
Post-contact evolutionary 
immunogenetics in Indigenous 

peoples of America  
 

 
Evelyn Collen 

  

Department of Molecular and Biomedical Science  

School of Biological Sciences 
Faculty of Sciences 

University of Adelaide 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This thesis is submitted in fulfilment of the requirements for the degree of Doctor of 

Philosophy 
Feb 2022 

 



 i 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ii 

 
 
 

This thesis is dedicated to my brother, Sebastian, 
for having been my life-long inspiration, for sharing his love of knowledge, and 

for always being there 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv 

Table of Contents 
 
 
 
Thesis abstract ……………………………………………………..vi 
 
 
Thesis Declaration………………………………………………...viii 
 
 
Publications …………………………………………………………x 
 
 
Acknowledgments…….……………………………………………xii 
 
 
Author’s note…….……………………………...…………...……xiv 
 
 
Thesis Introduction …………………………………………………1 
     

Infectious disease and depopulation in the Americas…………….…………2 

Detecting selection occurring at the time of contact ………………….…….6 

Determining signals of immune gene adaptation …………………..……….9 

A key player in immune adaptation: The HLA system.…………………...11 

Thesis overview………………………….………………………………...13 

References……………….………………………….…………………..….14 
    
 
Chapter I: Host-pathogen coevolution and the impact of 
European colonisation on the immunogenetic makeup of 
Indigenous people of America. …………………. . …….………..27 
 
 
 



 v 

Chapter II:  Comparing signatures of immunogenetic selection in 
pre- and post-contact Andean populations.……………47 
 
 
 
Chapter III: Binding affinities of 438 HLA proteins to complete 
proteomes of seven pandemic viruses and distributions of 
strongest and weakest HLA peptide binders in populations 
worldwide………………………………………….……………….79 
 
 
 
Thesis Discussion ….……………………………………………..105 
    

Thesis summary…………………………………………………………..106 

The benefits and challenges of a holistic, multidisciplinary approach in 
studying evolution in the Americas………………………………………107 

The insights of an evolutionary perspective into the role of infectious 
diseases in shaping Indigenous immunity…………….…………..………110 

The limitations and challenges of an evolutionary approach in characterising 
infectious disease impacts …………………………………….…………114 

Future directions………………………………………………………….116 

Conclusion………………………………………………………………..119 

References…………………………………………………….....……….119 

 

 
Appendix I: Chapter II Supplementary Materials ……………129 
 
 
Appendix II: Chapter III Supplementary Materials…...………153 
 



 vi 

Thesis abstract  
 
 
Upon European colonisation in the 15th century, Indigenous populations across the Americas 
were expansive, with total census numbers across both continents totalling approximately 75 
million. However, these populations declined rapidly and extensively upon contact, falling at 
regional rates of 80-95% until the beginning of population recovery in the early 1900’s. 
Historians and anthropologists have attributed this precipitous decline to the introduction of 
European infectious diseases such as smallpox, influenza, tuberculosis, and measles, as well 
as the societal upheavals, warfare, and other socially oppressive impacts of early 
colonization. Despite the widespread recognition of disease impacts of colonisation, the 
genetic effects of introduced infectious diseases on Indigenous populations has not been well 
investigated. Most studies thus far have focussed on genetic evolution in modern Indigenous 
populations, with few including comparisons to other world populations, and even fewer 
using time-series analyses to establish immunity adaptation prior to European contact.  
 
Considering the introduction of pathogens and scale of societal collapse, the impact of 
European colonisation was arguably one of the most disruptive events in the recent history of 
Indigenous peoples of America. Since pathogens are known to exert a strong selective 
pressure in humans, and that a large influx of different types of pathogens (bacteria, parasites, 
fungi, and especially viruses) accompanied Europeans during the colonial expansion, the 
change in pathogenic landscape adaptation of Indigenous peoples is expected to have been 
drastic. This likely resulted in large immune gene changes which are yet to be characterised.  
Investigating these adaptive processes and their dynamics with colonial-introduced infectious 
diseases hold much potential for uncovering adaptive mechanisms, as well as better 
contextualisation of current disparities in Indigenous infectious disease burden. Holistic 
insights into both past and present adaptation in immunity genes may also inform our broader 
understanding of human adaptation to pathogens, possibly elucidating new candidate genes 
and pathways that may be ubiquitous targets of selection. This understanding is becoming 
more urgent in the face of novel and emerging infectious diseases, for which early detection 
and development of vaccines and other medical measures is instrumental to minimising loss 
of life. This is exemplified in the recent Covid-19 epidemic, for which extensive research and 
vaccine development has been crucially important.  
 
This thesis provides new perspectives on evolutionary immunogenetics in Indigenous peoples 
of America upon contact with Europeans. First, I take a multidisciplinary approach in 
examining evidence and theories underlying the impact of European-introduced diseases on 
the genomes of Indigenous populations. I examine the anthropological and historical 
narratives and paradigms commonly used to describe the depopulation. I then build a picture 
of the differences in host-pathogen co-evolutionary histories between European and 
Indigenous populations since their ancestral divergence, using key observations from 
paleomicrobiolocal evidence. I summarise the findings from studies investigating the impacts 
of colonisation from a genetics perspective, including the post-contact demographic 
bottleneck, admixture-enabled selection from global population movements under colonial 
rule, and possible immune adaptation described for ancient and modern populations. This 
provides a holistic, thorough contextualisation of post-contact immune gene adaptation in the 
Americas. 
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Using ancient DNA samples and population genetics methods, I then reconstruct a 
demographic history for time-series data from Indigenous Andean populations, spanning 
from around 2900 years ago to present day. I use several methods in determining genetic 
differentiation at genome-wide single nucleotide polymorphisms. This approach reveals 
putative signals of selection acting upon immunity genes and pathways both in ancient and 
modern populations, with an especially remarkable strength in immune signals for the ancient 
North Coast population. No signals are apparent for genes associated to smallpox or 
influenza, which is contrary to the adaptation signals we expected. I also find a strong 
differentiation signal between ancient and modern individuals in genes important to HIV 
response, along with putative signals for four oncogenic viruses that are known to be 
particularly pathogenic in HIV-associated immunosuppression.  
 
 
In addition to the genome-wide approach taken in Chapter II, I also take a closer look at a 
crucial, front-line member of the immune system, the Human Leukocyte Antigen (HLA) 
cluster, in modern Indigenous people of America and other world populations. Using 
machine learning methods, I examine the binding affinity of HLA alleles to various 
proteomes from several pandemic viruses and quantify these differences across world 
populations. Indigenous populations from both North and South America show very different 
patterns to any other global population, with significantly higher frequencies of strong 
binders and lower frequencies of weak binders, a result that is striking and possibly indicative 
of post-contact adaptation.  
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Infectious disease and depopulation in the Americas 
 
 
Current understanding of post-contact Indigenous depopulation 

  
Indigenous peoples of America were once populous, with pre-contact Mexico and Peru 

especially deemed as the most densely populated and structurally civilised areas1. However, 
immediately following European contact, Indigenous populations across both continents 
suffered a dramatic demographic collapse2. The average depopulation rate across the 
Americas was estimated as high as 95% between first contact and the beginning of 
population recovery in the early 1900’s, a loss attributed to an interplay of the introduction of 
European infectious diseases and the imposition of social conditions, which were thought to 
be detrimental to both survival and reproduction rates3-5. As discussed in Chapter I, the 
contribution of infectious disease to Indigenous depopulation has been extensively 
recognised in scholarly studies, as well as in the wider public sphere, but is paradoxically 
very poorly understood. 

  
To provide some additional context to the anthropological evidence discussed in Chapter 

I, further possible biases and misconceptions surrounding the Indigenous depopulation are 
given here. The earliest anthropological records of depopulation originate from letters, tax 
reports, missionary accounts, and Conquistador records in the early 16th century. Many 
estimates and much of our knowledge of early depopulation dynamics originate from the 
records of two Spaniards, Bernal Diaz del Castillo and Bartolomé de las Casas. The latter was 
prolific in documenting the deteriorative conditions of early colonialism and defending 
Indigenous rights6. For the purpose of understanding the impact of epidemics immediately 
post-contact, his accounts remain controversial; historiographic studies suspected him of 
under-reporting early infectious disease mortality rates, in a concerted effort to highlight the 
atrocities suffered by Indigenous people under colonial rule4,7,8. The effect of such early 
biases in records appeared to mould scholarly narratives and research into two opposing 
directions: some, such as Dobyns, presumed that infectious disease played an 
underappreciated role and thus inflated pre-contact populations to the upper bounds9, while 
others insisted that early records should be taken at face value regardless of bias, leading to 
lower pre-contact population estimates and lesser attribution of depopulation to infectious 
disease8-11. 

  
While it is irrefutable that the depopulation was on a large and tragic scale, it is difficult 

to interpret available evidence of the depopulation process and validate the roles of various 
introduced diseases. Several paradigms were created to model this process, including the 
‘Virgin Soil’ and ‘Black Legend’ hypotheses. The respective evidence used to support these 
hypotheses is presented in Chapter I; here, I discuss further biases and a more 
epistemological view of their establishment as narratives. As described more thoroughly in 
Chapter I, the ‘Virgin Soil’ paradigm imputed the demise of populations to the naivety of the 
Indigenous Americans’ immune systems2,12,13. Over time, the ‘Virgin Soil’ paradigm became 
the most widely accepted depopulation explanation, at least in the broader public sphere. This 
was linked to the estimates of very high pre-contact populations, the sudden and ubiquitous 
decline of which could only be explained by large-scale epidemics. Some scholars who 
supported an epidemiological driver of depopulation have viewed opposing paradigms as 
tools for anti-Spanish, anti-Catholicism sentiment12,14. For example, the ‘Black Legend’ 
hypothesis suggested that depopulation was caused by an interplay of sociological causes, 
including cruelty, poor sanitation, loss of infrastructure, social dislocation, wars, and famine 
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6,15,16. While acknowledging that introduced infectious diseases must have been a 
contributing factor in Indigenous depopulation, the ‘Black Legend’ hypothesis lends at least 
equal weight to the impact of very poor living conditions and killings. As mentioned in 
Chapter I, controversial scholars have argued that the ‘Virgin Soil’ hypothesis may have been 
more widely publicised due to colonial narratives that were seeking to somewhat absolve 
colonists of the early atrocities committed against Indigenous peoples17. 

  
Considering current evidence, it is not possible to rule out one hypothesis over the other. 

The most plausible depopulation scenario appears to be that of a complex, multifactorial 
model, whereby the mode of depopulation follows a combination of the two hypotheses 
depending on local political factors, access to healthcare, pathogen strain infectivity, and 
many more factors8,16. Epidemics also appeared to have regional specificity in their rate of 
infectivity, mortalities, and overall scale of impact18,19. It is especially important to cognise 
the effects of these factors when characterising the long-reputed, primary drivers of infectious 
disease, namely smallpox, measles, and influenza, and their potential effects on immune 
adaptation. This also must be contextualised by what we know of potential pre-contact 
epidemics and pathogenic drivers of mortality. 
  
 
 
Pre-contact pathogen dynamics in Americas 

  
Regarding the assertion that Indigenous populations may have experienced a heightened 

susceptibility to introduced diseases, its key basis lies with the assumption that pre-contact 
pathogens may not have imposed as strong a selection force on Indigenous immunity genes. 
This assumption relies on a solid understanding of the pathogen dynamics prior to contact, 
and the associated pre-contact immunity adaptation that would have occurred in ancient 
Indigenous populations. Unfortunately, very little is known of this pre-contact pathogen 
distribution in the Americas, or even of the causes of epidemics in early colonial days20. The 
only substantiated pre-contact epidemics were driven by a few endemic bacteria, i.e., 
Salmonella enterica (causing haemorrhagic fever), Mycobacterium tuberculosis (causing 
tuberculosis) and Treponema paraluis cuniculi (causing treponematosis), as discussed in 
Chapter I21-23. If there were any other endemic pathogens with epidemic potential in the 
Americas, they remain a mystery, as they do not appear to have survived into modern day or 
recent documented history. In Chapter II, Kaposi Sarcoma Herpesvirus (KSHV) shows 
suggestive signals of selection when examining differentiation between ancient and modern 
Andean populations. KSHV genomes compared worldwide have revealed high region 
specificity and appear to correlate with initial peopling of the continents, suggesting that this 
virus was infecting past Indigenous populations for a long time24. However, its lethality in 
past populations is unknown. 

  
The characterisation of pre-contact America as a ‘disease-free Eden’ has been discarded 

in more recent studies, and it is widely recognised that pre-contact Indigenous populations 
likely had many pathogens against which their immune systems would have had to adapt to25-

27. Chapter I outlines the differing host-pathogen co-evolutionary histories between European 
and Indigenous populations of America, highlighting the much higher incidence of zoonotic 
pathogens and domestic animal sources and reservoirs in Europe. It is thus possible that 
ancient American pathogens may have impacted immunity adaptation in different ways to 
that of post-contact zoonotic pathogens. It is also possible that there existed a greater 
diversity of precontact pathogens impinging on immunity adaptation than has yet been 
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discovered, since identification of infectious disease during the colonial era was primarily 
symptom-based, less precise than modern methods of diagnosis, and subject to the disease 
knowledge bias of colonial medical doctors and eyewitnesses20. Many diseases of the time 
presented overlapping symptoms, killed rapidly, and left few traces on skeletal remains, 
further undermining the ability to identify etiological agents from historical descriptions and 
physical anthropological analysis of past infected individuals28,29. Although the complete 
overview of pre-contact pathogens will likely always remain elusive, there is still much work 
to be done in this space to identify causal agents of past diseases. 
  

 
Current pathogen distribution and effects in the Americas 
 

Current-day observations of pathogens still at high frequency, and their modern impacts 
in the American populations, may provide some clues towards which pathogens may have 
been involved in driving post-contact immune adaptation. These pathogens are briefly 
discussed here, with a focus on pathogens known to be common in the Andes and South 
America, since the individuals analysed in this thesis originate from this region. Viruses that 
have shown putative signs of selection from the results of Chapter II are also given particular 
attention. 

  
In the modern-day Andes, there are several bacteria that are endemic to the region and 

have high incidence in local communities, such as the ones causing typhoid fever 
(Salmonella) and Bartonellosis (Bartonella)30,31. Amongst viruses that are most frequently 
found in Peru, Dengue, Chikungunya, and Zika viruses appear to be the most common32. The 
incidence of malaria is also quite high in Peru; it is generally asserted that Plasmodium 
parasites were brought over to the Americas by the post-contact African slave trade, however 
this carries high uncertainty, as malaria is an ancient disease and was thought to be infecting 
human populations even before the first movements out of Africa33. It is thus possible that 
Plasmodium parasites were carried with humans out of Africa during the first peopling of the 
Americas, and thus became established as endemic to the Andes prior to European 
arrival33,34. Dengue is thought to have been first introduced to the Americas in the 1600’s, but 
little is known of its early epidemics, as symptoms were easily confused with those of yellow 
fever and chikungunya disease. Since its introduction, many instances of Dengue epidemics 
have spread rapidly throughout North and South America35. Zika emerged very recently in 
the Pacific islands and was not thought to be present in Latin America until 201536. Except 
perhaps for Dengue and its close relatives (yellow fever, chikungunya disease and potentially 
West Nile Virus), none of these pathogens are expected to have carried a high mortality rate 
at the time of contact, and several such as Zika were introduced too recently to be able to 
detect any signals of selection in the dataset of Chapter II. 

  
Human immunodeficiency virus (HIV) is thought to have only recently emerged to infect 

humans, with studies first noting its emergence in Uganda in the 1930’s, having first 
originated in chimps37. HIV-1 was first recognised in North America in 1981 but is thought 
to have been circulating undetected in American populations for around 12 years prior to its 
discovery in New York38,39. HIV appears to have neither an exceptionally strong prevalence 
nor a high mortality rate in Peru or surrounding regions, apart from very recent reports of 
high incidence in Amazonian populations40,41. Potentially linked to HIV-related genes and 
pathways, lymphotropic viruses comprises several species of herpesviruses and retroviruses, 
all exhibiting oncogenic properties through viral mechanisms that can enhance the 
proliferation and survival of host cells. In Chapter II, genes involved in response to Epstein-
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Barr virus (EBV), Kaposi Sarcoma herpesvirus (KSHV), and Hepatitis B (HBV) appear to 
show some of the strongest signs of selection in ancient populations. EBV is a herpesvirus 
that is usually a harmless part of the human microbiome, with lymphoma-proliferative 
properties that are most lethal in individuals with HIV-associated immunosuppression42. 
KSHV also has a high endemic prevalence within South American Indigenous populations. 
Hyperendemicity of KSHV is observed in the Amazonian lowlands and the savannah, with 
high prevalence also observed in some population pockets in Peru43, 44. KSHV also carries 
much higher fatality rates when present in HIV-positive patients with immunosuppression45. 
HBV is an ancient pathogen, with genetic evidence for having been present in the early 
Holocene and tracing with human population movements in the early peopling of the 
Americas46. This very long co-evolutionary trajectory with human hosts may have 
predisposed HBV to exert longstanding (though likely varying through time) selection 
pressure on immunity genes in both pre-contact and post-contact Indigenous populations.  
  

 
 
Overall infectious disease disparities in contemporary Indigenous populations 
 

Although there is still much work to be done in determining effects of specific pathogens 
on Indigenous populations since contact, their hallmarks are seen in present-day infectious 
disease burdens, which are frequently heightened in Indigenous populations47. Primary 
research and meta-analyses concur that people with Indigenous ancestry overwhelmingly 
tend to have a shorter life expectancy than the average of the general population in the 
Americas, with higher incidences of infectious diseases, especially for tuberculosis and 
rheumatic fever48. A lower quality of life, poor conditions, reduced access to healthcare and 
education, and low socioeconomic status all contribute to the higher infectious disease burden 
in a complex, multifactorial system48. Alcoholism is another contributing factor, with known 
significant effects in reducing the efficacy of the immune system49. It has been estimated that 
the mortality rate due to alcoholism in the United States is 7.7 times higher for Indigenous 
peoples than the national average50. 

  
Indigenous people also suffer the highest hospitalisation rates due to infectious disease, 

which overall has been shown to be three times the rate of hospitalisation for non-Indigenous 
people51. Amongst the most common infectious disease diagnoses, acute bronchiolitis, 
septicaemia, and pneumonia account for around two times the hospitalisation rate in 
Indigenous people compared to people with European ancestry51. These figures are also 
considered to be underestimated significantly, due to not accounting for hospitalisation at 
clinics purposed for Indigenous people52. These disparities are especially apparent in more 
vulnerable age brackets: in North America, the Indigenous elderly suffer from 
disproportionate rates of hospitalisations and mortality from infectious disease53. For North 
American Indigenous infants, around 53% of all hospitalisations were due to an infectious 
disease cause, a figure 10% greater than the average for other ethnicities, while the lower 
respiratory tract infection hospitalisation rate for Indigenous infants was twice that of infants 
of the general population54.  These symptomatic-based disparities possibly reflect adaptation 
to introduced pathogens that may be ongoing in Indigenous populations, further highlighting 
the significance of better understanding post-contact immune adaptation, especially for 
medical treatments and social interventions. They also highlight the need for better 
understanding of infectious disease in post-contact Indigenous populations, as well as 
methods and best approaches to elucidate human immunity adaptation. 
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Detecting selection occurring at the time of contact 
 
 
Ancient DNA and time series data 

 
Due to advancements in DNA sequencing technologies, ancient DNA has become very 

useful for investigating human demographic histories and discovering genomic sites under 
selection55. From humble beginnings when only limited ancient mitochondrial data retrieval 
was possible, methods to extract and sequence ancient DNA have progressed enormously in 
the past few years. To this extent, ancient DNA has been successfully recovered and 
sequenced in human individuals up to 45,000 years ago, albeit at low coverage56,57.  

 
While ancient DNA data is very useful to provide insights into past genomic diversity, 

investigating past signatures of selection can be more challenging, since ancient DNA is 
typically characterised by low concentrations and high fragmentation, depending on the 
preservation and age of samples58. Ancient DNA sequencing data often suffers from a high 
degree of missingness and poor quality, which can lead to lower statistical power to detect 
selection patterns. To enhance coverage from only a few, short fragments of ancient DNA, 
SNP capture assays can be used to target specific SNPs of the genome with synthetic 
oligonucleotide probes, effectively enriching genomic regions of interest. The 1.2 million 
SNPs (“1240k capture”) is commonly used as it targets most sites from the Affymetrix 
Human Origins and Illumina 610-Quad arrays, with many SNPs known to have functional 
importance59. In addition to this, contamination with exogenous sources of DNA can lead to 
spurious false positive signals during analyses; however, recent methods in differentiating 
endogenous ancient DNA from exogenous contaminants have greatly improved and can 
counter this limitation60. The introduction of European infectious diseases to the Americas, 
having occurred only 500 years ago, is recent enough that ancient samples can be used to 
create time transects of data spanning back several thousand years prior to contact, which is 
useful for tracing past pre-contact adaptation patterns through time and comparing to those of 
post-contact. This is the approach taken in Chapter II to investigate post-contact immunity 
adaptation as contextualised by ancient signatures. 

  
In population genetics, time-series studies were first conceptualised with the well-known 

phenotypic wing marking in moths by Fisher and Wright, followed by viral and experimental 
studies for which the generation time was short enough to be observed61-63. Ancient DNA has 
allowed the use of time-series data and methods in humans, going back hundreds of 
generations. Tracing allele frequency trajectories through time allows a much more accurate 
depiction of selection processes through time than selection scans only looking at modern 
individuals. Past time points can be used to infer the timing of selection, as well as provide 
greater detection power by comparing past and present allele frequency changes64. Several 
studies have been very fruitful in using time-series data in humans to find strong signals of 
selection and their timings; for example, selection acting upon genes involved in 
pigmentation and lactase persistence has been traced in European populations, characterising 
the onset of selection, and finding high concordance between allele frequencies and the 
present-day frequency of their associated trait (i.e., paler skin and higher tolerance to lactose 
in Europeans)59,65. Despite these successes in detecting selection from ancient data, time 
series methods and selection scans are still challenging to implement, especially when 
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searching for more subtle or confounded signals as would be expected for Indigenous 
populations. This calls for approaches that can optimise signal detection.  

 
 
 

Optimal scans for detecting pre- vs post-contact selection signals 
  
The interconnecting effects of drift, mutation, selection, and admixture all impinge on the 

distribution of genetic variation among human populations and can be difficult to disentangle 
from each other66,67. Genetic drift is the random change of allele frequencies through time, 
without any cause for their direction, whereas selection imposes a negative, positive, or 
balancing force that changes or maintains allele frequencies through the greater reproduction 
rates of more favourable alleles68. The spread of Europeans during the Colonial era resulted 
in massive changes in environmental conditions for colonised populations. The importation 
of new foods, novel sanitary conditions, substantial lifestyle changes, as well as pathogens 
novel to the region, all culminated to form a major selection shift that is very likely to have 
triggered genomic adaptation in Indigenous peoples. As discussed in Chapter I, the effect in 
immune gene adaptation would be pronounced for the shift in pathogen landscape, as many 
immunity genes are thought to experience high levels of local adaptation due to their 
essential functions in recognising and responding to exogenous threats69. Similar signals have 
been observed for genes coding for proteins involved in physical interaction with viral 
molecules, while HLA diversity is upheld through forces of balancing selection70,71. While it 
is thus highly likely these effects would have caused a significant change in immune 
adaptation signals, the challenge lies in their detection. 

