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Abstract

Data-hungry, complex ecosystem models are often used to predict the consequences
of threatened species management, including perverse outcomes. Unfortunately, this
approach is impractical in the many systems that have insufficient data to parameterize
ecosystem interactions or reliably calibrate or validate such models. We devised a differ-
ent approach composed of a minimum realistic model that guides decisions in data- and
resource-scarce systems. We applied our approach to a case study in an invaded ecosystem
from Christmas Island, Australia, where there are concerns that cat (Felis catus) eradi-
cation to protect native species, including the red-tailed tropicbird (Phaethon rubricauda),
could release mesopredation by invasive rats (Rattus rattus). We used biophysical constraints
(metabolic demand) and observable parameters (e.g., prey preferences) to identify the com-
bined cat and rat abundances that could threaten the tropicbird population. The population
of tropicbirds was not sustained when predated by 1607 rats (95% credible interval [CI]:
103–5910) in the absence of cats and 21 cats (95% CI: 2–82) in the absence of rats.
For every cat removed from the island, the bird’s net population growth rate improved,
provided rats did not increase by more than 77 individuals (95% CI: 30–174). Thus, in
this context, 1 cat is equivalent to 30–174 rats. Our methods are especially useful for
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on-the-ground predator control in the absence of knowledge of predator–predator interac-
tions to determine whether current abundance of predators threatened the prey population
of interest; managing only 1 predator species was sufficient to protect the prey species given
potential release of another predator; and control of multiple predator species was needed
to meet the conservation goal. With our approach limited information can be used for
maximum value in data-poor systems because it shifts the focus from predicting future
trajectories to identifying conditions that impede conservation.

KEYWORDS

ecosystem modeling, information scarcity, invasive species management, multiple threats, perverse conse-
quences

Resumen

Los modelos ambientales complejos y con un gran volumen de datos se usan con frecuen-
cia para pronosticar las consecuencias de la gestión de las especies amenazadas, incluyendo
los resultados perversos. Desafortunadamente, esta estrategia no es práctica en los tantos
sistemas que no tienen suficientes datos para formular un parámetro de las interacciones
en el ecosistema o calibrar o validar con confianza dichos modelos. Diseñamos una estrate-
gia diferente compuesta de un modelo realista mínimo que orienta las decisiones dentro de
los sistemas con escasez de datos y recursos. Aplicamos nuestra estrategia a un estudio
de caso en un ecosistema invadido de la Isla Navidad, Australia, en donde existe pre-
ocupación por la eliminación del gato doméstico (Felis catus) para proteger a las especies
nativas, incluida el ave tropical de cola roja (Phaethon rubricauda), como posible impulsor
de la mesodepredación por ratas invasoras (Rattus rattus). Usamos restricciones biofísicas
(demanda metabólica) y parámetros observables (p. ej.: preferencia por presas) para iden-
tificar la abundancia combinada de gatos y ratas que podrían amenazar a la población de
Phaethon rubricauda. La población de esta especie no fue constante cuando fue presa de 1607
ratas (95% intervalo de credibilidad [IC] 103–5910) en ausencia de gatos y cuando fue presa
de 21 gatos (95% IC 2–82) en ausencia de ratas. Por cada gato que se eliminó de la isla, la
tasa neta de crecimiento poblacional de la especie aumentó, bajo la condición de que las
ratas no incrementaran en más de 77 individuos (95% IC 30-174]). Por lo tanto, dentro
de este contexto, 1 gato es equivalente a 30–174 ratas. Nuestros métodos son realmente
útiles para el control in situ de depredadores en ausencia de información sobre las inter-
acciones depredador-depredador para determinar si la abundancia actual de depredadores
amenaza a la población presa de interés. La gestión de 1 especie depredadora fue suficiente
para proteger a la especie presa bajo la potencial liberación de otro depredador y se nece-
sitó del control de varias especies depredadores para lograr el objetivo de conservación.
Con nuestra estrategia, la información limitada puede usarse para el valor máximo en los
sistemas deficientes de información ya que cambia el enfoque de la predicción de futuras
trayectorias a la identificación de las condiciones que impiden la conservación.

PALABRAS CLAVE

amenazas múltiples, consecuencias accidentales, escasez de información, especie invasora, gestión, modelación
de ecosistemas
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INTRODUCTION

Managing threatened species in the face of ecosystem complex-
ity and uncertainty can result in unintended consequences that
undermine conservation goals (Pearson et al., 2022; Shannon
et al., 2009; Wittmer et al., 2013). A range of methods have
been developed to predict these perverse management out-
comes, mostly via modeling population dynamics and species
interactions (Baker et al., 2017; Bode et al., 2015; Dambacher
et al., 2003). Although such ecosystem models provide insights
for comparing broad conservation policies (Adams et al., 2020;
Bode et al., 2015; Perryman et al., 2021; Rendall et al., 2021;
Reum et al., 2021) (e.g., whether to remove invasive predators
or invasive competitors of a threatened species [Rendall et al.,
2021]), they typically do not inform day-to-day operations
for managers, especially in data-poor systems. We devised an
alternative approach that applies minimum realistic, biophysi-
cally constrained models to bridge the gap between policy and
operational conservation decisions for ecosystem managers
faced with the all-too-common situation of limited ecosystem
information.

