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Abstract

Adam Leinweber

Novel Data Analysis Techniques for BSM Physics
Applications

Since the discovery of the Higgs boson in 2012, the exact nature of new physics beyond
the Standard Model (BSM) remains unknown. Modern experiments work to optimise
analyses on specific regions of the parameter space where new physics is considered likely
to exist. This thesis aims to identify issues with modern experimental techniques, and
proposes solutions using a variety of novel data analysis techniques. Throughout this
thesis, a particular emphasis is placed on the BSM theory known as supersymmetry
which introduces superpartners for every particle in the standard model.

This thesis is broadly split into four parts. The first part is an overview of modern
particle physics, including the standard model, supersymmetry, and high energy collider
experiments. Additionally, an in depth introduction to machine learning is presented.

The following part concerns unsupervised anomaly detection in the context of high
energy collider experiments. In a typical supervised experiment, one must specify a num-
ber of assumptions about the nature of the BSM signal being searched for. I show that
by using unsupervised machine learning techniques, one is able to construct a quantity
that is able to improve the performance of a typical analysis in a signal agnostic fash-
ion. These techniques are tested on a wide array of BSM signals from various theories
including supersymmetry.

The next part explores dimensional reduction of a supersymmetric theory. Typically
supervised analyses are done on a small subset of the original parameter space, fixing
the other parameters at arbitrary values. This shields the rich phenomenology of the
BSM theory from the analysis, allowing many spectra to go undetected. By performing a
dimensional reduction using machine learning, I am able to construct a 2-D space which
captures the full phenomenology of the original high dimensional parameter space. Using
this dimensionally reduced representation, I identify interesting regions of the parameter
space, and exclude a number of previously unexcluded models.

The final part examines a optimisation algorithms in high dimensional spaces. Once
a particular BSM model has been chosen, it is important to consider which parameter
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values yield the closest match with current experimental data. This can be considered
as an optimisation problem in a high dimensional space. By comparing the performance
of a number of optimisation algorithms on analytic test functions, as well as a likelihood
function based on a global fit of a supersymmetric theory performed by the GAMBIT
collaboration, the strengths and weaknesses of each algorithm are identified. Ultimately I
am able to draw conclusions on which algorithms are suitable for high dimensional particle
astrophysics problems in general.
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1 Introduction

Searches for new physics beyond the Standard Model of particle physics have so far
been unsuccessful. After the discovery of the Higgs boson in 2012, physicists are in
the interesting position of attempting to discover new physics from a theory of which
the details are not known. While many Standard Model extensions exist, there is no
unambiguous indication as to what phenomenology one can expect to observe. Modern
collider experiments attempt to probe the limits of the Standard Model by optimising
searches on specific regions of the parameter space where new physics is considered to be
likely to exist. While these analyses have been very successful in excluding select regions
of the parameter space, no strong evidence for beyond the Standard Model physics has
been found. One of the major disadvantages of this technique is that the particular
region of the parameter space must be precisely specified, excluding other regions where
new physics may still exist.

An incredibly popular theory in modern particle physics is supersymmetry (SUSY),
which introduces supersymmetric partners for every particle in the Standard Model. This
theory quite naturally solves many of the problems that exist in the current Standard
Model. As with any beyond the Standard Model theory, SUSY introduces a set of free
parameters which govern the behaviour of the new particles it introduces. In order to
make predictions using a SUSY model, one must specify the values of a number of these
parameters. By comparing predicted results to experimental observations, one can con-
strain these parameters to identify which set of parameters best matches current or future
observations.

Modern analyses are typically optimised on a small number of fundamental parameters
of a particular BSM theory. This raises multiple problems which I will address throughout
this thesis. The first of which is that optimising an analysis requires a number of presup-
positions about the signal being searched for. These presuppositions include which BSM
theory one is drawing from, and the values of the parameters which govern said theory.
In Chapters 5 and 6 I explore using unsupervised anomaly detection in order to perform
analyses in a signal agnostic fashion. This technique allows one to construct a quantity
which is able to separate anomalous signals from the Standard Model background with
minimal signal assumptions. The second issue is that even after a BSM theory is chosen,
supervised analyses are not usually done using the entire parameter space. Typically a
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simplified model featuring 2-3 parameters is chosen, fixing the remaining values arbitrar-
ily. This obscures the rich phenomenology possible with some of these BSM theories,
and allows many spectra to remain undetected. In Chapter 7 I explore using dimensional
reduction in order to compress the high dimensional parameter space of a BSM physics
model into 2-D where the full phenomenology of the theory is captured. This allows one
to easily identify interesting regions on which to optimise analyses.

Once one has chosen a BSM theory to explore, a natural question to ask is what set of
parameters best match with current experimental results? This problem can be thought
of as an optimisation problem in a high dimensional parameter space. In Chapter 8 I
explore a number of high dimensional optimisation algorithms and test them on analytic
test functions, as well as on a likelihood function based on a global fit of a SUSY the-
ory performed by the GAMBIT collaboration. Using this information I determine the
strengths and weaknesses of each optimisation algorithm, and draw conclusions on which
are suitable for high dimensional particle astrophysics problems.

Throughout this thesis I will be employing state of the art machine learning, anomaly
detection, optimisation, and dimensional reduction techniques designed to aid in the dis-
covery of new physics beyond the Standard Model. Chapter 2 covers the Standard Model
of particle physics, its flaws, and how supersymmetry can address them. Chapter 3 dis-
cusses high energy collider experiments and their uses in modern particle physics analyses.
Chapter 4 covers the basics of machine learning, and then explains the workings and ap-
plications of neural networks, including an architecture for dimensional reduction and
unsupervised anomaly detection. In Chapter 5, a sophisticated technique for unsuper-
vised anomaly detection in a particle physics context is presented. Using this method I
am able to reject a number of novel physics signals with very minimal signal assumptions.
Chapter 6 expands on the previous chapter, refining the algorithm, and testing on many
more signals covering a wide range of supersymmetric and non-supersymmetric theories.
Chapter 7 explores compressing the 4-dimensional minimally supersymmetric Standard
Model into 2 dimensions and optimising analyses within this 2-D plane. This allows one
to take all parameters into account when optimising analyses. In Chapter 8 I explore
a number of optimisation algorithms for identifying supersymmetric model parameters
that are most consistent with current experimental results. Finally, Chapter 9 provides a
summary of the main results and concludes the thesis.
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2 The Standard Model and
Supersymmetric Extensions

2.1 The Standard Model

The Standard Model (SM) [1, 2, 3], first named in the 1970’s, is the currently accepted
model of particle physics, describing three of the four fundamental forces of nature (the
electromagnetic, weak, and strong forces). The Standard Model is a gauge field theory,
which means that the Lagrangian density describing the theory is invariant under certain
local transformations. Particles in the Standard Model are treated as point-like funda-
mental objects which can be grouped into two classes using a quantum number known
as “spin”: fermions with half integer spin, and bosons with integer spin. Fermions obey
Fermi-Dirac statistics, while bosons obey Bose-Einstein statistics. Figure 2.1 displays a
table of the fundamental SM particles.

2.1.1 The Particles of the Standard Model

The spin-1 bosons are known as gauge bosons and are responsible for the fundamental
forces. The photon (γ) is the mediator of the electromagnetic force, the W± and Z

bosons are the mediators of the weak force, and gluons (g) mediate the strong force. The
Higgs boson, instead of having spin-1 like all the other bosons, has spin-0. This makes
it what is known as a “scalar” particle. The Higgs boson is responsible for giving mass
to the massive gauge bosons, and contributes to the masses of all other known massive
elementary particles.

The spin-1
2 fermions are the building blocks of matter, and are split into two main

groups: leptons and quarks. Leptons with electric charge do not interact through the
strong force, but rather via the electromagnetic and weak forces. Neutral leptons, known
as “neutrinos”, interact only via the weak force. Quarks, also known as partons, interact
through the strong, weak, and electromagnetic forces. Each of these particles has a
corresponding anti-matter particle with opposite quantum numbers and the same mass.
For example, an electron’s anti-particle is known as the positron, and while they both
have the same mass and spin, the electron has electric charge −1e, and the positron has
electric charge +1e.
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Figure 2.1: The particle content of the SM.

Quarks are never observed on their own due to the colour confinement hypothesis [4],
instead combining to form composite particles known as hadrons, which consist of two or
more quarks held together by the strong force. Note that the top quark decays before it
can form bound states and so it does not form hadrons. The quarks in the SM are split
into two types. “Up”-type quarks, referred to as up, charm, and top quarks (denoted
u, c and t), and “down”-type quarks, referred to as down, strange and bottom quarks
(dentoed d, s, and b). Up-type quarks have electric charge +2

3 , while down-type quarks
have electric charge −1

3 .
Quarks and gluons carry what is known as “colour charge”. Colour charge can take

the form of red, green, and blue, as well as their “anti”-colours. Colour charge works
analogously to the primary colours where red green and blue can sum to form white.
Additionally a colour and it’s anti-colour can sum to form white. All observable particles
are “colourless” or white. It is this fact that means quarks are never observed on their
own. “Baryons” are composite particles formed from three quarks, with each individual
quark having red, green, or blue colour charge. “Mesons” are composite particles formed
from a quark and an anti-quark, having colour and anti-colour charge.

2.1.2 Symmetries of the Standard Model

Symmetries play an important role in our fundamental understanding of nature. We
understand that the total energy in an isolated system must remain constant under a
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translation, or rotation of the coordinates. In the microscopic world of quantum mechanics
the way we describe physical phenomena is through a mathematical framework known
as Quantum Field Theory (QFT), where point-like particles are generalised to quantised
fields.

The internal symmetry of the SM is represented by the gauge group SU(3)c⊗SU(2)L⊗
U(1)Y . These gauge groups are the origin of the gauge bosons. SU(3)c is the symmetry
group responsible for colour charge, and SU(2)L ⊗ U(1)Y is the gauge symmetry group
corresponding to electroweak interactions. The way in which particles transform under
this gauge group specifies the charges that they have in the SM, and dictates the way in
which particles interact with one another.

This gauge group is not preserved at the electroweak symmetry breaking scale. At
these low energies the gauge group is broken via the Higgs mechanism. Hence our gauge
group goes from SU(3)c⊗SU(2)L⊗U(1)Y to SU(3)c⊗U(1)Q. In the unbroken symmetry
SU(2)L ⊗ U(1)Y , we have 3 W bosons of weak isospin, denoted W 1,W 2,W 3, and one B
boson of weak hypercharge. After the symmetry has been broken to U(1)Q the weak
bosons form “mixings”, generating the massive weak gauge bosons we have already met,
while SU(3) symmetry is not broken.

2.1.3 Quantum Electrodynamics

Quantum Electrodynamics (QED) is a theory that attempts to combine Maxwell’s the-
ory of electromagnetism [5] with quantum mechanics. It describes phenomena involving
electrically charged particles and photons, and is invariant under complex phase rotations
applied to particle fields. It is based on the Abelian U(1)Q symmetry group, where the
electric charge (Q) is the generator. QED has seen excellent predictive power, agreeing
very strongly with experimental results.

Let us start by considering the Lagrangian density of a free Dirac fermion field, which
is written as

L = ψ̄(iγµ∂µ −m)ψ (2.1)

where ψ is a 4-component Dirac field, and γµ is the 4 × 4 gamma matrix.
We can see that Eq. 2.1 is invariant under the following global U(1)Q transformation

ψ → ψ′ = e−igeθψ, (2.2)

as the other terms in Eq. 2.1 transform as

ψ̄ → ψ̄′ = (ψ′)†γ0 =
(
e−igeθψ

)†
γ0 = ψ̄eigeθ, ∂µψ → ∂µψ

′ = e−igeθ∂µψ, (2.3)

where ge is the QED coupling.
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When this global transformation is promoted to a local transformation, we introduce
a space-time dependence on θ → θ(x). In this case we must introduce an additional term
in order to preserve gauge invariance:

L → L − geψ̄γ
µAµψ (2.4)

where the gauge field Aµ transforms as

Aµ → Aµ + ∂µλ, where λ(x) = −θ(x)
ge

. (2.5)

This gauge field leads to the photon gauge boson. Under this local gauge transforma-
tion, the Dirac fermion field ψ and its derivative transform as

ψ → ψ′ = e−igeθ(x)ψ, (2.6)
ψ̄ → ψ̄′ = ψ̄eigeθ(x), (2.7)

∂µψ → ∂µψ
′ = e−igeθ(x)(∂µψ − ige∂µθ(x)). (2.8)

We now replace the normal derivative with a covariant derivative, a method known as
“minimal substitution”. The covariant derivative is defined as

Dµ ≡ ∂µ + igeAµ. (2.9)

Upon replacing ∂µ with Dµ in Eq. 2.1, we find

Dµψ → D′
µψ

′ = (∂µ + igeA
′
µ)ψ′ (2.10)

= e−igeθ(x) [∂µψ − igeψ∂µθ(x)] + ige [Aµ + ∂µθ(x)] e−igeθ(x)ψ (2.11)
= e−igeθ(x)(∂µ + igeAµ)ψ (2.12)
= e−igeθ(x)Dµψ. (2.13)

So we see that Dµψ transforms in the same way as ∂µψ in Eq. 2.3. Using the covariant
derivative, the rest of the terms defined in Eq. 2.1 are invariant under local transforma-
tions.

In order to describe the dynamics of the photon field Aµ, we must add its kinetic
term to the Lagrangian. Using the electromagnetic field strength tensor, defined as Fµν ≡
∂µAν − ∂νAµ, we can write the non-interacting Lagrangian for the photon field Aµ as

Lγ = −1
4F

µνFµν + 1
2m

2
AA

µAµ. (2.14)
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The mass term is not invariant under local gauge transformations, thus mA is set to zero
in order to preserve local gauge invariance. Finally we can write the QED Lagrangian as

LQED = ψ̄(iγµDµ −m)ψ − 1
4FµνF

µν . (2.15)

This Lagrangian is invariant under both Lorentz and local U(1)Q transformations. One
important implication of this local U(1)Q invariance is that a mass term for the photon
field is not permitted.

2.1.4 Quantum Chromodynamics

The theory of Quantum Chromodynamics (QCD) [6, 7], just like QED, provides strong
predictive power. Where QED is based on a U(1)Q symmetry, QCD is based on the
SU(3)C symmetry group, where C is colour charge. When imposing local gauge invariance
under this symmetry group on the QCD Lagrangian density, one introduces 8 coloured
gluon fields, which correspond to the 8 generators of the group.

We begin the construction of a local SU(3)C invariant QCD Lagrangian in a simi-
lar way to the QED case. We again replace the normal derivative with the covariant
derivative, this time defining it as

Dµ ≡ ∂µ − igsT · Aµ, (2.16)

where the Ta ≡ λa

2 , for a = 1, . . . , 8, are the 8 generators of the SU(3)C group, and Aaµ are
the 8 gluon fields. λa is the set of 8 linearly independent Gell-Mann matrices, satisfying

[λa, λb] = 2ifabcλc (2.17)

where fabc for a, b, c = 1, . . . , 8 are the structure constants of the SU(3)C group.
We define the six flavour quarks q, as fermionic fields populating a triplet such that

ψ ≡


qr

qg

qb

 , ψ̄ ≡
[
q̄r q̄g q̄b

]
. (2.18)

Additionally we define the field strength tensor

Ga
µν ≡ ∂µA

a
ν − ∂νA

a
µ − igs[Aaµ, Aaν ]. (2.19)

The commutation relation
[Aµ, Aν ]a = ifabcAaµA

c
ν (2.20)
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Figure 2.2: Gluon self interaction Feynman diagrams resulting from the
commutation relation in Eq. 2.20

Figure 2.3: A Feynman diagram depicting an interaction between two
quark fields and a gluon field resulting from Eq. 2.22

gives rise to triple and quartic gluon coupling terms. This means that gluons are able
to self interact, as shown in Figure 2.2, because they carry colour charge. These self
interaction terms make QCD a much richer and more complex theory than QED.

Using the above definitions, we can write the QCD Lagrangian in the form

LQCD = ψ̄(iγµDµ −m)ψ − 1
4G

a
µνG

µν
a . (2.21)

By replacing ∂µ with Dµ, we create an interaction term between a gluon and two quark
fields, as shown in Figure 2.3. We can write this term as

Lint = 2gψ̄γµλaGa
µψ. (2.22)

This means that quark-antiquark pairs can be generated by gluons and can similarly
annihilate to gluons.

Now that we understand the intricacies of QED and QCD, we can explore the genera-
tion of the W± and Z bosons via the process of electroweak unification and move towards
an understanding of the full Standard Model symmetry group.
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2.1.5 Electroweak unification

Electroweak unification [8] refers to the unification of the electromagnetic and weak forces,
represented by the gauge group SU(2)L⊗U(1)Y . Here SU(2)L acts on the weak isospin I,
and U(1)Y acts on the weak hypercharge Y . The SU(2)L doublet contains the chiral-left
components of the elecrically charged leptons and their neutrinos, while the chiral-right
components are in their own singlet. We can write these as

ψdoubletL ≡

 νl

l


L

,

 U

D


L

(2.23)

ψsingletR ≡ lR, UR, DR, (2.24)

where we define

l = (e, µ, τ) (2.25)
νl = (νe, νµ, ντ ) (2.26)
U = (u, c, t) (2.27)
D = (d, s, b). (2.28)

Using this notation we can write the weak SU(2)L current as

Jµi = 1
2
[
ν̄l l̄

]
L
γµτi

 νl

l


L

, (2.29)

where τi is the ith Pauli spin matrix. The third current, where i = 3 does not change the
charge of the particles involved, and is known as the neutral current. The electromagnetic
current for a lepton l is given by

JµEM = Ql̄γµl = Q(l̄LγµlL + l̄Rγ
µlR), (2.30)

where Q is the elecromagnetic charge operator. This quantity is not invariant under local
SU(2)L transformations and so we construct an SU(2)L invariant U(1)Y current which is
written as

JµY = YL
[
ν̄l l̄

]
L
γµ

 νl

l


L

+ YR l̄Rγ
µlR, (2.31)

where hypercharges YL and YR denote the conserved charge operators of the U(1)Y sym-
metry. Notice that JµY is a linear combination of the weak and electromagnetic currents
Jµ3 and JµEM . This implies that hypercharge Y can be constructed using electromagnetic
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charge Q and the third component of weak isospin I3. This relation can be written as

Y = 2(Q− I3). (2.32)

Using this we can calculate the weak quantum numbers of the quarks and leptons.
In order to write the electroweak Lagrangian, we need to first define the covariant

derivative that acts on a matter field with weak isospin 1
2 , and weak hypercharge Y . This

can be written as
D ≡ ∂µ + igw

1
2τaW

a
µ + igY

1
2Y Bµ, (2.33)

where τa are the 2×2 Pauli spin matrices, W a
µ is the gauge field of the SU(2)L group, and

Bµ is the gauge field of the U(1)Y group. gw and gY are the two independent coupling
constants of the theory.

We can hence write the electroweak Lagrangian as

LEW = ψ̄(iγµDµ −m)ψ − 1
4W

µν
a W a

µν − 1
4B

µνBµν , (2.34)

where ψ can be either chiral-left or right fields. Similarly to QED, a gauge field mass
term is forbidden due to local SU(2)L ⊗ U(1)Y invariance. This is an issue as we know
the weak force carriers, the W± and Z bosons, are massive. This means we require some
mechanism in order to generate gauge boson masses in a gauge invariant fashion. This is
where the Higgs mechanism comes into play.

2.1.6 The Higgs Mechanism

The Higgs mechanism introduces a scalar field which exists at all space-time points. By
introducing the Higgs scalar field which acquires a non-zero vacuum expectation value
(vev), we break the local SU(2)L⊗U(1)Y gauge symmetry of the electroweak Lagrangian,
and the gauge bosons acquire mass.

In order to do this we must first introduce a single Higgs doublet in the form [9]:

ϕ =
 ϕ0

ϕ+

 = 1√
2

 ϕ1 + iϕ2

ϕ3 + iϕ4

 (2.35)

for real fields ϕi with hypercharge Y = 1
2 . We also introduce a potential for the scalar

field which spontaneously breaks the symmetry

V (ϕ) = 1
2µ

2(ϕ†ϕ) + 1
4λ(ϕ†ϕ)2. (2.36)

This potential has the “Mexican hat” form shown in Figure 2.4. At high energies,
the vev of the Higgs approaches 0 which corresponds to the full gauge group discussed
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Figure 2.4: The vacuum expectation value of the Higgs as a function of
ϕ. It has two extrema, one at ϕ = 0, and one at |ϕ|2 = v2 which corresponds

to symmetry breaking.

earlier. As the energy density in the universe decreases, the Higgs field cannot maintain
this unstable position, and acquires a non-zero vev. This non-zero vev results in the
gauge bosons acquiring mass. We wish to find the minimum of this potential. Without
loss of generality, we choose an axis such that ⟨0|ϕi |0⟩ = 0, where i = 1, 2, 4, and
⟨0|ϕ3 |0⟩ = v ≥ 0. Thus we can write

ϕ → ⟨0|ϕ |0⟩ ≡ v = 1√
2

 0
v

 (2.37)

V (ϕ) → V (v) = 1
2µ

2v2 + 1
4λv

4 (2.38)

By choosing this axis, we have made a choice of the vacuum potential in equation 2.38.
Thus to find the extrema, we take a derivative with respect to ϕ and evaluate it at v.

dV (v)
dv

= v(µ2 + λv2) = 0 (2.39)

We have two solutions.

• µ2 > 0 in which case v = 0 and the symmetry is not broken.

• µ2 < 0 in which case v =
√

−µ2

λ
and the symmetry is broken.
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The mass terms can then be shown to exist after expanding the SM Lagrangian about
this new minimum where v =

√
−µ2

λ
.

We can finally write the part of the Lagrangian involving the scalar field ϕ as

Lϕ = (Dµϕ)†(Dµϕ) − V (ϕ), (2.40)

where
Dµ ≡ ∂µ + i

2gwτaW
a
µ + i

2gY Y Bµ (2.41)

is the covariant derivative for the SU(2)L ⊗ U(1)Y gauge group.

2.1.7 Standard Model Particle Masses

The Higgs, W and Z boson Masses

After expanding the SM Lagrangian in Eq. 2.40 about the minimum where µ2 = −λv2,
we arrive at the expression

V (h) = −1
2λv

2(v + h)2 + 1
4λ(v + h)4 (2.42)

= λv2h2 − 1
4λv

4 + λvh3 + 1
4λh

4, (2.43)

where h represents the Higgs field. The first term gives a mass term for the Higgs boson

mh =
√

2λv2 =
√

−2µ2 > 0. (2.44)

The last two terms represent cubic and quartic self interactions between Higgs bosons.
We can write the physical W , Z, and photon fields as linear combinations of the weak

and hypercharge fields

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ), (2.45)

Zµ = cos(θW )W 3
µ − sin(θW )Bµ, (2.46)

Aµ = cos(θW )Bµ + sin(θW )W 3
µ , (2.47)

where θW is the Weinberg angle which is given by the following relation

cos(θW ) = gw√
g2
w + g2

Y

. (2.48)
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The mass of the W± boson can be written as

mW± = 1√
2
vgw, (2.49)

and the mass of the Z boson can be written as

mZ = 1
2v
√
g2
w + g2

Y . (2.50)

Since gw and gY are free parameters, the Standard Model makes no prediction for the
masses of the gauge bosons.

Fermion Masses

Fermion fields have a mass term given by

mψ = mψ(ψ̄RψL + ψ̄LψR). (2.51)

Such a term is not invariant under local SU(2)L ⊗ U(1)Y gauge transformations as the
left hand terms form part of an isospin doublet whereas right hand terms are isospin
singlets. In order to fix this issue, we utilise the Higgs doublet given by Eq. 2.35. The
gauge invariant mass term for a fermion field is hence given by

Lf = −λψ(ψ̄LϕψR + ψ̄Rϕ
†ψL), (2.52)

where λψ is the fermion Yukawa coupling. Expanding this expression generates not only
mass terms for the fermion field, but also interaction terms between the Higgs boson and
said fermion fields.

Lepton Masses

As leptons are fermions, we begin from the gauge invariant mass term for the fermion
field as in Eq. 2.52. Lepton fields form a part of an isospin doublet given by

Ll =
 νl

l

 (2.53)

where l = (e, µ, τ) are the three varieties of leptons. For the electron, one can write the
interaction

Leϕ = −λe

[ ν̄e ē
]
L

 ϕ+

ϕ0

 eR + ēR
[
ϕ− ϕ̄0

]  νe

e


L

 . (2.54)



14 Chapter 2. The Standard Model and Supersymmetric Extensions

One can substitute in Eq. 2.37 and get the expression

Leϕ = − λe√
2

(v(ēLeR + ēReL) + (ēLeR + ēReL)H) (2.55)

Hence for any given lepton,
Llϕ = − λl√

2
(
vl̄l + l̄lH

)
. (2.56)

The first term represents the mass term for a given lepton ml = λlv√
2 , while the second

term represents the interaction between the Higgs boson and two lepton fields. As the
Yukawa coupling λl is a free parameter, the Higgs mechanism does not predict masses for
the leptons. Fermion masses are generated in a similar way, though one must introduce
a different Higgs doublet term for the up-type quarks.

Quark Masses

The mass terms of the down-type quarks are generated as in Eq. 2.52. Up-type quarks on
the other hand require a Higgs doublet with opposite hypercharge. Hence we can write
the mass term as

Lup = − λf√
2

ψ̄L
 v + h

0

ϕR + ψ̄R
[
v + h 0

]
ϕL

 . (2.57)

Hence the mass terms for the up and down quarks can be written as

down-type: λdv√
2

(d̄LdR + d̄RdL) (2.58)

up-type: λuv√
2

(ūLuR + ūRuL). (2.59)

The parameter v ≈ 246GeV is the scale that is responsible for all of the masses of the
SM. We can see that the mass of any fermion in the SM can be written as

mf = λfv√
2
, (2.60)

where λf is the Yukawa coupling that is ultimately determined by the experimentally
measured particle mass.

2.2 Shortcomings of the Standard Model

While the Standard Model does explain a majority of experimental observations, there
are phenomena for which it does not provide an explanation. In this section we will



2.2. Shortcomings of the Standard Model 15

Figure 2.5: Feynman diagram of a one-loop correction to the Higgs in
the SM.

outline a few issues that are relevant to the particular Standard Model extensions utilised
throughout this thesis. One of the biggest issues is that it does not provide a suitable
dark matter candidate. “Dark matter” is a term for a hypothetical form of matter which
is usually thought to be composed of some as-of-yet undiscovered particle. Its presence
has been observed through astronomical gravitational effects, which can be explained by
introducing the presence of more matter than can be observed in the visible wavelengths.
The Standard Model also does not incorporate gravity, which is a very weak force relative
to the other forces on microscopic scales.

The Standard Model also fails to explain the hierarchy problem [10] which is a problem
with the mass of the Higgs. This is due to quadratically divergent terms in the mass loop
corrections. As we will see, this problem is solved by the introduction of the Minimal
Supersymmetric Standard Model.

2.2.1 The Hierarchy Problem

As we have stated, the Standard Model is a low energy effective theory that works up to
some cut-off scale which we will denote Λ. Figure 2.5 presents a Feynman diagram of the
dominant loop corrections to the Higgs boson propagator from the top quark, which can
be shown to shift the Higgs mass by

∆m2
H = −|λt|2

8π2 Λ2 + . . . (2.61)

where λt is the Yukawa coupling of the Higgs to the top quark.
The mass of the Higgs boson is measured to be 125 GeV [11], while these quadratic

mass corrections are O(Λ2). Assuming that the SM is valid up to the Planck scale
where quantum gravity begins to have an effect, these mass corrections are around 1015

GeV. Unless there is an incredibly large fine-tuning cancellation between these quadratic
corrections and the bare mass, one would expect the Higgs mass to be very high. These
enormous cancellations in the various contributions to the Higgs mass are what is referred
to as the hierarchy problem.
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Figure 2.6: The power spectrum of temperature fluctuations in the CMB
and its fit using the ΛCDM model [18].

2.2.2 Dark Matter

Current models predict approximately 85% of the mass in the universe is of a form that is
yet unknown [12]. The earliest signs of dark matter (DM) [13] came from observations of
the velocity distribution of stars in the Milky Way in the 1930s. The velocity as a function
of the radius in a spiral galaxy should yield Keplerian behaviour, where the velocity should
gradually fall off as the radius increases. What we observe instead is a roughly constant
rotation velocity, implying a large unseen mass density distributed at the edges of the
galaxy [14]. Other evidence for DM comes in the form of gravitational lensing [15], where
light is bent due to a large presence of mass. An Einstein ring is created when light from
behind a large mass is distorted by its gravitational pull. The radius of this ring, referred
to as the Einstein radius, can be used to determine the mass of the distorting body. When
looking at distant galaxy clusters, the mass required to reproduce the Einstein radius is
much larger than what is inferred by the luminosity of the cluster. Using this information
it is possible to map the dark matter distributions of distant galaxies [16]. The cosmic
microwave background (CMB) [17] also contains evidence of dark matter. When observing
the power spectrum of temperature fluctuations in the CMB, the angular scale and height
of each peak are used to probe various cosmological parameters including the fraction of
dark matter in the universe. This is shown in Figure 2.6. Matching all of the peaks
implies that 26% of the total mass in the universe comes from dark matter, and 5%
comes from atoms in the form of stars and galaxies.

Theoretical explanations for DM are numerous and span a wide range of possible
masses, from very light axions to extremely heavy black holes. It is also possible that
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DM is not made up of one single particle, but of numerous particles. In this thesis, I
focus on a class of DM theories known as Weakly Interacting Massive Particles (WIMPs).
Theoretical DM particles must follow a few basic rules: they must be stable, otherwise
they would decay into SM particles. They must have no electric charge, and be colourless,
otherwise they would form strongly bound states, and be easily detectable via direct
detection experiments like the XENON1T experiment [19]. DM must also reproduce the
observed relic density [20], which is the observed density of non-baryonic DM divided by
the total critical density, written as

ΩDMh
2 = h2ρDM

ρC
≊ 0.1186 ± 0.0020, (2.62)

where h2 ≊ 0.5 is the Hubble constant in units of 100kms−1Mpc−1. ρC = 3H0
8πGN

≊
10h2GeVm−3 yields a spatially flat homogeneous universe and ρDM ≊ 1.2 × 10−6GeVcm−3

is roughly equal to 6 protons every 5m3.
WIMPs can come from many well motivated BSM theories, and a GeV scale WIMP

with a weak interaction cross section is able to reproduce the observed DM abundance.
In the next section we explore supersymmetry, which is one of the most powerful BSM
theories, and is able to fill many of the gaps which are observed in the SM.

2.3 Overview of Supersymmetry and the MSSM

Supersymmetry (SUSY) [10] is a theoretical extension to the Standard Model which in-
troduces supersymmetric partners for every Standard Model particle. Each pair of super-
partners has identical quantum numbers, except for a half-unit difference in spin, meaning
fermions have bosonic superpartners and bosons have fermionic superpartners.