  
Positive selection is usually detected by various approaches that scan the genome for 

regions that carry the hallmarks of the selective process. This may be based on deviations of 
the site frequency spectrum from neutrality, the homozygosity of haplotypes, or 
differentiation between several populations72-75. The power in detection for the first two 
methods tends to be reliant on the signature footprint left at the site of selection, broadly 
categorised into two modes: hard and soft sweeps. Selective sweeps occur when a beneficial 
mutation increases in frequency, causing a reduction in diversity around the selected site and 
higher linkage disequilibrium in flanking regions, as neutral alleles increase in frequency 
along with the selected variant76. Hard selective sweeps are thus characterised by a 
significant decrease in genetic diversity around a novel, beneficial mutation rapidly sweeping 
up to fixation. In contrast, soft sweeps generally arise from either weaker selection forces 
over a long period and/or when selection acts upon standing variation in a population, 
whereby the passing of several generations allowed for the selected variant to recombine into 
different genomic backgrounds77. Soft sweeps are thought to be the more common mode of 
selection, especially in recent human adaptation, an observation that is mostly guided by the 
absence of evidence for widespread hard selective sweeps in the recent history of our species. 
Soft sweeps can also look genetically very similar to hard sweeps that have not yet 
completed. This would be the expected sweep pattern for modern Indigenous populations, 
that are likely to still be undergoing adaptation to the shift in post-contact infectious disease 
landscape as European arrival only occurred 500 years ago. Given the human generation time 
and mutation rate, this is a short span of time for selection to leave discernible genomic 
traces78,79. Furthermore, genes involved in response to viruses show a higher enrichment in 
soft sweeps versus hard sweeps across populations from the 1000 genomes project80. It is 
thus very likely most immune adaptation in Indigenous occurred through the process of a soft 
sweep, possibly explaining why genetic studies have yet to uncover their signal. Although 
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sweep-based detection methods have historically been more extensively used, their difficulty 
in recognising soft sweeps due to the additional variation in genomic backgrounds makes 
them underpowered for examining post-contact immunity adaptation. Differentiation-based 
approaches are better here as they are not usually affected by assumptions of the underlying 
processes driving the signal of selection, i.e., they do not rely on the patterns of genomic 
backgrounds to determine detection. The detection methods used in Chapter II, therefore, 
used entirely differentiation-based approaches: FST, and the SB statistic, an extension of FST 
that can be used to find branch-specific signals using an admixture graph when analysing 
time series data of human populations through time75. 

For measuring genetic differentiation and population structure, Wright’s fixation index 
(FST) is perhaps the best known.  Originally the statistic was conceptualised as an inbreeding 
coefficient, and designed for biallelic, morphological data with simple Mendelian inheritance, 
as well as infinite population size62. Several estimators were later developed that allowed for 
multiallelic loci and small population sizes, resulting in the publication of Weir and 
Cockerham’s FST81. FST can be thought of as a property of the allele frequency distribution, 
indicating the level of allele frequency variance intrapopulation versus that of 
interpopulation82. Should selection act upon a specific locus, the FST value measured at that 
locus will be remarkably large compared to other regions of the genome that would show 
lower levels of differentiation under drift. It is important to note that FST does not provide any 
information on the polarisation of the change in allele frequency along either branch leading 
to the two populations, therefore is not suitable for measuring selection using outlier 
approaches. However, the cumulative scores of FST across many genes belonging to the same 
class (e.g., innate immunity) can be highly informative, since it would not be expected to 
observe a class-wide signal due to stochastic, heightened differentiation at loci. This is further 
discussed below. FST also inherently relies on the within-population variance, which in turn is 
affected by how individuals are grouped together in a population. 

  
  

Determining population groupings and relationships 
 
The grouping of individuals by population according to divergence and geographical 

isolation is paramount to the detection of selection signals and minimising Type I and II 
errors. When using differentiation-based methods, depending on the outgroup used and the 
other populations being compared, grouping together individuals that are too highly diverged 
into one population can lead to underpowered detection, since the within-diversity of the 
population is effectively inflated. Insights from archaeological findings are thus very useful 
when reconstructing regional population history. Several populations of the Andes examined 
in Chapter II are known to have undergone extensive admixture in the past 2000BP in the 
Southern regions around Lake Titicaca, where political movement of populations occurred 
under Inca, Tiwanaku and Wari imperial rules83-85. 

  
Several methods exist to determine the best groupings of individuals and maximise 

affinity within groups. Admixture graphs are models of a particular demographic history of a 
set of populations, reflecting and calculated from the genetic relatedness of individuals in the 
graph. Admixture graphs allow the modelling of admixture events (gene flow) and 
estimations of shared drift lengths along common branches for any set of populations86. 
Admixture graphs are built up from estimating F4 statistics, which effectively measures the 
overall correlation in allele frequency differences between two pairs of populations. 
Divergences in F4 statistics can thus indicate whether admixture is at play, or the structure of 
population quadruples is supported by how they covary in allele frequencies87. 
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When the overall topology of the population tree is roughly known, admixture graphs are 

especially useful for modelling different possible configurations of the populations’ genetic 
relationships and searching through the tree space for the graph with the best fit. Once a 
scaffold of population relationships is created, measures of the covariance in alleles between 
populations can be determined using F4 statistics, where the graph of best fit usually has the 
lowest discrepancy in observed covariance to the expected covariance. Large discrepancies 
signify a poorly fitted model, which may arise from groupings of individuals that do not 
belong to the same population88. Any population with a shorter divergence time, relative to 
another population (and as compared to other population divergences in the graph) will co-
vary more in their allele frequencies with that population, as they share a larger drift history 
than the scenario of two populations with long divergence times. Admixture graphs thus 
capture the expected drift occurring along each branch across the whole genome. When 
looking at the differentiation of alleles across the graph, outliers may thus highlight branches 
with high allele frequency change, which could be due to either selection or randomness. To 
disentangle this, it is helpful to look at signals across gene classes. 

 
  
  

Determining signals of immune gene adaptation 
 

Improving power to detect selection using gene classes 
  
Several studies have conducted cursory investigation into immunity adaptation in 

Indigenous people of America in the context of introduced infectious disease, as more 
thoroughly described in Chapter I. Of all studies that have used ancient datasets to elucidate 
more recent selective changes compared to those that have occurred in the past, genes 
showing putative signs of selection are determined via outlier analysis and searching for 
mostly monogenic signatures of selection59,65,74,89,90. However, studies have suggested that 
genes and their products tend to work in synchrony to carry out various cell functions, with 
interconnected, hierarchical levels all working together to express a trait. Theoretical models 
of evolution have long appreciated that many phenotypes – including, if not especially, the 
immune response - are driven by a slow process of weak selection imposing upon many loci 
involved in similar function over long time spans. It is thus possible (likely even) that 
immune gene adaptation was subjected to the forces of polygenic selection in post-contact 
Indigenous populations of America. Functional studies have noted the polygenic-driven 
nature of many important aspects of the immune system and inflammation, with 
dysregulation of these systems linked to the role of many genes acting contributorily to 
immunity phenotypes91-94. This idea is further supported by the detection of polygenic signals 
of immunity across several world populations.95 

  
The other major advantage of focussing on selection acting upon a gene class is an 

increase in power of detection and reliability of results. If there is a strong enough selection 
pressure imposed by pathogens on several immune genes, and those genes are all grouped 
together, the cumulative signal of that gene group is very unlikely to occur simply by chance. 
This is especially useful and powerful when combined with selection signals from 
differentiation-based methods. The primary concern of this approach centres around choosing 
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the best grouping immune genes into functional categories that capture selection acting on the 
same group. 

 
 
  

Gene ontologies and gene pathway enrichment 
  
Like all biological pathways and processes, the immune system is extremely complex, 

with many nuanced layers of gene pathways and interactions. To depict this enormous 
amount of information, gene ontologies (GO) are very useful. A GO uses a computational 
framework to consider levels of certainty, latest evidence, and the hierarchical nature of 
various biological roles, to describe the functionality of genes and their interconnected roles 
in a more holistic way96. Each description of function, or GO term, describes the many 
aspects and roles a gene may have, including activity in a specific pathway, the cellular 
location in which the gene product is mostly localised, molecular interactions, and 
relationships to other terms in the ontology. The structure relates evidence-based functional 
descriptions from more than 150,000 papers, of which 700,000 annotations are supported 
experimentally97. GO annotations are very useful for gaining a holistic understanding of gene 
function, and were instrumental for manual curation of gene function descriptions and 
weighing up which genes play particularly important immune roles in Chapter II. 

  
In addition to GO annotations, several databases and studies have curated lists of genes 

that are grouped according to their function in set pathways. These pathways are determined 
by known gene roles, usually curated from many peer-reviewed experimental studies to 
determine function. A major advantage of these lists is their flexibility in choosing pathways 
with the most reputable evidence and low throughput associations. However, this is 
accompanied with a high level of subjectivity in choosing the criteria by which genes are 
included in a particular set. These criteria are determined by various factors, pre-existing 
knowledge of how genes operate together in a pathway, and an educated guess of which 
pathways are most likely to be influenced by the selection pressures expected in a certain 
scenario98. Another factor lies in choosing the level of granularity in function – at a broad 
level versus more specific – for genes involved in producing similar traits/phenotypes, or 
genes within cascading signalling and interactions, or based on physical interactions between 
gene products. For the immune gene sets analysed in Chapter II, two very well characterised 
and thoroughly curated lists were used. The first list69 combined lists of immunity genes from 
the GO database and InnateDB99, excluding genes which were not reviewed and approved by 
international organisations such as UniProt100, as well as removing all HLA genes and 
immunoglobulins due to their inflated variation compared to other innate genes. Additional 
genes were added based on close homology with other known gene families within the innate 
system. All innate genes were then classified into nine categories69. The second list70 collated 
together groupings of 1256 proteins found to physically interact with various viruses, by 
manually searching through publications titles, abstracts, and sometimes full texts to identify 
genes coding for viral-interacting proteins (VIPs). Further exclusionary criteria considered 
the throughput level of the reports, keeping only VIPs discovered via low-throughput 
methods. The great care taken to curate these lists provides assurance that immunity gene 
group comparisons in Chapter II are robust descriptors of biological immune function.  
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A key player in immune adaptation: The HLA system   
  

Functions and characteristics of HLA 
 
In addition to the time-series characterisation of innate immunity genes and genes 

involved in interaction with viral proteins carried out in Chapter II, Chapter III examines 
population-specific allele frequencies and allele functional differences at the human 
leukocyte antigen (HLA) complex. The HLA complex is a crucial part of the immune system 
and is the one of the first trigger mechanisms in pathogen recognition, antigen presentation 
and in mounting an inflammatory response101,102. The HLA complex is the human-specific 
version of the major histocompatibility complex (MHC) and forms a cluster of more than 400 
genes, located on chromosomal region 6p21.3102. These genes carry an enormous diversity – 
the highest of any other regions in the human genome – as they are coded by multiple genes, 
each also containing many exons103. The many different combinations of HLA alleles and 
expressed exons of these alleles result in ranges of variation, from interpopulation differences 
down to an interindividual level of variation. Since HLA molecules are crucial for detection 
of pathogens and triggering the cascade of downstream pathways in response to pathogens, 
the HLA cluster is seen as the ‘frontline’ of human immune defence. 

  
The products of HLA genes form molecules that are imbedded in the cell membrane, with 

a small pocket that can bind to small pathogen-derived peptides of 9-mer (for Class I) and 13-
mer (for Class II) amino acids in length. These are then presented on the cell surface to T-cell 
lymphocytes that trigger an immune/inflammation response104. The HLA binding pocket 
carries some of the highest diversity in amino acid sequence in the length of the HLA gene, 
both between populations and individuals. This extreme polymorphism is thought to confer 
the capability of presenting a larger variety of viral peptides, such that cytotoxic T-cell 
recognition is broader and can provide protection against a wide array of different 
pathogens105. T-cells inspect the HLA-peptide complexes presented on the surface of cells for 
peptides identified as antigens. The recognition of an antigen-HLA complex triggers an 
immune response, recruiting other members of the immune pathway such as cytokines and 
other killer cells, and ultimately results in destroying infected antigen-presenting cells. The 
antigen-HLA complex is recognised by many different receptors on CD4+ and CD8+ T cells, 
as well as by some receptors on natural killer cells. Killer-cell immunoglobulin-like receptors 
(KIRs) are expressed on the surface of natural killer cells and some T-cells. KIR receptors 
recognise the HLA alleles on the surface of other cells as ‘self’ molecules; when an HLA-
antigen complex is recognised, the natural killer cell activates and destroys the offending cell. 
106. This recognition process is thought to be directly affected by the strength of the binding 
between HLA and peptide. 

  
  

Determining binding strengths of various HLA types 
  
HLA alleles display very different binding properties that are directly dictated by the 

protein sequence of the HLA binding pocket, as well as the sequences of the peptides that the 
HLA pocket binds to. Depending on the allele, the binding pocket can bind a wide range of 
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different pathogenic peptides (generalist or ‘promiscuous’ binders) while others bind only a 
small range (specialist binders)107. Some HLA-antigen combinations are very strong in 
binding, whilst others are weak or cannot bind to certain antigen peptide sequences at all. 
Affinity is usually measured by half maximal inhibitory concentration (IC50). 

  
Previous work has demonstrated a relationship between stronger binding affinity and 

higher levels of immunogenicity. Immunogenicity refers to the recruitment of T-cells that 
migrate to cells displaying antigens, and the humoral or cellular response that is subsequently 
elicited. Experiments using a wide array of synthetic peptides in transgenic mice, coupled 
with hepatitis B virus (HBV)- derived epitopes of in vitro acute hepatitis B patients, have 
shown that most synthetic peptides that triggered a more immunogenic response had binding 
affinities of 50 nM or less, the affinity level attributed to strongest binders in Chapter III. 
Peptides binding with weaker affinities (above the 500nM threshold, classed as weak binders 
in Chapter III) did not show any signs of immunogenicity. The high concordance of results 
between the two experimental systems (mice and human patients) provided robust evidence 
that there is a strong relationship between binding strength and ability to elicit immune 
response, which has further been recapitulated in other studies108-110. 

  
The binding strength of different HLA allele binding pockets were historically first 

determined in vitro by radiolabeled probe displacement receptor ligand (eluted ligand) 
assays, which form the bulk of binding affinity data currently available111. Recent 
technological advances have allowed the more extensive use of mass spectrometry methods 
to determine binding affinities, which appears to yield more accurate predictions112. Several 
computational methods have been developed to use this existing binding affinity data in 
training neural networks to predict which HLA-peptide combinations are likely to bind 
exogenous peptides with differing levels of affinity, reaching impressive levels of accuracy. 
Machine learning methods that can combine data from various assay types are optimal since 
they represent the most alleles and are less susceptible to false positives113. It is also ideal to 
use methods that can predict binding of peptides of various lengths. For these reasons, 
NetMHCpan v4 and NetMHCIIpan 3.2 were chosen for running binding affinity predictions 
in Chapter III114,115. The binding affinities of HLA, being of utmost importance to HLA 
function, hold potential for affecting the frequencies of HLA alleles in populations. 

 
  

Population frequencies of HLA alleles 
  
The extreme polymorphism of the HLA cluster is generally attributed to the force of 

balancing selection acting upon many different variants, as host and pathogens compete in an 
‘arms-race’ of evolution71,116.  In this hypothesis, it is thought that diversity is actively 
maintained at the HLA cluster to allow fast adaptation to pathogens that are also rapidly 
evolving to evade and attack the host’s defences. It is also thought that HLA recognition and 
the associated inflammation response is finely tuned, with combinations of alleles that are 
more specific and weaker in binding to prevent the attacking of self-molecules (leading to 
autoimmune diseases) whilst sensitive enough to detect and destroy as wide a variety of 
antigens as possible117. 

  
The large variation in HLA genes and maintenance of diversity means that there is a very 

large diversity of regional frequencies across the world, linked to the pathogens more 
common to certain regions. Some alleles are found at very high frequencies but only within 
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constrained regions; furthermore, ethnographic differences account for much variation in 
HLA alleles that are known to have clinical implications118119 In the Americas, Indigenous 
populations are known to have HLA alleles that are not found on any other continent, with 
some at quite high frequencies very rare outside of the Americas. Of interest to the results of 
Chapter II, Andean populations show an especially high diversity of HLA alleles relative to 
other Indigenous populations of America120. Whilst allele frequency differences in the 
Americas have been known for some time, their function has yet to be characterised. 

  
  
  

Thesis overview 
  
This thesis broadens our current knowledge of immunogenetic evolution in Indigenous 

peoples of the Americas, with a focus on the impact of European-introduced diseases and 
population-specific differences in HLA allele frequencies. Indigenous peoples of America 
continue to be at disparate risk of infectious diseases, with notably high mortality and 
hospitalisation rates due to infectious diseases, emphasising the importance of this work. 

  
On a broader scale, understanding the evolution of human immunity genes is of utmost 

importance for combatting current infectious diseases and bettering human health. It is also 
vital in the face of emerging infectious diseases for which rapid interventions and medicines 
are urgently needed, as seen in the case of the recent Covid pandemic. However, the immune 
system is a highly complex and interconnected system with many moving parts; 
disentangling environmental effects from genetic ones, how they work together, and thus 
characterising them, is a non-trivial task. This thesis reveals genes and pathways that are 
main players in the immune system, by investigating immunity adaptation to post-contact 
pathogens. The work presented here sheds light on these dynamics from a broad, genome-
wide approach, down to more specific population genetic differences of one of the members 
of the immune system frontline, the HLA complex. Knowledge is drawn from various fields 
to provide a holistic and, at the same time, nuanced examination of post-contact immunity 
adaptation. 
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Introduction 
  
During the Colonial period of the 15th–20th centuries, European nations conquered the globe 
and dramatically altered the demographic, social and cultural landscape of other continents. 
The negative impacts of this global expansion for Indigenous populations are well 
documented and persist to this day1-3. Most notably in the Americas, Indigenous communities 
suffered considerable cultural upheaval and societal collapse. Upon European contact and the 
resulting killings, poor social conditions and epidemics, Native Americans underwent a 
severe population decline, with depopulation estimates falling between 75-95%4-5. While 
diseases introduced by European colonists are frequently held accountable as one of the 
leading causes of depopulation, current understanding of the biological consequences of 
European contact remains very limited. In particular, the identification of the causal 
infectious agents, the spatial and temporal scale of potential epidemics, and the proportion to 
which different pathogens may have contributed to overall indigenous mortality remain 
largely unknown6-8. 
 
Understanding the dynamics of large-scale, pathogen-related depopulation events is of great 
importance, especially considering that infectious diseases are amongst the strongest selective 
pressures affecting the evolution of the human genome9-12. Many infectious agents carried by 
Europeans into the Americas have no known prior coevolutionary history with the immune 
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system of Indigenous peoples of the Americas and are widely presumed to have contributed 
to the unprecedented levels of disease and death among them. The resulting demographic 
bottlenecks have left significant genome-wide imprints, some of which remain to be 
discovered. 
  
Here, we review the genetic literature investigating the extent to which colonialism has 
impacted the genomes of Indigenous peoples of the Americas, with an emphasis on the role 
of infectious disease pathogens and their coevolution with human populations. We 
specifically focus on the Americas due to the estimated large-scale impacts of colonisation on 
native populations, the greater availability of historical records, and the relatively larger 
representation of Indigenous Americans in genetic studies compared to other 
underrepresented Indigenous peoples.  
 
 
 
Dynamics of European coevolution with zoonotic pathogens 
  
European ancestors began to transition from a hunter-gatherer to an agricultural lifestyle 
around 13–8 ka ago, when animal husbandry practices became more widespread across 
Eurasia13-16. The domestication of animals, especially when accompanied by close 
cohabitation, has been posited as an amplifying step for the spread of zoonotic disease in 
human populations17-19. Zoonotic pathogens make up the majority of all human-infecting 
pathogens and are approximately twice as likely to correlate with emerging diseases as 
pathogens of non-zoonotic origin20. Some of the most lethal pathogens introduced to 
Indigenous peoples of the Americas, the so-called ‘civilisation pathogens’ (i.e., measles, 
mumps, tuberculosis, diphtheria, smallpox, influenza), all share domestic animal reservoirs in 
western Eurasia7,21. Measles, mumps, and tuberculosis most likely evolved primarily in 
bovine reservoirs, smallpox is thought to have evolved from horses, diphtheria has 
aetiological agents in most contemporary livestock and pets, and influenza appears to have 
evolved in avian and swine hosts22,23. 
  
Urbanisation began in various regions of Eurasia during the Late Neolithic to Early Bronze 
age (~9-5 ka ago), and is thought to have resulted in an increase in population density, excess 
waste, and unclean water in early settlements24-27. These dynamics are thought to have 
facilitated the transfer of pathogens between and within humans and other animals, 
effectively cultivating an extensive reservoir in which pathogens could evolve28.  This idea is 
underlined by palaeomicrobiological evidence for several pathogens, many of which share an 
emergence coinciding with the agricultural and urbanising shifts in Europe. Sequences of 
Salmonella enterica, the bacterial cause of enteric (typhoid) fever, were extracted from 6.5-
ky-old skeletons of western Eurasian transitional foragers; these ancient S. enterica strains 
cluster with generalist cross-mammalian strains, while modern strains appear to have evolved 
a specificity for humans in Europe in the last ~5000 years. A phylogeny of ancient and 
modern strains of Mycobacterium tuberculosis yields an emergence date of ~ 2–6 ka ago, 
again appearing to coincide with the agricultural revolution in Africa29. Mycobacterium 
leprae, causing leprosy, was most prevalent in Europe around the 12th and 14th centuries CE, 
declining in 16th-century Europe while simultaneously increasing in other regions of the 
world30. Ancient sequences of M. leprae revealed high strain conservation, low mutation rate 
and no discernible reduction in virulence compared to modern strains, observed across 
Europe. From this, it has been hypothesised that the 16th-century decline in European leprosy 
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cases may be explained by selective changes in European host immunity, at least as a 
contributing factor31,32. 
  
Eurasian populations have had long-standing relationships with several deadly pathogens. 
Measles and smallpox are both estimated to have first begun infecting Europeans sometime 
during the 6th century BCE33,34. Despite this early emergence date and several thousand years 
of coevolution with humans, smallpox and measles continued to devastate Europe, with an 
estimated mortality rate of 30% until the advent of vaccines and 19th-century eradication 
programs35,36. Europe was also ravaged by three major plague waves between the 6th and 20th 
centuries BCE, caused by the bacterium Yersinia pestis, collectively killing hundreds of 
millions of Europeans37. Several studies indicate Y. pestis was already infecting ancient 
Eurasians from at least 5.1 ka ago, with evidence of a long, extensive coevolution with this 
pathogen for Eurasian populations38-42. These repeated outbreaks in Eurasia throughout the 
last 2,000 years provide evidence that immune adaptation, especially for pathogens with high 
rates of adaptation and infectivity, might represent a long-lasting arms race between human 
hosts and pathogens, as proposed in the Red Queen Hypothesis43-44. It is thus possible that the 
various zoonotic pathogens coevolving with European hosts shaped immunity genes in these 
populations, as opposed to the very different pathogen-host evolutionary processes seen in 
other populations, including the Americas. Importantly, however, the continuing high 
mortality rates observed until the development of suitable vaccines highlights the challenges 
of human immune adaptation to these infectious agents. 
 
