refers to an early paper (Bullington 1947),
where the “Bullington triangle” construction is described in two contexts. One is de-
scribed in Fig. 10 of that paper as shadow loss relative to smooth Earth, relevant to low
frequencies, but the one used in the delta-Bullington model is that in Fig. 9 of that pa-
per, where line-of-sight is obstructed by two sharp ridges. The suggested approximate
solution is to find the intersection point of the horizon rays from the antennas at each
end of the path, and model the double knife-edge obstruction as a single knife-edge
at that point. It should be noted that this was prior to a formal solution to the double
knife-edge problem (Millington et al. 1962).

This effective knife-edge construction became known as the Bullington model, estimat-
ing diffraction loss of arbitrary terrain obstructing line-of-sight as a single knife-edge
obstruction at the intersection of horizon rays from each end of the path. If line-of-sight
is un-obstructed, the point on the terrain with greatest Fresnel obstruction is taken as
the equivalent knife-edge point.

Later, reasonably accurate but quite simple models for multiple knife-edge diffraction
emerged (Epstein and Peterson 1953, Deygout 1966, Giovaneli 1984), and this Bulling-
ton model fell out of favour. However, testing of some of these models, including the
Bullington model, against datasets of measurements (Liniger et al. 2003), suggested
that the Bullington model appeared to be more accurate than some of the later multi-
ple knife-edge models, albeit with some degree of under-prediction of diffraction loss.

Another study (da Silva et al. 2005) provided further empirical evidence that the simple
Bullington construction appeared to have good error standard deviation compared to
the many other methods trialled, but tended over-estimate field strength by several dB,
to an increasing degree for paths with more obstacles.

A considerable amount of testing work followed by members of the ITU-R 3K-1 Cor-
respondence Group over the next couple of years, with the conclusion that applying a
correction the Bullington model knife-edge loss Luc to give a predicted loss Lb as

Lb = Luc + [1− exp(−Luc/6)](10 + 0.2d) , (2.77)

where d is the path length in km,
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is a good practical diffraction model for irregular or even mountainous terrain. As well
as demonstrating good empirical accuracy, this model is continuous, with no disconti-
nuities in predicted loss as path parameters are varied.

However, thismodelmay not be accurate for long paths over smooth Earth. An accurate
model for this situation is available (Rec. ITU-R P526-15, 2019), based on the first term
of the residue series for distances beyond line-of-sight, with a smooth transition to an
extended plane-Earth model within line-of-sight, so a technique was devised (United
Kingdom: ITU-R doc. 3J/64, 2009) to effectively make use of the smooth-Earth model
for smooth-Earth paths, but use some other irregular terrain model to take account of
differences between the terrain and the smooth-Earth case.

Taking the corrected Bullington model (2.77) as the irregular terrain model, this tech-
nique became known as the delta-Bullingtonmodel. A smooth-Earth path being a least-
squares best fit to the actual terrain is found, and the smooth-Earth model loss for this
path Lsph, is calculated. The Bullington model loss Lbs for this same best-fit smooth-
Earth path from (2.77), is also calculated.

Then the Bullington model loss Lba for the actual terrain is calculated from (2.77), and
the difference Lba − Lbs is effectively a correction to the smooth-Earth loss Lsph, to take
account of the roughness of the terrain. There may be cases where Lsph < Lbs, so to
ensure the overall diffraction loss prediction L cannot be less than Lba, we have

L = Lba +max[Lsph − Lbs, 0] . (2.78)

However, for mountainous terrain, the best-fit smooth-Earth path has no significance,
so we require L = Lba in this case. Switching between two different models is unde-
sirable, so a single continuous model for all terrain types was achieved by taking ter-
rain roughness into account (Australia: ITU-R doc. 3J/112, 2010), adjusting the notional
smooth-Earth surface such that Lsph = Lbs = 0 for mountainous paths.

2.5 Conclusion
If the state of the atmosphere, particularly vertical refractivity gradients, can be pre-
dicted with sufficient accuracy and resolution, then the appropriate physical approach
to clear-air fading prediction of terrestrial fixed paths is to use a full-wave propagation
method, such as the parabolic equation approaches discussed above.
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2.5 Conclusion

We provide some new developments in parabolic equation modelling. These include a
newmethod for deciding the height of the absorbing upper boundary to avoid fringing
effects, in 2.3.8, and a new robust method for dealing with irregular terrain, in 2.3.11,
and its extension to three dimensions in 2.3.12.

We describe a new alternative to Fourier split-step modelling, in 2.3.2, using convolu-
tion instead of Fourier transforms. While this approach offers no advantage for situa-
tions where a Dirichlet boundary condition may be assumed, it may provide an alter-
native to DMFT for analysing finite conductivity Leontovich boundary condition prob-
lems, as it avoids the “bad alpha” numerical instability problem in DMFT (Kuttler and
Janaswamy 2002).

For rough surface problems, the newmethod does not require an estimate of dominant
grazing angle at each step of the analysis, as it is a general method for all angles of
incidence that may occur at each step. The disadvantage of the new method is error
in cases of high surface reflection loss, although it appears this may be to some extent
addressed by extrapolating from different step lengths.

The new method may provide a computationally efficient alternative to finite element
analysis for problems requiring greater flexibility in the boundary condition than can
be provided by existing Fourier split-step analysis techniques, but the problem of accu-
rately modelling finite conductivity boundaries by this type of image theory approach,
remains to be solved. The aim of this thesis, modelling fixed radio link clear-air fading,
does not require a solution to this problem, so we identify it as future work.

We have detailed these parabolic equation methods in this chapter, as they may be re-
quired in the future, for researching terrestrial fixed radio link fading, should detailed
and accurate data on atmospheric refractivity profiles become available.

However, these full-wave methods are too involved and computationally demanding
for day-to-day link engineering design. For this, the simple general terrestrial terrain
diffraction model, briefly described in Section 2.4, is recommended for cases where a
linear vertical refractivity gradient may be assumed.

This chapter has described research carried out, to develop efficient practical methods
for full-wave analysis of propagation on terrestrial fixed radio link paths. This needs
to be combined with accurate modelling of the refractive index structure of the atmo-
sphere, to provide a complete physical model of propagation along the radio path, so
we explore that possibility in the next chapter.
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Chapter 3

Atmospheric Modelling

W EATHER forecasting has made considerable advances in recent
years, due to numerical weather prediction (NWP) models run-
ning on super computers, simulating the physics of weather

events, with these models continually updated by current weather data at
good resolution. This computer model of the state of the atmosphere sug-
gests the promise of a physics based solution to the clear-air radio link fad-
ing problem, but this requires accurate modelling of radio refractivity gra-
dients in the surface layer of the atmosphere. We investigate the accuracy
of this approach by comparing NWP re-analysis data with meteorological
observations from weather balloons (radiosondes) as well as tower mea-
surements, and investigate empirical modelling of gradient distributions.
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3.1 Introduction

3.1 Introduction
The fading prediction models used by radio link designers have been empirical, rather
than scientific (Salamon et al. 2020). A potential atmospheric physics approach may
be to predict the state of the atmosphere with a numerical weather prediction (NWP)
model, and then use a terrain parabolic equation model (PEM)(Barrios 1994, Donohue
and Kuttler 2000) to predict the radio propagation. This idea has been pursued for
some time, both for radio link propagation (Ewenz et al. 2001), and in radar propagation
research, but sub-meter resolutionmay be required in generating the refractivity profile
(Claverie 2019). An NWP reanalysis product with at least several years of data at very
high resolution would be required, to practically implement fading prediction for path
design, using this approach. Even then, the link designer would have to run a few
years equivalent of PEM simulations, to accurately determine the average year worst
month performance of the link. Despite advances in computing capability, this still
seems rather impractical in the short term.

Nevertheless, this approach should be investigated, as an empirical model is not nec-
essarily valid beyond the range of conditions represented in the empirical data, while
model based on physics can more confidently be expected to have an extended range
of validity.

The following papers cited in this chapter were all produced as part of the work for this
thesis: (Salamon et al. 2014a, Salamon et al. 2014b, Salamon et al. 2015, Salamon et al.
2020).

3.2 Radio refractivity
Radio refractivity is normally expressed in “N-units,” or parts per million by which
atmospheric refractive index for radio waves exceeds unity. Thus, vertical refractivity
gradients are expressed in N-units per km. Standard refactivity for terrestrial radio
links is typically assumed to be a gradient of –39 N-units per km.

The refractivity N is estimated as proportional to the partial pressures of various gas
constituents of the atmosphere and inversely proportional to absolute temperature T ,
except that in the case of water vapour pressure e, there is another term inversely pro-
portional to absolute temperature squared, due to the polar nature of thewatermolecule.
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Expressed simply, with total air pressure P , consisting of dry air pressure P−e andwa-
ter vapour pressure e, we have, for example, the Bean model (Bean 1962)

N = 77.6

(
P − e

T

)
+ 72

e

T
+ 375000

e

T 2
, (3.1)

or the more recent Rueger “best average” model (Rueger 2002)

N = 77.689

(
P − e

T

)
+ 71.295

e

T
+ 375463

e

T 2
. (3.2)

While Rec. ITU-R P453-14, (2019) has retained the early Bean model as its standard
model, many alternatives are available, and in fact the Rueger “best average”modelwas
used to generate recent ITU-R gradientmaps (Grabner et al. 2014). Practically speaking,
for the atmospheric surface layer, although there is a small absolute difference between
(3.1) and (3.2), as far as gradients are concerned, the difference is negligible, so we use
the more recent Rueger “best average” model in this research.

3.3 NWP re-analysis
Weather forecasting uses numerical weather prediction (NWP) models which assimi-
late meteorological data to build a model of the current atmosphere, which can be run
forward in time, in order to produce forecasts. The assimilation systemmay in principle
be used to produce historical records of the estimated state of the whole atmosphere
world-wide, even though actual measurements only take place at a limited number of
locations, such as radiosonde stations, and perhaps only once or twice a day. This is
known as a reanalysis.

As an example of a numerical atmosphere model, the “windflow model” employed in
Kulessa et al. (2001) solves the conservation equations of

momentum:
dv
dt =

−1

ρ
∇p− g− 2Ω× v , (3.3)

heat:
dθ
dt = Qθ , (3.4)

humidity:
dq
dt = Qq , (3.5)

and mass:
∂ρ

∂t
+∇ · (ρv) = 0 , (3.6)
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3.4 Measured refractivity gradient data

where the differential operator d/dt is defined as

d
dt =

∂

∂t
+ v · ∇ (3.7)

and v ·∇ is the advection term. The variables are t: time, v: wind velocity, ρ: air density,
Ω: spin vector for Earth, p: air pressure, g: acceleration due to gravity directed in the
vertical, θ: potential temperature, q: water content, and Qθ and Qq are source or sink
terms.

One of the current world-wide NWP models used in weather forecasting is that of the
European Centre forMedium-rangeWeather Forecasting (ECMWF), and the ECMWF-
Interim reanalysis product (ERA-I) (Dee et al. 2011) has been used to generate digital
maps of radio refractivity gradient (Grabner et al. 2014) for ITU-R, published in Rec.
ITU-R P453-14, (2019).

3.4 Measured refractivity gradient data

3.4.1 Radiosonde data

There are a very limited number of stations regularly providing data from ascents at 6
hourly intervals (Salamon et al. 2014b). Many more stations around the world provide
radiosonde data at 12 hourly intervals, but caution is required in using data from sta-
tions with 24 hourly data, as gradient distributions can vary considerably depending
on the local time of day that the ascents occur. Figure 3.1 illustrates this for a station in
India. The data is from NOAA / ESRL Radiosonde Database, (2018), with the data now
available at NOAA IGRA Radiosonde Database, (2022).

The NOAA/ESRL database provides a valuable repository for world-wide regular as-
cent data from radiosonde stations, but at lower vertical resolution than the full data
generally collected as only salient points are saved. An example for the ascent nomi-
nally at 23:00 UTC on the 21st of March 2008, for the radiosonde station at Charleville,
Queensland, is shown in Figure 3.2. Ascent speed is about 5 metres per second, so with
samples taken every 2 seconds, original vertical resolution is about 10 metres.

Radio refractivity gradient distributions for the 65 metre surface layer are shown in
Figures 3.3 and 3.4, comparing the high resolution data distributions with the low res-
olution data distributions, for the same ascents. Charleville, with median first height
of 90 m reported in the NOAA data, showed good agreement, as did several other sta-
tions with lower median first heights, while Kalgoorlie, with median first height of 117
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Figure 3.1. Radiosonde observed gradient distributions for Aurangabad, India. Observations
from 1994 to 2013 at latitude 19.85 degrees, longitude 75.4 degrees, at around midnight
UTC (early morning local time) and noon UTC (late afternoon local time).

m, under-reported the sub-refractive end of the distribution. We conclude that stations
with 90 m or less median first height in the NOAA data, will provide reasonably ac-
curate gradient distributions for the 65 m surface layer, while those with median first
height well in excess of 100 m may not.
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Figure 3.2. Charleville radiosonde ascent at 2100 UTC 21st March 2008. Original data at
about 10 metres vertical resolution, and the salient points stored in the NOAA / ESRL
database for the same ascent are shown.
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Figure 3.3. Detailed and NOAA Charleville RAOB comparison. Gradient distibution for the 65
m surface layer; original data compared with the salient points in NOAA data, for the
same 2437 ascents between 2003 and 2011. Median first height in the NOAA data is
90 m.

Page 68



Chapter 3 Atmospheric Modelling

  
-750 -600 -450 -300 -150 0 150 300

-4

4

99.99 %

99.9 %

99 %

90 %

50 %

10 %

1 %

0.1 %

0.01 %

NOAA Data
Detailed RAOB
 

Observed radio refractivity gradient, 65 m surface layer, N-units/km

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f t
im

e

Figure 3.4. Detailed and NOAA Kalgoorlie RAOB comparison. Gradient distibution for the 65
m surface layer; original data compared with the salient points in NOAA data, for the
same 2674 ascents between 2003 and 2011. Median first height in the NOAA data is
117 m. Sub-refraction from the 99.9% point and beyond is under-represented in the
low resolution data.
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3.4 Measured refractivity gradient data

3.4.2 Tower measurements

The radio refractivity profile in the lower atmosphere above land areas may be mea-
sured with either radio refractometers or temperature and humidity sensors on a mast
or tower. A single instrument may be raised or lowered on the mast (Zhamsuyeva
1998), but this may limit the number of measurements conducted each day and the
overall duration of measurements. In that measurement campaign, eight measure-
ments a daywere conducted over a period of two and a halfmonths. Amore convenient
arrangement is to mount a number of temperature and humidity sensors, fixed at vari-
ous heights on the mast (Grabner and Kvicera 2005,Australia: ITU-R doc. 3J/169, 2018).
This permits un-attendeddata loggingmany times a day over an extendedperiod. Pres-
sure may bemeasured at ground level and estimated for the heights of the temperature
and humidity sensors.

The Kopisty measurements in north-western Czech Republic (Grabner and Kvicera
2005) were recorded every 15 minutes for a full year, at heights of 2, 20, 40, 60 and
80 metres above ground. Figure 3.5 demonstrates the gradient variation in the 2 to 20
metre layer being greater than that to greater heights. In these measurements, both
sub-refractive and super-refractive gradient variation in the 2 to 20 metre layer was
significantly greater than in the next layer from 20 to 40 metres, or the higher layers
(Grabner and Kvicera 2005, box plot Fig. 4).

Tower measurements were conducted at a coastal location in the North-West of Aus-
tralia (Australia: ITU-R doc. 3J/169, 2018), with data collected over a period of seven and
a half months, at four heights on a 100 metre radio mast. Vaisala HMS-110 temperature
and humidity sensorswere installed on the radiomast atHildaWell, latitude -21.123602
degrees, longitude 115.967964 degrees, at heights of 1.5 m, 19 m, 60 m, and 97 m above
ground. Readings were logged from these sensors every 5 minutes, from 18:15 local
time (10:15 UTC) on 18 March 2016, until 10:00 local time (02:00 UTC) on 6 November
2016. Continuous data every 5 minutes was collected for the complete months of April
to October. This provided the temperature and water vapour pressure data for the ra-
dio refractivity calculation, and air pressure was derived from measurements every 30
minutes from Mardie automatic weather station, latitude -21.1906 degrees, longitude
115.9797 degrees (WMO 94306). These locations are shown in Figure 3.6.

In this measurement campaign, the super-refractive (negative) part of gradient vari-
ation in the three measured layers, 1.5 to 19 m, 19 m to 60 m, and 60 to 97 m, were
similar, but much greater sub-refractive (positive) variation was seen in the 1.5 to 19 m
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Figure 3.5. Observed surface refractivity gradients at Kopisty in 2004. Five Vaisala HMP45D
temperature and humidity sensors were installed on a mast at Kopisty meteorological
station, north-west of Prague, Czech Republic, at heights of 2 m, 20 m, 40 m, 60 m,
and 80 m above ground, and pressure was derived from ground level measurements
with a PTB100A sensor. Gradient distributions are shown for the full year, January
to December, for the layer between heights of 2 m, and 20, 40, 60 or 80 m, with
measurements every 15 minutes, after Grabner and Kvicera (2005, from Figures 1 and
2). Gradient variations are greatest in the lowest 2 to 20 metre layer.

layer than in the upper layers, as shown in Figure 3.7 for April. Despite the similarity of
the super-refractive part of gradient distribution, the gradients in the three layers were
quite un-correlated, as demonstrated by the scatter plots for April in Figures 3.8 and
3.9. This indicates that overall, the vertical refractivity gradient profile at this location
tends to be non-linear, with both elevated and surface ducts, and strong sub-refraction
near the surface at times.
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Figure 3.6. Hilda Well radio mast, and Mardie automatic weather station. Four Vaisala
HMS-110 temperature and humidity sensors were installed on the radio mast at latitude
-21.123602 degrees, longitude 115.967964 degrees, at heights of 1.5 m, 19 m, 60 m,
and 97 m above ground, and pressure was derived from Mardie weather station, 7.6 km
away at latitude -21.1906 degrees, longitude 115.9797 degrees (WMO 94306).
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Figure 3.7. Refractivity gradient distributions, 1.5–19 m, 19–60 m, and 60–97 m. The super-
refractive (negative) part of the gradient distributions are similar, but the sub-refractive
(positive) part of the distribution in the lowest layer is stronger than the upper layers.
The observations are every 5 minutes, during April 2016.
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Figure 3.8. Observed refractivity gradients, comparing 1.5 to 19 m with 19 to 60 m. While
milder gradients appear to be moderately correlated between the two layers, indicating
reasonable linearity in the vertical refractivity profile, extreme gradients in the bottom
layer are not reflected in the upper layer, indicating significant non-linearity. Overall
correlation coefficient is 0.24.
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Figure 3.9. Observed refractivity gradients, comparing 19 to 60 m with 60 to 97 m. Despite
similar distributions, the gradients in the upper two layers are largely uncorrelated;
correlation coefficient = 0.37.
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3.4.3 Effect of measurement error on gradient distributions

The tails of an observed cumulative distribution may have statistical variations, due
to the small number of data points contributing to the tail region of the distribution
(Salamon et al. 2014a). However, in the case of refractivity gradient distributions, which
have theirminimumslope near themedian,measurement error can easilymask the true
slope of the cumulative distribution in this region.

We consider the distribution in terms of an inverse cumulative normal probability vari-
able Xp:

Xp = norminv(p, 0, 1) (3.8)

where p : proportion of data points

norminv(p, 0, 1) : inverse cumulative normal distribution

If the measurement error can be assumed normally distributed and uncorrelated with
the gradient G(Xp), then the observed gradient will be (Salamon et al. 2014a)

Gobs(Xp) =
√

[G(Xp)−G(0)]2 + [σnXp]2 (3.9)

where σn : gradient measurement error standard deviation.

Inversion of (3.9) to produce a corrected estimate Gcorr(Xp) of the true gradient G(Xp),
not biassed by the error noise σn, involves the square root of a quantity that may some-
times be negative, so the following alternative approximation

Gcorr(Xp) ≈ Gobs(Xp)−
(σnXp)

2

2∆G
− (σnXp)

8

3∆G7
(3.10)

where ∆G = Gobs(Xp)−Gobs(0),
is found to be useful, from simulation testing, shown in Figures 3.10 and 3.11.

The difficulty is in determining the the random variation σn. In the case of the Hilda
Well data we have data frequently sampled, every 5 minutes, so a reasonable estimate
is the standard deviation of gradient forward differences divided by

√
2. For the 1.5

to 60 metre gradient distribution, this suggests σn = 25 N-units/km. This is roughly
half the minimum slope in the measured gradient distribution, of 52.9 N-units per km
per standard deviation. In this case the effect of the correction of (3.10) on the plotted
distribution is almost imperceptible, with sub-refractive gradients from the 80% point
and above all reduced by around 4.8 N-units/km, and super-refractive gradients from
the 20% point and below all reduced by around 3.6 N-units/km.
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Figure 3.10. Simulated refractivity distribution, with measurement noise. A typical gradient
distribution, the true gradient in dark blue, with 20 trials each of 10,000 observations,
with added measurement white noise of 40 N-units per km RMS amplitude.
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Figure 3.11. Simulated refractivity distribution, with noise correction. The same typical true
gradient in dark blue, with the same 20 trials each of 10,000 observations, but with
noise correction of the observed gradient distributions, using (3.10).
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If we assume the random measurement variation is independent of the true gradient
variaton, σn must be less than the minimum observed slope of the distribution. For
cases where we don’t have a direct measurement of σn, based on the Hilda well exam-
ple, we assume σn to be half the minimum slope of the observed gradient distribution,
reasonable considering the minimal effect of (3.10) on the distribution.

3.5 NWP surface gradient accuracy

3.5.1 Tower measurements

Comparison between the observed refractivity gradient distribution for one year in
Kopisty, Czech Republic (Grabner and Kvicera 2005) for the surface layer between
heights of 2 and 60 metres above ground, and the ERA-I annual gradient distribution
for the 65 metre surface layer, is shown in Figure 3.12. While the NWP reanalysis gra-
dient distribution is reasonably accurate in the sub-refractive region beyond the 90%
point, from the median to the whole super-refractive part of the distribution, the nega-
tive gradients are under-estimated by ERA-I data.