Our approach is best illustrated through the example of
predator control. Invasive predators present one of the most
important issues in conservation, contributing to 58% of all
known bird, mammal, and reptile extinctions (Doherty et al.,
2016). To prevent future extinctions, managers regularly imple-
ment programs to control populations of invasive predators
(Smith et al., 2010). Unfortunately, predator control can lead
to perverse outcomes, such as releasing mesopredators that
then increasingly prey on the threatened species, undermin-
ing the efficacy of predator control (Richie & Johnson, 2009).
Mesopredator release is notoriously difficult to predict, and
although pervasive (Prugh et al., 2009), it is not ubiquitous
(Jachowski et al., 2020). Classical ecosystem models have in
some cases identified when predator control might succeed
given the possibility of mesopredator release (Baker et al., 2020;
Bode et al., 2015). However, to capture species interactions,
ecosystem models require many parameters that are challenging
to accurately quantify (Geary et al., 2020), some of which (e.g.,
per capita interaction strengths) are difficult to interpret and
measure (Baker et al., 2018). Furthermore, ecosystem models

typically predict population trajectories under various scenar-
ios, usually focused on a subset of management options (e.g.,
Adams et al., 2020; Peterson et al., 2021), rather than identifying
the conditions under which conservation targets are at threat.
This latter aim is unlikely to be achievable in the common situa-
tion in which missing data prevent adequate parameterization of
these ecosystem models. Thus, there is a need to inform conser-
vation decisions such that the potential for perverse outcomes
is avoided without the need for exhaustive, complex ecosystem
data that are often expensive and time-consuming to collect and
difficult to interpret. So, what should managers use when they
need to make a quick decision in an ecosystem with the potential
for perverse outcomes but do not have enough data to predict
outcomes with ecosystem models?

We propose that minimum realistic models can address this
need because they provide a useful path between the twin per-
ils of ignoring ecosystem complexity and requiring extensive
and expensive site-specific data for parameterization. Minimum
realistic models model the fewest ecosystem components and
processes directly related to the model objective (Geary et al.,
2020) and are particularly valuable if their parameters and out-
puts can be estimated quantitatively or qualitatively by managers.
For example, instead of predicting ecosystem trajectory under
different scenarios, a minimum realistic model can quantify the
increase in mesopredators that would eliminate a conservation
gain associated with invasive predator control.

We applied our approach to a case study of an invaded ecosys-
tem on Christmas Island, where habitat for threatened species
is challenging to monitor due to the island’s terrain and lim-
ited resources. On the island, feral cats (Felis catus) and invasive
black rats (Rattus rattus) prey on the threatened red-tailed trop-
icbird (Phaethon rubricauda) among other species (Beeton et al.,
2010) (Figure 1). Cat removal is already underway, but there
is concern that a decrease in the cat population could release
predation pressure on rats, potentially leading to increased rat
predation on red-tailed tropicbirds (Phaethon rubricauda) (Baker
et al., 2020; Han et al., 2020). Simultaneous rat control has there-
fore been recommended (Han et al., 2020). However, given the
uncertainty associated with mesopredator release and the costs
and difficulties of rat eradication on tropical islands (Holmes
et al., 2015), complete rat control is unrealistic in this case. To
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4 of 12 PLEIN ET AL.

FIGURE 1 (a) The trophic network comprising feral cats, invasive black rates, and native red-tailed tropic birds on Christmas Island (arrows, flow of energy;
question mark, mesopredator release unknown). (b) Red-tailed tropicbirds: hatchling (left) (photo by M. Plein) and breeding adult (right) (photo by M. Plein)

provide advice for identifying and responding to mesopreda-
tor release, we used a minimum realistic model to calculate
critical abundances of cats and rats that would yield popu-
lation decline for red-tailed tropicbirds. That is, rather than
predicting the trajectories of individual species, we identified
the degree of mesopredator release that would undermine trop-
icbird conservation. Because rat and cat population sizes are
easy to interpret and can be assessed either qualitatively or
quantitatively, thresholds of concern for these quantities can
directly inform conservation. Identification of threshold popu-
lation sizes for the more easily measured predators is especially
useful because the prey species are often difficult to accurately
monitor directly.

To generate critical predation thresholds, our minimum real-
istic model calculated the effects of rat and cat predation on
the long-term stability of the red-tailed tropicbird population
through an indicator metric, the reproduction ratio. To over-
come the lack of system-specific data, we combined biophysical
constraints (e.g., metabolic demand) with information about
the tropicbird’s life cycle and predator impacts at different life
stages. Through our approach, we estimated the levels of pre-
dation that are acceptable or unacceptable for the threatened
species. Our approach allowed expression of the impact of 1

predator in terms of the other—the number of rats that have
the same negative impact on the tropicbird population as 1 cat
(a metric we call cat equivalence) to offer insight into the preda-
tor’s relative impact on the conservation target species. This can
support prioritization decisions about which predators to mit-
igate first or most intensively. Finally, we specifically included
variability and uncertainty in model parameters and propagated
these uncertainties through to predictions so that decision mak-
ers could explore their own risk tolerance and make more
transparent decisions.

