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1 Abstract

The Leeuwin Complex of southwestern Western Australia forms the best exposed
component of the Pinjarra Orogen, where early Cambrian deformation and
metamorphism represents one of the final events in Gondwana amalgamation. Three
structurally different domains within the Leeuwin Complex are identified and a
structural model for pure shear (coaxial strain) is preferred for the subhorizontal
structures of the central structural domain. This is based on the identification of four
phases of progressive deformation within the central structural domain that are
interpreted to have occurred during or after peak metamorphism. Subvertical
compression accounts for D1 and D2 deformation and D3 represents a transition from
subvertical compression to pure shear east-west shortening. D4 structures are

interpreted as post peak metamorphism east-west extension.

U-Pb SHRIMP and LA-ICPMS analysis of zircon and monazite constrain peak
metamorphism to ¢ 522 Ma. Thermobarometric calculations for peak metamorphic
mineral assemblages yield average P-T estimations of 7.24 + 0.61 kbar and 687 + 28°C
for the Leeuwin Complex. P-T calculations based on mineral rim compositions reflect
retrograde conditions ~0.5 — 1 kbar less and ~50 - 100°C cooler than peak metamorphic
conditions, implying that the Leeuwin Complex remained at mid-crustal levels after
peak metamorphism. Analysis of chemical zoning in garnet suggests that after a

prolonged period at mid-crustal depths, the Leeuwin Complex was exhumed rapidly.

Sm — Nd isotopic data are presented for selected samples that reflect the two apparent
protoliths of the felsic orthogneisses. eNd values are comparable to Sm — Nd isotope
data from eastern Antarctica. Evolved eNd are interpreted to indicate that the
petrogenesis of the Leeuwin Complex protoliths involved partial melting of an enriched
crustal source, which is interpreted to be the Mesoproterozoic Naturaliste Plateau which

is considered a western continuation of the Albany-Fraser crust.

Keywords: early Cambrian, geochronology, Gondwana, Leeuwin Complex, structure,

thermobarometry
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2 Introduction

The Leeuwin Complex of southwestern Australia forms one of three inliers of the
Pinjarra Orogen (Myers, 1990; Wilde & Murphy, 1990; Wilde 1999; Janssen et al.
2003; Collins, 2003) that are exposed along the margin of Western Australia. The
tectonic evolution of the complex is poorly understood, which is surprising due to its
importance in previously proposed reconstructions of Neoproterozoic to FEarly
Cambrian Gondwana (i.e. Harris & Beeson, 1993; Wilde, 1999; Fitzsimons, 2003). The
complex is composed of orthogneisses that are thought to have formed in a chemically
differentiated suite within a Mesoproterozoic ensialic rift environment (Wilde &
Murphy, 1990; Wilde, 1999). Geochemical and isotopic data from the southern
Leeuwin Complex presented by Wilde & Murphy (1990) and Wilde (1999) suggest
high temperature, intra-continental melting of a tonalite/ granodiorite source as the
likely protolith of the A-type granotoids of the Leeuwin Complex. However,
geochronological data (Nelson 1996; 1999; 2002; Collins, 2003 & this studyj indicate
that the protolith of the Leeuwin Complex did not form from a single contemporaneous
suite, but episodic magmatic intrusions that occurred over ¢ 600 Ma (Collins, 2003).
Recent SHRIMP U-Pb dating has constrained peak metamorphism at ~ca. 522Ma in the
northern Leeuwin Complex (Collins, 2003), which has significant ramifications to
previous theories on the timing and processes of amalgamation of Palaecozoic
Gondwana. Early reconstructions of Neoproterozoic Gondwana suggest that Late
Neoproterozoic — Early Cambrian deformation within the Pinjarra Orogen was
attributed to intercontinental shear zone deformation within a combined East
Gondwana Plate (Harris, 1994). However, palacomagnetic data is interpreted to show
that Australia and India were separated by over 30° of latitude at ¢ 810 Ma (Torsvillk er
al. 2001; Pisarevsky et al. 2003; Collins, 2003), but were neighbouring one another by
522 + 13 Ma in Gondwana (Powell et al. 1993). Geochronological data constraining the
timing of metamorphism within in the Leeuwin Complex to ca 522 £ 5 Ma (Collins,
2003) indicate that collision between Australia and India is likely to have occurred in
the Early Cambrian (Fitzsimons, 2003; Janssen ef al. 2003; Collins, 2003). This is some
100 Ma later than previously suggested (Pisarevsky, 2002).

Metamorphic rocks within the Leeuwin Complex preserve upper amphibolite —

granulite assemblages. Wilde & Murphy (1990) obtained temperatures of ~690°C based



on two-pyroxene geothermometry from samples derived from Cape Naturaliste in the
northern Leeuwin Complex. These calculations were based on the assumption that
metamorphism took place at low pressure, although the presence of garnet within mafic
lithologies at numerous locations (Janssen et al. 2003; this study) implies that at least
moderate pressures were experienced during metamorphism. Different views have been
expressed as to whether the whole complex experienced granulite facies metamorphism
and was partially retrogressed to amphibolite facies during the ca 540 Ma disturbance
event (Myers, 1994), or whether the preserved metamorphism reflect the near peak
assemblages of one metamorphic event with higher grades exhumed in the north of the
complex (Wilde & Murphy, 1990). The latter was dismissed by Collins (2003), who
deemed the geochronological evidence for peak metamorphism at ca 615 Ma (Nelson,
1996) inconclusive, and argued that the 550-500 Ma episode of magmatism was not
disturbance events as previously suggested. Rather Collins (2003) was suggestive that
this metamorphism was the peak event, which is geochronologically well constrained to
522 £ 5 Ma using U-Pb, SHRIMP (Special high resolution ion microprobe) age dating
of metamorphic zircons (Collins, 2003) in the northern Leeuwin Complex. Placing age
constraints on metamorphic events and determining the associated structural
characteristics of the Leeuwin Complex provide an important piece in determining the

breakup of the super continent Rodinia and the amalgamation of Gondwana (Figure 1).

Despite the various views that have been expressed about the timing of metamorphism,
and the significance of the Leeuwin Complex in tectonic reconstructions of Late
Neoproterozic — Early Cambrian Gondwana, there has been surprisingly little work
done to understand the physical conditions of metamorphism within the Leeuwin

Complex.

This paper presents average P-T calculations from a range of samples that span the
entity of the outcropping Leeuwin Complex, using the internally consistent
THERMOCALC 3.21 software of Holland and Powell (1988). P-T' calculations are
based on core mineral assemblages that are likely to reflect peak metamorphism, and
rim analysis have been undertaken in order to determine retrograde conditions. The
calculations indicate high temperature and moderate pressure granulite facies
conditions throughout the Leeuwin Complex. -Temporal constraints on peak

metamorphism are constrained by geochronological analyses of metamorphic zircon




using SHRIMP II (sensitive-high resolution ion microprobe) and monazite analyses
using LA-ICPMS (laser ablation — inductively coupled mass spectrometry). Whole rock
Nd-Sm isotopic data is presented and compared to other regions in the Gondwana
amalgamation to better understand the regional correlations involving the Leeuwin
Complex. In association with structural data, the timing and conditions of

metamorphism are discussed with respect to previously published data.

3  Geological Setting

The Mesoproterozoic — Early Cambrian Leeuwin Complex lies 200km southwest of
Perth as a narrow coastal ridge that extends for 96km between Cape Naturaliste in the
north and Cape Leeuwin in the south (Peers, 1975, Figure 2). The complex is
dominated by felsic gneiss derived from granitic protoliths. Outcrop of the
orthogneisses are limited to the coastline and river beds as the majority of the complex
is overlain by sand, Tertiary laterite, Quaternary Tamala Limestone and also obscured
by the heavy vegetation of the Boranup Forest. To the west, the Leeuwin Complex is
separated from the submarine Naturaliste Plateau by the Mentelle Basin (Halpin et al.
2008). To the east the complex is bound to the Dunsborough Fault (Figure 2) which
separates the complex from the Phanerozoic Perth Basin. There is no geochronological
evidence that associates the Leeuwin Complex with the Archaean Yilgarn Craton that

lies some 50km to the east.

Geochronological data from Wilde & Murphy (1990), Nelson (1996; 1997; 1999; 2002)
and Collins (2003) has revealed a complex magmatic history. Precursors of the granite
gneiss at Redgate Beach were emplaced at ~1180-1090 Ma (Nelson, 1999). Significant
differences in trace element composition between the orthogneiss protoliths of Redgate
Beach and the ca 750 Ma protoliths of Sugarloaf (Collins, 2003) and Cosy Corner
(Nelson, 1996) reflect two completely different tectonic environments. Collins and
Fitzsimons (2001), Fitzsimons (2003) and Janssen et al. (2003) established that the
1090 Ma protolith has trace-element compositions consistent with a syncollisional
origin, whereas the younger protoliths have trace-element compositions that reflect
anorogenic, A-type magmatism, generated by intracrustal melting in a rift environment

(Wilde, 1999). Based on the available age data it is likely that this magmatism was



associated with the breakup of the super continent Rodinia. Emplacement of the 1090
Ma protoliths was suggested to be spatially and genetically related to the 1080 Ma
metamorphism within the (Northampton and Mullingarra Complexes) Pinjarra Orogen,
to the north of the Leeuwin Complex (Figure 1) (Fitzsimons, 2003), where burial of
sediments reached depths of ~ 20km (Janssen ef al. 2003). Recent geochronological
evidence from dredge samples from the submarine Naturaliste Plateau (Haplin et al.
2008) reveals Mesoproterozoic plutonic ages of 1230 to 1190 Ma. This data suggests
that the Naturaliste Plateau protoliths are not genetically related to the Leeuwin
Complex prior to the emplacement of the 1180 — 1090 Ma protoliths of Redgate Beach.
However, limited exposure of the Leeuwin Complex may conceal older,

Mesoproterozoic age rocks.

Wilde & Murphy (1990) suggested that the termination of mobile belt activity and a
change from a compressional to an extensional regime occurred by ¢ 570 Ma. This
reasoning was largely based on questionable U-Pb zircon data that yielded ages from
550 — 570 Ma which was interpreted to date the igneous emplacement of anorogenic,
A-type granitoids. Harris (1994) proposed that the emplacement of alkali granites,
anorthosite and mafic intrusives of the Leeuwin Complex occurred within a dilational
jog along a N- to NNW-striking sinistral shear zone of the Darling mobile belt. This
was based upon reported observation of north-south sinistral shear zones from the
Leeuwin Complex. However, regional scale mapping by Collins (2003) and this study
found no evidence for ductile strike slip deformation. The sinistral component of
tectonic transport is considered to be a result of the oblique collision with India which
occurred along the Pinjarra Orogen around 550-500 Ma (Janssen et al. 2003; Powell &
Pisarevsky, 2002; Collins & Pisarevsky, 2005).

The youngest zircon ages of 550-500 Ma were previously interpreted to be disturbance
events by Nelson (1996, 1999 & 2002) who argued that peak granulite facies
metamorphism occurred at ca 615 Ma, and that later events (540-524 Ma) were
associated with retrograde amphibolite facies metamorphism. Collins (2003) argued
that the ca 615 Ma age was far from conclusive. Geochronological evidence presented
by Collins (2003) from the Sugarloaf antiform in the northern structural domain of the

Leeuwin Complex, and geochronological data from this study constrain peak

metamorphism to 530-520 Ma. Metamorphism throughout the Pinjarra Orogen and its




Antarctic counterpart at 550-500 Ma indicate oblique collision between India and
Western Australia in the final amalgamation of Gondwana occurred during the Early
Cambrian (Fitzsimons, 2003; Collins, 2003; Kelsey ef a/. 2008). This is some 100 Ma
later than the time frame (680-610 Ma) suggested by Powell and Pisarevsky (2002).

4  Structure of the Leeuwin Complex

The structural evolution of the Leeuwin Complex is still relatively unknown and due to
the limited outcrop of the granitic gneisses, and it is difficult to generate a constructive
structural model for the whole complex. From field observations it is apparent that
there are three dissimilar structural ‘domains’ within the Leeuwin Complex (Figure 2).
The northern Leeuwin Complex has previously been mapped by Kay (1958), Myers
(1994) and Collins (2003). A detailed structural transect along with the deformation
history was presented by Collins (2003) who identified four phases of deformation
(summarised in Table 1) that produce, upright ~N-S trending structures. Similar
episodes of deformation have been identified within the southern domain of the
Leeuwin Complex by Myers (1994) and Janssen ef a/ (2003) and are summarised in
Table 1. The structural features of the southern domain are similar to the northermn
domain (Myers, 1994; Janssen ef al. 2003) however, the central domain consists of
largely sub-horizontal gneissic structures. Little work has been done within the central
Leeuwin Complex to identify the structural relationship between the flat-lying
structures of the central domain and the upright folding identified in both the northern

and southern domains.

Regional scale mapping of the central Leeuwin Complex has largely been restricted to
Myers (1994) who identified three periods of deformation, D1 was interpreted as the
original emplacement of the anorogenic, A-type granitoids (referred to as the
Cowaramup gneiss). D2 was interpreted as the deformation and high grade
metamorphism associated with the intrusion of the Hamelin granite and mafic dykes
(interpreted as late Proterozoic). Folding of the foliation (D2) and amphibolite layers is
interpreted as a product of D3 deformation, which coincided with granulite facies
metamorphism. Myers (1994) interpreted the granite migmatite gneisses of Redgate
Beach and Cape Freycinet as highly deformed Hamelin granite that intruded the older



Cowaramup gneiss. Zircon dating by Nelson (2002) has revealed that this part of the
central Leeuwin does not contain the crystallisation ages of the northern and southern
domains but is formed from a 1090 Ma protolith. Therefore, unless the central Leeuwin
Complex contains a much older metamorphic history, the interpretation of Myers

(1994) is questionable.

5  Structure of the Central Leeuwin Domain

From field observation, regional and outcrop scale mapping of the central Leeuwin
domain, four phases of deformation have been identified and are summarised below.
Regional scale maps of selected locations within the central domain (Figure 3) reveal a
relatively consistent shallowly dipping E to ESE foliation with a down-dip to slightly
oblique (to the NE) mineral elongation lineation. The foliation and lineation vary
slightly between each location but are relatively homogeneous over the whole central
domain. Isoclinal folds within amphibolites have fold hinges parallel to the mineral
lineation. No obvious indicators of the upright, regional scale folding evident within the

southern and central domains can be seen within the central domain.

5.1 DI structures

Initial deformation is attributed to crustal compression at mid crustal depths. Evidence
preserved within D2 isoclinal folds (Figure 4) reveal preserved traces of a preliminary
S1 foliation. The S1 foliation has been folded by D2 deformation, where centimetre-
scale folds of the S1 foliation are present within the fold hinge of the D2 folded
amphibolite layer. Folding of the S1 foliation is parallel to the fold hinge of the
amphibolite layer and likely to be axial planar to the S2 foliation.

5.2 D2 structures

The second deformation is considered to be a continuation of D1, as the orientation of
D2 structures suggests that D2 strain was coaxial with D1. Deformation is defined by

the dominant shallow, east-dipping S2 foliation, and associated down-dip to slightly

oblique (NE-SW) mineral elongation lineation that is commonly defined by plagioclase




hornblende and biotite. The temporal and overprinting structural relationship between
the ST and S2 foliation fabrics is presented by the schematic diagram within Figure 4
which demonstrates the formation and preservation of two tectonic fabrics. D2 is
responsible for the meter-scale isoclinal folding of amphibolite layers (Figure 4),
formed by subhorizontal shortening. Small, ‘stringer’ like garnet-absent amphibolite
layers preserve isoclinal-tight recumbent folding that is axial planar to the S2 foliation
and are parallel to the local mineral elongation lineation. Large 10-90mm garnet
porphyroblasts are present within the fold hinges of D2 folded amphibolite layers
(figure 5).