  
 
Dynamics of Native American coevolution with zoonotic pathogens 
  
In contrast to Europe, agricultural development and animal domestication took on a very 
different form in the Americas. Archaeological evidence suggests that the transition to 
farming practices evolved regionally and fluidly, with some populations alternating between 
hunting-gathering and farming through time45. Camelids and guinea pigs were domesticated 
around 6–8 ka ago and 11k–13 ka ago respectively, though there are no known major 
disease-causing zoonotic pathogens from any of these species46-47. Furthermore, in more 
population-dense regions, urban structures were highly organised and included well-
developed water storage and distribution systems, possibly aiding in better sanitation, and 
reducing microbial spread48. This may explain why there appear to have only been a limited 
number of pre-contact epidemics in the Americas. Reports exist of a haemorrhagic fever 
epidemic, locally known as cocolitzi, caused by an endemic strain of Salmonella enterica at 
the time of contact in Mexico49,50. The only other known endemic diseases which putatively 
caused large-scale mortalities are tuberculosis, treponematosis and possibly syphilis, the 
origins of which remain controversial to this day51. Of these, only tuberculosis has a putative 
zoonotic origin in seals, where there would have been little opportunity for an extensive 
human-animal pathogen reservoir52. 
  
Although the contrasting histories between Indigenous peoples of the Americas and 
Europeans indeed supports that these two populations underwent very different 
coevolutionary histories with pathogens, a generalist view of the relationship between 
agriculture, urbanisation, pathogen evolution and host adaptive potential can hardly be 
applied to all host-pathogen interactions throughout the course of human evolution. It is near 
impossible to determine to what extent Indigenous Americans’ differing lifestyle to that of 
Europeans would have contributed to their adaptation (or lack thereof) to zoonotic pathogens. 
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Despite this caveat, it can be broadly stated that ‘civilisation pathogens’ introduced during 
colonial times have had disproportionate effects on Indigenous populations across the 
world53-55. The extent to which differing evolutionary histories and contrasting pathogen 
landscapes contributed to Indigenous depopulation in the Americas is uncertain and may 
never be fully answered. 
  
 
 
Paradigms explaining Indigenous depopulation during the European 
conquest of the Americas 
  
The most widely accepted depopulation hypothesis embraces the idea of differing 
coevolutionary histories between European and Indigenous populations, and assumes that 
Indigenous Americans carried an ‘innate susceptibility’ to colonial-introduced pathogens. 
This is referred to as the ‘Virgin Soil’ hypothesis in anthropology studies56,57. Eyewitness 
accounts and historic descriptions of Indigenous populations ravaged by various epidemics 
are the primary sources of evidence, although this must be contextualised by the uncertainty 
in methods, as diseases were diagnosed by symptom, and infectious disease pathology was 
not well characterised at the time41. An alternative hypothesis, referred to as the ‘Black 
Legend hypothesis’, explains Indigenous depopulation as a function of interconnected 
sociological causes, in which disease played a role but was not the sole primary driver4,58,6. 
Sociological factors include poor sanitation, loss of infrastructure, birth rate decline, wars, 
killings, translocation of people and famine, as caused by colonial effects of the time59. 
Studies have noted that the infectivity and spread rate of the smallpox virus appear to 
mismatch estimated depopulation rates, especially considering that the time taken for the 
pathogen to reach negligible levels of host infectivity is shorter than the transatlantic sailing 
time. This has called into question how much of a role infectious disease in fact played 
56,60,61. 
  
The extent to which these two hypotheses best describe the mode of Indigenous depopulation 
in the Americas remains a matter of intense debate to this day. Controversial but outspoken 
scholars have claimed that the true extent of sociologically driven demise, under colonial 
rule, was underestimated due to politically biased colonial narratives, outright rejecting the 
Virgin Soil hypothesis6. Inversely, scholars have also argued that early advocates of 
Indigenous’ human rights may have minimised reports of infectious disease, to highlight the 
atrocities being suffered under the conquerors’ rule62. Depopulation estimates also rely on 
estimates of pre-contact census average population size, which vary extensively from 10 to 
120 million for the Americas, with the most recent and perhaps widely accepted inferences 
settling on around 75-100 million4,63,64. From an anthropological and archaeological 
perspective, the high discordance pertaining to Indigenous depopulation in the Americas, and 
the little understood contribution of infectious disease, highlights the need for novel 
approaches. Genetic studies may provide a clearer picture of the effects of colonial processes 
in these populations. 
  
 
 
Genetic studies investigating demographic effects of colonisation 
  
Our understanding of human history has been revolutionised by improvements in DNA 
sequencing technologies and ancient DNA methods. These advancements have allowed 
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genetic-based modelling of major historic demographic events, from tracing the early 
peopling of the Americas, to detecting fine scale genetic imprints of colonisation-linked 
demographic movements, admixture events and selection. 
  
Genetic evidence suggests that anatomically modern humans, our species, dispersed out of 
Africa 50–90 ka ago, with successive bottlenecks decreasing regional genomic diversity as 
non-African populations expanded into Eurasia, driving the diversification of several new 
genetic lineages65,66. Current models posit that one of these lineages formed a small founding 
population in the region connecting the Asian and American continents, where these 
individuals are thought to have remained isolated for thousands of years, probably due to the 
extensive ice sheet expansion during the Last Glacial Maximum (LGM)67. At the end of the 
LGM around 18–15 ka ago, the descendants of this small founding group rapidly spread 
across both American continents, reaching the southernmost regions of South America ~15 
ka ago68,69. Studies using genetic data from past and present-day Indigenous American 
populations support the scenario of a very small founding population, extended population 
isolation, serial founder effects, as well as rapid dispersal during the peopling of the 
Americas70-72. There are several implications of this demographic history in terms of 
differential potential in host pathogen response between Indigenous American and European 
populations. Firstly, the successive population bottlenecks and founder effects resulted in an 
overall lower Indigenous genome-wide diversity at the time of European contact, observed 
across all Indigenous populations in the Americas, compared to other worldwide populations. 
Hence, there may have been a poorer ability in adapting to newly introduced pathogens, 
though this theory is caveated by the fact that levels of genetic diversity do not seem to 
correlate with adaptive potential73. Secondly, the long-term isolation from other human 
populations implies that Indigenous peoples of the Americas would likely have experienced 
isolated immune allele frequency trajectories, most likely with specificity for the pathogenic 
landscape found in environments across the Americas when selection was present, in support 
of the Virgin Soil premise. 
  
Upon contact, the Indigenous depopulation was impactful enough to be detected genetically, 
especially when using data from ancient individuals. From a time-series of mitochondrial 
data, ancient lineages spanning back to 8.5ka ago were found to be absent from known 
contemporary datasets, though these findings were limited by the small geographical overlap 
of ancient and present-day datasets. Demographic modelling of these lineages revealed a 
population bottleneck coincident with the time of conquest72. A dataset of two hundred 
ancient and contemporary mitochondrial genomes, with all major North American lineages 
represented, also revealed a sharp decrease in overall diversity and a reduction in female 
effective population size of approximately 50%, coinciding with European arrival around 500 
years ago. The broad range of individuals included in this dataset, combined with the severity 
of the modelled contraction, provides evidence that depopulation was not especially 
localised, and affected Indigenous populations in a widespread fashion throughout the 
continent74. When studying the nuclear genome, the analysis of exomes from 50 ancient and 
present-day Native American individuals showed genetic evidence for a population 
bottleneck ~175 years ago in North America. This timing coincides with the arrival of several 
waves of documented colonial-introduced epidemics, including smallpox75. 
  
In addition to modelling colonial-linked depopulation, it has been possible to trace post-
contact admixture into modern Indigenous American populations to an unprecedented fine-
scale resolution. In Latin Americans, population substructure is reflected by the geographical 
locations of contemporary Indigenous populations, together with proportions of admixture 
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from South/East Mediterranean, African (from the slave trade), Sephardic (from the 
clandestine migrations of Christian Jews) and East Asian ancestries. In Brazil, Latin 
Americans showed highest genetic affinity to Portugal and West-Spanish ancestry, while 
West/Central American countries showed greater Central/South-Spanish ancestry, in keeping 
with records of conquests carried out by Spain and Portugal at the time76. These regional-
specific admixture proportions and inferred gene flow timings coincide with documented 
historical migrations to the Americas. On an even finer scale, methods using ancestral tract 
lengths determined a multiple pulse migration model, whereby, after initial European contact, 
there were additional pulses of European migration between 9–3 generations ago, as well as 
another intermediate pulse of African slave trade migration77. Similar estimates of post-
contact admixture proportions and timings in the Americas have been carried out in several 
studies using contemporary individuals, and show high concordance with historical records, 
reflecting the diverse and extensive population movements frequently mediated under various 
European conquerors of the time 78-82. These insights are important for understanding 
population structure and demography, which needs to be accounted for in comprehensive 
analyses of immunogenetic evolution in the Americas.   
  
  
  
Genetic studies investigating selection on European and African admixed 
alleles 
  
From contemporary data, there are several instances of contact-related selection appearing to 
act on Native American genomes. Several Human Leukocyte Antigen (HLA) alleles, 
admixed from African populations, known to be under positive selection in contemporary 
African populations, were found to be present at unusually high frequencies in Latin 
American populations. In the same study, similar admixture-enabled selection appears to 
have been acting on several other genes and pathways involved in inflammation, including 
those involved in the innate and adaptive immune responses83. Similarly, selection was 
detected as putatively acting upon admixed European genomic tracts in Chilean populations, 
determined by comparing genome-wide deviations in mean European ancestry. Of the top 
candidates, regulatory elements of genes involved in immune defence carried strong signals, 
as did several long non-coding RNA with functions involved in innate immunity against 
pathogens84. 
  
Only a handful of studies focused on detecting post-colonisation immunogenetic selection 
signals using ancient DNA data. The analysis of 50 ancient and modern exomes from 
Canadian First Nation peoples led to the identification of positive selection signals in the 
HLA-DQA1 gene. In the ancient population, several HLA-DQA1 alleles were found close to 
fixation, with the highest frequency allele found in the 5’ UTR, and thus suggested to be 
involved in regulatory activity of the gene. However, this allele no longer showed signs of 
selection in modern Tsimshian individuals, as confirmed through many simulations under 
different selection models75. Interestingly, most of the HLA-DQA1 alleles, including both of 
its nonsynonymous variants, exhibited a sharp decrease in allele frequency in modern 
individuals compared to the ancient individuals. This implied that ancient alleles of this gene 
may have conferred an advantage in adapting to the pre-contact endemic pathogenic 
landscape, which possibly changed upon European contact, effectively shifting the selection 
pressure for the ancient variants75. In a different context, focusing on highland and lowland 
Andean populations, the genomes of seven ancient individuals were analysed alongside a 
panel of contemporary genetic variation. Importantly, a handful of immune candidates, based 
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on outlier Population Branch Statistics, were suggested to be selected for in post-contact 
Andean highlanders, and may have been involved in adaptation to colonial pathogens85. 
  
  
Towards a holistic approach to detecting immunogenetic selection in post-
contact populations 
  
A wealth of genetic evidence suggests that pathogens are strong drivers of selection on 
immunity genes in humans12,86. Across human populations, pathogen load has shown an 
unexpectedly strong correlation with genetic diversity, as compared to various other local 
geographical factors (including diet and climate). Amongst other studied functional 
categories, immunity genes showed the strongest hallmarks of local adaptation to high 
pathogen loads—even when correcting for demographic history and population structure87. 
Distinct subclasses of the immune system have also individually been identified as being 
subject to disparate forms of adaptive evolution. In addition, the innate immune response, 
functionally defined as the ‘first line’ of immune defence, comprises genes that have shown 
stronger signatures of purifying selection than genes in other categories, despite some genes 
showing evidence of positive selection88. Genes identified as coding for proteins that interact 
directly with viruses also show high rates of purifying selection, while at the same time 
exhibiting strong signals of local, directional adaptation compared to the rest of the conserved 
proteome10. HLA genes are extremely polymorphic and carry some of the highest diversity in 
the human genome, affording them the capability of recognising a wide diversity of 
pathogens. There is evidence that more generalist HLA alleles, which can bind a wide array 
of pathogenic peptides, tend to be at higher frequencies in geographical locations that carry a 
higher diversity of human pathogens89,90. For both the Northern and Southern American 
continents, modern Indigenous populations also show a higher frequency of HLA alleles that 
are predicted to bind strongly to viral peptides, as well as lower frequencies of weakly 
binding alleles91. In these populations, HLA allele diversity is especially low, as is the case 
for killer-cell immunoglobulin-like receptors (KIR), involved in recognising HLA molecules 
and triggering an inflammatory response. HLA-KIR molecular interactions are also very 
limited in Indigenous Americans, with most KIR proteins binding to a few very specific HLA 
molecules92. Quantifying how much of HLA/KIR diversity showed similar patterns pre-
contact, or has changed since, remains yet to be investigated. 
  
Given that immunity genes generally demonstrate such high susceptibility to selective forces, 
post-contact Indigenous populations would likely experience similar effects, especially if the 
mode of Indigenous depopulation in the Americas had occurred as premised under the 
‘Virgin Soil’ hypothesis. Since many of the introduced pathogens were likely coevolving 
with European hosts for at least several thousand years, their selective pressure may have an 
unprecedented, heightened effect on the immunity genes of Indigenous Americans. Under 
neutrality, there would be no expected differences in the patterns of genetic variation between 
immune genes and the remainder of the genome, which did not already exist prior to contact. 
A strong deviation in allele frequency trajectories of immune genes, as opposed to genes 
involved in other functions, may indicate that immune genes were exposed to an especially 
high post-contact selective pressure, highlighting the need for ancient genomes to inform 
about the frequency of pre-contact immunity-related alleles. Even with this approach, there 
are still difficulties in disentangling this signal from random genetic drift and other 
confounding factors generated by demographic processes. In cases of highly admixed 
contemporary individuals, selection signals may be obscured by the ancestral genomic 
backgrounds of other populations. Signals may also be masked by the recency of 
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colonisation. Given that pathogens were introduced to the Americas at most 500 years ago, it 
is likely that even regions of the genome under strong selection pressure may include variants 
still increasing in frequency today93. Taking these limitations into account, pathogen-driven 
selection acting on post-contact immunity genes in Indigenous peoples of the Americas 
would thus be best identified by population genetic methods that can detect soft selective 
sweeps, comparisons between ancient and contemporary genomes, and polygenic 
approaches, wherein selection signals are observed cumulatively across immune gene classes 
and pathways. 
  
As is the case for all correlation-based approaches, any immune genes suspected to be under 
contact-linked, pathogen-driven selection require functional validation to elucidate the 
biological mechanisms at play. Furthermore, the underlying mechanisms may be even more 
complex when taking microbiome composition and epigenetic modifications into account, 
both of which have been shown to hold crucial roles in maintaining immune homeostasis, 
immune regulation, and resistance to pathogens94,95. Disentangling these contributions may 
be aided by comparing immunogenetic selection in other populations. Many Indigenous 
populations around the world underwent long periods of isolation prior to European conquest, 
most apparent in the Pacific islands and Australia. Again, this involved very different 
domestication practices and pathogenic landscapes to those of Europe, possibly contributing 
to a higher susceptibility to introduced infectious disease. While colonisation is highly 
multifaceted, and immune selection signals would vary depending on the population and 
temporal occurrence of epidemics, convergent evolution of immunity genes across global 
Indigenous populations is a very strong possibility and would highlight key genetic players in 
immune gene adaptivity. Comparing selection signals from Indigenous peoples of Australia 
and America may thus be especially powerful due to their similar histories of isolation, 
parallel demographic consequences of colonisation, and no pre-contact exposure to Eurasian 
pathogens. 
  
 
 
Conclusion 
  
The importance of enhancing our understanding of the dynamics of Indigenous depopulation 
in the Americas, especially in the context of infectious disease, cannot be understated. For 
Indigenous people, the aftermath of post-contact effects is still rife today, as illustrated by 
marked health and sociological disparities, and exacerbated by historical bias towards 
colonial narratives96,97. Previous genetic studies, enhanced using ancient DNA, have 
demonstrated that many aspects of post-contact demographic effects and their imprints on 
Indigenous American genomes can be detected at a fine-scale resolution. There is still much 
to be discovered, especially regarding the immunogenetics of Indigenous American 
populations before exposure to European-borne pathogens, or how immune genes have 
evolved since colonisation and which genes were selected as a result. These insights will 
inform the processes of human and pathogen coevolution, an area that is especially relevant 
for managing both Indigenous and non-Indigenous health, as well as safeguarding against 
future emerging infectious diseases. 
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Abstract  
 
Indigenous peoples of America underwent an extensive depopulation after contact with 
Europeans, a loss that is attributed to the interconnecting effects of social upheaval and 
oppression beginning under early colonial rule, as well as the introduction of pathogens 
thought to originate in Eurasia. However, the evolutionary impacts of introduced pathogens 
on the immune response of Indigenous peoples of America is not well understood. Using 
time series data from ancient and modern Andean individuals, we investigate signatures of 
selection through time, with a focus on possible adaptation within immune genes in response 
to pathogens introduced post-contact. By comparing genetic differentiation between ancient 
and modern individuals for gene groups encoding viral interacting proteins (VIPs), we find 
possible signs of selection acting upon genes involved in responding to HIV infection. We 
also implement an admixture graph-based approach to determine branch-specific outlier 
deviations in allele frequencies at immune genes, followed by immunity gene group 
comparisons and pathway enrichment. Out of all tested populations, the North Coast 
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population shows the most extensive signals of selection for virus-associated gene groups and 
appears to drive the HIV signal. We find no evidence of selection in genes responding to 
Eurasian-borne viruses such as influenza and smallpox allegedly associated with high 
mortality, and additionally observe low convergence in selection signals between 
populations. These findings suggest that Indigenous populations may have undergone 
regional-specific adaptation to pathogens in the Andes both prior to and following contact 
with Europeans.   
 
 
 
Introduction  
 
The introduction of infectious diseases, such as smallpox, influenza and measles, is widely 
held responsible as a major contributor to the rapid depopulation of Indigenous peoples 
during the early colonisation of the Americas by Europeans.1-5 Little is known of the 
pathogenic landscape in the Americas prior to contact with Europeans, as current evidence is 
limited to only a few endemic bacterial pathogens capable of causing disease on an epidemic 
scale, such as tuberculosis, treponematoses and haemorrhagic fevers6-8. European and 
Indigenous populations were isolated from each other for tens of thousands of years until 
contact in the 15th century CE, with contrasting host-pathogen coevolutionary histories that 
may have amplified the selection pressure imposed by pathogens introduced by colonists9-12.  
 
Previous genetic time-series studies investigating the effects of introduced pathogens in the 
Americas have focused mostly on outlier analysis from selection scans, focussing on 
primarily monogenic signals of selection. The first of these studies used the Population 
Branch Statistic (PBS) in North American Indigenous populations, revealing potential 
adaptation through time at HLA-DQA115, with changes in selection signal for variants prior to 
and following contact. The HLA-DQA1 gene is a member of the HLA complex, a vital part of 
the immune system involved in detecting, binding to and presenting antigens from pathogens, 
to trigger a downstream inflammatory response and destroy pathogen-infected cells13. The 
second study compared 5 ancient Andean individuals spanning up to 7000 years ago to 
modern-day Chilean Huilliche-Pehuenche and Aymara populations, again using PBS to 
determine outlier selection signals. This analysis identified two outlier immune genes as top 
candidates under putative selection within the Aymara16.  
 
Both studies indicate that pathogenic selection pressure may have exerted a significant effect 
on immune genetic adaptation in Indigenous populations of America. They also demonstrate 
the power of paleogenomic data in detecting highly differentiated loci in post-contact 
Indigenous populations, by tracing changes in allele frequencies of these genes prior to and 
following contact. Furthermore, previous work has both theorised and evidenced that many 
pathways involved in immunity, especially in direct response to various pathogens, appear to 
drive signatures of adaptation and also appear to be under the influence of selection acting 
upon many mutations of small effect (polygenic selection)14-17. Thus, we aimed to investigate 
cumulative signals of selection from classes of immune genes and test for gene pathway 
enrichment in an Andean genetic time transect (Fig 1), with the expectation to yield insights 
into immune adaptation in Indigenous populations that have not yet been reported.  
 
Here, we compare SNP-based genetic differentiation between ancient and modern individuals 
from the Andes, as this region has relatively good data availability and demographic 
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characterisation from both archaeological and ancient DNA studies. We compared FST scores 
between modern and ancient individuals across groups of genes known to be fundamental to 
human innate immunity18. The innate immune system is considered as the first line of 
defence, as it is vital in activating a rapid response to prevent infection and destroy 
pathogenic material that has entered the host19. It is also known to exhibit differential 
selection signals to other parts of the genome20,21. We also compared FST scores across gene 
groups that have been previously demonstrated to physically interact with viral proteins 
(VIPs) from major viruses, using a non-immune control group of genes carefully selected to 
account for the stronger forces of purifying selection on VIPs22. 
 
Additionally, an admixture graph23 was constructed to model the relationships between five 
ancient and one modern populations based on pre-existing knowledge of the regional 
population substructure in the Andes24. This graph was used to quantify the amount of genetic 
drift and identify deviations from drift that could signify a positive selection signal using the 
Graph-aware Retrieval of Selective Sweeps (GRoSS) method25. This approach yielded more 
fine scale insights into regional-specific outlier genes and immunity gene groups showing 
signs of selection occurring prior to European contact, as well as signals in the branch leading 
to modern Aymara (post-contact). We also compared this with pathway enrichment analyses 
to observe possible signs of immune genes under polygenic selection. Overall, we found 
weak to strong signals of selection for genes involved in response to some viral pathogens 
when comparing pre- and post-contact populations, as well as genes involved in metabolism 
in Inca populations and possibly Aymara. We also find potential signals linked to West Nile 
Virus and Human Immunodeficiency Virus infection. 



 53 

Results 
 
 

 
Fig 1. Map and timeline of ancient and contemporary individuals used in this study. Circles are indicative of size 
and time ranges for each population are based on estimated ages of samples (for more information see Supplementary 
Materials Table S1). In addition to samples shown here, 3 Han individuals and 4 Mbuti were used for analyses using 
admixture graph and SB statistic, totalling 114 Andean individuals plus 7 outgroup populations.  
 
 
FST compared across immune gene groups  
 
To evaluate if positive selection had resulted in immune genes becoming more genetically 
differentiated than expected between modern and ancient South American populations, all 
individuals from the ancient populations were first grouped into a single ‘metapopulation’. 
Weir and Cockerham’s FST

26 was calculated at 354,254 SNPs between this ancient 
‘metapopulation’ and the modern Aymara population. After filtering out SNPs with less than 
30 individuals represented (see Materials in Methods), the mean and maximum (max) FST was 
calculated for each gene by binning SNPs within annotated standard gene boundaries. These 
scores were then standardised using a non-parametric method (see Materials and Methods) to 
account for potential bias of higher scores in genes with more SNPs. Hereafter, all usage of 
gene based FST scores refer to these standardised scores.  
 
Of the top 15 genes with highest max FST scores, only two, RAB38 and MAG, are involved in 
immune function. Innate genes have previously shown evidence of being under purifying 
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selection for long evolutionary timescales, with a select few innate immunity candidates also 
showing higher rates of local adaptation in modern Yorubans, Northern Europeans, and Han 
Chinese18. To determine if there were any systematic differences in genetic divergence for 
genes involved in the innate system relative to non-innate immunity genes, we used 
Wilcoxon rank sum tests to formally test whether the max FST scores for genes in 9 innate 
immunity subcategories18 significantly differed (i.e., either higher or lower) from the max FST 

at all other non-innate genes in our dataset (i.e., the null set was the entire set of non-innate 
genes). However, there was no significant difference between any of the innate subcategory 
groupings versus the non-innate group both before and after accounting for multiple testing 
via Bonferroni correction (Fig 2). 
 
 

 
Fig 2. Distribution of max and mean FST values taken per gene, corrected for number of SNPs per gene, shown across 
various innate subcategories and the rest of the genes in the dataset (labelled as non-innate). No differences in 
distribution are observed between any innate category versus non-innate.  
 