Wenote however, that excellent agreementwas seen between the ERA-I annual gradient
distribution for the 65 metre surface layer, and detailed tower measurements from 2008
to 2012 at another location in the Czech Republic, Podĕbrady, east (not west) of Prague,
at latitude 50.13, longitude 15.13 degrees (Grabner et al. 2014, Fig. 19). This is only
117 km from Kopisty, but the NWP surface gradient modelling appears to be much
more successful in the very flat region of Podĕbrady than the more undulating country
around Kopisty.

In the study (Australia: ITU-R doc. 3J/169, 2018) of data collected at HildaWell inWest-
ern Australia in 2016, super-refractive gradients were only slightly under-predicted by
ERA-I in the mild month of September, and were reasonably accurate in August and
October, but were significantly under-predicted in April to July. The gradients in the
below 19 metres are generally more severe than higher up. Severe sub-refractive gra-
dients were under-predicted by ERA-I reanalysis in all seven and a half months that
measurements were taken.

The measured monthly gradient distribution for the month of April is compared with
the ERA-I 65 m April distribution in Figure 3.13. This study resulted in the warning
text “Note that particularly in coastal and maritime locations, or at latitudes between
approximately 40° N and 40° S, severe refractivity gradients in the surface layer may

Page 76



Chapter 3 Atmospheric Modelling

  
-800 -600 -400 -200 0

-4

4

99.99 %

99.9 %

99 %

90 %

50 %

10 %

1 %

0.1 %

0.01 %

Observed 2 – 60 m
ERA-Interim 65 m
 

Radio refractivity gradient, N-units/km

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f t
im

e

Figure 3.12. Refractivity gradients at Kopisty compared with ERA-I. Agreement between the
2004 observations and ERA-I is reasonable for the sub-refractive part of the distribution
beyond the 90% point. Super-refractive gradients, however, are under-estimated by
ERA-I NWP reanalysis data.

be underestimated by these digital maps,” referring to the ERA-I reanalysis 65 m data,
being added to Rec. ITU-R P453-14, (2019).

The gradient non-linearity demonstrated by Figures 3.8 and 3.9 may not necessarily be
replicated by NWP models, as shown in the example of Figure 3.14.

3.5.2 Radiosondes with 6 hourly data and fixed masts

As a test of the ERA-I NWP digital maps of radio refractivity gradient in the lowest
65 m of the atmosphere (Grabner et al. 2014, Rec. ITU-R P453-14, 2019), we use data
from the NOAA/ESRL Radiosonde Database, now atNOAA IGRA Radiosonde Database,
(2022), for sixteen radiosonde stations, including only periods of time where regular
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Figure 3.13. April 2016 surface refractivity gradient distribution at Hilda Well. Measured 1.5
to 60 m gradient (blue curve) compared with ERA-I reanalysis 0 to 65 m gradient
distribution for April (red).

6-hourly ascents have occurred, listed in Table 3.1. To this dataset we add data from
three locations where fixed sensors were installed on guyed masts.

Another radiosonde station with long-term 6-hourly ascents was identified, World Me-
teorological Organisation (WMO) station number 11520, Libuš, Prague, with 6-hourly
ascents from 1994 to 2012, but the median first height in the NOAA/ESRL Database for
those years is 337 metres. This is well in excess of our interpolation height of 65 metres,
and exceedingmedian first height in our 65metre surface layer testing, comparing high
and low height resolution data for the same ascents, in Figures 3.3 and 3.4. As there are
already twomast measurement locations in the Czech Republic in Table 3.1, the Prague
Libuš radiosonde is not included.
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Figure 3.14. Tower measured refractivity profiles compared with ACCESS-R NWP. The NWP
profiles (solid lines) are the forecast at 21:00 UTC 3 April 2016, from assimilation at
12:00 UTC, and measured data from the Hilda well radio mast are indicated by dotted
lines, after Australia: ITU-R doc. 3J/169, (2018, Figure 12).

The Hilda Well measurements in the north-west of Australia are only for 227 days, not
a full year. This risks an over-estimate, relative to a full year distribution, of the per-
centage of time for severe gradients that were observed, by a factor of up to 366/227,
or an under-estimate of severe gradients that were not observed, but the Hilda Well
measurements are included in this testing, in order to provide at least one test station
in the tropics.

While there are a number of regular radiosonde stations in the tropics providing long-
term data, many of them with 12 hourly ascents, we have found none with regular 6
hourly ascents.
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Table 3.1. Sixteen radiosonde stations with 6-hourly data, and three mast measurement
locations, for NWP gradient testing. Radiosondes with median first height z1 in the
6 hourly data, of less than 170 metres have been included, for reasonable accuracy in
estimating the refractivity gradient in the first 65 metres. The fixed mast measurements
at Kopisty and Hilda well are for the gradients to 60 metres.

WMO Radiosonde or mast location included data latitude longitude median
number years days z1

3882 Herstomonceux West, UK 1995–2016 1715 +50.90 +0.32 15
3808 Camborne, UK 1998–2002 1648 +50.22 -5.32 17
3496 Hemsby, UK 1994–2001 1768 +52.68 +1.68 17
8507 Graciosa, Azores, Portugal 2009–2011 505 +39.10 –28.03 42
16560 Cagliari, Italy 1995–2010 3434 +39.25 +9.05 50
16044 Udine, Italy 1995–2015 3581 +46.03 +13.18 52
3953 Valentia, Ireland 1999–2020 4672 +51.93 –10.25 58

16080 Linate, Milano, Italy 1995–2010 3362 +45.43 +9.28 59
10393 Lin, Germany 1994–2020 9605 +52.22 +14.12 68
16320 Casale, Brindisi, Italy 1996–2004 2864 +40.65 +17.95 75
10238 Bergen, Niedersachen, Germany 2006–2019 4768 +52.82 +9.93 76
6260 De Bilt, Netherlands 1994–2002 2990 +52.10 +5.18 84
47122 Osan, Korea 1994–2019 9274 +37.10 +127.03 102
74646 Lamont, Oklahoma, US 1997–2020 6608 +36.68 –97.47 131
10771 Kuemmersbruck, Germany 1995–2020 8176 +49.43 +11.90 157
10618 Idar Oberstein, Germany 1995–2020 8086 +49.70 +7.333 166
fixed { Kopisty, Czech Republic 2004 365 +50.54 +13.62 –
mast { Podĕbrady, Czech Republic 2008–2012 1826 +50.14 +15.14 –
data { Hilda Well, Western Australia 2016 227 –21.12 +115.97 –

Test results for these 19 locations

The long-term 65 metre surface refractivity gradient distributions for the stations in
Table 3.1 are compared with the NWP gradient distributions obtained by bilinear in-
terpolation for the station coordinates, of the ECMWF Reanalysis Interim (ERA-I) data
provided in Rec. ITU-R P453-14, (2019). Results for the super-refractive 0.1%, 1% and
10% points of the distribution are shown in Tables 3.2 and 3.3, and for the sub-refractive
99.9%, 99% and 90% points of the distribution in Tables 3.4 and 3.5.
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The observations in these tables have been corrected for bias due to the effect of mea-
surement varions on the observed gradient distributions, using (3.10).

There is a general tendency of the NWP reanalysis to under-estimate the magnitude of
the extreme gradients seen in the radiosonde and mast observations. This cannot be
attributed to observational error, as this trend was not only seen at most of these 19
locations; it was seen at around a hundred other radiosonde stations providing high
quality 12 hourly data. In all our analysis of radiosonde data, great care was taken to
exclude data from the very small number of ascents where faulty data (usually dew-
point data) could contribute to error in the tails of the gradient distribution.

For some locations such as Kuemmersbruck, Germany, accuracy of the ERA-I 65 metre
surface gradients is good formost of the distribution, from the super-refractive extreme
of the 0.1% point, Table 3.2, to the mildly sub-refractive 90% point, but even here, the
sub-refractive part of the distribution beyond the 90%point, Table 3.4, is severely under-
estimated by the NWP reanalysis.

Super-refractive gradients for the 1% point of the distribution are under-estimated at 17
of the 19 locations, while sub-refractive gradients for the 99% point of the distribution
are under-estimated at all 19 locations.

Perhaps themost serious indictment of theNWP reanalysis data for radio surface refrac-
tivity gradients is seen in the correlation across the 19 locations between this modelling
and the observations, in Tables 3.3 and 3.5.

If r is the Pearson correlation coefficient between the observations and the NWP reanal-
ysis at the n = 19 locations, for a particular percentage point, the statistical significance
of the correlation may be estimated by assuming that for the null hypothesis of no cor-
relation between the two, that t, given by

t = r

√
n− 2

1− r2
, (3.11)

follows Student’s t-distribution with n− 2 degrees of freedom. This is the same t-value
associated with the regression slope for simple linear regression.

We find that correlation between the observations and the NWP reanalysis is only sta-
tistically significant at the most super-refractive 0.1% and 1% points of the distribution.
Correlation is not significant at the 10% point, in Table 3.3, and not significant at any of
the sub-refractive points in Table 3.5. A scatter plot of the 0.1% level data from Table 3.2
and the 99.9% level data from Table 3.4 is provided in Figure 3.15.
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Table 3.2. Radiosonde and fixed mast stations observed super-refractive gradients, com-
pared with NWP reanalysis. The NWP gradient distributions are by bilinear interpo-
lation of the ECMWF Reanalysis Interim data provided in Rec. ITU-R P453-14, (2019).

Radiosonde or mast location 0.1% OBS,NWP 1% OBS,NWP 10% OBS,NWP
Herstomonceux West UK, 1995-2016 –306.9 –265.9 –198.4 –158.3 –96.3 –66.6
Camborne, UK, 1998-2002 –269.3 –230.0 –190.3 –121.5 –127.3 –58.1
Hemsby, UK, 1994-2001 –353.4 –314.2 –222.7 –172.3 –130.9 –72.5
Graciosa, Azores, Portugal, 2009-2011 –386.8 –100.7 –278.6 –76.9 –182.7 –62.8
Cagliari, Italy, 1995-2010 –922.0 –664.8 –631.0 –384.4 –371.1 –112.4
Udine, Italy, 1995-2015 –473.8 –349.5 –297.0 –247.8 –152.9 –127.2
Valentia, Ireland, 1999-2020 –434.4 –193.2 –295.2 –92.4 –197.6 –54.3
Linate, Milano, Italy, 1995-2010 –430.4 –296.3 –291.7 –213.3 –151.1 –118.6
Lin, Germany, 1994-2020 –364.1 –244.0 –216.5 –163.6 –114.3 –75.1
Casale, Brindisi, Italy, 1996-2004 –699.5 –805.7 –380.9 –532.1 –136.8 –190.7
Bergen, Niedersachen, Germany, 2006-19 –398.8 –233.4 –243.3 –145.4 –106.9 –68.8
De Bilt, Netherlands, 1994-2002 –407.8 –249.6 –286.2 –146.2 –171.9 –66.2
Osan, Korea, 1994-2019 –493.3 –253.4 –319.4 –181.4 –130.5 –92.1
Lamont, Oklahoma, US, 1997-2020 –515.8 –257.7 –310.2 –170.9 –160.3 –83.9
Kuemmersbruck, Germany, 1995-2020 –346.1 –291.7 –205.5 –193.6 –102.1 –92.7
Idar Oberstein, Germany, 1995-2020 –270.0 –292.4 –172.0 –193.2 –90.8 –87.0
Kopisty, Czech Republic, 2004 –590.7 –305.8 –442.1 –194.6 –272.8 –90.2
Podĕbrady, Czech Republic, 2008-2012 –284.2 –287.2 –203.9 –186.2 –104.2 –88.7
Hilda Well, Western Australia, 2016 –854.5 –506.5 –546.3 –327.8 –254.3 –153.3

Table 3.3. Error statistics of NWP reanalysis surface super-refractive gradients, at ra-
diosonde and fixed mast station locations. The ERA-I gradients for the 0.1% and
1% points of the distribution are significantly correlated with observations, but not the
10% points. However, super-refraction is generally under-predicted.

Statistical parameter 0.1% of the time 1% of the time 10% of the time
mean NWP error +140.0 Nu/km +96.0 Nu/km +68.1 Nu/km
NWP error standard dev. 124.7 Nu/km 101.8 Nu/km 71.8 Nu/km
Correlation coefficient r +0.754 +0.615 +0.234
t-statistic of r +4.734 +3.216 +0.990
Prob(|t| exceeded if null) 0.00019 0.0051 0.3359
Statistical signficance of Significant positive Significant positive Correlation

correlation coefficient correlation correlation not significant

Page 82



Chapter 3 Atmospheric Modelling

Table 3.4. Radiosonde and fixed mast stations observed sub-refractive gradients, compared
with NWP reanalysis. The NWP gradient distributions are by bilinear interpolation of
the ECMWF Reanalysis Interim data provided in Rec. ITU-R P453-14, (2019).

Radiosonde or mast location 99.9% OBS,NWP 99% OBS,NWP 90% OBS,NWP
Herstomonceux West UK, 1995-2016 +151.4 +23.9 +85.1 –14.0 +19.6 –31.3
Camborne, UK, 1998-2002 +78.3 –10.7 +5.5 –23.3 –36.8 –33.9
Hemsby, UK, 1994-2001 +122.8 +3.8 +20.0 –19.8 –32.4 –33.7
Graciosa, Azores, Portugal, 2009-2011 +372.5 –22.2 +161.8 –32.3 +13.2 –39.7
Cagliari, Italy, 1995-2010 +431.4 +5.5 +91.9 –16.9 –35.9 –38.6
Udine, Italy, 1995-2015 +182.9 +43.5 +64.0 –2.4 –15.3 –30.3
Valentia, Ireland, 1999-2020 +22.1 –15.3 –19.4 –24.4 –38.9 –34.0
Linate, Milano, Italy, 1995-2010 +146.8 +39.4 +44.0 –12.5 –20.1 –33.5
Lin, Germany, 1994-2020 +58.2 +1.2 +5.6 –22.5 –29.5 –30.4
Casale, Brindisi, Italy, 1996-2004 +404.3 –13.8 +208.1 –31.0 +27.3 –42.5
Bergen, Niedersachen, Germany, 2006-19 +179.2 +9.6 +62.6 –21.3 –22.9 –30.5
De Bilt, Netherlands, 1994-2002 +111.4 +23.3 +5.5 –15.1 –41.9 –32.3
Osan, Korea, 1994-2019 +194.4 +27.1 +72.5 –16.0 –3.1 –28.0
Lamont, Oklahoma, US, 1997-2020 +288.1 +15.2 +67.9 –14.7 –25.9 –26.5
Kuemmersbruck, Germany, 1995-2020 +133.7 +35.5 +46.5 –12.3 –22.7 –28.1
Idar Oberstein, Germany, 1995-2020 +132.2 +25.9 +51.8 –16.6 –23.0 –29.8
Kopisty, Czech Republic, 2004 +31.4 +21.3 –15.2 –16.3 –51.9 –29.3
Podĕbrady, Czech Republic, 2008-2012 +10.9 +17.2 –17.5 –18.6 –30.7 –29.5
Hilda Well, Western Australia, 2016 +551.1 –15.6 +343.3 –21.1 +17.5 –35.0

Table 3.5. Error statistics of NWP reanalysis surface sub-refractive gradients, at radiosonde
and fixed mast station locations. The ERA-I gradients for the 99.9%, 99%, and 90%
points of the distribution are not significantly correlated with observations across the 19
locations, and gradients are under-predicted at most locations.

Statistical parameter 99.9% of the time 99% of the time 90% of the time
mean NWP error –178.3 Nu/km –86.1 Nu/km –13.8 Nu/km
NWP error standard dev. 160.4 Nu/km 91.2 Nu/km 25.0 Nu/km
Correlation coefficient r –0.387 –0.297 –0.420
t-statistic of r –1.730 –1.283 –1.911
Prob(|t| exceeded if null) 0.1018 0.2165 0.0731
Statistical signficance of Correlation Correlation Correlation

correlation coefficient not significant not significant not significant
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Figure 3.15. Scatter plot of ERA-I gradients compared with observations. Super-refractive
gradients for 0.1% of the time (green triangles) and sub-refractive gradients gradients
for 99.9% of the time (red diamonds), for the 19 locations in Table 3.1, and the data
of Tables 3.2 and 3.4, for the 65 metre surface layer. Although the majority of super-
refractive gradients at the 0.1% level are under-predicted, the correlation between
the ERA-I NWP reanalysis data and the observations is reasonably good; however the
ERA-I NWP reanalysis prediction of sub-refractive gradients at the 99.9% level appears
to be poor. Points that lie close to the diagonal dark blue line are accurate estimates.
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3.5.3 Conclusions from NWP reanalysis testing

While numerical weather predictionmodels such as ECMWFhave been very successful
in the field of weather forecasting, this testing casts doubt on the use of current NWP
data in modelling radio refractivity gradients in the surface layer of the atmosphere,
especially at the sub-refractive end of the distribution.

At low or mid latitudes, the dominant contributor to radio refractivity surface gradient
is often the gradient of water vapour pressure. We note that although surface moisture
is assimilated (Dee et al. 2011), moisture gradients near the surface are not. Perhaps it
is unfair to expect a parameter that is not assimilated to be accurately modelled.

Since the testing described here was completed, reanalysis data from ECMWF that
is more detailed than ERA-I, known as ERA5, has become available, which provides
greater spatial and temporal resolution than ERA-I (Hersbach et al. 2020). If the failure
of ERA-I to model sub-refractive surface gradients adequately is due to the lack of suit-
able surface gradient data for assimilation, as we suspect, then the greater resolution
of ERA5may provide little improvement in modelling sub-refractive surface gradients,
though it would be worthwhile to test this as part of future work.

We therefore proceed to investigate empirical modelling of radio refractivity surface
gradient distributions.

3.6 Empirical modelling of surface gradients
The numerical weather prediction models discussed in Section 3.3 are physical models,
where the refractivity data are the results of solving a reasonable approximation to the
atmospheric physics that is understood to govern the way the atmosphere behaves.
When physical models are found to be to be impractical, empirical or semi-empirical
models may be employed.

Empirical models are developed by finding measurable parameters that are correlated
with the parameter to be modelled, in the case of linear regression models, or alterna-
tively a non-linear approach might be employed, such as deep learning.

If the choice of parameters for the prediction is informed by a knowledge of the atmo-
spheric physics involved, then a linear regression model may be used to predict the
magnitude of the response. This may be regarded as a semi-empirical model.
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3.6.1 Surface weather station data for empirical modelling
Surfaceweather stationdata for this research is obtained from theNOAAFTP site(NOAA
Global Hourly Data, 2022), for the eight years 2010 to 2017 (Salamon et al. 2020). In re-
gions with a relatively dense population of stations having temperature, humidity, and
air pressure data, we included those with 7.5 or more measurements per day in every
month for at least 5 full years; there were 2778 stations in those regions. Elsewhere, we
included stations with at least 3 full years of data, and 5 or more measurements per
day; this provided a further 2781 stations. There remained extensive regions in three
continents with no data, due to an absence of air pressure data, so a further 67 stations
with only temperature and humidity data were included. For these stations a nominal
sea-level pressure of 1000 hPa is assumed. All station pressures were estimated from
sea-level pressures by assuming a lapse rate of -0.12 hPa per m.

Overall, 5626 surface weather stations are included in generating the digital maps used
in this study, as depicted in Figure 3.16.

Figure 3.16. Surface weather stations, 5626 worldwide. Stations are indicated in regions with
many stations by red diamonds, or less stations by blue squares, and 67 stations with
no pressure data (yellow triangles) are included where necessary, after Salamon et al.
(2020, Figure 1)
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3.6.2 Surface dew point and Harvey sub-refractive model

As detailed above, we analyse surface weather station data for the eight years 2010 to
2020. For each night, we define the overnight dewpoint rise as the maximum dewpoint
between 6 am or after local time the next morning, minus the minimum dewpoint be-
fore or up tomidnight local time the previous evening, with local time defined as hours
UTC+ longitude / 15. Themaximumovernight dewpoint rise for the year,∆TDP, is con-
verted to an estimate of worst sub-refractive event refractivity increase (N-units) over
the lowest 75 metres of the atmosphere for the year dN75y, by the empirical expression
(Harvey 1987)

dN75y = 0.9∆TDP − 4 . (3.12)

We take the mean of the eight annual dN75y values, substituting dN75y = 0 for years
with dN75y < 0, as the estimate of the Harvey sub-refractive parameter dN75.

A world-wide map of dN75 is shown in Figure 3.17. This parameter suggests that sub-
refraction appears to be a wide-spread problem in much of Australia, and North Africa
to the Middle East and west India. It appears to be particularly severe in the Arabian
Gulf region. Southern United States appears to be another reasonably severe region.
This map shows more severe sub-refraction in the Arabian Gulf, and less severe sub-
refraction in Australia and South America, than a previously published version (Sala-
mon et al. 2020) due to revised time of day calculations.

We note that unlike the weak negative correlation between observed sub-refractive sur-
face gradients for 99.9% of the time and NWP reanalysis in Table 3.5, the observed
sub-refractive surface gradients for 99.9% of the time for those same 19 locations, taken
from the digital map of Figure 3.17, are significantly positively correlated with dN75,
with correlation coefficient r = 0.746.

The t-statistic of this r is +4.618, and for the null hypothesis, Pr(|t|>4.618) = 0.00025; in
other words there is a very significant positive correlation.

In the median case of those 19 locations, the gradient dN75/0.075N-units per km corre-
sponds to the 0.167% point of the observed annual 65 m surface gradient. The ITU-R
general model for converting a small annual percentage p(%) to aworst-month percent-
age pw(%) (Rec. ITU-R P.841-6, 2019) is

pw = 2.85p0.87. (3.13)

Using (3.13), we conclude that the Harvey model positive refractivity gradient corre-
sponds to approximately the 0.6% point of the worst-month distribution.