The Minimal Supersymmetric Standard Model (MSSM) is a particular supersymmetric
extension of the Standard Model which considers the minimum number of particle states
and interactions necessary to obtain a theory that can yield results that agree with modern
experiments. A supersymmetry transformation turns a bosonic state into a fermionic
state and vice versa. This can be denoted with an operator Q which generates such
transformations.

Q |Boson⟩ = |Fermion⟩ , Q |Fermion⟩ = |Boson⟩ (2.63)

We know that if SUSY exists, it must be broken at low energies. If SUSY were a perfect
symmetry, we would already have observed superpartners with the same mass as the SM
counterparts. It is thought that, below some energy scale, the masses of the superpartners
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Figure 2.7: The particle content of the MSSM.

must be much higher than that of their SM partners. Above this energy scale, however,
the masses of the superpartners approach that of their SM partners.

2.3.1 Particle Content of the MSSM

The superpartners of the left and right-handed chiral components of fermionic SM particles
will mix to form two mass eigenstates, yielding two bosonic superpartners. Bosonic SM
particles will only have one fermionic superpartner. The naming convention for these
superpartners is to add an “s-” prefix for bosonic SUSY particles and an “-ino” suffix
for fermionic SUSY particles. Additionally it is convention to mark SUSY particles with
a tilde. Figure 2.7 presents a table of the Standard Model, as well as its minimally
supersymmetric extension.

The mixing of the left and right-handed chiral components of the supersymmetric top
quark (the stop) can be represented by the following matrix equation:

 t̃1

t̃2

 =
 cos(θt) sin(θt)

− sin(θt) cos(θt)

 t̃L

t̃R

 (2.64)

for some mixing angle θt. This mixing of left and right-handed chiral components is
similar for all sfermionic particles. Whilst the top quark is by far the heaviest quark, the
light stop quark is typically the lightest of the squarks in order to cancel the fermionic
component of the Higgs field, and solve the hierarchy problem. This means that it should
be the easiest to observe in nature.

Before SUSY is broken we have superpartners for the gauge bosons called “gluinos”
(g̃), “winos” (W̃±, W̃ 0) and “binos” (B̃0). We also have more Higgs bosons in the MSSM.
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Unlike the SM, the MSSM has two Higgs doublets, which can be written in the following
way:

Hu =
 H+

u

H0
u

 , Hd =
 H0

d

H−
d

 (2.65)

where the labels u, and d correspond to the Yukawa couplings to up and down type
fermions. Upon breaking, the winos, binos, and Higgsinos mix together to form the
neutralinos and charginos that are present in Figure 2.7. This mixing can be represented
by the following matrix equation:


χ̃0

1

χ̃0
2

χ̃0
3

χ̃0
4

 =


N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 N42 N43 N44




W̃ 0

B̃0

H̃0
u

H̃0
d

 (2.66)

We denote the left hand side of Equation 2.66 χ0
i with i ∈ {1, 2, 3, 4}. Nij are the mixing

parameters, and are constrained by N2
i1 +N2

i2 +N2
i3 +N2

i4 = 1 in order to ensure the unity
of probability. The neutralinos are ordered in increasing mass, with χ0

1 being the lightest
and χ0

4 being the heaviest.
The formation of the positive charginos can be represented by: χ̃+

1

χ̃+
2

 =
 V11 V12

V21 V22

 W̃+

H̃+

 (2.67)

Similarly, the formation of the negative charginos can be represented by:
 χ̃−

1

χ̃−
2

 =
 U11 U12

U21 U22

 W̃−

H̃−

 (2.68)

2.3.2 Soft SUSY breaking in the MSSM

As mentioned prior, SUSY must necessarily be broken at low energies. In order to do this
we add a “soft” Lagrangian, which breaks the symmetry only at low energies. The full
MSSM Lagrangian density is given by

LMSSM = LSUSY−SM + Lsoft, (2.69)

where LSUSY−SM is obtained by sypersymmetrising the SM Lagrangian density. Let us
now look at the term Lsoft. This contains all renormalisable soft SUSY-breaking terms



20 Chapter 2. The Standard Model and Supersymmetric Extensions

which conserve baryon number B, and lepton number L. It can be written as

Lsoft = − 1
2(M1

¯̃BB̃ +M2
¯̃
WW̃ +M3¯̃gg̃ + c.c.) (2.70)

− (Q̃†m2
QQ̃+ L̃†m2

LL̃+ ũ†m2
uũ+ d̃†m2

dd̃+ ẽ†m2
e ẽ) (2.71)

− (ũAuQ̃Hu − d̃AdQ̃Hd − ẽAeL̃Hd + c.c.) (2.72)
− (m2

Hu
|Hu|2 +m2

Hd
|Hd|2 + (bHuHd + c.c.)). (2.73)

The parameters of this Lagrangian density dictate the behaviour of a given MSSM model
once SUSY is broken. It is common to only examine a subset of these parameters in
analyses, freezing a number of them in order to work with a smaller parameter set. The
first set of terms, line 2.70, contains the parameters M1, M2, and M3. These are the bino,
wino, and gluino mass parameters. There is a second term with parameters M ′

1, M ′
2, and

M ′
3 that is not shown here, as it violates CP and so must thus be very small. The second

set of terms, line 2.71, contains squark and slepton mass terms. m2
Q, m2

L, m2
u, m2

d, and
m2

e are 3×3 Hermitian mass-squared matrices. The third set of terms, line 2.72, contains
the three trilinear scalar interaction terms Au, Ad, and Ae. Each of these is a complex
3 × 3 matrix in one-to-one correspondence with the Yukawa couplings. These denote the
triliear couplings between the Higgs and squarks or sleptons. Finally, line 2.73 contains
the real Higgs sector mass terms m2

Hu
, and m2

Hd
, as well as a bilinear coupling with a

complex parameter b.

2.3.3 R-Parity

Baryon number (B) and Lepton number (L) are explicitly required to be conserved in
the SM. This is in order for the proton to be stable, as proton decay has not ever been
observed. The MSSM, however, does not explicitly require that Baryon Number and
Lepton Number are conserved. Instead it uses what is known as R-Parity to do so.
R-Parity is a Z2 symmetry which is added to the MSSM, and is defined as:

PR = (−1)3(B−L)+2s, (2.74)

where s is the spin of a particle. All SM particles have PR = 1, and all MSSM particles
have PR = −1. Conservation of R-Parity has the consequence that the lightest super-
symmetric particle (LSP) cannot decay into lighter SM particles, as this would violate
R-Parity. This means that the LSP does not decay at all, which makes it a perfect dark
matter candidate. R-Parity also requires that all sparticles are produced in pairs at the
LHC, and that each sparticle decay chain ends in an odd number of LSPs. Since the LSP
only interacts through the weak force, and does not decay, it is impossible to directly
observe.
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2.3.4 Supersymmetry’s Solution to the Hierarchy Problem

We now return to the hierarchy problem, and state how it is solved with the introduction
of superpartners. Recall the form of the Higgs mass loop corrections:

∆m2
H = −|λf |2

8π2 Λ2 + . . . (2.75)

Figure 2.8: Feynman diagram of Higgs loop corrections in the MSSM.

The Higgs boson’s coupling to a given fermion is proportional to its mass. As such,
the top quark, being the heaviest quark, is the dominant particle in this process. With
the addition of bosonic superpartners for the top quark, these quadratically divergent
contributions cancel precisely. This is due to fermionic loop contributions incurring a
minus sign relative to bosonic loop contributions. Hence, the total Higgs mass loop
correction in the MSSM is given by:

∆m2
H = m2

soft

(
λ2

16π2 ln
(

Λ
msoft

)
+ . . .

)
(2.76)

where m2
soft is the mass scale at which supersymmetry is broken. Figure 2.8 displays these

loop corrections with SUSY present.

2.3.5 Decay Phenomenology

Now that we have a basic understanding of SUSY and the MSSM, we examine the decay
phenomenology of the main MSSM particles. Here we denote leptons, neutrinos and
quarks using the generic labels l, ν, and q.
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Neutralino Decays

Neuralino decay modes can be denoted as

χ̃0
j → Zχ̃0

k, W
±χ̃∓

i , h
0χ̃0

k, ll̃, νν̃, A
0χ̃0

k, H
0χ̃0

k, H
±χ̃∓

i , qq̃ (2.77)

where j ∈ [1, 2, 3, 4], i ∈ [1, 2], and k < j. The first five decay modes, involving the Z,
W±, and h0 bosons, as well as lepton and neutrino decays, are the dominant decay modes
when permitted. If two body decays are prohibited then the dominant decay modes will
involve off-shell Z, W±, or h0 boson decays. Searches that target these particles typically
involve multiple leptons as the dominant decay modes include Z and W± bosons.

Chargino Decays

Chargino decay modes can be denoted as

χ̃±
j → Zχ̃±

k , W
±χ̃0

i , h
0χ̃±

k , lν̃, νl̃, A
0χ̃±

k , H
0χ̃±

k , H
±χ̃0

i , qq̃
′, (2.78)

where j ∈ [1, 2], i ∈ [1, 2, 3, 4], and k < j. Here, q and q̃′ are different flavours of quark.
Three-body decays via off-shell W±, Z, or h0 bosons are dominant when two body decays
are prohibited. The most favoured decay mode is χ̃±

1 → W±χ̃0
1 via an on or off shell W±

boson.

Squark Decays

Squark decay modes can be denoted as

q̃ → qg̃, qχ̃0
i , q

′χ̃±
j , (2.79)

where i ∈ [1, 2, 3, 4], and j ∈ [1, 2]. Due to the QCD strength of the vertex, the first mode
is dominant. Right-handed squarks are more likely to decay to the LSP, while left-handed
quarks are more likely to decay to intermediate states involving the chargino and neu-
tralino. The third generation of squarks are more likely to decay to Higgsino-dominated
electroweakinos than the other two generations due to a larger Yukawa coupling. The
lightest squark, the t̃, is worth noting as when the mass difference between the t̃ and a χ̃0

i

is small, the stop decays are dominated by the following processes

t̃1 → tχ̃0
i , bχ̃

±
j , bWχ̃0

i , cχ̃
0
i , bW

∗χ̃0
i . (2.80)
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Slepton Decays

Slepton decays can be denoted as

l̃± → l±χ̃0
i , νχ̃

±
j , (2.81)

ν̃ → lχ̃0
i , l

∓χ̃±
j , (2.82)

where i ∈ [1, 2, 3, 4], and j ∈ [1, 2]. Right-handed sleptons will generally decay to the LSP
χ̃0

1, while left-handed sleptons will prefer decay channels containing heavier electroweaki-
nos.

Gluino Decays

Gluino decays are the simplest and can be denoted as

g̃ → qq̃(∗). (2.83)

These decay modes can only take place through a real or virtual squark and are typically
dominated by modes containing t̃1 and b̃1 as they are assumed to be the lightest squarks
in many SUSY scenarios.

2.3.6 The Current State of SUSY

Recent experiments have found no evidence for the existence of SUSY [21]. Current
exclusion limits are dominated by results from high energy particle colliders which are
used to search for these high mass BSM particles. However, these exclusion limits are
often plotted in a 2-D plane of two particular SUSY particle masses, leaving the masses of
the other sparticles frozen at arbitrary values. These vanishingly thin hyperplanes of the
total parameter space do give some insight into more general exclusion limits, but they
are not the whole picture. This is explored in more detail in Chapter 7.

Figures 2.9 and 2.10 show the most up to date exclusion curves in two different mass
planes from the ATLAS experiment. Figure 2.9 explores gluino decays, while Figure 2.10
explores the process χ̃0

2χ̃
±
1 → Whχ̃0

1χ̃
0
1. In order to better understand these exclusions,

and eventually develop our own analyses using novel data analysis techniques, we must
first explore how modern particle collider experiments work.
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Figure 2.9: Exclusion limits at 95% CL based on 13 TeV data in the
χ̃1

0-g̃ mass plane for a number of BSM searches [22].



2.3. Overview of Supersymmetry and the MSSM 25

Figure 2.10: Exclusion limits at 95% CL based on 13 TeV data in the
χ̃1

0-(χ̃±
1 , χ̃0

2) mass plane for a number of BSM searches [22].
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3 BSM Searches at High Energy
Collider Experiments

There are many experiments around the world geared towards searching for BSM physics.
For example, different experiments use different methods of dark matter detection, repre-
sented by Figure 3.1. Direct detection experiments, such as LUX [23], and Xenon1T [24]
search for DM by examining the recoil of SM nuclei due to collisions with DM parti-
cles. Indirect detection experiments, such as Pamela [25], AMS [26], IceCube [27], and
Fermi-LAT [28] examine DM annihilation to SM particles such as γ rays. Collider exper-
iments search for the direct production of DM in high energy particle collisions. These
experiments presuppose the possibility of producing DM particles from SM particles and
attempt to observe some inconsistency with the known SM background. Colliders must
run at very high energies, as according to the Einstein formula E ∝ m, a particle of mass
m requires enough energy E to be produced by colliding particles. Some BSM theories
require that particles be produced in pairs, further restricting their mass limits. Higher
energies mean more massive particles can be produced.

The number of events for any given process in a particular final state that one might
observe in a collider experiment can be expressed as

N = σ ×BR × ϵ
∫

Ldt, (3.1)

where σ is the production cross section of the process, BR is the decay branching ratio
to the channel yielding the final state, ϵ represents the efficiencies and acceptances on
the reconstruction of each object in the final state (this is covered in more detail in
Section 3.2), and

∫
Ldt is the luminosity of the detector integrated over time.

The goal in any BSM physics search is to discriminate signal-like events from background-
like events and compare the number of observed and expected events. At collider experi-
ments this is done by performing various selection cuts on parameters such as the number
of observed leptons, or the missing transverse momentum of an event.
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Figure 3.1: Dark Matter search techniques.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [29] is the largest particle accelerator in the world,
with a circumference of 27 kilometers and ran at a centre-of-mass energy of 13 TeV from
2015-2018. Protons are accelerated to speeds approaching the speed of light and smashed
together in the middle of the various detectors located about the ring where the resulting
“stuff” is collected and examined.

The protons are supplied in the form of a hydrogen gas. The electrons are stripped
from the atoms by an electromagnetic field and the protons are then accelerated to an
energy of 450 GeV by a series of linear and synchrotron accelerators. The proton beam
is then split into two, each orbiting in opposite directions through the main tunnel. The
proton beams are then accelerated to their peak energy of 6.5 TeV and then collided at
various interaction points. There are a total of four interaction points where protons are
collided corresponding with the four main detectors, ATLAS [30], CMS [31], ALICE [32],
and LHCb [33].

ATLAS (A Toroidal LHC ApparatuS), and CMS (Compact Muon Solenoid) are the
detectors that most of the work in this thesis is focused on. ATLAS is designed to be
a general purpose detector, aimed at measuring a broad range of signals rather than fo-
cusing on a particular physical process. The ATLAS detector consists of various layers
of sub-detectors, each designed to target a specific phenomena. The innermost layer is
designed to take high precision measurements of the position and momentum of charged
particles. The next layers, the calorimeters, measure the energies of easily stopped parti-
cles. The outer layer is the muon spectrometer, designed to measure high energy muons.
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Figure 3.2: The ATLAS detector, and the locations of the inner detector,
calorimeter, magnet system, and muon spectrometer. People included for

scale.

The momenta of charged particles are able to be measured with the aid of the magnet
systems, which bend charged particles in the inner and muon detectors proportional to
their momenta. Each detector also has a series of “triggers” which are used to limit the
amount of data that is recorded by the detector. A trigger imposes a set of requirements
on each event to rapidly decide which events should be kept. This is necessary when it
is not possible to record the results of every single collision at the LHC due to the rate
of incoming data and storage capacity. Some triggers are designed specifically to target
certain final states, such as requiring at least one electron or muon. By using these trig-
gers, it is possible to not only reduce the amount of data to be stored, but also efficiently
target only the events of interest for a given analyses.

3.1.1 What’s in an LHC Event?

Recall the last term of Equation 3.1. This is the integral over time of the instantaneous
machine luminosity, which is written as

L = N2
b nbfrevγr
4πϵnβ∗ F (3.2)

where Nb is the number of particles per bunch, nb is the number of bunches per beam,
frev is the number of revolutions per second, γr is the relativistic gamma factor, ϵn is
the normalised transverse beam emittance, β∗ is the beta function at the collision point,
and F is a geometric reduction factor due to the non-zero angle of incidence between the
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beams at the interaction point [29]. The ATLAS and CMS experiments both aim for
a high peak luminosity of L = 1034cm2s. This luminosity factor determines how many
events are produced, and hence, how sensitive the experiment is to various BSM signals,
since collecting more data allows rarer processes to be observed.

Each particle seen by ATLAS has a measured energy-momentum 4-vector which can
be written as p⃗ = (E

c
, px, py, pz). Note that the proton beams travel along the z axis with

the interaction point at the origin. Since the proton is a composite object, composed of
quarks and gluons, the centre of mass frame of the collision is different to the centre of
mass frame of the quarks which interact with each other. For this reason, it is necessary to
work with variables which are longitudinally boost invariant. The transverse momentum,
defined as p⃗T = (px, py), is one such quantity. The two angular components used to define
the 4-vectors typically used in an analysis are η and ϕ. Looking at the coordinates, shown
in Figure 3.3, we see that ϕ is defined as the angle about the beam axis in the x y plane.
The other angular variable, η is defined using the angle to the beam axis θ and can be
written as

η = − log
[
tan

(
θ

2

)]
. (3.3)

This quantity is referred to as the “pseudo-rapidity”, and is useful because the difference
in η between two particles, ∆η, is invariant under longitudinal boosts. The difference in ϕ
between two particles is also a Lorentz invariant quantity, and is used to construct various
physical variables which are detailed in Section 3.3.1. Another important variable is the
missing transverse momentum defined as

pmissT = −
∑
i

p⃗T i, (3.4)

where p⃗T i refers to the transverse momentum of the ith particle. This quantity gives the
transverse momentum of particles not picked up by the detector and is very important in
DM searches due to escaping DM particles.

Recall that particles with colour charge cannot exist on their own due to the re-
quirement that particles exist in colourless states. In order to conserve colour charge,
quarks combine with other particles in a process known as “hadronisation”, forming jets
of mesons and baryons. These jets are commonly used to analyse the physical properties
of the original interaction.

3.2 Monte Carlo Simulation

In order to compare theory to experiment one must use simulated Monte Carlo (MC)
data. This method also allows one to simulate BSM signals to tune analyses on. In this
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Figure 3.3: The coordinate system typically used at the LHC, where the
z axis indicates the beam direction.

thesis, I primarily use a dataset described in detail in Section 5.1. This dataset is made up
of simulated proton-proton collisions at

√
s = 13 TeV generated at leading order with up

to two extra partons (quarks) in Madgraph [34]. The parton showering and hadronisation
is done in Pythia 8.2 [35], and the detector simulation is done in Delphes 3 [36].

In order to avoid phase space overlap between Madgraph and Pythia when extra
partons are generated, one must employ a parton-jet matching procedure. The one used
in the datasets described in this thesis is the kT -jet MLM scheme. This algorithm clusters
final-state partons at the matrix-element level. The cutoff scale xqcut determines the
smallest value of kT a parton is allowed to have. After these final-state partons are
showered by Pythia, the final-state partons are clustered to form jets once again using
the kT algorithm before they are hadronised. A different cutoff scale QCUT is defined for
this second round of clustering. The jets are then compared to the partons, matching
them when the measured kT is less than QCUT. When each jet is matched with a parton,
the event is not discarded unless extra jets are allowed. A non-matched event occurs if
the initial final-state partons are too close to create a unique jet or if a single parton has
too little transverse momentum to be reconstructed as a jet.

3.2.1 Definition of Physical Objects

The job of simulating the detector and identifying the physical final state objects is done
by Delphes. Delphes simulates the detector response by recreating the tracking of a
charged particle moving through the detector. The electromagnetic and hadronic energy
deposited in the detector by the particle are independently smeared using a log-normal
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distribution. This section discusses the reconstruction requirements, efficiencies, and some
key physical features for use in analyses for each particle type.

Isolation of a particle is a fundamental part of identifying it. In order to remove
contributions from jet backgrounds, a particle P = e, µ, γ is defined to be isolated if the
following ratio is satisfied for the i nearby particles.

1
pT (P )

∆R<R,pT (i)>pmin
T∑

i ̸=P
pT (i) < Imin. (3.5)

Here the following parameters are defined as Imin = 0.1, R = 0.3, and pminT = 0.1 GeV.
Particles which fail to be isolated, are referred to as misidentified or non-prompt leptons.
These leptons can be hadrons mimicking lepton signatures, or leptons produced in in-
flight decays of hadrons. Simulation of the rate of misidentified or non-prompt electrons,
muons, and photons requires very large statistics, and a much more detailed detector
simulation. This is not implemented in Delphes 3.

Photons

A photon object is defined when a true photon or an electron without a reconstructed
track reaches the electromagnetic calorimeter and is isolated with pT > 10 GeV. The
efficiencies are

• ϵ = 0.9635 for |η| ≤ 1.5

• ϵ = 0.9624 for 1.5 < |η| ≤ 2.5.

Photons are occasionally used in chargino-neutralino searches where the second neu-
tralino decays to two photons via a higgs boson, plus the lighest neutralino. Photons have
also been used to search for gauge-mediated supersymmetry breaking (GSMB) scenarios
which allow the lightest neutralino to decay to gravitinos (the superpartner of the theo-
retical graviton) plus photons. In this scenario the gravitino is the LSP and the photons
are generated by a Higgs boson produced alongside the LSP.

Electrons

An electron object is defined when isolated with transverse momentum pT > 10 GeV. The
efficiencies are given by

• ϵ = 0.98 for |η| ≤ 1.5

• ϵ = 0.90 for 1.5 < |η| ≤ 2.5.

In this thesis, electrons will be important in SUSY searches, particularly those using a
3-lepton search strategy which targets processes that create W± and Z bosons together.
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Figure 3.4: A scattering event from CMS showing jets of particles re-
sulting from two top quarks.

Muons

A muon object is defined when isolated with transverse momentum pT > 10 GeV. The
efficiencies are identical to those of the electrons. Muons are the only SM particles to
interact with the outer layers of the CMS and ATLAS detectors, and the final momentum
is calculated by performing a Gaussian smearing of the initial four-momentum vector.
Muons are used in a similar fashion to electrons in this thesis, being a core component of
a 3-lepton search strategy.

Jets

Jets are some of the most complicated objects produced at the LHC. A jet is formed from
a cascade of hadrons which tend to arrange themselves in collimated “jets” of particles.
Figure 3.4 shows an image from CMS of an event which contains two jets from top quarks.
These jets deposit their energy in the hadronic calorimeter and are identified using a jet-
finding algorithm.

b-jets are jets where a b quark forms bound states in which a single B or D meson
carries a majority of the energy. They are common objects to use in BSM physics searches.
b-jet events can be differentiated from typical jets by the displacement of their vertices
from the primary vertex as b hadrons have a significant flight length. For sufficiently high
pT b-jets (> 50 GeV), the typical tagging efficiency is over 70%.
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Missing Transverse Momentum

The missing transverse momentum must be inferred due to conservation of momentum in
the transverse plane. It is defined as the negative vector sum of the measured transverse
momentum, as detailed in equation 3.4. Delphes measures the energies of particles, and
so calculate the missing transverse energy rather than the missing transverse momentum.
In Delphes, this is done using only the simulated calorimetric cells, meaning that muons
and neutrinos are not taken into account. This quantity is defined as

E⃗miss
T = −

cells∑
i

E⃗Ti
(3.6)

Note that Delphes does not perform any overlap removal when calculating E⃗miss
T . In

ATLAS and CMS more sophisticated algorithms are employed to remove double counting
of hits and tracks between objects.

3.3 Typical Search Strategy

Direct production experiments target processes that produce new particles. These new
particles might be produced on their own, or alongside other Standard Model particles.
These particles will then decay according to their phenomenology and they or their decay
products will be picked up by the detector. A typical search for BSM physics at the
LHC first involves understanding the signal model being searched for and by extension,
the relevant background processes. One aims to isolate the presupposed signal from the
background by constructing what are referred to as “signal regions”. These are regions of
the observed data where one expect to see a statistically significant signal to background
ratio given by r = NS

NB
. The parameters used in this process are the four-vectors of

electron, muon, tau, photon and (b-)jet objects, the missing transverse momentum, and
the identified particle labels of each measured object. Using this information one can
construct sophisticated physical variables which aim to discriminate the signal from the
background in some way.

Figure 3.5 shows the inclusive cross sections of a variety of SM processes for different
values of centre-of-mass collision energy. The multi-jet processes are collectively referred
to as the QCD background and are orders of magnitude larger than many of the other
backgrounds. The QCD background is typically suppressed using missing energy, lepton,
or transverse momentum cuts as the QCD background has low missing energy, few leptons
and low transverse momentum.

The first step of an analysis is to apply a number of pre-selection cuts. These are
cuts which select the particular final state of interest by imposing object multiplicity
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Figure 3.5: A summary of the Standard Model total production cross
section measurements performed by the ATLAS experiment as of June

2020 [37].

requirements. We also apply lower bounds on the pT of objects to ensure they pass
trigger requirements. As a general rule, these pre-selection cuts should be as minimal
as possible so as to not cut down on the amount of available data to optimise on and
potentially lose sensitivity.

3.3.1 Discriminating Variables

Once one has decided on a signal model, generated a complete set of Monte Carlo sig-
nal/background samples, and imposed a set of pre-selection criteria, it is time to create
the signal regions that will give the best discriminating power. In practice this involves
defining a number of “physical variables” from the information contained in each event
and performing selection cuts to remove as much of the background as possible, while
leaving as much of the signal as possible. Some of these physical variables are variables
we have seen before such as missing transverse energy, and some are complicated functions
of four-vector components. Here a number of common physical variables are detailed and
their applications are discussed.

• Emiss
T : Missing transverse energy highlights models with invisible particles not seen

by the detector as we have mentioned. Models with extra neutrinos, or those with
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high mass SUSY particles that decay to the lightest neutralino will be expected to
have high missing transverse energy.

• HT : Defined as the scalar sum of the pT of jet objects. This value is correlated
with the energy scale of the hard process, meaning it has a broader distribution for
events containing heavy BSM particles compared to SM backgrounds.

• meff : Defined as the scalar sum of the pT of jet objects plus Emiss
T . This value tends

to have a higher value for events containing high mass particles. Hence this value is
extremely useful for detection of models containing high mass particles, especially
SUSY analyses.

• m12: Defined as m12 =
√

(ET1 + ET2) − (pT1 + pT2) for two particles 1 and 2, the
invariant mass between two objects of the same kind is regularly used in discovering
or rejecting resonances.

• mT : Typically defined as
√

2plTEmiss
T (1 − cos

(
ϕl − ϕEmiss

T

)
for a lepton l. The trans-

verse mass is commonly used in understanding W boson backgrounds and con-
structing signal regions containing W boson production from BSM particles. This
is especially useful in searches done within the electroweakino sector of the MSSM.
Note that in principal, this variable can be defined between any two particles, not
just a lepton and the missing transverse momentum.

• mT2: Known as the stransverse mass, this variable was originally designed for SUSY
analyses [38] but is applicable to any scenario where a pair-produced object decays
semi-invisibly. Consider two particles which decay to visible and invisible compo-
nents, where the invisible components have masses Mχ1 , and Mχ2 . It is not possible
to know the transverse momentum of a single invisible object so a minimisation over
the under-constrained kinematic degrees of freedom associated with the weakly in-
teracting particles is performed. Hence m2

T2 = min
p

χ1
T +pχ2

T =Emiss
T

(max[m2
T1 ,m

2
T2 ]), where

m2
T1 is the transverse mass between the visible and invisible particles associated with

decay 1.

• mb,min
T : This variable is defined as the transverse mass between Emiss

T and the b-
tagged jet closest in ϕ to the missing transverse momentum. It is regularly used to
reject events containing a W boson decaying via a lepton and a neutrino. This is
useful in rejecting tt̄ background events in searches for BSM particles that decay to
top quarks such as stop pair production.

• ∆ϕ(obj, Emiss
T ): Defined as the polar angle between the direction of an object and

the missing transverse momentum. In a typical SM multijet event, the main source
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of missing transverse momentum comes from jet mismeasurements. In these cases
the jets with the highest transverse momentum are typically closely aligned with
the direction of the missing transverse momentum. In BSM searches containing
multiple jets it is common to place a lower bound on this value for some number of
the highest pT jets.

There are many physical variables used in BSM analyses that are not detailed here,
however these are some of the most commonly used ones, and indeed, the ones used in
this thesis. These variables have been used to great success in order to measure heavy
SM particles and to probe for BSM physics. Most of these variables have some sensitivity
to SUSY if the mass scale is larger than the SM scale. Many experiments have been per-
formed using these physical variables to try to probe interesting regions of the parameter
space for BSM physics. However there is a crucial drawback to this method in that one
must assume a signal model to begin an analysis.

In this thesis I explore applications of novel data analysis techniques to physics data in
the search for BSM physics. A quite new and novel approach to this problem of identifying
a BSM signal is consider the problem as an anomaly detection problem. In order to most
effectively tackle this problem machine learning methods are utilised in order to “learn
what the SM background looks like”.
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4 Machine Learning

Machine learning [39, 40, 41, 42, 43] combines computer science and mathematics to create
algorithms which can “learn” the features of a data-set without being told explicitly what
to look for. These techniques have been used in a wide array of scenarios, from computer
vision to targeted advertising and they all revolve around the same basic principals.
Machine learning algorithms rely on what is known as a “training set” of data in order
to extract some desired output. Let us first look at the example of image recognition,
specifically with the MNIST handwritten digit dataset [44]. The most conventional way
to solve this problem is by using supervised machine learning techniques. In this context,
“supervised” means that the algorithm is being supplied answers as to how well it is
performing during the training process. It must be given labelled data. For example, the
algorithm is shown a handwritten digit and then takes a guess at the written value. It is
then told how accurate it was with that prediction and uses this information to update
its own parameters.

A primary focus of this thesis is unsupervised anomaly detection. An unsupervised
algorithm is not supplied labelled data at any point in its training, and must use other
methods to tune its output. For example, an unsupervised way of tackling the MNIST
handwritten digit classification problem is to cluster each image with images that appear
similar. This technique will not use any labels associated with the data, and so is consid-
ered unsupervised. While a supervised algorithm will usually outperform an unsupervised
example, there are cases where a supervised algorithm is unsuitable. When dealing with
large amounts of unlabelled data, only an unsupervised analysis is possible.