METHODS

Case study

Christmas Island is an Australian territory of 135 km2 in the
Indian Ocean. Feral cats and black rats arrived at the island
more than 100 years ago. Since then, both species have become
invasive, and they threaten a number of native species, including
red-tailed tropicbirds (Beeton et al., 2010; Ishii, 2006). Due
to the high risk posed by these invaders, a cat eradication
program commenced on the island in 2010 with plans for a rat
eradication program to follow (Algar & Hamilton, 2014).
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Because cats also eat rats, the 2 threats can interact antagonisti-
cally (i.e., the predation by rats may be lower in the presence of
cats [Hughes et al., 2019; Rayner et al., 2007]). Controlling cats
therefore has the potential to cause perverse consequences for
native species if the reduction of cats leads to a mesopredator
release of rats (Baker et al., 2018; Beeton et al., 2010; Han et al.,
2020).

Red-tailed tropicbirds are medium-sized seabirds occurring
on islands and coastal regions of the tropics in the Indian and
Pacific Oceans (Fleet, 1974). Although red-tailed tropicbirds
spend most of their lives at sea, they nest on the ground
(Figure 1), where they are vulnerable to terrestrial predation.
After the juveniles fledge, all birds leave the island and spend
their time offshore foraging until they return the next year to
breed. Juvenile birds stay out to sea until they reach reproductive
maturity (Fleet, 1974). Each breeding pair typically produces
1 egg per season until the end of their reproductive life span,
around 13−16 years (Schreiber, & Schreiber, 1993). Although
the current population size is unknown, historic estimates range
from 1440 to 2000 breeding pairs (James et al., 2014; Stokes,
1988). Monitored breeding success on Christmas Island has
been very low over the past 30 years, likely due to predation by
non-native species (Hennicke & Flachsbarth, 2009; Ishii, 2006;
Sommerfeld et al., 2015). Unfortunately, limited resources (e.g.,
personnel, funding) and high environmental complexity (e.g.,
dense rainforest vegetation, sharp cliffs) on Christmas Island
pose major constraints on assessment and management of
threatened species and their threats. Managers may therefore
not detect a decline in the red-tailed tropicbird population
until too many individuals have been lost for recovery of the
population.

Model overview

To assess the level of predation pressure by cats and rats on
the population of red-tailed tropicbirds, we developed a min-
imum realistic model that described the long-term stability of
the red-tailed tropicbird population through an indicator met-
ric. This indicator accounted for the bird’s birth rate, natural
mortality, and the mortality due to predation by cats and rats.
Crucially, we considered the predation ratio by cats and rats at
different stages of the seabird’s life cycle: although rats con-
sume eggs and hatchlings (juvenile birds in nests), cats prey
on hatchlings and adult birds. We assumed the daily predation
from cats and rats to be constant throughout the bird’s breed-
ing period on the island (approximately 2.5–3.0 months). The
indicator accounted for short-term changes in the adult bird
population, due to direct cat predation of adults in the breeding
season, and for long-term impacts through egg and hatchling
predation by rats. All calculations were performed in Matlab
(Matlab, 2021).

Model structure

We defined the persistence indicator as the reproduction ratio, η,
which was the number of juvenile birds that hatched in the cur-

rent breeding season and survived to reproductive maturity at
3 years of age (NJ,3), compared with the loss in adult bird popu-
lation over the current breeding season (i.e., difference between
the adult population at the start [NA,0] and end [NA,1] of the
breeding season):

𝜂 =
NJ,3

NA,0 − NA,1
. (1)

Hence, if η < 1, the mortality rate of breeding birds is
larger than the number of birds hatched that season expected
to survive to breeding age, causing the population of red-tailed
tropicbirds to decline over time. Conversely, η> 1 indicates that
the tropicbird population increases over time.

Because the 2 predator species affect the life stages of red-
tailed tropicbirds (e.g., adult birds, eggs, and chicks) differently
and we lacked detailed information to parameterize a full life-
cycle population model, finding a suitable persistence indicator
for the threatened species was a key challenge. An indicator that
accounted for only the change in adult bird population would
have failed to capture the effects of breeding failures through
predation on eggs and hatchlings, until such a change finally
manifested in the size of the adult breeding population. Con-
versely, focusing on breeding success would have omitted the
predation of the adult population.