Page 87



3.6 Empirical modelling of surface gradients

Figure 3.17. Worldwide map of the Harvey model for refractivity increase in the lowest 75
m of the atmosphere, dN75. This is an empirical model, from overnight surface
dewpoint increase, assuming advection of moist air over a dry nocturnal surface duct
to be the dominant mechanism. The map is produced by spatial interpolation, as
described in Appendix A, using data from the weather stations of Figure 3.16.

Alternatively, for radio link design purposes, we may wish to estimate the 65 m surface
layer gradient not exceeded for 99.9% of the worst month, G65(99.9%wm). From (3.13)
we estimate that 99.9% of the worst month corresponds to 0.021% of the year, and the
following model is a logarithmic linear regression fit to the observedG65(0.021%) from
the stations in Table 3.1:

G65(99.9%wm) = 48.4 dN75
0.71 N-units per km. (3.14)

For this fit we have correlation coefficient r = 0.66, giving a t-statistic of 3.622, or a
significance of Pr(|t|>3.622) = 0.00211.

3.6.3 Surface refractivity anomaly and gradient distribution
An empirical model was developed (Salamon et al. 2014a), to predict the surface gradi-
ent distribution from the distribution of a variable NsA, referred to as surface refractivity
anomaly, which is the difference between surface refractivity Ns and its median value
for that season of the year and hour of the day. A simpler model based on this work is
obtained by taking only the 0.01% and 99.99% tail-points of theNsA distribution,NsA0.01

and NsA99.99, to predict the 0.01% and 99.99% tail-points of the 0-80m surface gradient
distribution, G80(0.01%) and G80(99.99%) (Salamon et al. 2014b).
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Linear regression analysis of data from 60 radiosonde stations provides the following
models, firstly for the super-refractive tail-point, in units of N-units per km,

G80(0.01%) = 216− 7.86 (NsA99.99 −NsA0.01) . (3.15)

and the sub-refractive tail-point, in the same units,

G80(99.99%) = −25 + 9.8max (−NsA0.01, 0.75NsA99.99) . (3.16)

A complete distribution is then interpolated from these two extremes, by considering
the distribution in terms of an inverse cumulative normal probability variableXp given
in (3.8). Denoting the values of Xp corresponding to the 0.01% and 99.99% tail points
asX0.01 andX99.99, the complete cumulative distribution of refractivity gradient can be
estimated by interpolation, using a modified sinh function (Salamon et al. 2014b):

G80(Xp) = (G80(99.99%) + 1.7C) exp [A (Xp −X99.99%)]

+ (G80(0.01%)− 1.47C) exp [B (X0.01% −Xp)]− 2C tanh
(
Xp

4

)
(3.17)

with A =
8000

5000 +G80(99.99%)
and B =

4000−G80(0.01%)

8000
. (3.18)

and C, which reduces the slope of the distribution in the region of the median, is

C = −G80(99.99%)A exp (−AX99.99%) +G80(0.01%)B exp (BX0.01%) . (3.19)

Considering this idea now in terms of the 65 metre surface layer for the locations in
Table 3.1, we test regression models for the 0.1% and 99.9% points of the 65 metre sur-
face gradient distribution, denoted respectively asG65(0.1%) andG65(99.9%), as a linear
function of refractivity parameters at the surface. As well as the corresponding points
of the surface refractivity anomaly,NsA0.1 andNsA99.9, we now addmedian radio refrac-
tivity Nsmed, as it has significant correlation with observed gradients, and find the best
ordinary least squares (OLS) regression models.

For the super-refractive tail value we have

G65(0.1%) = 1758.6− 5.70Nsmed − 10.12NsA99.9. (3.20)

The NsA0.1 parameter is not included in (3.20) as its contribution to the accuracy of
the OLS model is negligible; error standard deviation is 103.6 N-units either with it or
without it. The real test is with leave one out cross-validation, where each observation
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Table 3.6. Error statistics of an OLS model for 65 m super-refractive gradients at the 0.1%
point, compared with the ERA-I NWP. The correlation between the OLS model
leave-one-out cross-validated values and the observations at the 19 locations, is similar
to that between the ERA-I values and the observations, but the ERA-I NWP has greater
mean error.

Statistical parameter OLS model ERA-I NWP
leave-one-out test

mean error –6.8 Nu/km +140.0 Nu/km
error standard deviation 131.7 Nu/km 124.7 Nu/km
Correlation coefficient r +0.740 +0.754
t-statistic of r +4.255 +4.734
Prob(|t| exceeded if null) 0.00069 0.00019

is compared with an OLS model fitted to the other observed values; the error standard
deviation of (3.20) is then 131.7 N-units. This is degraded to 136.6 N-units if NsA0.1 is
included in the OLS model. The error statistics of the OLS model, using leave-one-out
cross-validation are compared with those of the ERA-I NWP in Table 3.6. Both have
similar correlation with the observations, and error standard deviation, but the NWP
has a substantial positive error, resulting in under-prediction of the negative super-
refractive gradients.

In the case of the sub-refractive tail, NsA99.9 is found to be not only less significant than
NsA0.1, but the leave-one-out testing shows that NsA99.9 is not useful as a parameter in
the OLS model. The OLS model fitted to the 19 observations is

G65(99.9%) = −2004.6 + 6.09Nsmed − 6.26NsA0.1. (3.21)

The error statistics of the OLS model, again with leave-one-out cross-validation are
compared with those of the ERA-I NWP in Table 3.7. In this case, the OLS model ap-
pears to have much better accuracy than the ERA-I NWP, and the correlation of the
OLS model with observations, r = +0.867, is somewhat better than that of the Harvey
model, r = +0.746. Therefore, (3.21) would appear to be an alternative to the Harvey
model, for predicting sub-refractive gradients.

However, these models (3.20) and (3.21), are fitted to data from stations that are all
either inland, or at coastal locations of large land masses. While it seems logical that
the super-refractive extreme G65(0.1%) is correlated with unusual increases in surface
refractivity indicated by NsA99.9 as indicted by (3.20), and the sub-refractive extreme
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Table 3.7. Error statistics of an OLS model for 65 m sub-refractive gradients at the 99.9%
point, compared with the ERA-I NWP. The correlation between the OLS model
leave-one-out cross-validated values and the observations at the 19 locations, is much
better than that between the ERA-I values and the observations.

Statistical parameter OLS model ERA-I NWP
leave-one-out test

mean error –1.4 Nu/km –178.3 Nu/km
error standard deviation 76.1 Nu/km 160.4 Nu/km
Correlation coefficient r +0.867 –0.387
t-statistic of r +6.727 –1.730
Prob(|t| exceeded if null) 0.000007 0.10175

G65(99.9%) is correlated with unusual reductions in surface refractivity indicated by
NsA0.1 as indicted by (3.21), there is no reason to assume the relationship between these
surface observations and the gradient near the surface, will be the same in mid-ocean
locations as it is on land.

In fact, water vapour and temperature may be more uniform with height in mid ocean
than over land, leading to reduced gradients for the same observations at the surface.
In order to identify mid-ocean radiosonde stations to test this, we use the criteria that
12 hourly ascents are available, station elevation is 5 metres or less, and 50 kilometre
radius mean terrain or sea elevation is less than 0.25 metres. We have processed long-
term data from 226 radiosonde stations during this research, but only seven meet these
criteria, listed in Table 3.8.

The empirical model (3.20) over-predicts relative to the 99.9% point of the observed
distribution for these stations, with a mean ratio of 3.77. The Harvey model (3.12),
based on advection of moist air, over-predicts slightly relative to the 99.8% point of
the observed distribution, with a mean ratio of 1.11. Hence we conclude that even
though theHarveymodel was developed to predict over-land sub-refraction, it appears
empirically to provide a reasonable world-wide model for sub-refractive gradients.

Theworldmap of theHarveymodel dN75 is shown in Figure 3.17. Strong sub-refraction
in mid ocean regions appears to be largely supressed.
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Table 3.8. Mid-ocean island radiosonde stations with 12-hourly ascents. These stations all
have positive observed gradients for at least 0.5% of ascents, but varying over a wide
range, so we test the ratio betwween the model predicted gradients and the observed
gradients. The empirical model (3.20) over-predicts severely with a mean ratio of 3.77,
while the Harvey model (3.12) over-predicts slightly relative to the 99.8% point of the
observed distribution, with a mean ratio of 1.11.

WMO Station latitude, deg longitude, deg elevation, m
91376 Majuro/Marshall Island +7.08 +171.38 3
61967 Diego Garcia –7.3 +72.4 3
96996 Cocos Island –12.18 +96.82 3
43369 Minicoy Island +8.3 +73.15 2
72201 KeyWest +24.55 –81.75 1
71600 Sable Island +43.93 –60.02 4
59981 Xisha Island +16.83 +112.33 5

3.7 Similarity theory and surface duct models
Knowledge of the refractive index profile at radio frequencies in the surface layer of
the atmosphere is required to predict the performance of terrestrial radio systems. Al-
though a constant gradient of refractivity with height is often assumed, both measure-
ments and theory suggest that gradients in the lowest 20 metres of the atmosphere may
often be greater than those above this level. For the special case of evaporation ducts
over water in a neutral atmosphere, a logarithmic refractivity profile is normally as-
sumed, but we propose (Salamon et al. 2015) a general model that includes both this
case and the linear profile, as special cases, and may also be used to approximately
model stable and unstable surface atmospheres. This new model may be particularly
suited to predicting sub-refractive fading.

A logarithmic refractivity profile, for a neutral atmosphere, or for a stable atmosphere
at heights below the Obukhov length, is a consequence of the exchange coefficientK(z)

increasing linearly with height (Obukhov 1971). However, in an unstable atmosphere,
where the heat flux is directed upwards, the increase inK(z)with height is more rapid,
asymptotically proportional to z4/3 (Obukhov 1971).

Refractivity profiles are often expressed in terms of modified refractivity M(z), given
in terms of M-units, by

M(z) = N(z) + 0.157z , (3.22)
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where N(z) is the refractive index, as parts-per-million in excess of unity, at height z
metres. The modification term 0.157z replaces the physical curvature of the Earth by
an added refractive index gradient, to allow the convenience of flat-Earth analysis.

Evaporation ducts, resulting from wind over a water surface, are typically modelled
(Paulus 1990) as

M(z) =M(0) +GM

[
z − (δ + z0) ln

(
z + z0
z0

)]
, (3.23)

where z0 is the roughness length, usually assumed to be 0.00015 metres in evaporation
duct modelling, and δ is the duct height, defined as the height where the modified gra-
dient M ′(z) = 0. GM is the standard modified refractivity gradient, with approximate
value of +0.12 M-units/m. Positive modified gradients greater than this are referred to
as sub-refractive, and may result in diffraction loss on terrestrial radio paths, due to the
strong curvature of ray-lines away from the Earth.

Positive modified gradients less than the standard gradient are referred to as super-
refractive, as line-of-sight distances are greater than under standard conditions. Linear
refractivity profiles are often assumed in the case of sub-refaction (Vigants 1981, Har-
vey 1987) or mild super-refraction, i.e modified refractivity gradientM ′(z) is assumed
to be constant.

If the modified gradient becomes negative, the downward curvature of ray-lines ex-
ceeds the curvature of the Earth. This is referred to as a duct, which may result in
strong terrestrial propagation over large distances.

3.7.1 A new general surface layer model

The logarithmic model of (3.23), and the linear model with constant M ′(z), may both
be expressed as special cases of the one model, by considering that ln(x) is the limit, as
p approaches zero, of (xp − 1) /p. We then introduce a new parameterDp, with units of
height, and re-state (3.23) as the special case p = 0 of the general model, in the form

M(z) =M(0) +GM

[
z −Dp ln

(
z + z0
z0

)]
, if p = 0, (3.24)

and for all other values of p, we have

M(z) =M(0) +GM

z −Dp

(
z+z0
z0

)p
− 1

p

 . (3.25)
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The modified refractivity gradientM ′(z), by differentiating (3) or (4) with respect to z,
for all values of p, is

M ′(z) = GM

1−Dp

(
z+z0
z0

)p−1

z0

 . (3.26)

IfDp > 0 and p < 1, the profileM(z) represents a surface duct, and the duct height δ is
determined by settingM ′(z) = 0, giving

δ =

(
Dp

zp0

) 1
1−p

− z0 , (3.27)

or alternatively
Dp =

[
(δ + z0)

1−p] zp0 . (3.28)

A surface sub-refractive layer may be represented by this model, by using a negative
value ofDp. This generalises a previous suggestion (Tang et al. 2012), which described
sub-refraction as an anti-duct, using negative Dp in (3.24).

3.7.2 Fitting the model to observations

If refractivity at the surface M(0), and M(z1) at height z1 above the surface, are both
known, then Dp is given by

Dp =
z1 − [M(z1)−M(0)] /GM

ln [(z1 + z0) /z0]
, for p = 0, (3.29)

or otherwise
Dp = p

z1 − [M(z1)−M(0)] /GM

[(z1 + z0) /z0]
p − 1

. (3.30)

SubstitutingDp in (3.24) or (3.25) then provides a family of possible refractivity curves
for the same values ofM(0), z1,M(z1), and z0, depending on the value of p.

For the p = 0 case of (3.24), z0 has a specific physical meaning, as the roughness length
of the surface, but this physical meaningmay not necessarily hold for (3.25), and in fact
z0 becomes irrelevant in (3.25) if p = 1.

In practice, model variations that result from varying the value of z0 can be fairly accu-
rately compensated for, by adjusting the value of p. This is demonstrated in Figure 3.18
for two different ducting refractivity profiles, each produced in three ways, each having
significantly different values of z0. Despite widely different z0 values, closely replicated
profiles are achieved, by varying the value of p.
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Figure 3.19 is a similar demonstration for two non-linear sub-refractive profiles, as well
as the linear p = 1 case, which is independent of z0.
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Figure 3.18. Modelling two different ducts, each with three different values of z0. Refractivity
profiles for M(0) = 320, M(15) = 300, and GM = 0.12 M-units/m, the two duct
profiles being generated firstly with the usual z0 value for evaporation ducts of 0.00015
metres, and then super-imposed profiles with smaller and larger z0 values, produced
by adjusting the value of p in (3.25), after Salamon et al. (2015, Fig. 1).

Thus we may, for practical purposes, choose to define z0 to be the physical parameter
roughness length, for all values of p, and then let p andDp be the parameters that control
the shape of the refractivity profile.

3.7.3 Practical significance of different p-values – super-refraction

Considering ducting propagation, different propagation characteristics would be ex-
pecteddue to differences in duct height. In the example of Figure 3.18, with z0 = 0.00015

m, and the samemean gradient in the lowest 15metres, duct height is 15.8mwith p = 0,
and 3.8 m with p = −0.25.
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Figure 3.19. Modelling three sub-refractive profiles, using various values of z0. Refractivity
profiles for M(0) = 300, M(80) = 332, and GM = 0.12 M-units/m, for the usual linear
assumption p = 1, and two non-linear profiles, each generated firstly with z0 = 0.05

m, and then super-imposed profiles with smaller and larger z0 values, produced by
adjusting the value of p in (3.25), after Salamon et al. (2015, Fig. 2).

3.7.4 Practical significance of different p-values – sub-refraction

Modelling of sub-refraction conventionally assumes a linear refractivity profile (Vi-
gants 1981,Harvey 1987), or p = 1 in terms of (4), but non-linear profiles, particularly in
the region of p = 0.5, may result in greater diffraction loss than the linear case. Thismay
be important for predicting sub-refractive fading, as this type of fading predominantly
occurs in a stable atmosphere prior to sunrise (Harvey 1987). In a stable atmosphere,
the refractivity profile is expected (Obukhov 1971) to be logarithmic at heights below
the Obukhov length L; and essentially linear at heights exceeding L. Although some-
thing of the order of 20 metres may be considered typical, L is proportional to the cube
of wind speed and inversely proportional to heat flux (Obukhov 1971), so the value of
L would vary considerably. The model presented here, with p = 0.5, may be a useful
compromise for predicting sub-refractive fading, as it seems to be close to a worst-case
profile, and mid-way between the type of profiles expected above and below the vary-
ing Obukhov length.
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The impact on radio propagation of different refractivity profiles, for the same mean
gradient, may be studied using the parabolic equation method (Barrios 1994, Dono-
hue and Kuttler 2000). Field-strength predictions for the three refractivity profiles of
Figure 3.19, at 10 GHz, with a transmitter height of 80 m, are shown in Figures 3.20,
3.21, and 3.22, for p values of 1, 0.5, and 0, respectively. Considering diffraction loss to
receivers at low heights, more than 30 km from the transmitter, the linear case p = 1

of Figure 3.20 suffers less loss than the logarithmic case p = 0 of Figure 3.22, but the
greatest loss is encountered by the p = 0.5 case of Figure 3.21.

Figure 3.20. Predicted field relative to free-space, and ray tracing, for p = 1. Sub-refraction
+400 M-units/km: M(0) = 300, M(80) = 332. Transmitter: 10 GHz at 80 m, with
traced rays 0.2 milliradians apart, after Salamon et al. (2015, Fig. 3).

3.7.5 Summary - the new log power model

We have shown that the conventional logarithmic evaporation duct refractivity profile
model, and the simple linear refractivity profile model, are both special cases of a gen-
eral readily differentiable log-powermodel. It has parameters p andDp, whichmay both
be varied to produce a range of surface refractivity profiles, whilemaintaining the same
values of the parameters of roughness length z0 and standardmodified refractivity gra-
dient GM.
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Figure 3.21. Predicted field relative to free-space, and ray tracing, for p = 0.5. Sub-refraction
+400 M-units/km: M(0) = 300, M(80) = 332. Transmitter: 10 GHz at 80 m.
GM = 0.12 M-units/m and z0 = 0.05 m, after Salamon et al. (2015, Fig. 4).

We have demonstrated that for a givenmean refractivity gradient in the surface layer of
the atmosphere, varying the power parameter pmay result in considerable differences
in the predicted radio field-strength. Information about a shape parameter such as
this may be required for accurate field strength prediction, in addition to the usual
parameters of surface refractivity gradient or duct height. This model has been found
to be a useful extension of the conventional neutral atmosphere model (Claverie 2019).

3.8 Conclusion
Numerical weather prediction models aim to represent the physics of the atmosphere,
to allow forecasting of the future state of the atmosphere, or by assimilation of data
about the current state of the atmosphere, provide an estimate of additional parameters
that have not been measured, in a process known as re-analysis.

It was hoped that this would be able to provide reliable world-wide radio refractivity
surface gradient data, to assist with terrestrial radio propagation modelling. While this
has been moderately successful in some locations for the median to super-refractive
part of the surface gradient distribution, it has been less successful in some littoral and
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Figure 3.22. Predicted field relative to free-space, and ray tracing, for p = 0. Sub-refraction
+400 M-units/km: M(0) = 300, M(80) = 332. Transmitter: 10 GHz at 80 m.
GM = 0.12 M-units/m and z0 = 0.05 m, after Salamon et al. (2015, Fig. 5).

maritime locations, especially at low latitudes. We have found, by comparison of NWP
re-analysis data with measurements, the NWP approach to be un-successful at almost
all locations, in modelling the sub-refractive extreme of the surface gradient distribu-
tion, with NWP models available until recently. However, as future work, it would be
worthwhile to test if this deficiency in NWP modelling remains with the recently avail-
able ERA5 reanalysis data (Hersbach et al. 2020).

A central aim of this research is to predict the severe median depressions due to clear-
air atmospheric effects, seen in many line-of-sight radio links. In the past this has often
been attributed to sub-refraction, and while this may not be the main cause, we must
conclude that NWP modelling combined with PEM analysis cannot be relied on at this
stage to solve the problem. In any case, that approach would have been computation-
ally difficult to implement in practical design work, even with recent developments in
computing power.

Instead, we require a more empirical approach to the problem. The success of empir-
ical regression models in predicting surface gradient cumulative distributions in Sec-
tion 3.6, using only time series data from surface weather stations, suggests these same
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surface parameters may be useful for predicting clear-air fading cumulative distribu-
tions for line-of-sight microwave radio links. Therefore we explore regression mod-
elling of radio link fading severity in the next chapter.
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Chapter 4

Regression modelling of fixed
radio link multipath fading

C ONVENTIONAL multipath prediction models have been based on
ordinary least squares (OLS) regression, which assumes the obser-
vations are independent. However, the spatial distribution of fad-

ing observations is uneven, with many in Europe, which may be to some
extent correlated, but few observations in Africa or Asia. We refine the
regression modelling, taking spatial correlation into account with gener-
alised least squares (GLS) regression. In this chapter we describe a cross-
validation technique to optimise the selection of regression parameters, and
find parameters generated from surface weather station data useful.
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4.1 Introduction
As previously described (Salamon et al. 2020), significant advance in multipath fading
models camewith the development of ordinary least squares (OLS) regressionmodels,
using as many parameters as were found to be practically useful (Tjelta et al. 1998). By
the time of thatmodel, 265 records had been accumulated in the ITU-R line-of-sight link
fading databank, DBSG3 Table I-2 (Rec. ITU-R P.311-17, 2017), “Line-of-sight average
worst-month multipath fading and enhancement in narrow bandwidths,” and 251 of
those were found to be suitable for the regression analysis.

The following papers cited in this chapter were all produced as part of the work for this
thesis: (Salamon et al. 2016, Salamon et al. 2019).

4.2 Ordinary least squares (OLS) regression models
As well as additional observed fading records, several new prediction parameters had
been added since an earlier study with only 47 observed records (Tjelta et al. 1990). A
progressive approach was now used in selecting prediction parameters; the one with
most significant correlation with the observed fading selected first, and an OLS regres-
sion model generated. The next parameter chosen was that with strongest correlation
with the residuals (observed minus predicted) from the previous model, and a new
regression model produced. This process was continued until further improvements
in the model accuracy became minimal.