4.1 Anomaly Detection

Anomaly detection [45] is a subset of machine learning which aims to identify “anomalous”
points in a given dataset. While this can be done in a supervised manner, having labelled
“typical” and “atypical” data points, I instead choose to focus on unsupervised anomaly
detection. In an unsupervised problem, one must assume that the training set is comprised
mostly of typical data points, with very few atypical points. Indeed, if this is not the case,
then the distinction between typical and atypical becomes rather blurred. Unsupervised
anomaly detection algorithms aim to learn what is “normal” for a given dataset. Once
this information is learned, a measure of anomalousness can be assigned to each point.
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Let us consider the simple thought experiment of attempting to identify images of
cats and dogs. A supervised solution to this problem would involve labelling a number of
images, and training a machine learning algorithm on this labelled training data. However,
this is relatively inflexible. For example what happens when the algorithm is shown
something outside of the range of the training set such as an image of a bird? Likely
it will attempt to classify it as either a cat or a dog. This issue can be addressed by
approaching this problem as an unsupervised anomaly detection problem. Instead of
creating a set of labelled data, let us simply create a training set containing only pictures
of dogs and build an algorithm which learns what a typical image of a dog looks like.
Using this algorithm one can essentially make a dog detector, assigning a measure of
anomalousness or “dog-likeness” to each image. In this way, the problem can be solved
without having to create a new set of labelled data, and the algorithm is more flexible
than the aforementioned supervised method. For example, when shown an image of a
bird it will return a high measure of anomalousness, whereas in the supervised example
it would have classified it incorrectly.

Adapting this thought experiment to a physics scenario, the words “dog” and “cat”
can be replaced with “SM background” and “BSM signal”. With this approach in mind, it
becomes clear how an anomaly detection algorithm could be useful in solving some issues
with searching for new physics at high energy colliders. When treating the scenario as
an anomaly detection problem, the particular BSM model being optimised on does not
need to be specified, which allows the algorithm to be sensitive to any potential BSM
signatures.

4.2 Neural Networks

One of the most flexible and powerful machine learning algorithms is the neural network
[46]. Neural networks are used in almost every subsequent chapter in some form. As such,
this section will cover the fundamentals of how a simple neural network works. Loosely
modelled after the human brain, a neural network consists of a series of nodes containing
activation functions, interconnected with weights and biases. Let us first consider a single
node as displayed in Figure 4.1.

The output y for a single node in a neural network can be written as

yL = f(yL−1
1 w1 + yL−1

2 w2 + ...+ yL−1
n wn + b), (4.1)

where f is some activation function, typically a nonlinear monotonically increasing func-
tion. yL−1

i is the ith incoming value from the previous layer, wi is the weight associated
with that incoming value, and b is the bias associated with the node. These nodes, and
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Weights
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b

Inputs

Figure 4.1: A single node in a neural network. Incoming values yL−1
i are

multiplied with weights wi and summed together along with a bias b. This
value is used as input for an activation function f which in turn produces

the output, yL.

their connections, weights, and biases, are what make up a neural network. When it
comes time to train a network, it becomes a matter of tuning the weights and biases of
the network via gradient descent. First a metric known as a “loss function” is established
in order to decide how to change the weights and biases. It is the job of the loss function
to indicate how far a given output is from some desired value, and by extension, how to
modify the weights and biases. In the case of a supervised classification problem, this
output would be a class label.

The parts that change the behaviour of a neural network, that is, all the weights
and biases, can be thought of as a big vector of values W⃗ . At each update step in the
training process, the gradient of the loss function with respect to these weights and biases
is calculated, and their values are updated. Hence, the new value of the ith element of
this weight vector can be represented with the following equation:

W⃗ new
i = W⃗i − α∇Li, (4.2)

where α is the learning rate which can be adjusted to make each training step smaller. Let
us demonstrate the calculation of the gradient of the loss function first using the simplest
possible neural network as shown in Figure 4.2. This consists of two nodes, an input and
an output node, connected by a single weight.

x

Input
y

Output

Figure 4.2: A very simple neural network consisting of two nodes. The
input x is multiplied by a weight, added to a bias, and passed through an

activation function to yield y
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Let us now compare the output of this neural net, y to the true value yT , using a
loss function. For simplicity, the squared difference function will be used in this example,
though in practice this loss function can take any form.

L = (y − yT )2 (4.3)

The output of this function can be written in the form

y = f(xw + b). (4.4)

For ease of use, let us define

z = xw + b (4.5)
∴ y = f(z). (4.6)

In order to calculate the gradient of the loss function with respect to the weight, the chain
rule must be used.

∂L
∂w

= ∂z

∂w

∂y

∂z

∂L

∂y
(4.7)

∂L
∂y

= 2(y − yT ) (4.8)

∂y

∂z
= f ′(z) (4.9)

∂z

∂w
= x (4.10)

∴
∂L
∂w

= 2xf ′(z)(y − yT ). (4.11)

The same process is then followed for the bias.

∂L
∂b

= ∂z

∂b

∂y

∂z

∂L

∂y
(4.12)

∴
∂L
∂b

= 2f ′(z)(y − yT ). (4.13)

Now that all the components making up ∇L have been calculated, the weights and biases
can be updated using Equation 4.2.

Now let us consider a fully connected network of nodes as in Figure 4.3. The process
is near identical to the simple example from before, except with some more indices. Here,
the layer l layers away from the output layer is referred to as layer L− l. The output of
the jth node in layer L− l is written as yL−l

j . The bias for this node is written similarly,
bL−l
j . The weight connecting the kth node in layer L− l− 1 to the jth node in layer L− l
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is written as wL−l
jk . Using this information the desired partial derivatives can be written

...

...
...

x1

x2

x3

xn

yL−1
1

yL−1
m

yL1

yLp

Input
layer

Hidden
layer

Ouput
layer

Figure 4.3: A simple neural network where the output of a given node is
indicated by either its input value xi, or its activation function value yL−l

i ,
where l indicates the number of layers it is from the output layer L. Each

arrow indicates a connection between two nodes by a weight.

in a similar fashion to Equations 4.11 and 4.13.

L =
nL−1∑
j=0

(yLj − yTj )2 (4.14)

zLj =
nL−1−1∑
k=0

wLjky
L−1
k + bLj (4.15)

yLj = f(zLj ) (4.16)

∂L

∂wL−l
jk

=
nL−1∑
j=0

∂zL−l
j

∂wL−l
jk

∂yL−l
j

∂zL−l
j

∂L

∂yL−l
j

(4.17)

∂L

∂bL−l
j

=
nL−1∑
j=0

∂zL−l
j

∂bL−l
j

∂yL−l
j

∂zL−l
j

∂L

∂yL−l
j

, (4.18)

where nL is the number of nodes in layer L.
In practice, instead of updating the weights and biases for every single training sample

by gradient descent, the value is averaged over a number of training samples known as a
“batch”. This dramatically improves the training speed, as the weights and biases only
need to be updated a fraction of the number of times they otherwise would.
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This neural network architecture is a very simple feed forward neural network, “feed
forward” meaning that each node is only connected to nodes in the next layer, and not
previous layers. In practice, this simple kind of neural network has limited use. Mod-
ern day neural networks utilise sophisticated techniques such as convolutional and max
pooling layers, radial basis functions, recurrence, adversarial training, and more to fur-
ther improve the performance of a neural network on a given problem. In the following
chapters I utilise a particular architecture known as a “Variational Autoencoder” (VAE)
for anomaly detection and dimensional reduction purposes.

4.2.1 Variational Autoencoders

An autoencoder [47] is a neural network that maps a given input to itself through a di-
mensionally reduced “latent space”. Autoencoders have a wide variety of uses in anomaly
detection, dimensional reduction, image processing, and information retrieval. In the fol-
lowing chapters variational autoencoders (VAEs) will be used for the purposes of anomaly
detection and dimensional reduction.

Since an autoencoder maps an input to itself, it can be used as an anomaly detector
by training it on “normal” data points. This means when it attempts to reconstruct an
anomalous point, the reconstruction will be poorer, and so the loss will be greater. One
can then use the value of the loss function to obtain an effective anomaly score on a point
by point basis. In Chapter 5 this is done in order to develop an effective anomaly detector.

One can use the latent space in order to obtain a dimensionally reduced representa-
tion of a given data point. The thought is that the latent space contains only the bare
information needed to reconstruct the sample, so the latent space can be thought of as
the “essence” of a given point. In Chapter 5 I experiment with training machine learning
models on dimensionally reduced latent space representations of LHC events and observe
a remarkable improvement in performance. In Chapter 7 a VAE is used to compress high
dimensional physics model parameters to a 2-D plane where trends can be observed and
exclusion limits can be drawn.

Up to this point autoencoders have been described, but not variational autoencoders.
A variational autoencoder [48] modifies each latent space node to map to two parameters
describing the mean and standard deviation of a Gaussian. These Gaussians are then
randomly sampled to feed forward into the following layer. This technique yeilds better
reconstruction, generalisation, and training speed over the traditional method. Figure 4.4
shows the architecture of a typical VAE. The loss function of a VAE can vary, just as
with any neural network, however it will always attempt to map its output to the given
input. Additionally, VAE’s ensure regularisation within the latent space through the use
of a Kullback-Leibler (KL) divergence term [49]. This means that the latent space is both
continuous, meaning that two close points in the latent space should be close in the original
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Figure 4.4: A diagram of the architecture of a Variational Autoencoder
(VAE). In this case xi is the input, and yLi is the reconstructed value of xi.

This particular VAE has a 3 dimensional latent space.

space, and complete, meaning that for any given point sampled from the latent space,
the reconstructed output should be “meaningful”. The KL divergence term is calculated
between the latent distribution q(z|x) = N (z|µ(x),Σ(x)), where Σ = diag(σ2

1, ..., σ
2
n),

and the latent prior: p(z) = N (0, I). This term can intuitively be thought of as the
information gain if one were to use the latent distribution q(z|x) instead of p(z). The KL
divergence is defined as:

KL[q(z|x)||p(z)] = 1
2

[
−
∑
i

(log σ2
i + 1) +

∑
i

σ2
i +

∑
i

µ2
i

]
. (4.19)

A very basic VAE loss function could look something like

L = β(xn − yn)2 + (1 − β)
d∑
i

KL(N (µi, σi),N (0, 1)), (4.20)

where d is the dimensionality of the latent space, and β is a term set by the user, de-
termining the weight of the reconstruction term vs the KL term. This type of VAE is
typically referred to as a β-VAE.

Now that the fundamentals of machine learning have been explored, especially β-
VAE’s, let us look at an application to a physics problem. BSM physics searches at the
LHC have utilised machine learning in a variety of ways in the past, but have mostly
been done in a supervised fashion. In the following chapter I explore using unsupervised
anomaly detection to search for BSM signatures, allowing one to perform an analysis in
a signal-agnostic fashion.
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5 Combining Anomaly Detection
Algorithms For BSM Physics
Searches

Recent searches at the ATLAS and CMS experiments of the LHC have not yet uncovered
evidence of BSM physics. Recall from Chapter 3 that in a standard BSM search at the
LHC, one must begin with a signal definition which is then optimised on, removing as much
of the Standard Model background as possible to uncover the signal. This method has a
high efficiency for signals that resemble the model chosen for optimisation, but requires
one to already know what to look for. If nature has not chosen the same Standard Model
extension as the signal definition, the search is not guaranteed to find anything. A basic
outline of the steps involved in this method are as follows.

1. Select a signal and final state.

2. Model all relevant background processes (for example, by Monte Carlo or data-
driven methods).

3. Optimise kinematic selections on functions of the four momenta in the given final
state, to define regions of the data that have a high signal-to-background ratio for
the simulated signal.

4. Compare a detailed background estimate in the signal regions with the observed
yield in the LHC data, and determine the statistical significance of any noted excess.

In this chapter I recap and expand upon my paper on unsupervised machine learning
[50], in which I propose using a “signal agnostic” search method in which one merely
looks for non-standard-model-like processes instead of searching for an assumed signal
model. As briefly discussed in Chapter 4, and explored in Ref. [51], this is possible to
do using unsupervised machine learning, namely anomaly detection. Machine learning
anomaly detection has been used in a high energy physics context in Ref. [52] however
while this approach is weakly supervised, the method detailed in this thesis is entirely
unsupervised. The process that I propose is similar to the method detailed prior, but with
a few key changes. Note that it is necessary to apply a minimal preselection to ensure
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that selected events are compatible with detector trigger requirements. It is also arguably
easier to search each final state separately in order to uncover anomalies, to make the
background estimation easier to obtain in each search. This does introduce some model
dependence, but this preselection is intentionally kept minimal so as to introduce as little
model dependence as possible. The procedure is as follows:

1. Model background processes, creating training and testing datasets.

2. Apply a minimal preselection.

3. Train an unsupervised anomaly detection algorithm on the simulated background
and obtain an “anomaly score” calculator.

4. Calculate the anomaly scores for both the simulated background and observed LHC
data.

5. Compare the event yield in the high anomaly score regions of the simulated back-
ground with the observed yield in the LHC data, and determine the statistical
significance of any noted excess.

This technique aims to have an unsupervised machine learning algorithm learn the
Standard Model background and then, on an event by event basis, assign each event a
measure of anomalousness. This allows one to distinguish between non-SM events and
background events without making any signal assumptions. Using this method, one can
identify interesting regions of the parameter space for further model dependant searches.
It is also important to note that while this method could identify new physics on its own,
it gives no explanation for the anomalies that one might find so further analysis will be
required.

5.1 Dataset

While this technique is designed to provide a model-independent approach to LHC searches,
in order to assess its performance, I will test it on particular models of interest. A variety
of supersymmetric benchmark models are explored, using the supersymmetric signal and
SM background processes from the dataset published and described in Ref. [53].

The dataset consists of simulated proton-proton collision events akin to what is gen-
erated at the LHC with a centre of mass energy of 13 TeV. The signal and background
events are generated at leading order with up to two extra partons using Madgraph [34]
with the NNPDF PDF set [54] in the 5 flavour proton scheme. In order to add parton
showering to the parton-level samples Madgraph was interfaced with Pythia 8.2 [35] us-
ing MLM matching. Detector effects are simulated by Delphes 3 [36] using a modified
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version of the ATLAS detector card. FastJet [55] was used to perform jet clustering
with the anti-kt algorithm and a jet radius of R = 0.4. b-jets are tagged by Delphes in
a similar fashion to [56]. A summary of the supersymmetric benchmark models and SM
backgrounds used can be seen in Table 5.1 and 5.2 respectively.

Process Process ID σ (pb) Ntot (N10fb−1)
pp → g̃g̃ (1 TeV) Gluino 01 0.20 50000 (2013)
pp → g̃g̃ (1.2 TeV) Gluino 02 0.05 50000 (508)
pp → g̃g̃ (1.4 TeV) Gluino 03 0.014 50000 (144)
pp → g̃g̃ (1.6 TeV) Gluino 04 0.004 50000 (44)
pp → g̃g̃ (1.8 TeV) Gluino 05 0.001 50000 (14)
pp → g̃g̃ (2 TeV) Gluino 06 4.8 × 10−4 50000 (5)
pp → t̃1t̃1 (220 GeV), mχ̃0

1
= 20 GeV Stop 01 26.7 500000 (267494)

pp → t̃1t̃1 (300 GeV), mχ̃0
1

= 100 GeV Stop 02 5.7 500000 (56977)
pp → t̃1t̃1 (400 GeV), mχ̃0

1
= 100 GeV Stop 03 1.25 250000 (12483)

pp → t̃1t̃1 (800 GeV), mχ̃0
1

= 100 GeV Stop 04 0.02 250000 (201)

Table 5.1: Summary of the supersymmetric benchmark models that are
used to test each method. The details include the production cross-section
at

√
s = 13 TeV, the number of events that were generated, and the number

of events expected in 10fb−1 of LHC data [53].

The data is stored in a one-line-per-event csv file, with each event having a weight of
1. Each line consists of a number of final-state physics objects, defined in Table 5.3. Each
final state object is subject to a handful of requirements:

• jet or b-jet: pT > 20 GeV and |η| < 2.8,

• electron/muon: pT > 15 GeV and |η| < 2.7,

• photon: pT > 20 GeV and |η| < 2.37.

Once these checks on each final state object have been satisfied, a given event is stored
only when it meets at least one of the following critera:

• At least one jet or a b-jet with transverse momentum pT > 60 GeV and pseudora-
pidity |η| < 2.8, or

• at least one electron with pT > 25 GeV and |η| < 2.47, except for 1.37 < |η| < 1.52,
or

• at least one muon with pT > 25 GeV and |η| < 2.7, or

• at least one photon with pT > 25 GeV and |η| < 2.37.
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Process Process ID σ (pb) Ntot (N10fb−1)
pp → jj njets 19718HT>600GeV 415331302 (197179140)
pp → W±(+2j) w_jets 10537HT>600GeV 135692164 (105366237)
pp → γ(+2j) gam_jets 7927HT>600GeV 123709226 (79268824)
pp → Z(+2j) z_jets 3753HT>600GeV 60076409 (37529592)
pp → tt̄(+2j) ttbar 541 13590811 (5412187)
pp → W±t(+2j) wtop 318 5252172 (3176886)
pp → W±t̄(+2j) wtopbar 318 4723206 (3173834)
pp → W+W−(+2j) ww 244 17740278 (2441354)
pp → t+ jets(+2j) single_top 130 7223883 (1297142)
pp → t̄+ jets(+2j) single_topbar 112 7179922 (1116396)
pp → γγ(+2j) 2gam 47.1 17464818 (470656)
pp → W±γ(+2j) Wgam 45.1 18633683 (450672)
pp → ZW±(+2j) zw 31.6 13847321 (315781)
pp → Zγ(+2j) Zgam 29.9 15909980 (299439)
pp → ZZ(+2j) zz 9.91 7118820 (99092)
pp → h(+2j) single_higgs 1.94 2596158 (19383)
pp → tt̄γ(+2j) ttbarGam 1.55 95217 (15471)
pp → tt̄Z ttbarZ 0.59 300000 (5874)
pp → tt̄h(+1j) ttbarHiggs 0.46 200476 (4568)
pp → γt(+2j) atop 0.39 2776166 (3947)
pp → tt̄W± ttbarW 0.35 279365 (3495)
pp → γt̄(+2j) atopbar 0.27 4770857 (2707)
pp → Zt(+2j) ztop 0.26 3213475 (2554)
pp → Zt̄(+2j) ztopbar 0.15 2741276 (1524)
pp → tt̄tt̄ 4top 0.0097 399999 (96)
pp → tt̄W+W− ttbarWW 0.0085 150000 (85)

Table 5.2: Summary of the background processes included in the analy-
sis. The details include the production cross-section at

√
s = 13 TeV, the

number of events that were generated, and the number of events expected
in 10 fb−1 of LHC data [53]. Note that for the njets, w_jets, gam_jets,
and z_jets backgrounds, the cross section is only calculated with an HT

cut of 600 GeV applied.

Where the electron η restrictions emulate a veto in the crack regions of the detector,
which are often applied in ATLAS analyses. These requirements are unrealistic in terms
of what a real experiment could afford to record after the online trigger system, however
the aim of this dataset is to be a flexible resource that allows for many types of studies
and selection criteria.

Table 5.2 displays a summary of the SM background processes generated for this
dataset. For each process, the total number of generated events (Ntot) is greater than
the number of events required for 10 fb−1 of data (N10fb−1). In order to ensure that the
background data generation is sensible, I present Figures 5.1-5.4, which show stacked
histograms for the E, pT , η, and ϕ of jets and leptons for each background process.
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Symbol ID Object
j jet
b b-jet
e- electron (e−)
e+ positron (e+)
m- muon (µ−)
m+ antimuon (µ+)
g photon (γ)

Table 5.3: Definition of symbols used to refer to the final-state objects.

Figure 5.5 displays the stacked histograms for the number of jets and leptons. Figure 5.6
shows the Emiss

T and ϕEmiss
T

histograms, and Figure 5.7 shows the HT distribution. Note
that for Figure 5.7 events with HT < 600 GeV have been removed. For the other figures
no restriction on HT is placed, except for njets, which has HT > 600 GeV. The w_jets,
gam_jets and z_jets backgrounds all have HT > 100 GeV.

Each event is formatted as follows:

event ID; process ID; event weight; MET; METphi; obj1, E1, pt1, eta1,
phi1; obj2, E2, pt2, eta2, phi2; . . .

event ID is an event specifier, used to identify the generation of that particular event,
and is used for debugging and reproducability. process ID is a string that identifies
the physical process that generated the event. MET and METphi are the magnitude of
the missing transverse energy Emiss

T , and its azimuthal angle ϕEmiss
T

. Recall that Emiss
T

refers to the transverse energy of objects that escaped detection by the detector, such as
neutrinos and weakly interacting stable particles. obj1, obj2,... refer to the particle
identifiers listed in Table 5.3, and E1, pt1, eta1, phi1 refer to the energy E, transverse
momentum pT , pseudorapidity η, and azimuthal angle ϕ of the first physics object.
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Figure 5.1: Transverse momentum pT (left) and energy E (right) in GeV
of the jets for all backgrounds.
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Figure 5.2: Pseudorapidity η (left) and azimuthal angle ϕ (right) of the
jets for all backgrounds.
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Figure 5.3: Transverse momentum pT (left) and energy E (right) in GeV
of the leptons (e+, e−, µ+, µ−) for all backgrounds.
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Figure 5.4: Pseudorapidity η (left) and azimuthal angle ϕ (right) of the
leptons (e+, e−, µ+, µ−) for all backgrounds.

The following supersymmetric benchmark model points are chosen for their differing
behaviour and while some have been excluded by dedicated ATLAS and CMS searches,
they still provide adequate benchmarks to test these unsupervised anomaly detection
techniques. The first set of BSM models involves supersymmetric gluino pair production,
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Figure 5.5: Number of jets (left) and leptons (right).
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Figure 5.6: Missing transverse energy Emiss
T in GeV and azimuthal angle

ϕEmiss
T

for all backgrounds.
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Figure 5.7: The scalar sum of the jet transverse momenta HT in GeV for
all backgrounds, with HT > 600 GeV imposed.

with each gluino subsequently decaying to a boosted top-quark pair and the lightest
neutralino, which is stable by assuming R-parity conservation. The gluinos are assumed
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to have a mass of 1-2.2 TeV (in steps of 200 GeV), while the neutralinos have a mass of
1 GeV. The branching ratio of the decay process g̃ → tt̄χ̃0

1 is taken to be 100%.
In the second scenario two stop quarks (t̃1) are produced, with each stop decaying

into an on-shell top quark and a lightest neutralino (t̃1 → tχ̃0
1). Four different benchmark

scenarios have been chosen. In the first model, the lightest neutralino has a mass of 20
GeV and the lightest stop has a mass of 220 GeV. In the other models, the mass of the
lightest neutralino is 100 GeV and the stops have masses of 300, 400 and 800 GeV.

Although the production cross-section for the lowest-mass stop quark model is the
highest out of all assumed signal hypothesis, it is actually the most difficult model to
discover using traditional search methods. The mass difference of the t̃1 and χ̃0

1 is close
to the mass of the top quark, which makes the kinematics very similar to those of the
background. The techniques described in the next section are designed to find anomalies,
but this model does not result in an obviously anomalous signal. Therefore, it is to be
expected that the techniques will show least sensitivity to the 200 GeV stop scenario, al-
though this might be compensated for by the fact that its cross section is the highest. On
the other hand, the gluino signals are more anomalous as they result in four top quarks
and a sizable missing transverse energy. This is a rare final state for SM production, and
since the 1 TeV gluino carries the highest production cross-section, it is to be expected
that this scenario will be the easiest.

The csv file is modified to better enable the training of each algorithm. All data is first
zero-padded so every event has the same dimensionality. Next, the continuous data and
the categorical data are split and the number of objects in the events is counted. From
this, the following event structure is defined:

x =

N,

c0

c1
...
c19

 ,


(pT , η, ϕ)0

(pT , η, ϕ)1
...

(pT , η, ϕ)19



 . (5.1)

In this vector, N is the number of objects in the event, ci is the object type as a one-
hot encoded vector, pT is the transverse momentum, η the pseudorapidity and ϕ the
azimuthal angle of an object. This layout is used to train the unsupervised machine
learning algorithms on the 4-vector representations of the data. When the non-VAE
techniques are trained on the latent space variables of the VAE, it is still true to say that
the starting point for the analysis is this 4-vector representation.

Each background is split into two subsets, 80% in a training/validation set and the
remaining 20% in a testing set. The training/validation split ratio is also 80/20. The
preselection for the preliminary results using the stop and gluino signals is as follows:
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• Emiss
T ≥ 150GeV,

• ≥ 4 jets,

• HT ≥ 600GeV.

5.2 Machine Learning Algorithms

The following algorithms are used for unsupervised anomaly detection. Note that a de-
tailed hyperparameter scan has not been conducted for these algorithms, and the perfor-
mance could potentially be improved by doing so. Nonetheless, these algorithms are able
to successfully identify anomalies with their current architectures.

5.2.1 Isolation Forests

First outlined in Ref. [57], “Isolation Forest” is an unsupervised learning algorithm that
assigns each point in a dataset a value based on the ease in which it is isolated from
the other points in the dataset. It is attractive due to its simple concept, linear time
complexity and low memory requirement.

Given a set of data X = {x1, x2, ... , xn} from a d-variate distribution, one first
randomly chooses an attribute q, and a “split value” p which lies between the maximum
value and minimum value of q. If, for each instance in the dataset, q < p, the point is
placed in a set of points called Xl whilst, if q ≥ p, it is placed in a set called Xr. This
process is repeated recursively, until value xi is isolated (or if a limit imposed on the
number of splits is reached). The sequence of splits generated are called “trees”, and the
number of splits in them is called the “path length” of the tree. Each split is a “node”
of the tree, nodes which do not begin or end trees are “internal”, and those which do are
“external”.

Anomalies are by definition “few and far between” thus an anomaly should on average
require a fewer number of splits to become isolated. This measure of anomalousness is
therefore defined via the average path length of the trees. This average path length is
normalized using:

c(n) = 2H(n− 1) −
(

2(n− 1)
n

)
(5.2)

where n is the total number of external nodes in a tree and H(i) is the harmonic number
(approximately ln(i) + 0.5772156649). The anomaly score of a point x is then defined as:

s(x, n) = 2− E(h(x))
c(n) , (5.3)
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where h(x) is the path length, and E(h(x)) is the mean path length of all trees constructed
for x. Empirically it is found that s ≈ 1 implies a high level of anomalousness, s ≈ 0
indicates no anomaly at all and, if the whole sample generates s ≈ 0.5, the entire sample
is likely devoid of anomaly.

Note that the normalisation used by scikit-learn sets s ≈ −1 to be indicative of no
anomaly at all, and s ≈ 1 to be indicative of a high level of anomalousness. This means
that if the whole sample generates s ≈ 0, the entire sample is likely devoid of anomaly.

5.2.2 Gaussian Mixture Models

The job of clustering a set of data into smaller subsets can be thought of as an expecta-
tion minimization problem, that is to pose the question “what is the distribution, or set
of distributions, from which this set of data was most likely randomly sampled?”. Mix-
ture models are a methodology by which one can approximate the most accurate set of
N-dimensional statistical distributions which represent a cluster of data and its substruc-
ture. Specifically, Gaussian Mixture Models (GMMs) [58] are an implementation of this
methodology where the statistical distributions being fitted are N-dimensional Gaussian
distributions.

To do this, a vector of latent variables, denoted γ, is defined. This vector represents, for
each datapoint, the corresponding probability that it was generated by a given Gaussian.
This is often referred to as the distribution having ‘responsibility’ for that data point.
The job is then to maximize the overall probability of the full dataset being generated
from the fitted distributions:

log p(X|Θ) = log
{∑

i

p(X, γi|Θ)
}

(5.4)

where ‘X’ is the dataset and Θ is the set of parameters of the distributions being fit to.
Maximising the left hand side of the equation can be very tricky and so is generally done
using the Expectation-Maximisation (EM) algorithm.

Expectation-Maximisation Algorithm

There are two steps to the EM algorithm, the expectation step (E-step) and the maximi-
sation step (M-step). If the probability of a given point being sampled from the GMM is
given by p(x), the posterior distribution of the responsibilities that each Gaussian has for
each datapoint can be written as γ(znk). The probability p(x) is given by:

p(x) =
K∑
k=1

πkN(x|µk,Σk) (5.5)
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where there are K Gaussian’s with weights π⃗, means µ⃗, and variances Σ⃗. Using this one
can write:

γ(znk) = πkN(xn|µk,Σk)∑K
j=1 πjN(xn|µj,Σj)

(5.6)

for the posterior distribution of the responsibilities that each of the K Gaussians have for
each of the N datapoints.

Once the posterior has been calculated, the parameters of each Gaussian can be esti-
mated defined by:

µ′
k = 1

Nk

N∑
n=1

γ(znk)xn (5.7)

Σ′
k = 1

Nk

N∑
n=1

γ(znk)(xn − µ′
k)(xn − µ′

k)T (5.8)

π′
k = Nk

N
(5.9)

Nk =
N∑
n=1

γ(znk) (5.10)

where the primes on π, µ and Σ denote that they are updated versions of the previous
parameters. Finally with the updated parameters the new log-likelihood can be calculated:

log p(X|µ,Σ, π) =
N∑
n=1

log
{

K∑
k=1

πkN(xn|µk,Σk)
}

(5.11)

However this equation 5.11 is a stumbling block as described above, so instead, a lower
bound is calculated using “Jensen’s Inequality” [59] which takes the form:

L =
N∑
n=1

K∑
k=1

E[zn,k](log πk + log N(xn|µk, σk)) −
N∑

n=1

K∑
k=1

E[zn,k] log E[zn,k] (5.12)

Whilst this equation may appear more complicated the equation contains only the sum
of log terms, and not the log of summed terms.

Once this is done, the process is performed iteratively until some stopping point defined
by the user is reached. The resulting parameters define the distributions which best
classify the data and its substructure. The Gaussian mixture model used in this chapter
uses 10 Gaussian components.
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5.2.3 Neural networks

Recall Section 4.2 where the workings of a simple neural network were explored in great
detail. Additionally, their use in anomaly detection problems was briefly considered.
In this chapter two neural networks are used for anomaly detection and dimensional
reduction purposes. A simple static autoencoder is used as an anomaly detector, and a
more sophisticated variational autoencoder is used as both an anomaly detector and a
dimensional reduction tool.

Autoencoders

Autoencoders are a special class of neural networks where the input and output of the
network are equal. This means autoencoders can be trained without labels in an un-
supervised fashion. The loss function typically is the reconstruction loss: the difference
between the output and input, quantified by, for example, the mean squared error on
every dimension of the data. Generally, the number of hidden neurons in the neural net-
work first decreases and then increases again, so the data needs to be squeezed in a lower
dimensional representation. The lowest dimensional representation, usually in the middle
of the network, is called the latent space. If the latent space dimensionality is too high,
the neural network can simply learn the identity function to make the output equal to the
input. When it is too low, too much information needs to be removed in order to have a
good reconstruction ability. The part of the network that transforms the input to latent
space representation is called the encoder, while the part of the network that transforms
the latent space representation to output is called the decoder.

If the latent space dimensionality is just right, the input data is transformed into a
(highly correlated) lower dimensional representation with only relevant information that
is required for reconstruction of the original input. If an autoencoder is trained on a
dataset without any anomalies and applied to a dataset with both normal and anomalous
data, the autoencoder will have a low reconstruction loss for the normal events and a
high reconstruction loss for the anomalous events. This is because the anomalous events
are different from the normal events, and thus are placed in unexpected locations in the
latent space. These anomalous events are then reconstructed badly. An autoencoder can
thus be used as an anomaly detector [60].