5.3 D3 Structures

Foliation parallel leucosomes exhibit ‘kink’ fold structures that suggest a compressional

regime. Structural data taken from ‘kink’ folds (Figure 6) reveal conjugate sets of kink
folds (Figure 6; ¢ & d) and are interpreted as box folds that reflect the bulk shortening
orientation to be WSW-ENE. Diffuse, nebulitic pegmatites crosscut these structures,
indicating that D3 deformation occurred at temperatures greater than the solidus for the

host garnet-bearing, leucocratic gneiss.

D3 folding occurs within locally derived low strain zones where folding of the S2
foliation occurs in centimetre-scale lenses that encase S-type folds (Figure 5b). The fold

hinges are parallel to slightly oblique to the local mineral lineation (refer to stereonets

presented with Figures 3; a, b, ¢, d & e). Isoclinal folding of leucosomes that are -

parallel to the S2 foliation is attributed D3 deformation. Fold hinges are parallel to the
down dip mineral lineation (Figure 5c; 7). Folding and boudinage of leucosomes occurs
within regions of localised low strain which are also sites of pegmatitic partial melt
accumulation. Crosscutting pegmatites (D3) migrated away from high strain zones and
form within boudin necks and fold hinges of leucosomes within the lower strain regions
of the garnet bearing leucocratic gneiss (Figure 7). The presence of garnet
porphyroblasts within the deformed leucosomes suggests that D3 occurred close to, or

just after peak metamorphism.

10



5.4 D4 Structures

Large, pegmatites containing biotite-plagioclase-K-feldspar and quartz crosscut all
prior structures (Figure 7). Conjugate pegmatite veins are observed at Redgate Beach,
Cape Freycinet and Honeycombs, the orientation of the vein sets are consistent with
late E-W to NE-SW extension. A pyroxene-hornblende-biotite mafic dyke (Figure 5f)
north of Cowaramup Bay crosscuts the dominant foliation. Its easterly dipping

orientation suggests post-peak metamorphic E-W extension.

6 Metamorphic Petrology

Mineral assemblages within the gneissic lithologies reflect upper amphibolite to
granulite facies metamorphism. Prior petrographic data presented by Wilde and
Murphy (1990) and Wilde (1999) suggest that the felsic gneisses are derived from
granitoids that range in composition from sodic granodiorites to alkali granites. The
classification scheme of Wilde and Murphy (1990) identifies six subdivisions of felsic
gneisses. Samples presented in this study are identified with respect to this
classification scheme, however, distinctions have been made largely on the presence or
the absence of key metamorphic minerals such as garnet, hornblende, orthopyroxene
and clinopyroxene. The localities of samples presented in this study are presented in
Figure 2 and mineral assemblages are summarised in Table 3. Photomicrographs

illustrate key petrological relationships in Figure 8.

6.1  Alkali Feldspar granitic gneiss — Cape Naturaliste (Figure 2)

Previously deemed the Hamelin granite (Myers, 1994) and mapped as the ‘Pink granite
gneiss’ by Collins (2003). This lithology is dominated by crystalline alkali feldspars,
plagioclase and quartz. Composition varies locally, with the presence or absence of
hornblende. Detailed mapping of the northern Leeuwin Complex by Collins (2003)
identified an additional, compositionally different component, the grey granodiorite
gneiss, interlayered within the pink granite gneiss. The existence of rare garnet within

this rock had not previously been identified. However, samples RVLC080 (Canal

11



Rocks) and RVLCO084 (Sugarloaf) contain 5-10mm garnet porphyroblasts within
granoblastic assemblages of quartz, K-feldspar, plagioclase and biotite. Garnet is

commonly enveloped by minor biotite and contains inclusions of magnetite (Figure 8f).

6.2  Garnet-bearing leucocratic granite gneiss — Honeycombs (Figure 3a)

Classified by Wilde and Murphy (1990) as Type 1 felsic gneiss, the granite gneiss at
Honeycombs (Figure 2) contains abundant leucosomes that are parallel to the D2
foliation and contain 5 — 20mm garnet porphyroblasts. The presence of garnet within
the leucosomes suggests that they are a product of biotite dehydration reactions,
associated with partial melting (Brown & Pressley, 1999). Quartz, plagioclase and K-
feldspar makeup the dominant leucosome assemblage, while elongate biotite grains
form selvages on leucosome boundaries (Figure 6). Small (<2mm) relict garnet
prophyroclasts are enveloped within the foliation which is defined by plagioclase and
biotite. Accessory magnetite and ilmenite often accompanies mafic minerals throughout
the Leeuwin Complex. The localised existence of garnet at this location is an example

of the compositional variation between various locations within rock units.

6.3 Orange, felsic leucocratic granite gneiss — Willyabrup Cliffs (Figure 3b)

This rock is compositionally different to the garnet-bearing leucocratic granitic gneiss
in the obvious lack of garnet. It comprises foliation parallel leucosomes of quartz, K-
feldspar and plagioclase that are commonly boudinaged in which K-feldspar pegmatites
have accumulated during deformation. The pervasive foliation is defined by elongate
biotite, plagioclase and minor hornblende minerals that also reflect the down-dipping
mineral-stretching lineation. Globular intergrowth of hornblende and plagioclase up to
lem in diameter are likely to be resultant from garnet grains that have been completely

retrogressed.

6.4 Massive granitic gneiss — Cowaramup Point (Figure 3¢)

Classified by Wilde and Murphy (1990) as Type 5 felsic gneiss, the unit is

predominantly composed of a granitic assemblage of quartz, K-feldspar and

12



plagioclase. Local compositional variations include ortho and clinopyroxene and minor
biotite (Figure 3¢). The granitic gneiss contains a weak foliation, defined by plagioclase

and quartz mineral alignment.

6.5 Garnet bearing granite migmatite gneiss Redgate Beach to Cape Freycinet
(Figure d & e)

Referred to as the type 1 felsic gneiss (Wilde and Murphy, 1990), this unit is much
more intensely deformed than the Type 1 felsic gneisses to the north. Janssen et al
(2003) imply that the presence of feldspar augen indicates that the fabric is locally
mylonitic. Hornblende, biotite and plagioclase define the strong, easterly dipping
foliation and down-dip lineation. 1-10mm garnet porphyroblasts occur throughout the
rock. Small <2mm gamets grains accumulate within elongate lenses parallel to the
foliation. Hornblende contains oxide inclusions and is commonly enveloped by aligned

biotite grains.

6.6  Garnet, clinopyroxene, hornblende anorthosite gneiss — Sarge Bay (Figure 2)

Garnet bearing, hornblende-plagioclase gneiss that was considered by Myers (1990b) to
be part of the dismembered Proterozoic age Augusta Complex (classified as anorthosite
by Wilde and Murphy (1990). It contains garnet porphyroblasts that range from 2-
10mm in size. Many garnet grains contain plagioclase-hornblende coronae and contain
plagioclase inclusions. Accessory titanite occurs with hornblende porphyroblasts that
have minor biotite envelopes (Figure 8b). Quartz, plagioclase and K-feldspar isolate
clinopyroxene from other minerals. Ilmenite and magnetite occur in proximity to

hornblende grains.

6.7 Amphibolites

6.7.1 Hornblende-biotite + garnet amphibolites

Amphibolite layers occur throughout all lithologies, often preserving folded remnants
of the initial S1 fabric. Amphiboles are composed of hornblende-biotite-plagioclase-

quartz + garnet, orthopyroxene and clinopyroxene. The alignment of elongate biotite,
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hornblende and plagioclase minerals defines the foliation and accompanying downdip
mineral lineation. Biotite minerals often envelope sparse, skeletal orthopyroxene grains
(Figure 8d). The most notable mineralogical change within amphibolites is the presence
of garnet in these layers throughout the central domain. Garnets occur as porphyroblasts
that vary in size (5— 100mm) depending on the locality. Decompression textures of
hornblende, biotite and plagioclase form coronae around garnets garnet (Figure 8e) and
in some cases completely replace. The occurrence of theses decompression textures at

Willyabrup and Honeycombs are likely to result from rapid cooling during exhumation.

Relic grains of ortho and clinopyroxene occur within an amphibolite layer at
Willyabrup Cliffs (Figure 3b). Orthopyroxene is overgrown by aligned biotite and
hornblende minerals, whilst minor clinopyroxene is enveloped by plagioclase corone.
The occurrence of these minerals suggest that these amphibolites were emplaced before
peak metamorphism and may correspond to the crystallisation age of 540 £ 5 Ma of a

monzogranite dyke at Cowaramup Bay, to the south (Nelson, 1996).

Small ‘stringer’ like amphibolites are composed of hornblende-biotite-plagioclase and
quartz. These layers often contain recumberant and pygmatitic folds that are axial
planar to the local mineral lineation. Larger layers are isoclinally folded with large
garnet porphyroblasts (20-100mm) forming within fold hinges and along the

boundaries of amphibolites.

6.7.2  Pyroxene-hornblende-biotite mafic dyke

Pyroxene-hornblende-biotite bearing mafic dykes located at Willyabrup and north of
Cowaramup Bay. The Cowaramup bay dyke dips ~35/090, is structurally and
mineralogically different to other amphibolites within the Leeuwin Complex. Nelson
(1995) constrained the emplacement such dykes to 524 + 12 Ma and suggested that
metamorphic grade was low at this time. This crystallisation age is significantly
younger than other previously reported ages presented by Nelson (1995; 1996; 1999).
The presence of ortho and clinopyroxene suggests that the dyke may not have

experienced peak metamorphism and the preserved mineral assemblages reflect igneous
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crystallisation. The orientation of the easterly dipping mafic dyke is consistent with late

E-W extension.

7  Mineral chemistry

In order to constrain the thermobarometric evolution of the Leeuwin Complex, mineral
compositions of selected rock samples (shown in Figure 2 and mineral assemblages are
summarised in Table 2) were measured using Electron Microprobe Analysis (refer to
8.1 P-T analytical procedures). Mineral Analyses for all samples are presented in
Appendix 5(on disc), where Fe’* has been calculated using the software AX (a product
of Holland and Powell, 1998). A summary of mineral chemistry for each petrological

group is presented in Table 3.

7.1  Garnet

Garnet composition is relatively homogeneous throughout the felsic gneisses of the
Leeuwin Complex, where almandine-grossular dominates the solid solution, with X,
(Xpe = Fe?'/Fe’ " +Mg+Mn+Ca) generally varying between 0.58 — 0.72 and Xca (Xca =
Ca/Fe*"+Mg+Mn+Ca) falling within the range of 0.1 to 0.2. A notable difference in
garnet composition is observed between the garnets within the felsic gneisses and
within the amphibolites, where the presence of andradite increases the grossular content
Xcato 0.2 — 0.35. A similar effect is seen within the garnets of the anorthosite samples
from Sarge Bay where X, = 0.29 — 0.39. This is not the case for sample RVLC045
where a transect line (Figure 8c) reveals that pyrope is significantly higher with Xy
(Xme = Mg/ Fe*"+Mg+Mn+Ca) ranging from 0.23 — 0.26 within the garnet core and
Xme = (0.14 — 0.24) across the garnet rims. The garnet transect is shown in Figure 9,
and reveals subtle compositional variations from the core to the rim of the gamet. The
core is relatively homogeneous in composition, whilst a ~300um rim has an evident
decrease in Xy from 0.24 (outer core) to 0.14 at the outer most rim. This is

accompanied by an increase in Xpe from 0.67 to 0.75. This chemical zoning is

interpreted as a product of the rock’s cooling history (i.e. O’Brien, 1997).




7.2  Hornblende

A majority of analysed hornblendes are classified within the calcic amphibole group
(Leake et al. 1997) as hornblende are generally composed of ferroactinolite-pargasite
and have Cag = 1.6-1.8, Nag = 0.4-0.5, (CatNa)s = 0.6-0.8 and the Xpe (Xpe =
Fe2+/Fe* +Mg) value of 0.5-0.8 and Xy (Xmg = Mg/Fe**+Mg) 0.2-0.4. Hornblende
within the Sarge Bay anorthosite gneiss are compositionally similar to the Bunker Bay
felsic gneiss, where Cag >1.9, Nag is 0.3-0.4 and Xr. ranges from 0.82-0.83 and Xyg is
0.21-0.29. Hornblendes within the Willyabrub amphibolites are comparatively

magnesian, with X, 0.58-0.63.

7.3 Biotite

Biotite is Ti-rich throughout all petrological samples, with X (Xt

Ti/Fet+Mg+Al+Ti) ranging between 0.04 — 0.07 based on eleven oxygen atoms. Felsic
gneiss samples are typically annite-phlogopite in composition, with Xpe (Xpe =
Fe/Fe+Mg+Al+Ti) ranging 0.25-0.45 and Xy (Xue = Mg/Fe+Mg+Al+Ti) having a
similar compositional variation of 0.2-0.45. Biotite analyses from samples
RVLC051/052 are typically sodic with Xy, (Na/Na+K) ranging from 0.07-0.11, which
is significantly higher than the Xy, 0.007-0.05 range expressed in felsic samples. These

samples are also more magnesic with Xy 0.58-0.62.

7.4  Clinopyroxene

The only analysed petrological samples to contain clinopyroxene are RVLC008/009 of
the Sarge Bay anorthosite gneiss. All clinopyroxene analyses plot within the Ca-Mg-Fe
quadrilateral, as Ca+Mg+Fe®" values consistently range between 1.7-1.9 and Nag values
being <0.03. Analyses are typically calcic, with diopside being the dominant end-
member, where Xc, = 0.44-0.48 (X¢, = Ca/Ca+Mg+Fez++Fe3++Mn) and ferrosilite-
enstatite making up the composition with Xge = 0.2-0.4 and Xy;; = 0.25-0.35.

7.5  Orthopyroxene
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Analyses of orthopyroxene are limited to samples RVLC051 & 052, from a garnet-
bearing amphibolite at Willyabrup Cliffs. Analyses are within the ferrosilite-enstatite
field, with Xp, = 0.35-0.45 and Xyy (Xme = Mg/ Ca+Mg+Fe’ +Fe’ +Mn) ranging
between 0.55-0.62, which is enhanced by the presence of Mg-Tschermak pyroxene.

7.6  Feldspar

Plagioclase is compositionally variable throughout samples, with a majority of samples
being sodic, within the albite field, where X, (Xap = Na/Na+Ca) = 0.5-0.7, while the
samples of the anorthosite gneiss are typically lower, as X, ranges between 0.38-0.51.
Anorthite content is relatively consistent as X¢, (Xca = Ca/CatNa+K) ranges between
0.38-0.50. K-feldspar analyses are sanidine enriched with Kg >0.85 and (K+Al)g =
>2.0. In contrast albite content is typically low with Xy, (Xna = Na/ Na+K) ranging
between 0.09-0.20.

7.7  Iron Oxides

[Imenite is present within a majority of samples and is generally composed of a
ilmenite-hematite solid solution, with Xy, (Xym = Ti/Ti + 1/2F63+) ranging between
0.85-0.95. Titanomagnetite is compositionally consistent with Xr; (Ti/Fe+Ti) ca 0.51.
Magnetite is compositionally uniform with Xge3+ (Fe3+/Fe3++Fe2++Al) ranging between

0.60-0.65. Minor spinel is present with (Mg+Al)s = 0.35-0.45.

8 Metamorphic P-T estimates and age constraints for the Leeuwin Complex
Average P-T estimations are presented from fourteen samples from the Leeuwin
Complex (Figure 2.) and are presented in Table 4. All Microprobe analyses used for
THERMOCALC analyses are presented in Appendix 1.