4.2.1 The Recommendation ITU-R P.530-9 2001 model

Most early prediction models, such as (1.2) to (1.12), included link frequency in the
form a log(f), or fa/10 in the power-law form of (1.8). Despite the 251 databank records
then available, log(f) did not appear to be a significant parameter in the regression
analysis; f was statisticallymore significant, so based on thiswork, the ITU-Rprediction
model was amended(Rec. ITU-R P.530-9, 2001) to

A0.01 = 32 log(d)− 9.2 log(1 + |εp|)− 4.2 log(sa)

+ 0.32f − 0.03dN1 − 0.0085hL − 39 dB, (4.1)

where εp is the path inclination in mr, hL is the height above sea level of the lowest an-
tenna, sa is terrain elevation standard deviation (m, over a 1 degree latitude by 1 degree
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longitude square), and dN1 is the 1% point of the cumulative distribution of refractivity
gradient in the 65 m surface layer. This was derived from 2 years of NWP reanalysis
data from the European Centre for Medium-range Weather Forecasting (ECMWF).

Although not evident from the OLS regression analysis, there was concern that the
model variation between 1 GHz and 10 GHz (3 dB) was insufficient, while the increase
inmodel prediction between 10 GHz and 80 GHz (22 dB) appeared to be excessive. Ac-
cordingly, itwas decided, and internationally agreed, to amend the frequency term(Rec.
ITU-R P.530-13, 2009) to 8 log(f). Clearly there was a need for more data from links in
different frequency bands in the databank, to clarify the choice of frequency coefficient
in future models.

4.2.2 Development of the ISAP 2016 model

More data records were added to the DBSG3 table, 3 from Turkmenistan and 8 from
Kyrgyzstan in 2007. Then a technique was developed in Australia to produce monthly
fading distributions from installed radio links, by estimating the cumulative distribu-
tion in each 15 minute period from observed maximum and minimum receive levels,
and number of seconds below certain thresholds (Australia: ITU-R doc. 3M/186, 2011);
data that was being routinely captured by the network management system. This en-
abled average-year worst-month fading distributions to be produced for many links,
without the cost of installing additional monitoring equipment. By 2016, 70 records
from Australia had been produced, all in the 7.5 and 8 GHz bands. Additional infor-
mation on processing this data from small and medium capacity systems to avoid the
influence of selective fading is given in (Australia: ITU-R doc. 3M/45, 2016), and sum-
marised in Appendix B. A new OLS model was developed, for the first time including
a number of records from Australia (Salamon et al. 2016).

A similar process to that described above (Tjelta et al. 1998) was used to select vari-
ables for the OLS regression, but as well as new data records (there were now 327), we
added new prediction parameters, obtained from surface weather station data. Two
were composite parameters v1 and v2, given by

v1 =
N0.3

sA90−10 d
0.5

h0.25c

, and (4.2)

v2 =
dN75

3

h2c
, (4.3)
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where hc is the mean height of the rayline above the terrain (at standard refractivity
gradient of -39 N-units per km, ignoring tree cover, if any). The predicted (Harvey
1987) refractivity increase in the lowest 75 m of the atmosphere (we assume for 0.6%
of the worst month of the year) is dN75, while NsA90−10 and NsA0.1 are the interdecile
range and 0.1% point respectively of the distribution of surface refractivity anomaly,
the difference between surface refractivity and the median value at that location for the
same hour of the day and month of the year. In that study (Salamon et al. 2016), these
parameters dN75,NsA90−10, andNsA0.1, were obtained from surface weather station data
for the years 2012 to 2014. The resulting OLS regression model was

A0.01 = 2.04v1 + 0.0679v2 + 17.71 log(d)− 0.171NsA0.1

− 9.06 log(1 + |εp|)− 0.0278dN1 + 0.0374dN1ERAI

+ 7.41 log(f + 6)− 0.003hL − 19.63 dB, (4.4)

This OLS model had much better accuracy than the existing ITU-R model (Rec. ITU-R
P.530-17, 2017) for the post-2007 links that were not included in fitting that model, and
similar accuracy as before for the ones that were included in fitting that model. The
log(f) term still appeared insignificant, but log(f + 6) was found to be significant.

It was suspected that the statistical significance attributed to some of the parameters
in this new model by the t-statistic may have been inflated, so we investigated taking
spatial correlation into account, by using generalised least squares (GLS) regression
instead of OLS regression (Salamon et al. 2019). This analysis confirmed that parameter
dN1ERAI, nominally the same parameter as dN1 but from a more recent and much more
extensive ECMWF reanalysis (Grabner et al. 2014), was not significant after all.

4.3 Potential impact of climate change
Direct observation of a trend in average yearworstmonth fading is not possible because
worst month fading data for individual years is not recorded in the data table. Even if
it were, year-to-year variability would obscure any trend as the fading data from most
links is only generated from one or two years of observations. We can however make
long-term observations of weather station data parameters that we find to be significant
in predicting fading severity.

The fading measurements used in this study date back to as early as 1953, with many
of the measurements outside Australia occurring in the 1970’s to 1990’s. However, we
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use parameters generated from weather station data from 2010 to 2017. This is an ap-
propriate time period for the Australian fading data, all from 2009 to 2019, but is two
or more decades later than the fading observed in other countries.

The possibility that there may have been some drift in the prediction parameters from
weather stations, over time, must be considered. The 5626 stations for the years 2010 to
2017 includes many that are in regions where there was no fading data prior to 2007,
so we exclude stations east of 90 degrees east longitude, or west of 140 degrees west
longitude, or stations in the USA south of 42 degrees north latitude. There are no USA
fading records in the data table, but a number of records are fromCanada, the southern-
most with a latitude of 43.12 degrees. Only stations with continuous data for the years
2010 to 2017 as well as 1990 to 1997 are included in this comparison.

These leaves 543 stations where we compare parametersNsA0.1 and dN75 from the years
2010 to 2017 with the same parameters from the same stations for years 1990 to 1997.
For both these parameters, the number of stations having an increase or a decrease over
the 20 years are reasonably similar; 55% of them have an increase in severity of NsA0.1,
while 46% of them have an increase in severity of dN75.

In the case of the NsA0.1 parameter, the mean difference is –0.147 N-units, but an un-
weighted mean is an OLS estimate, which ignores spatial correlation that may exist be-
tween nearby stations. This correlation may be taken into account with a GLS estimate,
using the methods described in (Salamon et al. 2019), or in the following section, as the
mean difference is a regression model with only an intercept and no other parameters.
In the case ofNsA0.1, the GLS estimate of the difference over 20 years is -0.41N-units, but
this is onlymarginally significant, with a 95% confidence interval from –0.81 to –0.01 N-
units. While a time correction for NsA0.1 drift does not appear essential, we assume the
minor correction of -0.02 N-units per year, based on the GLS difference over 20 years.

The change in dN75 is less significant, with an OLS mean difference of –0.014 N-units,
or an insignificant GLS estimated increase of +0.052 N-units. The 95% GLS confidence
interval is from –0.47 to +0.57 N-units. Hence the 2010 to 2017 dN75 data appears ap-
propriate for the earlier fading data.

The above results for NsA0.1 and dN75, parameters significant for predicting clear-air
fading, are in marked contrast to mean temperature difference for the same surface
weather stations, comparing the same time periods. The overwhelmingmajority (94%)
of these stations have 2010 to 2017 mean temperature greater than 1990 to 1997 mean
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temperature, with an OLS mean difference of +0.69 degrees. The GLS difference is
+0.767 degrees, with a 95% confidence interval from +0.688 to +0.847 degrees.
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4.4 Development of the new model

4.4.1 OLS and GLS

A detailed desciption of OLS and GLS estimation is given in Salamon et al. (2019), but
briefly, OLS assumes uncorrelated errors, and the regression coefficients bOLS are given
by

bOLS = (X′ X)−1X′y, (4.5)

where y is the column vector of observed responses, corresponding to the rows of
matrix X, whose columns are the prediction parameters, the first column being all
ones, to estimate the intercept, the first element of bOLS. The regression model estimate
ŷ = XbOLS minimises the sum of squared residuals e = ŷ− y.

If the errors are known to be correlated, GLS estimation minimises the squared resid-
uals of a transformed problem, the aim being to eliminate error correlation by pre-
multiplying X and y by symmetrical matrix P:

bGLS = (X′S−1 X)−1X′S−1y

where

S−1 = P′P.

(4.6)

For simplicity, we assume an exponential spatial correlation function (Salamon et al.
2019) of the form

φij = (1− kn) exp
(
−rij
r0

)
, (4.7)

where rij is the distance between different locations i and j, and kn is a small positive
real “nugget affect” parameter representing incomplete correlation between co-located
data points, to give matrix S as

S =



1 φ12 φ13 . . . φ1n

φ21 1 φ23 . . . φ2n

φ31 φ32 1 . . . φ3n

... ... ... . . . ...
φn1 φn2 φn3 . . . 1


. (4.8)

The suitability of the GLS scheme may be judged by a correlation test on the trans-
formed residuals Pe. We do this with a spatial equivalent (Salamon et al. 2019) of the
Durbin-Watson statistic dw, the sum of squared residual forward differences divided
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by the sum of squared residuals. A value of dw close to 2 is expected for uncorrelated
residuals; dw < 2 for a positive correlation, or dw > 2 for a negative correlation.

The Durbin-Watson statistic dw (Durbin and Watson 1951, Durbin and Watson 1971)
for a uniformly spaced one dimensional series of residuals e is defined as

dw =
SSRFD
SSR =

∑N
i=2(ei − ei−1)

2∑N
i=1 e

2
i

, (4.9)

where SSRFD is the sum of squares of residual forward differences, and SSR as the sum
of squares of residuals. A matrix formulation is available for these, by constructing the
matrix A as (Durbin and Watson 1951)

A =



1 −1 0 . . . 0 0

−1 2 −1
. . . 0 0

0 −1 2
. . . 0 0

... . . . . . . . . . . . . ...

0 0 0
. . . 2 −1

0 0 0 . . . −1 1


. (4.10)

Using A, SSRFD may be evaluated as e’Ae, and with SSR = e’e we have

dw =
e’Ae
e’e

. (4.11)

4.4.2 The nearest new neighbour path

We generalise the concept of the sum of squares of forward differences from a one-
dimensional time-line, to space of any number of dimensions, by constructing the near-
est new neighbour path through space from data point to data point, starting with the
point having the greatest sum of distances to all other data points (Salamon et al. 2019).
Then move from point to point, each time going to the nearest neighbour not already
selected, until all data points are included in the path, as demonstrated in Figure 4.1.
Where more than one data point share the same location, for the calculation of dw we
take them as a single data point, having value equal to the mean of the individual val-
ues.

The parameters in (4.7) are found by producing a semivariogram γ(h) of the OLS resid-
uals, using the Cressie-Hawkins robust estimator (Cressie 1993) applied to distance
classes numerically equal to the number of residual pairs with zero geographic dis-
tance (h = 0). The sill value of the semivariogram is assumed to be OLS residual
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Figure 4.1. Nearest new neighbour path in two dimensions, with 40 randomly located points.
The start point is the one with greatest sum of distances to all other points. At each
step, the next one is the closest point not already selected. For locations with more than
one data point, the nearest neighbour may be co-located, but to calculate the effective
Durbin-Watson statistic dw, they are taken as a single point, with value the mean of
the individual values, after Salamon et al. (2019, Figure 7).

variance σOLS, and the nugget parameter kn is set to the Cressie-Hawkins estimate of
γ(h = 0) divided by σOLS. The parameter r0 is set to the value where equal numbers of
the semivariogram estimates for distances less than 2000 km are above and below the
exponential curve γ(h) = σOLS[1− (1− kn) exp(−h/r0)].

While OLS estimation of the regression parameters minimises the RMS error of the
model with respect to observations included in the model fitting, we explore the use
of GLS regression models, the aim being to reduce the influence of spatially correlated
observations. The effective spatial Durbin-Watson statistic (Salamon et al. 2019) of the
residuals of the following OLS model, dw = 1.06, indicates very significant positive
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spatial correlation. TheGLSmodel, with kn = 0.105 and r0 = 219.5 km, has transformed
residual dw = 1.95, indicating substantial elimination of the spatial correlation.

4.4.3 Cross-validation and parameter selection

In previousOLS regressionmodels formultipath fading (Tjelta et al. 1998, Salamon et al.
2016), model parameters have been selected one at a time, as the one with the strongest
correlation, initially with the observations, and then with the residuals of the previous
regression model. The risk with this procedure is that an initially significant parameter
may become insignificant, as more parameters are added.

Another problem is that if OLS residual RMS is taken as the criterion, without cross-
validation (testing with observations not included in the model fitting), the model will
appear to always improve as new parameters are added, whether they are really useful
or not.

We address these problems by a form of cross-validation that may be described as leave-
one-region-out. For each of the regions described in Table 1.1, predictions are performed
with a regression model fitted to all the data from the other 20 regions. Rather than
progressively adding parameters to the model, all possible binary combinations of in-
cluding or not including parameters in the model are tested, and the combination pro-
ducing the lowest overall leave-one-region-out RMS error is chosen.

The new parameters

The parameters are similar to those in (4.4), but using more extensive weather station
data, and with some improvements, as follows.

A new regression parameter hc is now included, the mean rayline clearance (m) above
terrain (ignoring tree cover, as its height is often unknown) at standard refractivity
gradient (effective Earth radius of 8500 km).

The sub-refractive parameter v2 of (4.3) is now replaced by vsr, now depending on path
length d (km) as well as hc, to avoid excessive values for low clearance very short paths
in regions of high dN75:

vsr =

(
dN75

50

)1.8

exp
(
− hc

2.5
√
d

)
. (4.12)

The previous cubic dependency with dN75 is now reduced to a power of 1.8, as that is
found to provide better accuracy than alternative exponents.
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After testing of a number of different options, we find that a new path inclination pa-
rameter |εp|0.39 appears to be an improvement over the conventional log(1 + |εp|).

The recent inclusion of a number of relatively low frequency 2 GHz records in the fad-
ing data, reduces uncertainty in estimating frequency dependence of the model. A
new frequency parameter log(f 2 + 13) appears to be more significant than the previ-
ous parameters log(f + 6) in (4.4), or log(f) in the current ITU-R model (Rec. ITU-R
P.530-17, 2017).

Terrain area standard deviation Sa is used in this new model, similar to that employed
in (Rec. ITU-R P.530-17, 2017), but with a refined method of evaluation.

The newSa is a standard deviation from the sameworld-wide 30 second gridded terrain
data, but over a circular area of 100 km radius, with raised cosine weighting tapering
to zero at the edge of the area. In order to avoid undue weighting of polar regions due
to the longitude grid converging at the poles, random sampling of the terrain data with
probability 4 cos(φ), where φ is latitude in radians, is used at latitudes with magnitude
exceeding 75.522 degrees.

Parameter refinement

Four of the regression parameters are simple ones, involving no arbitrary internal coef-
ficients, namely log(d), hL, dN1, and NsA0.1, and their respective regression coefficients
are automatically determined by the OLS or GLS regression.

The other five do include arbitrary coefficients: log(f 2+13), |εp|0.39, tanh((hc−147)/125),
vsr = (dN75/50)

1.8 exp[−hc/(2.5
√
d)], and tanh((Sa − 48)/53). These eight coefficients,

13, 0.39, 147, 125, 1.8, 2.5, 48 and 53 respectively, are manually optimised by using
only rounded values, optimising each in turn for the lowest overall leave-one-region-
out cross-validated RMS error, repeating the process until no further improvement is
obtained. The use of rounded rather than exact coefficients makes this a manageable
finite procedure.

After this parameter refinement, the above parameter selection procedure, testing in
turn all 512 possible combinations of the nine parameters for lowest overall leave-one-
region-out cross-validated RMS error, is repeated to ensure all these parameters are
still useful. This overall cross-validated RMS error is 5.849 dB for the OLS model, and
slightly lower, 5.827 dB, for the GLS model.
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Table 4.1. Best leave-one-region-out cross-validated OLS (RMS error 5.85 dB) and GLS
(RMS error 5.83 dB) models. Both regression coefficients, and the corresponding
t-statistics, indicating statistical significance, are shown. As there are many data points,
the t-distribution here is close to a normal distribution with unit variance.

Parameter OLS coefficient OLS t-statistic GLS coefficient GLS t-statistic
(Intercept) –41.28 –10.9 –39.17 –8.47
log(d) +35.56 +22.7 +35.09 +19.0
log(f2 + 13) +5.876 +6.56 +4.473 +5.66
|εp|0.39 –4.024 –8.77 –3.340 –6.63
hL –0.00576 –6.03 –0.00273 –1.99
tanh((hc − 147)/125) –3.531 –4.69 –3.764 –3.80
vsr +150.7 +5.09 +178.5 +4.82
tanh((Sa − 48)/53) –2.707 –4.58 –3.880 –3.35
dN1 –0.01223 –4.91 –0.00972 –1.80
NsA0.1 –0.1994 –9.98 –0.1970 –4.05

Final parameters

The final regression coefficients for the best OLS and GLS models, found by leave-one-
region-out cross validation, and resulting from the parameter reinement process, are
shown in Table 4.1. The best OLS model and the best GLS model, use the same nine
parameters.

There are some differences in the regression model coefficients between the OLS and
GLS models, and their significance indicated by the t-statistic is generally less for the
GLS model than the OLS model.

The most extreme example of this coefficient difference is the elevation of the lowest
antenna, hL. It has a coefficient of −0.00576 dB per m in the OLS model, and highly
significant with t = −6.03. In the GLS model its coefficient is −0.00273 dB per m, and
much less significant with t = −1.99. However, we retain it in the GLS model as the
leave-one-region-out cross-validation suggests that it is a useful model parameter.

The new GLS model

A0.01 = −39.17 + 35.09 log(d)− 3.34|εp|0.39 − 3.88 tanh((Sa − 48)/53)

+ 4.473 log(f 2 + 13)− 0.00972dN1 − 0.00273hL

− 3.764 tanh((hc − 147)/125) + 178.5vsr − 0.197NsA0.1 dB, (4.13)
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has parameters log(d), hL and dN1 in common with the current ITU-R model (Rec.
ITU-R P.530-17, 2017) for detailed design

A0.01 = −44 + 34 log(d)− 10.3 log(1 + |εp|)− 4.6 log(10 + sa)

+ 8 log(f)− 0.027dN1 − 0.0076hL dB, (4.14)

while (4.13) has revised forms of the frequency f , path inclination εp and terrain area
standard deviation Sa parameters, as well as a new sub-refractive parameter vsr, path
clearance parameter tanh((hc − 250)/75), and surface refractivity anomaly parameter
NsA0.1.

4.4.4 Accuracy of the new GLS model

The prediction error statistics of the GLS model of Table 4.1 are detailed in Table 4.2,
separated into the 21 regions of Table 1.1, as well as overall. The error statistics for
predictions with the current ITU-R model (Rec. ITU-R P.530-17, 2017) are shown for
comparison. The new GLS model demonstrates a significant improvement in accu-
racy over the ITU-R model in Central Asia, Ghana, Pakistan, and the three northern
Australian regions, due to elimination of the large mean underprediction errors of the
ITU-R model in these regions.

Overall, the newGLSmodel has less lessmean error and lower error standard deviation
than the current ITU-Rmodel. In the next chapter we consider the alternative approach
of treating multipath fading and sub-refractive median depression fading as separate
mechanisms.

4.4.5 Application of the new model in regions of extreme sub-refraction

The Harvey parameter dN75 is used by the new model as an estimate of severity of
sub-refraction, but the highest value of this parameter in the links contributing to the
model is +53.47 N-units, at latitude 16.19 degrees south, longitude 128.4, in Western
Australia, but higher values are found in some locations. In particular, at the northern
end of the Arabian Gulf, at latitude 30 degrees north, longitude 48.5 degrees east, we
have dN75 = 84.7, significantly higher than for any of the links in the dataset.

This may be of concern, as parameter vsr is proportional to dN75
1.8 in (4.12), and a lim-

itation of empirical regression models is that they may not be valid outside the range
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Table 4.2. Mean and standard deviation of prediction error by region, showing number of
records, error statistics of the existing Rec. ITU-R P.530 model, and the new
GLS model of Table 4.1. Significant mean under-prediction by the P.530 model in
Pakistan, Ghana, Central Asia, and Northern Australia, is largely eliminated by the new
GLS model, and is substantially reduced in Arctic Canada. Mild over-prediction of fading
occurs with the new model in southern Western Australia, South-East Africa, and South-
West Canada, compared with the existing ITU-R model, but in all these regions the new
model has lower error standard deviation.

Records P.530 mean P.530 std dev GLS mean GLS std dev Region
48 –0.96 4.94 –2.22 4.77 Western Europe
42 –0.37 5.48 –2.81 4.99 Scandinavia
20 +2.87 4.82 +0.72 3.80 Russia
3 –2.36 5.45 –1.67 4.03 Turkmenistan
13 +2.95 4.94 +1.93 5.06 South-East Canada
10 +5.75 4.93 +7.37 2.68 South-West Canada
4 –11.2 10.0 –7.42 8.94 Arctic Canada
7 +0.25 6.06 +2.03 4.70 Brazil
4 –1.38 6.27 +0.37 6.12 North-East Canada
1 –9.87 — –4.20 — Pakistan
7 –0.55 7.76 –3.45 8.01 Egypt
79 –0.49 6.13 –1.11 5.56 Southern Europe
3 –9.34 4.21 +0.29 3.61 Ghana
3 –1.47 5.87 –4.99 4.68 Senegal
3 +1.08 3.52 +4.35 2.94 South-East Africa
6 –6.45 8.07 –0.80 6.69 Central Asia
50 –9.83 7.27 –0.37 6.85 Cent-North Australia
91 –3.69 5.71 +0.71 4.79 South-East Australia
92 –6.02 6.52 –0.96 5.23 Southern Queensland
36 +0.72 5.42 +4.64 3.78 South-West Australia
17 –6.09 5.18 –0.88 5.20 Far North Queensland
539 –2.86 6.96 –0.26 5.59 All Regions
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of observed parameters. We propose to address this by imposing an upper limit on the
sub-refractive component of the regressionmodel, 178.5vsr, obtained by an approximate
estimate of diffraction loss for the sub-refractive gradient suggested by dN75.