 
     Next, we tested if either max or mean FST scores were significantly elevated for genes 
grouped according to viral interacting protein (VIP) categories (see Table S3 for full names) 
corresponding to different viruses, using the methodology and curated VIP sets of a previous 
study22. This methodology controls for artefacts caused by potential confounders by creating 
null gene sets that closely match the genes in each tested VIP category across a range of 
evolutionary variables, resulting in robust inferences of positive selection. For each VIP set, 
we built 10,000 iterations of matched null sets and estimated empirical p-values by 
evaluating the number of genes falling above a specific FST quantile (i.e., 0.5, 0.8, 0.9, 0.95, 
0.99, 0.999). This test assumes that positively selected genes will be enriched amongst genes 
with the largest FST values, such that increasing the FST quantile threshold shifts the test 
toward more strongly selected genes, while also requiring that fewer ‘selected’ genes are 
needed to obtain a significant result. Thus, decreasing the quantile threshold effectively 
requires more polygenic signals to achieve significance. To quantify the enrichment between 
gene counts of VIP sets versus gene counts of null sets, we computed standardised test 



 55 

statistics for the count of VIP genes falling above each quantile threshold. This 
standardisation was performed by subtracting the mean count score of the null distribution 
and dividing by the variance of the null distribution.  
 
Out of all the VIP groups, HIV showed the most significantly inflated numbers of genes for 
both standardised max and mean FST across at least 4 quantiles (Fig 3A), while EBOV also 
showed significance at more than one quantile for mean FST. KSHV, EBV, and HSV also 
showed significance for both standardised max and mean FST, albeit at lower quantiles, with 
ZIKA and ADV sets having some significance when using only standardised mean FST. Out 
of all the VIP sets, the signal for HIV appears the most robust, as it shows significant 
departures from expected values from the null at most quantiles. Significant p-values for HIV 
(for both max and mean), KSHV (for max), HSV (for max), EBV (for mean and max) and 
EBOV (for mean) all retain significance after Bonferroni correction for multiple testing.  
 
Finally, we evaluated if the sums of gene based FST scores across all genes for each VIP 
category exceeded expectations based on the same matched null sets used in the previous 
analysis. Notably, this test statistic can infer signals of polygenic selection in annotated gene 
sets by the PolySel method15. This approach may have more power to detect polygenic 
signals than the threshold-based method used above, since it retains all gene score 
information rather than creating binary gene scores determined by arbitrary score thresholds. 
Using this approach, the HIV gene set shows significantly higher sums when either the mean 
or max FST is taken, while EBOV shows higher sums when the mean FST is taken (Fig 3B). 
After applying the Bonferroni correction for multiple testing to each of the max and mean FST 
statistics, only the HIV gene set for the mean and max FST retains significance.  
 
A 

 
 



 56 

B 

 
 
Fig 3. Differences in FST between groups of genes coding for viral interacting proteins versus a control group 
specifically designed to control for purifying selection. A. X-axis shows the quantiles of the entire FST distribution 
for the dataset. The number of genes falling above each quantile value for each VIP category (see Table S3 for full 
names) was standardised by subtracting the mean number of control genes falling above the corresponding quantile 
level, then dividing by the standard deviation (falling above that given quantile). Colours denote the size of the 
empirical p-value for each standardisation (grey to red, highest to lowest) prior to Bonferroni correction for multiple 
testing. B. Max and mean FST scores summed across each VIP gene group and standardised by null control sets. This 
was calculated by subtracting the mean null sum from the sum of each VIP group, divided by the standard deviation.  
  
 
 
Population-specific signatures of immunity adaptation  
 
Next, we explored population-specific signals of positive selection by grouping all ancient 
individuals into six distinct populations according to region and period (Fig 1). Historical 
population relationships and admixture proportions between populations were modelled using 
qpGraph23, with details of branch lengths and admixture proportions reported in 
Supplementary Materials Figure S4. After manually exploring the fit of multiple graph 
topologies to the data, the best-fitting admixture graph was used to run GRoSS25 to calculate 
the SB statistic per SNP for each branch, where large values of the SB  statistic indicate 
deviations from expected neutrality, which may signify candidates for selection along a 
particular branch (see Materials and Methods section for more details). Individuals from the 
1000 Genomes Project Han (3 individuals) and Mbuti (4 individuals) populations were used 
as outgroups to root the graph topology.  
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Fig 4. Admixture graph of populations used in this study, with the worst z-score being 6.591 for f4 
(Han,Modern;Modern, North Coast). Branch lengths and admixture ratio estimates are provided in Supplementary 
Materials Figure S4. 
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Fig 5. Manhattan plots for the SB statistic prior to correction. Both genic and intergenic SNPs are shown, with 
SNP ordered on the x-axis by chromosome number then by respective position on each chromosome. The top 20 
maximum SB statistics per gene are annotated. Colours denote each population. 
 
 
As visualised by the Manhattan plot in Fig 5, SB statistics for SNPs in both genic and 
intergenic regions do not show the characteristic ‘skyscrapers’ patterns for outliers, which are 
usually deemed classic signatures of a selective sweep due to linkage around a selected site. 
This is most likely due to the low density of SNPs in our dataset due to low coverage. Many 
genes had very few SNPs; 2446 genes had only one SNP while 1746 had only two, out of 
~30,000 genes in the entire human genome27. To determine outlier genes, the max SB statistic 
was assigned to each gene and corrected for the number of SNPs using the same 
standardisation method as used for FST analyses. Genes with less than 3 SNPs were removed 
from subsequent evaluations to avoid bias towards random signals. Finally, all top-scoring 
genes were assigned functional annotations using Gene Ontology (GO) terms, with those 
involved in immune function reported in Table 1. None of the top-scoring SB genes were 
amongst the top-scoring genes from the FST analyses. Of the genes in the top 1% per terminal 
population branch (95 genes per population), 14 were shared, and none were shared between 
three populations or more. Three of these 14 shared genes, CALCA, CCAR2, and CRHBP are 
possibly involved in the immune and/or inflammation response (Supplementary Materials 
Table S6).  
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Table 1. Immune-related genes for the 15 top-scoring genes per terminal branch based on 
SB statistic from GRoSS 

 
Branch Gene SB stat 

(corr) 
Main function(s) 

Central 
Coast 

FUT9 4.93 carbohydrate metabolic process, fukolysation, regulation of 
leukocyte cell-cell adhesion 

DYNC1I2 4.65 cell cycle, viral process and life cycle, antigen processing and 
presentation of exogenous peptide antigen via MHC class II 

Inca  
  

FAM20A 12.64 protein phosphorylation, calcium ion homeostasis, response to 
bacterium 

GRB14 10.64 insulin receptor signaling pathway, leukocyte migration 
IRS1 7.94 MAPK cascade, insulin receptor signaling pathway, 

interleukin-7-mediated signaling pathway 
PRKCH 7.44 protein phosphorylation, platelet activation  

Modern  
  

PREPL 12.16 proteolysis, Golgi to plasma membrane protein transport, 
regulation of synaptic vesicle exocytosis 

PPIA 8.12 protein peptidyl-prolyl isomerization, response to viral 
processes, leukocyte migration, negative regulation of viral 
life cycle, establishment of integrated proviral latency 

North Coast 
 

TNFRSF13B 9.22 adaptive immune response, negative regulation of B cell 
proliferation, cell surface receptor signaling pathway 

HOOK3 9.07 endosome/lysosome organization and transport 
AP2B1 8.93 vesicle-mediated transport, regulation of defense response to 

virus by virus, membrane organization, neuron death, 
neurotransmitter receptor 

USP12 8.60 proteolysis, protein deubiquitination, T-cell receptor 
stabilisation 

PAFAH1B1 6.94 positive regulation of cytokine-mediated signaling pathway, 
cell cycle, regulation of GTPase activity, platelet activating 
factor metabolic process 

ADAR 6.90 immune system process,hematopoietic progenitor cell 
differentiation, osteoblast differentiation 

South Coast 
 

OAS3 7.06  chemokine production, type I interferon signalling pathway, 
suppresses viral genome replication 

GPNMB 6.75 cell adhesion, bone mineralization, cell migration, cell cycle, 
regulator of proinflammatory responses 

TMPRSS11A 6.06 proteolysis,cell cycle, cleavage of virus protein allowing host 
entry 

USP18 5.73 proteolysis, negative regulation of type I interferon-mediated 
signaling pathway 

STEAP2 5.43 ion import, regulated exocytosis 
KIAA0319L 5.38 viral process 

South 
Highlands 
 

SH2D4B 9.69 
possible involvement as a T-cell adapter, not well 
characterised 

TNKS2 8.32 protein processing, Wnt signaling pathway 
NAMPT 7.77 microglial cell activation, cell-cell signaling, cellular response 

to stress, cell proliferation 
AHR 7.03 regulation of adaptive immune response, cell cycle 
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We then used the max SB stat per gene to examine if genes in each of the VIP classes were 
systematic targets of positive selection, again creating a null distribution of genes with 
similar genomic characteristics as VIP genes to control for potential confounding variables. 
Similar to our FST analyses, we used 10000 iterations of permuted control sets, with filtering 
criteria as described in Materials and Methods. Tests were performed for each population 
using multiple quantile-based thresholds and by summing the SB values across all genes in 
each VIP set, with empirical p-values determined following the same methodology adopted 
for the FST-based VIP analyses (Fig 6). All test statistics for VIP sets reported hereafter were 
standardised using the mean and standard deviation for each respective quantile and VIP set 
from the null distribution. 
 
From the quantile-based analyses, the most prominent signals across VIP sets are apparent 
for the North Coast population, which also may have been driving the HIV signal seen in the 
FST analyses. Large differentiation for EBOV and KSHV, which was suggestive from the FST 
analyses, is non-existent in any branch. After applying the Bonferroni correction to the results 
from each population, only ADV, HBV, and HPV VIP sets for the North Coast population, 
EBV for South Highlands and WNV for the Aymara remain significant. Interestingly, no 
populations show any obvious sharing of signals for any VIP set, suggesting that convergent 
selection pressures did not act on VIP genes along the independent branches leading to each 
population. When using the summed SB scores as the test statistic, the highest differences are 
observed for WNV and COV for Aymara, HBV for North Coast and EBV for South 
Highlands, but none of these signals remain significant after applying the Bonferroni 
correction to each population.  
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Fig 6. Differences in SB statistics for each branch between groups of genes coding for viral interacting proteins 
versus a control group specifically designed to control for purifying selection. A. X-axis shows the quantiles of 
the entire SB statistic distribution per branch. The number of genes falling above each quantile value for each VIP 
category was standardised by subtracting the mean number of control genes falling above the corresponding quantile 
level, then dividing by the standard deviation (falling above that given quantile). Colours denote the size of the 
empirical p-value for each standardisation (grey to red, highest to lowest) prior to Bonferroni correction for multiple 
testing. B Max and mean SB statistic scores summed across each VIP gene group and standardised by null control 
sets. This was calculated by subtracting the mean null sum from the sum of each VIP group, divided by the standard 
deviation.  
 
 
 
Gene set enrichment of population-specific signals  
 
In addition to testing for immune specific functions, we also used the PolySel method15 to test 
if max SB scores were systematically inflated amongst genes from more general biological 
pathways, drawing upon pathway annotations from the NCBI PubChem database28. In 
keeping with the VIP analyses, the PolySel method used the summed SB scores in each 
category as a test statistic; however, the null was based on random permutations of genes 
without explicitly matching for population genomic properties, and gene sets were pruned in 
an iterative process to control for overlapping genes between pathways that may drive 
signals.  
 
Several pathways involved in immunity and metabolism show significantly inflated summed 
SB scores, however none remain significant after applying an FDR-based correction 
(minimum q-value ~0.16; Table 2). The number of genes per pathway tested (set size), 
enrichment score (set score), p-value for the probability of enrichment (set p-value), FDR (set 
q-value), and overall pathway function are all described in Table 2. Although above the 
standard FDR cut-off of 0.0529, several pathways with lower p-values do show explicit 
immune functions, especially in the Inca and modern Aymara populations. 
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Table 2. Gene set enrichment on genes with SB statistic 
 
 

Branch Set Size Set score Set p-value Set q-value Pathway function 

Inca 31 80.8911747 0.00012 0.1623319 Insulin Pathway 

Inca 164 195.768587 0.00035 0.1623319 
Antigen processing: Ubiquitination 
& Proteasome degradation 

Inca 33 66.7426974 0.00045 0.1623319 Phase 0 - rapid depolarisation 

Aymara 56 62.134714 0.00075999 0.27975098 Spliceosome 

Aymara 11 24.7956971 0.00105999 0.27975098 
Budding and maturation of HIV 
virion 

Aymara 22 36.7256153 0.00109999 0.27975098 Type I diabetes mellitus 

Aymara 19 30.5886706 0.00136999 0.27975098 
IL2 signaling events mediated by 
STAT5 

Aymara 39 43.6521525 0.00242998 0.36883561 

Biosynthesis of the N-glycan 
precursor (dolichol lipid-linked 
oligosaccharide LLO) and transfer 
to a nascent protein 

Inca 28 56.4197778 0.00265997 0.47816832 Steroid hormone biosynthesis 

Aymara 121 82.7812555 0.00462995 0.48289143 Axon guidance (KEGG) 

Aymara 18 25.3706761 0.00501995 0.48289143 
SNARE interactions in vesicular 
transport 

Aymara 19 24.7247108 0.00550994 0.48289143 ROS,  RNS production in phagocytes 

North Coast 97 104.075998 0.00167998 0.49160965 Human papillomavirus (dsDNA) 
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North Coast 82 93.2807745 0.00191998 0.49160965 Cell adhesion molecules (CAMs) 

North Coast 13 31.3858613 0.00193998 0.49160965 
Generation of second messenger 
molecules 

Central 
Coast 38 42.8147648 0.00065999 0.52144163 Ca2+ pathway 

Aymara 13 18.7491088 0.00755992 0.52787811 
Syndecan-4-mediated signaling 
events 

Aymara 11 17.4426429 0.00796992 0.52787811 Pyruvate metabolism (REACTOME) 

Inca 10 30.7820832 0.00420996 0.58508037 
ER Quality Control Compartment 
(ERQC) 

Inca 27 45.0108055 0.00699993 0.64191679 
Chondroitin sulfate/dermatan 
sulfate metabolism 

Inca 22 40.5346817 0.00722993 0.64191679 Vaccinia Virus (dsDNA) 

Central 
Coast 42 48.4436266 0.00195998 0.64413524 

TNFR2 non-canonical NF-kB 
pathway 

Central 
Coast 18 24.7335742 0.00556994 0.64413524 RMTs methylate histone arginines 

Central 
Coast 28 29.6763652 0.00582994 0.64413524 

Inositol phosphate metabolism 
(REACTOME) 

Central 
Coast 12 17.3623763 0.0098499 0.64413524 

WNT ligand biogenesis and 
trafficking 

North Coast 16 32.0795925 0.00411996 0.64519776 

Lissencephaly gene (LIS1) in 
neuronal migration and 
development 

North Coast 14 28.6390247 0.00444996 0.64519776 LDL-mediated lipid transport 

North Coast 41 51.6521744 0.00794992 0.88722111 Interferon gamma signaling 
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South 
Highlands 159 102.383963 0.00542995 0.89892295 Asparagine N-linked glycosylation 

South 
Highlands 157 101.316317 0.00551994 0.89892295 

Human Immunodeficiency Virus 
type 1 (ssRNART) 

South Coast 15 30.5865308 0.00142999 0.89917467 
N-glycan trimming in the ER and 
Calnexin/Calreticulin cycle 

South Coast 15 20.9630445 0.00487995 0.89917467 cGMP effects 

South Coast 77 70.3190124 0.00500995 0.89917467 Influenza A 

South Coast 28 32.315207 0.00705993 0.89917467 Thromboxane A2 receptor signaling 

South Coast 66 57.4461588 0.00831992 0.89917467 Signaling by NOTCH 

 
 
 
 
Discussion 
 
 
Our study characterises signals of immune differentiation across ancient and modern 
populations of the Andes, using several immune gene class approaches and time-series 
analyses to disentangle selection signals occurring in Andean populations through time. We 
observe possible cumulative signals for gene classes involved in viral response for several 
populations through time, most apparent in the ancient North Coast population, immune and 
metabolic pathway enrichment for the Inca population, and several interesting VIP-driven 
signals selection in post-contact Aymara individuals.  
 
 
No evidence of increased selection pressure for innate immunity categories between pre- 
and post-contact 
 
FST scores were compared across several innate gene subcategories, with no subcategory 
exhibiting any remarkable difference in FST distribution compared to that of non-innate genes. 
Previous studies have noted the stronger influence of purifying selection acting upon innate 
immunity genes in humans18,20. Hence, innate subcategories could be expected to show 
overall lower values of FST as compared to that of non-innate genes, due to conservation of 
allele frequencies and lower differentiation between ancient and modern populations. 
However, we did not observe this to be the case, possibly due to the small timescale between 
ancient and modern individuals (~500 years) over which FST was measured. Long-term 
purifying selection, as is thought to be acting at innate immunity genes, is likely more 
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observable when looking at longer evolutionary divergences at specific non-synonymous 
sites within genes, an approach for which we did not have enough SNP coverage.  
 
In addition to there being no evidence for increased subcategory-wide levels of purifying 
selection, the comparisons of FST also revealed no evidence for enriched signals of positive 
selection acting upon innate subcategories. This could be due to population substructure, 
recency of adaptation, or a lack of representation of SNPs in our dataset. It is also possible 
that selection does not act on more than a few genes belonging to the same subcategory, since 
they may carry redundancy in function such that there are too few genes under selection to 
drive observable subcategory-wide signals. In a previous study, several candidate innate 
immunity genes in humans demonstrated faster rates of local adaptation in Yorubans, 
Northern Europeans, and Han Chinese populations18. None of the candidate innate immunity 
genes from that study were found to overlap with the FST outliers from our results. 
 
For all FST analyses, our ability to measure the effects of positive selection may be limited by 
grouping all the ancient individuals together. The ancient individuals in this study are known 
to have undergone a complex demographic history and contain population substructure, 
according to region (northern, central, and southern, as well as coastal and highland 
population stratification as reflected in our admixture graph), with high genetic homogeneity 
contained within regions after ∼2,000 BP, except for populations around the Titicaca Basin 
(notably South Highlands, Inca and Aymara). This substructure in the ancient individuals will 
inflate the diversity levels within the combined ancient population at certain sites, 
diminishing the discernible differentiation between ancients and moderns measured by FST

30. 
Our power to detect selection using FST measured between the ancient and modern 
individuals may also be dampened by the relatively large timespan in the age ranges of the 
ancient individuals, which span 2000 years between the oldest and youngest samples, and the 
recency of contact (there is only ~500 years difference between the youngest ancient sample 
and the modern Aymara). The between diversity of the ancient and modern populations 
would only be high enough to drive a higher FST score in the case of a very high selection 
pressure imposed by post-contact diseases. While the conservative approach of all our 
methods may have impacted our power to discern signals of selection at innate immunity 
genes, it also lends more weight to the VIP-driven signals that are observed. 
 
 
VIP gene sets show limited adaptation signals between pre- and post- contact except for 
HIV 
 
For the comparisons of VIP sets to control sets using FST scores, VIP sets showing 
significantly inflated numbers of putatively selected genes at lower quantiles could indicate a 
more polygenic response, by allowing more genes with more subtle differentiation to 
contribute to the signal, whereas signals at higher quantiles may capture scenarios closer to 
Mendelian selection (since the expected values of the null set approach zero for the highest 
tested thresholds, such that even one or two outlier genes in a specific VIP set could yield 
high significance). This also means that there may be more power for lower quantiles which 
have more SNPs in the test, while higher quantiles are more likely to show inflated counts, 
since the standard deviation (the denominator) is lower for fewer null counts. This is seen in 
the case of the HIV set, which showed especially high counts and low p-values for the top 
two quantiles. HIV-interacting genes are promising candidates for positive (possibly 
polygenic) selection, as this set showed significantly higher standardised max and mean FST 
across 4 quantiles. The HIV set also had the highest overall standardised sum of scores across 
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genes, and p-values remained significant after Bonferroni correction for multiple testing, for 
both quantile-based standardised numbers and sums of scores.  
 
Both the sum of mean FST scores across VIP genes (Fig 3B), and the standardised number of 
VIP genes per quantile of the FST distribution (Fig 3A), show possible signs of overall higher 
FST values for EBOV. However, these signals should only be taken as suggestive, because the 
p-value only retains post-correction significance above the 99th quantile, for which there are 
so few outlier genes with extreme FST values (in both the control and the VIP set) such that 
very low p-values may impact our ability to reliably conclude that significant differentiation 
exists between VIP and control gene sets. This signal is thus driven by one or two outlier 
genes. For the sum of mean/max FST scores, EBOV also loses significance after Bonferroni 
correction for the number of VIP groups tested. The signal for KSHV also shows significance 
when using the sums of both mean and max FST scores across VIP genes. EBV also showed a 
possible weak signal, with significance for VIP gene differences above the 80th quantile, but 
again this is only suggestive as it does not retain significance after correction for multiple 
testing. Interestingly, none of the genes involved in viruses known to have been introduced to 
the Americas upon contact, and suspected of causing widespread epidemics, seem to show 
remarkably differentiated signals, including both vaccinia virus (VACV) (closely related to 
the smallpox-causing variola virus) and influenza (IFV). This result is interesting given the 
extensive historical records emphasising influenza and smallpox as the major pathogens 
leading to large-scale mortality in Indigenous populations, following contact with 
Europeans1,2,31-33. 
 
 
Immune gene sets show ancient, mostly population-specific signals of adaptation 
 
The results of using the admixture graph-based differentiation approach show few overlaps in 
the top-scoring genes when comparing between populations, as well as no noticeable 
overlaps with top scoring FST genes. This is not unexpected given the high regional-specific 
continuity, except perhaps for the more closely related populations, such as the North Coast 
and Central Coast populations on the one hand, and the Aymara and Inca on the other hand. 
Based on the minimal overlaps in signals from VIP comparisons, together with no common 
enriched pathways between populations, our results suggest that immunity genes may be 
under regional-specific change in allele frequency trajectories in the Andes. When looking at 
outliers for the top 1% genes per branch, 3 of the 14 overlapping genes have an immune-
related function (see Supplementary Methods Table S6). CALCA was shared between South 
Highlands and Inca, with a range of functions important to the immune system including 
interleukin production and inflammation response34. North Coast and Inca shared signals for 
CCAR2, a gene involved in the Wnt signaling pathway, important to immune cell 
differentiation35. Central Coast and Aymara shared CRHBP, thought to be important in 
inflammatory response and neural pathways36. This shared signal might signify either a 
continuation of a pressure that persisted after a population split (in which case should also be 
present in the ancestral branch) or possibly convergent adaptation (i.e., selection that started 
after the branch split, presumably due to a novel common pressure that impacted multiple 
populations). 
 
Of all populations, the North Coast especially appears to have a heightened number of genes 
and pathways involved in immune response, most notably in viral response processes. AP2B1 
with one of the highest SB statistics, is part of the host endocytosis machinery that is hijacked 
by the influenza virus to complete the viral replication cycle37. ADAR is thought to have been 
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under longstanding selection across primates and is a proviral factor for HIV infection38,39. 
TNFRSF13B, involved in the adaptive system, is also a top scoring immune gene, and shows 
a high global prevalence of putative dominant-negative alleles thought to be under the 
influence of balancing selection40. Comparisons of VIP sets reveal that the North Coast 
population has the highest number of VIP signals of all populations, with ADV, HBV, HPV 
all showing significantly high standardised counts. From the gene set enrichment, the North 
Coast population also shows possible enrichment of pathways involved in the immune 
response such as interferon gamma signalling and response to HPV, which interestingly 
mirrors the result from VIP comparisons. However, this enrichment score does carry a high 
FDR rate (0.492) (Table 2).  
 