8.1 P-T Calculations — analytical procedure

Pressure and temperature (P-T) calculations were conducted using mineral analyses
obtained from the electron microprobe. Microprobe spot analyses were performed on

the Cameca SX51 Electron Microprobe with SAMAX software, at Adelaide
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Microscopy, Adelaide University. Analyses were carried out under standard operating
conditions, with an accelerating voltage of 15kV and a beam current of 20nA. Ten
elements: Fe-Mn-Cr-Ti-Ca-K-Si-Al-Mg-Na were measured using wavelength
dispersive spectrometers to determine the relative oxide wt (%) for each mineral
analysis. Samples selected for Microprobe analyses had peak mineral assemblages
containing garnet, plagioclase + biotite, hornblende, orthopyroxene, clinopyroxene and
accessory oxides; ilmenite, spinel and magnetite. Analyses were preformed on the
cores and rims of minerals to best determine mineral compositions at i) peak

metamorphic conditions and ii) retrograde conditions.

The mineral assemblages obtained by microprobe analysis were converted to mineral
activities using the software AX (Holland & Powell, 1998). Average P-T estimates
were calculated using THERMOCALC 3.21 and based upon the mineral activities
generated by AX (and the internally consistent dataset of Holland and Powell (1998)).
THERMOCALC calculates the optimal metamorphic conditions from the
thermodynamics of an independent set of reactions between mineral endmembers
(Holland & Powell, 1998). Calculations were made utilising the average temperature,
average pressure and average P-T approach (Powell & Holland, 1994) in which a P-T
intersection is statistically constrained by a X test, to best reflect the metamorphic
conditions at which mineral equilibrium was achieved. Fe — Mg exchange-thermometry
calculations using garnet-biotite, garnet-hornblende, garnet-orthopyroxene and garnet-
clinopyroxene thermometers were also performed to provide a comparative value to

which the susceptibility of each sample to varied water activities could be compared.

In order to improve the accuracy of P-T estimations, end-members that failed the X’
test, or that did not conform with the remaining data set were removed and P-T
estimates recalculated. Reasons to omit an endmember from calculations include; poor
mineral analyses, problems with retrograde equilibrium, or insufficiently constrained
activity-composition models. Endmembers such as hematite, pargasite and spinel were
common outliers and retrograde mineral end-members such as sanidine were common
outliers that were removed from calculations so an independent set of reactions were
able to pass the X test at the 95% confidence level. A THERMOCALC output file
representing the method utilised in calculating average T, average P and average P-T is

presented in Appendix 2.
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8.2  Effect of water activities on P-T calculations

The relative hydration at the time of metamorphism is a poorly known factor.
Therefore, in order to reduce the window for experimental error, low water activities
were used and where possible water was omitted from calculations. Given the presence
of ubiquitous partial melt in the terrain, it seems reasonable to assume that H,O was not
in excess. Activities of H>O were chosen to provide the best fit between aH,0
independent temperature estimates and aH,O dependant estimates. By comparing
values to temperature estimates generated using the Fe-Mg exchange equilibria, which
operate independently of water activity models the accuracy of estimates can be
evaluated. Calculations presented in Table 4 assume best fit water activities, yielding
data that pass the X° test (95% confidence level) and where possible, have the lowest
standard error. Where water activities do not have a significant effect on calculations,

H,0 has been excluded.

8.3 P-Testimates

A summary of P-T estimates is presented in Table 4. Sample locations and their
calculated peak and retrograde P-T conditions are shown in Figure 10. Peak
metamorphic calculations based on mineral core analyses indicate that peak P-T
conditions of 650 - 750°C and 6 - 8 kbar were attained throughout the Leeuwin
Complex. Retrograde conditions were estimated from rim compositions and yielded
temperatures 50 - 100°C cooler and pressures 0.5 — 1 kbar less than peak metamorphic
conditions. Weighted means for selected average P-T estimates (highlighted in Table 4)
have been calculated to reflect the P-7 conditions for each of the structural domains
(Figure 10). A weighted mean of average 7" and average P give peak metamorphic
conditions of ¢ 681 + 58°C (MSWD = 0.04) and 7.8 £ 1.0 kbar (MSWD = 0.04) from
three analyses within the southern domain. A weighted mean of seven analyses from
the central domain give a weighted mean average 7 of 694 + 36°C (MSWD = 1.0) and
a weighted mean average P of 6.94 £ 0.79 (MSWD = 0.32). A weighted mean of two

mineral core analyses form the northern domain give a weighted mean peak average T
of 671 = 130°C (MSWD = 0.60) and a weighted mean average P of 6.5 + 1.9 kbar
(MSWD = 0.54). This suggests that peak metamorphic temperatures were 680 + 15°C




throughout the Leeuwin Complex. However, peak weighted mean pressures reveals a
moderate decrease from 7.8 kbar in the southern domain, to 6.94 in the central domain
and to 6.5 kbar in the northern domain. This suggests that pressures decreased

northward by 1.3 kbar during peak metamorphism.

Similarly, this trend is seen within mineral rim retrograde average T and average P
calculations, where a weighted mean for the southern domain (n=3) gives retrograde
conditions of 657 £ 58°C (MSWD = (0.07) and 6.7 & 1.0 kbar (MSWD = 0.04). The
weighted mean for retrograde conditions within the central domain (n=7) gives
retrograde conditions of 638 + 22°C (MSWD = 1.04) and 6.25 + 0.76 kbar (MSWD =
0.14), and a weighted mean of retrograde conditions in the northern domain (n=2) of
621 + 120°C (MSWD = 0.012) and 5.5 + 1.7 kbar (MSWD = 0.88). The weighted mean
calculations suggest a progressive decrease in retrograde pressures from ~6.7 kbar in
the southern domain to 5.5 kbar in the northern domain. This suggests that pressures
decreased northward across the Leeuwin Complex by 1.3 kbar at near isothermic

conditions during retrograde metamorphism.

9 LA-ICPMS and SHRIMP U-Pb Geochronology

A total of six monazite and four zircon samples have been analysed in this study to
constrain the age of peak metamorphism. Zircons and monazites were extracted from
selected whole rock samples (Figure 2 and summarised in Table 5). Samples were
separated from crushed rock by heavy liquid (methyl iodide) and magnetic separation.
Individual grains were randomly handpicked and mounted in epoxy resin and then
polished. Zircons for SHRIMP analysis were coated in a thin coat of gold and
monazites coated with carbon to ensure consistent resistivity across the mount during
imaging. The mounts were then imaged using the Philips SEM X120 at Adelaide
Microscopy, University of Adelaide. Monazites were scanned at operating conditions
of 15 kV to produce backscatter electron (BSE) images and zircons were imaged using
the cathodoluminescence technique to reveal distortions in the crystal lattice (Stevens et

al. 2000; Collins, 2003).
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9.1 LA-ICPMS — analytical procedure

Monazites were analysed using the Laser Ablation Inductively Coupled Plasma Mass
Spectrometer (LAICPMS) at Adelaide Microscopy, Adelaide University. The methods
and procedure of Reid er al. (2006) were followed. Th — U — Pb isotopes were analysed
under standard operating conditions using a laser spot size of 15um, a firing rate of 5
Hz and an output reading of 65%. Helium gas was introduced in to the chamber
between samples for the removal of matrix interferences between analyses. The
chamber was analysed for 30 seconds prior to firing (40 seconds for zircon) and the
laser was fired for a period of 10 seconds prior to analysis which ran for a period of 40

seconds to ensure ample measurement of isotopic ratios.

The Pb/U isotropic ratios were corrected for instrument induced differential mass
fractionation of Pb and U by repeat analysis of the in house standard MADEL prior to
and after analysis of the unknown sample. The program GLITTER was used to
determine the fractionation trends between U and Pb during each standard analysis.
Monazite ages were calculated using the MADEL monazite standard to correct for U-
Pb fractionation (TIMS normalisation data: 2°Pb/*%U = 514.8 Ma, 2’Pb/?°U = 510.4
Ma: Payne et al. 2008; Wade et al. 2008) Over the duration of this study the weighted
mean ages for MADEL analyses are “*Pb/”*U = 512.6 + 1.2 Ma (MSWD = 2.1) and
27pbPU = 511.0 £ 1.1 Ma (MSWD = 2.2), and were obtained from 86 analysis of the
MADEL standard. Accuracy was monitored by repeat analyses of the in-house internal
monazite standard (94-222/ Bruna-NW: *Pb/?%U = 447 Ma: Payne er al. 2008; Wade
et al. 2008) the reported **°Pb/”*U weighted mean age for the internal standard was
447 + 4 Ma (MSWD = 3.6) (n=16).

9.2  Monazite morphology

Monazites from selected samples are pale yellow, contain rounded terminations and
vary from 100 x 50um to 300 x 200um in size. Backscatter electron images reveal
bright and dark monazites which generally reflect high and low thorium contents,
respectively (Zhu and O’Nions, 1999). A majority of monazites contain no

distinguishable zoning, however, many have minor- mineral inclusions. A small

majority of monazites from Cosy Corner and Honeycomb Cliffs contain minor oscillary




zoning with bright centres and dim rims. As thorium has a high atomic mass and can
vary significantly in concentration in monazite, it has a significant impact on BSE
imagery and therefore compositional zoning. Therefore BSE zoning may only indicate
thorium concentrations and may not reflect age zoning (Zhu and O’Nions, 1999; Swain
et al. 2005). Backscatter images of monazite grains are presented in Appendix 2, where

spot analyses are quoted with corresponding 206p2381y ages.

9.3 LA-ICPMS monazite age data

All LA-ICPMS monazite data are graphically presented using concordia and weighted
mean plots in Figures 13-18, and analytical data are presented in Table 6. Sample
localities are shown in Figure 12, along with their associated age estimates from this
study and previously published data. All ages quoted are 298pp/B8 ages unless

specified otherwise.

9.3.1 RVLC003 — Skippy Rock

Sample RVLCO003 is a coarse grained, diffuse, nebulitic pegmatite, interpreted to result
from partial melting. It contains garnet-biotite-plagioclase-K-feldspar phenocrysts-
quartz and magnetite. The leucosomes contain ptygmatic folding and contain
granoblastic garnets ranging from 1-5c¢m in diameter. This suggests that partial melting
was synchronous with D3 deformation as previously suggested by Janssen ef al. (2003).
Garnet growth within these leucosomes is therefore likely to reflect peak
metamorphism. Similarly, monazite in the leucosome is interpreted to be a product of

metamorphism.

A total of 21 analyses were preformed on the equivalent number of monazite grains
(Table 6) from this sample. Graphic presentation of 206p/238J ratios using a concordia
diagram (Figure 13a) reveals that most data are concordant, with several ages plotting
below concordance. Analyses suggest that metamorphism occurred during 510-545 Ma.
A probability plot (Figure 12b) suggests that there are three discrete age populations,
with peaks at 540 = 1 Ma; 524 + 2 Ma and 512 + 2 Ma. An alternate interpretation is
that these ages reflect one metamorphic event, which is represented by a weighted
mean average of 18 analyses yields a 206pp, 238y age of 525 + 5 Ma (MSWD = 9.3).
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Omitting 7 analyses that are <95% concordant, leaves the remaining 11 concordant
analyses (>95% conc.) to give a °Pb/***U age of 532+ 4 Ma (MSWD = 2.4) that is
interpreted as the age of monazite crystallisation. No prior geochronology has been
published from Skippy Rock, however unpublished data quoted in Janssen ez al. (2003)
constrain peak metamorphism and partial melting to 550-500Ma. Therefore, 532 + 4

Ma interpreted as the best timing of peak metamorphism.

9.3.2 RVLC020— Cosy Corner

Sample RVLCO020 is a granitic gneiss composed of garnet-hornblende-biotite-titanite-
ilmanite-plagioclase-K-feldspar and quartz. The sample has been taken from a
pegmatitic layer where the foliation is defined by hornblende and biotite minerals.
Diffuse, K-feldspar rich melts contain granoblastic garnets >10mm which are
interpreted as a product of peak metamorphic conditions. Garnets within the gneiss
overgrow remnant hornblende. Pegmatitic melts within the outcrop are restricted to

shear zones which constrain partial melting to the last stage of deformation.

A total of 21 analyses were performed on 21 monazite grains from sample RVLC020
(Table 6), however five grains have been excluded as ““Pb/**U ratios were
uncharacteristically low and therefore the grains were unlikely to be monazite. The
remaining 16 analyses are mostly concordant (Figure 14), with the discordance pattern
consistent with the recent redistribution of radiogenic Pb. Analysis 11.1 has a
206pp/ 28 age of 569 + 4 Ma and plots slightly higher than the concordia line and is
interpreted as having lost some radiogenic U. Analysis 9.1 has a concordant **°Pb/**U
age of 536 + 4 Ma which reflects similar metamorphic ages throughout the Leeuwin,
however the majority of analysis for this sample reflect a younger metamorphic age. A
calculated discordia Tera-Wasserberg plot (Figure 14(b)) shows the effect of common
2%ph on data, where data points are moderately discordant. Analysis 10.1 has a

206pp/28 age of 452 + 3 Ma. If experimental error is excluded, then the remaining

analyses are interpreted to represent a single population which is likely to reflect peak

metamorphism from 500 to 520Ma. Seven concordant analyses (>95% conc.) provide a

weighted mean of 503 + 5 Ma (MSWD = 2.8) (Figure 14c).




A previous sample from this rock was dated by Nelson (1996). His SHRIMP U-Pb
zircon analysis revealed a metamorphic age of 605 + 36 Ma and a protolith age of 779
=+ 23 Ma. This data was later questioned by Collins (2003) who concluded that; “either
the rocks Nelson (1996) analysed experienced a different metamorphic history, or the
ca 605 Ma metamorphic event is an artefact of insufficient data”. An alternate
interpretation is that this age dates an earlier metamorphic event prior to peak
metamorphism at 503 = 5 Ma. However, there is no petrological evidence for multiple

metamorphic events with the Cosy Corner location.

9.3.3 RVLC025— Cape Freycinet

Sample RVLCO02S5 is taken from a diffuse, nebulitic pegmatite within a highly deformed
garnet-bearing migmatite gneiss. Pegmatites crosscut the easterly dipping foliation and
biotite defines the pervasive foliation Garnet minerals 2-15mm in diameter occur as
porphyroblasts throughout the gneiss. The mineral assemblage for the sample is garnet-

biotite-titanite-magnetite-ilmenite-plagioclase-K-feldspar and quartz.

A total of 21 analyses were preformed on 21 monazite grains from this sample (Table
6). One analysis yielded Pb/U ratios that do not reflect a monazite composition and this
analysis has therefore been excluded from calculations. The remaining 20 analyses plot
concordantly on a Concordia diagram (Figure 15a). Analysis 15.1 has a concordant
2%6ph/2381J age of 480 + 3 Ma. A probability plot (Figure 15b) suggests that monazite
growth occurred at three stages; 530 £ 1.5 Ma, 519 = 2 Ma and 480 + 3 Ma. An
alternate interpretation is that the monazite data represents a single population. 18
analyses (>95% conc.) produces a 206pp/238y age of 524.3 £ 3.2 Ma (MSWD = 4.0)
(Figure 12c¢) that is interpreted as dating the metamorphism in this rock.

9.3.4 RVLC046 — Willyabrup Cliffs

Sample RVLCO046 is a hornblende-biotite-plagioclase-quartz granite gneiss, that has
weathered to a distinctive orange. This occurs structurally above the garnet-bearing
amphibolite layers of Willyabrup Cliffs. Thin sections indicate that minor garnet

(<1mm diameter) has been replaced by plagioclase and hornblende.
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A total of 20 analyses on 20 monazite grains from sample RVLC046 (Table 6; Figure
16), with the omission of 1 discordant analysis, the remaining data yields a 2**Pb/***U
weighted mean age of 520 £ 8 Ma (MSWD = 5.6). All analyses appear to reflect a
single Gaussian population and with the omission of one apparent outlier the remaining
18 analyses gives a *"*Pb/***U mean age of 519 + 5.2 Ma (MSWD = 2.2). Analysis 13.1
has a “*Pb/**U age of 490 + 7 Ma which is negatively discordant and is interpreted to
have lost some radiogenic Pb. The weighted mean age of 520 + 8§ Ma (data >95%

concordant) is interpreted as constraining the metamorphic age of this rock.