We assume for simplicity that diffraction loss increases 10 dB per first Fresnel zone ra-
dius (Vigants 1981) of depression of the ray-path due to positive refractivity gradient at
mid-path, as the refractivity gradient increases from zero N-units per km to dN75/0.02

N-units per km (Australia: ITU-R doc. 3M/236, 2021), and take this as a notional upper
limit on the contribution of vsr to the predicted multipath fading.

This recognises that the bulk of the predicted refractivity increase in the lowest 75 m,
dN75, will normally be in the lowest 20 m of the atmosphere.

This simple estimate of subrefractive obstruction loss is dN75 d
1.5f 0.5/138.516 dB, but

dividing this by the regression coefficient 178.5 for vsr in (4.13), we have an upper limit
vsr-limit for vsr as

vsr-limit =
dN75 d

1.5f 0.5

24730
(4.15)

This upper limit only applies to very low clearance paths, typically with hc of the order
of 10 m or less, and does not come into effect for any of the paths used to generate our
new model. This results in a revised expression for vsr as

vsr =

[(
dN75

50

)1.8

exp
(
− hc

2.5
√
d

)
, vsr-limit

]
. (4.16)

4.5 Conclusion
The GLS regression model of (4.13) is fitted to more measured fading data than avail-
able for earlier models, and takes spatial correlation between observations into account
in fitting the regression parameters. We have added new parameters, obtained from
analysis of several years of time series data, from a few thousand surface weather sta-
tions around theworld, andused an exhaustive cross-validationprocess to decidewhich
parameters are significant for inclusion in the model.

One of the surface weather station parameters is a previously published sub-refractive
parameter (Harvey 1987), applied on a world-wide basis for the first time in our re-
search, so in the next chapter we investiate whether the combined fading regression
model described in this chapter is appropriate, or whether there is an advantage in
separate models for sub-refractive effects and multipath effects.
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Chapter 5

Unified or Separate Models?

S EVERE median depression fading has in the past been modelled as
sub-refraction, viewed as a separate mechanism from multipath fad-
ing. Here we compare that conventional approach with the unified

GLS model of the previous chapter.
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5.1 Introduction
A conventional approach to clear-air radio link fading prediction (Schiavone 1981, Har-
vey 1987) assumes a linear refractivity gradient diffraction lossmodel for sub-refractive
median depressions, with a separate multipath model to represent other clear-air fad-
ing events. This approach suggests sub-refractive events and other clear-air fading
events are separate mechanisms, that should be modelled separately, rather than a sin-
gle unified model such as our new model (4.13). The aim of this chapter is to compare
those two approaches.

The following paper cited in this chapter was produced as part of the work for this
thesis: (Salamon et al. 2020).

5.2 Separate multipath and sub-refractive models
We simulate the conventional approach by taking the GLS model of Table 4.1 or (4.13),
omitting the sub-refractive term+178.5vsr, to estimate the non-sub-refractivemultipath
model for fade depth A0.01MP for 0.01% of the worst month of the average year.

A separate sub-refractive model for fade depth for 0.01% of the worst month is es-
timated from an effective sub-refractive gradient, Geff (N-units/km), applied to the
whole end-to-end path, not exceeded for 99.9% of the worst month. The diffraction
loss not exceeded for 0.1% of the worst month, L0.1SR is predicted using the “method
for a general terrestrial path” (Rec. ITU-R P526-15, 2019), with this gradient.

Rapid fluctuation of level during median depression events, explained as multipath in-
terference between multiple components of differing phase, has been described (Shep-
herd 1979, Harvey 1987). Hence fading during these sub-refractivemedian depressions
is assumed approximately Rayleigh distributed, indicating a 10 dB fade-depth differ-
ence between 0.01% and 0.1% of the worst month. This suggests a sub-refractive model
for fade depth for 0.01% of the worst month of A0.01SR = L0.1SR + 10 dB. Assuming a
Rayleigh fading tail slope for the multipath fading as well, and assuming the multipath
fading represented by A0.01MP and the subrefractive fading represented by A0.01SR to be
separate uncorrelated mechanisms, leads to the estimate of overall fade depth A0.01 for
0.01% of the worst-month (Salamon et al. 2020) as

A0.01 = 10 log
[
10

A0.01MP
10 + 10

A0.01SR
10

]
. (5.1)
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However, (5.1) may not be valid in cases where L0.1SR = 0 or A0.01SR = 10 dB, as in these
cases sub-refractive fading should not contribute to the overall fading.

In fact (5.1) assumes a simple fading model where the proportion of the worst month
Pw when fade margin M dB is exceeded (the fade depth the radio system can tolerate
before severe errors occur), is given in terms of multipath occurrence factor P0 as

Pw = P010
−M/10 , with P0 = 10(A0.01/10 − 4) . (5.2)

However, this 10 dB per decade of probability model is for the low probability tail of
the distribution, and only applies for M ≥ At, where At = 25 + 1.2 log(P0/100) dB
(Rec. ITU-R P.530-17, 2017). For M < At a set of equations are used to find Pw as a
smooth continuous function of P0 and M , such that Pw = 0.632 for all values of P0 at
M = 0. This model is known as the “Method for all percentages of time” (Rec. ITU-R
P.530-17, 2017), and is demonstrated in Figure 5.1.
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Figure 5.1. Recommendation ITU-R P.530-17 “Method for all percentages of time”. This
provides a smooth continuous function of P0 and M , such that Pw = 0.632 for all
values of P0 at M = 0, while Pw is proportional to P0 and to 10−M/10 at large M .

We wish to find a value of P0 for fade depth L0.1SR, the estimated sub-refractive diffrac-
tion loss for 0.1% of the worst month, such that the P0 curve intersects the Pw = 0.001

line, as in Figure 5.1.
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This “method for all percentages of time” is only invertible by iteration, but we find
that a good approximation to At, the lower limit onM for (5.2) to be valid, when P0 is
iteratively adjusted for Pw = 0.001, is At ≈ 23.926 + 0.11629M − 24 exp(–M/2).

The resulting expresssion for sub-refractive multipath occurrence factor P0-SR as a func-
tion of fade depth L0.1SR is

P0-SR =

10(L0.1SR−30)/10 + 0.011 exp(25.53− L0.1SR) if L0.1SR ≥ 25.53 ,

10(At−25)/1.2−2 − 0.011 exp(L0.1SR − 25.53) if L0.1SR < 25.53 ,
(5.3)

with
At = 23.926 + 0.11629L0.1SR − 24 exp(–0.5L0.1SR) . (5.4)

The terms +0.011 exp(25.53 − L0.1SR) and −0.011 exp(L0.1SR − 25.53) in (5.3) are a cor-
rection in the region of L0.1SR ≈ 25.53 to provide continuity and improved accuracy.

This gives a revised overall fading model as

A0.01 = 10 log
[
10

A0.01MP
10 + 104 × P0-SR

]
. (5.5)

Path profiles, of terrain elevation with distance along the path, are available for 483 of
the 535 data records in this research, so we compare our GLS model with the separate
sub-refractive gradient approach of (5.5) for these records. For these the GLS model
has a mean error of –0.05 dB, and an error standard deviation of 5.60 dB.

The parameters for the Schiavone sub-refractive model (Schiavone 1981) are not avail-
able for the fading data locations (Kizer 2008), so we test a model based on two sub-
refractive models: the Harvey model (Harvey 1987) for severe gradient at a location,
dN75, shown in Figure 3.17, and the model of (1.13) (Boithias and Battesti 1967).

5.3 Combined Harvey-Boithias-Battesti gradient model
The effective sub-refractive gradient model (1.13), is for a “continental temperate” cli-
mate. There is no indication (Boithias and Battesti 1967) of the location of the radio
links used to develop this model, but we assume a climate corresponding to dN75 = 4.2,
the median of the 10 inland stations of those in Table 3.1: Udine and Linate (Milano),
Italy; Lin, Bergen (Niedersachen), Kuemmersbruck, and Idar Oberstein, Germany; De
Bilt, Netherlands; Lamont, Oklahoma; Kopisty and Podĕbrady, Czech Republic. From
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(3.14) we estimate the 65m surface gradient not exceeded for 99.9% of the worst month
in this climate is G65(99.9%wm) = +134 N-units/km.

While (1.13) suggests infinite effective gradient for zero path length, it is a function
fitting a curve that was only plotted for path lengths around 20 km and above. Gener-
alising this to a model for all path lengths in the “continental temperate” we suggest

dN
dz =

134− 58[( d
30
)1.5] if d < 30,

2670
d

− 13 if d ≥ 30 N-units per km.
(5.6)

This provides a continuous curve toG65(99.9%wm) from (3.14), the gradient at a single
point, at d = 0, and is compared with the Boithias-Battesti model (1.13) in Figure 5.2.
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Figure 5.2. Models of effective gradient not exceeded for 99.9% of the worst month. The
Boithias-Battesti model of (1.13), compared with the revised model of (5.6), providing
continuous extension to the gradient at a point, at d = 0. Effective gradient is applied
to the whole path to estimate the fading effect of varying gradients along the path.

In order to further generalise this to all climates, we scale (5.6) according to location,
using the Harvey parameter dN75, in proportion to dN75

0.71. This scaling is based on
(3.14), leading to the 99.9% worst-month effective gradient model

Geff =

(
dN75

4.2

)0.71

134− 58[( d
30
)1.5] if d < 30,

2670
d

− 13 if d ≥ 30 N-units per km.
(5.7)
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Thismodel, togetherwith (5.3), (5.4) and (5.5), performswell for the 483 recordswhere
path profiles are available: mean error is +0.62 dB,with error standard deviation of 5.93
dB. This is only slightly inferior to the accuracy of the unified GLS model (4.13).

However, the results are very different considering only the 20 cases where L0.1SR > 35

dB. For these the combined GLS model (4.13) has mean error of +0.01 dB and error
standard deviation of 6.06 dB, while the separate sub-refractive plus multipath model
(5.5) has mean error of +6.94 dB and error standard deviation of 8.89 dB, indicating
fairly severe over-prediction of fading.

5.4 Height-gain prediction accuracy
An important issue for radio link designers is accurate prediction of fading reduction
with antenna height (height-gain), for systems affected by severe fading. We now test
a sub-refractive model such as (5.5), to compare its height-gain predictions with those
of our unified GLS model (4.13).

There are a number of records in the fading datawith simultaneous observations at two
different receive antenna heights, where the data was collected from space-diversity
systems. We identify those for testing where the separate sub-refractive plus multipath
model (5.5) predicts greater than 2 dB difference between the two A0.01 fade depths for
the two different heights. This yields 19 pairs of measurements, all from Australia, and
all have the same measurement period for the two antenna heights.

In predicting fade depth reductionwith height, the GLSmodel (4.13) hasmean error of
+0.03 dB, and 2.33 dB standard deviation. The separate sub-refractive plus multipath
model (5.5) has mean +2.45 dB over-prediction of height gain, with 1.39 dB standard
deviation, and greater correlation between height-gain predictions and observations
than the GLS model.

These results are depicted in Figure 5.3. Least-squares regression lines for each are
shown, with slope of 0.28 and correlation coefficient of 0.7 for (4.13), and slope of 0.85
and correlation coefficient of 0.89 for (5.5).

The separate sub-refractive plus multipathmodel (5.5) appears to be themore accurate
predictor of height-gain for the few cases where observed height gain is large, but it
generally over-predicts height gain, especially where observed height-gain is modest.
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It may be suggested that (5.5) is a better height-gain model, but only if 2.5 dB is sub-
tracted from the prediction – don’t expect improvement unless (5.5) predicts it to exceed
2.5 dB.
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Figure 5.3. Predicted height gain, comparing unified GLS model with separate models. Pre-
dicted fading reduction, or improvement, with increased antenna height, plotted against
observed improvement, for the GLS model (4.13) (blue triangles), and the separate
sub-refractive plus multipath model (5.5), for the 19 pairs of observations where (5.5)
predicts an improvement exceeding 2 dB. Least-squares best fit lines for each are shown,
with regression slopes of 0.28 for (4.13), and 0.85 for (5.5). However, the separate sub-
refractive plus multipath model (5.5) has 2.45 dB mean over-prediction of improvement,
unlike the GLS model (4.13).

5.5 Clearance criteria
The conventional approach to line-of-sight radio links (Rec. ITU-R P.530-17, 2017) re-
quires grazing line-of-sight clearance at the refractivity gradient given by (1.13) in a
temperate climate, or an unobstructed path at this gradient in a tropical climate. An
alternative proposal (Vigants 1981) is to design for a limited amount of obstruction
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fading, estimated by assuming diffraction loss at a certain positive refractivity gradi-
ent. This approach may risk over-design with excessive antenna heights, considering
the over-prediction of fading with (5.5) observed above, when L0.1SR exceeds 35 dB.

Often radio links employ diversity reception schemes (Boithias and Battesti 1967, Rec.
ITU-R P.530-17, 2017) to improve performance, by taking advantage of multiple re-
ceivers with partially correlated fading. This breaks down if the depth of median de-
pression fade approaches or exceeds the system fade margin. Recent amendments to
diversity improvement prediction models (Rec. ITU-R P.530-17, 2017), now ensure that
fading severity is now taken into account for all forms of diversity reception. Hence
the idea of choosing antenna heights based primarily on performance estimates rather
than clearance criteria, seems a valid approach with our new model. This may lead to
more economical system designs in some cases.

5.6 Conclusion
An important issue for empirical models is the range of validity, which may not extend
significantly beyond the parameter space of the data used to fit the model.

We find no evidence that the accuracy of the GLSmodel (4.13) is affected by path clear-
ances approaching grazing line-of-sight at median refractivity gradient, despite several
dB of path obstruction. We note here that the GLS model is for fading with respect to
median signal level, not unobstructed free-space signal level.

However, accuracy cannot be assumed for paths beyond grazing line-of-sight atmedian
refractivity gradient. Such paths should be avoided for fixed links due to the difficulty
of predicting and ensuring long-term maintenance of median path loss, due to growth
of vegetation or construction of new buildings.

A weakness of our new GLS model is that accuracy is unknown for very short paths,
as no links in the data are shorter than 7.5 km. Minimum frequency in the data is 450
MHz, and minimum frequency-path length product is 33.7 GHz-km. A future revision
of themodelmay be required if data fromvery short links, especially at low frequencies,
becomes available. Appendix B provides advice on generating suitable data from long-
term measurements on installed links.

In general, a model such as (5.5) that treats sub-refractive fading and multipath as sep-
arate mechanisms, appears to have little advantage over the unified GLS model (4.13),
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and may even risk over-prediction of fading in regions of severe sub-refractive surface
gradients. As a result, we return to considering the unified GLS regression model of
Chapter 4, but improve on its accuracy in the next chapter, by employing the geostatis-
tical technique of universal kriging.
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Chapter 6

The Universal Kriging Model

U NIVERSAL kriging combines regression analysis of spatially cor-
related data with interpolation, to take advantage of nearby mea-
surements. We demonstrate further improvement on our GLS fad-

ing model in regions well populated by measured data, by employing this
technique.
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6.1 Introduction
Kriging is a spatial interpolation technique that takes many forms, with simple, or-
dinary, and universal kriging, described in Section A.3. Universal kriging combines
spatial interpolation with GLS regression, so that the estimate tends towards the GLS
regression model estimate at locations distant from measured data points, while the
estimate is primarily based on the measured data at locations close to measured data.
Like GLS regression, kriging is based on an estimated spatial correlation function, usu-
ally obtained by semivariogram analysis.

If the nugget effect is employed in the univeral kriging semivariogram function, as in
(4.7), the requirement to exactly pass through the known points is relaxed, and in their
region the value surface is a best fit rather than an exact interpolation. We use the same
exponential model with nugget effect, (4.7), that we use for the GLS estimation. As a
semvariogram function, (A.6) then becomes

γ(rij) = σ2[1− (1− kn) exp(−rij/r0)] for i 6= j,

otherwise

γ(rij) = σ2. (6.1)

At locations distant from known points the estimation becomes predominantly a GLS
estimate in terms of the functions f1(s) to fp(s); see (A.8) and (A.9).

The universal kriging model described in this chapter is developed in the same way
as previously published (Salamon et al. 2020), except for differences in the underlying
GLS regression model.

The following paper cited in this chapter was produced as part of the work for this
thesis: (Salamon et al. 2020).

6.2 Application to fading prediction
Geoclimatic factormay be defined for amultipath fadingmodel as the part of themodel
that is invariant for any link with the same path centre coordinates. For the GLS model
of Table 4.1, it may be defined as

KG = −39.17− 3.88 tanh((Sa − 48)/53)

− 0.00972dN1 − 0.197NsA0.1 dB. (6.2)
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The predicted fade depth for 0.01% of the worst month A0.01 is then

A0.01 = KG + 35.09 log(d) + 4.473 log(f 2 + 13)

− 3.34|εp|0.39 − 0.00273hL + 178.5vsr

− 3.764 tanh((hc − 147)/125) dB. (6.3)

The sub-refractive parameter vsr is included in (6.3), and not in the geoclimatic factor
(6.2), because its value, given by (4.12), depends on mean rayline clearance height Hc

and path length d, as well as the Harvey sub-refractive climate parameter dN75.

At locations where link fading data provides an observed value of A0.01, an observed
value of KG may be obtained by re-arranging (6.3) as

KG = A0.01 − 35.09 log(d)− 4.473 log(f 2 + 13)

+ 3.34|εp|0.39 + 0.00273hL − 178.5vsr

+ 3.764 tanh((hc − 147)/125) dB. (6.4)

If there is more than one observation at the same location, we take the mean of theKG

values for those observations.

The universal kriging system of (A.8) and (A.9) is set up, using the exponential semi-
variogram function (6.1), and the functions f1 to fp are the parameters tanh((Sa −
48)/53), log(NsA0.1), and dN1, in (6.2).

A world-wide map of the resulting universal kriging geoclimatic factorKG is provided
in Figure 6.1. This takes into account local variations between observations and the GLS
regression model. This difference is shown in Figure 6.2.

6.3 Accuracy of the universal kriging model
As the universal kriging geoclimatic factor prediction error at known locations is min-
imised, a useful test of prediction accuracy requires the test location to be excluded
from the matrix G of (A.8). This may be described as “leave-one-location-out” cross
validation.

The results of this testing are shown in Table 6.1, comparing prediction errormeans and
standard deviations with those of the model of Rec. ITU-R P.530-17, (2017). A notable
characteristic of these universal kriging results is the very lowmean prediction error in
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Figure 6.1. Worldwide map of geoclimatic factor KG, produced by universal kriging. This
indicates predicted severity of multipath fading, based on the best information available
from the GLS regression model and any nearby link fading measurements.

all regions. Only one has magnitude exceeding 3 dB, and all regions with more than 15
link locations have mean error magnitude less than 0.5 dB.

The regions with more than 15 link locations all have universal kriging “leave-one-
location-out” error standard deviation less than 6 dB.

The use of universal kriging fading prediction can provide a significant benefit to re-
gions of the world that are currently under-represented in the fading data, if they pro-
vide new fading data records, and the universal kriging model is updated accordingly.
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Table 6.1. Mean and standard deviation of prediction error by region, of the new universal
kriging model. The number of locations and records, error statistics of the Rec. ITU-R
P.530-17, (2017) model, and leave-one-location-out testing of the new universal kriging
model, are shown.

Locations P.530-17 P.530-17 Univ. kriging Univ. kriging Region
mean std. deviation mean std. deviation

42 –0.96 4.94 –0.11 4.77 Western Europe
28 –0.37 5.48 +0.48 4.93 Scandinavia
16 +2.87 4.82 +0.14 4.59 Russia
3 –2.36 5.45 +0.90 4.37 Turkmenistan
5 +2.95 4.94 +1.30 4.46 South-East Canada
9 +5.75 4.93 –1.69 3.29 South-West Canada
4 –11.2 10.0 +2.63 11.0 Arctic Canada
6 +0.17 6.25 –0.18 6.75 Brazil
4 –1.38 6.27 –0.20 7.23 North-East Canada
1 –9.87 — +4.65 — Pakistan
7 –0.55 7.76 +0.47 7.17 Egypt
55 –0.49 6.13 –0.19 5.79 Southern Europe
3 –9.34 4.21 –0.92 6.00 Ghana
2 –1.47 5.87 +2.96 8.80 Senegal
3 +1.08 3.52 –2.17 3.78 South-East Africa
6 –6.45 8.07 +0.79 5.84 Central Asia
15 –9.83 7.27 +0.92 5.01 Cent-North Australia
31 –3.69 5.71 –0.45 5.47 South-East Australia
32 –6.02 6.52 +0.32 5.57 Southern Queensland
11 +0.72 5.42 –1.92 4.48 South-West Australia
7 –6.09 5.18 –0.47 4.75 Far North Queensland

290 –2.86 6.96 –0.03 5.31 All Regions
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Figure 6.2. World map of geoclimatic factor difference, between universal kriging and GLS.
This shows the difference in predicted severity of multipath fading, between the uni-
versal kriging and the GLS regression models. Although the differences are generally
small, this map demonstates areas of the world where fading observations are avail-
able, and highlights vast areas, such as East Asia, without fixed link multipath fading
neasurements.

6.4 Conclusion
The new universal kriging model described in this research is based on extensive data
from Australia, and some new data from central Asia, in addition to the data from Eu-
rope, The Americas, and Africa, that was used to produce the internationally approved
model prior to 2021 (Rec. ITU-R P.530-17, 2017), and our newmodel fits the data taking
into account spatial correlation, and makes best use of local data, where available, by
the technique of universal kriging.

These enhancements provide a general improvement in accuracy over the previous
model, so our new model, as described in this chapter, has been adopted by Radio
Study-Group 3 of the International Telecommunication Union, as the new model for
predicting fixed-link multipath fading (Rec. ITU-R P.530-18, 2021).

6.4.1 Scope for expanding geographic coverage

As can be seen in Figure 6.2, there are a number of regions of the world where there
is no measured fading data contributing to development of this model. Adding data
from these regions may be expected to improve the accuracy of the regression model,
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as well as provide local data for predictions predominantly based on measurements, in
areas local to those data points.