In this work, an autoencoder is used as an anomaly detector to distinguish signal
events from the Standard Model background. The autoencoder is defined to have 5
hidden layers, with 40, 20, 8, 20 and 40 nodes, respectively as shown in Figure 5.8.
This shape is modelled after Ref. [61]. The loss function used is a Sliced Wasserstein
Distance Metric [62]. The Wasserstein Distance (sometimes referred to as “Earth Movers
Distance” or “EMD”) between two points can be thought of as the minimum amount of
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Figure 5.8: The structure of the autoencoder used in this analysis.

energy required to transform one into the other. It is a useful tool as it metrizes the energy
flow between two events. The Sliced Wasserstein Distance is the Wasserstein Distance
between a projection of the data onto a 1-D distribution. It has similar properties to the
Wasserstein Distance metric, and is more computationally efficient.

Variational Autoencoder

A variational autoencoder, differs from a static autoencoder within its latent space. In
a VAE, the encoder outputs two numbers per latent space dimension, which represent
the mean and standard deviation of a Gaussian distribution (see Figure 5.9). The de-
coder works by taking a random sample of this distribution and decoding the sample
back into the original input. Variational autoencoders have been used in particle physics
applications to great effect in Ref. [63].

Figure 5.9: The structure of a VAE

The loss function in the VAE used in this chapter is constructed such that the KL-
divergence [64] between these Gaussians and a standard normal distribution is as low as
possible. The loss function of a VAE then is given by a function that encodes the ability
to reconstruct the original data point, and a KL-divergence term. The former encourages
optimal reconstruction, while the KL-divergence term forces ordering within the latent
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space: all input should be encoded as close as possible to 0⃗ within the latent space. The
relative importance of these two terms can be tuned with a β term. In this work a range
of values of beta are explored. These β values range from 10−5 to 1, incrementing by
order of magnitude in order to determine the optimal weighting of these two terms.

The reconstruction loss consists of three different components: a mean squared error
on the number of objects xn, a-mean-squared error on 4-vector terms (x⃗r,i = pT , η or ϕ),
and a categorical cross-entropy (see e.g. from Ref. [65]) on the categorical variables xc,i
that represent different objects in an event (jet, b-jet, electron, etc.). The total loss
function of the VAE is then defined as

L = 100β (xn − x̂n)2 (5.13)

+ β

dr

dr∑
i

(xr,i − x̂r,i)2

− 10β
dc

dc∑
i

(xc,ilog(x̂c,i) + (1 − xc,i)log (1 − x̂c,i))

+ (1 − β)
dz∑
i

KL (N (µ̂i, σ̂i),N (0, 1)) .

Here, x̂n represents the predicted number of objects, x̂r,i represents the i-th predicted
regression label, x̂c,i represents the i-th predicted categorical label, dr represents the num-
ber of regression variables, and dc represents the dimensionality of the categorical data.
The relative importance of each of these contributions to the loss function is indicated
by β. The total reconstruction loss is given by the first three terms, and the last com-
ponent is the KL-divergence loss term. The three components of the reconstruction loss
are not equally important, and as such they are weighted with numerical factors. The
anomaly score of an event is given by the reconstruction loss term (the first three lines of
Equation 5.13).

The architecture consists of 3 fully-connected hidden layers for the encoder and de-
coder, each containing 512, 256 and 128 nodes for the former, 128, 256 and 512 nodes for
the latter, and a 13 dimensional latent space. The activation function used between the
hidden nodes is the exponential linear unit (ELU) [66].

It is possible to use a VAE as a dimensional reduction technique by passing a point
into the encoder and obtaining its latent space representation. In this chapter I explore
using the VAE as both a dimensional reduction technique and an anomaly detector.
Using a VAE to dimensionally reduce MC events has the benefits of SM events being
compressed differently to BSM events (as the VAE is trained on SM events), drawing out
more difference between them. Additionally, many of the algorithms detailed above work
more effectively in low dimensional spaces, so a significant increase in performance can
be expected. The performance of training on 4-vectors is compared to training within
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the latent space of this VAE in Section 5.4. If the anomaly scores yielded from each
algorithm are not perfectly correlated with each other, there is information to be gained
from combining them. In Section 5.3, various combination techniques are defined which
are then explored in Section 5.4. I propose that by training algorithms within the latent
space of the VAE and then combining the anomaly scores, a better performing anomaly
score can be obtained.

5.3 Methodology of Combination Techniques

Now that each algorithm tested in this chapter has been explained, the process can be
summarised as such:

1. Define a Variational Autoencoder.

2. Train it on a subset of the background data (80/20 split for training/testing).

3. Pass the remainder of background data + signal through VAE and obtain latent
space representations for each event.

4. Train further anomaly detection algorithms on the latent space representations of
the background events (Isolation Forest (IF), Gaussian Mixture Model (GMM),
Static Autoencoder (AE)) (50/50 split for training/testing).

5. Pass the remaining background and signal events through these algorithms, obtain-
ing 5 measures of anomalousness for each event. (VAE reconstruction loss, IF mean
path length, GMM log likelihood, AE reconstruction loss).

6. Normalise each anomaly score to uniform background efficiency.

7. Perform various combinations. Logical AND/OR, Average and Product.

8. Construct ROC curve and compare the area under the curve (AUC), and signal
efficiencies at various background efficiencies.

5.3.1 Normalisation of Anomaly Scores

In order to combine these anomaly detection techniques, they must be normalised to
uniform background efficiency. This solves an issue of scale as the output from the isolation
forest is bounded by −1 ≤ x ≤ +1, whereas the Gaussian mixture model log likelihood
is bounded by 0 ≤ x ≤ ∞. This also removes shape-dependent effects, for example the
autoencoder distribution has a very long tail where the isolation forest distribution does
not. For each anomaly score distribution a function fi(x) is constructed which returns the
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background efficiency at a given anomaly score value x for the ith algorithm. Let gi(x)
represent the number of background events with anomaly score greater than x for the ith
algorithm, and Nbkg be the total number of background events. This function fi(x) is
then given by:

fi(x) = gi(x)
Nbkg

(5.14)

The signal and background datasets are then normalised by computing f(x) for each
signal and background anomaly score.

5.3.2 Combination Methods

In this chapter AND, OR, product, and averaging combinations are explored using the nor-
malised representations of the anomaly scores from each algorithm. For a given event, let
the anomaly score normalised to uniform background efficiency be xi for the ith anomaly
detection algorithm. The combinations are defined as follows:

• AND: xAND = min(xi)

• OR: xOR = max(xi)

• Product: xproduct = ∏
i xi

• Average: xaverage = 1
N

∑
i xi

where N is the number of algorithms being used.
It is important to note that the technique of combining algorithms is not guaranteed

to always outperform a single algorithm. To demonstrate, let us consider the following
example where a signal event is represented as 1 and a background event is represented as
0. Imagine an algorithm (algorithm 1) that incorrectly classifies every background event as
signal and vice-versa. Consider a second algorithm (algorithm 2) that correctly classifies
every background (signal) event as background (signal). An OR combination of these
two algorithms will take the maximum value for each event - meaning every event will be
classified as signal. This of course performs worse than algorithm 2. Now lets consider
an AND combination, taking the minimum value for every event will classify every event
as background. This again performs worse than algorithm 2. This shows that indeed the
combination of algorithms is not guaranteed to outperform a single algorithm. This issue
is addressed in Chapter 6, where only combinations that improve the performance are
taken.
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5.4 Results

In the following section, I compare the performance of the aforementioned algorithms when
trained on 4-vector components and within the latent space of a VAE. The parameters that
are used for training are (ET , ϕ)miss, (E, pT , η, ϕ)jets, (E, pT , η, ϕ)bjets, (E, pT , η, ϕ)leptons,
(E, pT , η, ϕ)photons. Leptons can be positively or negatively charged electrons or muons. In
the first approach (Section 5.4.1), all algorithms are trained on the same input data. In the
second approach (Section 5.4.2), the VAE training process is identical, but the remaining
algorithms are trained on the latent space representations of events. In both scenarios, the
combination methods are employed and yield improved results in some cases. A summary
of the considered machine learning algorithms can be found in Table 5.4.

Algorithm Anomaly-score definition
Isolation forest (IF, Section 5.2.1) Mean path length (Eq. (5.3))

Gaussian mixture model (GMM, Section 5.2.2) Log likelihood (Eq. (5.11))
Static autoencoder (AE, Section 5.2.3) Sliced Wasserstein Distance [62]

Variational autoencoder (VAE, Section 5.2.3) Reconstruction loss
(first three lines of Eq. (5.13))

Table 5.4: Summary of the considered ML algorithms and the definition
of their anomaly scores.

5.4.1 Results Trained on 4-Vector Components

Figure 5.10 displays ROC curves for algorithms trained on the 4-vector components of
background events for the gluino signals detailed in 5.1. ROC curves are computed by
taking a number of cuts in the anomaly score variable (or physical variable where one is
used) and at each one, calculating the true and false positive rates, denoted ϵS and ϵB.
The true positive rate, ϵS, is given by the percentage of signal events to the right of the
cut, while the false positive rate, ϵB, is given by the percentage of background events to
the right of the cut. The black dashed line indicates the point at which the number of
background events B = 100. The Z score at this point is denoted as

ZB = S√
S +B + (σBB)2

(5.15)

Where B is the number of background events (100), S is the number of signal events,
and σB is the assumed systematic uncertainty. A background event cut of 100 is chosen in
order to ensure that there are enough signal and background montecarlo events present.
To begin the analysis, zero systematic uncertainty is assumed (σB = 0) and a reasonable
value is introduced in Section 5.4.3.
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Figure 5.10: ROC curves for the gluino signals (Table 5.1) for the algo-
rithms applied on 4-vector representations, with on the horizontal (vertical)
axis the inverted false-positive (true-positive) rate. The ROC curves of IF,
GMM, AE and VAE (Table 5.4) are shown in pink, orange, dark green
and cyan respectively. The effective mass meff is shown in black, and com-
binations of the models are shown in blue (OR), red (AND), light-green
(Product) and brown (Average). The black dashed line indicates the inverse

false-positive rate at which B = 100.
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In Figure 5.10 it is clear that, when using the Z100 metric, the VAE out performs
all other algorithms trained on 4-vector components. These algorithms are compared to
the effective mass meff = Emiss

T + ∑
jets pT , a common discriminating variable in con-

ventional gluino signal searches. While the VAE is by far the strongest discriminator,
the OR combination also provides a fair separation between signal and background. The
isolation forest especially does not perform well when trained on these 4-vector repre-
sentations. This can be explained by the fact that dividing up the 4-vector space does
not necessarily isolate anomalous events since anomalies generally appear as non-trivial
functions of these 4-vector components. The static autoencoder and Gaussian mixture
models perform slightly better as they involve defining non-linear functions of the input
variables. The AND, sum and product combinations’ lacklustre performance is due to
the poor results yielded from the isolation forest, Gaussian mixture model, and static
autoencoder algorithms in these low background regions. As the gluino mass increases
statistical power is lost due to the gluino cross section decreasing.

Figure 5.11 displays the ROC curves for algorithms trained on the 4-vector components
of background events for the stop signals detailed in 5.1. These signals are significantly
more difficult to isolate than the gluino signals, as the kinematics of stop decays are quite
similar to those of top decays when their masses are similar (as is the case for Stop 01).
The physical variable used here is mb,min

T =
√

2pbTEmiss
T [1 − cos ∆ϕ(pbT , pmiss

T )], which is a
common discriminating variable for stop signal searches. These figures show that when
using the Z100 metric, the OR combination method consistently yields the best results of
all the machine learning algorithms. The VAE is consistently very close behind and the
GMM also provides fair separation, although decidedly poorer than the performance of
the VAE. The poor performance of the isolation forest can be explained in a similar fashion
to the case of the gluino signals, while the static autoencoder is essentially a simpler, less
flexible VAE so it makes sense that its performance is significantly poorer. Surprisingly,
the best results are for the case of Stop 01, the signal that is the most kinematically similar
to the dominant background. While the signals become more kinematically distinct from
the background as the stop mass increases, the cross section also dramatically decreases,
making it infeasible to pull the signal from the background using these techniques. Notice
that for the Stop 04 signal, the physical variable mb,min

T outperforms all other algorithms.
While the sensitivity is very low, this is an indication that some discriminating informa-
tion is present in this physical variable that the anomaly detection algorithms have not
identified.
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Figure 5.11: ROC curves for the stop signals (Table 5.1) for the algo-
rithms applied on 4-vector representations. For further information see

Figure 5.10. The physical variable that is used here is mb,min
T .

5.4.2 Results Trained Within the Latent Space of a VAE

Let us now consider the case of training the aforementioned anomaly detection algorithms
(IF, GMM, AE) on the 13 dimensional latent space representations of events instead of
raw 4-vector components. These latent space variables are non-linear functions of the
input variables and can be thought of as containing the “essence” of a given event com-
pressed into 13 variables. The VAE training process remains unchanged from the previous
section. The performance of these algorithms is expected to improve in the latent space
of the VAE, if for no other reason than the dimensionality of the problem has reduced.
However it is to be expected that the VAE will compress anomalous events differently
from a typical event, meaning that the differences between signal and background events
will be magnified in this new space.
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Figure 5.12: ROC curves for the gluino signals (Table 5.1) for the algo-
rithms applied on latent space representations. For further information see

Figure 5.10.

Figure 5.12 displays the ROC curves for algorithms trained on latent space represen-
tations of background events for the gluino signals detailed in Table 5.1. Immediately it
becomes clear that the performance of the isolation forest, Gaussian mixture model, and
autoencoder have dramatically improved, however they do not outperform the VAE. The
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various combination methods all perform at least on par with the VAE, with the AND
combination consistently performing the best.

Figure 5.13: Anomaly score histograms derived from various algorithms
for Gluino 01. The horizontal axis shows the anomaly score, and the his-
togram counts the number of events normalized to 36 fb−1 in each bin. The
various colours indicate different backgrounds, while the black data points

show the signal.

Figure 5.13 displays histograms of the anomaly score variable for the VAE, isolation
forest, autoencoder, and Gaussian mixture model for the gluino 01 signal. The back-
ground and signal are plotted separately, with the final bin as an overflow bin to show
the performance of each algorithm on its own. These histograms would never be possible
to construct in an experiment and are merely tools to observe the trends within each
algorithm. These figures reveal that, while the exact shape of the histogram is different
for each algorithm, the general trend is the same. The background is clustered in the low
anomaly score region, and the signal tends to be clustered more in the higher anomaly
score regions.
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Figure 5.14: ROC curves for the stop signals (Table 5.1) for the algo-
rithms applied on latent space representations. Labeling is the same as in

Figure 5.10.

Figure 5.14 displays the ROC curves for algorithms trained on latent space repre-
sentations of background events for the stop signals detailed in Table 5.1. Similar to
the gluino results, a significant improvement in performance can be observed for the al-
gorithms trained on latent space representations compared to those trained on 4-vector
components, though none of them outperform the VAE on their own. Using the Z100 met-
ric, the AND combination proves to be the most effective discriminator, with the VAE
following close behind. It is clear that this signal is significantly more difficult to separate
from the background which is to be expected, as stop decay can look very similar to top
decay in the case where the stop mass is similar to that of the top.

Figure 5.15 displays histograms of the anomaly score variable for the VAE, isolation
forest, autoencoder, and Gaussian mixture model for the Stop 01 signal. As with Fig-
ure 5.13, the signal and background are plotted separately, and setting the last bin as
an overflow bin. Observing the distribution, it becomes clear why the performance is
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Figure 5.15: Anomaly score histograms derived from various algorithms
for Stop 01.

worse for this signal, as the shape of the signal histogram is very similar to that of the
background, though it is shifted slightly to the right. This reflects what is expected from
this scenario, especially for Stop 01 where the stop mass is quite low and the kinematics
of the signal are similar to the background.

5.4.3 Summary

Now that the performance of each algorithm on each signal has been examined in de-
tail, let us zoom out and assess these findings. Figure 5.16 displays the Z100 values for
each algorithm trained on 4-vector components and latent space representations for each
signal, as well as the physical variables used for each signal. From this it is clear that
the performance of the IF, GMM, and AE algorithms improves quite dramatically when
trained on latent space representations. The most effective strategy for all signals tested
in this experiment is to train each algorithm on the latent space representations of events
and perform an AND combination. Figure 5.17 displays the same results with a 15%
assumed systematic uncertainty applied. With these conditions, all signals except for
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Figure 5.16: Z100 yielded from various algorithms applied to 4-vector
components and latent space representations. See Table 5.1 for the signal

definitions, and Table 5.4 for the definitions of the algorithms.

Gluino 01 are below discovery potential using this method, although Stop 01, Stop 02,
Gluino 01, and Gluino 02 are above the exclusion limit. This poor discovery potential is
not unexpected, as this analysis does not optimise on the signal. In order to gain any
discovery potential one must optimise quite heavily on a particular signal, and many of
the higher mass signals explored here would be difficult to discover even in a conventional
analysis.

However this technique may prove useful as a preliminary step in a conventional anal-
ysis. Figure 5.18 displays 2D histograms for various physical variables, and the AND
anomaly score for Gluino 01. These figures show that no significant correlation exists be-
tween these variables. To further demonstrate this point, Table 5.5 displays the Pearson
correlation coefficients between each of these variables. A score of ±1 indicates perfect
positive/negative correlation, while zero implies no correlation. All of the variables in
this table are very close to zero, showing that there is indeed minimal correlation. This
implies that the anomaly score could be used as the first selection of an LHC analysis,
perhaps at the trigger level, though this is beyond the scope of this thesis. This technique
would be applicable to a wide variety of BSM physics models, as it starts with very few
signal assumptions.
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Figure 5.17: Z scores yielded from various algorithms applied to 4-vector
components and latent space representations with a 15% relative systematic
uncertainty applied. See Table 5.1 for the signal definitions, and Table 5.4

for the definitions of the algorithms.

Dataset Emiss
T HT meff

Background 0.12 0.14 0.15
Gluino 01 0.032 -0.030 -0.017
Gluino 02 0.038 -0.057 -0.039
Gluino 03 0.041 -0.087 -0.063
Gluino 04 0.042 -0.11 -0.084
Gluino 05 0.043 -0.14 -0.11
Gluino 06 0.046 -0.16 -0.12
Stop 01 0.082 -0.0026 0.015
Stop 02 0.13 0.032 0.061
Stop 03 0.096 -0.029 0.0053
Stop 04 0.07 -0.10 -0.056

Table 5.5: Pearson correlation coefficients between the AND anomaly
score and various physical variables for the background and signal datasets
displayed in Figure 5.18. A value of 0 implies no correlation, and a value
of ±1 implies perfect positive/negative correlation. These values suggest
minimal correlation between the AND anomaly score and these physical

variables.
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Figure 5.18: 2D histograms associated with Gluino 01 for background
(left) and signal (right). Various physical variables are plotted on the y-
axis, with the anomaly score generated from the AND combination applied

in the latent space on the x-axis. The z-axis is log NEVENTS

5.5 Conclusion

Throughout this chapter I have detailed various machine learning and anomaly detection
algorithms and discussed their applications in LHC searches. I have constructed an al-
gorithm that assigns a measure of anomalousness on an event-by-event basis, with low
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anomaly score indicating “Standard Model like” and high anomaly score indicating “not
Standard Model like”. The anomaly detection algorithms explored in this chapter were
the isolation forest 5.2.1, Gaussian mixture model 5.2.2, static autoencoder 5.2.3, and
the variational autoencoder 5.2.3, with their anomaly scores defined in Table 5.4. The
data used to train each of these algorithms is the SM data set published in Ref. [53].
The dataset used to test the performance is a collection of supersymmetric benchmark
scenarios, consisting of a series of gluino and stop signals, detailed in Table 5.1. The
variational autoencoder was trained on 4-vector components. Each of the other algo-
rithms were trained on both 4-vector components, and on latent space representations
of events yielded from the variational autoencoder. In Section 5.4 the performance of a
given algorithm is measured by calculating Z100, the Z-score at a 100 background event
cut. It is important to note that the conclusions drawn in this chapter do not change
significantly when modifying this background cut. Using the Z100 metric, it has been
shown that by training these algorithms within the latent space of the VAE, a significant
improvement in performance is observed. The VAE on its own gives a very strong sep-
aration between signal and background in most cases, however I found that by utilizing
various combination methods this performance was able to be improved further. The four
combination methods explored in this chapter include AND, OR, product, and averaging
combinations. When trained on 4-vector components, the OR combination gives the best
performance for the stop quark, while the VAE gives the best result for the gluino case.
However when trained on latent space components, the AND combination outperforms
all other methods for both signals. In both the stop and gluino case these methods are
compared to common discriminating physical variables, meff for the gluino signal, and
mb,min
T for the stop signal, and observe that the anomaly detection techniques detailed

in this chapter consistently outperform them. To summarise, the most effective method
found in this chapter is as follows:

• Train a VAE on 4-vector components of SM background events.

• Train a variety of anomaly detection techniques on the latent space representations
of the aforementioned SM background events.

• Normalise the anomaly scores by background efficiency, and perform an AND com-
bination to determine the anomaly score on an event-by-event basis.

While this technique does not have discovery potential on its own, it has the advantage
of being signal-model independent. The anomaly score which I have developed is not
correlated with other commonly used physical variables such as Emiss

T , HT , and meff ,
suggesting that it could be used as an additional variable to perform signal region cuts. I
posit that this technique could be viable for use as the first selection in a standard LHC
analysis.
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6 The Dark Machines Anomaly
Score Challenge

This chapter, based on Ref. [67], expands on the comparison of techniques detailed in
the previous chapter by applying them, alongside a handful of techniques designed by
other groups, to a wide variety of BSM signal scenarios. This was carried out as a chal-
lenge organised by the Dark Machines collaboration [68], who seek to answer cutting edge
questions about dark matter using the most advanced data science techniques available,
especially machine learning. This challenge involved a number of groups who each devel-
oped anomaly detection algorithms with the aim of separating a number of BSM signals
from the SM background. Each group had access to the same datasets in order to ensure
consistency between groups.

6.1 Dataset

The background dataset used here is identical to that which was used in Chapter 5.
However all of the signal models are different, including a variety of SUSY and non-
SUSY BSM physics models designed to cover different regions of the parameter space.
Background and signal events are divided into 4 seperate channels designed to target
different types of BSM physics scenarios. Channel 1 focuses on hadronic activity with
large missing transverse energy, which is good for mono-jet dark matter signatures and
any strongly produced SUSY signals. Channel 2a and 2b require leptons, making them
more sensitive to electroweak signals. Channel 3 is the most inclusive, catching most of
the signals except some softer electroweak signals. The channels are defined as:

• Channel 1 (2.1 × 105 SM events):

HT ≥ 600 GeV, Emiss
T ≥ 200 GeV, Emiss

T /HT ≥ 0.2, (6.1)

with at least four (b)-jets with pT > 50 GeV, and one (b)-jet with pT > 200 GeV.

• Channel 2a (2.0 × 104 SM events):

Emiss
T ≥ 50 GeV, (6.2)
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and at least 3 muons/electrons with pT > 15 GeV.

• Channel 2b (3.4 × 105 SM events):

Emiss
T ≥ 50 GeV, HT ≥ 50 GeV, (6.3)

and at least 2 muons/electrons with pT > 15 GeV.

• Channel 3 (8.5 × 106 SM events):

HT ≥ 600 GeV, Emiss
T > 100 GeV. (6.4)

6.1.1 Signal Generation

For the signal scenarios, a series of SUSY and non-SUSY BSM physics scenarios are
examined. The first four detailed here involve a Z ′ particle, which is a hypothetical gauge
boson arising from extensions to the electroweak symmetry of the standard model.

• The Z ′ + monojet model [69, 70, 71] contains a 2 TeV Z ′ which decays fully invisibly
to 50 GeV Dirac dark matter. Dirac dark matter is form of dark matter that obeys
the Dirac equation [72]. This process is referred to as monojet_Zp2000.0_DM_50.0
throughout the chapter.

• The Z ′+W/Z model [69, 70, 71] also contains a 2 TeV Z ′, similarly decaying fully in-
visibly to 50 GeV Dirac dark matter. This process is referred to as monoV_Zp2000.0_DM_50.0
throughout the chapter.

• The Z ′ + single top process [69, 70, 71] contains a 200 GeV Z ′. This process is
referred to as monotop_200_A through out the chapter.

• The Z ′ in lepton-violating U(1)Lµ−Lτ [73, 74] process involves a 50 GeV Z ′ decaying
to leptons and neutrinos. There are two processes included, a 3-lepton final state
denoted pp23mt_50, and a 4-lepton final state denoted pp24mt_50.

• The R-parity violating SUSY (denoted ��R-SUSY) [75, 76] stop-stop process has pair
production of 1 TeV supersymmetric stops which decay to leptons and b-quarks.
This process is referred to as stlp_st1000 throughout the chapter.

• The��R-SUSY [75, 76] squark-squark process features 1.4 TeV squark pair production.
The mass of the neutralino is 800 GeV, and the squarks decay down to jets. This
process is referred to as sqsq1_sq1400_neut800 throughout the chapter.
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• The SUSY [77, 78, 79] gluino-gluino process involves the pair production of two
gluinos which decay into jets and neutralinos, yielding high missing energy. Two
mass benchmarks are examined. The first, denoted glgl1400_neutralino1100,
consists of 1.4 TeV gluinos and 1.1 TeV neutralinos. The second spectrum, denoted
as glgl1600_neutralino800, consists of 1.6 TeV gluinos and 800 GeV neutralinos.

• The SUSY [77, 78, 79] stop-stop process consists of pair produced stops decaying to a
top quark and a neutralino, yeilding high missing energy. The stop mass is 1 TeV and
the neutralino mass is 300 GeV. This is referred to as stop2b1000_neutralino300
throughout the chapter.

• The SUSY [77, 78, 79] squark-squark process consists of 1.8 TeV squarks decaying to
jets and neutralinos, yielding high missing transverse energy. The neutralino mass
is 800 GeV. This is referred to as sqsq_sq1800_neut800 throughout the chapter.

• The SUSY [77, 78, 79] chargino-neutralino processes involve the charged-current
production of a chargino and neutralino, with the chargino decaying to a W plus a
lightest neutralino (the LSP). Two different mass spectra are considered for this pro-
cess. The first, denoted as chaneut_cha200_neut50, consists of a 200 GeV chargino
and a 50 GeV neutralino. The second, denoted as chaneut_cha250_neut150 con-
sists of a 250 GeV chargino and a 150 GeV neutralino.

• The SUSY [77, 78, 79] chargino-chargino process involves the neutral current pair
production of charginos, decaying to aW plus a lightest neutralino. In this case three
different mass spectra are considered. The first, denoted as chacha_cha300_neut140
contains a 300 GeV chargino and a 140 GeV neutralino. The second, denoted as
chacha_cha400_neut60, has a much higher mass splitting, with a 400 GeV chargino
and a 60 GeV neutralino. The last spectrum, denoted as chacha_cha600_neut200,
is a much heavier scenario, with a 600 GeV chargino and a 200 GeV neutralino.

Each of these scenarios will not necessarily show up in every channel. The BSM models
that are present in each channel are summarised in Table 6.1.

6.1.2 Performance Metrics

Each algorithm, as detailed in Section 6.2, will assign an anomaly score on an event-
by-event basis. Recall from the previous chapter how a ROC curve is defined. In this
chapter a number of metrics are constructed to measure the discriminating power of a
given algorithm on a signal. The area under the curve (AUC) is a common metric used
to assess the performance of a classification algorithm. An AUC of 1 indicates perfect
classification, while an AUC of 0.5 indicates a random guess. An issue with using the AUC
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BSM process Channel 1 Channel 2a Channel 2b Channel 3
Z ′ + monojet × × ×
Z ′ +W/Z ×

Z ′ + single top × ×
Z ′ in lepton-violating U(1)Lµ−Lτ × ×

��R-SUSY stop-stop × × ×
��R-SUSY squark-squark × ×

SUSY gluino-gluino × × × ×
SUSY stop-stop × ×

SUSY squark-squark × ×
SUSY chargino-neutralino × ×
SUSY chargino-chargino ×

Table 6.1: BSM processes in each channel.

for these purposes is that the primary area of concern is the very low background efficiency
regions, where there are very few background events. Therefore the signal efficiency at
three low background efficiency working points is also used to assess the performance.
The four metrics used in this chapter are:

• Area under the Curve (AUC),

• The signal efficiency at ϵb = 10−2,

• The signal efficiency at ϵb = 10−3, and

• The signal efficiency at ϵb = 10−4.

Additionally combinations of these metrics are used later in this chapter to further explore
the performance of each algorithm on the signals.

6.2 Algorithms

The algorithms explored in this project were not all written by me so I will not go into any
great detail on them. The techniques explored in these other algorithms include Kernel
Density Estimation (KDE) [80], Gaussian Mixture Models (GMMs) [58], flow models [81],
(variational) autoencoders [82], and Generative Adversarial Networks (GANs) [83]. The
technique I submitted is similar to that which was explained in Section 5.2, but with a
few key improvements. Remember, the aforementioned algorithm follows the following
steps:

1. Define a VAE architecture.

2. Train it on a subset of the background data.
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Parameter Values
batch size [1000, 10000]
β term [1e−5, 1e−4, 1e−3, 0.01, 0.1]
latent space dimensions [4, 13, 20, 30]

Table 6.2: VAE model hyper-parameters.

3. Pass the remainder of background data + signal through the VAE and obtain the
latent space representations for each event.

4. Train further anomaly detection algorithms on the latent space representations of
the background events.

5. Pass the remaining background and signal events through these algorithms, obtain-
ing multiple measures of anomalousness for each event.

6. Normalise each anomaly score to uniform background efficiency.

7. Perform various combinations (logical and/or, average, and product).

8. Construct a ROC curve and compare the area under the curve (AUC), and signal
efficiencies at various background efficiencies.

Previously, the algorithms used in step 4 included the isolation forest (IF), Gaussian
mixture model (GMM), and static autoencoder (AE). For the Dark Machines anomaly
score challenge, I also introduced the k-means algorithm [84], a simple algorithm that
determines anomalousness by fitting a number of “centroids” to the dataset and defining
the anomaly score as the distance to the nearest centroid. Subsection 6.2.1 explains the
k-means algorithm in detail.

The other change made for the Dark Machines anomaly score challenge is that com-
binations are done by iterating through every possible combination of algorithms, and
picking the one with the highest AUC. Remember that a combination is not necessarily
going to be better than the algorithms that it is composed of. By only taking those that
improve the AUC, every combination is guaranteed to yield results at least as good as
the best performing single algorithm.

In training the VAE for this dataset, a small hyper-parameter scan was conducted.
This was done because it’s not immediately obvious what VAE architecture will yield the
best latent space structure for the training of the other techniques. By testing a number
of different architectures it is possible to determine the best setup for anomaly detection
within the latent space. A summary of these parameters is detailed in Table 6.2.
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6.2.1 k-means Clustering

The k-means clustering algorithm works as an anomaly detection algorithm by first iden-
tifying clusters within the training data and then identifying points that lie far from these
clusters. The k-means algorithm [84] is a simple clustering algorithm which attempts
to partition n points into k clusters. The choice of the number of “centroids” k is an
arbitrary one, which must be made on a case-by-case basis. The algorithm is as follows:

1. Initialization: The positions of the k centroids are chosen according to the k-
means++ algorithm [85]. The algorithm is as follows:

Take one centroid c1 chosen uniformly at random from X, where X is the dataset.
Then choose the remaining ci, with probability D(x)2∑

xϵX
D(x)2 where D(x) is the shortest

distance from a point x to the closest centroid that has already been chosen.