We calculated the change in adult population over the first
breeding season, NA,0 − NA,1, based on the adult bird popula-
tion at the start of the breeding season NA,0, an annual natural
adult mortality μA, the size of the cat populations Ncats, the
average duration of the breeding season TB, during which time
the birds were exposed to predation, and the number of adult
birds consumed per cat per day pA,C as:

NA,0 − NA,1 = NA,0𝜇A + Ncats pA,CTB. (2)

The number of juveniles hatching in year 1, NJ,1, that survive
to reproduce after year 3, NJ,3, depends on the initial popu-
lation of breeding birds, NA,0; number of eggs laid per adult
bird, β; proportion of eggs that hatch, ν; number of eggs eaten
per rat per day, pE,R; number of hatchlings (juvenile birds after
hatching and before leaving the nest) eaten per cat and rat per
day pH,C and pH,R, respectively; egg incubation time TI; and
time hatchlings spend in the nest, TH, where breeding time
TB = TI + TH:

NJ,3 =
[
𝜈
(
𝛽NA,0 − NratsPE,RTI

)
(1 − 𝜇H) − Ncats pH,CTH

− Nrats pH,RTH
(
1 − 𝜇J

)]T mat
. (3)

Equation (3) arises from a mass balance of the juvenile pop-
ulation until they become reproductively mature, NJ,3, adjusted
for the initial hatchling mortality (1 − μH), and fledgling mor-
tality (juveniles after leaving the nest and before becoming
reproductively mature) (1− μJ)

Tmat. Here, μJ describes the over-
all annual juvenile mortality and Tmat refers to the time that
juveniles spend off the island until they become reproductively
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6 of 12 PLEIN ET AL.

mature. To avoid negative abundances of red-tailed tropicbirds,
the following constraints were included in Equations (1) and (2)
in the MATLAB code: (1 – μ) NA,0 – Ncats pA,C TB ≥ 0 (i.e., cat
predation of adult birds cannot exceed adult bird population);
β NA,0 – Nrats pE,R TI ≥ 0 (i.e., rat predation of eggs cannot
exceed the number of eggs laid); and ν(β NA,0 – Nrats pE,R TI) –
pH,R Nrats TH – pH,C Ncats TH ≥ 0 (i.e., combined cat and
rat predation of hatchlings cannot exceed the number of eggs
hatched).

Predation rates

Predation rates of cats and rats on different life stages of
red-tailed tropic birds (in units of prey per day and predator indi-
vidual) were calculated from the energetic demand of predators
(metdemandC and metdemandR in Joules per day and predator
individual); energy contents of prey items (energyE, energyH,
and energyA in Joules per gram and prey individual); masses of
the species (massC, massR, massE, massH, and massA in grams);
and daily proportion of each predator’s diet that is adult bird,
hatchling, or egg (preyprefA,C, preyprefH,C, preyprefH,R, and
preyprefE,R) as follows:

pA,C =

metdemandC

[
kJ

cat×day

]
preyprefA,C

massA

[
g

bird

]
× energyA

[
kJ

g

] , (4a)

pH,C =

metdemandC

[
kJ

cat×day

]
preyprefH,C

massH

[
g

bird

]
× energyH

[
kJ

g

] , (4b)

pH,R =

metdemandR

[
kJ

rat×day

]
preyprefH,R

massH

[
g

bird

]
× energyH

[
kJ

g

] , (4c)

pE,R =

metdemandR

[
kJ

rat ×day

]
preyprefE,R

massE

[
g

egg

]
× energyE

[
kJ

g

] , (4d)

where A is adult birds, H is hatchlings, and E is eggs. Parame-
ter values are in Table 1. We used published estimates for the
parameters from Christmas Island wherever possible. If these
were not available, we used estimates of the same species from
other locations and energetic limitations on metabolic rates
(Table 1). Estimates for the prey preferences for cats were taken
from a scat study from 2 Galapagos islands, where birds con-
stituted 38.2% of their diet (Konecny, 1987). In a study on rat
diet on Stewart Island, New Zealand, birds made up 8% of the

stomach contents and occurred in 25% of samples. We used this
information to average the bird content in rat diet over all rats
and to calculate a preyprefH,R of 0.02. Because we could not
find an estimate for preference of eating eggs, we assumed eggs
are twice as likely to be eaten as live animals because they are
immobile and not constantly guarded by parents. To calculate
the metabolic demands of the predator species, we used equa-
tions derived from field studies of metabolic rates of the animal
taxa carnivora and Rodentia (Nagy et al., 1999) (Table 1).

Model application

A model of reproduction ratio was produced by substituting
Equations (2)–(4) into Equation (1), and it was used to define
a predator phase space of predator abundances for which the
reproductive ratio of the red-tailed tropicbird population was
predicted by our model to remain stable at different certain-
ties. By setting η to 1, substituting Equations (2) and (3) into
Equation (1) yielded an equation that predicts, for a given Ncats,
the maximum number of rats Nrats for which the tropic bird
population is sustainable (i.e., 𝜂 ≥ 1):

Nrats = critical rats − cat equivalence × Ncats, (5)

where critical rats (Equation 6) is the maximum number of rats
such that η = 1 in absence of any cats, and cat equivalence
(Equation 7) is the number of rats that have the equiva-
lent effect on η as 1 cat. The model does not predict the
dynamic interactions between cat and rat populations, but rather
captures how the size of these 2 threats together affect the
red-tailed tropicbird population: the metrics critical rats and
cat equivalence in Equation (5) can be derived directly from
Equations (1)–(3):

critical rats =
NA,0𝜈𝛽 (1 − 𝜇H) − 𝜂NA,0𝜇A

(
1 − 𝜇J

)−T mat

pH,RTH + 𝜈 (1 − 𝜇H) pE,RTI
(6)

and

cat equivalence =
pH,CTH + pA,C𝜂 TB

(
1 − 𝜇J

)−T mat

pH,RTH + 𝜈 (1 − 𝜇H) pE,RTI
. (7)

The values of critical rats and cat equivalence were calculated
from Equations (6) and (7) with parameter values in Equa-
tions (4a)–(4d) and Table 1. A critical cats metric (i.e., the
maximum size of cat population for which 𝜂 = 1 in absence of
any rats) was derived by rearranging Equation (5) for Nrats = 0
and given by critical cats = critical rats ∕cat equivalence.