Information on processing receive level time-series data from network installed small
andmedium capacity systems is given inAustralia: ITU-R doc. 3M/45, (2016), and sum-
marised in Appendix B. New data may be incorporated into the model by re-running
the GLS regression to obtain a revised expression for geoclimatic factor, and re-running
the universal kriging analysis to produce a revised world digital map at quarter-degree
resolution, similar to that provided as an integral part of the new Rec. ITU-R P.530-18,
(2021).

6.4.2 Scope for future work

One limitation of the model is the lack of fading data from very short low-clearance
fixed links. Care needs to be taken in collecting this data, as fade depths may be small,
and may be obscured by effects such as equipment variations or rain attenuation, but
this data would be useful to check, and if necessary correct, themodel accuracy for very
short links.

A long-term goal would be the development of numerical weather prediction models
with sufficient accuracy in predicting vertical radio refractivity gradients in the surface
layer of the atmosphere, to simulate propagation impairment of terrestrial radio sys-
tems.

In Chapter 2, we investigated parabolic equation techniques for modelling terrestrial
radio propagation, and described a new convolutional technique for finite conductivity
lower boundaries. This technique successfully satisfies the boundary condition, but we
find that implementing a boundary with imperfect reflection, in this type of marching
analysis, by image theory, results in a degree of error in the field strength prediction. A
solution to this problemmay provide a useful stable alternative to DMFT (Dockery and
Kuttler 1996), with its occasional stability problems (Kuttler and Janaswamy 2002).
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Appendix A

Spatial data interpolation

D ATA collected from sources such as surface weather stations has a
very irregular spatial distribution around the surface of the Earth.
An estimate of a parameter measured at these stations may be re-

quired at other locations, and this is provided by a digital map, generally a
regular grid of estimates covering the surface of the Earth. These estimates
are provided by spatial interpolation, so we wish to find the most suitable
interpolationmethod to produce such amap from several thousandweather
stations wordwide.
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A.1 Introduction
Propagation models typically use parameters that vary with location over the surface
of the Earth, but may only have been measured at certain locations, such as surface
weather stations, or radiosonde stations. These are likely to be distributed over the
Earth’s surface in a very irregular way. If the correlation of the parameter between
two locations can be assumed to be high for closely spaced locations and reduces with
distance, it may be reasonable to estimate the value of the parameter by interpolating
between the values at nearby locations where measurements are available. It is often
convenient to produce a digital map in the form of a grid, quasi rectangular in terms
of equal steps of latitude and longitude, providing interpolated values at those grid
points. The estimated value is then obtained at any location by bilinear interpolation
from the four grid points surrounding the required location.

Accordingly, we describe bilinear interpolation first, and then some of the most im-
portant of the many methods available to estimate the value at those rectangular grid
points from the irregularly located known data points.

A.1.1 Rectangular gridded data-bilinear interpolation

Bilinear interpolation over a two dimensional surface, notionally assumed to be a plane
over the short interpolation distance involved, is based on linear interpolation along
the straight line between two points. In the usual case of a rectangular grid in terms
of latitude and longitude, suppose the two grid points to the north of the required
point lat0, long0 are latNW, longNW and latNE, longNE with values vNW and vNE respec-
tively, then they are interpolated to estimate a value vN due north of lat0, long0, as

vN =
vNW(longNE − long0) + vNE(long0 − longNW)

longNE − longNW
. (A.1)

Similarly, a value vS due south of lat0, long0, is interpolated from values vSW and vSE at
grid points latSW, longSW and latSE, longSE respectively, as

vS =
vSW(longSE − long0) + vSE(long0 − longSW)

longSE − longSW
. (A.2)

Then the final linear interpolation

v0 =
vN(lat0 − latSW) + vS(latNW − lat0)

latNW − latSW
(A.3)

provides the estimated value v0 at lat0, long0.
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A.1.2 Irregularly located data

Data from sources such asweather stations has a very irregular spatial distribution over
the surface of the Earth, as they are usually located in cities ar at airports, and very few
are located inmid-ocean locations. The closest known values to any locationmay be not
far away, or theymight be hundreds or thousands of kilometres away. Theworldmap of
interpolated values should be continuous, and preferably have continuous derivatives,
so that contour lines appear as smooth curves with out sudden direction changes.

There is an important distinction to be made, between interpolation and fitting: in-
terpolation provides a value surface that exactly matches the known values at those
locations. Fitting relaxes that requirement, allowing the surface to depart slightly from
those known values, which may be useful if the measured values have random error.
All the ad hoc methods described here are exact interpolation methods, while kriging
may be chosen to be either an exact interpolation or a fitting method.

A.2 Ad hoc methods
The somewhat derogatory term ad hoc tends to be applied to spatial interpolationmeth-
ods that are practically convenient, but not mathematically provable as optimum, in
terms of prediction accuracy, for some set of assumptions about the data being interpo-
lated. These assumptions may not be completely realistic, so it is worth investigating
ad hoc methods, to see if any have performance close to the ideally optimum methods,
while having useful practical advantages over them.

A.2.1 Inverse distance weighting, and Shepard interpolation

A popular spatial interpolation method in the past was Shepard interpolation (Shep-
ard 1968). It is often rather incorrectly described as inverse distance weighting, but in
fact the algorithm is far more involved than that. A good detailed description of the
algorithm is given in Willmott et al. (1985). The interpolation uses a small number
of closest local known points, typically 7, but always at least 4 in sparsely populated
regions and no more than 10 in heavily populated regions.
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A.2.2 Delaunay Triangulation
TheDelaunay triangles are determined by finding triangles joining three known points,
such that the circumcircle of each triangle does not contain any other known points, as
demonstrated in Figure A.1. The solution to this problem becomes non-unique if four
or more points lie on the same circumcircle.

Figure A.1. Delaunay triangulation. showing the Delaunay triangles joining the known points.
Two of the circumcircles are shown, with centres not far apart; the four points on
these two circles are close to being on the same circumcircle. The vertices of Voronoi
polygons may be found by Delaunay triangulation, as the circumcircle centres.

A.2.3 Natural neighbour interpolation
Natural neighbour interpolation (Sibson 1980) provides a unique exact interpolation
that guarantees continuous first and secondderivatives everywhere except at the known
points (Sambridge et al. 1995), while only depending on local data, the natural neigh-
bours of the interpolation point. Voronoi polygons contain all locations that are closer to
a particular data point location than any other, and natural neighbours are data points
with adjoining Voronoi polygons.

Conceptually, natural neighbour interpolation is very simple, as illustrated in FigureA.2.
If the interpolation point is treated as a new data point, then the weights assigned to
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its natural neighbours are proportional to the overlap areas of its Voronoi polygon (red
dashed line) with the previously existing Voronoi polygons.

Figure A.2. Natural neighbour interpolation example. showing the Voronoi polygons corre-
sponding to the known points, overlapped by a new polygon for a location to be
interpolated. The interpolation weights are proportional to the six areas of overlap of
the original polygons, after Salamon et al. (2020, Figure 2).

Natural neighbour interpolation is well suited to our problem of interpolating over the
surface of the Earth, as this surface has no boundary, requiring special treatment. If we
assume the Earth to be spherical, then spherical polygon areas are easily calculated from
the sum of internal angles (Todhunter 1886). Natural neighbour interpolation is ideally
suited to interpolation of parameters from highly irregular distributed locations (Sam-
bridge et al. 1995), as is the case with our weather stations. This interpolation method
appears to have the ability to generate an interpolated surface from only the neighbours
of the interpolation point, to rival that achieved by kriging using all known points, in
terms of smoothness and accuracy. We compare accuracies, by cross-validation, below.
Using only local data is an advantage, as it obviates any stationarity requirement.

However, points far removed from the interpolation point may be given considerable
weight if the data points are very irregularly spaced (Cressie 1993), as is the case with
surface weather station data. This is likely to be the case for coastal weather stations
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having large Voronoi polygons extending out into the ocean where there are few sta-
tions. Figure A.3 demonstrates this for the Australian region.

Figure A.3. Voronoi polygons for surface weather stations in the Australian region. The red
crosses are station locations, and those on the west coast of Australia have polygons
extending far into the Indian Ocean, where there are few stations. Coastal stations a
little further to the west than their neighbours appear to have disproportionally large
Voronoi polygons, after Salamon et al. (2020, Figure 3)

We introduce an amendment to combat the irregular polygons displayed in Figure A.3.
Each vertex of a Voronoi polygon is the centre of a circumcircle of three or more data
point locations. The radii of the circumcircles of the vertices of a polygon will vary
greatly in the case of polygons with a centroid far removed from the corresponding
data point.

A potential solution to the problemmay be to identify the polygonwith the largest ratio
betweenmaximumandminimum radius of its vertex circumcircles. If that ratio exceeds
a pre-defined threshold, say 5:1, then the natural neighbour interpolated value at the
maximum radius vertex of that polygon is calculated, and a new “quasi-known” point
is created at that location. That process is repeated until no polygons have a maximum
to minimum vertex circumcircle ratio exceeding the threshold value. The result of that
process applied to the stations of Figure A.3 is shown in Figure A.4, for a radius ratio
threshold of 5:1.
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Figure A.4. Voronoi polygons for surface weather stations in the Australian region, with
additional interpolated “quasi-stations” to eliminate very irregular polygons.
These interpolated points are added at polygon vertices until no polygon has vertex
circumcircle radii spanning a ratio exceeding 5:1, after Salamon et al. (2020, Figure 4).

A.3 Kriging
Kriging in its various forms (Cressie 1993) is a popular technique for linear spatial inter-
polation as it is the Best Linear Unbiased Predictor (BLUP) if the assumptions relevant
to the particular form of kriging aremet. We consider this as an option for interpolating
parameters derived from weather station data.

Named after D. G. Krige, who applied the idea to the prediction of the spatial distribu-
tion of ore content, kriging was fully described later (Matheron 1963).

A.3.1 Simple kriging

Simple kriging assumes the data has a stationary and known mean as well as isotropic
spatial variation, as a function of distance. The simple kriging system can be described
as 

w1

...
wn

 =


C1,1 · · · C1,n

... . . . ...
Cn,1 · · · Cn,n


−1 

C1,P

...
Cn,P

 (A.4)

where w1..wn are the weights applied to the n data points, the terms Ci,j are the pre-
dicted covariance function C(h) values for the distances between pairs of known points
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i and j, and Ci,P are the predicted C(h) values for the distances h(i, P ) between known
points and the interpolation point.

In general the sumofweights in the simple kriging system is less than 1, especially if the
interpolation point is remote from known points; the weights are applied to the differ-
ences between the known values and the known mean, to give the difference between
the interpolated value and the known mean. The ordinary kriging and universal krig-
ing systems can be expressed in either semivariogram form or covariance form, both
yielding the sameweightswhich sum tounity, but in simple kriging the covariance form
of (A.4) must be used, as the same expression in semivariogram form results in differ-
entweights, summing to greater than unity. Simple kriging is sometimes called optimal
interpolation, or Optimal Statistical Objective Analysis (OSOA) (Lystad et al. 1998).

Ordinary kriging does not require the mean value to be known, and since the weights
sum to unity, the weights may be applied directly to the known values, so generally
ordinary kriging is used in preference to simple kriging.

A.3.2 Ordinary kriging
Ordinary kriging is the most popular form of this technique, and assumes the data
has a stationary but unknown mean, and has stationary and known isotropic spatial
variation, as a function of distance. The ordinary kriging system adds an extra row and
column to the simple kriging system to ensure the sum of weights is unity, and can be
described as 

w1

...
wn

µ

 =


γ1,1 · · · γ1,n 1
... . . . ... ...

γn,1 · · · γn,n 1

1 · · · 1 0


−1 

γ1,P
...

γn,P

1

 (A.5)

wherew1..wn are theweights applied to thendata points, the terms γi,j are the predicted
semivariogram function γ(h) values for the distances between pairs of known points i
and j, and γi,P are the predicted γ(h) values for the distances h(i, P ) between known
points and the interpolation point.

A number of different semivariogram functions γ(h) may be used (Cressie 1993), and
the nugget effect is often employed, where γ(h) is discontinuous at the origin, with
γ(h = 0) = 0 and γ(h > 0) > 0. This allows the fitted surface to not pass through
the known points. However, we are considering exact interpolation, so the semivar-
iogram functions described below are continuous, forcing the interpolated surface to
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pass through the known points. We find this to be workable provided the semivari-
ogram function has non-zero, and preferably maximum, slope at the origin.

Two useful functions for map interpolation are the exponential function

γ(h) = σ2[1− exp(−h/h0)], (A.6)

and the power function

γ(h) = b|h|λ, 0 ≤ λ < 2. (A.7)

In (A.6), σ2 is the data variance, although the weights given by (A.5) are independent
of the value of σ2, or the value of constant b in (A.7). Therefore, we may fit the semivar-
iogram function to the data by varying one constant, h0 in (A.6), or λ in (A.7), to find
the minimum RMS interpolation error, as indicated by cross-validation.

Alternatively, (A.5) may have covariance terms, for example Ci,j = σ2 exp(−h(i, j)/h0)]
in the case of the exponential function, replacing the γi,j terms. This is an equivalent
formulation, except the Lagrange parameter µ then has the opposite sign. The n +

1’th row and column in the semivariogram or covariance matrix provides unity sum of
weights, ensuring a fit to the unknown mean of the data.

The stationary mean and covariance assumption of ordinary kriging is unlikely to be
met with world-wide surface weather station data, with widely varying terrain and
climate types, so kriging may not necessarily be the BLUP.

Another problem for our application is that (A.5) requires inversion of an n+1 by n+1

matrix, readily achieved if n is a few hundred or less, but we are interpolating data
from several thousand weather stations world-wide. A solution to this problem may
be expected to be to restrict the kriging to a smaller number of local points, but we find
that that introduces discontinuities in the interpolated surface.

A.3.3 Universal kriging

Universal kriging (Cressie 1993) extends ordinary kriging of (A.5) to allow for non-
stationarymean, estimated in terms of p functions of location s, f1(s) to fp(s). The semi-
variogram matrix G is similar to that in (A.5), but with additional rows and columns
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for the functions f1(s) to fp(s):

G =



γ1,1 . γ1,n 1 f1(s1) . fp(s1)

. . . . . . .

γn,1 . γn,n 1 f1(sn) . fp(sn)

1 . 1 0 0 . 0

f1(s1) . f1(sn) 0 0 . 0

. . . . . . .

fp(s1) . fp(sn) 0 0 . 0


(A.8)

and the value at location sP is obtained as a weighted mean of the n known values at
locations s1 to sn. The weights w1 to wn are given by

w1

...
wn

m0

m1

.

mp


= G−1



γ1,P
...

γn,P

1

f1(sP )

.

fn(sP )


. (A.9)

If a semivariogram function without nugget effect is used, such as (A.6) or (A.7), the
result of (A.9) is a smooth interpolation surface that passes through the known points,
and close to them it is predominantly interpolated from them.

A.4 Comparative testing
The Harvey (1987) 75 m sub-refractive parameter dN75 in the Australian region is a
sensitive test case for different interpolationmethods, as it varies over awide range over
much of the Australian land mass. The results of interpolation testing for 354 weather
stations in this region (latitudes 10 to 50 degrees south, longitudes 90 to 160 east), by
leave-one-out cross-validation are shown in Table A.1.

We test ordinary kriging (OK)with the lowest RMS error exponentialmodel and power
model found in the testing, as well as conventional natural neighbour interpolation
(NNI, no infill), and added interpolated points as described above (NNI, infill if ra-
tio>5:1).
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Table A.1. Leave-one-out interpolation cross-validation for parameter dN75 from 354
weather stations in the Australian region. Ordinary kriging with a power model
has lowest RMS error, closely followed by the exponential model and natural neighbour
interpolation (NNI) with added points.

Method details RMS error correl. coeff. r

Ordinary kriging, 50 closest exponential, h0 = 300 7.5192 0.75253
Ordinary kriging, 50 closest power, λ = 0.3 7.1765 0.77293
Natural neighbour interpolation original algorithm, no infill 7.5518 0.75053
Natural neighbour interpolation infill if vertex ratio>5:1 7.5113 0.75310
Shepard interpolation complete algorithm 7.7105 0.74218

The Shepard interpolation results in Table A.1 are for the point selection method and
complete interpolation algorithm as described in Willmott et al. (1985), for the method
of Shepard (1968).

For each method, leave-one-out testing is used; for each station the observed value is
compared with an interpolation that does not include that station. The RMS error (N-
units), and Pearson’s correlation coefficient, r, between the observed and interpolated
values, are shown in Table A.1.

Although ordinary kriging with a power model, γ(h) = b|h|0.3, has lowest RMS error
and best correlation in Table A.1, this method, using the 50 closest points, is less lo-
cal than natural neighbour interpolation, using typically 6 natural neighbours. As a
result, the kriging interpolation appears to suffer more than NNI from leakage of the
high coastal and inland values into the ocean where values are low but measurements
very sparse. In addition, kriging with just the 50 closest stations suffers from disconti-
nuities as outlier stations are switched in or out of the interpolation. These effects are
demonstrated for kriging in Figure A.5.

Figure A.6 shows the same parameter, with natural neighbour interpolation, modified
by adding interpolated points to eliminate vertex circumcircle radius ratios exceeding
5:1. While this seems to improve accuracy, judging by the results in Table A.1, conven-
tional natural neighbour interpolation, shown in Figure A.7, has smoother contours
and appears to have less leakage of land values into the ocean, particularly in the Great
Australian Bight region, than the modified method of Figure A.6.
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The added points in the modified method of Figure A.6 potentially add discontinu-
ities in the derivatives of the interpolated surface. This may be the reason for the In-
dian ocean contours in Figure A.7 being smoother than those in Figure A.6. The added
points do not always reduce the interpolation error; in a similar analysis with surface
refractivity anomaly parameter NsA99.9 from the same weather stations, added points
at the same locations slightly increases RMS error, although correlation coefficient is
slightly improved.

Accordingly, we choose conventional natural neighbour interpolation to produce dig-
ital maps of the weather station parameters, as cross-validation indicates it is close to
the accuracy achieved by kriging, while producing a superior digital map.

In practice a digital map on a regular grid, at a spacing typically in the region of 0.5
degrees in latitude and longitude, have been used to obtain parameter values for ra-
dio link design. The path centre coordinates of the link are used to interpolate a value.
Two methods of doing this are provided in Rec. ITU-R P1144-9, (2017). Bilinear in-
terpolation from the four grid points surrounding the interpolation location has been
generally used, but bicubic interpolation may be considered. We test these options by
producing the world-wide digital map from the station data, on a 0.5 degree grid, us-
ing natural neighbour interpolation, and then re-interpolate back from the grid to the
station coordinates, and observe the error.

The unexpected result is that bilinear interpolation appears to be generally more accu-
rate than bicubic interpolation, when tested in this way, so in the following regression
models, we use bilinear interpolation of values from a digital map with a 0.25 degree
grid spacing. This replicates the procedure to be used by link designers in making a
prediction, rather than interpolating directly from weather station locations to link lo-
cations.

A.5 Parameters from weather stations
As the number ofweather stations providing useful data far exceeds the practicalmatrix
inversion capability of a single worldwide kriging system, and considering the discon-
tinuities in digital maps using kriging of only local data, seen in Figure A.5, natural
neighbour interpolation is used in our research to produce worldwide digital maps of
parameters derived from weather station data.
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Figure A.5. Ordinary kriging of dN75 from the 50 closest stations, with a power model
γ(h) = b|h|0.3, for the Australian region. Leakage of overland values to the ocean in
the Great Australian Bight region is seen, and discontinuity where high-value stations
are included or excluded from the kriging system.

Sample code to produce natural neighbourmaps is provided inAppendixC. The code is
a version of that used to produce FiguresA.5, A.6 andA.7, but simplified to only provide
conventional natural neighbour interpolation of Figure A.7, and omitting a speed-up
routine that prevents re-calculation of vertices, if those from the previous pixel are still
valid.
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Figure A.6. Natural neighbour interpolation, with added points to eliminate vertex circum-
circle radius ratios exceeding 5:1, of parameter dN75. While leave-one-out testing
suggests these added points improve accuracy, the contours in ocean areas appear to
be less smooth than the conventional technique, and leakage of land values into ocean
areas appears to be increased to the west and the south.

Figure A.7. Conventional natural neighbour interpolation of weather station parameter
dN75. A smooth interpolated surface is obtained even though only a small number
of local points are used in each interpolation. Sample code to produce natural neigh-
bour maps is provided in Appendix C.
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Fading data from installed links

F ADING data from medium to long path length links is now plentiful
in much of Europe and Australia, but lacking in much of the rest of
the world. Data from very short fixed links is lacking everywhere, so

the procedure used in Australia to collect fading data from in-service radio
links is described here, in case it may be usefully applied elsewhere.
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B.1 Producing fading data from digital links
A brief description is provided here of the procedure used in Australia (Australia: ITU-
R doc. 3M/186, 2011), (Australia: ITU-R doc. 3M/45, 2016), to produce average year
worst-month fading distributions from installed radio links.

1. Identify line-of-sight links, with automatic transmit power control disabled,where
minimum and maximum receive level data is continuously available for every 15
minutes, over a period of one or more years.

2. Process the data, estimating the receive level distributions for each 15 minute pe-
riod, and accumlate these into monthly distributions. If only the 15 minute mini-
mum andmaximum levels are known, assume a uniform voltage distribution be-
tween those limits for each 15 minute period (Australia: ITU-R doc. 3M/45, 2016),
but use any additional data; most Australian links also reported time below 4 lev-
els.

3. Plot the receive level time series of fading months, to check that apparent fad-
ing is not equipment related. These plots include rain data from nearby weather
stations, to ensure fading events are not rain related.

4. Each percentage point in the worst month distribution for the year is taken to
be the worst case at that percentage point for the fading months. If more than
one year of data is available, take the dB mean as the average year worst month
distribution.