9.3.5 RVLCO70— Honeycombs

This sample is a garnet-biotite-magnetite-plagioclase-K-feldspar-quartz bearing
pegmatite. This sample has been taken from a diffuse vein that cross-cuts the local
foliation of the garmet + homblende bearing gneiss. K-feldspar grains and garnet
porphyroblasts up to 30mm within the pegmatite are a likely product of partial melting.
Leucosomes from the gneiss feed into the crosscutting pegmatite veins, suggesting that

partial melting of the gneiss occurred during metamorphism.

A total of 22 analyses were performed on 22 monazite grains from this sample (Table
6). Analyses 3.1, 5.1, 6.1, 7.1, 9.1 & 11.1 yielded a >85% concordant cluster of data
that plot on the Concordia diagram at ~ 250 Ma (Figure 17a) and give a weighted
2%pp/28J age of 248 + 2.9 Ma. These analyses plot on a discordia line that crosses the
Concordia diagram at 544 + 25 Ma and intercepts it again at 0 Ma. Therefore, these
grains are interpreted being discordant due to radiogenic Pb loss. No previously
published data has revealed any metamorphic disturbance within the Leeuwin Complex
at this time. However, an alternate interpretation they may date metamorphic
disturbance prior to the breakup of Gondwana (between the India and Australia-

Antarctica segments) within the early Mesozoic (Direen et al. 2008).

The remaining analyses reflect a single population at 500-540 Ma. With the omission of
3 negatively discordant analyses, a weighted mean of 11 analyses (>95% conc.) gives a
20pp/2¥U  age of 525 + 3.2 Ma (MSWD = 1.9) (Figure 17¢) which is analytically
indistinguishable from the metamorphic age of 522 £ 5 Ma from Collins (2003) of the

Sugarloaf gneiss which is located approximately 20km north of this location. Janssen et




al (2003) refers to unpublished U-Pb SHRIMP zircon analyses, where zircon rims
reflect a metamorphic age of 500 — 550 Ma.

9.3.6 RVLCO83 — Honeycombs

Sample RVLCO083 is of the Honeycomb leucocratic granite gneiss which is composed
of; garnet-biotite-ilmenite-magnetite-plagioclase-feldspar and quartz. The gneiss
contains abundant centimetre scale leucosomes that contain biotite selvages. Garnet is
concentrated in leucosomes with individual grains averaging 10-20mm and is the result

of partial melting reactions (Janssen et al. 2003).

A total of 20 analyses were preformed on 20 monazites (Table 5) which has produced a
single population (Figure 18a & b) around 500-540 Ma. Analyses 5.1 is negatively
discordant. Excluding analysis 5.1 and 3.1, a weighted mean age for all other data is
520 + 4.3 Ma (MSWD = 0.63) (Figure 18c). The two ages from both Honeycombs
samples strongly both support metamorphism occurring at 520-525 Ma.

9.4 SHRIMP — analytical procedure

Samples RVLC034, 035 & 041 were analysed on the 27" and 28" of May 2008, U-Th-
Pb isotopic data was processed on the SHRIMP 2 which is located in the John De
Laeter Centre of Mass Spectrometry, Curtin University, Perth. The primary beam
current during analysis was 2.0-2.5 nA and the mass resolution was ~5000. During the
analysis session nine analyses of the CZ3 standard were obtained. With the omission of
three outliers the remaining six standard analyses yielded a Pb/U spot to spot
uncertainty of 2.12% (26) and a Pb*/U calibration error of 1.43 (26%). However, a
standard slope of 2 was used in order to account for the long term stability of the
instrument. Results indicate that common **Pb was largely present as a surface
contaminant and therefore corrections to “"Pb counts were made modelled on the
composition of Broken Hill ore Pb. Analyses were targeted at zircon rims interpreted to

have grown during metamorphism.
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9.5 Zircon Morphology

Zircons from samples RVLC034, 035 & 041 are clear, pale yellow to a dirty orange. A
majority of grains are subhedral to euhedral, whilst elongate grains have rounded
terminations and vary greatly in size, ranging from 150 x 550um to 40 x 100pum. Grains
vary in complexity, from well preserved traces of oscillatory zoning to clear, brightly
luminescing grains. In many cases brightly luminescent rims appear to have replaced
original zircon, rather than have precipitated on a core (Collins, 2003). This is a
possible indication that the Neoproterozoic zircon cores were partially reset during
Early Cambrian granulite facies metamorphism (Collins, 2003). Cores are often
distinguished by poorly luminescent bands and often contain minor fluid and mineral
inclusions. In order to constrain the metamorphic age, zircon rims were targeted for
analysis. Selected cathodoluminescent images of selected zircon rim analyses are

presented with their corresponding 2°°Pb/***U ages in Appendix 3.

9.6 SHPIMP — zircon age data

All SHRIMP zircon data are graphically presented using concordia and weighted mean
plots in Figures 17-19, and analytical data are presented in Table 7. Sample localities
are shown in Figure 12, along with the associated age estimates from this study and
previously published data. All ages quoted are ““°Pb/”®U ages unless specified

otherwise. Figures 19-21 are graphical presentation of all zircon data.

9.6.1 RVLC034 — Merchant Rocks

This sample is taken from a diffuse, nebulitic, coarse grained pegmatite that is
composed of hornblende-garnet-biotite-plagioclase-K-feldspar and quartz. This sample
consists of a medium to coarse grained, granoblastic assemblage that is dominated by
K-feldspar, plagioclase and quartz. The rock has a strong mineral alignment that is
predominantly defined by biotite aggregates. Porphyroblasts of garnet occur throughout
the sample and vary in size from Imm up to 15mm. Minor replacement by plagioclase
and feldspars occur within the outer envelope of garnet porphyroblasts. Accessory
minerals include zircon, monazite and opaque oxides. The pegmatite crosscuts a
migmatitic, garnet bearing gneiss, however is connected by diffuse, migmatitic veins to

the network of leucosomes within the rock. The outcrop is dominated by a gneissic
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foliation that dips shallowly to the east (12/086). Diffuse pegmatite veins crosscut the

foliation, with veins forming conjugate structures.

A total of 12 analyses were preformed on 12 zircon rims (Table 7), several analyses
appear to be subject to high **’Pb values which could be attributed to the effect
common lead (***Pb) contamination. The subsequent data is presented on a concordia
plot in Figure 19 which reveals two distinct age populations. Grain 12.1 lies
concordantly with a 206pp, B8y age of 1088 = 17 Ma which may reflect the age 1091 + 8
Ma (Nelson, 1999) interpreted as the igneous crystallization of the monzogranitic
precursor to the gneiss at Redgate beach 6km to the north. Based on the structural and
compositional similarities of the rocks from Cape Freycinet to Redgate Beach, it is
reasonable that they have been derived from the same monzogranite precursor and have
experienced a similar metamorphic history (Janssen et al, 2003). Omitting analyses 1.1
which has high ***Pb and 10.1 due to high Pb/U ratios which is likely to be caused by
the loss of radiogenic Pb, the remaining population has a weighted mean age of 521 + 8

Ma (MSWD = 1.5) (Figure 19¢), which is considered to date metamorphism.

9.6.2 RVLCO035 — Redgate Beach

This sample is a coarse grained, nebulitic pegmatite with a granoblastic assemblage of
garnet-biotite-plagioclase-K-feldspar-quartz and opaques (magnetite and ilmenite).
Biotite accumulates occur within the selvages of larger garnet porphyroblasts and small
centimetre scale fractures. Garnet porphyroblasts (5-15mm) are scattered throughout
the pegmatite and adjacent granite gneiss. The granite gneiss is compositionally and
structurally similar to the outcrops of Cape Freycinet (refer to Merchant Rocks).
Pegmatite veins crosscut the granite gneiss in conjugate sets which indicate late

southeast-northwest extension (Janssen et al. 2003).

A total of 12 analyses were preformed on 12 zircon grains (Table 7; Figure 20) which
has produced three distinct populations of zircons. Analysis 6.1 lies negatively
discordant with a *°°Pb/**%U age of 1018 + 14 Ma and a 2“’Pb/*®Pb age of 1114 + 48
Ma. The 2%Pb /2*U age of 1019 + 14 Ma is similar to the zircon populations at 1005 +
46 Ma & 1016 + 10 Ma from Nelson (1999) which are thought to reflect a disturbance

event.
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Analyses 12.1 and 13.1 lie slightly below the Concordia line, and give a weighted mean
R s ) age of 769 + 29 Ma (MSWD = 0.044). Previous geochronology from Nelson
(1999) does not reveal any zircon disturbances at this age. However, it is within error of
the 779 £ 23 Ma event (Nelson, 1995) derived from 12 analyses from Cosy Corner
interpreted as the age of granite crystallisation. Therefore, these zircons may have
resulted from a magmatism associated with the emplacement of the ¢ 750 Ma

protoliths.

Analysis 8.1 lies concordantly above the main population with a **Pb/**U age of 576
+ 8 Ma. The main population is represented by the weighted mean **Pb/**U age of
519 + 8Ma (MSWD = 1.8) (Figure 20c) from the remaining eight analyses. This peak
metamorphic age is some 12 Ma younger than the 531 + 64 Ma *’Pb/*®Pb age of a
single zircon grain (Nelson, 1999) that was previously interpreted by Janssen et al.
(2003) as the age of metamorphism at Redgate Beach but correlates well with the 521 +
8 Ma zircon age and the 524 + 3 Ma monazite ages from Merchant Rocks, and is

interpreted as dating the age of metamorphism.

9.6.3 RVLCO41- Willyabrup Cliffs

This sample is a hornblende-biotite-ilmenite-magnetite-plagioclase-quartz bearing
leucosome that feeds directly into a crosscutting pegmatite. The leucosome is located
on the boundary of the garnet-bearing amphibolite and the orange-weathered gneiss.
The leucosome is strongly boudinaged and nearby C-S fabrics indicate a NE-side down

movement on the east dipping fabric.

A total of 9 analyses were preformed on nine zircon rims (Table 7; Figure 21) that
identify two populations of zircon. Analyses 3.1, 5.1 and 6.1 are grouped at a weighted
mean age of 544 + 8 Ma and the remaining analyses yield a weighted mean age of 521
+ 8 Ma (MSWD = 1.2). This population is within error of the 519 + 5 Ma age derived
from the monazite data from sample RVLC046.

The mafic granulite, located structurally below the sample contains relic igneous ortho
and clinopyroxene. Therefore, the weighted mean age of 544 £ 8 Ma may date early

metamorphism of the two-pyroxene-hornblende mafic granulites, and the weighted
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mean age of 519 + 5 Ma is interpreted to date metamorphism of the garnet-hornblende-

orthopyroxene-biotite mafic granulite.

10 Sm-Nd Isotopes

Eight whole rock samples from the Leeuwin Complex have been analysed in this study
for Sm-Nd isotopes. The sample locations, petrology and Sm-Nd isotope data are

summarised in Table 5 and isotope data is presented in Table 8.

10.1 Sm-Nd analytical procedure

Whole rock samples were crushed and powdered in a tungsten carbide mill.
Approximately 0.05g of each sample were spiked with 0.4g of standard (Spike F:
1.91375 nm/g” Nd"° & 3.70847 nm/g"' Sm) and evaporated in HF/HNO; for a period
of four hours. Samples were disseminated in HF/HNO; within sealed Teflon bombs at
150°C for three days, and evaporated in HF/HNO3. Samples were then evaporated in
6M HCL and then digested in oven heated Teflon bombs containing 6M HCL
overnight. Isotope dilution methods were used to collect the Nd and Sm which were

fused to tantalum and rhenium filaments respectively.

Nd isotope ratios were measured with the Finnigan MAT 262 mass spectrometer and
Sm isotope ratios were measured with the Finnigan MAT 261 mass spectrometer. A
blank run with the samples produced an Nd total of 2.5ppm and the TASBAS (in-house
standard) yielded a "*Nd/"**Nd ratio of 0.512896 + 0.000006 (1s). The '*Nd/'**Nd
ratio was normalised to 0.721903. The running average for La Jolla for the year was

0.511860 + 0.000007 (16).

10.2 Sm-Nd isotope results

Data for the Sm and Nd concentrations and Nd isotopic ratios are presented in Table 8
and the Epsilon Nd values have been plotted on a conventional Nd evolution diagram
(Figure 22). Epsilon Nd values have been plotted at the assumed protolith ages of 1090
Ma for samples RVLC034 & 035 as these samples are likely to have been inherited
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from the syncollisional Mesoproterozoic protolith (Nelson, 1999; 2002; Fitzsimons,
2003; Janssen er al 2003). All other samples have been plotted at 750 Ma which can be
interpreted as a relatively homogenous protolith age for the remaining samples. Epsilon
Nd data from the Grove Mountains (Liu ef al, 2007), East Antarctica and Natal,
Southern Africa (Wareham et al, 1998) are also plotted.

11 Discussion

11.1 Implications for a structural model for the central Leeuwin domain

Previous geochronology has suggested that there are two igneous protolith ages of the
igneous gneisses within the central domain of the Leeuwin complex. SHRIMP zircon
dating has revealed a Mesoproterozoic age of 1090 Ma for the precursor to granite
gneiss of Redgate Beach (Nelson, 1999) and a ~750 Ma protolith for locations within
both the central and northern domains (Nelson, 1996; Collins, 2003). No evidence for a
crosscutting, or a contact boundary between these protoliths was found whilst mapping
the central domain. This may be because; contact boundaries are preserved beneath
Pleistocene beach alluvium, or that peak metamorphism during the early Cambrian

alleviated any compositional differences between the two protoliths.

The granitic gneiss at Honeycombs is considered to be a successor of the ¢ 750 Ma
protolith, as this is considered to be the igneous crystallisation age of a compositionally
similar rock ~10 km north of this location (Canal Rocks) (Nelson, 1996). Preserved
traces of the S1 foliation within folded amphibolite layers (Figure 4) are axial planar to
the D1 folded amphibolite layer that cut the granitic gneiss. The cross cutting nature of
the amphibole imply that D1 must have occurred after the emplacement of the 750 Ma
protolith. An identical observation was made by Collins (2003) in the northern domain.
Collins (2003) suggested that the coaxial and possibly the progressive relationship
between D1 and D2 suggests that they were coeval, which is also likely within the

central domain.

D2 folding within the central domain of the Leeuwin complex are interpreted is be a

result of subvertical shortening that might have been in response to either crustal




thickening, or ductile thinning (Collins, 2003). D3 ‘kink” folds and disharmonic folds
suggest sub-horizontal WSW-ENE shortening. The coaxial relationship between the
folds of D2 and D3 with the L2 mineral elongation lineation, suggest that they were
coeval. The presence of large garnet porphyroblasts within the D2 fold hinge of the
amphibolite (Figure 5a) implies that D2 folding was synchronous with garnet growth
and therefore peak metamorphism. Diffuse pegmatites, interpreted as being a product of
partial melting (Janssen e/ al. 2003) are often associated with D3 ‘kink’ folds (Figure 6)

suggest that D3 is likely to have occurred during, or after high-grade metamorphism.

D4 deformation within the central domain is interpreted to be a product of east-west
extension. Conjugate sets of pegmatites occur throughout the central domain,
crosscutting the S2 foliation at orientations consistent with normal faulting. The
crosscutting nature of the mafic dyke north of Cowaramup Bay is also likely to be a
product of late extension. The absence of peak metamorphic minerals in both of these

structures suggests that D4 occurred post peak metamorphism at ¢ 522 Ma.