Parameter uncertainty

Many of the estimates for the parameter values were either
not available for the study site, did not come with an estimate

 15231739, 2022, 5, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.13916 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [11/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CONSERVATION BIOLOGY 7 of 12

T
A

B
L

E
1

E
st

im
at

es
of

pa
ra

m
et

er
va

lu
es

an
d

th
ei

r
or

ig
in

in
a

m
od

el
of

to
ta

lp
re

da
tio

n
on

re
d-

ta
ile

d
tr

op
ic

bi
rd

s

P
a

ra
m

e
te

r
D

e
sc

ri
p

ti
o

n
U

n
it

M
e
a

n
R

a
n

g
e

S
o

u
rc

e

N
A

,0
Po

pu
la

tio
n

si
ze

of
re

d-
ta

ile
d

tr
op

ic
bi

rd
s

in
di

vi
du

al
s

28
00

†
St

ok
es

,1
98

8

T
I

D
ur

at
io

n
of

in
cu

ba
tio

n
tim

e
da

ys
42

–

T
H

D
ur

at
io

n
of

ju
ve

ni
le

s
as

ha
tc

hl
in

gs
da

ys
90

–

T
B

D
ur

at
io

n
of

br
ee

di
ng

se
as

on
da

ys
12

2
–

T
m

at
T

im
e

ju
ve

ni
le

s
sp

en
d

of
th

e
is

la
nd

da
ys

α R
–

T
B

/3
65

–

α M
A

ge
to

re
pr

od
uc

tiv
e

m
at

ur
ity

ye
ar

s
3

–
de

lH
oy

o
et

al
.,

19
92

α R
L

ife
sp

an
ye

ar
s

15
–

β
E

gg
s

la
id

pe
r

ad
ul

tp
re

y
pe

r
br

ee
di

ng
se

as
on

nu
m

be
r

0.
5
×

(𝛼
M
−
𝛼

R

𝛼
M

)
†

ν
Pr

op
or

tio
n

of
vi

ab
le

eg
gs

pr
op

or
tio

n
0.

99
†

N
o

lit
er

at
ur

e
es

tim
at

e
av

ai
la

bl
e

μ A
A

nn
ua

ln
at

ur
al

m
or

ta
lit

y
ra

te
of

ad
ul

ts
pr

op
or

tio
n

0.
12

5
0.

10
–0

.1
5

Sc
hr

ei
be

r
&

Sc
hr

ei
be

r,
19

93
;S

ch
re

ib
er

et
al

,
20

01
,2

00
4

μ J
A

nn
ua

ln
at

ur
al

m
or

ta
lit

y
ra

te
of

ju
ve

ni
le

s
pr

op
or

tio
n

0.
20

†
Sc

hr
ei

be
r

et
al

.2
00

4

μ H
N

at
ur

al
m

or
ta

lit
y

ra
te

of
ha

tc
hl

in
gs

ov
er

br
ee

di
ng

se
as

on
pr

op
or

tio
n

1
−

(1
−
𝜇

j)
T

H
36

5−
T

I
†

Se
e
μ J

pr
ey

pr
ef

A
,C

Pr
op

or
tio

n
of

ad
ul

tb
ird

in
ca

td
ie

t
pr

op
or

tio
n

0.
38

2
†

K
on

ec
ny

,1
98

7

pr
ey

pr
ef

H
,C

Pr
op

or
tio

n
of

ha
tc

hl
in

g
in

ca
td

ie
t

pr
op

or
tio

n
0.

38
2

†

pr
ey

pr
ef

H
,R

Pr
op

or
tio

n
of

ha
tc

hl
in

g
in

ra
td

ie
t

pr
op

or
tio

n
0.