2. Assignment: Each point is assigned to its nearest centroid. One could use any
number of distance metrics for this step, however I have decided to simply use the
squared Euclidean distance.

3. Update: Recalculate the positions of the centroids as the mean of all points as-
signed to a given centroid. Steps 2 and 3 are repeated until a tolerance is passed.
In this algorithm the tolerance is the Frobenius norm of the difference in the cluster
centers of two consecutive iterations. The Frobenius norm of a matrix A is given by
||A||F = ⟨A,A⟩ =

√∑
i=1

∑
j=1 |aij|2. In this experiment the tolerance is set to be

10−4.

The k-means clustering algorithm is very fast and has very low memory requirements.
However it can fall into local minima, making it beneficial to run it multiple times. The
anomaly score of a given point is then given as the distance to the nearest centroid.

6.3 Results

The algorithms that I submitted for the Dark Machines anomaly score challenge did not
perform as well as many of the other algorithms submitted in the challenge. That is not
to say that my algorithms do not have their strengths, indeed they do very well in some
aspects. In order to focus more on my own work I have reproduced the graphs shown
in the official paper using only my own algorithms. In this way this chapter can more
closely analyse the strengths and weaknesses of each variation of techniques trained on
the latent space representations of events.

Figure 6.1 contains the results using the four metrics discussed in Section 6.1.2.
Namely AUC, ϵS(ϵB = 10−2), ϵS(ϵB = 10−3), and ϵS(ϵB = 10−4). The most important



6.3. Results 81

thing to notice about this plot is that not every signal is equally easy for the anomaly de-
tection algorithms to handle. The chargino-neutralino signals with small mass splittings
have an AUC close to 0.5, indicating that most algorithms perform no better than ran-
domly guessing. The small mass splitting leads to less energetic decay products, meaning
that the anomalous events are not in the tails of distributions and are thus difficult for
the algorithms to detect. In contrast, the gluino-neutralino and RPV stop signals have
high AUC’s for most anomaly detection algorithms. Looking closer, it becomes clear that
the algorithms have worse performance on channel 2a than on all other channels. This
channel has the most restrictive preselection cuts and so has the least amount of training
data, making it difficult for the algorithms to properly learn the background.

6.3.1 Figures of Merit

Let us now define a handful of “figures of merit” which are used to decide which algorithms
yield the best performance. There are a number of ways one can use each of the perfor-
mance metrics to determine the “best” anomaly detection algorithm. There are multiple
things one might care about. For example, is an algorithm that performs outstandingly
on a few signals better than an algorithm that performs well on many signals? With this
in mind a number of figures of merit are defined in order to assess the performance of
these algorithms.

• Top Scorer Method: Models which have the highest score, the most number of
times. This prioritises algorithms which perform outstandingly for a few signals.
This is not necessarily the greatest definition of “best”, as an algorithm that con-
sistently comes second will not be registered by this technique, while an algorithm
that gets the highest score for just two or three signals and zero for the rest would
do very well. Figure 6.2 shows the best algorithms applied to all channels/signals
using this method. This figure shows that no one algorithm dominates in any two
metrics, however it is clear that a few groups of algorithms have risen to the top.
The three VAE algorithms with a 20 dimensional latent space and a small β value
all do very well. The OR combination also tends to do well. Interestingly, two
different applications of the primitive k-means algorithm provide the best AUC and
ϵS(ϵB = 10−3) results. The k-means algorithm does not excel using any other metric.

• Top 5 Method: This is a generalised version of the top scorer method. Using this
figure of merit the number of times a given algorithm is within the top 5 scores
are counted for a given metric. This softens the issues with the top scorer method,
though the same issues still stand. Figure 6.3 shows the best algorithms using this
method. Here the results are dominated by the VAE and OR algorithms. Using
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Figure 6.1: Box plots for each of the physics signals in the hackathon
dataset. These summarize the span of results for the many anomaly de-
tection models trained on background only samples. Channel 2a has the
tightest pre-selection cuts, and therefore less data, which leads to the sig-

nals looking less anomalous.

this metric, the VAE dominates using the ϵS(ϵB = 10−4) metric, and tends to prefer
a small latent space and β value. The OR on the other hand, dominates using the
AUC, and tends to prefer a larger latent space and small β value.

• Average Ranking Method: Taking the average of each rank an algorithm gets
favours consistently good scores over a few very high rankings. Figure 6.4 shows the
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Figure 6.2: Box plots summarizing my latent space anomaly detection
techniques applied to all of the new physics signals. The colours denote the

technique that have the top score the most times.
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Figure 6.3: Box plots summarizing my latent space anomaly detection
techniques applied to all of the new physics signals. The colours denote the

technique that appear in the top five scores the most times.



84 Chapter 6. The Dark Machines Anomaly Score Challenge

0.0 0.5 1.0
AUC

Average_20_0.001_1000

Average_20_0.001_10000

Average_20_1e-05_1000

Average_20_1e-05_10000

OR_20_0.001_10000

OR_20_1e-05_1000

OR_4_0.001_1000

Product_20_0.001_10000

VAE_30_1e-05_1000

VAE_4_0.001_1000

VAE_4_1e-05_1000

10-4 10-3 10-2 10-1 100

εS(εB = 10−2)

10-4 10-3 10-2 10-1 100

εS(εB = 10−3)

10-4 10-3 10-2 10-1 100

εS(εB = 10−4)

Best

2nd

3rd

Figure 6.4: Box plots summarizing my latent space anomaly detection
techniques applied to all of the new physics signals. The colours denote the

techniques that have the highest average rankings.

best algorithms using this method. Alongside the VAEs and OR combinations that
performed well in the previous two plots, the average combination method with a
20 dimensional latent space and a small β value also does quite well. This algorithm
has variations placing first in AUC, ϵS(ϵB = 10−2), and ϵS(ϵB = 10−3).

• Highest Mean Score Method: The previous three figures of merit are based on
the rankings of algorithms. Taking the numerical mean of a given metric will perform
similarly to the average ranking method but will be subtly different. Figure 6.5
shows the best algorithms using this method. Here, there are fewer VAE algorithms
that excel and more combination algorithms. This indicates that the combination
algorithms are more consistent than the VAE which, while still powerful, appears
to be less reliable across all signal models.

• E) Highest Median Score Method: The median score is similar to the mean,
however it has more of a preference for algorithms that perform consistently. Fig-
ure 6.6 shows the best algorithms using this method. The results using the highest
median score method appear similar to the highest mean score method, with com-
bination methods tending to dominate. The two best VAE methods have a very
small latent space, and small β values, which is similar to what is observed with the
top 5 method.

• Highest Minimum Score Method: Algorithms which have the highest perfor-
mance floor are also interesting. This figure of merit will prioritise algorithms which
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Figure 6.5: Box plots summarizing my latent space anomaly detection
techniques applied to all of the new physics signals. The colours denote
the techniques that have the highest mean scores for each of the figures of

merit.
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Figure 6.6: Box plots summarizing my latent space anomaly detection
techniques applied to all of the new physics signals. The colours denote
the techniques that have the highest median scores for each of the figures

of merit.
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Figure 6.7: Box plots summarizing my latent space anomaly detection
techniques applied to all of the new physics signals. The colours denote the
techniques that have the highest minimum scores for each of the figures of
merit. No technique has ϵS above 0 for all physics signals for ϵB = 10−3 or

ϵB = 10−4.

do not do excessively poorly on any one signal. Figure 6.7 shows the best algo-
rithms using this method. No algorithm was able to get the metrics ϵS(ϵB = 10−3)
or ϵS(ϵB = 10−4) above zero for all signal models. However for the AUC metric,
the AND and product combination methods do best, while the isolation forest, OR
combination and VAE do best for ϵS(ϵB = 10−2). Interestingly, all of these algo-
rithms except for the VAE use a 4-dimensional latent space, and all have a smaller
batch size of 1000.

Summarising these results it is clear that the VAE on its own consistently does quite
well with all figures of merit using the ϵS metric at various background efficiencies. OR
and Average combinations also consistently do well with all figures of merit using all
metrics. As for VAE architectures, smaller beta values are generally preferred and larger
latent spaces tend to do better.

6.3.2 Significance Improvement

The metric which was considered to be the most useful is dubbed the “significance im-
provement”. At the LHC the chance to discover a given BSM model is dependent upon
both the complexity of the signal and its cross section. This metric remains agnostic
about the cross section of the process, but instead emphasises how the chance of discov-
ery improves with the anomaly detection algorithms applied. Let us assume that there
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are enough events that the background is well modelled by Gaussian statistics, meaning
that the standard deviation is equal to the square root of the number of events. Hence
the significance of a given new physics signal can be written as

σS = S√
B
, (6.5)

where S and B are the number of signal and background events respectively. After the
anomaly detection algorithm is applied, and a cut is made using the anomaly score, this
value changes:

σcut = ϵSS√
ϵBB

= ϵS√
ϵB
σS. (6.6)

Hence the significance improvement can be defined as

SI = ϵS√
ϵB
. (6.7)

It’s important to note that this metric does not say whether or not a given technique
is capable of discovering new physics, as this is still dependant on the cross section of
the process. Instead it suggests how much the anomaly detector is able to enhance
the statistical purity of the signal over the SM background. The maximum significance
improvement for a signal on a given algorithm is defined as the maximum value of SI over
the three working points where ϵB = 10−2, 10−3, 10−4.

Figure 6.8 shows the maximum significance improvement for all signals and algo-
rithms. The results appear similar to those in Figure 6.1, with the algorithms performing
well on the gluino-neutralino and RPV stop signals, and poorly on the low mass splitting
chargino-neutralino signals. On channel 2a the algorithms rarely achieve better than unit
significance improvement, however it is the case that for all signals except the chargino-
neutralino signals, there is a channel for which an algorithm will have a maximum signif-
icance improvement greater than 1.

In the final section of this analysis, the total improvement (TI) is defined as the
significance improvement over all available channels. This means that if a method has a
significance improvement of < 1 for a signal in channel 2a but an improvement > 1 in
channel 2b, only the value from channel 2b is considered.

Figures 6.9 and 6.10 show the minimum, median and maximum total improvements
for each algorithm across all physics models. This figure shows that the minimum signifi-
cance improvement is usually zero, although a handful of algorithms rise above this value,
notably k-means, VAE and isolation forest. The most useful plot is Median TI vs Max
TI, where several clusters can be observed. Notably the VAE on its own looks to be very
dependent on its hyperparameters, with a cluster in the high median/maximum region
and a cluster in the low median/maximum region. The OR combination also consistently
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Figure 6.8: Box plots for each of the physics signals in the hackathon
dataset. These summarize the span of results for the many anomaly de-
tection models trained on background only samples. The SI is defined as
ϵS/

√
ϵB. The maximum significance improvement over the three working

points (ϵB = 10−2, 10−3, and 10−4) are used as the metric for each tech-
nique.

performs very well, with high maxima, minima, and medians. When compared with all
algorithms submitted in the Dark Machines anomaly score challenge mine scored amongst
the highest maximum TI, though they had rather small median TI values.

To determine which algorithm is truly the best with this dataset a cut was placed
at 1.0 on the median TI axis, and the remaining algorithms are displayed. This cut is
chosen as algorithms with a high median total improvement are expected to perform bet-
ter on unknown signals. Figure 6.11 shows the 9 best algorithms based on this dataset.
Notice that every algorithm, save one, uses a 20 dimensional latent space, and all have
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Figure 6.9: The minimum, median, and maximum best total improve-
ments for each technique across the physics models. The TI is defined as
the maximum signal improvement for a physics model across all signal re-

gions.

a β value of 0.001. The batch size has more variation but generally a larger batch size
seems to lead to a higher median total improvement. A 20 dimensional latent space
for a 100 dimensional input space makes sense here, as it is large enough to retain
important information, but not so large as to cause the algorithms trained within the
latent space to suffer from issues with high dimensionality. Using this graph four out-
standing algorithms can be identified, each of which have their pros and cons. First,
displayed as a yellow pentagon, VAE_20_0.001_10000. This algorithm has the highest
median TI of the bunch but also has the lowest maximum TI. Average_20_0.001_1000
and Product_20_0.001_1000 both have the highest maximum TI of the bunch but the
lowest median TI. Finally OR_20_0.001_10000 sits inbetween these extremes with a high
median and maximum total improvement. The results seen here reflect what was observed
looking at the various figures of merit defined earlier. The best algorithms tend to be the
VAE on its own, and the Average, Product, and OR combinations.

The main Dark Machines anomaly score challenge paper goes into detail on a hidden
dataset, testing the performance of the best algorithms on this secret dataset. Only
algorithms which had a median TI ≥ 2 were accepted for testing using this hidden dataset
as they were assumed to be the most generalisable to other BSM physics scenarios. The
algorithm of mine with the highest median TI is VAE_20_0.001_10000, which has a value
slightly below 2.

The algorithms that scored the best in the main paper are both detailed in Ref. [86].
The first of which is a spline autoregressive flow model which is a probabilistic model
that applies a series of transformations to a simple prior distribution. This model can
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Figure 6.10: The minimum, median, and maximum best total improve-
ments for each technique across the physics models.

then be evaluated to obtain the likelihood of a given event. The second high performing
algorithm is a combination of the aforementioned spline autoregressive flow model and a
deep support vector data description (SVDD) model. A deep SVDD model is a neural
network which transforms an input to a vector of constant numbers. These two algo-
rithms, when combined using the various combination methods outlined in Section 5.3,
yielded consistently high median total improvements. Many of the highest performing
neural network algorithms detailed in the main paper use a constant target vector in the
loss function, performing no reconstruction and only compressing the input to a target
constant. This is a major difference in the behaviour of my algorithms compared to the
highest performing algorithms.
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Figure 6.11: The minimum, median, and maximum best total improve-
ments for the best techniques across the physics models. The TI is defined
as the maximum signal improvement for a physics model across all signal

regions.

6.4 Conclusion

In this chapter, I described a handful of benchmark datasets for studies of new physics
detection at the LHC. The datasets are divided into 4 channels designed to target in-
teresting regions of the parameter space. These datasets are used not only in order to
compare a variety of machine learning methods, but also to more deeply understand the
strengths and weaknesses of my own anomaly detection techniques. I defined several met-
rics to assess the performance of these algorithms, the AUC, and the signal efficiencies
at background efficiencies of 10−2, 10−3, and 10−4. In addition to these metrics, I used
the significance improvement, defined as ϵS√

ϵB
, which is a measure of how much a given

anomaly score algorithm is able to improve the discovery potential of a signal. The results
of all algorithms submitted to the anomaly score challenge can be found in the official
paper [67]. In the results section of this chapter I focused on the performance of my own
algorithms and came to the conclusion that a VAE with a latent space of 20, a β term of
0.001, and a batch size of 10000 gave the best median total improvement. OR, Average
(with a batch size of 1000), and Product combinations of algorithms trained on latent
space representations of events generated by this same architecture were also among the
highest scoring. While these combination techniques had lower median total improvement
scores, they had higher maximum total improvement scores.
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7 Improving Optimisation Through
Dimensional Reduction

In the previous two chapters, I have explored anomaly detection as a way of performing
searches in a model agnostic fashion. While these techniques are certainly promising, the
discriminatory power is low and so it is not likely they will discover new physics on their
own. In this chapter I investigate supervised analyses, and explore a novel way to broaden
the range of new physics being considered when performing a supervised analysis.

Extensions to the SM come with a number of free parameters, many of which are
relatively unconstrained even after considering the existing LHC data from Run 2. This
means that any choice of BSM model introduces a large number of parameters to be
constrained. Searches for SUSY are typically optimised on simplified models, where a
sparticle pair is produced and decays with an assumed decay process. Analyses are then
tuned by simulating benchmark signal models from within specific planes of parameter
values, fixing the remaining parameters. For example it’s common to use the plane of two
sparticle masses, assuming fixed branching ratios and fixed masses for other sparticles
within the simplified model. Many planes are explored, fixing the other parameters at
specific values, with the assumption being that after exploring enough of these planes,
most of the viable models will have been covered. In reality each of these planes represents
a vanishingly thin slice of the total high dimensional parameter space. In this chapter,
I explore dimensional reduction of the parameters of the electroweakino sector of the
MSSM to 2-D. By creating an invertible map from the original model parameters to a
2-D plane, one can easily identify benchmark points and regions of this low dimensional
parameter space on which to optimise. This 2-D plane captures the full phenomenology
of the original parameter space rather than being some slice through the high dimensional
space which misses the bulk of interesting models.

7.1 The Electroweakino Sector of the MSSM

The electroweakino sector of the MSSM, detailed in Section 2.3.1, is a parameter space
of great interest for BSM searches. The masses of the neutralinos and charginos are
expected to be fairly light, and so it is possible that they are within reach at modern
collider experiments. However, recent searches have turned up nothing, and the range
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of excluded masses is rapidly growing. Recall from Section 2.3.2 that in the MSSM,
the superpartners of the electroweak gauge bosons and Higgs bosons mix to form the
electroweakinos, which consist of four Majorana fermions and two Dirac fermions. These
are referred to as the neutralinos, denoted χ̃0

i , for i = 1, 2, 3, 4, and the charginos, denoted
χ̃±
j , for j = 1, 2. The mass matrices that mix these states contain four parameters,

denoted M1, M2, µ, and tan β. Recall that the electroweak Lagrangian density includes
the terms:

LEWino = −1
2(ψ0)TMNψ

0 − 1
2(ψ±)TMCψ

± + c.c. (7.1)

where ψ0 and ψ± are the neutral and charged Higgsinos, winos and binos defined as

ψ0 =
[
B̃, W̃ 0, H̃0

d , H̃
0
u

]
, (7.2)

ψ± =
[
W̃+, H̃+

u , W̃
−, H̃−

d

]
. (7.3)

The neutralino and chargino mass matrices are denoted as MN and MC . These can be
written as

MN =


M1 0 −1

2gY v cos β 1
2gY v sin β

0 M2
1
2gwv cos β −1

2gwv sin β
−1

2gY v cos β 1
2gwv cos β 0 −µ

1
2gY v sin β −1

2gwv sin β −µ 0

 , (7.4)

MC =


0 0 M2

gwv cosβ√
2

0 0 gwv sinβ√
2 µ

M2
gwv sinβ√

2 0 0
gwv cosβ√

2 µ 0 0

 , (7.5)

where gw and gY are defined as the SU(2) and U(1)Y gauge couplings, and v as the elec-
troweak VEV. These values are fixed from experimental data. Hence the free parameters
governing the masses of the electroweakinos are M1, M2, µ, and tan β, where tan β is
defined as the ratio of the aforementioned sin β and cos β terms. As you can see, these
parameters govern the mixing of the Higgsino, wino and binos which in turn define the
behaviours of the electroweakinos.

The dataset used in this chapter comes from a global fit of the EWMSSM performed by
the GAMBIT collaboration [87]. It consists of many MSSM models with differing values
of M1, M2, µ, and tan β along with an associated log likelihood based on the searches for
electroweakinos at the LEP and LHC colliders, plus constraints on the invisible widths of
the Z and SM-like Higgs boson. The full scan of the parameter space and implemented
searches are detailed in Ref. [88]. This global fit contains up-to-date results for 2017, which
means that all results are for 36 fb−1 of integrated luminosity at a centre of mass energy
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of 13 TeV. This chapter is therefore a historical test case for this new approach rather
than a current example. The global fit assumed that all other sparticles of the MSSM
are heavy and decoupled. Specifically, all mass parameters except for those relevant to
the electroweakino sector are set to 3 TeV, the pseudo-scalar Higgs mass and gluino mass
parameters are set to 5 TeV, and all trilinear couplings are set to zero. In order to ensure
that the models used in this analysis are suitably unexcluded, only points within the 3σ
contour of these global fit results are selected. Throughout this chapter all models within
this 3σ contour are treated with equal weight. Now that the dataset is understood, let us
consider the dimensional reduction tool. Importantly, the algorithm must be invertible.
This means it must be possible to take a given point in the dimensionally reduced space
and return to the original parameter space. For this, a variational autoencoder is a perfect
fit.

7.1.1 Preparation of the Dataset

In preparation for training the VAE, the dataset must be prepared in a few impor-
tant ways. First, each model parameter is scaled between 0 and 1 such that, for x ∈
[M1,M2, µ, tan β],

ξx ≡ x− xmin

xmax − xmin
, (7.6)

where xmin and xmax are the maximum and minimum values of x across the whole dataset.
These minima and maxima are detailed in Table 7.1.

Parameter Minimum Maximum
M1 [GeV] -2000 2000
M2 [GeV] 0 2000
µ [GeV] -2000 2000

tan β 1 70

Table 7.1: Maximum and minimum values of each parameter before
scaling.

When training a neural network it is important to sample the entire space. Ideally the
distribution of each variable would be totally flat, however this is almost never the case.
To this end variables which are over-represented in certain regions of the parameter space
must be “unskewed”. In this dataset, the variable M2 is skewed negative, meaning there
are more points with low M2 than high M2. In order to reduce the skew of a variable,
it is common take the square root, natural log, or inverse of the value. In preparation
for training, all variables are normalised between 0 and 1, and so to simply avoid any
numerical errors, the square root of ξM2 is taken. This provides a significant improvement
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in the quality of the VAE over simply leaving the value skewed. Figure 7.1 displays a
histogram of ξM2 values before and after taking the square root.
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Figure 7.1: Values of ξM2 displayed as a histogram before (left) and after
(right) taking the square root in order to unskew the distribution. Notice

how the histogram on the right is more flat than that on the left.

7.2 VAE Training on GAMBIT Global Fit Results

In the process of developing the VAE used in this chapter, a number of hyperparameters
are tested and the best are used for the remainder of the chapter. These include:

• The number of hidden layers in the encoder/decoder ranging from 3-5 with numbers
of nodes between 4 and 256.

• The activation function for each of the nodes, where the hyperbolic tangent (tanh),
rectified linear unit (ReLU), and the sigmoid linear unit are tested.

• Various loss functions: mean-squared error, absolute error, and the β-VAE loss
function with β = [10−1, 10−2, 10−3, 10−4, 10−5, 10−6].

The hyperparameters chosen are those that give both the lowest mean squared error and
the highest Pearson correlation coefficients between the input and output of the VAE.
The architecture of this VAE is defined as: a 4 dimensional input layer, an encoder with
5 layers containing 100, 100, 50, 25, and 10 nodes, a 2 dimensional latent space, a decoder
with 5 layers containing 10, 25, 50, 100, and 100 nodes, and finally a 4 dimensional output
layer. Each hidden layer uses a a tanh activation function, while the input and output
layers use linear activation functions. The loss function comparing a single point x to its
reconstructed counterpart y is defined as

L = (1 − β)(x− y)2 + β
d∑
i

KL(N (µ̂i, σ̂i),N (0, 1)), (7.7)
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where µi and σi are the mean and standard deviations of the ith Gaussian within the d
dimensional latent space. The β term is set to 10−6 and balances the relative importance
of the mean squared error term and the KL divergence term. For these purposes, a small
value of β gives the best reconstruction quality, while still ensuring regularisation of the
latent space. The dataset is split into a training and testing set with an 80/20 ratio. The
network is then trained with an 80/20 training/validation split. Training runs over 10
iterations of 10,000 epochs with the Adam optimiser, beginning with a learning rate of
10−3, and halving each iteration. An iteration ends when 10,000 epochs have passed, or
when the performance on the validation set has not improved in 50 epochs. The network
is saved only when the loss of the network evaluated on the validation set decreases in
order to avoid overfitting.

In order to assess the performance of the variational autoencoder, and to ensure no
overfitting has occurred, the testing set is utilised. The input value of each parameter can
be compared with its reconstructed value in order to assess the quality of reconstruction.
Figure 7.2 plots a heatmap of each input parameter with its reconstructed value, where
the z axis is log10(Npoints). A heatmap is chosen here in order to more accurately represent
the quality of reconstruction with the number of points present. Perfect reconstruction
will yield a perfectly straight line y = x. The aforementioned figure shows mostly straight
lines for each variable, apart from M1 which appears more staggered. However one can
more robustly assess the reconstruction quality by examining various metrics. The Pear-
son correlation coefficient between each input parameter x and its reconstructed value x̂
indicates the degree of correlation. It can be defined as

ρ =
∑N
i (xi − µx)(x̂− µx̂)√∑N

i (xi − µx)2
√∑N

i (x̂− µx̂)2
, (7.8)

for N data points where µx is the mean of the parameter x. A value of ±1 indicates perfect
positive/negative correlation, while a value of 0 indicates no correlation whatsoever. The
mean squared error, defined as

ϵmsq = 1
N

N∑
i

(xi − x̂i)2, (7.9)

for N data points where x is the input parameter and x̂ is its reconstructed value also
gives an indication of the reconstruction quality, with smaller values indicating better
correlation. Table 7.2 displays the Pearson correlation coefficients and mean squared
error for each parameter. It is clear to see that M1, despite appearing to have poor
reconstruction quality in Figure 7.2, in fact has a high Pearson correlation coefficient
and low mean squared error implying that it is acceptable for use. It is possible that an
unskewing process similar to what was done with ξM2 would improve the reconstruction
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of ξM1 .

Figure 7.2: Input vs output from VAE for each parameter ξM1 ,
√

ξM2 ,
ξµ, and ξtanβ. A perfect straight line y = x is desirable.

Parameter Pearson Correlation Coefficient Mean Squared Error
ξM1 0.947 4.36 × 10−3√
ξM2 0.936 4.37 × 10−3

ξµ 0.927 3.64 × 10−3

ξtanβ 0.998 3.49 × 10−4

Table 7.2: Pearson correlation coefficients between the input and recon-
structed parameter. A value of ±1 implies perfect positive/negative corre-
lation, while a value of 0 implies no correlation whatsoever. Note that the
correlation coefficient for each parameter is > 0.9, and so reconstruction

quality is generally high for all parameters.

7.3 Visualisation of the Latent Space

After the network is trained, the 4-dimensional EWMSSM model parameters can be
passed through the VAE, and mapped to the θ1 − θ2 plane, where (θ1, θ2) are the latent
space variables of the VAE. Figure 7.3 displays colour maps of each of the EWMSSM
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input variables within the θ1 − θ2 plane. This lets one view the structure of the latent
space and observe relationships between the parameters. One can see that each input
variable has continuous regions of similar colour, confirming the regularisation of the
latent space. Points that were close together in the original space remain close together in
the latent space, indicating that the latent space is preserving the nature of each model.
Note that in order to aid in the visualisation of these variables, approximately 3% of the
most poorly reconstructed models are discarded from each of the following scatter plots.
The reconstruction metric is defined as

α =
n∑
i

(xi − x̂i)2, (7.10)

where n refers to each input parameter. Models with α > 0.05 are discarded purely for
the purpose of visualisation of the latent space.

The latent space has some interesting features to note. Firstly, the entire θ1 −θ2 plane
is not covered by the testing set in the original 4-D space. This could be solved by using
a larger dataset with a wider selection of models to train and test the VAE. Notice that
M1 and M2 appear to be split into parallel bands of similar values, while µ tends to have
smaller values on the right and larger values on the left. tan β is notable for its symmetry
of values across the space.

Other quantities can be shown on the z-axis to gain insight into the structure of the
latent space. Figure 7.4 shows the models within the latent space with the neutralino
and chargino particle masses on the z-axis. The highlighted benchmark points are used
in Section 7.4. Due to regularisation of the latent space from the KL term, models which
the VAE has deemed to be similar occupy similar spaces within the VAE. This allows
one to observe areas of the parameter space which may be accessible to analyses. Areas
with very high particle masses are likely to be outside of the reach of current detector
experiments.

Searches in the electroweak sector of the MSSM regularly examine pair production of
the lightest chargino χ̃±

1 and the second neutralino χ̃0
2 with subsequent decay to a pair of

LSPs χ̃0
1 and leptons via intermittent W and Z bosons, leading to a final state containing

3 leptons. The cross sections for each process, calculated in PROSPINO [89], can be used to
identify regions within the latent space with high amounts of a given process. Figure 7.5
(left) displays the latent space with the number of χ̃±

1 χ̃0
2 events at 36 fb−1 as a colour

map. It is clear that there are a number of pockets containing high numbers of events,
however as stated previously, a 3-lepton final state is of particular interest in this case.
By calculating the branching ratios of χ̃±

1 → W±χ̃0
1 and χ̃0

2 → Zχ̃0
1 in SUSYHIT [90], an

upper bound on the production of 3-lepton events can be estimated for each MSSM model
at 36fb−1. Note that the number of 3-lepton events observed at the LHC will certainly
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Figure 7.3: Values of the transformed EWMSSM input variables M1
(top left), ξM2 (top right), µ (bottom left) and tan β (bottom right) in the

θ1 − θ2 plane.

be lower, as these values do not account for detector effects. Models with small mass
splittings mχ̃±

1
− mχ̃0

1
< 15 GeV or mχ̃0

2
− mχ̃0

1
< 15 GeV have their branching ratios set

to 0. This is done so that the highlighted models contain leptons with high enough pT to
be registered by the detector. Figure 7.5 (right) displays the latent space with the upper
bound on the number of 3-lepton events at 36 fb−1 as a colour map. Notice that the
points yielding the most 3-lepton events are generally clustered together, showing that
the VAE is correctly clustering models with similar behaviours.

Since searches for electroweakino models typically target these simplified models, an
interesting prospect is to examine unexcluded models with behaviour different to that
of a simplified model. The most straightforward way to examine this is to calculate the
proportion of the production cross section that does not arise from processes typically
examined in simplified model scenarios. These “simplified” processes include χ̃0

1 χ̃
±
1 , χ̃±

1

χ̃∓
1 , and χ̃0

2 χ̃
±
1 pair production processes. Figure 7.6 shows the number of non-simplified

events, as well as the relative proportion of non-simplified events defined as
∑
i σi − (σχ̃0

1χ̃
±
1

+ σχ̃±
1 χ̃

∓
1

+ σχ̃0
2χ̃

±
1

+ σχ̃0
1χ̃

0
1
)∑

i σi
, (7.11)

where i sums over all production cross sections. σχ̃0
1χ̃

±
1

is removed as monojet searches
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Figure 7.4: The electroweakino masses in the θ1−θ2 plane. The positions
of the on/off shell models and the non-simplified model are highlighted,
where their colours in each plane correspond to the mass of that models

electroweakino.

are weakly constraining on SUSY models. Choosing a benchmark point based on this
information will prioritise SUSY scenarios that are totally unlike those that are typically
examined in simplified model scenarios.

7.4 Optimisation of Analyses in the Latent Space

In order to demonstrate the approach of optimising a search strategy on parameters other
than the fundamental SUSY parameters, I construct three separate analyses for four
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Figure 7.5: Left: latent-space representations of points in the θ1 − θ2
plane with the number of χ̃±

1 χ̃0
2 events at 36 fb−1 as a colour map. Right:

latent-space representations of points with the upper bound on the number
of 3-lepton events from χ̃±

1 χ̃0
2 production at 36 fb−1 as a colour map.