The South Coast population shows a high score for OAS3, an innate immunity gene which 
has been functionally validated as triggering interferon antiviral pathways in response to 
diverse viruses, including influenza and vaccinia41. SMC6 has shown to be highly conserved 
across multiple species and is thought to have an important role in antiviral defence, by 
inhibiting viral transcription42. Meanwhile, in the Inca population, antigen processing is the 
immune pathway with the strongest enrichment with an FDR q-value ~0.16.  In addition to 
this immune signal, we noticed that there appeared to be a high prevalence of high-scoring 
genes related to metabolism. GRB14, EDEM1, and IRS1 all play essential roles in the insulin 
pathway. IRS1 polymorphisms common in Puerto Ricans have been associated with diabetes-
related traits, such as insulin resistance and hyperglycaemia, while several other variants of 
this gene have shown associations with diabetes in European, Chinese and Middle Eastern 
populations43-45. These top-scoring genes involved in metabolism are reflected in the gene set 
enrichment results, with the insulin pathway showing the lowest p-value and FDR correction 
with q-value < 0.2.  Apart from three pathways observed for the Inca population, there is 
seemingly no pathway enrichment with an FDR cut-off q-value< 0.2. By convention, such a 
cut-off does not warrant evidence of selection. However, we note that an FDR threshold of 
0.2 has been used in a previous study using PolySel pathway enrichment15, and that 
conservative FDR cut-offs are not always recommended, especially for genome-wide studies 
with weak signals29. Taken together, VIP comparisons, outlier genes with high SB statistics 
and pathway enrichment suggests evidence of selection for immune and metabolic processing 
pathways in several ancient populations, especially North Coast. 
 
 
Immune gene sets show signals of adaptation in modern Aymara  
 
Using the admixture graph-based differentiation approach, we find only two genes from the 
top 15 high scorers, PREPL and PPIA, involved in immune function in the modern Aymara 
population. PPIA is known to interact with the HIV-1 capsid and may be involved in other 
viral interactions46. We unable to replicate the outlier signals of Lindo et al, despite using the 
same modern individuals in our analysis. In that study, PBS scans between Han, Huilliche-
Pehuenche and modern Aymara noted higher signals for genes CD83 and RPS2947. Here, 
these genes are not especially differentiated when measured by either FST or SB statistics, 
possibly due to higher representation of ancient individuals in our analyses compared to the 
smaller ancient sample size of the other study. Though falling above an FDR of 0.2, Type I 
diabetes also is a top enriched pathway for the modern Aymara, although previous studies 
have found low incidence of Type II diabetes in regional Aymara populations48. However, 
Type I diabetes is known as an inflammatory disease, with immune dysregulation necessary 
for its aetiology49, hence an immune component could be driving the pathway enrichment 
score. VIP comparisons revealed only genes involved in response to West Nile Virus (WNV) 
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showing possible signs of selection in Aymara. Interestingly, this virus was only discovered 
until 1937 in Uganda, where its emergence is presumed; it was not recorded in the Americas 
until the 1990’s50,51. These signals may be indicative of common mechanisms of interaction 
between various pathogens and relevant host cellular components. From our analyses, it is 
not possible to confirm that the specific VIP-associated genes precisely correspond to the 
exact viruses we have described as interacting. The HIV signal seen in FST comparisons, and 
its possible corresponding weak signal in the North Coast population, may possibly be driven 
by ancient pathogens imposing selection on similar pathways and functions as HIV. This 
explanation is the most likely, since HIV is thought to have simian origins in Africa, and its 
incidence and epidemic effects in the Americas are thought to only have commenced in the 
1960s34,35. HIV epidemics are known to have spread especially through North America, but 
there is little evidence for the Aymara in Peru, with only recent incidence increase in tribes of 
the Peruvian Amazon36. All these timings would be too recent to be detected from our 
modern dataset.  
 
One interesting pattern possibly related to the HIV signal lies with oncogenic viruses. Of the 
seven known oncogenic viruses worldwide52, EBV for South Highlands, and HPV, HBV and 
KSHV for the North Coast all showed possible signs of selection. The incidence of 
lymphotropic viruses, which includes the two closely related species KSHV and EBV, is 
especially high and disparate in oncogenic burden in Indigenous populations of Peru and 
Mexico, though past distributions are unknown since most of these oncogenic viruses have 
only been discovered and characterised in the late 20th century53. Lymphotropic and other 
oncogenic viruses are usually inherently harmless but have cancer-causing properties that 
enhance the proliferation capability of host cells54. These viruses cause especially high 
fatality rates in HIV patients with immunosuppression, to the extent where the skin lesions 
caused by KSHV were once seen as a hallmark of AIDS55. KSHV and EBV viral molecules 
are also suspected of working cooperatively and interactively with those of HIV56. Although 
the incidence of recorded HIV and these various oncogenic viruses is much more recent than 
the timing of the selection signals from our analyses, our results suggest that genes and 
pathways involved in oncogenesis and HIV-like immunosuppression may have had a role in 
shaping ancient immune adaptation in the Andes.  
 
Using admixture graphs to model differentiation through time is advantageous since we can 
pinpoint timings of possible selection signatures throughout the demographic history of our 
study populations. However, our dataset presents some challenges in this approach. The SB 
statistic is only a good representation of allele frequency change along each branch if the 
admixture graph accurately describes the relationships between ancestral populations. 
Because there are often several graphs that can describe the demographic history of 
populations with similar outlier f4 z-scores, there is a possibility that the graph used in this 
study does not completely capture the true demographic history57. Finding an optimal graph 
of individuals was challenging, partly due to our relatively large sample sizes for each ancient 
population, as modelling admixture graphs with many individuals grouped together is 
difficult if they contain substructure. This was further complicated by the overall low 
diversity of Indigenous populations, effectively inflating f4 outliers if just one or two 
individuals carried slightly more variation in a population. However, of the many graphs that 
were tested, the one used in this study was the best fitting with the lowest z-scores. We only 
investigated signals from terminal branches due to the complex admixture history, which may 
also result in a loss of power for long-term selection due to the shortness of many branches in 
terms of drift. Any adaptation occurring during the branch leading to Aymara would have to 
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be under a very high selection pressure, to allow frequency change to be rapid enough that it 
can be detected.  
 
Another factor to consider is the post-contact population bottleneck, which has been 
demonstrated to impose a genome-wide effect in previous demographic models47,58,59, and has 
been detected in Aymara individuals specifically47. This bottleneck would cause allele 
frequencies to change drastically before and after contact. This may explain the skewing of 
higher SB statistics seen in modern Aymara as compared to other branches (see 
Supplementary Materials Table S5), since a high allele frequency change through time is 
reflected by a higher per-branch SB statistic score. This is made more complex by genetic 
continuity between ancient and modern individuals, which may result in false positives if not 
well accounted for. In our case we are confident that the modern Aymara individuals share 
significant ancestry with the ancients in our dataset, due to previous demonstration of high 
allele sharing with ancient individuals from the Titicaca basin, with Aymara individuals 
estimated to have occupied the area for around 2000BP47. 
 
 
Future directions 
 
Perhaps the most limiting factor of this study was its high data missingness, with many genes 
unrepresented or only represented by a few SNPs. This unfortunately greatly reduces power 
to detect selection but is a natural consequence of characterising past signatures using ancient 
DNA. The conservative nature of all our approaches also lends more credibility to the signals 
that we actually do observe. Future studies could replicate the approaches taken here, using 
higher coverage sequencing data from better quality ancient DNA, with potential to include 
intergenic regions that may carry important regulatory functions. Additionally, further 
insights into pathogen-driven selection may be obtained by combining several different 
approaches of assessing selection, such as by combining differentiation-based analyses 
together with haplotype homozygosity and Pn/Ps ratios. These approaches could not be used 
in this study, due to the lack of SNP coverage needed to reconstruct haplotypes and 
differentiate synonymous versus non-synonymous mutations. Further investigation of other 
population genetic parameters would also be useful (e.g., selection coefficients and 
contemporary Ne estimates) to verify whether aspects of demographic history within these 
populations are a potential confounding factor for our observations. Finally, functional 
studies investigating the outlier immune genes and pathways we have identified would also 
complement our results, furthering our understanding of immune gene adaptation in ancient 
and modern Indigenous populations of America.  
 
 
 
Materials and Methods 
 
Samples 
 
The ancient data were obtained from a previously curated, publicly available dataset of 
pseudo-haploid data for 1.24 million SNPs (“1240k”, v44.3, available at 
https://reich.hms.harvard.edu). This was complemented with modern Aymara samples from a 
recent study by Lindo et al16, with negligible levels of European admixture in these 
individuals. We also used Han and Mbuti sequencing data from the 1000 genomes project60. 
To limit the possibility of bias due to deaminated sites, all CpG transition sites were removed 
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for both possible strand orientations, resulting in 1057206 SNPs. Unique segregating sites for 
each population were removed, as well as any SNP that was not represented in at least one 
population, resulting in 354254 SNPs.  
 
 
Determining FST differences between immune gene groups  
 
FST per SNP was calculated (using PLINK61 v1.90b6.22 run on a 64-bit Mac, minor allele 
frequency cut-off 0.01) between all ancient populations grouped together as one 
metapopulation versus all modern individuals grouped as the second population. A further 
61854 SNPs represented by less than 30 individuals were discarded. Ensembl gene IDs were 
merged with SNP positions using BiomaRt in R (Ensembl version 103, GO terms 
downloaded Nov 2021)62,63, using standard gene boundaries without flanking regions, 
resulting in a final set of 13136 genes. The max FST value for a given gene was selected, as 
well as the per gene mean FST value (averaged across all the SNPs for any given gene). These 
values were then binned according to the number of SNPs available in our dataset per gene, 
and the z-score of each FST value standardised to the z-score distribution of its bin, using a 
previously described algorithm from PolySel15.  
         
A list of innate immunity genes was divided into subcategories which had been previously 
manually curated and classified according to functional information from InnateDB and 
UniProt18,64,65. We investigated these innate genes since innate gene adaptation is thought to 
be germ-line encoded, as opposed to the adaptive immunity system, for which variation can 
be more somatic and thus difficult to trace population-wide adaptation66. Innate immunity 
genes are also considered the front line of the immune system, consisting of receptors and 
signalling pathways which are vital to pathogen detection and mounting an immune 
response19. We aimed to determine whether innate genes displayed strong enough signs of 
purifying selection that could be detectable using FST. We thus compared corrected max and 
mean FST per gene between innate subcategories and tested for differences in overall 
subcategory scores compared to non-innate genes. We used a two-tailed Wilcoxon test67, 
finding no difference in FST distribution between any subcategory and non-innate category. 
 
In a previous study, genes known to be interacting with viruses (VIPs) have been carefully 
curated to include only those with experimental-based, low throughput evidence of physical 
interaction with viruses, and were therefore ideal to use as gene groups to investigate signs of 
adaptation. They have also been well characterised in terms of the increased effect of 
purifying selection22. Based on the same study, a combination of R and Perl scripts were used 
to create a control gene set that has similar genomic characteristics to each VIP set with 
regards to purifying selection, facilitating comparison of statistics between VIP gene groups 
and non-VIP gene groups. When matching VIP genes, we used very similar parameters and 
criteria as described in Enard et al, across 7 factors accounting for purifying selection. 
Factors included CDS density, DNASEI density, FUNSEQ, GC content, recombination rate, 
Tajima’s D, and PhastCons conserved element density. We removed any VIP set for which 
there were fewer than 10 matched VIP genes, with each matched VIP gene represented by at 
least 3 non-VIP genes. Null sets were created with 10,000 iterative permutations, with a 
minimum recombination threshold 0.0001 cM per 200kb, and 500KB minimum distance 
between a VIP gene and a control gene. Tolerance intervals for each genomic measure are 
given in Supplementary Materials. Once the null was generated, the number of genes falling 
above a given quantile derived from the entire FST was standardised, by first subtracting the 
mean number of genes from the null distribution falling above that respective quantile, then 
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dividing by the standard deviation in the number of genes falling above the quantile. An 
empirical p-value was calculated from the proportion of null sets expected to match or be 
greater than the number of VIP genes for each quantile. To determine overall group 
enrichment, the sum of all mean and max FST scores per gene within a VIP set was obtained 
and compared to the mean of the sum of all null sets.  
 
 
Determining branch-specific signs of immune adaptation in genes 
 
To determine relationships between ancient individuals and modern Aymara, we built an 
admixture graph using the Qpgraph function from the package ADMIXTOOLS (version 
7365)23. A previous reconstruction of the genetic relationships between different populations 
in the Andes was used to create a scaffold topology, to which additional individuals were 
then added, according to the archaeological period and their affiliated region24 68. Populations 
were added sequentially to various positions of the graph to find the best fitting tree with the 
lowest f4 outlier Z-scores. Several different topologies were explored before determining the 
best-fitting graph, which had the lowest z-score of 6.591 for the worst outlier f4 (Han, 
Modern; Modern, North Coast).   
 
The package GRoSS (available at https://github.com/FerRacimo/GRoSS, downloaded 16 Oct 
2021)25 was used to calculate the SB statistic per SNP for each branch of the admixture graph, 
thereby taking into account the demographic history of the populations. The latest version of 
GRoSS was used, in which SB statistics account for the larger variance in allele frequencies 
due to populations with small sample sizes. Ensembl gene IDs were merged with SNPs as 
was done for the FST analyses, resulting in a final set of 13,837 genes. SB scores were then 
binned according to the number of SNPs available in our dataset per gene, and then 
standardised for each bin to account for bias. We chose to focus on SB values for the terminal 
branches leading to each population rather than internal branches, due to the high proportions 
of admixture events leading up to Inca and Aymara. Terminal branches should capture the 
allele frequency trajectories arising from mutations in more internal branches. To obtain 
descriptions of function, we used GO annotations and functional terms with reduced 
redundancy from REVIGO, which implements an algorithm to collapse terms based on 
semantic similarity69. This was coupled with manually searching through current literature for 
top-scoring immunity genes.  
 
 
Determining branch-specific pathway enrichment 
 
The max SB Stat score per gene from the GRoSS output was then used as input for a gene set 
enrichment using the pipeline Polysel as outlined in a previous study15. Pathway annotations 
for each gene were downloaded from databases available from the NCBI PubChem database 
(including Reactome, KEGG, and Pathway Interaction Databases, downloaded Nov 2021)28 
and merged with the data. SB Stat scores were corrected for bias towards genes with a larger 
number of SNPs in our dataset using Polysel’s binning algorithm. The minimum number of 
genes per pathway was set to 10, with functionally similar sets merged. A SUMSTAT score70 
was calculated for each pathway, which in our case was the sum of per-gene max SB stat 
scores for a given pathway. Since these summed scores appeared to deviate from normality 
for pathways with smaller set sizes, a null distribution, comprising 500000 random sets, was 
created using Polysel’s sequential random sampling method. The enrichment test of pathway 
SUMSTAT scores was then run with pruning, i.e., genes from the highest scoring gene sets 
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were removed from all the lower ranked sets.  These gene sets were subsequently retested 
until no gene sets were left. The pipeline also ran an FDR estimation to determine the 
proportion of p-values expected under neutrality, calculated by repeatedly shuffling the 
scores, while retaining gene set definitions, to create an empirical p-value distribution and 
then retesting the pathway enrichment (including pruning). This was done with 200 iterations 
of shuffled scores.  
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Thesis summary 
  
This thesis has contextualised the factors surrounding immunogenetic adaptation in 

Indigenous populations of America, investigating their imprints in ancient and modern 
individuals. In Chapter I, evidence was gathered from multiple disciplines to highlight and 
inform our current knowledge of the early colonial depopulation of Indigenous people of 
America from anthropology, palaeomicrobiology, and population genetics studies. Chapter II 
then followed on to examine the immunogenetic differences in Andean populations prior to 
and following European contact, examining immune adaptation occurring through time via 
genetic differentiation summarised across various immune gene classes. Chapter III then 
shifted the focus to HLA, a key member of the immune system, and compared patterns of 
HLA allele frequencies and their binding affinities in Indigenous Americans and other world 
populations. 

  
Post-contact immunity adaptation to introduced diseases in Indigenous populations 

provides a unique case of a documented, strong shift in the pathogen landscape, presenting an 
opportunity to discover new insights into rapid immune adaptation in humans. These findings 
carry many implications for current Indigenous populations of the Americas, who suffer from 
significantly higher disparities in incidence and severity of infectious diseases, including 
Covid-191. The cause of these disparities is not well understood, as key immunity differences 
in Indigenous populations have not been identified, further made complex by the difficulty in 
disentangling infectious disease impacts from confounding factors such as lifestyle, social 
conditions, and non-communicable diseases2. 

  
In this discussion, I summarise the main outcomes of this thesis, discussing the challenges 

and advantages of a multidisciplinary, evolutionary approach in understanding the impacts 
and possible selection pressures of post-contact infectious diseases on the immune systems of 
Indigenous peoples, in the context of the Americas. I then suggest future directions and 
expansion possibilities for my results and methodologies. This discussion is organised into 
four overarching themes: 

  
1) The benefits and challenges of a holistic, multidisciplinary approach in 

studying evolution in the Americas 
  

2)  The insights of an evolutionary perspective into the role of infectious 
diseases in shaping Indigenous immunity 

  
3) The limitations and challenges of an evolutionary approach in 

characterising infectious disease impacts 
  

4) Future directions 
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The benefits and challenges of a holistic, multidisciplinary 
approach in studying evolution in the Americas 
 
 
Insights from multiple fields strengthen and challenge each other 

  
Elucidating the evolution of immunity genes is a challenging task, due to the difficulties 

in identifying genomic changes that can be attributed to selection, versus that caused by 
random genetic drift. As discussed in the Introduction of this thesis, selection acting upon 
genes interacting with viruses would be expected to mostly occur via soft sweeps, which are 
difficult to detect3. Softer signals are also expected in scenarios of more recent adaptation, as 
would be the case for post-contact immune adaptation4. To successfully detect these signals 
and choose methods and approaches with the highest power of detection, it is thus helpful to 
build a picture of the factors and specific ways by which selection is likely to be operating. 
Building this framework is facilitated by knowledge of past and present events, defining how 
immunogenetic structures are expected to behave given known environmental influences. 
The benefits of incorporating known environmental factors and influences in population 
genetics studies are many, conferring nuanced insights into selection and other demographic 
processes5. Chapter I thus collates evidence from anthropological, archaeological, 
palaeomicrobiological and population genetics sources to build a picture of Indigenous 
depopulation in terms of infectious disease. Viewed from a broader perspective, our current 
knowledge of rapid depopulation, contrasting ancient pathogen landscapes, theories of host-
pathogen coevolutionary dynamics, and observations of immune gene adaptation as being 
generally pathogen-driven, all appear to be congruent with the reported high infectious 
disease-related mortalities after contact. These factors also accord with the significant health 
disparities in Indigenous peoples of the Americas seen in the present day. 

  
Furthermore, this thesis demonstrated that not only are other fields insightful for 

contributing to genetics knowledge, but also that genetic findings can be useful to either 
consolidate or challenge previous findings from anthropology and accepted historical 
narratives. Our current understanding of historical events can thus be enriched by obtaining 
insights into the past through a genetics lens. In Chapter I, it was established that, despite 
carrying high uncertainty, many anthropological sources supported the scenario of infectious 
diseases, especially smallpox and influenza, playing a significant role in the Indigenous 
depopulation. In contrast, the analyses of Chapter II comparing immunity signals pre- and 
post- contact did not yield any evidence for signs of selection in genes associated with 
smallpox and influenza infections. Given the caveat that Chapter II results were affected by 
limitations and other factors, as discussed further below, this result would appear to lend 
more weight to the ‘Black Legend’ hypothesis, confirming that sociological factors such as 
warfare and poor social conditions would likely have contributed to the depopulation. 
Additionally, results from Chapter II appear to strongly support adaptation occurring in 
ancient populations, an observation supported by a previous study contrasting pre- and post- 
North American exomes, which found signals of positive selection acting upon HLA-DQA16. 
Taken together, the genetic findings from Chapter II suggest that Indigenous populations 
were certainly not living in a ‘Virgin Soil’ paradise free from infectious diseases, and that 
there were likely many precontact pathogens circulating in ancient Indigenous populations. 
The lack of signal for influenza and smallpox, together with the signal for West Nile Virus 
(WNV), suggest that Indigenous depopulation, in terms of infectious disease, is highly 
multifaceted, and that other diseases and sociological factors may have held an 
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underappreciated role in the extreme mortalities after contact with Europeans. This 
consolidates the paradigm outlined in several anthropological studies, which highlight the 
complex nature of depopulation and describe how its most probable drivers are a combination 
of biological and sociological factors7,8,9.  

  
This thesis has also demonstrated how investigating genome-wide population signals, as 

performed in Chapter II, paired with more focused gene cluster examinations, as performed 
in Chapter III, can reveal signals which inform each other. There appears to be an inverse 
relationship between the range of viral peptides which can be bound by genes of the HLA 
complex, as described in Chapter III, and the strength of adaptation signal for genes in 
response to the respective virus through time, as described in Chapter II. This is discussed 
more thoroughly below, and although speculative, highlights the benefits of combining both 
general and specific approaches, providing interesting avenues for future studies. Many 
current studies tend to approach immunity from either a very broad, genome-wide 
perspective which might miss specific signals and important roles held by key genes, or a 
focussed examination of only a few genes which may lose sight of the larger picture and 
interconnectedness of the immune system. This thesis has attempted to couple these two 
approaches to yield both an accurate and holistic depiction of immunity adaptation. 
 
 
Overcoming biases and overinterpretation 

  
There are several challenges that must be considered when using a multidisciplinary 

approach to uncover the impacts of pathogens on the immune system. In Chapter I, evidence 
was discussed for differing co-evolutionary histories between populations, exploring how and 
why American populations may have been more susceptible to introduced pathogens than 
European populations. However, without careful consideration, it can be very easy to 
construct a narrative from layers of confirmation bias. Confirmation bias has been suggested 
as exerting a heightened influence when investigating material from diverse fields10. 
Confirmation bias has also been repeatedly proven to affect scholars across many disciplines, 
including science, despite the reputation of scientific researchers as objective, neutral 
observers. The effect of confirmation bias appears to be especially impactful in cases where 
studies in favour or against a preconceived narrative are evaluated for their quality, a process 
that was imperative for collating the multidisciplinary evidence of Chapter I. When 
evaluating previous research, scholars (including scientists) have been found to preferentially 
rate studies that report findings in line with their beliefs, doing so subconsciously11,12. 
Confirmation bias may thus especially affect the early estimates of infectious disease 
contributions to Indigenous depopulation, since the preliminary narratives surrounding the 
‘Virgin Soil’ hypothesis first began to spread as both a reflection of reality and the result of 
political agendas, as discussed in this thesis’ Introduction. This in turn may affect 
downstream studies, including genetics-based ones. As an example, Lindo et al described 
CD83 and IL-36R as amongst their outlier candidates for post-contact selection, with the SNP 
under putative selection for IL-36R associated with IL18RAP regulation, and discussed all 
these genes’ functions as being associated with smallpox infection in other studies13. 
However, all three of these genes also have much wider immunity functions and are linked 
with response to infectious diseases more broadly; CD83 has been found to be important in 
response to many other viruses, including Epstein-Barr virus (EBV)14. IL18RAP/IL18R1 are 
also important in response to other infectious diseases such as Mycobacterium15. While it is a 
possibility that these signals were in fact in response to smallpox, such findings (including 
those of Chapter II) must be balanced with the acknowledgement that, when searching for 
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specific patterns to confirm preconceptions, they can be very easily found, even if they are 
random or formed from completely different causes than expected.  