02
†

G
al

es
,1

98
2

pr
ey

pr
ef

E
,R

Pr
op

or
tio

n
of

eg
g

in
ra

td
ie

t
pr

op
or

tio
n

0.
04

†
N

o
lit

er
at

ur
e

es
tim

at
e

av
ai

la
bl

e

m
as

s C
C

at
m

as
s

g/
in

di
vi

du
al

32
50

20
00

–4
50

0
M

os
eb

y
et

al
.,

20
15

m
as

s R
R

at
m

as
s

g/
in

di
vi

du
al

13
2

15
–2

50
C

I
da

ta
;W

ill
ac

y,
pe

rs
on

al
co

m
m

un
ic

at
io

n

m
as

s A
A

du
lt

bi
rd

m
as

s
g/

in
di

vi
du

al
70

0
60

0–
80

0
de

lH
oy

o
et

al
.,

19
92

m
as

s H
H

at
ch

lin
g

bi
rd

m
as

s
g/

in
di

vi
du

al
m

as
s A 2

30
0–

40
0

m
as

s E
E

gg
m

as
s

g/
in

di
vi

du
al

66
.2

†
L

ob
el

et
al

.,
20

12

en
er

gy
A

E
ne

rg
y

co
nt

en
to

fb
ird

m
ea

t
kJ

/g
10

.9
†

M
at

ia
s

&
C

at
ry

,2
00

8

en
er

gy
H

E
ne

rg
y

co
nt

en
to

fb
ird

m
ea

t
kJ

/g
10

.9
†

en
er

gy
E

E
ne

rg
y

co
nt

en
to

fe
gg

kJ
/g

29
†

m
et

de
m

an
d C

D
ai

ly
m

et
ab

ol
ic

de
m

an
d

in
fe

ra
lc

at
s

kJ
∙i

nd
iv

id
ua

l–1
∙d

ay
–1

1.
67
×

m
as

s0.
86

9
C

†
N

ag
y

et
al

.,
19

99

m
et

de
m

an
d R

D
ai

ly
m

et
ab

ol
ic

de
m

an
d

in
w

ild
ra

ts
kJ

∙i
nd

iv
id

ua
l–1

∙d
ay

–1
5.

48
×

m
as

s0.
71

2
R

†

N
ot

e:
Sy

m
bo

l“
†

”
re

pr
es

en
ts

no
ra

ng
e

ar
ou

nd
th

e
m

ea
n

es
tim

at
e

of
th

e
pa

ra
m

et
er

va
lu

e,
so

20
%

va
ria

tio
n

as
su

m
ed

.S
ym

bo
l“

–”
re

pr
es

en
ts

no
ra

ng
e

as
su

m
ed

fo
r

te
m

po
ra

lp
ar

am
et

er
s.

 15231739, 2022, 5, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.13916 by U

niversity of A
delaide A

lum
ni, W

iley O
nline L

ibrary on [11/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 12 PLEIN ET AL.

of variation, or both. To account for uncertainty in the esti-
mates of parameter values for which variation was unknown, we
assumed that each model parameter was normally distributed
and had a standard deviation that corresponded to 20% around
the reported mean estimate of the parameter value (Table 1).
This choice is based on the average variation of the parameters
for which variation estimates were available in the literature (see
Table 1). Normal distributions for all model parameters were
assumed to be independent of each other (i.e., zero covariance).
We estimated probability distributions for the predictions of cat
equivalence, critical rats, and other relevant model outputs by
using the Monte Carlo method (Xiao et al., 2017). The output
distributions were summarized via calculation of their medians
and 68% and 95% central credible intervals. These quantities
characterized the uncertainty in the predictions of our model.

We also displayed the uncertainty in model outputs in cat–rat
phase space. For each parameter combination drawn, there was
a line demarking the critical threshold for rats as a function of
the number of cats in the system (see Equation 5). For cat and
rat populations above the line, the bird population was threat-
ened; below the line, the bird population was not threatened.
The y-intercept of the line was critical rats, and the slope was
negative cat equivalence (see Equation 5). In the above uncer-
tainty analysis, we generated a line for each parameter combi-
nation. With all lines in hand, for every cat population size, we
evaluated the corresponding many estimates of maximum rat
population sizes obtained from each of the lines. Instead of
plotting all these lines, we identified rat abundances that specify
the median and bound the middle 68% and 95% of the maxi-
mum rat population sizes obtained from all of these (unplotted)
lines. Repeating this process for every cat population size
generated the boundaries of the regions in Figure 2.

Sensitivity of cat equivalence

To analyze the sensitivity of the cat equivalence metric to param-
eter uncertainty, we applied a strong variation (i.e., 75%) to each
parameter separately and calculated the change in estimate of cat
equivalence for each parameter. Although most of the literature
estimates of parameter values varied far less than 75%, choos-
ing a large variation helped in detection of the relative sensitivity
of the estimate of cat equivalence to individual parameters. This
sensitivity analysis was used to identify which parameters had
the largest effect on the cat equivalence metric. The parame-
ters NA,0, β, and μA were excluded from this sensitivity analysis
because cat equivalence did not depend on these parameters
(Equation 7).

RESULTS

Critical predator abundances and cat
equivalence

Our model predicted that the red-tailed tropicbird population
has equal probability of increasing or decreasing (actual popu-
lation trajectory dependent on the true, but unknown, values

FIGURE 2 Associated behavior of the reproduction ratio of the
population of red-tailed tropicbirds on Christmas Island at different relative
abundances of predators (feral cats and rats). The border between potential
decline and potential increase represents the median estimate of predator
abundances at which a reproduction ratio (η) of 1 is maintained. To represent
uncertainty, upper and lower bounds for the 68% and 95% credible interval
(CI) are shown for the predator abundances that yield η = 1 as borders
between shaded areas. That is, at each cat abundance value, the rat abundances
that correspond to the upper and lower bounds on the 68% CI for η = 1 are
indicated by the potential or likely borders for tropicbird decrease and increase,
respectively. Similarly, at each cat abundance value, the rat abundances that
correspond to the upper and lower bounds on the 95% CI for η = 1 are
indicated by the likely or highly likely borders for tropicbird decrease and
increase, respectively.

of the model parameters) in the presence of approximately 21
cats in absence of rats or approximately 1607 rats in absence of
cats. These 2 values appear at the intersection of Figure 2’s curve
that separates pink and light gray regions and the horizontal and
vertical axes. The values could also be interpreted as thresh-
olds, that is, predator abundances above these values would
increase the probability of a declining tropicbird population and
lower predator abundances would increase the probability of an
expanding tropicbird population.