Figure 7.6: The number (left) and proportion (right) of non-simplified
events at 36 fb−1 in the θ1 − θ2 plane.

separate unexcluded benchmark points1. These benchmark points are chosen based on
the visualisations done in Section 7.3 and are shown on Figures 7.4 to 7.6. The first two
search strategies target direct pair production of the lightest chargino χ̃±

1 and the second
neutralino χ̃0

2 decaying to a pair of LSPs χ̃0
1 and leptons via an intermittent W and Z

boson. The two models producing an abundance of 3-lepton events via on and off shell
WZ mediated decays (Figure 7.7) can be summarised as:

• P1: On-shell WZ mediated decay. χ̃±
1 → W±χ̃0

1 and χ̃0
2 → Zχ̃0

1 both with 100%
branching ratio. In this case ∆m(χ̃±

1 , χ̃
0
1) ≥ mW and ∆m(χ̃0

2, χ̃
0
1) ≥ mZ .

• P2: Off-shell WZ mediated decay. Same as above, but with ∆m(χ̃±
1 , χ̃

0
1) < mW and

∆m(χ̃0
2, χ̃

0
1) < mZ .

1These benchmark points are excluded by some individual analyses, as the selection is made based on
the overall likelihood generated by GAMBIT. This will be fixed in future work.
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W

Figure 7.7: The primary χ̃0
2 χ̃±

1 decay mode of interest, yielding a 3-
lepton final state. Note that 3-lepton final states can be reached via a χ̃±

1
decaying into a χ̃0

2 plus a W boson or vice versa given the correct mass
differences.

χ̃±
2 χ̃0

3

χ̃±
1 χ̃0

2

χ̃0
1

Figure 7.8: χ̃0
3 χ̃±

2 decays into lower mass charginos/neutralinos. A solid
arrow indicates a W boson, while a dashed arrow indicates a Z boson.

The third analysis targets two non-simplified models, P3 and P4, and specifies a 2-
lepton final state with high missing energy. P3 features primarily χ̃0

3 χ̃
±
2 , and χ̃0

1 χ̃
0
2 pair

production. The process χ̃0
3 χ̃

±
2 has many decay paths yielding 2-lepton final states, the

predominant one involving χ̃0
3 → Zχ̃0

1 where the Z boson decays to 2 leptons and the χ̃±
2

decays hadronically. Figure 7.8 shows all of the ways these particles can decay via W/Z
bosons, where a solid line indicates a W boson, and a dashed line indicates a Z boson.
The production of 2-lepton final states from χ̃0

1 χ̃
0
2 pair production can only come from

χ̃0
2 → Zχ̃0

1 where the Z decays to 2 leptons. P4 features primarily χ̃0
3 χ̃

±
2 , χ̃0

3 χ̃
±
1 , and χ̃0

1

χ̃0
2 production. The only significant difference here is the inclusion of the χ̃0

3 χ̃
±
1 process,

which can decay to two leptons in a number of ways via off-shell W/Z bosons, similar to
the decay of χ̃±

2 , χ̃0
3, displayed in Figure 7.8.
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Benchmark point M1 (GeV) M2 (GeV) µ (GeV) tan β σ (pb) Ntot (N36 fb−1)
P1 -46 130 1752 61 χ̃±

1 χ̃
0
2: 10.7 1696957 (384654)

P2 48 102 -275 40 χ̃±
1 χ̃

0
2: 27.0 6980683 (972988)

P3 -1748 97 -71 1.1 χ̃±
2 χ̃

0
3: 10.1 997283 (363692)

χ̃0
1χ̃

0
2: 6.52 497914 (234587)

P4 308 94 -80 1.6
χ̃±

2 χ̃
0
3: 8.45 498525 (304168)

χ̃0
1χ̃

0
2: 4.10 497861 (147627)

χ̃±
1 χ̃

0
3: 2.17 497208 (78136)

Table 7.3: Summary of signal processes which are optimised on in this
analysis. Details include the values of M1, M2, µ, and tan β, the production
cross section at

√
s = 13 TeV, the number of Monte Carlo events that were

generated, and the number of events expected in 36 fb−1 of LHC data.

7.4.1 Generation of Events

In this analysis I use the same background dataset, first detailed in Chapter 5 and de-
scribed in detail in Ref [53]. To recap, these events were generated at leading order for
a 13 TeV LHC centre of mass energy with two extra jets. Events for each signal model
were generated in Madgraph [34] with generator cuts set as follows:

• Minimal transverse momentum of the jets pjT > 20 GeV, and their rapidity restricted
to be |ηj| < 2.8;

• Minimal transverse momentum of photons pγT > 20 GeV and generated up to a
maximum rapidity of |ηγ| < 2.37;

• Minimal lepton (electron e and muon µ) transverse momentum plT > 15 GeV and
with the rapidity window |ηl| < 2.7;

Pythia8.2 was used for showering with up to two additional jets with MLM matching.
Delphes 3 was used for detector simulation with the same modified ATLAS detector card
as the background simulation. A summary of each BSM model is provided in Table 7.3,
including the total number of events generated, and the number of events at 36 fb−1. Each
event is weighted such that the sum of weights adds up to the total cross section of the
process. Table 7.4 shows the masses of each electroweakino in GeV for each benchmark
point.

7.4.2 Definition of Analyses

The cuts placed on the on/off-shell signals P1 and P2, loosely based on Refs. [91, 92], are
detailed in Table 7.5. Requirements common to the on/off-shell analyses include a 3-lepton
selection, and lepton trigger requirements. Electrons must have peT > 18 GeV and ηe <

2.47, while muons must have pµT > 14.7 and ηµ < 2.5. In order to increase the likelihood
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Benchmark point mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

mχ̃±
1

mχ̃±
2

P1 46.18 142.4 1766 1767 142.5 1769
P2 46.84 104.2 293.3 302.1 104.4 306.9
P3 74.18 104.6 138.6 1738 105.8 138.6
P4 81.06 118.0 135.8 3122 106.0 142.0

Table 7.4: Masses of the electroweakinos in GeV for each examined signal
processes.

that one pair of leptons originated from a Z boson, all events are required to have one
same-flavour opposite-charge-sign (SFOS) lepton pair. The other lepton is assigned to
the W boson. The invariant mass, defined as m12 =

√
(ET1 + ET2) − (pT1 + pT2) for

two leptons labelled 1 and 2 with energies Ei and transverse momenta pTi
, is used to

determine which lepton pair originated from the Z boson in the event that there are
multiple candidates.

The cuts placed on the non-simplified signals P3 and P4, loosely based on [93], are
detailed in Table 7.6. The trigger level requirements placed on lepton pT and η are
the same as for the 3-lepton selection, with the only difference being that 2 leptons are
required in the final state.

On-Shell Analysis

The on-shell analysis (for P1) targets decays with mass splittings near or above the Z
mass, ∆m ≥ mZ . First, the two highest momentum leptons are required to have pT

greater than 25 and 20 GeV respectively. Leptons are assigned as originating from either
the Z or W boson. Two leptons are assigned to the Z boson by selecting the same flavour
opposite charge sign (SFOS) pair, and the remaining lepton is assigned to the W boson. In
the event that there are multiple candidates for one of the SFOS leptons, the lepton pair
with invariant mass closest to the Z mass is selected to be the SFOS pair. The variable mT

is constructed using the lepton originating from the W boson and the missing transverse
energy. mT has a Jacobian peak in theWZ background which drops off atmT ≊ mW while
the signal distribution is more flat. ∆RSFOS, defined as ∆R12 =

√
(η1 − η2)2 + (ϕ1 − ϕ2)2

where objects 1 & 2 are same-flavour opposite-charge-sign lepton pairs, is used to restrict
the angular separation between the SFOS lepton pair and reduce the ZW background.
The total hadronic activity is limited with a cut on HT , defined as the sum of jet pT .

Off-Shell Analysis

The off-shell analysis (for P2) targets decays with mass splittings less than the Z mass,
∆m < mZ . Similar to the on-shell analysis, two leptons are assigned as originating from
the Z boson by selecting the same-flavour opposite-charge-sign pair. In the event that
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Variable On-shell requirement Off-shell requirement
nlep = 3

peT [GeV] > 18
ηe < 2.47

pµT [GeV] > 14.7
ηµ < 2.5
nsfos = 1

pl1T , pl2T [GeV] > 25, 20 −
mT [GeV] > 90 < 110
HT [Gev] < 75 −
mmin
ll [GeV] − > 10

|m3l −mz| [GeV] − < 190 (lW = e only)
min∆R3l − ∈ [0.2, 1.1]
∆Rsfos > 0.2 ∈ [0.2, 1.1]

Table 7.5: Summary of selection criteria for the on- and off-shell W/Z
selection. “−” indicates no requirement is applied for a given variable in

the corresponding region.

there are multiple candidates, the lepton pair with the minimum invariant mass is chosen.
In this analysis mT is required to be small, as the signal is more SM-like than the on-shell
signal and predominantly resides in the low mT region. The variable min∆R3l is defined
as the minimum ∆R between all lepton pairs and is used to further restrict the angular
distribution of the leptons and reduce the ZW background. ∆RSFOS is used in a similar
fashion. The variable |m3l−mZ |, defined as the difference between the trilepton mass and
the Z boson mass is used when the lepton originating from the W boson is an electron
to ensure that the trilepton mass is not too far from the Z mass. This further reduces
backgrounds involving Z bosons. Finally, a lower bound is placed on the invariant mass
of the SFOS lepton pair mmin

ll to further reduce the ZW background.

Non-Simplified Analysis

The non-simplified analysis (for P3 and P4) is done in a 2-lepton final state with high
missing transverse energy. HT is required to be low in order to reduce backgrounds with
high hadronic activity. The variable mT2 is restricted in order to reduce backgrounds
involving Z bosons, and finally the angular separation between the two leptons ∆Rll is
required to be low in order to reduce the WW background.

7.4.3 Results

With the chosen cuts placed, the number of remaining signal and background events are
compared for each analysis. The binomial significance, denoted Zbi, is calculated using
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Variable Non-simplified requirement
nlep = 2

peT [GeV] > 18
ηe < 2.47

pµT [GeV] > 14.7
ηµ < 2.5

Emiss
T [GeV] > 100
mT2 [GeV] > 240
HT [Gev] < 100

∆Rll < 0.6

Table 7.6: Summary of selection criteria for the non-simplified 2-lepton
selection.

the RooStats framework within ROOT 6.24.02 [94]. This value tests between signal-
plus-background and background only hypotheses where signal and background events
are drawn from a Poisson distribution. A value of Zbi = 1.64 indicates a 95% confidence
level, which is what is needed in order to safely exclude a signal. This calculation includes
both the statistical uncertainty on the number of Monte Carlo events as well as an assumed
systematic uncertainty of 15%. Using this metric, all four signal models are able to be
excluded at a 95% confidence level. Table 7.7 shows the signal models, the numbers of
signal and background events, and the Zbi score.

Process ID Nsig (NMC
sig ) Nbkg (NMC

bkg ) Zbi

P1 62.47 (281) 111.6 (31) 1.78
P2 34.98 (256) 43.2 (12) 1.67
P3 38.07 (99) 46.8 (13) 2.19
P4 34.66 (96) 46.8 (13) 2.00

Table 7.7: Summary of analysis results. Nsig and Nbkg denote the number
of signal and background events at 36 fb−1 respectively, while NMC

sig and
NMC
bkg refer to the number of signal and background Monte Carlo events.

The significance quoted was calculated using the RooStats stats framework
within ROOT 6.24.02. Using this metric, a Z score of 1.64 corresponds to

a 95% confidence level.

Thus it has been demonstrated that by using the latent space to identify models
unexcluded by standard analysis techniques, and tweaking existing analyses, it is possible
to exclude as of yet unexcluded models. While it may have been possible to exclude P1
and P2 using the standard approach, it is highly unlikely that P3 or P4 would have been
excluded in this way, due to their distinctly non-simplified model like behaviour.
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7.5 Conclusion

In this chapter, I have constructed a variational autoencoder designed to compress 4-
dimensional EWMSSM model parameters to 2-dimensional latent space representations.
Within this 2-D plane, interesting regions not yet excluded by current experiments have
been examined. Various colour maps have been applied, including an upper bound on the
number of events for a 3-lepton final state yielded from the commonly examined χ̃±

1 χ̃
0
2

pair production process. Additionally, non-simplified electroweak SUSY models have been
examined by summing production cross sections for complex processes, not usually studied
by conventional analyses. Using this information, I identified four models of interest and
constructed analyses to exclude all four at the 95% confidence level.

The use of variational autoencoders for dimensional reduction of model parameters to
a 2-dimensional plane, combined with global fit results allows one to be be sensitive to a
broader range of phenomenology than is present in a simplified model. This technique has
the potential to raise the sensitivity of LHC searches for supersymmetry by not imposing
restrictions on the original parameter space. This technique is very easy to generalise to
non-SUSY applications.
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8 Optimisation Algorithms for High
Dimensional Particle Physics Models

Throughout the previous chapters I have explored techniques involving BSM physics the-
ories formulated using models with various free parameters. Let us now explore methods
to identify what values of these free parameters are most realistic given what is known
about the state of modern particle physics. Comparing these model predictions to exper-
imental data can constrain the values of these free parameters and converge towards a
theory that matches experimental observations as closely as possible. It is not uncommon
for a BSM theory to have O(100) free parameters, and as such it is incredibly difficult
to tune a given model to fit experimental data. A natural question to ask is how does
one find the best set of parameters? In this chapter I explore a number of optimisation
algorithms in high dimensional spaces and examine their performance with a number of
metrics.

The likelihood function [95] refers to the probability of observing a set of experimental
data given a set of model parameters. If one is considering data from multiple experiments,
the likelihood function may be taken to be the product of likelihoods for each experiment.
This likelihood function is rarely ever analytically known, and is often calculated using
non-differentiable experimental simulations, so one must use derivative-free numerical
methods to locate optima. Likelihood functions often contain multiple local optima so,
especially in a high dimensional space, it is very difficult to locate a global optimum.
Therefore, in this chapter, local optimisers commonly used in physics are neglected and
instead a focus is placed on global methods. The baseline approach that each algorithm
is measured against is randomly sampling the space a number of times and picking the
highest likelihood value. This approach is extremely inefficient, since as the dimensionality
of the space increases, the number of samples that must be taken in order to maintain
the same point density increases exponentially. Additionally, high likelihood regions of
physics parameter space generally occupy a very small percentage of the overall space, so
each random sample will likely fall within uninteresting regions of the space.

Based off of my work in Ref. [96], this chapter explores a wide range of optimisation
techniques which have not yet had mainstream use in particle physics applications. Work-
ing with members of the Dark Machines collaboration, each technique is run by a different
member, aiming to identify the optima of a set of analytic test functions, and later, a
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12-dimensional particle astrophysics test problem based on the MSSM. Each member is
required to use a common test framework in order to ensure that the only differences in
results are due to the performance of each algorithm. As this chapter contains work done
by a collaboration, I will focus especially on my own contributions to the project.

8.1 Definition of Comparison Test Functions

Two different tests for each algorithm are explored in this chapter. The first test involves
comparing the performance of each algorithm on a handful of analytic test functions,
where the solution is known. Each test function is chosen to represent a different challenge
to sampling algorithms that one might expect to see in a physics scenario. The second
test applies each algorithm to a real physics example in order to determine whether the
results seen in the analytic test scenarios generalise to realistic physics applications.

8.1.1 Analytic Test Functions

The four test functions are hidden from the parties writing and running each sampling
function in order not to introduce biases towards any global optimum. In cases where the
optimum naturally sits at a value which might be easily guessed by the initial conditions
of a given sampling algorithm (such as 0), this optimum is shifted slightly. For all of the
following equations, the number of dimensions is written as n.

Analytic Function 1

The equation for the first test function is written as

f(x) = exp
(

−
n∑
i=1

((xi − 2)/15)6
)

− 2 exp
(

−
n∑
i=1

(xi − 2)2
)

n∏
i=1

cos2(xi − 2), (8.1)

and is displayed in Figure 8.1a with n = 2. This function has a global minimum at 2,
where it reaches a value of -1. This function is expected to be difficult to optimise, as the
minimum is surrounded by a region of high function values. The domain of points that
this function is searched over is [−30, 30]n.

Analytic Function 2

The equation for the second test function is written as

f(x) =
n∑
i=1

[
(xi + 0.23)2 − 10 cos(2π(xi + 0.23)) + 10

]
, (8.2)
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Figure 8.1: Visualisation of the explored analytic functions from Sec-
tion 8.1 in 2-dimensional form.
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and is displayed in Figure 8.1b with n = 2. This function has many local minima, with
the global minimum at −0.23. The challenge with this function will be avoiding the many
local minima and identifying the correct global minimum. The domain of points that this
function is searched over is [−7, 7]n.

Analytic Function 3

The equation for the third test function is written as

f(x) = − 1
n

n∑
i=1

sin6
(

5π(x
3
4
i − 0.05)

)
, (8.3)

and is displayed in Figure 8.1c with n = 2. This function has many global minima, with
a value of -1. This should be a fairly easy minimum to identify. The domain of points
that this function is searched over is [0, 1]n.

Analytic Function 4

The equation for the fourth test function is written as

f(x) = 418.9829n−
n∑
i=1

xi sin
(√

|xi|
)
, (8.4)

and is displayed in Figure 8.1d with n = 2. This function has a large domain, and is
irregularly shaped which makes it difficult to locate the global minimum. The global
minimum is approximately 420.968746, where the function is equal to 0. The domain of
points that this function is searched over is [−500, 500]n.

8.1.2 Particle Astrophysics Test Problem

Once the optimisation algorithms have been evaluated on the analytic test functions,
each is applied to a realistic particle astrophysics problem. A recent global fit of a su-
persymmetric theory performed by the GAMBIT collaboration in Ref. [97] is used, and
a fast interpolation of the likelihood function L is obtained. This likelihood function
was originally quite computationally expensive to evaluate, hence the requirement for a
fast interpolation function. This model adds a number of parameters to the Standard
Model which must be explored in order to find regions of the parameter space which
have strong agreement with current experimental results. In frequentist statistics, this is
typically done by maximising the likelihood function. In this case the function chosen to
be minimised is − log L. The original fit done by GAMBIT explored a 7-parameter phe-
nomenological version of the Minimal Supersymmetric Standard Model (MSSM7). The 7
parameters, detailed in Section 2.3.2, that are involved in this model are the soft masses
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M2,m
2
f̃
,m2

Hu
,m2

Hd
, the trilinear couplings for the third generation of quarks Au3 , Ad3 , and

tan β. The input scale Q is chosen to be 1 TeV, and the sign of µ is chosen to be positive.
These mass parameters are all defined at the Q common scale whereas tan β is defined at
mZ . The original fit also includes a variety of nuisance parameters. These are the strong
coupling constant, the top quark mass, the local dark matter density, and the nuclear ma-
trix elements for the strange, up and down quarks. In total, the global fit was performed
with 12 parameters.

The fast interpolation of the likelihood function was done using a deep neural network,
as proposed in Refs. [53, 98]. Approximately 2.3 × 107 samples taken from the global fit
were used to train the network. The network consists of 4 hidden layers, each contain-
ing 20 fully connected nodes with a SELU activation function. The data, consisting of
samples taken from a global fit done with GAMBIT, has been normalised to a Gaussian
distribution, and is split into training/testing sets with a ratio of 90%/10%. The batch
size is 1024, and the learning rate of the Adam optimiser is halved and early stopping is
applied whenever the loss function (mean absolute error) stops improving for a handful
of iterations in order to speed up training.

Figure 8.2 displays the reconstruction quality of the neural network. It is clear that the
predicted log-likelihood is very well-correlated with the true log-likelihood. It’s important
to note that the reconstruction is not required to be perfect, and that this serves as a
suitable proxy for such a difficult likelihood function as would typically be encountered
in a particle astrophysics application. Now that the suitability of this neural network
in approximating the likelihood function for this BSM model has been validated, let us
take a look at a handful of sampling algorithms that will be tested on these problems. It
should be noted that the original paper contains more algorithms than what are covered
here. This chapter instead focuses on covering the algorithms that I personally worked
on.

8.2 Optimisation Algorithms and Framework

The three algorithms that I helped to write, debug, and run are known as Bayesian
Optimisation [99] (GPyOpt), Trust Region Bayesian Optimisation [100] (TuRBO), and
Differential Evolution [101] (Diver). A number of other algorithms were also tested along-
side these three, namely Particle Swarm Optimisation [102], Covariance Matrix Adaptation
Evolution Strategy [103], Grey Wolf Optimisation [104], PyGMO Artificial Bee Colony [105],
Gaussian Particle Filter [106], and AMPGO [107].
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Figure 8.2: A scatter plot of the log-likelihood yeilded from the neural
network compared to the true value of the log-likelihood. One expects to
see a straight line y = x (displayed in red) for perfect prediction. The
high degree of correlation indicates that the neural network is adequately

predicting the log-likelihood for a given point.

8.2.1 Bayesian Optimisation (GPyOpt)

Bayesian Optimisation [99] techniques attempt to find the optimum value x∗ of an objec-
tive function f(x) using the minimum number of function evaluations. This is especially
useful when each function evaluation is expensive to calculate. The first step of the algo-
rithm is to approximate the objective function f(x) with a probabilistic regression model,
known as the surrogate model, which is able to to predict the value of unseen samples
in order to guide the decision of which samples to evaluate next. The surrogate model is
initially trained on a set of random samples of the objective function. These samples can
also be chosen by any other sampling algorithm. This surrogate model must be proba-
bilistic, as such, popular choices are Gaussian processes or probabilistic ensembles. This
surrogate model is continuously updated with each further sample of the objective func-
tion. After a given number of samples, a good estimate of what the objective function
looks like is obtained. The acquisition function α(x) takes the latest posterior of the sur-
rogate model and indicates where to sample next. This function must be easy to evaluate
so that one can do cheap samples of the surrogate model, rather than computationally
expensive evaluations of the objective function. In order to avoid getting stuck in local
optima, the acquisition function must trade off “exploration” and “exploitation”. Explo-
ration involves exploring new regions of the parameter space in order to identify locations
of interest, whereas exploitation involves further investigating these locations of interest
and delving into a given local optimum. This procedure has the advantage of requiring
relatively few function evaluations in order to find the optimum value x∗ of f(x), however
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more computation is required for each subsequent sample.
For an illustrative example, let us use a Gaussian process to define the surrogate model.

A Gaussian process is a stochastic process defined such that every finite linear combination
of its variables is normally distributed. This can be written as f(x) ≈ GP (µ(x), k(x,x′)).
Here µ(x) is the prior function which can be assumed to be 0 without loss of generality.
k(x,x′) is the kernel. Let us use the radial basis function for k, also known as the square
exponential kernel, defined as:

k(x,x′) = σ2 exp
(

−||x − x′||2

2λ2

)
, where λ > 0. (8.5)

The next step is to choose an acquisition function. There are a number of commonly
used functions, each of which have trade-offs in exploration and exploitation. A number
of popular choices are listed here, defining µ(x), and σ(x) as the predicted mean and
standard deviation for a given input x. f ∗ is defined as the current best value found by
the algorithm, and ψ is a parameter that controls the relative weight of exploration and
exploitation. Φ and ϕ are the cumulative distribution function (CDF) and probability
density function (PDF) of the standard normal distribution respectively.

• Maximum probability of improvement (MPI):

αMPI(x) = Φ(γ(x)), where γ(x) = µ(x) − f ∗ − ψ

σ(x) (8.6)

• Expected improvement (EI):

αEI(x) = (µ(x) − f ∗)Φ(γ(x)) + σ(x)ψ(γ(x)) (8.7)

• Upper confidence bound (UCB):

αUCB(x) = µ(x) − ψσ(x) (8.8)

The acquisition function is sampled using some sampling algorithm, and the sample
with the highest acquisition score is chosen to be evaluated by the optimisation function.
After evaluation, this new sample becomes the next training point, the surrogate model
is updated, and the next sample is selected. This iterative process is repeated until some
stopping point is reached, be that after a certain number of evaluations, or after an
acquisition function threshold is passed.
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8.2.2 Trust Region Bayesian Optimisation (TuRBO)

The standard Bayesian Optimisation algorithm has poor scaling in high-dimensional ap-
plications. This is due to the acquisition function becoming difficult to optimise in high-
dimensional spaces as it requires the same number of dimensions as in the input space.
An emphasis on exploration over exploitation, and the assumption that surrogate models
are homogeneous also contribute to the poor scaling of this technique. The surrogate
model also uses a constant length scale λ and signal variance σ, which is often ineffective
for non-trivial high dimensional functions. Samples in high dimensional spaces tend to be
far apart, which leads to high uncertainty in the surrogate model, causing the acquisition
function to focus more on exploration than exploitation.

The trust region Bayesian optimisation (TuRBO) algorithm [100] improves on the
standard version by fitting a set of local models and determining how best to sample them
in order to find the global optimum x∗ in the most efficient manner. Multiple independent
Gaussian processes are employed to perform simultaneous local optimisations. This allows
for heterogeneous modelling of the objective function, while retaining all of the benefits
of Bayesian optimisation. Each Gaussian process is assigned a “Trust Region”, which is
a hyper-rectangle centred at the best found solution at each iteration. The parameter λ
controls the base side length L of each Gaussian process with the relation:

Li = λiL(∏d
j=1 λj

)1/d . (8.9)

The set of points that can be selected by the acquisition function is limited to points
within this trust region, meaning that one can control the trade-off between exploration
(larger L) and exploitation (smaller L). Points are selected from each trust region using
a greedy Thompson Sampling approach, where the ith point xi is drawn using

xi = min
l

min
x∈trust region

fl, (8.10)

where fl is a sample from the lth Gaussian process.

8.2.3 Differential Evolution (Diver)

The Diver algorithm uses a form of Differential Evolution [101] in order to sample high
dimensional spaces. Differential Evolution (DE) is a population based heuristic optimisa-
tion strategy which belongs to the broader class of evolutionary algorithms. DE involves
evolving a population of “target vectors” Xg

i , of particular points in the parameter space
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for a number of generations. Here i denotes the ith individual, and g refers to the gener-
ation of the population. The initial generation is typically randomly selected from within
the parameter space.

A single generation is evolved from one to the next via three steps: mutation, crossover,
and selection. Let us look at the particular variant that is used by Diver known as
λjDE, or rand-to-best/1/bin where some selected parameters are optimised as if they
were dimensions of the parameter space. The first two parts of the name “rand-to-best/1”
refer to the mutation strategy (best solution, plus some randomly selected points, and a
single difference vector). The third part of the name “bin” refers to the cross over strategy
(binomial).

The mutation step is done by choosing a target vector Xi, and constructing one or
more vectors Vi referred to as “donor vectors”. The donor vectors are a set of vectors
that are drawn from in the construction of “trial vectors” which are denoted Ui. In the
rand-to-best/1/bin algorithm, Vi is given by:

Vi = λXbest + (1 − λ)Xr1 + F (Xr2 − Xr3), (8.11)

where Xr1,Xr2, and Xr3 are three unique randomly chosen vectors from the current
generation. F and λ are two free parameters which are tuned as if they were dimensions
of the parameter space in the λjDE variant of the algorithm.

Crossover involves the construction of a trial vector Ui, by selecting parameter values
from either the target vector Xi, or one of the donor vectors Vi. This selection process
is controlled by one final parameter Cr, which, just as with F and λ, is tuned as if
it were a dimension of the parameter space. For each parameter, a random number is
chosen between 0 and 1. If that number is greater than Cr, that parameter value is taken
from the target vector, otherwise it is taken from the donor vector. At the end of this
process, a single parameter of Ui is chosen at random and replaced with the corresponding
component of Vi. This is done to ensure that Ui ̸= Xi.

The final step, selection, is done by comparing the trial vector Ui and the target vector
Xi. Whichever vector returns the best value of the objective function is kept for the next
generation.

This project explores two different differential evolution algorithms, Diver and PyGMO.
PyGMO is a Python package that implements iDE and jDE differential evolution al-
gorithms, which are simplified versions of the λjDE algorithm described here. These
algorithms have fewer tunable parameters and so are expected to be less flexible.
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8.2.4 Particle Swarm Optimisation

The following algorithms I did not have a hand in, but are important to understand in
order to interpret results in Section 8.3. Particle Swarm Optimisation [102] is a population-
based evolutionary algorithm that does not use derivatives. A number of parameter
samples, collectively referred to as “the swarm”, are taken and each particle within the
swarm is given a velocity. The positions of each particle are used to update the velocities
of all others, with each particle moving along their velocity vector after each generation.
The velocity of particle i in generation g is denoted

vg+1
i = ωvgi + ϕ1r1(xi,pb − xg

i ) + ϕ2r2(xgb − xg
i ), (8.12)

such that the updated position vector xg+1
i = xg

i +vgi . Here r1 and r2 are uniform random
numbers between 0 and 1, xi,pb is the ith particles best-fit position across all generations,
xgb is the global best fit across all particles and generations, and ω, ϕ1, and ϕ2 are free
parameters. This chapter uses a particle swarm optimisation algorithm referred to as
j-Swarm, where ω, ϕ1, and ϕ2 are dynamically optimised over the course of a run.

8.2.5 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy [103] henceforth referred to as CMA-
ES, is another evolutionary optimisation algorithm. From an initial sample x(0), a set
of λ new points, referred to as a population, are sampled from a multivariate normal
distribution about x(0) with covariance matrix (σ(g))2C(g). Here g refers to the generation
number. The optimistation function is evaluated at all λ points and the best µ points are
used to calculate the next generation given by

x(g+1) =
µ∑
j=1

wjx
(g)
j , (8.13)

where wj > 0 are weights summing to 1, with j being the sorted index running from best
to worst point. The step size σ(g) and the matrix C(g) are updated after each generation
in order to maximise the probability of the new generation improving upon the old. This
update is given by

p(g+1)
c = (1 − cc)p(g)

c +
√
cc(2 − cc)µeff

x(g+1) − x(g)

σ(g) ,

C(g+1) = (1 − ccov)C(g) + ccov

µcov
p(g+1)
c p(g+1)T

c

+ ccov

(
1 − 1

µcov

) µ∑
j=1

wj

x(g+1)
j − x(g)

σ(g)

x(g+1)
j − x(g)

σ(g)

T ,
(8.14)
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where p(g)
c is a cumulative path which stores information from previous generations, cc < 1

is the learning rate for the cumulative path, ccov < 1 is the learning rate for the covari-
ance matrix, and µcov ≥ 1 controls the ratio between the cumulation and rank-µ updates.
µeff =

(∑µ
j=1 w

2
j

)−1
is the parameter representing the effective selection mass. The cumu-

lation update adapts the matrix to the large scale gradient of the optimisation function,
while the rank−µ update adapts to the local gradient of the optimisation function.