  
Considering the high uncertainties and potential for confirmation bias, I have been very 

careful to simply use historical knowledge and previous narratives as somewhat of a guide, 
rather than facts to be taken as absolute truth. In order to avoid the biases of outlier analysis, I 
have taken a mostly immune gene class-based approach, with groupings (genes involved in 
response to various viruses, and innate immunity genes) based on infectious diseases thought 
to be important to Indigenous depopulation, and how immunity genes tend to be selected for 
by pathogens, as outlined in Chapter I. This allowed more deliberate hypothesis testing and 
comparative observation, by testing whether smallpox and influenza signals could be 
detected and comparing signals for other sets of viruses. The possible effect of biases was 
further mitigated using ancient population analyses in Chapter II, allowing comparisons of 
signals through both time and space. In view of all this, although the genetic signals of 
present-day individuals do reflect their environments and can be used to inform aspects of the 
past – as underlined by the many immunity-related adaptive signals from pre-contact 
individuals, as observed in Chapter II – immunity adaptation is affected by too many factors 
to effectively make strong, conclusive statements about history. The lack of evidence for 
signals relating to smallpox and influenza from Chapter II does not dismiss the fact that these 
pathogens likely contributed to mortality rates and epidemics. However, it does suggest that 
the rather simplistic model of the ‘Virgin Soil’ narratives were perhaps much more complex 
in reality than previously theorised.  

 
Collating together evidence and pattern-searching across many disciplines also carries the 

risk of over analysing patterns and overinterpreting correlative signals, even if those signals 
are strong16. While it can be tempting to observe coinciding signals and past events and infer 
a causal relationship, many correlations overlap over one another and relate to each other in 
complex ways, and very often are due to complete randomness. In Chapter I, it was apparent 
that many palaeomicrobiological studies date the emergence of several zoonotic pathogens to 
around the time of the Neolithic transition in several parts of the world, which was used as 
possible evidence of increased pathogen emergence linked to denser populations and lower 
sanitation. To minimise spurious correlation, I was careful to only include pathogens that did 
not have too high uncertainties in their emergence dates. In a similar line of reasoning, while 
significant changes in allele frequencies of immune genes may signify the presence of a 
selection pressure, pathogen or otherwise, it is important to contextualise the effects of these 
immunogenetic changes for both single gene effects, and those acting more systematically 
and polygenically. This is especially true when using outlier analysis and pathway 
enrichment via population differentiation methods to detect selection. The mechanisms and 
direct evidence for selection pressures, imposed by specific pathogens on candidate genes 
and pathways, require much more future characterisation as well as validation by 
experimental studies. However, the findings presented here are still useful for a preliminary 
understanding of immunity adaptation in the Americas, as well as hypothesis generation and 
foundations for further research. 
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The insights of an evolutionary perspective into the role of 
infectious disease in shaping Indigenous immunity 
 
 
Possible signs of immunity adaptation through time 

  
From Chapter II, genes coding for viral interacting proteins (VIPs) revealed insights into 

putative adaptation to viruses, both before and after contact. Gene set enrichment methods, 
which test the scores of many different pathways relative to each other, were also used to 
detect polygenic selection and revealed several pathways involved in the immune system 
showing possible enrichment in the Inca and modern Aymara populations, although they 
were accompanied with relatively high FDR rates (q-value=0.16). Although not the primary 
focus of this study, signals relating to metabolism and insulin were apparent mostly for the 
Inca, with some also showing possible signs for the modern Aymara. This signal is quite 
striking since it has been noted in previous genetic studies of populations in the Andes, and 
accords with known diet changes in the Lake Titicaca basin region13,17,18. Type I diabetes was 
also revealed as a top candidate pathway for the Aymara, although previous studies have 
found low incidence of Type II diabetes in modern-day Aymara individuals, especially in 
rural populations where people lead more active lifestyles19,20. Diabetes overall (for both 
types) only has an incidence of about 7% for the Aymara populations from Bolivia21. It is 
possible that these signals are thus spurious signals (since the FDR rate was relatively high). 
It is also possible that metabolism genes, identified as being important to the Type I diabetes 
pathway, have been under selection due to diet shifts, either since the time of the Inca or 
since the introduction of more Western foods post-contact, or even possibly both. Type I 
diabetes is also an inflammatory disease with a strong immune basis, caused by a lack of 
insulin due to immunity-mediated destruction of pancreatic beta cells22. The dysregulated 
immune genes that drive Type I diabetes thus could have been under selection in the Aymara 
due to post-contact pathogenic pressure.  

 
Surprisingly, no signs of adaptation for genes involved in response to smallpox or 

influenza were detected, neither from FST scores between ancient and modern individuals, nor 
from signals along the Aymara branch of the admixture graph.  This could be because: 1) 
these diseases were not as instrumental in mortality as previously thought, thus perhaps 
supporting the ‘Black Legend’ hypothesis, 2) other genes involved in response to these 
pathogens were not sampled or another limitation of our study was at play or 3) these 
diseases did cause widespread mortality but did not leave adaptation signatures, perhaps due 
to the short timescales (since even strong selection requires a minimum amount of generation 
time to produce adaptation signatures) and/or the advent of vaccines. Comparisons of groups 
of innate genes also did not yield any obvious differences, which was also interesting given 
the evidence of purifying selection acting upon these genes from a previous study23. 
However, in that study, purifying selection was measured by comparing rates of 
polymorphism and divergence at synonymous versus non-synonymous sites between humans 
and chimpanzees. The distribution of the proportions of non-deleterious, non-synonymous 
mutations was used to calculate the odds-ratio of measuring higher purifying selection within 
innate immunity genes. Their approach was thus more sensitive and able to measure 
purifying selection acting under long evolutionary time scales. Since the SNP data of Chapter 
II did not have high enough coverage to determine synonymous versus non-synonymous 
differences, it is possible that this explains the lack of power in detecting increased rates of 
purifying selection at innate immunity genes. No signs of overall positive selection acting at 
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innate immunity subcategories was observed, from comparing innate immunity distributions 
to the rest of the genes in the dataset. Outliers also did not replicate the outlier candidates 
identified in Deschamps et al for Yoruban, Han Chinese, and North European populations23. 
This could be because outlier FST signals do not give information for the polarity of signals 
(unlike PBS which pinpoints a specific branch). Because Chapter II uses FST to measure 
differentiation between modern ancients, high scores of FST could occur for SNPs which were 
undergoing ancient adaptation, or for SNPs for which the ancient individuals happened to 
have high structure (since all ancient individuals were grouped into one population for the 
FST comparisons). Furthermore, Deschamps et al examined different world populations, so it 
is also possible that their candidates were not under selection in populations of the post-
contact Andes. 

   
Differentiation between the ancient populations and modern Aymara revealed the 

strongest signals for genes involved in response to HIV. As discussed in Chapter II, HIV was 
not thought to be circulating in the Americas until the 1960’s at the earliest, and did not cause 
widespread mortalities, hence the low likelihood that this signal is in response to the HIV 
pathogen itself24,25. However, it does inform us that genes and pathways associated with HIV 
may have been under selection sometime in the past 2000BP. HIV operates by invading 
various immune cells such as monocytes and CD4+ T cells, degrading the number of healthy 
immune cells that are able to attack and destroy invading pathogenic material. This results in 
weakening of the host’s immune system, leading to a gradually increasing susceptibility to 
opportunistic infections26. The lack of immune response also allows the rise of cancerous 
cells, which can proliferate in the absence of the usual rigorous immune cell processes27. 
Furthermore, HIV infects cells by interacting with T-cell and monocyte co-receptors, which 
are vital components of these immune pathways and would be candidates to be under the 
influence of selective pressures. Given these mechanisms, it follows logically that VIPs 
identified as interacting with HIV components are generally critical to the basic functioning 
of the immune system, and thus genes encoding these VIPs may be under higher levels of 
adaptation burden. This is supported by the findings of Enard et al, in which the VIP sets 
were first collated together; in this study, the authors describe how HIV-related VIPs showed 
some of the highest rates of adaptation out of all VIP sets28. In particular, HIV-1 and HBV 
VIPs showed the strongest excess of adaptation, with selected codons showing three times as 
much adaptation as non-VIP codons. Thus, it is highly possible that HIV VIPs showed the 
strongest signals for the differentiation between all ancient individuals and modern, but not 
specific populations through time from the admixture graph results, possibly because the 
adaptation signal for these VIP genes is more apparent over longer evolutionary timescales 
(as opposed to the more local, perhaps more transient selection signals seen when the samples 
were grouped into time-series populations via the admixture graph). Interestingly, when 
looking at signals for the admixture-graph-modelled populations, the oncogenic viruses 
Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B (HBV), and Kaposi 
Sarcoma (KSHV) all show possible signals in the ancient North Coast and South Highland 
populations. For KSHV and EBV in particular, the high endemicity of these viruses in 
Peruvian populations, together with their high fatality in patients with HIV-associated 
immunosuppression, suggests possible immunity adaptation at the intersection of these 
pathways29. This is supported by HIV being hypothesised to actively interact with both EBV 
and KSHV viral molecules, possibly augmenting their oncogenicity30. As discussed in more 
detail in Chapter II, the presence of putative selection signals for both HIV and oncogenic 
viruses, both of which affect similar pathways (though not necessarily the same VIP genes), 
provides potential evidence that these gene pathways may have held important roles in 
immunity adaptation to pathogens in the Andes.  
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The signals for the North Coast populations signify that much immunity adaptation may 

have been at work prior to contact, potentially due to ancient epidemic-causing viruses. 
However, as outlined in the Introduction, no endemic pathogens with epidemic potential are 
currently known of in the Andes. From pure speculation, it is possible that a lack of zoonotic 
origin and reservoirs in the Americas (discussed in Chapter I) perhaps increased the chance 
of past Indigenous immune systems ‘winning’ the arms-race against ancient pathogens, 
leading to these pathogens dying out or becoming less virulent over time. Chapter I outlined 
the contrasting host-pathogen co-evolutionary histories between Europe and the Americas, 
noting that European populations co-evolved and co-habited with many domesticates, 
providing ample sources and reservoirs for zoonotic pathogens over thousands of years. 
Thus, it could be more difficult for the human immune system to adapt and overcome 
zoonotic pathogens, which consequently could lead to their circulation in human populations 
for longer. This would also accord with the observation that many epidemic-causing zoonotic 
pathogens were consistently associated with very high mortality rates until the advent of 
vaccines, better medication and eradication programs, such as the very successful WHO 
smallpox eradication campaign31,32. 
 
 
Localisation of immunity adaptation through time and space 

  
Given the caveat that selection signals should be taken as more of a guide and 

contextualised by study limitations, the results of Chapter II suggest that immunity adaptation 
in the Andes was mostly specific to region and time. Most VIP gene sets do not show any 
signals at all for more than one population, and outlier genes in the top percentiles also do not 
show much overlap. This is despite the genetic closeness of the Inca and Aymara, which are 
only separated by ~ 500 years, though due to the high cosmopolitanism of the area under the 
rule of the Inca and preceding empires they do share a mix of different more ancient Andean 
ancestries33. Populations from the Central Coast and North Coast also do not share many 
obvious signals, despite their shared demographic history and geographic closeness. It is 
possible these disparate signals reflect the genetic substructure of the region, which retains 
genetic homogeneity through time for most populations except for the admixtures and 
population movements of the southern populations. It is interesting that the North Coast 
population especially showed a strong signal across most VIP gene sets, far more than any 
other population. It is difficult to ascertain why this could be the case or explain why other 
populations in the Andes do not share these signals. It is known that Andean cultures adopted 
distinctive cultures with varying practices through time34,35; perhaps changes in lifestyle, 
sanitation or healthcare for the sick were at play, causing shifts in adaptation signals in the 
North Coast populations.   

  
Genes involved in interacting with West Nile Virus (WNV) showed an interesting signal 

for the modern Aymara from the population-specific analyses from Chapter II. Like HIV, 
WNV has only been very recently characterised and is not thought to have been present long 
in the Americas, nor is it associated with high mortality rates36. However, it may share host 
genes which respond to it with the closely related Yellow Fever and Dengue viruses, both of 
which were brought over by the slave trade to the Americas37,38. Dengue has especially high 
incidence and mortality in Peru, as discussed in the Introduction. Like HIV, it is possible that 
the WNV signal is driven by genes under adaptation to other pathogens which share 
pathways with this virus. As was also more thoroughly discussed in the Introduction, curated 
pathway-based gene lists rely on several subjective factors for incorporation into a gene set, 
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and rely on pre-existing knowledge of gene functions and specificity for viruses, which still 
have much left to be fully characterised in terms of pleiotropy and viral specificity.  
 
 
Many parts work cooperatively to drive immunity adaptation 

  
From Chapter III, modern Indigenous peoples of America, for both the Northern and 

Southern continents, show high frequencies of HLA-A and HLA-B alleles with strong 
binding affinity and low frequencies of HLA-A and HLA-B alleles with weak binding 
affinity. This is an interesting observation, as these frequencies of strong and weak binders 
are independent of each other and would only be expected to show these patterns under 
selection for stronger binding alleles. Strong binders showed similar binding patterns across 
the seven viruses used in the study, suggesting that strong binders are not especially virus 
specific. This supports the idea of immunity adaptation perhaps being especially driven at 
HLA genes in Indigenous populations, possibly conferring a strong defence to many diverse 
viruses. In line with this, strong-binding alleles tended towards being more generalist in their 
binding capability and thus able to bind a larger repertoire of peptides, except for peptides 
derived from HIV. Furthermore, both strong and regular binders bound a lower range of HIV 
peptides compared to other viral peptides, a difference that was highly significant as 
determined by linear modelling. 

  
As discussed in the Introduction, reliable evidence suggests that strong binding is 

necessary for immunogenicity and triggering of downstream inflammation pathways. There 
is a possibility that pathogenic peptide sequences similar to HIV perhaps impact on the same 
host genes and utilise the same host pathways, are thus not well recognised by strong HLA 
binders. Pathogens that have a larger range of peptides that cannot be bound strongly, as is 
the case for HIV, could escape a strong immune response and thus exert a stronger selection 
pressure on other machinery of the immune system. This may explain the strong 
differentiation signal for genes interacting with HIV-like pathogens between modern and 
ancient populations in Chapter II (noting that none of the genes analysed in Chapter II are 
HLA genes). This may also explain the lack of influenza signal from the differentiation 
analyses in Chapter II, since strong HLA binders were able to bind a larger repertoire of 
Influenza-derived peptides, and thus may have evolved to provide better protection against 
Influenza (and possibly Coronavirus, which has the highest range of bound peptides). This 
idea must be taken as but a hypothesis, given the scant evidence at time of writing, and would 
very much require further investigation. 

  
When testing the binding ability of alleles to Sars-cov-2 proteins, alleles that bound with 

very strong affinity were found at disproportionate levels in the Americas. HLA allele 
A*02:01 is widespread globally but is especially high in some Indigenous American 
populations, reaching more than 50% in some populations. Other strong-binding alleles 
belonging to A*02 are observed, including A*02:06 and A*68:01, both of which reach up to 
around 25-30% in Mexican and South American populations. A*02:22 is another very strong 
binder and was found to bind more than 200 peptides with very strong affinity, with little 
instance of weak or non-binding. Interestingly, this allele is globally very rare, except in two 
Indigenous Brazilian populations (5.8% in Guarani and 15% in Terena)39. Although only 
Sars-cov-2 proteins were tested, strong binders tend to be quite generalist, thus it is likely that 
these dynamics would extend to many other pathogens. 
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These results are also interesting when taken with current understandings of the 
population dynamics of Killer Immunoglobin Receptor (KIR) genes, which are expressed on 
natural killer cells and can bind to the HLA-antigen complexes, activating the killing of 
defective cells40. The KIR gene cluster harbours extensive genetic diversity and is suspected 
to coevolve with HLA, in that KIR that tend to be more activating are more often combined 
with HLA, which are more inhibitory41 This is seen as a way of fine-tuning the immune 
system, so that a sufficient response can be mounted to as many pathogens as possible, while 
mitigating over-inflammation and autoimmune diseases42. Indigenous people of America for 
both North and South continents have shown lower frequencies of KIR that are highly 
activated, which may partially explain the results of Chapter III, in which strong HLA 
binders were highly frequent in these Indigenous populations. Indigenous populations also 
tend to have lower HLA and KIR diversity overall, as well as fewer KIR-HLA interactions, 
possibly driven by the overall higher frequencies of strong binders43. However, this does go 
against what is the commonly accepted paradigm of HLA diversity, in that more variation is 
actively maintained at HLA genes to allow them to compete with fast evolving pathogens44. 
These observations highlight how immune system antigen recognition is driven by a 
sophisticated system of many genes working synergistically. 
 
 
 

The limitations and challenges of an evolutionary approach in 
characterising infectious disease impacts 
 
 
Detecting immunity adaptation from time-series 

  
While harnessing the power of ancient DNA to inform past allelic states can be highly 

informative, ancient DNA data represents many challenges, as discussed in the Introduction 
of this thesis. Data missingness was perhaps the most limiting factor to several analyses 
carried out in Chapter II. The most profound effect of this is seen in the high missingness of 
single nucleotide polymorphism (SNP) data, resulting in an overall low number of genes 
including in the analyses (only approximately 13,000 out of a possible 30,000)45,46, with 
many of these genes comprising only a few SNPs.  For all the differentiation methods, I was 
conservative in discarding transitions at CpG sites (which could be impacted by post-mortem 
DNA damage), SNPs uniquely segregating in the population, and genes with low numbers of 
SNPs for outlier identification. This was necessary to ensure the avoidance of Type I errors 
due to artificial variation. The low number of genes may result in a decreased power to detect 
selection signals. Although this might explain why there are no signals for smallpox and 
influenza, I note that influenza had the highest number of genes out of all VIP sets, thus the 
chance of missing genes under selection due to random missingness seems less likely. 

  
Another important factor was the grouping of individuals into ancient populations in 

Chapter II. This was challenging since it was important to maximise population sample size, 
to prevent data loss from low coverage samples and obtain an accurate picture of ancient 
allele frequencies. Simultaneously, grouping individuals together that are admixed or not 
closely related to each other can inflate the variation within a population and mask signatures 
of selection4. Additionally, the software used to create the admixture graph and model the 
relationship between populations has a large possibility space of different trees, some of 
which could result in similar measures of data fitting47. It is important to note that both 
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groupings and the admixture graph may affect the selection signals described in Chapter II; 
however, it is more likely to result in a lack of detection power rather than false positives, 
especially when looking at enrichment of scores summarised across immune gene sets. 

  
The 1240k SNP dataset is known to suffer from ascertainment bias when used for 

Indigenous populations, since a portion of SNPs were ascertained for European populations 
while others were ascertained for African populations, and thus may not capture a portion of 
private polymorphisms in Indigenous populations48,49,50. Again, this bias is more likely to 
result in lower detection power rather than false positives51. As also discussed in Chapter II, 
genetic continuity and within-population admixture of individuals can also greatly affect the 
results of differentiation-based selection scans. These differences are evidenced by the lack of 
concordance of our outlier results and those of a previous study, which used the same modern 
Aymara individuals and outgroup (Han) but different (and fewer) ancient individuals in their 
analyses13. In Chapter II, genetic continuity of ancient individuals with modern Aymara has 
been characterised in previous work, showing high allele frequency sharing with ancient 
populations of the Lake Titicaca13. Taken with the relatively high sample sizes of ancient 
individuals, I was confident that the genetic continuity of the ancient individuals with modern 
Aymara was reliable to use in the differentiation-based analyses. 

  
When determining selection signals from time-series data, another important issue lies in 

finding immune gene sets which effectively capture pathways and intricate systems expected 
to be under selection. As already mentioned, this is aided by biological and historical 
information in forming hypotheses of which sets of genes are most likely to work together in 
response to selection pressure. However, this is not always possible to ascertain, especially 
since there are many overlapping for many pathways, and some genes may be highly active 
in more than one pathway but have only been characterised in certain ones. This can quickly 
lead to a large multiple testing problem if we do not know which immune pathway is being 
targeted by selection and would like to test those that are most likely. Gene set enrichment 
methods and FDR corrections are useful for controlling for this but also lose power quickly, 
especially when testing across many branches of an admixture tree. The corrections for 
multiple testing used in Chapter II, i.e., Bonferroni and FDR-based q-value correction with 
cut-off 0.05, are both considered highly stringent and can lose sensitivity for weaker 
signals52. Weaker signals are especially common when looking at short time scales as well as 
more polygenic signals of selection, comprising many genes of small effect acting together. 
Polygenic selection is also thought to be very common for the immune system and immunity 
adaptation to pathogens53,54,55 . However, this high stringency, and also the conservative 
nature of the filtering used in Chapter II, permits more confidence for the signals that are 
indeed observed. 
 
 
Limitations of investigating HLA adaptation 

 
Chapter III examines only genes belonging to the HLA cluster and of those, only five 

primary loci. There are many other HLA genes, receptors and parts that work closely with the 
HLA system and show evidence of co-evolving together, such as KIR genes56. To fully 
characterise how all these parts work together would require much more research into HLA 
and KIR gene dynamics, along with the many other important members of T-cell and NK cell 
activation, to better characterise the overall triggering of the immune response. 
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An important consideration to the analyses carried out in Chapter III is the determination 
of binding affinities for each HLA-peptide combination. These predictions were done in 
silico via machine learning estimates of binding affinity, and therefore do not fully capture 
the exact binding dynamics that would be obtained from in vitro studies such as Eluted 
Ligand assays57. Neural network predictions depend on many binding factors, including 
antigen processing and stability of the HLA-peptide complex, and the length distribution of 
cleaved antigen peptides. These uncertainties, and lack of being able to model them, 
contributed to an inflated incidence of false positives in past studies58. The incorporation of 
Mass Spectrometry data has addressed this issue and benchmark studies have demonstrated a 
very high specificity for neural network-based predictions, thanks to the wide array of 
binding sets made available through the Immune Epitope Database (IEDB) and development 
of reliable algorithms59,60. Furthermore, in Chapter III, a subset of the binding affinity results 
were validated by comparing to another machine-learning method, ANN, which uses a feed-
forward artificial neural network with a hidden layer61. This method is more accurate but was 
not used for the analyses, as it has a narrower range of HLA allele binding pockets that it can 
model. For the subset of HLA genes that could be modelled, the two methods showed high 
concordance with each other, which adds confidence to the results and interpretations of this 
thesis. 

  
An impressive amount of information has already been collated from across the world and 

informed the population-specific allele frequencies in Chapter III39. However, this is a 
continuous process and HLA frequencies in worldwide populations are still in the course of 
being characterised. Indigenous populations from both South and North America tend to be 
under sampled in terms of HLA allele typing. Given the overall unique diversity and type of 
HLA alleles in Indigenous American populations, it is possible that some alleles important to 
infectious disease adaptation in the Americas may have been missed, calling for studies with 
greater HLA typing and population-based analyses in future. Chapter III is but one of many 
highly informative studies making use of our knowledge of HLA allele distributions, 
highlighting the usefulness and need for continuing population-based HLA allele 
characterisation62. 
 
 
 

Future directions 
 
 
Comparative genetic effects of colonial infectious diseases in other regions 

  
The results of this thesis emphasise the need for more research examining pathogen-

driven immunity adaptation in humans. Evaluating pre- and post-contact immunogenetic 
change has been demonstrated as an insightful approach in characterising immunity 
adaptation and identifying putative genes, pathways, and possible types of pathogens 
imposing selection. In Chapter II, the immunity adaptation signal prior to and after contact 
was only investigated in populations from the Andes. It has been recognised that the spread 
and lethality of various epidemics throughout the Americas were known to exert disparate 
effects for different regions and populations of the Americas63.  Social and environmental 
conditions, the spread and type of infectious disease, and local pathogen strains resulted in 
differing mortalities and birth rate decline localised throughout North and South America64. 
The findings of Chapter II are thus only a piece of a much larger puzzle, with many more 
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regional studies in both North and South America needed to form the larger picture of 
infectious disease-related depopulation. 