More generally, if cats and rats were to co-occur, there would
be a 50–84%, 84–97.5%, and >97.5% probability of tropicbird
population decline if the number of cats and rats were to fall
in a pink, light red, or dark red region, respectively, of Figure 2.
Conversely, if the present number of cats and rats was to fall
in a light gray, medium gray, or dark gray region of Figure 2,
there would be a 50–84%, 84–97.5%, and >97.5% probabil-
ity of tropicbird population expansion, respectively. All these
probabilities were calculated based on the assumption that the
probability distributions used for model parameters were cor-
rect. These probabilities provided a range of possible outcomes
for the tropicbird population based on the current number of
cats and rats.

Parameter sensitivity

Metabolic demand of rats had the strongest individual effect
on the cat equivalence (Figure 3). The second most influential
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FIGURE 3 Sensitivity of cat equivalence to 75% uncertainty in the estimates of each parameter value in a model of total predation on red-tailed tropicbirds. Cat
equivalence is independent of parameters A0, β, and μA; hence, they do not appear in the plot. Parameters are defined in Table 1.

parameters were mass and energy of adult birds, followed by
the metabolic demands of cats. Hatchling parameters (e.g., TH,
massH, energyH) had very little effect on the predictions of cat
equivalence (Figure 3).

Distribution of estimates for cat equivalence
and critical rats

The uncertainty in the estimates of parameter values resulted in
strongly right-skewed distributions of cat equivalence and criti-
cal rats (Appendix S1a). Cat equivalence ranged from around 10
to 410 (median around 77). Critical rat numbers varied widely,
from 0 to 13,000 (median 1407) (Appendix S1b).

DISCUSSION

Predicting the consequences of management interventions in
ecosystems that face multiple threats is difficult because they
exhibit complex dynamics and knowledge to parameterize these
models is often scarce (Geary et al., 2020). Instead of pre-
dicting the population state of a threatened species after a
management action (as in, e.g., Baker et al. [2017], Bode et al.
[2015], Dambacher et al. [2003], and Han et al. [2020]), our
approach identified the levels of threat that could lead to unde-
sired population trajectories in a threatened species and could
thereby trigger a management decision. For example, on Christ-
mas Island, our methods would allow managers to determine
whether the current abundance of predators threatens the red-
tailed tropicbird population; whether managing cats alone is
sufficient to protect the birds; and whether and how much addi-
tional rat control is necessary. The last point is particularly useful
to managers given the costs of multispecies eradications can

be significantly higher single-species eradications (Baker et al.,
2020), and, because rat eradications can be difficult (Holmes
et al., 2015), managers may choose to eradicate only cats. Our
estimate of critical rats served as the quantitative level of rat
abundances that should not be exceeded to maintain desired
bird reproduction.

Theoretical studies show that the rat populations may
increase under certain conditions when managing cats on
Christmas Island (Baker et al., 2020; Han et al., 2020). It is
useful to know how many additional rats would lead to an unde-
sired bird reproduction rate. This abundance would then trigger
required rat control. By presenting 1 predator in the units of
another, the estimate of cat equivalence provided a quantitative
target of how much the rat abundances could increase (with
every cat removed) before leading to an undesired bird repro-
duction rate. For example, a mesopredator release of <77 rats
per eradicated cat was <50% likely to threaten the population
trajectory of red-tailed tropicbirds (Figure 2). The lower the rat
value, the lower the probability of an undesired reproduction
rate. Thus, when controlling cats on Christmas Island, a simul-
taneous assessment of rat abundances could determine whether
rats need to be managed as well and allow swift action when
rat numbers increase. Using rat abundances as a decision trig-
ger allows managers to act even before rats negatively affect the
population of red-tailed tropicbirds. Sometimes, complete erad-
ications of cats are difficult to achieve (Campbell et al., 2011);
hence, if cats remain, the critical number of rats that allow the
desired reproduction ratio of the red-tailed tropicbird would be
lower. In case of remaining cats, the cat equivalence thus serves
as a quantitative estimate for the reduction of the critical rats.