5. The Australian data is from 6 to 24 MHz bandwidth systems, but the fading dis-
tribution for a very narrow bandwidth system is required, having an approximate
Rayleigh 10 dB per decade deep fading tail slope. Digital radio systemswith finite
bandwidths typically have an initial fading distribution tail slope around 10 dB
per decade, but then reducing slope at the smallest percentages of time. This <10
dB per decade tail region is ignored, as not representative of narrow band fading.

Page 150



Appendix C

Sample code for natural
neighbour interpolation

A LTHOUGHa great deal of codewaswritten for this research, much
of itwas relatively straightforward, but re-writtenmany times in or-
der to arrive at the solution to the various problems, as presented in

this thesis, so new code suited to particular applications may be relatively
easily produced, from the models we have described. Natural neighbour
interpolation (Sibson 1980, Sambridge et al. 1995) is an exception to this;
although its application to interpolation over the surface of a sphere, as de-
scribed in Appendix A, is conceptually simple, producing reliable code for
it is far from straightforward. We provide here the Matlab/Octave code for
producing a digital map from geographically scattered data points, to pro-
vide a source of tested code for natural neighbour interpolation over the
surface of the Earth, approximated as a sphere.
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C.1 Circumcentres of spherical triangles
Our method for finding the circumcentre of a spherical triangle, as used in our natural
neighbour interpolation code, is derived as follows:

An analytic expression for the coordinates, latitude φ0 and longitude λ0, of the circum-
centre of a spherical triangle, may be found by solving for equal great-circle distance
between (φ0, λ0), and each of the three vertices of the triangle, (φ1, λ1), (φ2, λ2), and
(φ3, λ3), using (3) above.

Solution of this system for longitude λ0 yields

λ0 = arctan(a/b) (C.1)

where

a = sin(φ3) cos(φ1) cos(λ1)− sin(φ3) cos(φ2) cos(λ2)
+ sin(φ1) cos(φ2) cos(λ2)− sin(φ2) cos(φ1) cos(λ1)
+ sin(φ2) cos(φ3) cos(λ3)− sin(φ1) cos(φ3) cos(λ3)

(C.2)

and

b = sin(φ3) cos(φ2) sin(λ2)− sin(φ3) cos(φ1) sin(λ1)
+ sin(φ2) cos(φ1) sin(λ1)− sin(φ1) cos(φ2) sin(λ2)
+ sin(φ1) cos(φ3) sin(λ3)− sin(φ2) cos(φ3) sin(λ3).

(C.3)

Alternative expressions for latitude are either

φ0 = arctan[cos(φ2) cos(λ0 − λ2)− cos(φ1) cos(λ0 − λ1)

sin(φ1)− sin(φ2)
] (C.4)

or if | sin(φ1)− sin(φ2)| << | sin(φ3)− sin(φ2)|, use

φ0 = arctan[cos(φ2) cos(λ0 − λ2)− cos(φ3) cos(λ0 − λ3)

sin(φ3)− sin(φ2)
]. (C.5)

However, if φ1 = φ2 = φ3, the circumcircle is the line of that latitude, and the two
circumcentres are the two poles.

There are two circumcentres for any spherical triangle. Coordinates of one are given
by (C.1) and (C.4) or (C.5) above. The other is diametrically opposite (φ0, λ0) with
coordinates φ′

0 = −φ0 and λ′0 = λ0 + π or λ′0 = λ0 − π.
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C.2 Code to generate a natural neighbour digital map
This code is a version of the software used to create natural neighbour interpolated
maps fromweather station data, in this thesis. The code has been simplified by omitting
a speed-up routine that prevents re-calculation of vertices, if those from the previous
pixel are still valid, and the digital file output code has been omitted.

This code is provided as a starting point for writing spherical surface natural neighbour
interpolation software for other purposes.

Some long lines of code have been continued on the next line to fit on the page; append
to the previous line before executing.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This version of the mapping program uses Sibson 1980 natural neighbour %

% interpolation. Data output code is omitted, but may be readily added. %

% Speedup by keeping same vertices if possible, is omitted for simplicity. %

% This code runs in either Matlab or Octave. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Make variables for FindNewVertices.m and NNInterpolate.m global

global lat0 long0 latVert longVert distVert nVertices stationA stationB stationC

global dVertices DstationA DstationB DstationC DlatVert DlongVert DdistVert

global tVertices TstationA TstationB TstationC TlatVert TlongVert TdistVert

global interpValue interpWeight nStations station latitude longitude

showStations=false;

blackCoast=false; % otherwise white coast

% Define the area to be mapped and read coastline data

% Australia 0.5 degree

vertPixels=100; % 100*30/60 = 50 degrees (0 to -50)

horizPixels=180; % 180*30/60 = 90 degrees (90 to 180)

resolMins=30; % best GLOBE resolution is 1/2 minute

maxLat=0;

minLong=90;

disp('Reading coast-line data');

[coastline]=csvread('Coast100x180AUSnh.csv');
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[coastPoints,~]=size(coastline);

% specify Earth physical radius (km)

earthRad=6371; % used in distance calcs

% read known points

% Australian region only, 8-year data, with revised dN75mH

x=csvread('WSparametersSE30N60E2010to17rev2.csv');

% columns are: Lat,Long,MedNs,NsA0.1,NsA90-10,dN75mH

% choose which map to produce: (digMap)

% 1 MedNs

% 2 NsA0.1

% 3 NsA99.9 (was NsA90-10)

% 4 Harvey dN75mH

digMap=4;

[n,~]=size(x);

disp('Reading weather station data');

m=0;

for k=1:n

m=m+1;

latitude(m)=x(k,1);

longitude(m)=x(k,2);

if digMap==1

value(m)=x(k,3);

elseif digMap==2

value(m)=x(k,4);

elseif digMap==3

value(m)=x(k,6);

elseif digMap==4

value(m)=x(k,7); % Harvey dN 75m mean positive value

end

% number of measurements at this pixel location

nMeas(m)=1;
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end

n=m;

% merge any duplicate measurements

k=1;

while k<n

k=k+1;

% compare ny(k), nx(k) with preceding points

j=0;

while j<k-1

j=j+1;

if abs(latitude(j)-latitude(k))<0.01 && abs(longitude(j)-longitude(k))<0.01

% duplicate found; merge k with j

disp(['merging point ',num2str(k),' with ',num2str(j),

' (same lat/long = ',num2str(latitude(k)),'/',num2str(longitude(k)),')']);

value(j)=(nMeas(j)*value(j)+nMeas(k)*value(k))/(nMeas(j)+nMeas(k));

if k<n

% shift all remaining points down 1 in the list

for m=k:n-1

latitude(m)=latitude(m+1);

longitude(m)=longitude(m+1);

value(m)=value(m+1);

end

end

n=n-1;

end

end

end

% Natural neighbour interpolation - first find the vertices

disp('Finding Voronoi polygon vertices');

nVertices=0;

% start with first 3 points

pointA=1;

pointB=2;

Page 155



C.2 Code to generate a natural neighbour digital map

pointC=3;

% find the two circumcentres of the above 3 points

phi1=(pi/180)*latitude(pointA);

phi2=(pi/180)*latitude(pointB);

phi3=(pi/180)*latitude(pointC);

lambda1=(pi/180)*longitude(pointA);

lambda2=(pi/180)*longitude(pointB);

lambda3=(pi/180)*longitude(pointC);

if phi1==phi2 && phi2==phi3

% 3 equal latitude points

phi0=pi/2;

lambda0=0;

else

topLine=-sin(phi3)*cos(phi2)*cos(lambda2)+sin(phi3)*cos(phi1)*cos(lambda1)

-sin(phi2)*cos(phi1)*cos(lambda1)+sin(phi1)*cos(phi2)*cos(lambda2)

-sin(phi1)*cos(phi3)*cos(lambda3)+sin(phi2)*cos(phi3)*cos(lambda3);

botLine=+sin(phi3)*cos(phi2)*sin(lambda2)-sin(phi3)*cos(phi1)*sin(lambda1)

+sin(phi2)*cos(phi1)*sin(lambda1)-sin(phi1)*cos(phi2)*sin(lambda2)

+sin(phi1)*cos(phi3)*sin(lambda3)-sin(phi2)*cos(phi3)*sin(lambda3);

lambda0=atan(topLine/botLine);

if abs(sin(phi3)-sin(phi2))<abs(sin(phi1)-sin(phi2))

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi1)*cos(lambda0-lambda1))/(sin(phi1)-sin(phi2)));

else

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi3)*cos(lambda0-lambda3))/(sin(phi3)-sin(phi2)));

end

end

latC=(180/pi)*phi0;

longC=(180/pi)*lambda0;

% calculate distance

[distThisVertex,~,~]=DistBearing(latC,longC,latitude(pointA),longitude(pointA));

% Add this to the list of vertices

nVertices=nVertices+1;
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latVert(nVertices)=latC;

longVert(nVertices)=longC;

distVert(nVertices)=distThisVertex;

stationA(nVertices)=pointA;

stationB(nVertices)=pointB;

stationC(nVertices)=pointC;

% now do the other circumcentre

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

% calculate distance

[distThisVertex,~,~]=DistBearing(latC,longC,latitude(pointA),longitude(pointA));

% Add this to the list of vertices

nVertices=nVertices+1;

latVert(nVertices)=latC;

longVert(nVertices)=longC;

distVert(nVertices)=distThisVertex;

stationA(nVertices)=pointA;

stationB(nVertices)=pointB;

stationC(nVertices)=pointC;

% Now add the other known points one at a time, updating list of vertices

m=3;

while m<n

m=m+1;

% Find if point m is within any existing vertex circumcircles;

% if it is, replace that vertex with a new one plus two others.

extraVertices=0;

deleteVertices=0;

for k=1:nVertices

% distance from new point to vertex k
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[distance,~,~]=DistBearing(latitude(m),longitude(m),latVert(k),longVert(k));

if distance<distVert(k)

% Replace vertex k with 3 new ones;

% stationA(k) + stationB(k) + point m

% stationB(k) + stationC(k) + point m

% stationC(k) + stationA(k) + point m

% but only where stationA(k), stationB(k) or stationC(k)

% does not duplicate m

stationAk=stationA(k);

stationBk=stationB(k);

stationCk=stationC(k);

deleteVertices=deleteVertices+1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% stationA(k) + stationB(k) + point m %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find the two circumcentres of these 3 points

phi1=(pi/180)*latitude(stationAk);

phi2=(pi/180)*latitude(stationBk);

phi3=(pi/180)*latitude(m);

lambda1=(pi/180)*longitude(stationAk);

lambda2=(pi/180)*longitude(stationBk);

lambda3=(pi/180)*longitude(m);

if phi1==phi2 && phi2==phi3

% 3 equal latitude points

phi0=pi/2;

lambda0=0;

else

topLine=-sin(phi3)*cos(phi2)*cos(lambda2)

+sin(phi3)*cos(phi1)*cos(lambda1)-sin(phi2)*cos(phi1)*cos(lambda1)

+sin(phi1)*cos(phi2)*cos(lambda2)-sin(phi1)*cos(phi3)*cos(lambda3)

+sin(phi2)*cos(phi3)*cos(lambda3);

botLine=+sin(phi3)*cos(phi2)*sin(lambda2)

-sin(phi3)*cos(phi1)*sin(lambda1)+sin(phi2)*cos(phi1)*sin(lambda1)

-sin(phi1)*cos(phi2)*sin(lambda2)+sin(phi1)*cos(phi3)*sin(lambda3)
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-sin(phi2)*cos(phi3)*sin(lambda3);

lambda0=atan(topLine/botLine);

if abs(sin(phi3)-sin(phi2))<abs(sin(phi1)-sin(phi2))

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi1)*cos(lambda0-lambda1))/(sin(phi1)-sin(phi2)));

else

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi3)*cos(lambda0-lambda3))/(sin(phi3)-sin(phi2)));

end

end

latC=(180/pi)*phi0;

longC=(180/pi)*lambda0;

latT=(180/pi)*phi1;

longT=(180/pi)*lambda1;

% calculate distance

[distance,~,~]=DistBearing(latC,longC,latT,longT);

X=distance/earthRad;

if X>pi/2

% this is the wrong circumcentre, so swap to the other one

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

X=pi-X;

end

distThisVertex=X*earthRad;

% check that this circumcircle doesn't contain any

% already added points

minDist=999999;

nMinD=0;

for i=1:m-1

if i~=stationAk && i~=stationBk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));
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if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || m==stationAk || m==stationBk ||

stationAk==stationBk

% try inverting this vertex

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

distThisVertex=pi*earthRad-distThisVertex;

% check that this circumcircle doesn't contain any

% already added points

minDist=999999;

nMinD=0;

for i=1:m-1

if i~=stationAk && i~=stationBk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || m==stationAk || m==stationBk ||

stationAk==stationBk

skipFirst=true;

else

skipFirst=false;

% Add this to the list of vertices
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latVert(k)=latC;

longVert(k)=longC;

distVert(k)=distThisVertex;

stationA(k)=stationAk;

stationB(k)=stationBk;

stationC(k)=m;

end

else

skipFirst=false;

% Add this to the list of vertices to replace previous k

latVert(k)=latC;

longVert(k)=longC;

distVert(k)=distThisVertex;

stationA(k)=stationAk;

stationB(k)=stationBk;

stationC(k)=m;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% stationB(k) + stationC(k) + point m %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find the two circumcentres of these 3 points

phi1=(pi/180)*latitude(stationBk);

phi2=(pi/180)*latitude(stationCk);

phi3=(pi/180)*latitude(m);

lambda1=(pi/180)*longitude(stationBk);

lambda2=(pi/180)*longitude(stationCk);

lambda3=(pi/180)*longitude(m);

if phi1==phi2 && phi2==phi3

% 3 equal latitude points

phi0=pi/2;

lambda0=0;

else

topLine=-sin(phi3)*cos(phi2)*cos(lambda2)

+sin(phi3)*cos(phi1)*cos(lambda1)-sin(phi2)*cos(phi1)*cos(lambda1)
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+sin(phi1)*cos(phi2)*cos(lambda2)-sin(phi1)*cos(phi3)*cos(lambda3)

+sin(phi2)*cos(phi3)*cos(lambda3);

botLine=+sin(phi3)*cos(phi2)*sin(lambda2)

-sin(phi3)*cos(phi1)*sin(lambda1)+sin(phi2)*cos(phi1)*sin(lambda1)

-sin(phi1)*cos(phi2)*sin(lambda2)+sin(phi1)*cos(phi3)*sin(lambda3)

-sin(phi2)*cos(phi3)*sin(lambda3);

lambda0=atan(topLine/botLine);

if abs(sin(phi3)-sin(phi2))<abs(sin(phi1)-sin(phi2))

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi1)*cos(lambda0-lambda1))/(sin(phi1)-sin(phi2)));

else

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi3)*cos(lambda0-lambda3))/(sin(phi3)-sin(phi2)));

end

end

latC=(180/pi)*phi0;

longC=(180/pi)*lambda0;

latT=(180/pi)*phi1;

longT=(180/pi)*lambda1;

% calculate distance

[distance,~,~]=DistBearing(latC,longC,latT,longT);

X=distance/earthRad;

if X>pi/2

% this is the wrong circumcentre, so swap to the other one

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

X=pi-X;

end

distThisVertex=X*earthRad;

% check that this circumcircle doesn't contain

% any already added points
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minDist=999999;

nMinD=0;

for i=1:m-1

if i~=stationBk && i~=stationCk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || m==stationBk || m==stationCk ||

stationBk==stationCk

% try inverting this vertex

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

distThisVertex=pi*earthRad-distThisVertex;

% check that this circumcircle doesn't contain any

% already added points

minDist=999999;

nMinD=0;

for i=1:m-1

if i~=stationBk && i~=stationCk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || m==stationBk || m==stationCk ||
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stationBk==stationCk

skipSecond=true;

else

skipSecond=false;

% Add this to the list of vertices

if skipFirst

latVert(k)=latC;

longVert(k)=longC;

distVert(k)=distThisVertex;

stationA(k)=stationBk;

stationB(k)=stationCk;

stationC(k)=m;

else

extraVertices=extraVertices+1;

latVert(nVertices+extraVertices)=latC;

longVert(nVertices+extraVertices)=longC;

distVert(nVertices+extraVertices)=distThisVertex;

stationA(nVertices+extraVertices)=stationBk;

stationB(nVertices+extraVertices)=stationCk;

stationC(nVertices+extraVertices)=m;

end

end

else

skipSecond=false;

% Add this to the list of vertices

if skipFirst

latVert(k)=latC;

longVert(k)=longC;

distVert(k)=distThisVertex;

stationA(k)=stationBk;

stationB(k)=stationCk;

stationC(k)=m;

else

extraVertices=extraVertices+1;

latVert(nVertices+extraVertices)=latC;
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longVert(nVertices+extraVertices)=longC;

distVert(nVertices+extraVertices)=distThisVertex;

stationA(nVertices+extraVertices)=stationBk;

stationB(nVertices+extraVertices)=stationCk;

stationC(nVertices+extraVertices)=m;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% stationC(k) + stationA(k) + point m %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find the two circumcentres of these 3 points

phi1=(pi/180)*latitude(stationCk);

phi2=(pi/180)*latitude(stationAk);

phi3=(pi/180)*latitude(m);

lambda1=(pi/180)*longitude(stationCk);

lambda2=(pi/180)*longitude(stationAk);

lambda3=(pi/180)*longitude(m);

if phi1==phi2 && phi2==phi3

% 3 equal latitude points

phi0=pi/2;

lambda0=0;

else

topLine=-sin(phi3)*cos(phi2)*cos(lambda2)

+sin(phi3)*cos(phi1)*cos(lambda1)-sin(phi2)*cos(phi1)*cos(lambda1)

+sin(phi1)*cos(phi2)*cos(lambda2)-sin(phi1)*cos(phi3)*cos(lambda3)

+sin(phi2)*cos(phi3)*cos(lambda3);

botLine=+sin(phi3)*cos(phi2)*sin(lambda2)

-sin(phi3)*cos(phi1)*sin(lambda1)+sin(phi2)*cos(phi1)*sin(lambda1)

-sin(phi1)*cos(phi2)*sin(lambda2)+sin(phi1)*cos(phi3)*sin(lambda3)

-sin(phi2)*cos(phi3)*sin(lambda3);

lambda0=atan(topLine/botLine);

if abs(sin(phi3)-sin(phi2))<abs(sin(phi1)-sin(phi2))

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi1)*cos(lambda0-lambda1))/(sin(phi1)-sin(phi2)));
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else

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi3)*cos(lambda0-lambda3))/(sin(phi3)-sin(phi2)));

end

end

latC=(180/pi)*phi0;

longC=(180/pi)*lambda0;

latT=(180/pi)*phi1;

longT=(180/pi)*lambda1;

% calculate distance

[distance,~,~]=DistBearing(latC,longC,latT,longT);

X=distance/earthRad;

if X>pi/2

% this is the wrong circumcentre, so swap to the other one

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

X=pi-X;

end

distThisVertex=X*earthRad;

% check that this circumcircle doesn't contain any

% already added points

minDist=999999;

nMinD=0;

for i=1:m-1

if i~=stationCk && i~=stationAk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end
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end

if minDist<distThisVertex || m==stationCk || m==stationAk ||

stationCk==stationAk

% try inverting this vertex

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

distThisVertex=pi*earthRad-distThisVertex;

% check that this circumcircle doesn't contain any

% already added points

minDist=999999;

nMinD=0;

for i=1:m-1

if i~=stationCk && i~=stationAk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || m==stationCk || m==stationAk ||

stationCk==stationAk

skipThird=true;

else

skipThird=false;

% Add this to the list of vertices

if skipFirst && skipSecond

latVert(k)=latC;

longVert(k)=longC;

distVert(k)=distThisVertex;

stationA(k)=stationCk;
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stationB(k)=stationAk;

stationC(k)=m;

else

extraVertices=extraVertices+1;

latVert(nVertices+extraVertices)=latC;

longVert(nVertices+extraVertices)=longC;

distVert(nVertices+extraVertices)=distThisVertex;

stationA(nVertices+extraVertices)=stationCk;

stationB(nVertices+extraVertices)=stationAk;

stationC(nVertices+extraVertices)=m;

end

end

else

skipThird=false;

% Add this to the list of vertices

if skipFirst && skipSecond

latVert(k)=latC;

longVert(k)=longC;

distVert(k)=distThisVertex;

stationA(k)=stationCk;

stationB(k)=stationAk;

stationC(k)=m;

else

extraVertices=extraVertices+1;

latVert(nVertices+extraVertices)=latC;

longVert(nVertices+extraVertices)=longC;

distVert(nVertices+extraVertices)=distThisVertex;

stationA(nVertices+extraVertices)=stationCk;

stationB(nVertices+extraVertices)=stationAk;

stationC(nVertices+extraVertices)=m;

end

end

if skipFirst && skipSecond && skipThird

% mark this vertex for deletion
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distVert(k)=999999999;

end

end % if distance<distVert(k)

end % for k=1:nVertices finding existing vertices affected by point m

nVertices=nVertices+extraVertices;

% remove any vertices marked for deletion

nn=0;

for k=1:nVertices

if distVert(k)<999999

nn=nn+1;

latVert(nn)=latVert(k);

longVert(nn)=longVert(k);

distVert(nn)=distVert(k);

stationA(nn)=stationA(k);

stationB(nn)=stationB(k);

stationC(nn)=stationC(k);

end

end

nVertices=nn;

disp([num2str(m),' stations ',num2str(nVertices),' vertices']);

end % for m=4:n (now while m<n) adding new points one at a time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% produce map by natural neighbour interpolation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialise display matrix

displayMat=ones(vertPixels+1,horizPixels+1);

disp(['Producing Natural Neighbour Interpolated image']);
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% Horizontal scan

for y=1:vertPixels+1

lat0=maxLat-y*resolMins/60+resolMins/60; % no half pixel offset

disp(num2str(lat0));

% reset speedup flag for each horizontal scan

verticesFound=false;

for x=1:horizPixels+1

long0=minLong+x*resolMins/60-resolMins/60; % no half pixel offset

% Find new vertices for added point lat0, long0 (all in/out global)

dVertices=0; % count of existing vertices within the new polygon

DlatVert=0;