No apparent structures of the (D2) east-west, then north-northwest — south-southeast
(D3) subhorizontal shortening reported by Collins (2003), for the northern, and Janssen
ef al. (2003) for the southern domain were observed within the central domain of the
Leeuwin Complex. This suggests that; i) the central Leeuwin Complex experienced a
different tectonic history, when compared to the northern and southern domains, or i1)
the subhorizontal structures of the central domain could be a tectonic response to
deformation within the northern and southern domains. However, evidence for a
structural relationship between these domains is fickle, and more work is needed to be
done in order to determine the structural associations between the domains to support

this theory.

A tectonic model presented by Harris (1994) suggested that the Leeuwin Complex was
part of regional sinistral transcurrent shear zone associated with the Darling Fault zone,
where an extensional environment formed within a dilatational jog, in which the rocks
of the Leeuwin Complex were intruded and subsequently deformed within a regime of
progressive non-coaxial deformation (Harris, 1994). Harris (1994) reported north-south

sinistral shear zones from the Leeuwin Complex. However, detailed mapping of the
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northern (Collins, 2003) and of the central Leeuwin Complex (this study) has revealed

no evidence for any ductile strike-slip deformation.

Based on field observations and structural relationships, two perspective structural
models for the central Leeuwin domain are presented in Figure 23. The model for pure
shear is based on subvertical compression being the dominant stress vector, whilst box
fold sets and ‘kink’ fold measurements (Figure 6) suggest a bulk &, stress is attributed
to east-west to northeast-southwest shortening. The orientation of this strain vector is
different to the D3 north-northwest—south-southeast shortening direction for the
northern domain (Collins, 2003) and therefore suggests that D3 deformation within the
central domain predates a rotation in the contraction vector associated with sinistral
movement along the Darling Fault, or D3 is not associated with the reported movement
along the Darling Fault Zone at 500-550 Ma (Harris & Li, 1995). The lack of any
obvious kinematic indicators of sinistral movement in the northern domain (Collins,
2003) and the central domain (this study) suggests that the reported north-south sinistral
shear zones of the Leeuwin Complex (Harris, 1994) are somewhat sceptical, and

therefore the structural model for pure shear is favoured over the simple shear model.

11.2 Metamorphic history

Pressure-Temperature estimates from this study have obtained peak metamorphic
conditions of 650 - 750°C and ~ 6 - 8 kbar and retrograde conditions ~100°C and 1kbar
less than peak metamorphism. These conditions are comparable to recent calculations
presented by Halpin et al. (2008) based on felsic gneiss mineral assemblages collected
by dredge hauls, taken from the southern margin of the Naturaliste Plateau.
Thermobarometric results indicate peak P-T conditions reached ~700°C and ~5.5 — 7.5
kbar, whilst rim compositions suggest that ~50-100°C of post-peak cooling occurred at

near isobaric conditions (Halpin ez al., 2008).

Average P-T estimates for peak metamorphism presented in Figure 10 reveal a ~1.3
kbar pressure decrease at near isothermic conditions from south to north across the

Leeuwin Complex. This is also seen in the mineral rim calculations that suggest

retrograde conditions exhibited a ~1.2 kbar decrease in pressure and ~40°C decrease in




temperature from south to north. This dismisses a previous suggestion made by Wilde
and Murphy (1990), who considered that the Leeuwin Complex experienced one
metamorphic event, in which metamorphism changed progressively from amphibolite
facies in the south to granulite facies in the north. However, variance in P-7 conditions
may be attributed to the lack of P-T calculations performed within the northern domain.
Conversely, P-T estimates for samples from the northern domain are based on 4-7
independent sets of reactions, whereas average P-7" calculations for the central and
southern domains are based on 7 — 12 independent sets of reactions, which, along with
the fact that weighted means were only based a limited number of P-T calculations,

may contribute to misinterpretation.

As metamorphic garnet, orthopyroxene, horneblende and biotite occur throughout the
Leeuwin Complex, it is likely that peak metamorphic conditions were relatively
uniform. This is supported by graphic presentation of peak P-T estimates (Figure
11a,c), where probability density plots reveal Gaussian populations from which
weighted mean calculations yield ca 687 + 28°C (Figure 11b) and ca 7.24 + 0.61 kbar
(Figure 11d). These are interpreted as the peak metamorphic conditions for the whole
Leeuwin Complex. Retrograde conditions calculated from mineral rim compositions
also produce Gaussian populations from which weighted mean calculations generate ca
638+20°C and ca 6.3 + 0.56 kbar for the Leeuwin Complex. These calculations dismiss
previous suggestions that the Leeuwin Complex was a high temperature — low pressure
terrane (i.e. Wilde & Murphy, 1990; Myers, 1994; Wilde, 1999) or that the whole
complex was retrogressed to amphibolite facies during the ca 540 disturbance event.
Rather, the Leeuwin Complex experienced peak metamorphism at ca 522 Ma and
remained at mid crustal depths (~15-20 km) where moderate pressures existed

following peak metamorphism.

Chemical zoning within garnet porphyroblasts (Figure 9) is interpreted to reflect the
rocks cooling history, where the homogenous composition of the garnet core is a
product of very slow average cooling, and the change in mineral composition within the
garnet rim 1s a response to rapid cooling, driven by exhumation. Garnet-biotite
thermometry (presented in Table 4) reveals retrograde conditions of ~600°C, however,

ideal mixing of Fe-Mg within chemical equilibrium is difficult to ascertain, and inferred
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P-T conditions may not be entirely reliable (Gessman et al. 1997). Therefore, this may

not reflect the retrograde conditions experienced during exhumation.

“Ar-** Ar fusion dating of hornblende minerals by Nelson (2005) constrains the closure
temperature for Ar loss from amphiboles to ~498 — 493 Ma for a range of samples
located in Figure 12. Assuming the closure temperature for Ar in hornblende is ~530 +
40°C (McDougall & Harrison, 1999), and that peak metamorphism temperatures were
~700°C, then an average cooling rate of ~6.3°C per million years can be assumed from
peak metamorphism at ca 522 Ma to the closure temperature of Ar loss in amphiboles
at ~495 Ma. However, a uniform cooling rate is unlikely, as indicated by the chemical
zoning of garnets, where core compositions reflect stable to very slow cooling. In
contrast garnet coronae contain hornblende-biotite-plagioclase decompression textures
that are likely to be a product of rapid cooling caused by exhumation. Therefore it is
likely that to a point, average cooling was very slow, which was then followed by a

period of rapid cooling driven by exhumation.

11.3 Geochronology

Prior geochronological data (Wilde & Murphy, 1990; Nelson, 1996; 1997; 1999; 2002;
Collins, 2003) indicate that the protolith of the Leeuwin Complex did not form a single
contemporaneous suite, but magmatic intrusions that occurred over ~600 Ma (Collins,
2003). Nelson (1999) obtained a weighted age of 1090 Ma from a population of zircon
analyses from the granite gneiss at Redgate beach. A single zircon grain (analysed in
this study) from Merchant Rocks, south of Redgate beach yielded a ***Pb/>*U age of
1088 £ 7 Ma. This zircon is interpreted as a xenocryst from the igneous crystallisation

of the monzogranitic precursor, formed within a syncollisional origin (Fitzsimons,

2003).

Two zircon analyses from RVLCO035, Redgate Beach give a weighted mean age of 769
+ 29 Ma, which are analytically similar the granite crystallisation age of 779 = 29 Ma at
Cosy Corner (Nelson, 1996) and to the 755 + 3 Ma zircon age interpreted as the

crystallisation age of the protoliths at Sugarloaf (Collins, 2003). This suggests that the




successor to the 1090 Ma protoliths were affected by metamorphism associated with

the ca 750 Ma protolith emplacement.

High-grade, granulite facies metamorphism is well constrained to 520-530 Ma by LA-
ICPMS monazite and SHRIMP zircon data presented in this study. Evidence for this is
further supported by the previous geochronological data (Collins, 2003) that dates peak
metamorphism at the Sugarloaf antiform (northern Leeuwin Complex) to ca 522 +£ 5

Ma. This is analytically indistinguishable from the following 206pp/ 2381 ages;

- 525 + 5 Ma from RVLC003, monazite analyses, Skippy Rock (Figure 13)

- 524 £ 3 Ma from RVLC025, monazite analyses, Round Rocks (Figure 15)

- 521 + 8 Ma from RVLCO034, zircon rim analyses, Merchant Rock (Figure 19)

- 519 + 8 Ma from RVLCO035, zircon rim analyses, Redgate Beach (Figure 20)

- 521 + 8 Ma from RVLCO041, zircon rim analyses, Willyabrup Cliffs (Figure 21)
- 519 &+ 5 Ma from RVLC046, monazite analyses, Willyabrup Cliffs (Figure 16)
- 520 &+ 4 Ma from RVLC070, monazite analyses, Honeycombs (Figure 17)

- 527 + 3 Ma from RVLCO083, monazite analyses, Honeycombs (Figure 18)

These ages have been determined based on weighted mean calculations of i) >95%
concordant monazite data and >90% concordant zircon data and ii) data that reflects the
main population of analyses. Older stages of zircon and monazite growth have been
identified and are presented in probability density plots (Figures 13-21). Sample
RVLCO020, from Cosy Corner reflects a weighted mean age of 503 £ 5 Ma. A Tera-
Wasserberg plot (Figure 14b) reveals that the data is slightly discordant and several
analyses may be subject to common lead contamination, which may increase the 206py,
thus decreasing the 2*°Pb/?**U ages. However, elevated 204ppy Jevels were not recorded

26pp/281J age of 503 + 5 Ma is interpreted as the age of

during analyses, therefore the
peak metamorphism at Cosy Corner. This is some ~100Ma younger than 605 + 36 Ma
age from four zircon analyses from this rock by Nelson (1996), who interpreted them as
dating peak metamorphism. However all four analyses are reversely discordant and
have a weighted mean ***Pb/*"’Pb age of 550 + 23 Ma. Collins (2003) speculated that
these grains lie on a discordia line from the crystallisation age to a younger time of Pb

loss making their age meaningless, and therefore suggested that evidence for an early

metamorphic event at ca 615 Ma was far from conclusive.
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Sample RVLCO070 yields six analyses that plot on a discordia line from the
crystallisation age of 527 + 3 Ma (Figure 17). The weighted mean of this population is
247 £ 3 Ma (MSWD=3.0). As these analyses lie on a discordia line from the
crystallisation age, they are interpreted as having lost some radiogenic Pb. No prior
geochronological data from the Leeuwin Complex has revealed such Mesozoic ages.
However, cretaceous age volcanic carapace overlie the Naturaliste Plateau to the east
(Halpin et al. 2008). It is possible that these monazites are attributed to the
hyperextensional breakup between Australia and Antarctica during the Mesozoic. It is
possible that the ca 247 + 3 Ma age represents monazite growth that could have been
associated with transcurrent shearing caused by the northward progression of greater
India. However, more monazite dating would be needed to be done in order to define

monazite growth at this age and support this theory.

Evidence for two early Cambrian metamorphic events is suggested by zircon and
monazite dating of a pegmatite at Willyabrup Cliffs. Two populations of zircon yield
weighted mean ages of 542 + 8 Ma (M1) and 521 + 8 Ma (M2), whilst monazite data
suggests a major population at ca 519 + 5 Ma (M2) and a minor population at 538 &+ 5
Ma (M1). The earlier metamorphic event is interpreted to be the crystallisation of a
clinopyroxene-orthopyroxene-hornblende mafic granulite that is located structurally
below the location of this sample. This age is analytically indistinguishable compared
to the 540 + 6 Ma age interpreted as the best estimate of the time of crystallisation of a
monzogranite precursor to a hornblende-biotite dyke, north of Cowaramup Bay
(Nelson, 1996). Therefore, ca 542 + 8 Ma (zircon) and ca 538 + 5 Ma (monazite) is
interpreted to be the crystallisation age of the precursor to the garnet-orthopyroxene-
hornblende-biotite amphibolite whose crystallisation age reflects peak metamorphism

and ca 521 = 8§ Ma (zircon) and ca 519 £ 5 Ma (monazite).

Respective probability density plots for all monazite and zircon data (>85% concordant
and omitting the ca 248 Ma monazite population) are presented with Figure 12 and
reveal Gaussian populations for both sets of data. The normal distribution of data
appears to reflect a single metamorphic event, where crystallisation occurred from ~550
to 480 Ma. A weighted mean of the 96 monazite data (>95% concordant) gives a
206pp/2381J age of 521 + 3 Ma (MSWD = 6.5). Similarly, with the omission of older
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zircon populations, the remaining 23 zircon ages define a Gaussian distribution over
~580 - 460 Ma, with a weighted mean age of 522 + 5 Ma (MSWD = 2.2). By
presenting data in this simplistic view, the complexity of data interpretation has been
greatly reduced, as no attempt is made to identify different populations of monazite and
zircon ages. However, it does reveal that there is a wide distribution of Early Cambrian
monazite and zircon growth. Ages presented in this study, constrain peak
metamorphism to ~503 - 527 Ma for the whole Leeuwin Complex, and are analytically
indistinguishable to the respective weighted mean ages of 521 + 3 Ma (for monazite)
and 522 + 5 Ma (for zircon). Therefore, granulite facies metamorphism for the Leeuwin

Complex is constrained to ca 522 Ma.

11.4 eNd evolution

Epsilon Nd values for samples presented with the estimated igneous age of ca 750 Ma
(Nelson, 1996; 2002; Collins, 2003) have slightly negative eNd values ranging from
-0.48 to -2.65. The cluster of these values suggests that the ca 750 Ma emplacement of
a suite of crustal melt A-type granitiods affected the whole Leeuwin Complex.
However, samples RVLC034 & 035 from Cape Freycinet have respective eNd values
of -6.75 and -11.03. These evolved eNd values imply that the precursors to the 1090
Ma protoliths are inherited from a much older crustal source. When plotted against the
eNd evolution of felsic Yilgarn Crust (from Qlu et al, 1999), it seems reasonable that

the crustal source may have been derived from the Archaean Yilgarn Craton.

Previous Sm-Nd data from a sample collected near Cape Leeuwin were presented by
Fletcher and Libby (1993) that had a calculated eNd value of -12. This value is much
more evolved than either of the samples from Sarge Bay and Skippy Rock that have
respective eNd of -2.65 and -1.14. Either the sample from Fletcher and Libby (1993) is
a product of the 1090 Ma protolith, or the sample has been generated from the

remelting of an enriched crustal source.
Samples presented in Liu ef al, 2007 (Grove Mountains) and Wareham et al. (1998)

from eastern Antarctica have relatively similar §Nd evolutions. Data from Wareham et

al, 1998 reflect a very large range of eNd values at 1100-1150 Ma that reflect the
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evolved eNd data of both Leeuwin Complex Protoliths. Similar comparisons can also
be seen with the data from Liu et @/, 2007. The relatively similar evolution of Nd-Sm
isotopes within the rocks of the Leeuwin Complex and Eastern Antarctica suggest that
they were inherited from a similar crustal source. This supports recent evidence that the
Mesoproterozoic emplacement of the Naturaliste Plateau was a western continuation of
the Albany-Fraser crust, and prior to opening of the Southern Rift System, may have
been linked to the Mesoproterozoic belt now exposed in Wilkes Land, eastern
Antarctica (Haplin ef al. 2008). It seems reasonable to speculate that the evolved eNd
values of the Leeuwin Complex and eastern Antarctica are attributed to the remelting of

the Naturaliste Plateau Mesoproterozoic age crust.

12 Conclusions

The main findings from this study are:

The deformation seen in the central domain of the Leeuwin Complex is
structurally different to the deformation within the northern and southern domains
(described by Collins, 2003 & Janssen et al. 2003). The four phases of
deformation are interpreted to have occurred during or after peak metamorphism.
The D1 fabric preserved within folded amphibolite layers is attributed to
subvertical shortening. D3 folding is coaxial with the dominant (D2) S2 foliation
and associated mineral elongation lineation that plunges shallowly to the east,
which suggest that they were coeval, or that D3 is a continuation of D2, with
subvertical contraction being the dominant stress vector. D3 kink folds are
crosscut by diffuse, partial melt leucosomes that suggests that SW-NE
compression occurred during, or post peak metamorphism, whilst D4 structures

are interpreted to reflect late E-W extension (i.e. Janssen ef al. 2003).