Our approach delivers decision triggers with an uncertainty
estimate. Data-scarce systems are characterized by large para-
metric uncertainty that is amplified in model outputs, and our
model was not immune to this. Although the large uncertainty
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in our model outputs may deter application of the method,
conservation decision-making and management occurs even
under high, albeit often unstated, uncertainty (McCarthy et al.,
2014). Modeling and risk analysis should prepare conserva-
tion managers for the presence and the impact of uncertainty
(Canessa et al., 2016; Lechner et al., 2014; McCarthy et al., 2014).
Providing quantitative estimates of the uncertainty of a manage-
ment intervention allows the decision maker to make informed
and transparent decisions (Canessa et al., 2016). By presenting
uncertainty bounds of the decision triggers in our case study,
we provided managers with a tool to assess their risk toler-
ance when deciding about the predator abundances that trigger
management interventions. In the case of risk-averse decision
makers, they can decide to not proceed with the management
intervention and instead gather more information to improve
the estimates and reduce uncertainty. A prudent next step would
be to validate the estimates with field data to determine whether
the predictions of cat and rat abundances, which maintain a neu-
tral reproductive ratio of tropicbirds, are within the uncertainty
bounds.

We developed the model with biologically meaningful param-
eters (Adams et al., 2017) (i.e., parameters that are stable,
physically interpretable, and transferable to other contexts). Bio-
logically meaningful parameters can be measured in the field
(such as prey preferences, metabolic demand, mass, etc.) and
updated when more information becomes available. By assess-
ing the sensitivity of cat equivalence, we provided a focal point
for research to reduce the uncertainties in the estimates. The
metabolic demands of rats and cats (which included the mass
of rats and cats) and the mass and energy of adult birds influ-
enced the estimates of cat equivalence most strongly. Studying
these values on Christmas Island could help reduce the uncer-
tainty in the cat equivalence and probably also in the estimates
of critical predator abundances. To do so, cats and rats could
be caught alive to assess their weights, and metabolic demands
could be measured using direct or indirect calorimetry (Kaiyala
& Ramsey, 2011). We could have instead used parameters that
model the interaction more directly, for example, the interaction
strength between predators and red-tailed tropicbirds. However,
it is difficult to measure individual interaction rates because they
imply a mass action assumption, where the rate of change of
a species is proportional to the product of abundance of the
species with the abundance of the interaction partner species
(Baker et al., 2020). We divided interactions into independently
measurable things, such as energy contents and energy require-
ments, to allow the possibility of measuring and updating the
estimates of parameter values. Although models with biolog-
ically meaningful parameters may not have the best fit, they
can be updated, used beyond the chosen system, and create
connections between research and management (Adams et al.,
2017).

Although our approach is most easily applied to small ecosys-
tems with 1 threatened component and 2 threats, in reality many
more ecosystem components can influence such a small system.
For example, the network of species interacting on Christmas
Island include a number of other species (Han et al., 2020).

Further, red-tailed tropicbirds can be affected by other threat-
ening processes such as extreme weather events (Hennicke &
Flachsbart, 2009) and lack of food resources (Schreiber, 1994).
Adding more components to the model, however, may not nec-
essarily improve model performance (Arhonditis & Brett, 2004)
and may increase the uncertainty in outcomes. We focused our
modeling efforts on the species at risk and the 2 threatening
processes to reflect current management decisions (i.e., eradica-
tion of cats and rats) and to avoid adding more complexity to
the model.

One possible extension for our approach, however, could be
to gather information on costs and success rates of management
interventions to develop a cost-efficacy framework for manage-
ment decisions and use it to inform planning for management
effort. For example, if reducing cat populations by 50% costs
twice as much as reducing rats by 50%, but each cat is worth 77
rats, then our cat equivalence metric suggests that removing cats
would be the most cost-effective strategy, but if cat equivalence
is 30 then removing rats would be more effective.

Our approach could be applied to other cases in which mul-
tiple biotic or abiotic or both biotic and abiotic threats affect
the population of a threatened species. For example, hispid
cotton rats (Sigmodon hispidus), a rodent native to parts of the
Americas, can be directly killed by fire, yet fire can also indi-
rectly increase predation pressure by burning cover vegetation
(Conner et al., 2011). Prescribed burning of fire-maintained
longleaf pine (Pinus palustris) forests can dramatically decrease
cotton rat populations, but predator control may mitigate these
effects. To apply our approach to this system, an appropri-
ate population indicator would need to account for direct and
indirect mortalities due to fire, as well as natural birth and
mortality rates and baseline predation rates without fire. Our
threat equivalence approach could express the impact of pre-
scribed fire as the threat from predators and thereby inform
decisions about potential management actions. Knowing the
decision triggers allows managers to assess whether predator
abundances could affect the rat population in the case of a
prescribed fire. Managers could then decide to either delay
burning or decrease predator numbers if immediate burning is
required.

Invasive species are among the 5 key drivers of ecosys-
tem change (IPBES, 2019) and represent one of the largest
challenges to global biosphere integrity (Steffen et al., 2015).
The unintended consequences of managing only 1 of sev-
eral invasive species is widely documented (e.g., Prior et al.,
2018; Rayner et al., 2007; Wittmer et al., 2013). Although
traditional approaches can estimate potential success of a spe-
cific management intervention, which helps in the selection
among management interventions, it may not necessarily pro-
vide guidance on how to react in the case of an undesired
outcome. We provide managers with a decision tool to assess
critical abundances of threats and react to changes in them.
Estimating threat equivalence and shifting from predicting the
possible future under different scenarios to assessing the con-
ditions under which outcomes of concern are likely may have
applications beyond conservation.
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