  
Studies of immunity adaptation would be very insightful for other world Indigenous 

populations. Indigenous Australians are descended from the East Asian/Oceanian human 
lineage, which diverged from the west Eurasian Upper Paleolithic lineage soon after the out-
of-Africa event65. Comparable to the peopling of the Americas, Indigenous Australians also 
very rapidly peopled the ancient continent of Sahul – comprising Australia, New Guinea, and 
neighbouring islands – between 50-75ka ago, and were isolated from European populations 
until around 400 years ago66,67,68. Compared to Indigenous people of America, these 
populations did not suffer huge loss of diversity early in the peopling of the continent. It 
would thus be very informative to compare immune selection signals in these populations to 
determine any convergent signals, investigating whether the loss in genomic diversity in 
Indigenous people of America had much effect on immunity adaptation. South Pacific 
populations also show the highest levels of combined Neanderthal and Denisovan ancestry 
worldwide69,70. Archaic hominid introgression shows an enrichment in innate immunity 
genes, including HLA, in modern humans, suggesting these populations acquired 
introgressed alleles that are beneficial to immunity adaptation23,71.  

  
 In Australia, post-contact demographic effects were extremely comparable with those of 

America, with a wave of Indigenous population loss beginning with the arrival of the First 
Fleet in 1788, when Australian Aboriginal population size was estimated to have been around 
750,000-1.2 million from archaeological and anthropological sources72,73, with stochastic-
ecological modelling estimating a higher estimate of 3.1 million for the Australian continent 
at saturation68. A By the 1920s, census figures indicate that only about 58,000 unadmixed 
Aboriginal Australian people remained, a depopulation of 90%, a loss comparable to that 
seen in the Americas and similarly attributed to smallpox and other infectious diseases74,75,76. 
Aboriginal Australians also lived predominantly as hunter-gatherers and had no domesticated 
animals other than the dingo, which may have been more of an opportunistic scavenger than 
a true domesticate77. All these striking circumstantial similarities mean that comparing these 
American and Indigenous populations in terms of selection signals could be enlightening in 
the space of human immunity adaptation to pathogens. 
 
 
Using custom time-series methods for detecting immunity adaptation 

  
As seen in Chapter II, potential signals of adaptation from comparison of ancient and 

modern populations suggest that ancient Indigenous people were possibly undergoing 
adaptation to pre-contact pathogens. To further investigate and validate these findings, it 
would be useful to replicate these approaches with higher quality ancient DNA, preferably 
with highly robust population groupings that effectively capture snapshots of time with DNA 
from individuals close to each other in time and geographic region. This could improve 
power to detect selection signals and reduce spurious signals. To counter the effects of 
ascertainment bias of SNP capture sets, as well as data missingness, it would be ideal to 
obtain whole genome assemblies using long-read sequencing to capture private mutations and 
SNP positions specific to Indigenous populations, ideally both past and present. This 
approach may uncover variable sites important to immune function and adaptation and 
quantify their change through time. 
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To further investigate polygenic selection or the role of one or two genes driving selection 
signals in a pathway, it would also be highly beneficial to analyse the results of time-series 
analyses of selection using gene set enrichment methods better designed for time-series data. 
Enrichment methods were originally conceptualised and continue to be developed for gene 
expression data and GWAS78,79. Many enrichment methods thus lack power and nuance when 
used for population genetics studies, which often can exhibit more subtle signals and 
deviations in measurements. In Chapter II, two approaches were used to determine 
enrichment of overall immune gene class signals: one based on taking the SUMSTAT score 
of pathways and searching for enrichment, the other building a null set of genes with similar 
genomic characteristics53,28. Future research in improving gene set enrichment methods may 
reveal more subtle signals of selection for population genetic studies. 

  
There are presently no studies investigating HLA and KIR frequencies in ancient South 

American populations, despite many independent studies observing a marked difference in 
frequency of both alleles in Indigenous American populations, many of which are very rare 
or not present at all in other global populations. This is of course a challenge, due to the 
limitations of ancient DNA and genotype imputation at highly variable gene regions. 
However, SNP-capture assays and ancient DNA sequencing has been steadily improving and 
thus will likely make this data feasible very soon. It would be extremely informative to trace 
HLA frequencies through time in the Americas and determine how much variation and allele 
frequencies existed prior to contact, allowing comparison to current post-contact. It would 
also be informative to investigate HLA binding affinities of alleles at high frequency in 
ancient populations, following the approach taken in Chapter III, and determine whether pre-
contact populations show similar patterns of high frequency strong binders and low 
frequency weak binders. 
 
 
Exploring immunity adaptation interdependency with microbiome, epigenome, and 
regulatory element evolution 

  
Much of phenotypic variation including, if not especially, immunity phenotypes – remain 

unaccounted for when explained by genetic variation alone80. This thesis has focussed upon 
protein-coding regions and does not consider the effects of enhancers and other intergenic 
regions, including 3’ UTR regulatory regions, long non-coding RNA and many other 
regulatory elements, which are all affected by the forces of selection and drift, and have been 
demonstrated to be instrumental in many immune functions81,82,83. Epigenetic regulation is 
also thought to play a crucial role in expression of phenotypes, including many immune 
functions84,85. Caveated by possible methodology-related issues with detection power, the 
lack of selection signal for influenza and smallpox in Chapter II could be partially explained 
by adaptation occurring in regulatory regions for these viruses, rather than adaptation in the 
genic regions that regulatory elements control. 

  
In a similar vein, the immune system is thought to work synergistically with commensal 

microbial communities, particularly the gut microbiota, which both depend and are depended 
on by various parts of the immune system. Antibodies secreted by plasma cells are thought to 
shape gut microbial ecology and dispersal, and even affect expression of microbial genes. In 
turn, microbiota are crucial for maintaining the intestinal epithelial barrier, cultivating 
immune responses to pathogens, and competing with pathogenic microbes for niches, thus 
helping to mitigate their spread and propagation86,87. This careful balance of host-microbial 
symbiosis is difficult to entangle but recognised as very important for immunity adaptation, 
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calling for future analyses. Ancient microbiome analyses also would be very insightful, as 
palaeomicrobiological studies have yet to be thoroughly explored in the Americas and would 
contribute greatly to understanding past pathogens and their relationship with past Indigenous 
immunity adaptation. These could be investigated by examining ancient metagenomic 
sequences derived from bone and teeth material, especially from the blood remains in teeth 
pulp chambers, which can contain traces of pathogens that were circulating in the blood of 
the organism88. This could be extracted from both ancient human and animal remains, 
especially guinea pigs and other species known to have lived in close human proximity in 
ancient Indigenous cultures89. 

The results of Chapter II revealed top candidate genes and pathways that may be 
important to immunity adaptation in the Americas. These candidates could be further 
characterised via experimental studies investigating their response to both pre-and post-
contact pathogens that are suspected to interact with immune genes and pathways. This 
approach would also be useful for further establishing the relationships between binding 
strength of various HLA alleles and pathogen-driven selection pressures. In vitro experiments 
could be performed to test the binding affinities of alleles to various pathogen-derived 
peptides, preferably including pathogens identified from VIP sets under selection in Chapter 
II, as well as the epidemic pathogens such as smallpox, measles, and influenza. This could 
also be investigated together with the immunogenicity and triggered response of each allele-
antigen combination. 
 
 
 

Conclusion 
 
This thesis provides new insights into immunogenetic adaptation in Indigenous peoples of 

America, with a focus on tracing pre- and post-contact immunogenetic changes and 
population-specific differences. A thorough contextualisation from the perspective of 
multiple disciplines, considering many sources of evidence and factors underlining past and 
present immunity adaptation, provides the first holistic examination of our current 
understanding of post-contact infectious disease. Statistical approaches modelling 
immunogenetic differentiation in modern and ancient South American populations spanning 
back to 2850 years ago provide a nuanced investigation of immunity adaptation in Indigenous 
people through time. To complement these approaches, HLA alleles and their binding 
strengths, a critical function for mounting an immune response, are examined in modern 
Indigenous populations, revealing striking patterns which are not observed for any other 
world population. 

  
These findings are the first in taking a systematic, time-series approach in elucidating the 

dynamics of immunity adaptation and effect of pathogens in Indigenous populations of 
America. My research has much implication for better characterising post-contact adaptation 
to pathogens introduced under colonialism, as well as adding to our knowledge of host-
pathogen dynamics and immunity adaptation in humans. 
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Table 1. Sample metadata  
 
 

Sample Sex Population 

Average 
date 
range in 
calBP  

Calibrated 
radiocarbon 
age/date range 

Archaeologi
cal Period 

Cultural 
Affiliation Region Published 

LIB10 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB11 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB12 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB13 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB16 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB17 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB18 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB19 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB2 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB22 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB23 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB3 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB4 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB5 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB6 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 
LIB7 U Aymara NA NA Present day Aymara Highland Bolivia Lindo et al 2018 

I0044 F 
Central 
Coast 802 

1048-1249 calCE 
(866¬±28 BP, 
OxA-31119) LIP Ychsma 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0045 M 
Central 
Coast 1575 100-650 CE EIP Lima 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0964 F 
Central 
Coast 680 

1100-1440 calCE 
(745¬±23 BP, 
OxA-31424) LIP Ychsma 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0965 F 
Central 
Coast 701 

1221-1278 calCE 
(773¬±24 BP, 
OxA-31425) LIP Ychsma 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0966 M 
Central 
Coast 765 900-1470 CE LIP Ychsma 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0967 M 
Central 
Coast 765 900-1470 CE LIP Ychsma 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0968 M 
Central 
Coast 1078 

776-968 calCE 
(1156¬±22 BP, 
OxA-31422) MH Wari 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0969 M 
Central 
Coast 853 

974-1220 calCE 
(955¬±65 BP, 
OxA-31423) LIP Ychsma 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0971 F 
Central 
Coast 1250 500-900 CE MH Wari 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0972 M 
Central 
Coast 765 900-1470 CE LIP Ychsma 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0974 M 
Central 
Coast 1500 200-700 CE EIP Lima 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

I0975 F 
Central 
Coast 1412 

435-642 calCE 
(1493¬±29 BP, 
OxA-31120) EIP Lima 

Huaca Pucllana, 
Lima 

Nakatsuka et al 
2020 

B_Han-
3.DG M Han NA NA  NA China 

1000 genomes 
project 

S_Han-
1.DG F Han NA NA  NA China 

1000 genomes 
project 

S_Han-
2.DG M Han NA NA  NA China 

1000 genomes 
project 
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MP107
B U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP13 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP23 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP27 U Inca 455 1450-1539 CE LH Inca MachuPicch,  
MP31A U Inca 455 1450-1539 CE LH Inca MachuPicchu,  
MP32 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP33 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP3A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP42A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP42B U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP42C U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP45A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP48B U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP4B U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP4D U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP4E U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP4F U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP4i U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP50A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP51 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP53A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP55 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP5A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP61 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP63 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP65B U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP71 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP77A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP78A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP80 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP82 U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP84A U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP84C U Inca 455 1450-1539 CE LH Inca MachuPicchu  
MP9A U Inca 456 1450-1539 CE LH Inca MachuPicchu  
B_Mbut
i-4.DG M Mbuti NA NA NA  Africa  
S_Mbut
i-1.DG M Mbuti NA NA NA  Africa  
S_Mbut
i-2.DG F Mbuti NA NA NA  Africa  
S_Mbut
i-3.DG M Mbuti NA NA NA  Africa  

Aconca
gua.SG M 

North 
Coast  1400-1500 CE   

Cerro 
Aconcagua, 
Mendoza 
Province  

HCV276
_v3 U 

North 
Coast  2550BP-1350BP EIP Moche El Brujo  

HCV277
_v3 U 

North 
Coast  2550BP-1350BP EIP Moche El Brujo  

HCV278
_v3 U 

North 
Coast  2550BP-1350BP EIP Moche El Brujo  

HCV279
_v3 U 

North 
Coast  2550BP-1350BP EIP Moche El Brujo  

HCV280
_v3 U 

North 
Coast  2550BP-1350BP EIP Moche El Brujo  

I0324 M 
North 
Coast 1308 

619-665 calCE 
(1388¬±18 BP, 
MAMS-25006) EIP Moche El Brujo 

Nakatsuka et 
al.2020 
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I2237 F 
North 
Coast 1566 

343-426 calCE 
(1650¬±20 BP, 
PSUAMS-1607) EIP Moche El Brujo 

Nakatsuka et 
al.2020 

I2238 F 
North 
Coast 1550 200-600 CE EIP Moche El Brujo 

Nakatsuka et 
al.2020 

I2241 M 
North 
Coast 925 750-1300 CE MH / LIP 

Lambayequ
e El Brujo 

Nakatsuka et 
al.2020 

I2242 F 
North 
Coast 864 

1020-1153 calCE 
(965¬±20 BP, 
PSUAMS-1606) MH / LIP 

Lambayequ
e El Brujo 

Nakatsuka et 
al.2020 

I2243 F 
North 
Coast 925 750-1300 CE MH / LIP 

Lambayequ
e El Brujo 

Nakatsuka et 
al.2020 

I2244 M 
North 
Coast 925 750-1300 CE MH / LIP 

Lambayequ
e El Brujo 

Nakatsuka et 
al.2020 

I2262 M 
North 
Coast 1550 200-600 CE EIP Moche El Brujo 

Nakatsuka et 
al.2020 

I2263 M 
North 
Coast 1307 

622-665 calCE 
(1390¬±15 BP, 
UCIAMS-186351) EIP Moche El Brujo 

Nakatsuka et 
al.2020 

I1479 F 
South 
Coast 595 

1305-1405 calCE 
(595¬±15 BP, 
PSUAMS-1605) LIP  

Palpa, 
Department Ica, 
Los Molinos 

Nakatsuka et 
al.2020 

I2549 M 
South 
Coast 590 

1309-1412 calCE 
(580¬±20 BP, 
PSUAMS-1616) LIP  

Palpa, 
Department Ica, 
Los Molinos 

Nakatsuka et 
al.2020 

I2550 M 
South 
Coast 990 

901-1020 calCE 
(1065¬±20 BP, 
PSUAMS-1905) MH Wari Monte Grande 

Nakatsuka et 
al.2020 

I2557 F 
South 
Coast 1460 

424-557 calCE 
(1558¬±25 BP, 
OxA-26973) EIP Nasca 

Ullujaya, lower 
Ica Valley 

Nakatsuka et 
al.2020 

I2558 M 
South 
Coast 1348 

555-650 calCE 
(1455¬±32 BP, 
OxA-26974) EIP Nasca 

Ullujaya, lower 
Ica Valley 

Nakatsuka et 
al.2020 

I2560 F 
South 
Coast 994 

894-1019 calCE 
(1088¬±24 BP, 
OxA-26975) MH Wari 

Ullujaya, lower 
Ica Valley 

Nakatsuka et 
al.2020 

CCA-5-1 U 
South 
Highlands 450 1450-1550 CE 

LH - Early 
Colonial Inca 

CasaConcha, 
Cusco  

CCA-7-2 U 
South 
Highlands 450 1450-1550 CE 

LH - Early 
Colonial Inca 

CasaConcha, 
Cusco  

CRAN1 U 
South 
Highlands  950-500BP LIP Chanka Cusco  

CRAN10 U 
South 
Highlands  950-500BP LIP Chanka Cusco  

CRAN12 U 
South 
Highlands  950-500BP LIP Chanka Cusco  

CRAN19 U 
South 
Highlands  950-500BP LIP Chanka Cusco  

CRAN2 U 
South 
Highlands  950-500BP LIP Chanka Cusco  

CRAN26 U 
South 
Highlands  950-500BP LIP Chanka Cusco  

CRAN32 U 
South 
Highlands  950-500BP LIP Chanka Cusco  

CRAN44 U 
South 
Highlands  950-500BP LIP Chanka Cusco  

CUO18 U 
South 
Highlands  950-500BP Early horizon Chavin Cusco  

CUO8 U 
South 
Highlands  2850-2500BP Early horizon Chavin Cusco  
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CVN4 U 
South 
Highlands  2850-2500BP Early horizon Chavin Cusco  

I0042 F 
South 
Highlands 734 

1170-1262 calCE 
(820¬±24 BP, 
MAMS-12301) LIP  

Botigiriayocc, 
Laramate, 
Highlands 

Nakatsuka et al. 
2020 

I0237 M 
South 
Highlands 880 

992-1148 calCE 
(995¬±20 BP, 
PSUAMS-1614) MH Wari 

Botigiriayocc, 
Laramate, 
Highlands Posth et al. 2018 

I1356 F 
South 
Highlands 610 

1287-1393 calCE 
(640¬±20 BP, 
PSUAMS-1613) LIP  

Laramate, 
Highlands 

Nakatsuka et al. 
2020 

I1357 M 
South 
Highlands 925 900-1150 CE MH Wari 

Botigiriayocc, 
Laramate, 
Highlands Posth et al. 2018 

I1358 M 
South 
Highlands 815 

1050-1220 calCE 
(875¬±20 BP, 
PSUAMS-1604) LIP  

Pacapaccari, 
Laramate, 
Highlands 

Nakatsuka et al. 
2020 

I1396 M 
South 
Highlands 608 

1291-1393 calCE 
(629¬±19 BP, 
MAMS-27352) LIP  

Pacapaccari, 
Laramate, 
Highlands 

Nakatsuka et al. 
(submitted) 

I1484 M 
South 
Highlands 850 

1039-1161 calCE 
(920¬±20 BP, 
PSUAMS-1615) MH Wari 

Botigiriayocc, 
Laramate, 
Highlands Posth et al. 2018 

I1485 M 
South 
Highlands 1096 

768-941 calCE 
(1187¬±26 BP, 
MAMS-12302) MH Wari 

Laramate, 
Highlands Posth et al. 2018 

I1742 F 
South 
Highlands 1125 750-900 CE MH Wari 

Laramate, 
Highlands Posth et al. 2018 

I2236 M 
South 
Highlands 1000 800-1100 CE MH Chanka Campanayuq 

Nakatsuka et al 
2020 

I2543 M 
South 
Highlands 996 

895-1014 calCE 
(1085¬±20 BP, 
PSUAMS-1620) MH Chanka Campanayuq 

Nakatsuka et al 
2020 

I2545 M 
South 
Highlands 470 1400-1560 CE LH Inca Mesayocpata 

Nakatsuka et al 
2020 

I2551 F 
South 
Highlands 860 

1025-1155 calCE 
(950¬±20 BP, 
PSUAMS-1603) MH Wari 

Laramate, 
Highlands Posth et al. 2018 

I2563 F 
South 
Highlands 1000 800-1100 CE MH Chanka Campanayuq 

Nakatsuka et al 
2020 

PML2 U 
South 
Highlands 675 1150-1400 CE LIP Colla 

Ayawiri, NW 
Lake Titicaca, 
Puna  

PML3 U 
South 
Highlands 675 1150-1400 CE LIP Colla 

Ayawiri, NW 
Lake Titicaca, 
Puna  

PML4 U 
South 
Highlands 675 1150-1400 CE LIP Colla 

Ayawiri, NW 
Lake Titicaca, 
Puna  

PML5 U 
South 
Highlands 675 1150-1400 CE LIP Colla 

Ayawiri, NW 
Lake Titicaca, 
Puna  
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Correction of FST and SB statistic for SNP density  
 
 
A 

 
 
B 

 
 
Fig S1. Correction for SNP density per gene in the dataset. A. Max and mean FST statistic 
per gene were binned according to SNP density and standardised according to mean and 
standard deviation per bin, using the algorithm from PolySel. The flat line shows no 
correlation (bias) between SNP density and SB statistic value after correction. B. Max SB 
statistic per branch standardised similarly to FST   
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Table S2. FST top 15 scoring genes and their function 
 
GeneID Corr FST Max Function 

REXO1 6.94 nucleic acid phosphodiester bond hydrolysis 

MARCHF10 6.6 metal ion binding, protein ubiquitination 

ZNF358 6.35 metal ion binding, neural tube development 

GGACT 6.2 lyase activity 

MCM2 6.04 nuclear cell cycle DNA replication 

CDC5L 5.9 cellular response to DNA damage stimulus, cell cycle 

LTBP1 5.45 
TGF beta seqeuestering to extracellular matrix, organ tissue 
repair 

RAB38 5.45 platelet dense granule organization, lysosome, phagocytosis 

MAG 5.44 leukocyte migration, neuron differentiation 

ODAD3 5.37 cilium movement 

NECTIN3 5.24 fertilization, retina morphogenesis, synapses 

MUC13 5.12 
maintenance of gastrointestinal epithelium, stimulatory C-type 
lectin receptor signalling pathway 

GINS3 5.09 mitotic DNA replication initiation,DNA replication 

GRM1 5.07 
regulation of postsynaptic cytosolic calcium potential, neuron 
projection 

 
 
Table S3. Total number of genes per VIP set 
 
VIP set VIP name Total 
ADV Adenovirus 59 
CoV Coronaviruses 113 
DENV Dengue virus 117 
EBOV Ebola virus 77 
EBV Epstein-Barr virus 265 
HBV Hepatitis B virus 63 
HCMV Human cytomegalovirus 16 
HCV Hepatitis C virus 205 
HIV Human immunodeficiency virus 291 
HPV Human papillomavirus 327 
HSV Herpes simplex virus 104 
HTLV Human T-lymphotropic virus 32 
IFV Influenza virus 386 
KSHV Kaposi's sarcoma-associated herpesvirus 190 
SV40 Simian virus 40 52 
VACV Vaccinia virus 89 
WNV West Nile virus 72 
ZIKA Zika virus 99 
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Table S4. Numbers of overlapping genes across VIP sets   
 
VIP sets Number of 

overlapping 
genes 

 VIP sets Number of 
overlapping 
genes 

adv and coronaviruses 4 hbv and hpv 19 
adv and denv 11 hbv and hsv 11 
adv and ebov 7 hbv and htlv 1 
adv and ebv 36 hbv and influenza 27 
adv and hbv 4 hbv and kshv 5 
adv and hcmv 1 hbv and sv40 4 
adv and hcv 12 hbv and vacv 7 
adv and hiv 19 hbv and wnv 6 
adv and hpv 36 hbv and zika 2 
adv and hsv 8 hcmv and hcv 2 
adv and htlv 1 hcmv and hiv 3 
adv and influenza 21 hcmv and hpv 4 
adv and kshv 9 hcmv and hsv 4 
adv and sv40 17 hcmv and htlv 1 
adv and vacv 6 hcmv and influenza 8 
adv and wnv 3 hcmv and kshv 2 
adv and zika 2 hcmv and sv40 2 
coronaviruses and denv 12 hcmv and vacv 4 
coronaviruses and ebov 6 hcmv and wnv 2 
coronaviruses and ebv 21 hcmv and zika 1 
coronaviruses and hbv 3 hcv and hiv 66 
coronaviruses and hcmv 4 hcv and hpv 60 
coronaviruses and hcv 21 hcv and hsv 36 
coronaviruses and hiv 25 hcv and htlv 4 
coronaviruses and hpv 24 hcv and influenza 113 
coronaviruses and hsv 8 hcv and kshv 16 
coronaviruses and htlv 2 hcv and sv40 15 
coronaviruses and 
influenza 

26 hcv and vacv 10 

coronaviruses and kshv 11 hcv and wnv 12 
coronaviruses and sv40 4 hcv and zika 16 
coronaviruses and vacv 6 hiv and hpv 71 
coronaviruses and wnv 7 hiv and hsv 34 
coronaviruses and zika 7 hiv and htlv 4 
denv and ebov 13 hiv and influenza 116 
denv and ebv 32 hiv and kshv 49 
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denv and hbv 9 hiv and sv40 10 
denv and hcmv 3 hiv and vacv 18 
denv and hcv 27 hiv and wnv 20 
denv and hiv 33 hiv and zika 15 
denv and hpv 45 hpv and hsv 26 
denv and hsv 12 hpv and htlv 4 
denv and htlv 1 hpv and influenza 102 
denv and influenza 50 hpv and kshv 34 
denv and kshv 25 hpv and sv40 30 
denv and sv40 8 hpv and vacv 14 
denv and vacv 8 hpv and wnv 31 
denv and wnv 12 hpv and zika 16 
denv and zika 11 hsv and htlv 3 
ebov and ebv 21 hsv and influenza 55 
ebov and hbv 8 hsv and kshv 13 
ebov and hcmv 3 hsv and sv40 9 
ebov and hcv 22 hsv and vacv 14 
ebov and hiv 38 hsv and wnv 12 
ebov and hpv 29 hsv and zika 2 
ebov and hsv 19 htlv and influenza 5 
ebov and htlv 1 htlv and kshv 4 
ebov and influenza 50 htlv and sv40 2 
ebov and kshv 10 htlv and vacv 3 
ebov and sv40 7 htlv and wnv 1 
ebov and vacv 11 htlv and zika 1 
ebov and wnv 7 influenza and kshv 47 
ebov and zika 2 influenza and sv40 20 
ebv and hbv 16 influenza and vacv 25 
ebv and hcmv 6 influenza and wnv 33 
ebv and hcv 58 influenza and zika 22 
ebv and hiv 55 kshv and sv40 7 
ebv and hpv 117 kshv and vacv 6 
ebv and hsv 35 kshv and wnv 12 
ebv and htlv 1 kshv and zika 14 
ebv and influenza 98 sv40 and vacv 8 
ebv and kshv 27 sv40 and wnv 5 
ebv and sv40 32 sv40 and zika 3 
ebv and vacv 16 vacv and wnv 3 
ebv and wnv 18 vacv and zika 2 
ebv and zika 13 wnv and zika 9 
hbv and hcmv 2   
hbv and hcv 20   
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hbv and hiv 18   
 
 
 
 
 
Tolerance intervals used for matching VIPs 
 
 
CDS              0.76   100000 
DNASEI 1 1.8 
FUNSEQ 0.2 0.3 
GC  0.13 0.75 
recomb  0.32 0.43 
TajimasD 0.21 0.26 
Phastcons 0.75 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comparisons of population-specific signals  
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Fig S3. Raw SB statistic distribution for each branch before and after standardising. Han population shows 
skewing for raw SB statistics, likely due to long divergence compared to other Andean populations. 
 