The orthogneisses of the Leeuwin Complex preserve metamorphic mineral
assemblages that reflect peak metamorphic conditions where 7" = 650 - 750°C
and P = 6 - 8 kbar. Weighted mean averages from P-T estimates suggest that ca

687 + 28°C and ca 7.24 + 0.61 kbar peak metamorphic conditions were attained

throughout the Leeuwin Complex.




- P-T estimations based on mineral rim compositions suggest that retrograde
metamorphic conditions of 7 = 638420°C and P = 6.3 = 0.56 kbar, implying that
the Leeuwin Complex remained at mid crustal (15 - 20km) levels after peak

metamorphism.

- Chemical composition in garnet cores suggests that post-peak cooling was gradual
at near isobaric conditions, whilst chemical zoning in garnet rims suggests that
decompression occurred quickly, which is interpreted to be a response to rapid

exhumation.

- SHRIMP zircon and LA-ICPMS monazite dating of numerous outcropping
locations has constrained peak metamorphism to ca 522 + 5 Ma (zircon) and 521

+ 3 Ma (monazite) for the whole Leeuwin Complex.

- An earlier metamorphic event has been identified at Willyabrup Cliffs, where a

clinopyroxene-orthopyroxene-hornblende mafic gneiss is the precursor to the

~522Ma granite gneiss, as it is interpreted to have crystallised at ca 540 = 6 Ma.

- The Leeuwin Complex has evolved eNd values that suggest that the felsic
orthogneisses are inherited from an enriched crustal source and are similar to eNd
values from eastern Antarctica. Recent Antarctica-Australia reconstructions
(Whittaker er al. 2007) support the theory that the Naturaliste Plateau was a
western continuation of the Albany Fraser crust. The moderately evolved eNd of
the Leeuwin Complex and eastern Antarctica may be inherited from the crustal

melting of the Mesoproterozoic protoliths of the Naturaliste Plateau.
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15 Figure Captions

Figure 1. Reconstruction of Gondwana from Fitzsimons (2003) modified by Collins
(2003) illustrates the significance of the Leeuwin Complex within the Neoproterozoic
— Cambrian Pinjarra Orogen. The grey region highlights the regions subject to late
Neoproterozoic to Early Cambrian orogenesis. NP, Naturaliste Plateau. Other Pinjarra
Inliers: MC, Mullingara Complex; NC North Hampton Complex; RC, Rayner

Complex.

Figure 2. Locations of samples used within this study. Inset, the approximate
boundaries between the three structurally different domains of the Leeuwin Complex
are identified and named. Regions of the central domain that have been mapped in

detail are highlighted by blue boxes, and are presented in Figure 3.

Figure 3. Regional-scale structural maps of selected locations within the central
domain of the Leeuwin Complex. Structural data are presented on stereonets (lower
hemisphere equal-area projections). (a) Honeycombs. (i) Structural data reveals a
consistent shallowly dipping easterly foliation with a mineral lineation that plunges
down-dip to the foliation, with a minor divergence to the ESE. Folds hinges are
parallel to the local lineation. (b) Willyabrup Cliffs (i) All poles to foliation reveal a
east-south-east dipping foliation with a variable mineral lineation. The mineral
lineation varies in orientation from north-east to south-east, whilst the majority of fold
hinges are axial planar to the foliation, one fold hinge plunges SES which is oblique
to the foliation and main mineral lineation. (c) North of Cowaramup Bay. (iii) Poles to
foliation reflect the flat lying foliation gently dipping to the SE. The mineral lineation
plots down-dip to the foliation. One mineral lineation plots to the NE which is oblique
to the foliation. The contact between the mafic dyke and the granitic gneiss show that
the mafic dyke crosscuts the foliation at a steeper angle, trending to the east. (d)
Redgate Beach (iv) Poles to foliation plot in a well confined cluster that reflects the
shallow dipping easterly foliation. Mineral lineation readings trend to the ENE which
is slightly oblique to the principal foliation. A single fold hinge trends to the SE which
does not reflect the axial planar relationship displayed at other locations. (e) Cape

Freycinet (v) Poles to foliation are well clustered reflecting the dominant ESE dipping




foliation. Fold hinges are parallel to the mineral lineation which is slightly oblique to

the foliation, tending NE.

Figure 4. Isoclinal folding of amphibolite layer during D2 deformation, located at
Honeycomb Cliffs, centred at: E114°59°39.1” S39°46°40.0”. (a) A detailed field
sketch of the isoclinal fold which is axial planar to the easterly dipping S2 foliation
and the fold hinge is parallel to the down-dipping lineation. Traces of the initial S1
fabric are preserved within the hinge of the fold that have been deformed by D2 and
are crosscut by the dominant S2 foliation. Inset, Schematic diagrams (1) Detailing the
formation of the initial S1 fabric, that overprints the amphibole layer. (2) Prolonged
crustal compression leads to isoclinal folding of the amphibolite that is oblique to the
principal stress orientation, subsequently folding the layer, along with the S1 fabric.
(3) The S2 foliation overprints the folded amphibolite while the S1 fabric remains
preserved within the fold hinge. (b) Compiled field photographs of the fold within the
cliff face (please note; the photographs are slightly distorted due to the angle at which
the photographs were taken. Photographs were taken looking due east). A 100mm

compass is used as a scale which is located within the fold hinge.

Figure 5. Field photographs from the central Leeuwin Complex that highlight specific
deformation structures. A 100mm field compass in used as a scale in photographs,
where the compass in not present, a scale is given. (a) S1 foliation fabric preserved
within the fold hinge (F1) of the amphibolite layer presented in Figure 4, Honeycomb
Cliffs. Inset, large garnet porphyroblasts located within the fold hinge - photo taken
looking east. (b) An isolated lens of D3, S-type folds of the S2 fabric that are
encapsulated by the easterly dipping S2 foliation. The lens is highlighted by the black
line and the inset photo clearly displays the S-type nature of the folds. The fold hinges
of these folds are parallel to the gently ENE plunging mineral lineation. Photograph is
taken looking east. Located at Round Rocks, Cape Freycinet (Figure 2). (c) Garnet
bearing leucosome that has been isoclinally folded (F3) during D3 deformation. The
fold is located within the region of low strain that is presented in figure 6 (Inset 2).
Photograph is taken looking northwest at Honeycombs (refer to Figure 2). (d) Strain
partitioning across an amphibolite layer. The relatively undeformed central region
contains deep-red garnet porphyroblasts and the genﬂe easterly dipping foliation is

fickle. Strain has partitioned to the boundaries of the amphiolite that are in contact
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with the garnet absent granitic gneiss. Hornblende-biotite-plagioclase coronae
increase in intensity towards the gneiss and eventually completely replace garnet
grains. Photograph is taken at Willyabrup Cliffs looking east. (e¢) Late stage K-
feldspar pegmatite vein that has distinct boundaries with the gneiss when compared to
the nebulitic pegmatites attributed to D3. The easterly plunging vein is a product of
D4, east-west extension — photo taken and Honeycomb Cliffs, looking west. (f)
Crosscutting contact boundary between the pyroxene-hornblende-biotite mafic and
the massive granite gneiss, north of Cowaramup Bay. The ill-defined foliation dips
shallowly to the east, as does the crosscutting contact boundary. Photograph is taken

looking northeast.

Figure 6. Kink folds within garnet bearing leucocratic granite gneiss, produced by
(6°) NE-SW compression. (a) Schematic diagram illustrating the ill-defined
boundaries of leucosomes within a ‘kink’ fold set, where diffuse, nebulitic pegmatites
form within the hinge zones. Biotite selvages form on leucosome boundaries. (b)
Photograph of structure, taken looking ESE at Honeycombs. (c) Poles to planes of
conjugate kink folds at honeycombs. The dominant kink fold orientation is to the
ENE, implying WSW-ENE compression. (d) Poles to planes of conjugate kink folds
at Willyabrup Cliffs. The dominant kink fold orientation is ~E, implying E-W

compression.

Figure 7. Detailed outcrop map illustrating the partitioning of high strain within
foliation parallel amphibolite layers. In such layers the foliation is exacerbated and is
brittle. Plagioclase rich pegmatites are elongate and parallel to the foliation within the
amphibolite layers, whilst crosscutting pegmatites participate towards the low strain
regions where they accumulate within the boudin necks and fold hinges of
Jeucosomes. Many leucosomes feed into the diffuse nebulitic pegmatites; a key
indication of partial melting. Insets: (1) Elongate, parallel to foliation pegmatite veins
within a high strain, amphibolite layer. (2) Isoclinally folded leucosome illustrated in
Figure 5¢. (3) Poorly defined 6 shaped pegmatites within a high strain amphibolite

layer, an unreliable kinematic indication of E-W shearing.
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Figure 8. Photomicrographs that illustrate key petrological characteristics. All
photomicrographs are in plane polarised light except for (a) which is taken in cross
polarised light. (a) Granoblastic mosaic mineral assemblage of the granitic gneiss at
Skippy Rock (Figure 2). Mineral grains are equidimensional, with rounded >0.6mm
garnet grains surrounded by plagioclase and euhedral K-feldspar phenocrysts. Sparse
biotite grains are aligned in an orientation that defines the local foliation that dips
steeply to the east. Sample RVLC007. Width of view is 3 mm. (b) Accessory titanite
strongly associated metamorphic hornblende porphyroblasts. Relic garnet
porphyroclast is replaced by metamorphic plagioclase and K-feldspar. Sample
RVLCO008, Sarge Bay. Width of view is 5Smm. (¢) Garnet porphyroclast enveloped by
elongate, well aligned biotite. Line A-B is the transect line analysed and presented in
Figure 9. Sample RVLCO045, Willyabrup Cliffs. Width of view is 13mm. (d)
Metamorphic orthopyroxene enveloped by elongate biotite that defines the foliation,
within a matrix of plagioclase and hornblende. Sample RVLC052 Willyabrup Cliffs.
Width of view 4mm. (e) Garnet grain enveloped by a coronae of plagioclase and
hornblende. Ilmenite and magnetite are in abundance where amphiboles are the
dominant mineral assemblage. Sample RVLC077, Honeycombs. Width of view 4mm.
(f) Disseminated garnet that contains plagioclase and oxide inclusions. Garnet is
isolated by abundant plagioclase and K-feldspar. Minor biotite occurs on garnet

boundaries. Sample RVLC084, Sugarloaf. Width of view is 5Smm.

Figure 9. Chemical zoning of a single garnet porphyroblast. A transect of
microprobe analyses were preformed across the garnet profile (Figure 8c).
Microprobe analyses were spaced at 33um at the garnet rim and 250um across the
core. The transect reveals considerable changes in end-member composition towards
the garnet rims. Where: Xg. (Fe/Fe+tCa+tMg+Mn) is almandine; Xc,
(Ca/CatFet+Mg+Mn) is grossular; Xy (Mg/Mg+Fe+Ca+Mn) is pyrope and Xy
(Mn/Mn+Fe+Cat+Mg) is spessartine.

Figure 10. Simplified map of the Leeuwin Complex, that identifies the three
structural domains and shows the location of samples selected for thermobarometry

and their associated P-T' estimates for peak and retrograde metamorphism. P-T

calculations presented in this figure are identified in Table 4. The P-T estimates of




the three structural domains are determined form weighted mean calculations from

these highlighted P-T estimates for reasons mentioned within the text.

Figure 11. Diagrammatic representation of selected P-T estimates that reveal
Gaussian distributions for P-7 estimates from all localities suggests uniform
metamorphic conditions across the Leeuwin Complex. (la & 2a) Probability density
plot for selected peak and retrograde average 7" estimates from all locations. (1b & 2b)
Weighted averages of selected peak and retrograde average T estimates from all
locations. (1¢ & 2c) Probability density plot for selected peak and retrograde average
P estimates from all locations. (1d & 2d) Weighted averages of selected peak and

retrograde average P estimates from all locations.

Figure 12. Simplified map of the Leeuwin Complex, showing the locations of
samples used for geochronology and their corresponding 206ph/238 ages. Ages of
previously published data are also presented at their given locations. (*) Represents
ages that are interpreted to date the granite crystallisation age. Inset (i) Probability
density plot for all monazite data >85% concordant, with the exclusion of the ~248
Ma population from sample RVLC070. (ii) Probability density plot for all zircon data
presented. The dominant populations are interpreted as representing peak

metamorphism.

Figure 13. Diagrammatic representations of LA-ICPMS monazite data from sample
RVLC003. (a) Concordia plot for all monazite analyses from this sample (n=21).
Tnset, 2%°Pb/***U weighted average of the 10 most concordant analyses. (b) Probability
density plot of 206pp/238(J ages that reveals separate populations of monazite. (c)
206ph/238 weighted average of all monazite data, assuming data reflects a single
population of monazite (n=18). All 206ph/ 238 ages are quoted with + 1 sigma and red

error ellipses imply that data have been excluded from weighted mean averages.

Figure 14. Diagrammatic representations of LA-ICPMS monazite data from sample
RVLC020. (a) Concordia plot for all monazite analyses from this sample (n=15).
Inset, Probability density plot of 206p/ 287 ages that reveals separate populations of
monazite. (b) Tera-Wasserburg Concordia pl-ot demonstrates the effect of common

lead on data concordance. (¢) 206p/ 238 weighted average of monazite data, assuming
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206pp/S38  ages are quoted

data reflects a single population of monazite (n=7). All
with £ | sigma and red error ellipses imply that data have been excluded from

weighted mean averages.

Figure 15. Diagrammatic representations of LA-ICPMS monazite data from sample
RVLCO025. (a) Concordia plot for all monazite analyses from this sample (n=20). (b)
Probability density plot of 206pp238y ages that reveals two separate populations of
monazite. (¢) ***Pb/”*U weighted average of all monazite data, assuming data reflects
a single population of monazite (n=19). All ***Pb/**U ages are quoted with + 1 sigma
and red error ellipses imply that data have been excluded from weighted mean

averages.

Figure 16. Diagrammatic representations of LA-ICPMS monazite data from sample
RVLCO046. (a) Concordia plot for all monazite analyses from this sample (n=19).
Inset, Probability density plot of **Pb/*®U ages a relatively Gaussian, normal
distribution of monazite ages that is interpreted to represent a single population. (b)
Tera-Wasserburg concordia plot reveals a concordant population, with common lead
having a negligible effect on data concordance. (c) *Pb/~*U weighted average of
monazite data, assuming data reflects a single population of monazite (n=18). All
296pp/ =8 ages are quoted with + 1 sigma and red error ellipses imply that data have

been excluded from weighted mean averages.

Figure 17. Diagrammatic representations of LA-ICPMS monazite data from sample
RVLCO070. (a) Concordia plot for all monazite analyses from this sample (n=22) with
a discordia line that intercepts at 0 Ma. (b) Probability density plot of 206pp,23815 ages
that reveals two separate populations of monazite. (c) *°Pb/***U weighted average of
all monazite data, assuming data reflects a single population of monazite (n=11). All
20pp/2¥J ages are quoted with + 1 sigma and red error ellipses imply that data have

been excluded from weighted mean averages.

Figure 18. Diagrammatic representations of LA-ICPMS monazite data from sample
RVLCO080. (a) Concordia plot for all monazite analyses from this sample (n=20). (b)
Probability density plot of **Pb/?**U ages that reveals a single Gaussian population of

monazite. (¢) ***Pb/*U weighted average of all monazite data, assuming data reflects
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a single population of monazite (n=18). All ***Pb/***U ages are quoted with = 1 sigma
and red error ellipses imply that data have been excluded from weighted mean

averages.