DlongVert=0;

DdistVert=0;

DstationA=0;

DstationB=0;

DstationC=0;

tVertices=0; % count of new vertices around the new polygon

TlatVert=0;

TlongVert=0;

TdistVert=0;

TstationA=0;

TstationB=0;

TstationC=0;

FindNewVertices;

% check if lat0, long0 is one of the known points

unknownPoint=true;

for k=1:nStations

if station(k)>0

if abs(latitude(station(k))-lat0)

+abs(longitude(station(k))-long0)==0

unknownPoint=false;

interpValue=value(station(k));
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interpWeight=1;

end

end

end

if unknownPoint

% Natural Neighbour Interpolation (all input/output global)

NNInterpolate;

interpValue=interpValue/interpWeight;

interpWeight=1;

end % if unknownPoint

if interpWeight>0

interpValue=interpValue/interpWeight;

% divider to give range to 60

if digMap==1

divider=10; % Ns

elseif digMap==2

divider=-2; % NsA0.1

elseif digMap==3

divider=2; % NsA99.9 (was divider=1; % NsA90-10)

elseif digMap==4

divider=1; % dN75mH

end

% spectral colour for plotted value

colour=min(round(max(interpValue/divider,1)),60);

else

% grey to indicate no known value

colour=62;

% reset speedup flag if intepolation failed

verticesFound=false;

end

displayMat(y,x)=colour;

end

end
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% Add coastline generated from Globe v1 30 sec DEM

disp('Adding coast-line');

% white/black to indicate coast

if blackCoast

colour=1;

else

colour=63;

end

for m=1:coastPoints

x=coastline(m,2);

y=coastline(m,1);

displayMat(y,x)=colour;

end

% put small black/white dots or crosses at known locations:

if showStations

if blackCoast

colour=63;

else

colour=1;

end

for k=1:n

lat0=latitude(k);

long0=longitude(k);

y=round((maxLat-lat0+resolMins/120)/(resolMins/60));

x=round((long0-minLong+resolMins/120)/(resolMins/60));

if x>1 && x<horizPixels && y>1 && y<vertPixels

displayMat(y,x)=colour;

% displayMat(y,x-1)=colour;

% displayMat(y,x+1)=colour;

% displayMat(y-1,x)=colour;

% displayMat(y+1,x)=colour;

end

Page 172



Appendix C Sample code for natural neighbour interpolation

end

end

% Matlab plotting [the following two long lines have been wrapped six times]

% 1 2 3 4 5 6 7 8 9

cMap=[0,0,0;1,0,1;1.5,0,1.5;2,0,2;2.5,0,2.5;3,0,3;3.5,0,3.5;4,0,4;4.5,0,4.5;

10 11 12 13 14 15 16 17

5,0,5;4.5,0,5.5;4,0,6;3.5,0,6.5;3,0,7;2.5,0,7.5;2,0,8;1.5,0,8.5;

18 19 20 21 22 23 24 25 26

1,0,9;0.5,0,9.5;0,0,10;0,1,10;0,2,10;0,3,10;0,4,10;0,5,10;0,6,10;

27 28 29 30 31 32 33 34 35

0,7,10;0,8,10;0,9,10;0,10,10;0,9.6,9;0,9.2,8;0,8.8,7;0,8.4,6;0,8,5;

36 37 38 39 40 41 42 43 44

0,7.6,4;0,7.2,3;0,6.8,2;0,6.4,1;0,6,0;1,6.4,0;2,6.8,0;3,7.2,0;4,7.6,0;

45 46 47 48 49 50=+0dB 51 52 53

5,8,0;6,8.4,0;7,8.8,0;8,9.2,0;9,9.6,0;10,10,0;10,9,0;10,8,0;10,7,0;

54 55 56 57 58 59 60 ground grey white

10,6,0;10,5,0;10,4,0;10,3,0;10,2,0;10,1,0;10,0,0;5,2,0;5,5,5;10,10,10];

cMap=cMap/10;

imshow(displayMat,cMap);
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C.3 Natural neighbour interpolation: NNInterpolate.m
[Some long lines of code have been continued on the next line to fit on the page; append
to the previous line before executing.]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Make an ordered list of each polygon, calculate its area, %

% and estimate value as an area weighted mean. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

interpValue=0;

interpWeight=0;

for k=1:nStations

if station(k)>0

nStnList=0;

stnListLink1=0;

stnListLink2=0;

for j=1:dVertices

if station(k)==DstationA(j) || station(k)==DstationB(j) ||

station(k)==DstationC(j)

nStnList=nStnList+1;

stnListLat(nStnList)=DlatVert(j);

stnListLong(nStnList)=DlongVert(j);

if station(k)==DstationA(j)

stnListLink1(nStnList)=DstationB(j);

stnListLink2(nStnList)=DstationC(j);

elseif station(k)==DstationB(j)

stnListLink1(nStnList)=DstationA(j);

stnListLink2(nStnList)=DstationC(j);

else

stnListLink1(nStnList)=DstationA(j);

stnListLink2(nStnList)=DstationB(j);

end

end

end

for j=1:tVertices

if station(k)==TstationA(j) || station(k)==TstationB(j) ||
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station(k)==TstationC(j)

nStnList=nStnList+1;

stnListLat(nStnList)=TlatVert(j);

stnListLong(nStnList)=TlongVert(j);

if station(k)==TstationA(j)

stnListLink1(nStnList)=TstationB(j);

stnListLink2(nStnList)=TstationC(j);

elseif station(k)==TstationB(j)

stnListLink1(nStnList)=TstationA(j);

stnListLink2(nStnList)=TstationC(j);

else

stnListLink1(nStnList)=TstationA(j);

stnListLink2(nStnList)=TstationB(j);

end

end

end

j=1;

nLinkedList=1;

linkedListLat(nLinkedList)=stnListLat(j);

linkedListLong(nLinkedList)=stnListLong(j);

linkingNumber=stnListLink1(j);

loopNotComplete=true;

while loopNotComplete

% find another vertex containing linkingNumber

linkNotFound=true;

while linkNotFound

j=j+1;

if j>nStnList

j=1;

end

if stnListLink1(j)==linkingNumber

linkNotFound=false;

linkingNumber=stnListLink2(j);

elseif stnListLink2(j)==linkingNumber
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linkNotFound=false;

linkingNumber=stnListLink1(j);

end

end

nLinkedList=nLinkedList+1;

linkedListLat(nLinkedList)=stnListLat(j);

linkedListLong(nLinkedList)=stnListLong(j);

if j==1

loopNotComplete=false;

end

end

% We now have an ordered loop of coordinates in

% linkedListLat(1:nLinkedList), linkedListLong(1:nLinkedList)

% forming a convex spherical polygon.

% Go around the polygon calculating the side bearings.

for j=1:nLinkedList-1

[distance, Zs, Zt]=DistBearing(linkedListLat(j),linkedListLong(j),

linkedListLat(j+1),linkedListLong(j+1));

listBearingNext(j)=Zs;

if j+1==nLinkedList

listBearingLast(1)=Zt;

else

listBearingLast(j+1)=Zt;

end

end % calculating side bearings for station k sub-polygon

% calculate sub-polygon area from sum of internal angles, theta

theta=0;

for j=1:nLinkedList-1

intAngle=listBearingNext(j)-listBearingLast(j);

if intAngle>pi

intAngle=intAngle-2*pi;

elseif intAngle<-pi

intAngle=intAngle+2*pi;

end
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theta=theta+intAngle;

end

% Sign of theta depends on if the loop is clockwise or anti-clockwise.

% Area of spherical polygon by spherical excess (Todhunter 1886)

area=(abs(theta)-((nLinkedList-1)-2)*pi())*(earthRad^2);

% Robin Sibson 1980 Natural Neighbour Interpolation

interpValue=interpValue+area*value(station(k));

interpWeight=interpWeight+area;

end % if station(k)>0

end % for k=1:nStations
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C.4 Find Voronoi polygon vertices: FindNewVertices.m
[Some long lines of code have been continued on the next line to fit on the page; append
to the previous line before executing.]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Find if lat0,long0 is within any existing vertex circumcircles; %

% if it is, replace that vertex with a new one plus two others. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% All inputs and outputs are global variables

tVertices=0; % count of new vertices around the new polygon

dVertices=0; % count existing vertices would be absorbed within the new polygon

for k=1:nVertices

% distance from new point to vertex k

[distance, Zs, Zt]=DistBearing(lat0,long0,latVert(k),longVert(k));

if distance<distVert(k)

% Replace vertex k with 3 new ones;

% stationA(k) + stationB(k) + point 0 [lat0,long0]

% stationB(k) + stationC(k) + point 0

% stationC(k) + stationA(k) + point 0

stationAk=stationA(k);

stationBk=stationB(k);

stationCk=stationC(k);

% add this vertex to the list of deleted ones

dVertices=dVertices+1;

DlatVert(dVertices)=latVert(k);

DlongVert(dVertices)=longVert(k);

DdistVert(dVertices)=distVert(k);

DstationA(dVertices)=stationA(k);

DstationB(dVertices)=stationB(k);

DstationC(dVertices)=stationC(k);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% stationA(k) + stationB(k) + point 0 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find the two circumcentres of these 3 points

phi1=(pi/180)*latitude(stationAk);

phi2=(pi/180)*latitude(stationBk);

phi3=(pi/180)*lat0;

lambda1=(pi/180)*longitude(stationAk);

lambda2=(pi/180)*longitude(stationBk);

lambda3=(pi/180)*long0;

if phi1==phi2 && phi2==phi3

% 3 equal latitude points

phi0=pi/2;

lambda0=0;

else

topLine=-sin(phi3)*cos(phi2)*cos(lambda2)

+sin(phi3)*cos(phi1)*cos(lambda1)-sin(phi2)*cos(phi1)*cos(lambda1)

+sin(phi1)*cos(phi2)*cos(lambda2)-sin(phi1)*cos(phi3)*cos(lambda3)

+sin(phi2)*cos(phi3)*cos(lambda3);

botLine=+sin(phi3)*cos(phi2)*sin(lambda2)

-sin(phi3)*cos(phi1)*sin(lambda1)+sin(phi2)*cos(phi1)*sin(lambda1)

-sin(phi1)*cos(phi2)*sin(lambda2)+sin(phi1)*cos(phi3)*sin(lambda3)

-sin(phi2)*cos(phi3)*sin(lambda3);

lambda0=atan(topLine/botLine);

if abs(sin(phi3)-sin(phi2))<abs(sin(phi1)-sin(phi2))

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi1)*cos(lambda0-lambda1))/(sin(phi1)-sin(phi2)));

else

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi3)*cos(lambda0-lambda3))/(sin(phi3)-sin(phi2)));

end

end

latC=(180/pi)*phi0;

longC=(180/pi)*lambda0;

latT=(180/pi)*phi1;
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longT=(180/pi)*lambda1;

% calculate distance

[distance,~,~]=DistBearing(latC,longC,latT,longT);

X=distance/earthRad;

if X>pi/2

% this is the wrong circumcentre, so swap to the other one

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

X=pi-X;

end

distThisVertex=X*earthRad;

% check that this circumcircle doesn't contain any already added points

minDist=999999;

nMinD=0;

for i=1:n % was 1:m-1

if i~=stationAk && i~=stationBk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || stationAk==stationBk

% try inverting this vertex

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end
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distThisVertex=pi*earthRad-distThisVertex;

% check this circumcircle doesn't contain any already added points

minDist=999999;

nMinD=0;

for i=1:n % was 1:m-1

if i~=stationAk && i~=stationBk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || stationAk==stationBk

% point nMinD is inside circumcircle stationAk,Bk,

% radius distThisVertex centre latC longC

else

% Add this to the list of new vertices

tVertices=tVertices+1;

TlatVert(tVertices)=latC;

TlongVert(tVertices)=longC;

TdistVert(tVertices)=distThisVertex;

TstationA(tVertices)=stationAk;

TstationB(tVertices)=stationBk;

TstationC(tVertices)=0;

end

else

tVertices=tVertices+1;

TlatVert(tVertices)=latC;

TlongVert(tVertices)=longC;

TdistVert(tVertices)=distThisVertex;

TstationA(tVertices)=stationAk;

TstationB(tVertices)=stationBk;

TstationC(tVertices)=0;

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% stationB(k) + stationC(k) + point 0 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find the two circumcentres of these 3 points

phi1=(pi/180)*latitude(stationBk);

phi2=(pi/180)*latitude(stationCk);

phi3=(pi/180)*lat0;

lambda1=(pi/180)*longitude(stationBk);

lambda2=(pi/180)*longitude(stationCk);

lambda3=(pi/180)*long0;

if phi1==phi2 && phi2==phi3

% 3 equal latitude points

phi0=pi/2;

lambda0=0;

else

topLine=-sin(phi3)*cos(phi2)*cos(lambda2)

+sin(phi3)*cos(phi1)*cos(lambda1)-sin(phi2)*cos(phi1)*cos(lambda1)

+sin(phi1)*cos(phi2)*cos(lambda2)-sin(phi1)*cos(phi3)*cos(lambda3)

+sin(phi2)*cos(phi3)*cos(lambda3);

botLine=+sin(phi3)*cos(phi2)*sin(lambda2)

-sin(phi3)*cos(phi1)*sin(lambda1)+sin(phi2)*cos(phi1)*sin(lambda1)

-sin(phi1)*cos(phi2)*sin(lambda2)+sin(phi1)*cos(phi3)*sin(lambda3)

-sin(phi2)*cos(phi3)*sin(lambda3);

lambda0=atan(topLine/botLine);

if abs(sin(phi3)-sin(phi2))<abs(sin(phi1)-sin(phi2))

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi1)*cos(lambda0-lambda1))/(sin(phi1)-sin(phi2)));

else

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi3)*cos(lambda0-lambda3))/(sin(phi3)-sin(phi2)));

end

end

latC=(180/pi)*phi0;

longC=(180/pi)*lambda0;

latT=(180/pi)*phi1;
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longT=(180/pi)*lambda1;

% calculate distance

[distance,~,~]=DistBearing(latC,longC,latT,longT);

X=distance/earthRad;

if X>pi/2

% this is the wrong circumcentre, so swap to the other one

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

X=pi-X;

end

distThisVertex=X*earthRad;

% check that this circumcircle doesn't contain any already added points

minDist=999999;

nMinD=0;

for i=1:n % was 1:m-1

if i~=stationBk && i~=stationCk

[distance, Zs, Zt]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || stationBk==stationCk

% try inverting this vertex

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end
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distThisVertex=pi*earthRad-distThisVertex;

% check this circumcircle doesn't contain any already added points

minDist=999999;

nMinD=0;

for i=1:n % was 1:m-1

if i~=stationBk && i~=stationCk

[distance, Zs, Zt]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || stationBk==stationCk

% point nMinD is inside circumcircle stationBk, Ck,

% radius distThisVertex,' centre latC, longC

else

% Add this to the list of new vertices

tVertices=tVertices+1;

TlatVert(tVertices)=latC;

TlongVert(tVertices)=longC;

TdistVert(tVertices)=distThisVertex;

TstationA(tVertices)=stationBk;

TstationB(tVertices)=stationCk;

TstationC(tVertices)=0;

end

else

tVertices=tVertices+1;

TlatVert(tVertices)=latC;

TlongVert(tVertices)=longC;

TdistVert(tVertices)=distThisVertex;

TstationA(tVertices)=stationBk;

TstationB(tVertices)=stationCk;

TstationC(tVertices)=0;

end

Page 184



Appendix C Sample code for natural neighbour interpolation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% stationC(k) + stationA(k) + point 0 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find the two circumcentres of these 3 points

phi1=(pi/180)*latitude(stationCk);

phi2=(pi/180)*latitude(stationAk);

phi3=(pi/180)*lat0;

lambda1=(pi/180)*longitude(stationCk);

lambda2=(pi/180)*longitude(stationAk);

lambda3=(pi/180)*long0;

if phi1==phi2 && phi2==phi3

% 3 equal latitude points

phi0=pi/2;

lambda0=0;

else

topLine=-sin(phi3)*cos(phi2)*cos(lambda2)

+sin(phi3)*cos(phi1)*cos(lambda1)-sin(phi2)*cos(phi1)*cos(lambda1)

+sin(phi1)*cos(phi2)*cos(lambda2)-sin(phi1)*cos(phi3)*cos(lambda3)

+sin(phi2)*cos(phi3)*cos(lambda3);

botLine=+sin(phi3)*cos(phi2)*sin(lambda2)

-sin(phi3)*cos(phi1)*sin(lambda1)+sin(phi2)*cos(phi1)*sin(lambda1)

-sin(phi1)*cos(phi2)*sin(lambda2)+sin(phi1)*cos(phi3)*sin(lambda3)

-sin(phi2)*cos(phi3)*sin(lambda3);

lambda0=atan(topLine/botLine);

if abs(sin(phi3)-sin(phi2))<abs(sin(phi1)-sin(phi2))

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi1)*cos(lambda0-lambda1))/(sin(phi1)-sin(phi2)));

else

phi0=atan((cos(phi2)*cos(lambda0-lambda2)

-cos(phi3)*cos(lambda0-lambda3))/(sin(phi3)-sin(phi2)));

end

end

latC=(180/pi)*phi0;

longC=(180/pi)*lambda0;
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latT=(180/pi)*phi1;

longT=(180/pi)*lambda1;

% calculate distance

[distance,~,~]=DistBearing(latC,longC,latT,longT);

X=distance/earthRad;

if X>pi/2

% this is the wrong circumcentre, so swap to the other one

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;

end

X=pi-X;

end

distThisVertex=X*earthRad;

% check that this circumcircle doesn't contain any already added points

minDist=999999;

nMinD=0;

for i=1:n % was 1:m-1

if i~=stationCk && i~=stationAk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || stationCk==stationAk

% try inverting this vertex

latC=-latC;

if longC<0

longC=longC+180;

else

longC=longC-180;
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end

distThisVertex=pi*earthRad-distThisVertex;

% check this circumcircle doesn't contain any already added points

minDist=999999;

nMinD=0;

for i=1:n % was 1:m-1

if i~=stationCk && i~=stationAk

[distance,~,~]=DistBearing(latC,longC,latitude(i),longitude(i));

if distance<minDist

minDist=distance;

nMinD=i;

end

end

end

if minDist<distThisVertex || stationCk==stationAk

% point nMinD is inside circumcircle stationCk, Ak

% radius distThisVertex centre latC, longC

else

% Add this to the list of new vertices

tVertices=tVertices+1;

TlatVert(tVertices)=latC;

TlongVert(tVertices)=longC;

TdistVert(tVertices)=distThisVertex;

TstationA(tVertices)=stationCk;

TstationB(tVertices)=stationAk;

TstationC(tVertices)=0;

end

else

tVertices=tVertices+1;

TlatVert(tVertices)=latC;

TlongVert(tVertices)=longC;

TdistVert(tVertices)=distThisVertex;

TstationA(tVertices)=stationCk;

TstationB(tVertices)=stationAk;

TstationC(tVertices)=0;
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end

end % if distance<distVert(k)

end % for k=1:nVertices finding existing vertices affected by point 0

% make list of stations in the interpolation

nStations=0;

station=0;

% Internal vertices

for k=1:dVertices

% add the three station numbers to the list if not there

if DstationA(k)>0 && ~max(station==DstationA(k))

nStations=nStations+1;

station(nStations)=DstationA(k);

end

if DstationB(k)>0 && ~max(station==DstationB(k))

nStations=nStations+1;

station(nStations)=DstationB(k);

end

if DstationC(k)>0 && ~max(station==DstationC(k))

nStations=nStations+1;

station(nStations)=DstationC(k);

end

end

% External vertices

for k=1:tVertices

% add the three station numbers to the list if not there

if TstationA(k)>0 && ~max(station==TstationA(k))

nStations=nStations+1;

station(nStations)=TstationA(k);

end

if TstationB(k)>0 && ~max(station==TstationB(k))

nStations=nStations+1;
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station(nStations)=TstationB(k);

end

if TstationC(k)>0 && ~max(station==TstationC(k))

nStations=nStations+1;

station(nStations)=TstationC(k);

end

end
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C.5 Calculate distance and bearings: DistBearing.m
function [distance,Zs,Zt]=DistBearing(latitude1,longitude1,latitude2,longitude2)

% Approximate Earth physical radius (km)

earthRad=6371; % used in distance calcs

phiS=(pi/180)*latitude1;

phiT=(pi/180)*latitude2;

lambdaD=(pi/180)*(longitude1-longitude2);

% distance from law of cosines

X=real(acos(sin(phiT)*sin(phiS)+cos(phiT)*cos(phiS)*cos(lambdaD)));

if abs(lambdaD)+abs(phiS-phiT)>0 && X<1.0e-06

% the above expression has failed or suffers numeric inaccuaracy,

% so use the following approximation

X=sqrt(lambdaD*cos(phiS)*lambdaD*cos(phiT)+(phiS-phiT)^2);

end

if lambdaD==0

if phiS<phiT

Zs=0;

Zt=pi;

else

Zs=pi;

Zt=0;

end

else

Zt=real(acos((sin(phiS)-sin(phiT)*cos(X))/(cos(phiT)*sin(X))));

Zs=real(acos((sin(phiT)-sin(phiS)*cos(X))/(cos(phiS)*sin(X))));

if sin(lambdaD)<0

Zt=2*pi-Zt;

else

Zs=2*pi-Zs;

end

end

% fix bearings at poles

if phiS==pi/2
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Zs=pi-lambdaD;

if Zs>2*pi

Zs=Zs-2*pi;

elseif Zs<0

Zs=Zs+2*pi;

end

elseif phiS==-pi/2

Zs=-lambdaD;

if Zs<0

Zs=Zs+2*pi;

end

end

if phiT==pi/2

Zt=pi+lambdaD;

if Zt>2*pi

Zt=Zt-2*pi;

elseif Zt<0

Zt=Zt+2*pi;

end

elseif phiT==-pi/2

Zt=lambdaD;

if Zt<0

Zt=Zt+2*pi;

end

end

distance=X*earthRad;
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