The chosen update to the step size at each generation is based on the absolute length
of the cumulative path. If many steps are taken in the same direction, the length is
assumed to be larger than if steps are taken in different directions. The update is given
by

p(g+1)
σ = (1 − cσ)p(g) +

√
cσ(2 − cσ)µeff C(g)−1/2

(
x(g+1) − x(g)

σ(g)

)

σ(g+1) = exp
{(

cσ
dσ

[
|p(g+1)
σ |

|N (0, I)|

])} (8.15)

with C(g)−1/2 = B(g)D(g)−1B(g)T where C(g) = B(g)D(g)2B(g)T is the eigenvalue decompo-
sition of C(g). The learning rate cσ and the damping rate dσ both control the adaptation
speed.

The tunable parameters of the CMA-ES algorithm are entirely independent from the
objective function and depend almost exclusively on the dimensionality of the parameter
space. The implementation in this chapter is from the pycma package.

8.2.6 Grey Wolf Optimisation

The Grey Wolf Optimisation algorithm [104] is a swarm intelligence algorithm drawing
inspiration from the behaviour of packs of grey wolves. Each search agent is assigned one
of four categories: α, β, δ, or ω. The 1st, 2nd, and 3rd best (fittest) solutions are assigned
to α, β, and δ, while the remainder are assigned to ω. During optimisation, searching
is led by α, while β and δ have a smaller influence. Each search agent is initialised to
random positions in the feature space and are assigned categories based on their fitness.
The positions of each agent are then updated with each positional update containing both
stochastic elements and influence from the positions of the α, β, and δ agents. The roles
of each agent are set at the initialisation of the algorithm and are not updated. Let us
define two vectors used in the update process:

A⃗i = 2a⃗ · r⃗1,i − a⃗ (8.16)
C⃗i = 2r⃗2,i. (8.17)
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Where A⃗i denotes the ith unique generation of the vector. These vectors have a number
of parameters equal to that of the dimensionality of the feature space. r⃗(1,2),i are vectors
of random numbers between [0, 1], and a⃗ has components which decrease linearly from 2
to 0 over each iteration. Let us now define three more vectors to capture the relationship
between the position of a given agent relative to the three fittest agents:

Dα = |C⃗1 · X⃗α − X⃗|, (8.18)
Dβ = |C⃗2 · X⃗β − X⃗|, (8.19)
Dγ = |C⃗3 · X⃗γ − X⃗|. (8.20)

(8.21)

Each agent is updated to their new positions given by

X⃗(t+ 1) = X⃗1 + X⃗2 + X⃗3

3 , (8.22)

where t indicates the current iteration, and

X⃗1 = X⃗α − A⃗1 ·Dα (8.23)
X⃗2 = X⃗β − A⃗2 ·Dβ (8.24)
X⃗3 = X⃗γ − A⃗3 ·Dγ. (8.25)

(8.26)

These updates are designed to have the α, β, and γ agents encircle the optima, while
the remaining ω agents randomly search around this position. This process is continued
until either a maximum number of iterations is reached, or some condition of fitness on
the optimal solution is met. The only hyperparameters present in this algorithm are the
number of agents, which should be at least 4.

8.2.7 PyGMO Artifical Bee Colony

The Artificial Bee Colony algorithm [105] is another swarm intelligence algorithm inspired
by the behaviour of honey bees searching for food sources. The version used in this
chapter comes from the PyGMO package. The Artificial Bee Colony algorithm keeps track
of SN active points referred to as xs, with s running from 1 to SN . The initial position of
each point is uniformly initialised, and the objective function at each point is evaluated.
Returning to the bee analogy, these initial points can be thought of as food sources, and
the value of the objective function can be thought of as the food gain from a given source.
This algorithm runs in an iterative cycle until a certain number of iterations have passed.
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Each iteration is broken into three steps. First each active data point xi is moved for each
dimension j towards another randomly selected datapoint xk with its new position given
by

vi,j = xi,j + ϕij(xi,j − xk,j), (8.27)

where ϕij is a random number between 0 and 1 drawn from a uniform distribution. For
the newly proposed point vi the objective function is evaluated, and upon finding an
improved value, the point xi is updated to vi. If no improved value is found, the original
point xi is kept. The number of failures is kept and is used to give up on points which are
not updated for many iterations. This is done in the second step, where these inactive
points are reinitialised uniformly in the parameter space. The third and final step of each
iteration is to use Equation 8.27 to update the “active” points. A point is has a chance
to be deemed active based on the probability function

pi = fitnessi∑
j fitnessj

, (8.28)

where fitnessi is given by

fitnessi =

(1 + fi)−1, fi ≥ 0

1 + |f |, fi < 0,
(8.29)

and fi is the value of the objective function at xi. Once again, as in the first step, only
updates that improve the fitness are taken. In this phase the update attempts are also kept
track of in order to remove inactive points. One of the major strengths of this algorithm is
its automated balance of exploration/exploitation. As the number of iterations increases,
the swarm agents will move closer to the best fit, as updates only occur when the fitness
increases. The two parameters that govern this algorithm are the number of iterations,
improving resolution, and the number of times to run the algorithm, improving reliability.

8.2.8 Gaussian Particle Filter

The Gaussian Particle Filter [106] is a scanning algorithm that begins by taking an initial
number of randomly selected points. The number, range, and sampling prior are all
defined by the user. Each of these points acts as a seed to define a multi-dimensional
Gaussian distribution from which new points are drawn. The number of points drawn is
proportional to the value of the objective function at the seed. The width of the Gaussians
steadily decrease over the course of the run, the rate of which is controlled by the “width
decay” parameter. In each iteration N data points are sampled from M Gaussians and
the objective function is evaluated at each point. These samples are combined with a
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fraction of the best data points which form the seeds for the Gaussians. This fraction
is referred to as the survival rate. From the surviving set, the M best data points are
chosen to seed the next iteration of Gaussians. The version of this algorithm employed in
this chapter explores both a logarithmic and uniform prior, as well as a variety of width
decays and survival rates.

8.2.9 AMPGO

AMPGO or Adaptive Memory Programming for Global Optimisation [107] is a global optimi-
sation algorithm that consists of three basic steps. First, a number of points are chosen
from the parameter space using a uniform distribution. Next, a local solver is then used
to find the local optima about each point. Finally, a method known as Tabu Tunnelling
[108] is used to locate another point with equal or better fitness to the original local opti-
mum. From this new point the local optimiser is rerun. This iterative process is repeated
until some stopping condition is met. This algorithm relies heavily on being able to find
points with equal or greater fitness to the local optima, and since the possible tunnelling
directions are infinite, this can be quite the challenge. Very narrow global optima, such
as in Equation 8.1, are difficult to find, as the probability of tunnelling into them is in-
creasingly small. High dimensional parameter spaces are also a great difficulty for this
algorithm as when the dimensionality increases, the volume to tunnel through increases
exponentially. Given these difficulties it is unlikely that this algorithm will be able to
perform well in high dimensional particle astrophysics problems.

8.2.10 Algorithm Parameters

Each optimisation algorithm explored in this chapter has a number of hyper-parameters
to explore. These can broadly be divided into 4 different categories.

• Convergence Parameters: These parameters control the point at which an algo-
rithm halts. A stricter convergence condition will mean that the optimum found will
likely be closer to the true value, however it will also likely require more function
evaluations.

• Resolution Parameters: These parameters affect the resolution at which the func-
tion is searched. A higher resolution will mean the likelihood function is searched
with more detail around points of interest, however it will also require a higher
number of function evaluations.

• Hint Parameters: These parameters give the algorithm hints as to the location
of the optimum. For example, algorithms where one can choose the starting point
will benefit greatly from starting as near as possible to the global optimum.
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Parameter Explored values Type
AMPGO

Number of sampled points 2000, 5000, 10000, 20000 Resolution
CMA-ES

Function tolerance 10−11, 10−7, 10−4, 10−1 Convergence
Population size (λ) 20, 50, 100, 500 Resolution
Diver

Threshold for convergence 10−4, 10−3, 10−2, 10−1 Convergence
Population size 2000, 5000, 10000, 20000 Resolution
Parameter update scheme λjDE -
Gaussian Particle Filter

Width decay 0.90, 0.95, 0.99 Convergence
Logarithmic sampling True, False Hint
Survival rate 0.2, 0.5 Reliability
Initial gaussian width 2 Reliability
GPyOpt

Threshold for Convergence 10−6, 10−5, 10−4, 10−3, 10−2, 10−1 Convergence
Particle Swarm Optimisation

Threshold for convergence 10−4, 10−3, 10−2, 10−1 Convergence
Population size 2000, 5000, 10000, 20000 Resolution
Adaptive ϕ True Reliability
Adaptive ω True Reliability
PyGMO Artificial Bee Colony

Generations 100, 250, 500, 750 Resolution
Maximum number of tries 10, 50, 100 Reliability
PyGMO Differential Evolution

Generations 100, 250, 500, 750 Resolution
Parameter update scheme iDE, jDE -
PyGMO Grey Wolf Optimisation

Generations 10, 50, 100, 1000 Resolution
Random Sampling

Number of points 10, 50, 100, 500, 1000, 5000, 10000,
50000, 100000, 500000, 1000000

Resolution

Trust Region Bayesian Optimisation (TuRBO)
Max #evaluations / itera-
tion

64, 100 Convergence

Table 8.1: A grouping of the various parameters of each optimisation
technique into the categories described in the main text. The explored
values for these parameters can be found in the second column. Note that

the algorithms I personally worked on are Diver, GPyOpt, and TuRBO.

• Reliability Parameters: These are parameters that control the robustness of a
given algorithm.

The best choice of hyper-parameters is not known and will depend on the function
being sampled. In order to find the best values possible, a handful of different choices are
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considered. While each algorithm does not necessarily have one of each of the 4 types of
hyper-parameter detailed previously, most have at least a convergence and a resolution
parameter. Table 8.1 details each algorithm and their parameters which are explored in
the next section.

8.2.11 High-Dimensional Sampling Framework

All tests run for this chapter were performed within an open-source Python package
written specifically for the project. The High Dimensional Sampling framework (HDS) can
be found at https://github.com/DarkMachines/high-dimensional-sampling/, along
with a detailed technical introduction to the package. The full code is published under the
MIT license. This package is used to ensure that the only difference in the performance
of each algorithm comes from the workings of the algorithm itself and not from quirks
in how the operator runs said algorithm. This package also makes the results easily
reproducible, and automates as much of the experiment as possible while minimising loss
of configurability. The output of the HDS framework is standardised in order to make the
comparison of algorithms as easy as possible.

8.3 Results

In this section I compare the best found optimum of each hidden function described in
Section 8.1 yielded from each sampling algorithm. Each of these problems is being treated
as a minimisation problem, searching for the lowest value of some underlying function.

8.3.1 Analytic Test Functions

The analytic functions, detailed in Section 8.1.1, are explored in 2, 3, 5, and 7 dimensional
examples in order to observe how the performance of each algorithm changes with different
dimensionalities. This will give insight into the performance on the particle astrophysics
problem, which is modelled using a 12 dimensional likelihood function. It is to be expected
that as the dimensionality of the problem increases, the performance of each algorithm will
decrease. Each algorithm is run for a variety of hyper-parameters, detailed in Table 8.1, in
order to see which set of hyper-parameters works best in each scenario. For the algorithms
I worked on, the very best set of these hyper-parameters for each hidden function is
detailed in Section 8.4.

Figure 8.3 displays the accuracy with which each algorithm is able to identify the
global minimum for the hidden function shown in Figure 8.1a in various dimensions.
Each circle represents a single run of the algorithm with different hyper-parameters. The
size of the circle is proportional to log10 of the total number of function evaluations, and

https://github.com/DarkMachines/high-dimensional-sampling/
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Figure 8.3: Results from different optimisation algorithms on the analytic
function in Equation 8.1. The results are shown as semi-opaque circles, of
which the area increases logarithmically with the number of function eval-
uations needed to obtain that specific result. The four horizontal lines for
each algorithm belong to the four explored dimensionalities, from top to
bottom 7-dimensional (pink), 5-dimensional (purple), 3-dimensional (or-
ange) and 2-dimensional (green). The horizontal axis shows the difference
between the (known) log-likelihood at the global minimum and that at the

found minimum.
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each line/colour corresponds to a different number of dimensions. The x-axis displays
the true minimum subtracted from the achieved minimum. This means that the very
best possible score here is 0, where the achieved minimum is equal to the true minimum.
Figure 8.3 shows that some algorithms never get close to the true minimum, even in
low dimensional scenarios. In ≥ 3 dimensions, no algorithm manages to find the global
minimum. It is shown in Figure 8.1a that the global minimum lies in a very sharp
pit surrounded by local maxima, making this minimum very difficult to find, even in low
dimensions. The best performing algorithm is PyGMO Artificial Bee Colony, which finds the
global minimum in both 2 and 3 dimensions with relatively few function evaluations. The
worst performing algorithms are PyGMO Grey Wolf Optimisation, Gaussian Particle Filter,
AMPGO, GPyOpt, and PyGMO Differential Evolution. For the PyGMO implementation of
differential evolution, this poor performance could be due to the relatively small number
of function evaluations, and a different choice of hyper-parameters might yield better
performance. This is supported by the fact that Diver performs quite well, though is not
able to find the minimum in 3D. In 3D, all algorithms except for TuRBO and PyGMO
Artificial Bee Colony are outperformed by simple random sampling, which is not terribly
surprising due to the nature of this problem running counter to the way a lot of these
algorithms search for global minima. GPyOpt’s poor performance is easily explained due
to the way the algorithm operates. The sharply spiked local minimum is exactly the sort
of feature that a Bayesian optimisation algorithm is likely to miss due to its relatively
small number of function evaluations, and concentration of said evaluations in regions
of the parameter space that the algorithm has deemed interesting. TuRBO on the other
hand is able to find the global minimum in 2D and get quite close in 3D. This is due to
it partitioning the space into separate regions. One of these regions is small enough to
contain the global minima as an obvious value to choose over the plateau of false minima
around the outside of the function.

Figure 8.4 shows the accuracy with which each algorithm is able to identify the global
minimum for the hidden function shown in Figure 8.1b in various dimensions. Almost
every algorithm is able to identify the global minimum, and outperform random sampling
which is an indication that these algorithms are in fact an effective means of identifying
global minima for functions that resemble hidden function 2. GPyOPT succeeds in 2
dimensions and is outperformed by TuRBO in all cases except for the 7-dimensional case,
though neither is able to find the global minimum. TuRBO does, however, require many
more function evaluations. Diver is able to find the global minimum in all dimensions,
however it uses quite a few function evaluations to do so. The performance of PyGMO
Differential Evolution suggests that it is possible that Diver could achieve similar results
with fewer function evaluations. The final feature of note is that the results of each
algorithm consistently get worse in higher dimensions, as expected.
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Figure 8.4: Results from different optimisation algorithms on the analytic
function in Equation 8.2. The results are shown as semi-opaque circles, of
which the area increases logarithmically with the number of function eval-
uations needed to obtain that specific result. The four horizontal lines for
each algorithm belong to the four explored dimensionalities, from top to
bottom 7-dimensional (pink), 5-dimensional (purple), 3-dimensional (or-
ange) and 2-dimensional (green). The horizontal axis shows the difference
between the (known) log-likelihood at the global minimum and that at the

found minimum.
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Figure 8.5: Results from different optimisation algorithms on the analytic
function in Equation 8.3. The results are shown as semi-opaque circles, of
which the area increases logarithmically with the number of function eval-
uations needed to obtain that specific result. The four horizontal lines for
each algorithm belong to the four explored dimensionalities, from top to
bottom 7-dimensional (pink), 5-dimensional (purple), 3-dimensional (or-
ange) and 2-dimensional (green). The horizontal axis shows the difference
between the (known) log-likelihood at the global minimum and that at the

found minimum.
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Figure 8.5 shows the accuracy with which each algorithm is able to identify the global
minima for the hidden function shown in Figure 8.1c in various dimensions. The perfor-
mance on hidden function 3 is much better than on any of the previous functions. Every
algorithm (except AMPGO) is able to find the global minimum in 2 and 3 dimensions,
and most are able to outperform random sampling. This is indicative of the fact that
hidden function 3 has many identical global minima, and most algorithms are able to
find one of them. GPyOPT gives the best performance here, finding the global minimum
in all dimensions with very few function evaluations. TuRBO similarly finds the global
minimum in all dimensions, albeit with more function evaluations due to it needing to
perform redundant evaluations in many separate optimisations. Diver is able to find the
global minima in all dimensions except the 7-dimensional case. However the PyGMO im-
plementation of differential evolution outperforms Diver, finding the global minima in all
dimensions with less function evaluations.

Figure 8.6 shows the accuracy with which each algorithm is able to identify the global
minimum for the hidden function shown in Figure 8.1d in various dimensions. Hidden
function 4 has many local minima, but only one global minimum, making it a little more
difficult than hidden functions 2 and 3. Once again, AMPGO has the poorest perfor-
mance, performing worse than random sampling. PyGMO Grey Wolf Optimisation also
performs similarly poorly. PyGMO Differential Evolution performs the best here, getting
the correct value in all dimensionalities. Diver is also able to get the correct values, albeit
with higher numbers of function evaluations, though this may change with a different
selection of hyper-parameters. Again, Bayesian optimisation algorithms perform poorly
in higher dimensions, although TuRBO performs considerably better than GPyOPT in > 5
dimensions.

Table 8.2 presents a summary of the 11 algorithms on these 4 analytic functions.
PyGMO Artificial Bee Colony appears to be the best overall algorithm, performing well
on all functions except hidden function 1 where all algorithms performed quite poorly.
AMPGO is consistently worse than random sampling. The Bayesian optimisation algo-
rithms generally perform well when there are not hidden global minima, however this
can be mitigated by adding latin hypercube sampling, as in the TuRBO algorithm. Both
differential evolution algorithms are consistently quite strong in both the PyGMO and
Diver implementations, while CMA-ES also shows fair performance. Particle Swarm Opti-
misation consistently requires a high number of evaluations, and is not consistent across
all hidden functions. Finally, Gaussian Particle Filter struggles in high dimensions, and is
very sensitive to the choice of hyper-parameters. In Section 8.4 I go into detail on the
best hyper-parameters for each of the algorithms that I personally worked on.
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Figure 8.6: Results from different optimisation algorithms on the analytic
function in Equation 8.4. The results are shown as semi-opaque circles, of
which the area increases logarithmically with the number of function eval-
uations needed to obtain that specific result. The four horizontal lines for
each algorithm belong to the four explored dimensionalities, from top to
bottom 7-dimensional (pink), 5-dimensional (purple), 3-dimensional (or-
ange) and 2-dimensional (green). The horizontal axis shows the difference
between the (known) log-likelihood at the global minimum and that at the

found minimum.
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8.3.2 Particle Astrophysics Test Problem

Figure 8.7 displays the results for each algorithm for the MSSM7 particle astrophysics test
problem detailed in Section 8.1.2. It is immediately clear that Diver by far outperforms
all other algorithms, including the PyGMO implementation of differential evolution, albeit
with more function evaluations. The reason for this extraordinary performance from Diver
may be that the neural network used to create the fast interpolation of the likelihood
function was trained on samples taken from Diver. The training data was created totally
independently from any optimisation presented here, however it is possible that the neural
network encodes patterns that are naturally explored by the Diver algorithm and not
others. However, while the other algorithms were not able to find the global minimum
of this function, many of them outperformed randomly sampling the space. The two
Bayesian optimisation algorithms that I worked on performed poorly compared to other
algorithms tested here, but performed comparably to random sampling. This is explained
by the high dimensionality of the problem. In the analytic test function examples it was
shown that as the dimensionality increased, the performance of the Bayesian optimisation
algorithms was especially affected. AMPGO is the only algorithm of the group which
performs consistently worse than random sampling, as was generally seen in the analytic
functions.
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Figure 8.7: Results from different optimisation algorithms on the neu-
ral network approximation of the MSSM7 log-likelihood described in Sec-
tion 8.1.2. The results are shown as semi-opaque circles, of which the area
increases logarithmically with the number of function evaluations needed
to obtain that specific result. The horizontal axis shows the difference be-
tween the log-likelihood at the found minimum and the deepest minimum
found by any algorithm for any settings. To emphasise the possible bias in
the test function towards Diver, the results for that algorithm are coloured

differently.
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8.4 Best Found Results and Parameter Settings

In this section I briefly review the performance, and optimal hyper-parameters for each
of the algorithms I worked on applied to the various analytic functions and the MSSM7
particle astrophysics problem. Tables 8.3-8.6 display the minima found by each algorithm,
as well as the parameters that were used to find this optimal value, and the number of
function evaluations used to find said value. Here the best result is that which has the
lowest function value. If multiple samples found the same value, the result that required
the lowest number of function of evaluations is taken. Of note is that Diver tends to work
best for the smallest value of the convergence threshold, convthresh=0.0001. Notable
exceptions being for the 3-D case of analytic function 1, and the 3-D and 7-D cases of
analytic function 3, where a convergence threshold of 0.1 performed best. It also tends to
prefer a higher resolution value, the notable exception being analytic function 4, where
it successfully found the minimum with a rather low resolution value in all dimensions.
GPyOPT generally works best for smaller convergence thresholds, notable exceptions being
the the 3-D case of analytic function 3, and the 3-D case of analytic function 4, where
it successfully finds the minimum with a rather high value of eps. This is the only such
case, as in all other cases where GPyOPT locates the correct minimum, eps was ≤ 0.0001.
GPyOPT also consistently uses far fewer function evaluations than the others, as expected.
Generally the number of evaluations is O(100) rather than > O(105) as for the others.
TuRBO unsurprisingly tends to work best for the highest number of allowed function
evaluations, max_eval=100.

Table 8.7 displays the minima found by each algorithm, as well as the parameters that
were used to find this optimal value, and the number of function evaluations used to find
said value. The trends observed on the analytic functions are consistent with what is
observed in this case. Diver performs best with a small convergence threshold, and a high
resolution. GPyOPT works best with a small convergence parameter and uses a very small
number of function evaluations, though it does not find a very good minimum. TuRBO
performs best with a higher number of maximum function evaluations.
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Algorithm dim Parameters min Neval

Diver

2 convthresh=0.0001, np=5000 -0.998 65000
3 convthresh=0.1, np=10000 -0.735 110000
5 convthresh=0.001, np=2000 0.0 22000
7 convthresh=0.1, np=2000 0.0 22000

GPyOPT

2 eps=0.1 0.0 511
3 eps=0.0001 0.0 425
5 eps=0.01 0.0 345
7 eps=0.001 0.0 456

TuRBO

2 max_eval=100 -1.0 1001876
3 max_eval=100 -0.917 1052097
5 max_eval=64 0.0 650000
7 max_eval=64 0.0 650000

Table 8.3: Best obtained result for Analytic Function 1 (Equation 8.1).
The ‘best’ result is the result with the lowest found function value. If
multiple samples found the same value, the result with the lowest number

of needed function evaluations is shown.

Algorithm dim Parameters min Neval

Diver

2 convthresh=0.0001, np=10000 0.0 380000
3 convthresh=0.0001, np=20000 0.0 1040000
5 convthresh=0.0001, np=20000 0.0 1600000
7 convthresh=0.0001, np=20000 0.0 2000000

GPyOPT

2 eps=0.0001 0.002 754
3 eps=0.0001 1.265 693
5 eps=1e-06 5.284 587
7 eps=0.001 5.829 797

TuRBO

2 max_eval=100 0.0 1000584
3 max_eval=100 0.027 1050660
5 max_eval=100 2.044 1050025
7 max_eval=100 12.101 1050007

Table 8.4: Best obtained result for Analytic Function 2 (Equation 8.2).
The ‘best’ result is the result with the lowest found function value. If
multiple samples found the same value, the result with the lowest number

of needed function evaluations is shown.
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Algorithm dim Parameters min Neval

Diver

2 convthresh=0.0001, np=10000 -1.0 210000
3 convthresh=0.1, np=20000 -1.0 220000
5 convthresh=0.0001, np=20000 -0.998 420000
7 convthresh=0.1, np=10000 -0.984 110000

GPyOPT

2 eps=1e-06 -1.0 636
3 eps=0.01 -1.0 623
5 eps=1e-06 -1.0 635
7 eps=1e-05 -1.0 675

TuRBO

2 max_eval=64 -1.0 700000
3 max_eval=100 -1.0 1050981
5 max_eval=100 -1.0 1050025
7 max_eval=100 -0.998 1050000

Table 8.5: Best obtained result for Analytic Function 3 (Equation 8.3).
The ‘best’ result is the result with the lowest found function value. If
multiple samples found the same value, the result with the lowest number

of needed function evaluations is shown.

Algorithm dim Parameters min Neval

Diver

2 convthresh=0.0001, np=2000 -0.0 64000
3 convthresh=0.0001, np=2000 -0.0 88000
5 convthresh=0.0001, np=5000 -0.0 315000
7 convthresh=0.0001, np=5000 -0.0 365000

GPyOPT

2 eps=0.0001 0.017 651
3 eps=0.01 0.062 852
5 eps=1e-05 53.532 954
7 eps=0.0001 928.87 1011

TuRBO

2 max_eval=100 0.0 1000636
3 max_eval=100 0.034 1050318
5 max_eval=100 0.395 1050010
7 max_eval=100 178.766 1050000

Table 8.6: Best obtained result for Analytic Function 4 (Equation 8.4).
The ‘best’ result is the result with the lowest found function value. If
multiple samples found the same value, the result with the lowest number

of needed function evaluations is shown.
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Algorithm Parameters min Neval
Diver convthresh=0.0001, np=20000 238.214 200000
GPyOPT eps=0.0001 255.827 684
TuRBO max_evals=100 246.688 1000000

Table 8.7: Best obtained result for the approximation of the 12-
dimensional MSSM7 log-likelihood described in Section 8.1.2. The “best”
result is the result with the lowest found function value. If multiple samples
found the same value, the result with the lowest number of needed function

evaluations is shown.
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8.5 Conclusion

In this chapter a variety of optimisation algorithms were explored in an effort to find new
algorithms for use in particle astrophysics problems. Many of these algorithms have not
been used in a particle astrophysics context before, and so exploring their applicability
to such a task is a novel endeavour. Each algorithm was tested on a handful of hidden
analytic test functions, detailed in Section 8.1.1, and then applied to a particle astrophysics
problem, detailed in Section 8.1.2. The algorithms which I worked on are two Bayesian
optimisation algorithms called GPyOPT, and TuRBO, as well as a differential evolution
algorithm called Diver. The other algorithms that were investigated are PyGMO Differential
Evolution, Particle Swarm Optimisation, Covariance Matrix Adaptation Evolution Strategy,
Grey Wolf Optimisation, PyGMO Artificial Bee Colony, Gaussian Particle Filter, and AMPGO.
Each of these algorithms has a publicly available software implementation. For each
algorithm the hyper parameters were characterised as controlling either the convergence
of the algorithm, the resolution of the algorithm, providing hints, or improving reliability.
Each algorithm was then run with a variety of these hyper-parameters on a handful of
hidden analytic test functions, and on a custom implementation of the MSSM7 likelihood
function. While it cannot definitively be said that any given algorithm was the “best”,
we can come to some interesting conclusions.

• Algorithms that perform consistently well on the analytic test functions do not
necessarily generalise well to the MSSM7 likelihood function. For example, the
PyGMO Artificial Bee Colony consistently performed very well on the analytic func-
tions, however it was outperformed by both differential evolution implementations,
notably Diver. However this may be due to an implicit bias towards Diver inherent
in the training of the neural network.

• Both differential evolution algorithms performed consistently well across all exam-
ples.

• AMPGO consistently performed poorly on every test example, being outperformed
by simple random sampling in almost all cases.

• Both Bayesian optimisation algorithms perform well for functions with many global
minima, however they struggle in cases with very sharply peaked minima, or with
many local minima. High dimensional functions also prove difficult for both Bayesian
optimisation algorithms to navigate. TuRBO consistently performs better than
GPyOPT as expected due to it performing many optimisations in different hyper-
rectangles. This comes at the price of requiring many more function evaluations.
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Many of the algorithms detailed here show strong results in both the analytic test func-
tions and the particle astrophysics problem. These results suggest that the use of these
algorithms in future real world particle astrophysics problems is well-motivated.
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9 Summary

Throughout this thesis I have explored the state of modern particle physics, collider experi-
ments, machine learning, unsupervised anomaly detection, high dimensional optimisation,
and dimensional reduction. Modern collider experiments have been very successful in ex-
cluding regions of the BSM parameter space but have not found any strong evidence of
physics beyond the Standard Model. Using cutting edge data analysis algorithms I have
developed a number of techniques to aid in the discovery of new physics, from identifying
interesting regions of parameter space, to visualisation of MSSM models.

In Chapter 5 I present an unsupervised anomaly detection algorithm designed to dis-
tinguish an anomalous BSM signal from the SM background. In Figure 5.17 I confirm that
training algorithms in the latent space of a VAE dramatically improves the performance,
and that by combining the anomaly scores, one can draw out better discriminating power.
In Chapter 6 I further hone my algorithm, and test it on a wide variety of SUSY and
non-SUSY BSM signals. I perform a detailed analysis of different hyperparameters for
the VAE using many metrics, and identify a set of hyperparameters which consistently
yield the best results across all tested signals. These results are displayed in Figure 6.11.

In Chapter 7 I project 4-dimensional MSSM model parameters onto a 2-D plane in
order to optimise on a more representative selection of models. I pick four unexcluded
models, two based on the simplified models that are typically examined at the LHC, and
two non-simplified models which are only visible due to the representative nature of the
model selection. From there, I construct analyses able to exclude each one, showing that
this method can aid in illuminating interesting regions of the parameter space without
constraining the models to hyperplanes within the total parameter space.

In Chapter 8 I test a number of high dimensional optimisation algorithms on a series
of analytic test functions as well as a particle astrophysics problem. In Table 8.2 I present
the strengths and weaknesses of each algorithm for a variety of criteria. For the algorithms
that I personally worked on, I present a detailed analysis of the results in Tables 8.3 to 8.7.

Modern particle physics has entered an interesting period where the next major dis-
covery will likely come from a theory for which the details are not known. In this thesis I
have presented model agnostic techniques which are able to provide strong discriminating
power with very minimal signal assumptions. I have explored high dimensional sampling
techniques which have been shown to be able to identify BSM models fitting closest with
experimental observations. Finally, I have tested dimensional reduction techniques which
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allow one to capture the entire behaviour of the parameter space, and examine BSM mod-
els in a way that is more representative of the entire parameter space. These novel data
analysis techniques have been shown to be valid tools for use in the search for physics
beyond the Standard Model.



143

Bibliography

[1] Peskin, Michael E and Schroeder, Daniel V. An Introduction To Quantum Field
Theory (Frontiers in Physics). Westview Press Incorporated, 1995.

[2] Francis Halzen and Alan D Martin. Quark & Leptons: An introductory course in
modern particle physics. John Wiley & Sons, 2008.

[3] Ian JR Aitchison and Anthony JG Hey. Gauge Theories in Particle Physics: A
Practical Introduction, -2 Volume set. Taylor & Francis, 2012.

[4] Fei Gao, Chong-yao Chen, and Yu-xin Liu. Colour Confinement: a Dynamical
Phenomenon of QCD. 2018. doi: 10.48550/ARXIV.1802.08184. url: https:
//arxiv.org/abs/1802.08184.

[5] James Clerk Maxwell. A treatise on electricity and magnetism. Vol. 1. Clarendon
press, 1873.