Figure 19. Diagrammatic representations of SHRIMP zircon rim analyses from
sample RVLCO034. (a) Concordia plot for all zircon data from this sample (n=12).
Inset, Probability density plot of 206p 2381y ages that reveals two unique populations
of zircon growth. (b) Concordia plot and concordia age of Early Cambrian zircon
growth (n=7) (¢) 2*Pb/***U weighted average of all zircon data >90% concordant,
assuming data reflects a single population of zircon growth (n=7). All **Pb/***U ages
are quoted with + 1 sigma and red error ellipses imply that data have been excluded

from concordia age and weighted mean average calculations.

Figure 20. Diagrammatic representations of SHRIMP zircon rim analyses from
sample RVLCO035. (a) Concordia plot for all zircon data from this sample (n=12).
Inset, Probability density plot of 200pp 28y ages that reveals three unique populations
of zircon growth. (b) Concordia plot and concordia age of Early Cambrian zircon
growth (n=7) (c) **Pb/?*U weighted average of all zircon data >90% concordant,
assuming data reflects a single population of zircon growth (n=7). All *°Pb/**®U ages
are quoted with = 1 sigma and red error ellipses imply that data have been excluded

from concordia age and weighted mean average calculations.

Figure 21. Diagrammatic representations of SHRIMP zircon rim analyses from
sample RVLCO041. (a) Concordia plot for all zircon data from this sample (n=9). (b)
Probability density plot of s Y b ages that reveals two unique populations of
zircon growth (c) 206pp,238y weighted average of all zircon data >90% concordant,
assuming data reflects a single population of zircon growth (n=7). All **°Pb/*®U ages
are quoted with = 1 sigma and red error ellipses imply that data have been excluded

from weighted mean average calculations.
Figure 22. Epsilon Nd plot (Nd-Sm data in Table 5). eNd evolved values have been

plotted at the two apparent protolith ages (from Nelson, 1996; 1999; Collins, 2003)
1090 Ma (for Redgate Beach and Cape Freycinet samples) and protolith age of 750
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Ma (for all remaining samples) eNd data from east Antarctica and Natal, Southern

Africa (see text for references).

Figure 23. Structural models based on field observations within the central domain of
the Leeuwin Complex, where structural observation has been used to model the
orientation of strain from deformation structures. (a) Pure shear (coaxial) model,
showing the development of rotational strain, with its resulting linear and planar
fabric elements. (b) Simple shear (non-coaxial) model, showing the development of
rotational strain, with its resulting linear and planar fabric elements. (¢) Strain
configuration of the finite strain ellipsoid in response to both pure and simple shear,

where the orientation strain ellipsoid is identical for both models.
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Table 2. Petrology and mineral assemblages for the samples selected for Electron
Microprobe Analysis and average P-T calculations

Mineral
gample _ Location Sample Lithology Assemblage Petrological Description
granitic gneiss containing Garnet-biotite-spinel- . .
: I . Garnet porphyroblasts (1-5mm) contain plagioclase
k °k kf, se-K-fe - ; : R A
RVLC007 Skippy. rock 3 ?rt;]";rll]d a};ft aéj:ggtnzt Zf::i afd gllfagrlt chabe K-feldspar inclusions and biotite intrusions.
) Foliated Garnet - hornblende ?hzzzf;ig?:r?:iiﬁe_bmtlte_ Plagioclase coronae isolate garnet porphyroblasts
€008 i Bavid bearing gneiss with biotite, o — (1-10mm). Titanite and ilmenite occur within
RVL & Y quartz and plagioclase defining a 'Egase—l(—felds ar- hornblende accumulates which are rimmed by
migmatite layering gua%}r . P biotite
""""""""""""""""" ib’lié{é&'déﬁ']é{'-'}}é?ﬁt'yiéﬁa{a""“G-‘a“rﬁé{-’ﬁaﬁibié{]&éi"""""l;l’"."']'"""_""'.'"]"t"f'Ef"‘""t'"]';""""
09 Sarce Bav 4 bearing gneiss with biotite, clinopyroxene- ?iigl(l).c =8¢ ?010nae llsota er: G BNt _] iy
RVLCO S 4 quartz and plagioclase defining | plagioclase-illmenite-K- an | AnpproRenselass. Lamsicantar o
,,,,,,,,,,,,,,,,,,,,,,,,,,, migmatite layering ___________| feldspar-quartz________ | "™
Cras e Hornblende, biotite, quartz and | Garnet-hornblende-biotite- L]a ree (120-4011]111) gamzthpor;l)jl;yr(()jblz_aszs w.ith
RVLCO18 Y sparse garnet. Taken from plagioclase-epidote- Paglogiascontanac and Mompience HLsIons,
7 remement msficalyles imenite-quartz Imenite occurs within hornblende grains and
q epidote is isolated by plagioclase
Ktssehani Remanent mafic intrusion, Garnet-hornblende-biotite- | Relic garnet porphyroblasts (1-3mm) are consumed
RVLC027 Rock 9 with garnet decompression plagioclase-epidote- by plagioclase and hornblende. lmenite occur
textures ilmenite-quartz within hornblende and biotite accumulates
C R . Garnet porphyroblasts (10-20mm) contain biotite
RVLC045 Willyabrup 14 Mafie contaiiing biotite, Gamet-tiotitsplagioclise and plagioclase intrusions. Elongate biotite grains
hornblende and garnet quartz. :
define laminar flow textures.
Hifite: persbinusBo, with Garnet-hornblende- Decompressed garnet porphyroblasts (5-25mm),
RVLCO5] willsihi 16 | s éoronas of la! S orthopyroxene-biotite- consumed by plagioclase and biotite coronae.
YRR e pagl plagioclase- ilmenite- Garnets contain inclusions of plagioclase and
& quartz ilmenite.
NEaic, T Gammet-homblende- Decompressed gamet porphyroblasts (10-30mm)
RVLC052 Willvabrup 16 domir;ate 4 by pla iocla;e & orthopyroxene-biotite- with well defined plagioclase, biotite and
M p Bickite reactiﬁr?tcimres plagioclase-illmenite- hornblende coronae. Garnets contain ilmenite,
quartz plagioclase and hornblende inclusions
High grade, gneiss contains Elongate gamet porphyroblasts (5-25mm) contain
RVL subhorizontal foliations garnet, | Garnet-biotite-plagioclase- | ilmenite, biotite and plagioclase inclusions. Garnets
08 GracswL1E biotite & plagioclase and K-feldspar-quartz. are isolated by a plagioclase, K-feldspar, quartz
crystalline K-feldspar matrix
Remanent amphibolite layer - Garnet porphyroblasts (10-30mm) with plagioclase
RVLC063 [-lonelygcomb containing garnet, hornblende }?i{:lt:.its-h::nﬂs:ée-blonte- inclusions. Garnets are isolated by hornblende,
i & biotite PaEg plagioclase and biotite coronae.
Small garnet (<1mm) relics are almost completely
q b Remanent amphibolite: garnet | Garnet-hornblende-biotite- | consumed by plagioclase. Gamet porphyroblasts
RVLCo77 onezyzcom reaction textures defined by plagioclase-spinel- (10-25mm) are isolated by plagioclase coronae.
plagioclase ilmenite-quartz Spinel, ilmenite and plagioclase occur as inclusions
within hornblende.
Foliated gneiss bearing garnet- | Garnet-biotite-plagioclase- o i
RVLC080 Canal Rocks Hidtits mglanosomes a%]é; K- K-fel dspar-sph?el-g Garnet porphyroblasts (2-10mm) contain biotite and
24 ) : : magnetite inclusions and plagioclase intrusions.
. feldspar-gamet leucosomes ilmenite-quartz.
sample from large meter scale . . _ | Garnet porphyroblasts (1-8mm) contain plagioclase
RVLCog4 Sugarloat 25 | boulders - bt-gt migmatitic i(l};mrﬁtt—tilomret-zp]agloclase inclusions. Biotite and ilmenite are sparsely
o gneiss arie-qie dispersed throughout
RVLCOQ Bunles Bay G- lioriblande bearing Gam_et-hornblende- Few garnet porphyroblasts (1-5mm) a.re‘ We]]
2 12 el plagioclase-K-feldspar- preserved with well rounded boundaries in contact

magnetite-ilmenite

with plagioclase, K-feldspar, ilmenite and quartz.
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Table 8. Sm-Nd Isotopic Data for Selected Samples from the Leeuwin Complex

Sample  Est. Age (Ma)® Nd (ppm) Sm (ppm) "sSm/'™Nd "Nd/ "“Nd 20° eNd
RVLCO001 750 17.6 4.3 0.1462 0.512255 + .000006 -2.65
RVLCO012 750 69.8 11.1 0.0960 0.512085 + .000006 -1.14
RVLC020 750 72.6 13.9 0.1156 0.512163 + 000006 -1.51
RVLC034 1090 17.7 4.0 0.1350 0.511852 + 000006 -B.75
RVLCO035 1090 12.1 3.5 0.1723 0.511900 + .000006 -11.03
RVLC041 750 54.8 10.0 0.1098 0.512186 + .000006 -0.48
RVLCO070 750 91.6 17.0 0.1119 0.512087 + .000006 -2.63
RVLC080 750 133.4 25.2 0.1144 0.512128 + .000006 -2.07

. * Ages represent crystallisation age, for clarity 750Ma has been applied to all samples except 034 & 035 as this best

represents a homogenous crystallisation age. For samples 034 & 035 the igneous age from Nelson (1999) has been
| applied.” Isotope error measurements are 277, "*Nd/"**NdCHUR(0) = 0.512638, '*"Sm/"““NdCHUR = 0.1967. CHUR =
' chondroitic uniform reservoir. Depleted mantle model as per Goldstein et al. (1984): "*Nd/'"¥Nd = 0.51315,
"“78m/'**Nd = 0.2145.




Figure 1. Reconstruction of Gondwana
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Figure 2 - Petrological, isotopic and geochronological sample locations
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b) Willyabrup

Figure 3.
Regional structural maps of the central Leeuwin Complex T N
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e) Cape Freycinet
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Figure 4. D2 folding of intruded amphibolite and preservation of S1 foliation
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Figure 5.

Field photographs of deformation structures
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Figure 6. ‘Kink’ folding of leucosomes, Honeycombs
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Figure 7. Strain partitioning to amphibolite layers, honeycombs
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Figure 8. Photomicrographs, illustrating key mineral characteristics




Figure 9. Garnet transect, illustrating chemical zoning within the outer
garnet rim (Sample RVLC045).
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Figure 10. Localities for P-T estimations determined from core and rim mineral analyses.
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F igure 11. Metamorphic P-T estimates for the Leeuwin Complex based on
selected P-T calculations identified in Table 4.
1. a) Probability plot for selected peak average b) T°C weighted average for selected
temperatures identified in Table 3. peak average temperatures
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Fi gure 12. Geochronological data from this study and other previously published data
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Figure 13. RVLCO003 - Skippy Rock
a) Concordia diagram of all data points (n =21)
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Figure 14. RVLC020 - Cosy Corner
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Figure 15. RVLC025 - Merchant Rocks
a) Concordia diagram of all data points |
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Figure 16. RVLC046 - Willyabrup Cliffs
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Figure 17. RVLC070 - Honeycombs

a) Concordia diagram of all data points
data-point error ellipses are 68.3% conf.
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Figure 18. RVLCO083 - Honeycombs

a) Concordia diagram of all data points
data-point error ellipses are 68.3% conf.
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Figure 19. RVLC034 - Round Rocks (Cape Freycinet)

a) Concordia diagram of all data points
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Figure 20. RVLCO035 - Redgate Beach
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Figure 21. RVLC041 - Willyabrup Cliffs

a) Concordia diagram of all data points

data-point error ellipses are 68.3% conf
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Figure 22. Epsilon Nd evolution at protolith age (Ma)
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Figure 23. Structural models
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;;pendix 2: THERMOCALC output file for average-P,

Galculations

(HERMOCALC 3.21 running at
17.50 on Thu 23 Oct, 2008 with thermodynamic dataset
produced at

,n independent set of reactions has been calculated

yjctivities and their uncertainties

PY gr alm spss and
2 0.000267 0.0350 0.170 0.000107 0.0096
sd(a)/a 0.78782 0.40751 0.17905 0.81657 0.5578
ilm hem pnt di he
a 0.880 0.00150 0.0370 0.290 0.60
sdl(a) /a 0.10000 6.66667 0.39138 0.15123 0.1000
fact ts parg sph
i 0.00720 8.00e-6 0.000435 1.00 1.0
sdla) /a 0.59008 7.07107 0.95893 0
independent set of reactions
1) cats + g = an
) 3di + 3cats = py + Z2gr
3)  3hed + 3cats = 2gr + alm
{) 12di + 3ts = 2py + 4gr + 3tr
3y 3gr + 2ts + bg = 7an + 6di + 2H20
5) 3cats + 4fact = 3alm + llhed + 4g + 4H20
1) gr + Zalm + 3sph = 3an + 3ilm + 3hed
i) spss + 3cats + 3sph = gr + 3an + 3pnt
j)  3alm + Zandr + 3sph = 3an + 3ilm + 2hem + 6hed
10) 12an + 18di + 3parg = 5py + 1l0gr + 3ab + 3tr
lalculations for the independent set of reactions
at T = 750°C (for a(HZ20) = 5)
P(T) sd (P) a sd(a) b
| 6l 2 2.68 -17.46 0.23 -0.01779 1.35
} 10.7 5474 —=BRL76 0.91 0.08066 -2.61
] 10.6 4.49 -106.07 213 0.10132 -2.97
| 15.6 258.49 -29.81 6.88 0.16244 -5.64
) 3.9 10.85 161.50 4.42 -0.38802 11.15
) 13.0 4.56 40.54 3:38 -0.,13294 -5.54
! 8.6 0.82 35.20 2.32 -0.13012 T B2
] 3.6 3.65 -—62.87 €.22 -0.00127 4.87
J 15.8 12.60 31.14 4,33 -0.14374 9.05
0 8.1 52.54 -10.89 5.40 0.65966 =27.57
verage pressures (for a(H20) = 0.5)

iingle end-member diagnostic information

v, sd, fit are result of doubling the uncertainty on
i In a suspect 1f any are v different from lsg values.
* gre 1ln a residuals normalised to ln a uncertainties
-arge absolute values, say >2.5,
lat are the diagonal elements of the hat matrix

arge values, say >0.50, point to influential data.
or 95% confidence, fit (= sd(fit)) < 1.37;
lowever a larger value may be OK - look at the diagnes
av sd £it
8q 8.40 0.70 0.81
P sd ErE e hat a (obs)
By 8.37 0.71 0.80 -0.3 0.02 0.000267
gr g8.51 0.76 0.80 0.4 0.17 0.0350
alm T+ 97 0.88 0.77 0.5 0.286 0.170
spss 8.45 0.70 0.77 0.6 0.01 0.000107
andr 8.40 0.70 0.81 -0.0 0.00 0.00962
an 8.44 0.76 0.81 201 0.06 0.640
ab 8.40 0.70 0.81 -0.1 0.00 0.520
ilm 8.18 0.80 0.79 0.5 0.18 0.880
hem 8.40 0.70 0.79 0.6 0.00 0.00150
pnt g.47 0.70 0.75 -0.9 0.01 0.0370
di §.48 @ Tl 0.77 ~0-6 0.02 0.290

point to suspect info.