 

 
Fig 3A Manhattan plots for SB statistic prior to correction for the Central Coast population. Both genic and 
intergenic SNPs are shown, with SNP ID given on the x-axis in order of chromosome and region, and top 0.001 
maximum SB statistic per gene is annotated.  
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Fig 3B Manhattan plots for SB statistic prior to correction for the South Highlands population. Both genic and 
intergenic SNPs are shown, with SNP ID given on the x-axis in order of chromosome and region, and top 0.001 
maximum SB statistic per gene is annotated.  
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Fig 3C Manhattan plots for SB statistic prior to correction for the South Coast population. Both genic and 
intergenic SNPs are shown, with SNP ID given on the x-axis in order of chromosome and region, and top 0.001 
maximum SB statistic per gene is annotated.  
 
 
 
 
 

 
Fig 3D Manhattan plots for SB statistic prior to correction for the North Coast  population. Both genic and 
intergenic SNPs are shown, with SNP ID given on the x-axis in order of chromosome and region, and top 0.001 
maximum SB statistic per gene is annotated.  
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Fig 3E Manhattan plots for SB statistic prior to correction for the Inca population. Both genic and intergenic 
SNPs are shown, with SNP ID given on the x-axis in order of chromosome and region, and top 0.001 maximum SB 

statistic per gene is annotated.  
 
 
 
 
Table S5. Complete descriptions of functions for the top-scoring 15 genes per terminal 
branch based on SB statistic from GRoSS 
 

Branch Gene SB statistic 
(corrected) 

Main function(s) 

Central 
Coast 
 

SPINK9 6.55 negative regulation of endopeptidase activity 
ZNF783 6.25 regulation of transcription by RNA polymerase II 
TECRL 5.73 lipid metabolic process 
BDNF 5.56 transmembrane receptor tyrosine kinase signaling 

pathway, neural pathways 
PGAP3 5.48 GPI anchor biosynthetic process 
ZNF627 5.32 regulation of transcription by RNA polymerase II 
ELF5 5.04 regulation of transcription by RNA polymerase II 
SEC11A 4.97 signal peptide processing, proteolysis 
SERPINB5 4.96 negative regulation of endopeptidase activity, 

regulation of epithelial cell proliferation 
COPRS 4.96 chromatin organization, histone methylation 
FUT9 4.93 carbohydrate metabolic process, fukolysation, 

regulation of leukocyte cell-cell adhesion 
TMCO3 4.74 cation transport 
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DYNC1I2 4.65 mitotic spindle organization and cell cycle, viral 
process and life cycle, antigen processing and 
presentation of exogenous peptide antigen via MHC 
class II 

RSPRY1 4.60 protein ubiquitination, proteolysis 
Inca  
  

FAM20A 12.64 protein phosphorylation, calcium ion homeostasis, 
response to bacterium 

KLHDC10 12.27 cell death, ubiquitination 
CCDC167 11.66 cell cycle 
GRB14 10.64 insulin receptor signaling pathway, leukocyte 

migration 
OR5H14 8.91 response to stimulus 
PDCL2 8.86 modulator of heterotrimeric G proteins 
EDEM1 8.53 metabolic process, protein transport 
SLC28A3 8.44 nucleoside transmembrane transport 
LVRN 8.02 proteolysis 
IRS1 7.94 MAPK cascade, insulin receptor signaling pathway, 

interleukin-7-mediated signaling pathway 
USPL1 7.86 proteolysis, Cajal body organization, cell population 

proliferation 
IMPACT 7.48 negative regulation of cell death, neuron projection 

extension, cellular response to UV-C 
PRKCH 7.44 protein phosphorylation, platelet activation  
LYRM1 7.39 apoptosis 
RANBP3L 7.34 mesenchymal cell differentiation involved in bone 

development 
Modern  
  

PREPL 12.16 proteolysis, Golgi to plasma membrane protein 
transport, regulation of synaptic vesicle exocytosis 

LSM3 8.55 nuclear-transcribed mRNA catabolic process, P-
body assembly 

FOCAD 8.19 enables protein binding 
PPIA 8.12 protein peptidyl-prolyl isomerization, response to 

viral processes, leukocyte migration, negative 
regulation of viral life cycle, establishment of 
integrated proviral latency, entry into host, neuron 
differentiation 

TRPC3 8.02 single fertilization, phototransduction, regulation of 
cytosolic calcium ion concentration, transmembrane 
transport 

THOC1 7.58 regulation of DNA recombination, RNA processing, 
cell cycle  

KRT32 7.56 epidermis development 
ZNF677 7.43 regulation of transcription by RNA polymerase II 
LCTL 7.43 carbohydrate metabolic process,response to stimulus 
APIP 7.41 apoptotic process, protein homotetramerization 
ASTN1 7.25 cell adhesion,locomotory behavior 
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CAMSAP2 7.03 microtubule cytoskeleton organization, regulation of 
Golgi organization, dendrite development 

GRB10 6.49 positive regulation of vascular endothelial growth 
factor receptor signaling pathway, ERK1 and ERK2 
cascade, negative regulation of glycogen 
biosynthetic process, insulin-like growth factor 
receptor signaling pathway 

FMO2 6.40 toxin metabolic process 
ARHGAP2
9 

6.37 
intracellular signal transduction 

North Coast 
 

TNFRSF13
B 

9.22 adaptive immune response, negative regulation of B 
cell proliferation, cell surface receptor signaling 
pathway 

C1orf167 9.07 not well characterised 
HOOK3 9.07 endosome/lysosome organization and transport 
AP2B1 8.93 vesicle-mediated transport, regulation of defense 

response to virus by virus, membrane organization, 
neuron death, neurotransmitter receptor 

USP12 8.60 proteolysis, protein deubiquitination, T-cell receptor 
stabilisation 

ABHD17B 8.06 MAPK cascade 
ZXDC 7.39 regulation of transcription by RNA polymerase II 
MNS1 7.31 cilium organization, meiotic cell cycle 
TBC1D13 7.22 regulation of catalytic activity 
ENC1 6.97 nervous system development 
PAFAH1B
1 

6.94 positive regulation of cytokine-mediated signaling 
pathway, cell cycle, regulation of GTPase activity, 
platelet activating factor metabolic process 

ADAR 6.90 immune system process,hematopoietic progenitor 
cell differentiation, osteoblast differentiation 

BST1 6.84 regulation of cell-matrix adhesion, NAD metabolic 
process, regulation of superoxide metabolic process, 
regulation of integrin-mediated signaling pathway 

TULP3 6.79 limb development 
CHGB 6.78 post-translational protein modification 

South Coast 
 

OAS3 7.06 immune system process, negative regulation of 
chemokine production, type I interferon signaling 
pathway, suppresses viral genome replication 

ARSI 7.03 hydrolase activity  
GPNMB 6.75 cell adhesion, bone mineralization, cell migration, 

cell cycle, regulator of proinflammatory responses 
ZBTB14 6.36 regulation of transcription by RNA polymerase II 
SLC6A9 6.07 neurotransmitter transport,sodium ion 

transmembrane transport,positive regulation of heme 
biosynthetic process 

TMPRSS11
A 

6.06 proteolysis,cell cycle, cleavage of virus protein 
allowing host entry 
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FAM104A 6.00 enables protein binding 
PTGDR 5.93 GPCR signaling pathway, cytosolic calcium ion 

concentration 
SH3GLB1 5.84 autophagy,cellular response to glucose starvation 
SGTB 5.75 positive regulation of chaperone-mediated protein 

folding, cell wall formation 
USP18 5.73 proteolysis, negative regulation of type I interferon-

mediated signaling pathway 
FAM76B 5.49 protease activity 
STEAP2 5.43 ion import, regulated exocytosis 
KIAA0319
L 

5.38 
viral process 

SMC6 5.38 DNA recombination,DNA duplex unwinding, 
chromosome segregation 

South 
Highlands 
 

ZFP64 10.56 mesenchymal cell differentiation, regulates 
transcription 

SH2D4B 9.69 possible involvement as a T-cell adapter, not well 
characterised 

TNKS2 8.32 protein processing, Wnt signaling pathway 
EPHA5 8.00 protein phosphorylation, nervous system 

development 
UGT3A1 7.83 transferase activity 
NAMPT 7.77 microglial cell activation, cell-cell signaling, cellular 

response to stress, cell proliferation 
AKAP11 7.43 renal water homeostasis, protein localization 
MIER1 7.03 histone deacetylation, chromatin remodelling 
AHR 7.03 regulation of adaptive immune response, cell cycle 
E2F7 6.96 regulation of transcription by RNA polymerase II, 

cell cycle, DNA damage response, hepatocyte 
differentiation 

ARHGAP2
6 

6.86 
actin cytoskeleton organization 

RNF34 6.76 ubiquitin-dependent protein catabolic 
process,regulation of oxygen metabolic process 

CELA3A 6.65 proteolysis 
KIFBP 6.44 mitochondrial transport, nervous system 

development 
TMEM64 6.33 osteoblast and adipocyte differentiation 
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Table S6. Genes overlapping for the top 1% of branches  
 
Gene Population Function 

CALCA 
South Highlands, 
Inca 

inflammatory response to antigens, leukocyte cell-cell 
adhesion, interleukin production 

CCAR2 North Coast, Inca Wnt signaling pathway, cell cycle 
CCDC167 Inca, Aymara integral component of membrane 

CDCA7L 
South Coast, 
Aymara cell division 

CFAP300 
Central Coast, 
Aymara motile cilium 

CRHBP 
Central Coast, 
Aymara 

inflammatory response, synaptic transmission,  behavioral 
response to ethanol 

HTR5A 
South Highlands, 
Central Coast brain development, neurotransmitter receptor activity 

LCTL 
South Highlands, 
Aymara carbohydrate metabolic process, visual perception 

MAK 
South Coast, 
Central Coast cilium assembly, metal ion binding 

PLCH1 North Coast, Inca lipid catabolic process 

SLC6A9 South Coast, Inca 
integral component of postsynaptic membrane, 
postsynaptic density 

TCF24 
North Coast, 
Central Coast developmental process 

ZFP64 
South Highlands, 
Inca metal ion binding, regulation of gene expression 
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Parameters used to run Qpgraph  
 
 
Graph: 
 
root R 
label Mbuti.DG Mbuti 
label Han.DG Han 
label SCH_SouthCentralHighlands SCH_SouthCentralHighlands 
label SCC_SouthCentralCoast SCC_SouthCentralCoast 
label NC_NorthCoast NC_NorthCoast 
label MP_Inca MP_Inca 
label CC_CentralCoast CC_CentralCoast 
label MOD MOD 
edge c R Mbuti 
edge b R OoA 
edge d OoA E_OoA 
edge a OoA W_OoA 
edge e5 E_OoA Han 
edge x Amer f7f0 
edge x6a f7f0 ANCA2 
edge x7 ANCA2 f7f1 
edge a7a0 ANCA2 b7b0 
edge a7a6 b7b4 SCH_SouthCentralHighlands 
edge c7c2 f7f0 d7d0 
edge c7c7 d7d0 d7d2 
edge c7c3 d7d1 b7b3 
edge c7c4 f7f1 d7d1 
edge c7c5 d7d1 d7d3 
edge c7c6 d7d4 SCC_SouthCentralCoast 
edge g8g9 h7h0 NC_NorthCoast 
edge g9g1 f7f4 h7h0 
edge    g7g1    f7f4    h7h1 
edge i7i3 h7h0 CC_CentralCoast 
admix   pre_Inc2 d7d2   h7h1 
admix   pre_Inc3 pre_Inc2  b7b4 
edge    i7inew2   pre_Inc3  MP_Inca   
edge    i7inew3  pre_Inc3   MOD     
admix f7f4 d7d0 f7f1 
admix d7d4 d7d2 d7d3 
admix b7b4 b7b0 b7b3 
admix Amer E_OoA W_OoA 
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Qpgraph parfile:  
 
DIR: /localscratch/ecollen/qpgraph_things 
genotypename: ./Data_used_for_qpgraph/All1240k_removedSNPs.geno 
snpname: ./Data_used_for_qpgraph/All1240k_removedSNPs.snp 
indivname: ./Data_used_for_qpgraph/All1240k_removedSNPscomplicatedgraph.ind 
outpop:  Mbuti.DG 
useallsnps: YES 
blgsize: 0.05 
forcezmode: YES 
lsqmode: YES 
diag:  .0001 
bigiter: 6 
hires: YES 
lambdascale: 1 
 
 
 
 
 

 
 
 
 
Fig S4. Best-fitting admixture graph from Qpgraph run; branch lengths (in units of drift) and 
admixture proportions are shown.  
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      Table S7. Worst (>3) Z-score outliers from Qpgraph 
 
 
      Mbu     Han        SCH        MOD       0.000000    -0.005828    -0.005828     0.001079    -5.402  
      Mbu        Han        NC_        MOD       0.000000    -0.004536    -0.004536     0.001439    -3.152  
      Mbu        Han        MP_        MOD       0.000000    -0.004837    -0.004837     0.001202    -4.026  
      Mbu        SCC        SCH        MP_      -0.012182    -0.008267     0.003914     0.001126     3.475  
      Mbu        SCC        NC_        MP_      -0.006107    -0.000322     0.005785     0.001500     3.856  
      Mbu        SCC        MP_        MOD       0.000000    -0.007888    -0.007888     0.001584    -4.978  
      Mbu        NC_        SCH        MOD      -0.008425    -0.012000    -0.003574     0.001175    -3.042  
      Mbu        NC_        NC_        MOD      -0.163922    -0.169639    -0.005718     0.001825    -3.133  
      Mbu        NC_        MP_        MOD       0.000000    -0.006210    -0.006210     0.001406    -4.416  
      Mbu        MP_        SCH        CC_      -0.007235    -0.002158     0.005077     0.001631     3.114  
      Mbu        MP_        CC_        MOD      -0.003638    -0.009694    -0.006055     0.001837    -3.296  
      Mbu        CC_        SCH        MP_      -0.008425    -0.004541     0.003885     0.001246     3.118  
      Mbu        CC_        NC_        MP_      -0.008513    -0.002297     0.006216     0.001637     3.798  
      Mbu        CC_        MP_        MOD       0.000000    -0.006800    -0.006800     0.001505    -4.519  
      Mbu        MOD        SCH        NC_      -0.007235    -0.012005    -0.004770     0.001241    -3.843  
      Mbu        MOD        NC_        MP_      -0.003638     0.001930     0.005568     0.001428     3.900  
      Mbu        MOD        NC_        MOD       0.039504     0.045171     0.005667     0.001330     4.260  
      Han        SCH        SCH        MOD      -0.057336    -0.052401     0.004936     0.001030     4.791  
      Han        SCH        NC_        MOD      -0.001190     0.004541     0.005731     0.001395     4.109  
      Han        SCC        SCH        MP_      -0.012182    -0.007277     0.004905     0.001189     4.126  
      Han        SCC        NC_        MP_      -0.006107    -0.000624     0.005483     0.001528     3.588  
      Han        NC_        SCH        MP_      -0.008425    -0.004800     0.003626     0.001053     3.444  
      Han        MP_        SCH        CC_      -0.007235    -0.001333     0.005902     0.001578     3.740  
      Han        MP_        SCH        MOD      -0.010873    -0.006024     0.004850     0.000974     4.979  
      Han        CC_        SCH        MP_      -0.008425    -0.003550     0.004875     0.001219     4.000  
      Han        CC_        NC_        MP_      -0.008513    -0.002599     0.005914     0.001645     3.594  
      Han        MOD        SCH        MOD       0.032268     0.038993     0.006725     0.001053     6.388  
      Han        MOD        SCC        MOD       0.036444     0.045646     0.009203     0.001759     5.233  
      Han        MOD        NC_        MP_      -0.003638     0.001628     0.005266     0.001364     3.861  
      Han        MOD        NC_        MOD       0.039504     0.049706     0.010202     0.001548     6.591  
      Han        MOD        MP_        MOD       0.043142     0.048078     0.004936     0.001220     4.045  
      Han        MOD        CC_        MOD       0.039504     0.045350     0.005846     0.001869     3.128  
      SCH        SCC        SCH        MOD       0.045155     0.042073    -0.003081     0.001001    -3.079  
      SCH        SCC        MP_        MOD       0.000000    -0.006112    -0.006112     0.001132    -5.400  
      SCH        NC_        SCH        MOD       0.048911     0.046228    -0.002683     0.000844    -3.177  
      SCH        NC_        NC_        MOD      -0.162732    -0.169645    -0.006913     0.001557    -4.441  
      SCH        NC_        MP_        MOD       0.000000    -0.004434    -0.004434     0.000820    -5.408  
      SCH        MP_        SCC        MP_       0.133959     0.129206    -0.004753     0.001488    -3.194  
      SCH        CC_        MP_        MOD       0.000000    -0.005023    -0.005023     0.001178    -4.264  
      SCH        MOD        SCC        MP_       0.001308     0.004304     0.002995     0.000908     3.300  
      SCH        MOD        SCC        MOD       0.044450     0.049321     0.004871     0.001233     3.949  
      SCH        MOD        NC_        MP_      -0.002448     0.000148     0.002597     0.000732     3.547  
      SCH        MOD        NC_        MOD       0.040694     0.045166     0.004472     0.000980     4.563  
      SCH        MOD        CC_        MOD       0.040694     0.044506     0.003812     0.001123     3.394  
      SCC        NC_        NC_        MP_      -0.157815    -0.163107    -0.005292     0.001758    -3.010  
      SCC        MP_        NC_        MP_       0.135120     0.128833    -0.006287     0.001659    -3.791  
      SCC        MP_        MP_        CC_      -0.135120    -0.127367     0.007752     0.001947     3.981  
      SCC        MP_        MP_        MOD      -0.132651    -0.124903     0.007748     0.001613     4.802  
      SCC        MOD        NC_        MOD       0.045610     0.053381     0.007770     0.001556     4.994  
      SCC        MOD        MP_        MOD       0.043142     0.051129     0.007987     0.001462     5.463  
      SCC        MOD        CC_        MOD       0.045610     0.052505     0.006895     0.001764     3.908  
      NC_        MP_        NC_        CC_       0.155408     0.161132     0.005724     0.001783     3.211  
      NC_        MP_        NC_        MOD       0.160284     0.165360     0.005076     0.001538     3.301  
      NC_        MP_        MP_        CC_      -0.137526    -0.130808     0.006718     0.001761     3.816  
      NC_        MP_        MP_        MOD      -0.132651    -0.126581     0.006070     0.001588     3.823  
      NC_        MOD        NC_        MOD       0.203425     0.214810     0.011385     0.001915     5.946  
      NC_        MOD        MP_        MOD       0.043142     0.049451     0.006309     0.001132     5.571  
      NC_        MOD        CC_        MOD       0.048017     0.054268     0.006251     0.001548     4.039  
      MP_        CC_        MP_        CC_       0.513674     0.501953    -0.011722     0.003621    -3.237  
      MP_        CC_        MP_        MOD       0.132651     0.125991    -0.006660     0.001675    -3.976  
      MP_        MOD        CC_        MOD       0.043142     0.050040     0.006899     0.001378     5.006 
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Parameters used to run Polysel  
 
minsetsize<-10 
obj.in.set=F 
merge.similar.sets=T 
obj.info<-AssignBins(obj.info,fld="SNPcount”) 
approx.null <- FALSE 
use.bins <- FALSE 
seq.rnd.sampling <- TRUE 
 
nrand <- 100000 
 
test <- "highertail" 
qvalue.method <- “smoother" 
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Extended results for binding predictions of each of the seven viruses, as 
well as supporting tables, can be found in the following files available in 
Supplementary Material online, doi: 10.1111/tan.13956 
 
 
 
Data S1: Extended results for the binding predictions for SARS-CoV-2 
 

TAN-9999-na-s001.pdf 
 
 
 
Data S2: Extended results for the binding predictions for SARS-CoV-1 
 

TAN-9999-na-s004.pdf 
 
 
 
Data S3: Extended results for the binding predictions for MERS-CoV 
 

TAN-9999-na-s005.pdf 
 
 
 
Data S4: Extended results for the binding predictions for A/H1N1 
 

TAN-9999-na-s006.pdf 
 
 
 
Data S5: Extended results for the binding predictions for A/H3N2 
 

TAN-9999-na-s007.pdf 
 
 
 
Data S6: Extended results for the binding predictions for A/H7N9 
 

TAN-9999-na-s008.pdf 
 
 
 
Data S7: Extended results for the binding predictions for HIV 
 
  

TAN-9999-na-s009.pdf 
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Table S1: Number of population samples tested for HLA per locus and geographic region 
 

TAN-9999-na-s010.pdf 
 
 
 
Table S2: Detailed list of population samples used in this study 
 
  
 TAN-9999-na-s011.pdf 
 
 
 
Table S3: List of alleles used in this study 
 
 

TAN-9999-na-s002.pdf 
 
 
 
Table S4: List of strongest (>1% bound peptides at IC50 ≤ 50 nM) and weakest (>99% bound 
peptides at IC ≥500 nM for Class I and IC50 ≥ 1000 nM for Class II) HLA binders for all 
viruses. 
 
 

TAN-9999-na-s003.pdf 
 