[6] H David Politzer. “Reliable perturbative results for strong interactions?” In: Phys-
ical Review Letters 30.26 (1973), p. 1346.

[7] David J Gross and Frank Wilczek. “Ultraviolet behavior of non-abelian gauge
theories”. In: Physical Review Letters 30.26 (1973), p. 1343.

[8] Steven Weinberg. “A model of leptons”. In: Physical review letters 19.21 (1967),
p. 1264.

[9] Langacker, Paul. The Standard Model and beyond. CRC press, 2017.

[10] Martin, Stephen P. “A supersymmetry primer”. In: Perspectives on supersymmetry
II. World Scientific, 2010, 1–153.

[11] Serguei Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC”. In: Physics Letters B 716.1 (2012), pp. 30–61.

[12] Scott Dodelson. Modern cosmology. Elsevier, 2003.

[13] Katherine Garrett and Gintaras Duda. “Dark matter: A primer”. In: Advances in
Astronomy 2011 (2011).

[14] Edvige Corbelli and Paolo Salucci. “The extended rotation curve and the dark
matter halo of M33”. In: Monthly Notices of the Royal Astronomical Society 311.2
(2000), pp. 441–447.

https://doi.org/10.48550/ARXIV.1802.08184
https://arxiv.org/abs/1802.08184
https://arxiv.org/abs/1802.08184


144 Bibliography

[15] Peter Schneider. “Gravitational lensing statistics”. In: Gravitational Lenses. Springer,
1992, pp. 196–208.

[16] Priyamvada Natarajan et al. “Mapping substructure in the HST Frontier Fields
cluster lenses and in cosmological simulations”. In: Monthly Notices of the Royal
Astronomical Society 468.2 (2017), pp. 1962–1980.

[17] Massimo Giovannini. A primer on the physics of the cosmic microwave background.
World Scientific, 2008.

[18] Lars Bergström and Ariel Goobar. The Cosmic Microwave Background Radiation
and Growth of Structure. Springer, Berlin, Heidelberg, 2004.

[19] E. Aprile et al. “The XENON1T dark matter experiment”. In: The European Phys-
ical Journal C 77.12 (2017). issn: 1434-6052. doi: 10.1140/epjc/s10052-017-
5326-3. url: http://dx.doi.org/10.1140/epjc/s10052-017-5326-3.

[20] R. Adam et al. “Planck2015 results”. In: Astronomy & Astrophysics 594 (2016),
A1. issn: 1432-0746. doi: 10.1051/0004-6361/201527101. url: http://dx.
doi.org/10.1051/0004-6361/201527101.

[21] The ATLAS Collaboration. SUSY June 2021 Summary Plot Update. https://
atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-
019/. 2021.

[22] SUSY Summary Plots March 2022. Tech. rep. Geneva: CERN, 2022. url: http:
//cds.cern.ch/record/2805985.

[23] M.C. Carmona-Benitez et al. “First Results of the LUX Dark Matter Experiment”.
In: Nuclear and Particle Physics Proceedings 273-275 (2016). 37th International
Conference on High Energy Physics (ICHEP), pp. 309–313. issn: 2405-6014. doi:
https : / / doi . org / 10 . 1016 / j . nuclphysbps . 2015 . 09 . 043. url: https :
//www.sciencedirect.com/science/article/pii/S2405601415005325.

[24] E. Aprile et al. “First Dark Matter Results from the XENON100 Experiment”.
In: Phys. Rev. Lett. 105 (13 2010), p. 131302. doi: 10.1103/PhysRevLett.105.
131302. url: https://link.aps.org/doi/10.1103/PhysRevLett.105.131302.

[25] P. Picozza et al. “PAMELA – A payload for antimatter matter exploration and
light-nuclei astrophysics”. In: Astroparticle Physics 27.4 (2007), pp. 296–315. issn:
0927-6505. doi: https://doi.org/10.1016/j.astropartphys.2006.12.002.
url: https://www.sciencedirect.com/science/article/pii/S0927650506001861.

https://doi.org/10.1140/epjc/s10052-017-5326-3
https://doi.org/10.1140/epjc/s10052-017-5326-3
http://dx.doi.org/10.1140/epjc/s10052-017-5326-3
https://doi.org/10.1051/0004-6361/201527101
http://dx.doi.org/10.1051/0004-6361/201527101
http://dx.doi.org/10.1051/0004-6361/201527101
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-019/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-019/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-019/
http://cds.cern.ch/record/2805985
http://cds.cern.ch/record/2805985
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2015.09.043
https://www.sciencedirect.com/science/article/pii/S2405601415005325
https://www.sciencedirect.com/science/article/pii/S2405601415005325
https://doi.org/10.1103/PhysRevLett.105.131302
https://doi.org/10.1103/PhysRevLett.105.131302
https://link.aps.org/doi/10.1103/PhysRevLett.105.131302
https://doi.org/https://doi.org/10.1016/j.astropartphys.2006.12.002
https://www.sciencedirect.com/science/article/pii/S0927650506001861


Bibliography 145

[26] F. Barao. “AMS—Alpha Magnetic Spectrometer on the International Space Sta-
tion”. In: Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment 535.1 (2004). Proceed-
ings of the 10th International Vienna Conference on Instrumentation, pp. 134–138.
issn: 0168-9002. doi: https://doi.org/10.1016/j.nima.2004.07.196. url:
https://www.sciencedirect.com/science/article/pii/S0168900204015888.

[27] M.G. Aartsen et al. “The IceCube Neutrino Observatory: instrumentation and on-
line systems”. In: Journal of Instrumentation 12.03 (2017), P03012–P03012. issn:
1748-0221. doi: 10.1088/1748-0221/12/03/p03012. url: http://dx.doi.org/
10.1088/1748-0221/12/03/P03012.

[28] M. Ackermann et al. “THE FERMI LARGE AREA TELESCOPE ON ORBIT:
EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND
CALIBRATION”. In: The Astrophysical Journal Supplement Series 203.1 (2012),
p. 4. issn: 1538-4365. doi: 10.1088/0067-0049/203/1/4. url: http://dx.doi.
org/10.1088/0067-0049/203/1/4.

[29] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of Instrumentation
3.08 (2008), S08001–S08001. doi: 10 . 1088 / 1748 - 0221 / 3 / 08 / s08001. url:
https://doi.org/10.1088/1748-0221/3/08/s08001.

[30] The ATLAS Collaboration et al. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: Journal of Instrumentation 3.08 (2008), S08003–S08003. doi:
10.1088/1748-0221/3/08/s08003. url: https://doi.org/10.1088%2F1748-
0221%2F3%2F08%2Fs08003.

[31] CMS Collaboration et al. The CMS experiment at the CERN LHC. 2008.

[32] Kenneth Aamodt et al. “The ALICE experiment at the CERN LHC”. In: Journal
of Instrumentation 3.08 (2008), S08002.

[33] A Augusto Alves Jr et al. “The LHCb detector at the LHC”. In: Journal of instru-
mentation 3.08 (2008), S08005.

[34] J. Alwall et al. “The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations”. In:
JHEP 07 (2014), p. 079. doi: 10.1007/JHEP07(2014)079. arXiv: 1405.0301
[hep-ph].

[35] Torbjörn Sjöstrand et al. “An Introduction to PYTHIA 8.2”. In: Comput. Phys.
Commun. 191 (2015), pp. 159–177. doi: 10.1016/j.cpc.2015.01.024. arXiv:
1410.3012 [hep-ph].

https://doi.org/https://doi.org/10.1016/j.nima.2004.07.196
https://www.sciencedirect.com/science/article/pii/S0168900204015888
https://doi.org/10.1088/1748-0221/12/03/p03012
http://dx.doi.org/10.1088/1748-0221/12/03/P03012
http://dx.doi.org/10.1088/1748-0221/12/03/P03012
https://doi.org/10.1088/0067-0049/203/1/4
http://dx.doi.org/10.1088/0067-0049/203/1/4
http://dx.doi.org/10.1088/0067-0049/203/1/4
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003
https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://arxiv.org/abs/1405.0301
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012


146 Bibliography

[36] J. de Favereau et al. “DELPHES 3, A modular framework for fast simulation
of a generic collider experiment”. In: JHEP 02 (2014), p. 057. doi: 10.1007/
JHEP02(2014)057. arXiv: 1307.6346 [hep-ex].

[37] Standard Model Summary Plots Spring 2020. Tech. rep. Geneva: CERN, 2020. url:
https://cds.cern.ch/record/2718937.

[38] Christopher G Lester and Alan J Barr. “MTGEN: Mass scale measurements in
pair-production at colliders”. In: Journal of High Energy Physics 2007.12 (2007),
p. 102.

[39] David JC MacKay, David JC Mac Kay, et al. Information theory, inference and
learning algorithms. Cambridge university press, 2003.

[40] Tom M Mitchell et al. Machine learning. 1997.

[41] John R Koza et al. “Automated design of both the topology and sizing of analog
electrical circuits using genetic programming”. In: Artificial Intelligence in De-
sign’96. Springer, 1996, pp. 151–170.

[42] Jaime G Carbonell, Ryszard S Michalski, and Tom M Mitchell. “An overview of
machine learning”. In: Machine learning (1983), pp. 3–23.

[43] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. 1999.

[44] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. url: http://yann.
lecun.com/exdb/mnist/.

[45] Kishan G Mehrotra, Chilukuri K Mohan, and HuaMing Huang. Anomaly detection
principles and algorithms. Vol. 1. Springer, 2017.

[46] John J Hopfield. “Neural networks and physical systems with emergent collective
computational abilities”. In: Proceedings of the national academy of sciences 79.8
(1982), pp. 2554–2558.

[47] Pascal Vincent et al. “Extracting and Composing Robust Features with Denoising
Autoencoders”. In: Proceedings of the 25th International Conference on Machine
Learning. ICML ’08. Helsinki, Finland: Association for Computing Machinery,
2008, 1096–1103. isbn: 9781605582054. doi: 10.1145/1390156.1390294. url:
https://doi.org/10.1145/1390156.1390294.

[48] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
(2013). cite arxiv:1312.6114. url: http://arxiv.org/abs/1312.6114.

[49] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals of
Mathematical Statistics 22.1 (1951), pp. 79 –86. doi: 10.1214/aoms/1177729694.
url: https://doi.org/10.1214/aoms/1177729694.

https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://cds.cern.ch/record/2718937
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
http://arxiv.org/abs/1312.6114
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694


Bibliography 147

[50] Melissa van Beekveld et al. “Combining outlier analysis algorithms to identify new
physics at the LHC”. In: Journal of High Energy Physics 2021.9 (2021), pp. 1–33.

[51] Gentleman, R and Carey, VJ. “Unsupervised machine learning”. In: Bioconductor
Case Studies. Springer, 2008, 137–157.

[52] G. Aad et al. “Dijet Resonance Search with Weak Supervision Using
√
s = 13 TeV

pp Collisions in the ATLAS Detector”. In: Phys. Rev. Lett. 125 (13 2020), p. 131801.
doi: 10.1103/PhysRevLett.125.131801. url: https://link.aps.org/doi/10.
1103/PhysRevLett.125.131801.

[53] G. Brooijmans et al. “Les Houches 2019 Physics at TeV Colliders: New Physics
Working Group Report”. In: 11th Les Houches Workshop on Physics at TeV Col-
liders: PhysTeV Les Houches. Feb. 2020. arXiv: 2002.12220 [hep-ph].

[54] Andy Buckley et al. “LHAPDF6: parton density access in the LHC precision era”.
In: Eur. Phys. J. C 75 (2015), p. 132. doi: 10.1140/epjc/s10052-015-3318-8.
arXiv: 1412.7420 [hep-ph].

[55] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FastJet User Manual”. In:
Eur. Phys. J. C72 (2012), p. 1896. doi: 10.1140/epjc/s10052-012-1896-2.
arXiv: 1111.6097 [hep-ph].

[56] “Expected performance of the ATLAS b-tagging algorithms in Run-2”. In: (July
2015).

[57] Liu, Fei Tony and Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest”. In: 2008
Eighth IEEE International Conference on Data Mining. IEEE. 2008, 413–422.

[58] Douglas Reynolds. “Gaussian Mixture Models”. In: Encyclopedia of Biometrics.
Ed. by Stan Z. Li and Anil Jain. Boston, MA: Springer US, 2009, pp. 659–663.
isbn: 978-0-387-73003-5. doi: 10.1007/978-0-387-73003-5_196. url: https:
//doi.org/10.1007/978-0-387-73003-5_196.

[59] Edward James McShane. “Jensen’s inequality”. In: Bulletin of the American Math-
ematical Society 43.8 (1937), pp. 521–527.

[60] Mayu Sakurada and Takehisa Yairi. “Anomaly Detection Using Autoencoders
with Nonlinear Dimensionality Reduction”. In: Proceedings of the MLSDA 2014
2nd Workshop on Machine Learning for Sensory Data Analysis. MLSDA’14. Gold
Coast, Australia QLD, Australia: Association for Computing Machinery, 2014,
4–11. isbn: 9781450331593. doi: 10.1145/2689746.2689747. url: https://
doi.org/10.1145/2689746.2689747.

[61] Jan Hajer et al. “Novelty detection meets collider physics”. In: arXiv preprint
arXiv:1807.10261 (2018).

https://doi.org/10.1103/PhysRevLett.125.131801
https://link.aps.org/doi/10.1103/PhysRevLett.125.131801
https://link.aps.org/doi/10.1103/PhysRevLett.125.131801
https://arxiv.org/abs/2002.12220
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747


148 Bibliography

[62] Soheil Kolouri et al. “Sliced-Wasserstein autoencoder: an embarrassingly simple
generative model”. In: arXiv preprint arXiv:1804.01947 (2018).

[63] Olmo Cerri et al. “Variational Autoencoders for New Physics Mining at the Large
Hadron Collider”. In: JHEP 05 (2019), p. 036. doi: 10.1007/JHEP05(2019)036.
arXiv: 1811.10276 [hep-ex].

[64] Solomon Kullback. Information Theory and Statistics. New York: Wiley, 1959.

[65] Kevin P. Murphy. Machine learning : a probabilistic perspective. Cambridge, Mass.
[u.a.]: MIT Press, 2013. isbn: 9780262018029 0262018020. url: https://www.
amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/
dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2.

[66] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). 2016. arXiv: 1511.
07289 [cs.LG].

[67] Thea Aarrestad et al. “The Dark Machines Anomaly Score Challenge: Benchmark
Data and Model Independent Event Classification for the Large Hadron Collider”.
In: SciPost Physics 12.1 (Jan. 2022). doi: 10.21468/SciPostPhys.12.1.043.

[68] The Dark Machines Collaboration. Dark Machines. url: https://darkmachines.
org/.

[69] Lorenzo Basso et al. “Phenomenology of the minimal B-L extension of the Standard
model: Z’ and neutrinos”. In: Phys. Rev. D 80 (2009), p. 055030. doi: 10.1103/
PhysRevD.80.055030. arXiv: 0812.4313 [hep-ph].

[70] Frank F. Deppisch, Wei Liu, and Manimala Mitra. “Long-lived Heavy Neutrinos
from Higgs Decays”. In: JHEP 08 (2018), p. 181. doi: 10.1007/JHEP08(2018)181.
arXiv: 1804.04075 [hep-ph].

[71] S. Amrith et al. “LHC Constraints on a B − L Gauge Model using Contur”. In:
JHEP 05 (2019), p. 154. doi: 10.1007/JHEP05(2019)154. arXiv: 1811.11452
[hep-ph].

[72] Paul Adrien Maurice Dirac. “The quantum theory of the electron”. In: Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character 117.778 (1928), pp. 610–624.

[73] X. G. He et al. “New-Z ′ phenomenology”. In: Phys. Rev. D 43 (1 1991), R22–R24.
doi: 10.1103/PhysRevD.43.R22. url: https://link.aps.org/doi/10.1103/
PhysRevD.43.R22.

https://doi.org/10.1007/JHEP05(2019)036
https://arxiv.org/abs/1811.10276
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
https://doi.org/10.21468/SciPostPhys.12.1.043
https://darkmachines.org/
https://darkmachines.org/
https://doi.org/10.1103/PhysRevD.80.055030
https://doi.org/10.1103/PhysRevD.80.055030
https://arxiv.org/abs/0812.4313
https://doi.org/10.1007/JHEP08(2018)181
https://arxiv.org/abs/1804.04075
https://doi.org/10.1007/JHEP05(2019)154
https://arxiv.org/abs/1811.11452
https://arxiv.org/abs/1811.11452
https://doi.org/10.1103/PhysRevD.43.R22
https://link.aps.org/doi/10.1103/PhysRevD.43.R22
https://link.aps.org/doi/10.1103/PhysRevD.43.R22


Bibliography 149

[74] Xiao-Gang He et al. “Simplest Z ′ model”. In: Phys. Rev. D 44 (7 1991), pp. 2118–
2132. doi: 10.1103/PhysRevD.44.2118. url: https://link.aps.org/doi/10.
1103/PhysRevD.44.2118.

[75] R. Barbier et al. “R-parity violating supersymmetry”. In: Phys. Rept. 420 (2005),
pp. 1–202. doi: 10.1016/j.physrep.2005.08.006. arXiv: hep-ph/0406039.

[76] Benjamin Fuks. “Beyond the Minimal Supersymmetric Standard Model: from the-
ory to phenomenology”. In: Int. J. Mod. Phys. A 27 (2012), p. 1230007. doi:
10.1142/S0217751X12300074. arXiv: 1202.4769 [hep-ph].

[77] Janusz Rosiek. “Complete set of Feynman rules for the minimal supersymmetric
extension of the standard model”. In: Phys. Rev. D 41 (11 1990), pp. 3464–3501.
doi: 10.1103/PhysRevD.41.3464. url: https://link.aps.org/doi/10.1103/
PhysRevD.41.3464.

[78] H.E. Haber and G.L. Kane. “The search for supersymmetry: Probing physics be-
yond the standard model”. In: Physics Reports 117.2 (1985), pp. 75–263. issn:
0370-1573. doi: https://doi.org/10.1016/0370- 1573(85)90051- 1. url:
https://www.sciencedirect.com/science/article/pii/0370157385900511.

[79] H.P. Nilles. “Supersymmetry, supergravity and particle physics”. In: Physics Re-
ports 110.1 (1984), pp. 1–162. issn: 0370-1573. doi: https://doi.org/10.1016/
0370- 1573(84)90008- 5. url: https://www.sciencedirect.com/science/
article/pii/0370157384900085.

[80] Murray Rosenblatt. “Remarks on Some Nonparametric Estimates of a Density
Function”. In: The Annals of Mathematical Statistics 27.3 (1956), pp. 832 –837.
doi: 10 . 1214 / aoms / 1177728190. url: https : / / doi . org / 10 . 1214 / aoms /
1177728190.

[81] Rob Verheyen and Bob Stienen. Phase Space Sampling and Inference from Weighted
Events with Autoregressive Flows. 2020. arXiv: 2011.13445 [hep-ph].

[82] Mark A Kramer. “Nonlinear principal component analysis using autoassociative
neural networks”. In: AIChE journal 37.2 (1991), pp. 233–243.

[83] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.2661
[stat.ML].

[84] James MacQueen et al. “Some methods for classification and analysis of multivari-
ate observations”. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281–297.

[85] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. Tech. rep. Stanford, 2006.

https://doi.org/10.1103/PhysRevD.44.2118
https://link.aps.org/doi/10.1103/PhysRevD.44.2118
https://link.aps.org/doi/10.1103/PhysRevD.44.2118
https://doi.org/10.1016/j.physrep.2005.08.006
https://arxiv.org/abs/hep-ph/0406039
https://doi.org/10.1142/S0217751X12300074
https://arxiv.org/abs/1202.4769
https://doi.org/10.1103/PhysRevD.41.3464
https://link.aps.org/doi/10.1103/PhysRevD.41.3464
https://link.aps.org/doi/10.1103/PhysRevD.41.3464
https://doi.org/https://doi.org/10.1016/0370-1573(85)90051-1
https://www.sciencedirect.com/science/article/pii/0370157385900511
https://doi.org/https://doi.org/10.1016/0370-1573(84)90008-5
https://doi.org/https://doi.org/10.1016/0370-1573(84)90008-5
https://www.sciencedirect.com/science/article/pii/0370157384900085
https://www.sciencedirect.com/science/article/pii/0370157384900085
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190
https://arxiv.org/abs/2011.13445
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661


150 Bibliography

[86] Sascha Caron, Luc Hendriks, and Rob Verheyen. “Rare and Different: Anomaly
Scores from a combination of likelihood and out-of-distribution models to de-
tect new physics at the LHC”. In: SciPost Physics 12.2 (2022). doi: 10.21468/
scipostphys.12.2.077. url: https://doi.org/10.21468%2Fscipostphys.12.
2.077.

[87] Peter Athron et al. “GAMBIT: the global and modular beyond-the-standard-model
inference tool”. In: The European Physical Journal C 77.11 (2017). issn: 1434-6052.
doi: 10.1140/epjc/s10052-017-5321-8. url: http://dx.doi.org/10.1140/
epjc/s10052-017-5321-8.

[88] Peter Athron et al. “Combined collider constraints on neutralinos and charginos”.
In: Eur. Phys. J. C 79.5 (2019), p. 395. doi: 10.1140/epjc/s10052-019-6837-x.
arXiv: 1809.02097 [hep-ph].

[89] W. Beenakker, R. Hopker, and M. Spira. PROSPINO: A Program for the Pro-
duction of Supersymmetric Particles in Next-to-leading Order QCD. Tech. rep.
12 pages, latex, no figures, Complete postscript file and FORTRAN source codes
available from http://wwwcn.cern.ch/ mspira/prospino/. 1996. url: https://
cds.cern.ch/record/314229.

[90] A. Djouadi, M. M. Muhlleitner, and M. Spira. “Decays of Supersymmetric Par-
ticles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface)”. In: (2006).
doi: 10.48550/ARXIV.HEP-PH/0609292. url: https://arxiv.org/abs/hep-
ph/0609292.

[91] G Aad et al. “Search for chargino–neutralino pair production in final states with
three leptons and missing transverse momentum in

√
s = 13 TeV pp collisions

with the ATLAS detector”. In: The European Physical Journal C 81.12 (2021),
pp. 1–55.

[92] Search for physics beyond the standard model in final states with two or three soft
leptons and missing transverse momentum in proton-proton collisions at 13 TeV.
Tech. rep. Geneva: CERN, 2021. url: https://cds.cern.ch/record/2758359.

[93] G. Aad et al. “Search for charginos and neutralinos in final states with two boosted
hadronically decaying bosons and missing transverse momentum in pp collisions
at

√
s = 13 TeV with the ATLAS detector”. In: Phys. Rev. D 104 (11 2021),

p. 112010. doi: 10.1103/PhysRevD.104.112010. url: https://link.aps.org/
doi/10.1103/PhysRevD.104.112010.

[94] Rene Brun et al. root-project/root: v6.24/02. Version v6-24-02. Aug. 2019. doi:
10.5281/zenodo.3895860. url: https://doi.org/10.5281/zenodo.3895860.

https://doi.org/10.21468/scipostphys.12.2.077
https://doi.org/10.21468/scipostphys.12.2.077
https://doi.org/10.21468%2Fscipostphys.12.2.077
https://doi.org/10.21468%2Fscipostphys.12.2.077
https://doi.org/10.1140/epjc/s10052-017-5321-8
http://dx.doi.org/10.1140/epjc/s10052-017-5321-8
http://dx.doi.org/10.1140/epjc/s10052-017-5321-8
https://doi.org/10.1140/epjc/s10052-019-6837-x
https://arxiv.org/abs/1809.02097
https://cds.cern.ch/record/314229
https://cds.cern.ch/record/314229
https://doi.org/10.48550/ARXIV.HEP-PH/0609292
https://arxiv.org/abs/hep-ph/0609292
https://arxiv.org/abs/hep-ph/0609292
https://cds.cern.ch/record/2758359
https://doi.org/10.1103/PhysRevD.104.112010
https://link.aps.org/doi/10.1103/PhysRevD.104.112010
https://link.aps.org/doi/10.1103/PhysRevD.104.112010
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860


Bibliography 151

[95] Robert D. Cousins. What is the likelihood function, and how is it used in particle
physics? 2020. arXiv: 2010.00356 [physics.data-an].

[96] Csaba Balázs et al. “A comparison of optimisation algorithms for high-dimensional
particle and astrophysics applications”. In: Journal of High Energy Physics 2021.5
(2021), pp. 1–46.

[97] Peter Athron et al. “A global fit of the MSSM with GAMBIT”. In: The European
Physical Journal C 77.12 (2017). issn: 1434-6052. doi: 10.1140/epjc/s10052-
017-5196-8. url: http://dx.doi.org/10.1140/epjc/s10052-017-5196-8.

[98] A. Buckley, A. Shilton, and M.J. White. “Fast supersymmetry phenomenology
at the Large Hadron Collider using machine learning techniques”. In: Computer
Physics Communications 183.4 (2012), 960–970. issn: 0010-4655. doi: 10.1016/
j.cpc.2011.12.026. url: http://dx.doi.org/10.1016/j.cpc.2011.12.026.

[99] Jonas Močkus. “On Bayesian methods for seeking the extremum”. In: Optimization
techniques IFIP technical conference. Springer. 1975, pp. 400–404.

[100] David Eriksson et al. “Scalable global optimization via local bayesian optimiza-
tion”. In: Advances in Neural Information Processing Systems 32 (2019).

[101] Rainer Storn. “On the usage of differential evolution for function optimization”. In:
Proceedings of north american fuzzy information processing. Ieee. 1996, pp. 519–
523.

[102] Mohammad Reza Bonyadi and Zbigniew Michalewicz. “Particle swarm optimiza-
tion for single objective continuous space problems: a review”. In: Evolutionary
computation 25.1 (2017), pp. 1–54.

[103] Nikolaus Hansen and Anne Auger. “Principled design of continuous stochastic
search: From theory to practice”. In: Theory and principled methods for the design
of metaheuristics. Springer, 2014, pp. 145–180.

[104] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. “Grey Wolf
Optimizer”. In: Advances in Engineering Software 69 (2014), pp. 46–61. issn: 0965-
9978. doi: https://doi.org/10.1016/j.advengsoft.2013.12.007. url:
https://www.sciencedirect.com/science/article/pii/S0965997813001853.

[105] Dervis Karaboga et al. An idea based on honey bee swarm for numerical opti-
mization. Tech. rep. Technical report-tr06, Erciyes university, engineering faculty,
2005.

[106] J.H. Kotecha and P.M. Djuric. “Gaussian particle filtering”. In: IEEE Transactions
on Signal Processing 51.10 (2003), pp. 2592–2601. doi: 10 . 1109 / TSP . 2003 .
816758.

https://arxiv.org/abs/2010.00356
https://doi.org/10.1140/epjc/s10052-017-5196-8
https://doi.org/10.1140/epjc/s10052-017-5196-8
http://dx.doi.org/10.1140/epjc/s10052-017-5196-8
https://doi.org/10.1016/j.cpc.2011.12.026
https://doi.org/10.1016/j.cpc.2011.12.026
http://dx.doi.org/10.1016/j.cpc.2011.12.026
https://doi.org/https://doi.org/10.1016/j.advengsoft.2013.12.007
https://www.sciencedirect.com/science/article/pii/S0965997813001853
https://doi.org/10.1109/TSP.2003.816758
https://doi.org/10.1109/TSP.2003.816758


152 Bibliography

[107] Leon Lasdon et al. “Adaptive memory programming for constrained global op-
timization”. In: Computers & Operations Research 37.8 (2010). Operations Re-
search and Data Mining in Biological Systems, pp. 1500–1509. issn: 0305-0548.
doi: https://doi.org/10.1016/j.cor.2009.11.006. url: https://www.
sciencedirect.com/science/article/pii/S0305054809002937.

[108] Yangkun Xia et al. “Tabu search algorithm for the distance-constrained vehicle
routing problem with split deliveries by order”. In: PloS one 13.5 (2018), e0195457.

https://doi.org/https://doi.org/10.1016/j.cor.2009.11.006
https://www.sciencedirect.com/science/article/pii/S0305054809002937
https://www.sciencedirect.com/science/article/pii/S0305054809002937

	Declaration of Authorship
	Acknowledgements
	Abstract
	Introduction
	The Standard Model and Supersymmetric Extensions
	The Standard Model
	The Particles of the Standard Model
	Symmetries of the Standard Model
	Quantum Electrodynamics
	Quantum Chromodynamics
	Electroweak unification
	The Higgs Mechanism
	Standard Model Particle Masses
	The Higgs, W and Z boson Masses
	Fermion Masses
	Lepton Masses
	Quark Masses


	Shortcomings of the Standard Model
	The Hierarchy Problem
	Dark Matter

	Overview of Supersymmetry and the MSSM
	Particle Content of the MSSM
	Soft SUSY breaking in the MSSM
	R-Parity
	Supersymmetry's Solution to the Hierarchy Problem
	Decay Phenomenology
	Neutralino Decays
	Chargino Decays
	Squark Decays
	Slepton Decays
	Gluino Decays

	The Current State of SUSY


	BSM Searches at High Energy Collider Experiments
	The Large Hadron Collider
	What's in an LHC Event?

	Monte Carlo Simulation
	Definition of Physical Objects

	Typical Search Strategy
	Discriminating Variables


	Machine Learning
	Anomaly Detection
	Neural Networks
	Variational Autoencoders


	Combining Anomaly Detection Algorithms For BSM Physics Searches
	Dataset
	Machine Learning Algorithms
	Isolation Forests
	Gaussian Mixture Models
	Neural networks
	Autoencoders
	Variational Autoencoder


	Methodology of Combination Techniques
	Normalisation of Anomaly Scores
	Combination Methods

	Results
	Results Trained on 4-Vector Components
	Results Trained Within the Latent Space of a VAE
	Summary

	Conclusion

	The Dark Machines Anomaly Score Challenge
	Dataset
	Signal Generation
	Performance Metrics

	Algorithms
	k-means Clustering

	Results
	Figures of Merit
	Significance Improvement

	Conclusion

	Improving Optimisation Through Dimensional Reduction
	The Electroweakino Sector of the MSSM
	Preparation of the Dataset

	VAE Training on GAMBIT Global Fit Results
	Visualisation of the Latent Space
	Optimisation of Analyses in the Latent Space
	Generation of Events
	Definition of Analyses
	Results

	Conclusion

	Optimisation Algorithms for High Dimensional Particle Physics Models
	Definition of Comparison Test Functions
	Analytic Test Functions
	Particle Astrophysics Test Problem

	Optimisation Algorithms and Framework
	Bayesian Optimisation (GPyOpt)
	Trust Region Bayesian Optimisation (TuRBO)
	Differential Evolution (Diver)
	Particle Swarm Optimisation
	Covariance Matrix Adaptation Evolution Strategy
	Grey Wolf Optimisation
	PyGMO Artifical Bee Colony
	Gaussian Particle Filter
	AMPGO
	Algorithm Parameters
	High-Dimensional Sampling Framework

	Results
	Analytic Test Functions
	Particle Astrophysics Test Problem

	Best Found Results and Parameter Settings
	Conclusion

	Summary
	Bibliography