average-T and average P-T

r an ab
2 0.640 0.520
9 0.05031 0.06912
d cats tr
0 0.0260 0.000176
0 0.42308 56.72150
q H20
0 0.500
0
& In K sd(ln K)
5 3.203 0.426
7 -0.270 1.761
2 4.005 1.548
3 -5.733 171.506
6 22.978 14.228
B8 19.749 2.946
8 3.641 0.705
9 5.510 1.961
7 -3.188 13.408
3 -51.699 170.306
ln a
tics!
d (gdle)
0.000203
0.0410
0.154
0.000176
0.00937
0.637
0.517
0.922
0.0597
0.0262
0.264




hed .43 .72 .81 -

8 0 0 0.2 0.03 0.600 0.591
cats  8.50 0.72  0.77 0.8 0.05 0.0260 0.0367
tr 8.40 0.70 0.81 0.0 0.00 0.000176 0.000414
fact 8.26 0.73 0.78 0.7 0.09 0.00720 0.0109
ts 8.40 0.70 0.80 0.4 0.00 8.00e-6 0.000134
parg §.47 0.70 0.70 1.3 0.01 0.000435 0.00147
sph 8.40 0.70 0.81 0 0 1.00 1.00
q 8.40 0.70 0.81 0 0 1.00 1.00
H20 8.40 0.70 0.81 0 0 1.00 1.00
600 625 650 675 700 125 750 775 800 825 850
P 6.8 7.1 7.4 7.7 7.9 8.2 8.4 8.6 8.9 9.1 9.4
0.86 0.78 0.72 0.67 0.67 0.68 0.70 0.72 0.73 0.75 0.77
fit 1.4 1.3 1.1 1.0 0.9 0.9 0.8 0.8 0:..8 0.7 0.7
L L O e S I S S SR L L L S S
R Lt i e S O S T o i
independent set of reactions has been calculated
-ivities and their uncertainties
Py gr alm sSpss andr an ab
0.000267 0.0350 0.170 0.000107 0.00962 0.640 0.520
(a) /a 0.78782 0.40751 0.17905 0.81657 0.55789 0.05031 0.06912
ilm hem pnt di hed cats tr
0.880 0.00150 0.0370 0.290 0.600 0.0260 0.000176
(a)/a 0.10000 6.66667 0.39138 0.15123 0.10000 0.42308 56.72150
fact ts parg sph g
0.00720 8.00e-6 0.000435 1.00 1.00
(a)/a 0.59008 7.07107 0.95883 0 0
iependent set of reactions
cats + g = an
3di + 3cats = py + Z2gr
3hed + 3cats = 2gr + alm
12di + 3ts = 2py + 4gr + 3tr
gr + 2alm + 3sph = 3an + 3ilm + 3hed
spss + 3cats + 3sph = gr + 3an + 3pnt
12an + 18di + 3parg = 5py + 10gr + 3ab + 3tr
5alm + 12an + 18di + 3parg = 10py + 1l0gr + 3ab + 3fact
2andr + 1l2an + 15hed + 3parg = 4py + llgr + 3ab + Zhem + 3fact
lculations for the independent set of reactions
t T = 750°C
P(T) sd (P) a sd(a) b G ln K sd(ln K)
6.2 2.68 -17.46 0.23 -0.01779 1.355 3.203 0.426
16 7 5.74 -52.26 0.91 0.08066 -2.617 -0.270 1.761
10.6 4.49 -106.07 2.13 0.10132 -2.972 4,005 1.548
15.6 258.49 -29.81 6.88 0.16244 -5.643 -5.733 171.506
8.6 0.82 35.20 2.32 -0.13012 7.828 3.641 0.705
3.6 3.65 -62.87 6.22 -0.00127 4.879 5.514 1.961
8.1 52 .54 ~10.89 5.40 0.65966 -27.573 -51.69% 170.306
8.6 3.34 339.94 7. 53 0.48765 -25.407 -72.852 9.935
6.3 4.84 13.06 7.45 0.59798 -26.310 -54.031 14.937

erage pressures

ngle end-member diagnostic information

, sd, fit are result of doubling the uncertainty on ln a :

ln a suspect if any are v different from lsg values.
are 1ln a residuals normalised to 1n a uncertainties
rge absolute values, say »2.5, point to suspect info.
t are the diagonal elements of the hat matrix
rge values, say >0.47, point to influential data.
r 95% confidence, fit (= sd(fit)) < 1.39;
wever a larger value may be OK - look at the diagnostics!




av sd Eit
154 8.21 0.73 0.66
J P sd fit ex hat a(obs) a(calc)
‘ py 8.19 0.74 0.66 -0.2 0.02 0.000267 0.000225
gr 8.31 0.79 0.65 0.3 0.17 0.0350 0.0402
alm 7.89 0.90 0.63 -0.4 0.23 0.170 0.158
spss 8.26 Q.73 0.60 0.6 0.01 0.000107 0.000175
andr 8.21 0.73 0.66 -0.0 0.00 0.00962 0.00937
an 8.24 0.79 0.66 -0.1 0.06 0.640 0.638
ab 8.21 0= 73 0.66 -0.0 0.00 0.520 0.519
ilm 7.85 0.85 0.60 0.6 0.21 0.880 0.939
hem 8.20 0.73 0.64 0.6 0.00 0.00150 0.0606
pnt 8.28 0.73 0.58 =09 0.01 0.0370 0.0264
di 8.24 0.75 0.66 -0.2 0.03 0.290 0.282
hed g.11 @' T 0.65 0.3 0.07 0.600 DBl 7
cats 831 0. 75 0.62 0.7 0.06 0.0260 0.0356
BE 8.21 0.73 0.66 0.0 0.00 0.000176 0.000209
fact 8.25 0.74 0.65 -0.3 0.01 0.00720 0.00602
| ts B 2.1 0.73 0.66 0.3 0.00 8.00e-6 5.55e-5
‘ parg 8.27 0.74 0.64 0.5 0.03 0.000435 0.000672
sph .20 0.73 0.66 0 0 1.00 1.00
g 8.21 .73 0.66 0 0 1.00 1.00
r°c 600 625 650 675 700 725 750 775 800
av P 6.6 6.9 T.2 7.4 7.7 7.9 8.2 8.5 Bl ¥
sd 0.3 0.65 0.67 0.68 0.70 0.71 0.73 0.75 0.76 O
sigfit 0.9 0.9 0.8 0.7 0.7 0.7 0.7 0.7 0.7
P o o o o e e R I e i R
an independent set of reactions has been calculated
ictivities and their uncertainties
Py gr alm spss andr an
El 0.000267 0.0350 0.170 0.000107 0.00962 0.640
sd (a) /a 0.78782 0.40751 0.17905 0.81657 0.55789 0.05031
ilm hem pnt L hed cats
3 0.880 0.00150 0.0370 0.290 0.600 0.0260
sd(a) /a 0.10000 6.66667 0.39138 0.15123 0.10000 0.42308
fact ts parg sph o H20
3 0.00720 8.00e-6 0.000435 1.00 1.00 0.500
sd (a) /a 0.59008 7.07107 0.95893 0 0
Independent set of reactions
L) 3di + 3cats = py + 2gr
!)  3hed + 3cats = 2gr + alm
})  12di + 3ts = 2py + 4gr + 3tr
1) gr + 2tr = py + 7di + 2g + 2H20
3)  2gr + alm + 3g = 3an + 3hed
5)  gr + 2alm + 3sph = 3an + 3ilm + 3hed
1)  27cats + 6fact = 1llgr + 1l0alm + 6an + 6HZ20
})  andr + tr = hem + 5di + g + H20
J)  épnt + 2lcats + 6fact = 9gr + 10alm + 2spss + 6sph + 6H20
10) 12an + 18di + 3parg = 5py + 10gr + 3ab + 3tr
lalculations for the independent set of reactions
at P = 7.5 kbar (for a(H20) = 0.5)
T(P) sd (T) a sd(a) b c In K
! 643 156 -49.68 0.91 0.07760 -2.591 -0.270
2 680 110 -103.30 2.13  0.09800 -2.940 4.005
3 336 7455 -26.31 6.88 0.15743 -5.518 =5 133
1 875 4188 184.43 0.90 -0.18538 -0.800 3.746
) 712 42 53.93 2.11 -0.15560 7185 5.605
; 667 41 34.28 2.32 -0.12942 7.858 3.641
i 620 405 -598.71 11.46 0.21954 -16.477 70.869
} 467 4738 57.41 0.75 -0.08249 0.013 0.596
) 656 346 -468.33 N 0.21851 =26.382 59.849
L0 674 1763 -10.84 5.40 0.66100 =-27.748 -51.699
\werage temperatures (for a(H20) = 0.5)

ab
0.520
0.06912

tr
0.000176
56.72150

sd(ln_K)
1.761
1548
171.506
113.451
0.899
0.705
12.900
51129
785
306

1.8
170.




-

ngle end-member diagnostic information

!

sd, fit are.result of doubling the uncertainty on 1ln a
in a suspect }f any are v different from lsqg values.
are ln a residuals normalised to 1ln a uncertainties

rge absolutg values, say >2.5, point to suspect info.
t are the diagonal elements of the hat matrix

point to influential data.

rge values,

say >0.50,

r 95% confidence, fit (= sd(fit)) < 1.37;
wever a larger value may be OK - look at the diagnostics!
fit
q 1.03
T sd it ex hat a (obs) alcalc)
Py 709 48 1.00 -0.8 0.05 0.000267 0.000147
gr 711 56 1,03 0.2 0.:30 0.0350 0.0383
alm 753 48 0.91 -1.1 0.14 0.170 0.140
spss 716 47 1.00 0.6 0.00 0.000107 0.000174
andr TLd 48 1.03 -0.1 0.00 0.00962 0.00933
an 720 50 1.03 0.1 0.03 0.640 0.645
ab 717 48 103 -0.1 0.00 0.520 0.516
ilm 735 47 0.96 L@ Bal 0.880 0.972
hem 718 48 1.02 0.6 0.00 0.00150 0.112
pnt 715 46 0.98 -0.9 0.00 0.0370 0.0264
di 714 48 1.01 -0.5 0.01 0.290 0.267
hed ok 53 1.03 -0.1 0.10 0.600 0.591
cats 720 48 1.02 0.5 0.03 0.0260 0.0324
tr T 48 1.0% 0.0 0.00 0.000176 0.000605
fact 720 45 0.96 1.2 0.00 0.00720 0.0144
Es 716 48 1072 0.4 0.00 8.00e-6 0.0001889
parg 691 45 0..90 1.5 0.13 0.000435 0.00184
sph 717 48 1.03 0 0 1.00 1.00
a 717 48 103 0 0 1.00 1.00
HZ20 bl B 48 1.03 0 0 1.00 1.00
5.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
T 581 662 689 717 746 773 801 830 859
80 53 48 47 a7 47 47 48
gfit L. 1.3 1.1 1.0 1.0 0.9 0.9 0.9 1.0

L R I e e e L L e L T e e

, sd, fit are result of doubling the uncertainty on ln a
ln a suspect if any are v different from lsg values.

are ln a residuals normalised to ln a uncertainties

rge absolute values, say >2.5, point to suspect info.

t are the diagonal elements of the hat matrix

rge values, say >0.47, point to influential data.

r 95% confidence, fit (= sd(fit)) < 1.39;
wever a larger value may be OK - look at the diagnostics!
av. sd fit
q 699 48 0.80
T sd sl ex hat a (obs) alcalc)
o3 692 49 0.76 -0.7 0.05 0.000267 0.000159
gr 682 56 0.77 0.5 0.32 0.0350 0.0434
alm 121 56 G735 -0.5 0.17 0.170 0.154
spss 698 48 0.75 0.6 0.00 0.000107 0.000176
andr 699 43 0.80 -0.1 0.00 0.00962 0.00936
an 699 50 0.80 0.0 .03 0.640 0.640
ab 699 48 0.80 -0.0 0.00 0.520 0.518
ilm 716 50 0.69 1.0 0.07 0.880 0.969
hem 699 48 0.78 0.6 0.00 0.00150 0.0807
pnt 698 48 0.72 -0.9 0.00 0.0370 0.0263
di 699 43 0.80 -0.1 0.00 0.290 0.287
hed 707 51 0.78 0.3 0.08 0.600 0.619
cats 702 48 0.79 0.4 0.03 0.0260 0. 0313
Ex 699 48 0.80 0.0 0.00 0.000176 0.000282
fact 692 49 QT -0.4 0.03 0.00720 0.00557
ts 699 48 0.79 0.3 0.00 8.00e-6 7.43e-5
parg 688 50 0.5 0.7 0.08 0.000435 0.000823




r’ sph 699 48 0.80 0 0
| q 699 48 0.80 0 0

=
o o
'Sl
e
&
o o

5.0 5.5 6.0 6«5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

g T 544 575 606 637 668 699 730 760 791 823 855
: . 62 56 50 48 48 48 48 48 48 48 50
sgflt 1.3 1.2 1.0 0.9 0.9 0.8 0.8 0.8 On 9 Q.9 1.1

3************************************




Appendix 3(i) Backscatter images of selected monazite grains. All ages are quoted as
20671, 238 : -
Pb/”"U ages with 10 error. Spot size is 15um

a) RVLCO003 - Skippy Rock

"Spot 519+ 3 Ma

Spot 17, 528 + 4 Ma
.0 epot 15,537 + 4 Ma

Spot 14, 537 + 4 Ma

Spot 11, 540 + a gSpot 10, 527 + 4 Ma

.

Det WD | |

BSE 36.4 MONAZITE IMAGES
s

¢) RVLC025 7_Round Roc_ks
Spot 09, 53 '

500 pm

1 -
w Sp&, 533+ 3 Ma
Spot 13, 5ii ; AR

Spot lwgi?a E
QM&:S, 515+ 3 Ma
.b Spot 17,
an

33+ 3 Ma
Spot 18, 526 = 3 Magg_ g,
% =T

Det WD |— 4
BSE 347 MONAZITE IMAGES

500 m

g) RVLC070 - Honeycombs

Spot 22,
Spot 21, c t :
496 + 3 Ma

528 + 3 Ma
Spot 20, ; i
521 £35 Spot 19, 532 £ 3 Ma

Spot 18, ‘

525+ 3 Ma

Spot 16, .
523+ 3 Ma '~

-
AccV SpotMagn Det WD |——ouo———{ 500 um
200kv 5.0 105x BSE 16.7 MONAZITE IMAGES

b) RVLCO020 - Cosy Corner

Spot 5, 503 + 3 ?
Spot 4, 492 + 4 Ma p
Spot 3, 499 + 3 Ma

Spot 2,

500 + 3 Ma a

Spot 1, 498 + 4 Ma m

AceM  Spot Magn Det WD f—————f 200 g
200 kV 5.0 149x BSE 163 MONAZITE IMAGES

d) RVLC046 - Willyabrup Cliffs

‘8“6 +7Ma

Spot 12,

518 £ 7 4 I!p°t13°

490 + 7 Ma
Spot 10, &
538+ 7 Spot 11,514+ 7 Ma

n Det WD | 4 500 pm
BSE 354 MONAZITE IMAGES

f) RVLCO083 - Honeycombs
Spot 12,

: .ﬂszs +7 Ma
Spot 11, 508 + 6 M@J'pot 10, 527 + 7 Ma

Spot 9, 503 = 6 Ma ) )

Y spot 8,514+ 6 Ma

‘)ﬁ Spot 7, 523 + 7 Ma

Accd SpatMagn Det WD p————— 500 um
200kv 50 123x  BSE34.7 MONAZIE IMAGES




Appendix2gé(ii).Z%athodolummescence images of selected zircon grains. All ages are
quoted as “"Pb/~"U ages with 10J error. Spot size is 30pm

a) RVLC034 — Merchant Rocks b) RVLCO035 - Redgate Beach

Spot 1.1, 518 &+ 7 Ma

! ',\__- " e 7 .l i :
! Spot 4. i &7 ) ks- ot 2.1
526+ 7 Ma 4 . " Spot2.1,

K.-

N

3 ol - 1019 = 14 Ma

Spot 3.1,

528 + 7 Ma
E———— L1

4

Spet 7.1
Soot 6.1 545 + 7 Ma 516 +7 Ma

Magn |——oo 500 um
50x






