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Abstract

The exponential rate of hardware miniaturisation, the emergence of low cost and low power
sensing modalities coupled with rapid developments in communication technologies are driving
the world towards a future where tiny scale computing will be more pervasive and seamlessly
integrated with everyday life. This sea of change is driven by the increasing ability of tiny
computing platforms to connect people and things to the Internet—the Internet-of-Things
(IoT)—enabling transformative applications ranging from connected healthcare to smart cities.
More recently, we have seen the emergence of such tiny scale computing platforms in the form
of highly resource-constrained and intermittently powered batteryless devices that rely only on
harvested RF (radio frequency) energy for operations, best exemplified by Computational Radio
Frequency Identification (CRFID) devices. Despite the simplicity of deployment, reduction
in cost and perpetual operational life offered by such devices, provision of security services,
offered to typical computing platforms, is significantly more challenging for CRFID devices due
to: intermittent powering, unavailability of hardware security support, constrained air interface
protocols, lack of secure storage space, limited computational capabilities, and the absence of a
supervisory operating system. This dissertation focuses on addressing the challenging problems
associated with the provision of security services to resource-limited and intermittently powered
devices exemplified by CRFID technologies.
Given the need to update the firmware of such devices, the thesis investigates how a secure and
wireless code update mechanism that is compliant with current communication protocols can
be realised under resource constraints and intermittent powering without additional hardware
components. The thesis presents a rigorous design, development and implementation of
the first secure wireless firmware update scheme for CRFID devices based on entangling a
volatile and hardware instance specific secret key from the on-chip SRAM to the firmware
update mechanism. The method, called SecuCode, only allows an authorised party to perform
a wireless firmware update and does not require any hardware modifications whilst being
standards-compliant. The update methods are further developed for simultaneous and secure
wireless firmware update ofmultiple CRFID devices to prevent security threats such asmalicious
code injection, IP theft, and incomplete code installation whilst complying with standard
hardware and protocols. The proposed method, called Wisecr, facilitate a secure and scalable
method of code update for battery-free passively powered CRFID devices.
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Abstract

Given the lack of secure storage and the prohibitive cost of providing such storage under
cost, power and resource constraints, the thesis investigates exploiting ubiquitously available
memory fingerprints for security functions on resource-limited devices. Device memory
fingerprints generated at different time instances are susceptible to unpredictable noise. The
state-of-the-art reverse fuzzy extractor (RFE)-based method has been demonstrated to derive
usable keys from the inherently unreliable device fingerprints for security functions. However,
the computationally-intensive nature of the on-device RFE encoder renders it challenging to
employ RFE-based methods on resource-constrained devices. The thesis first proposes a
multiple referenced responses (MRR) strategy for device fingerprint enrolment. The proposed
approach significantly reduces the on-device implementation overheads for the RFE encoder.
The thesis then investigates the transformation of raw memory fingerprints into a noise-tolerant
space where the generated device fingerprints are intrinsically highly reliable. The proposed
method, NoisFre, fundamentally removes the need for an RFE encoder from reliable device
fingerprint key derivation methods. The thesis investigates and proposes NoisFre-Lite to
further improve the extraction efficiency of the noise-tolerant fingerprints to enable mounting
NoisFre on devices with limited memory sizes. To this end, a highly reliable yet lightweight
key generation from ubiquitously available memory fingerprints is achieved for devices with
computation and resource limitations to realise the practical use of memory fingerprints for
security functions.
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Chapter 1

Introduction

T
His chapter introduces an emerging and unique class of Internet of Things
devices—battery-free, energy-harvesting platforms with computational
and sensory capabilities. This thesis focuses on developing and providing

security services for such devices. In this context, this thesis investigates two
challenging problems: i) how to securely and wirelessly update firmware for
resource-constrained devices deployed in insecure environments and ii) how to
exploit ubiquitously available memory fingerprints to provide security functions for
these low-cost and resource-limited devices. This chapter summarises the ways that
the thesis contributes to addressing these two challenging problems before outlining
the whole work to conclude the chapter.
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1.1 Introduction

‘All we have to decide is what to do with
the time that is given to us.’
The Lord of the Rings: The Fellowship of

the Ring
JRR Tolkien

1.1 Introduction

The term ‘Internet of Things’ (IoT) refers to technologies that connect physical ‘things’, such
as buildings, vehicles, sensors, actuators and computational nodes, via the Internet to enable
person-to-thing and thing-to-thing interactions [4]. Over the last decade, the number of IoT
technologies has increased, and the technology has expanded its reach into every corner of our
lives by enabling a multitude of applications. Smart card payments and ticketing systems deliver
convenience to modern life; networked smoke alarms call for firefighters to save lives; industrial
Internet of Things technologies safeguard the operation of machines and processes; injectable
blood-alcohol sensors help deter drink-driving to prevent motor vehicle accidents and reduce
road fatalities [5].
According to a 2020 International Data Corporation intelligence report, the number of
Internet-connected entities, or ‘Things’, will reach 55.7 billion by 2025, with the amount of data
generated by these Things expected to reach 73.1 zettabytes [6]. The most promising markets
are consumer electronics, transportation, health care, manufacturing and the retail, logistics,
agriculture and animal husbandry sectors are also poised for further growth [7]. By 2030, IoT
will connect up an estimated 195.7 billion Things globally [8], more than 23 devices per capita.
The maturing of energy-harvesting technology and ultra-low-power computing systems has led
to the realisation of battery-less devices, a new class of extremely resource-limited computing
platforms that has extended the reach of the IoT. These devices operate entirely on energy
extracted from the ambient environment [12]. Recent developments of Computational Radio
Frequency Identification (CRFID) devices—such as the Wireless Sensing and Identification
Platform (WISP) [13], Moo [14] and Farsens Pyros [15]—are examples of resource-limited,
intermittently powered and battery-less devices that operate on harvested radio frequency (RF)
energy. Such battery-less devices offer several benefits. First, they remove the need for risky
maintenance in scenarios that are challenging for traditional battery-powered sensors, as in the
case of pacemaker control and implanted blood glucose monitoring [16] and in applications
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Figure 1.1: Computational Radio Frequency Identification (CRFID) devices, including: (a) the Wireless Sensing
and Identification Platform (WISP) 5.1 LRG [9]; (b) a wearable CRFID device with a flexible textile planar
inverted-F antenna [10], [11] and (c) the architecture of a typical CRFID device operating on harvested radio
frequency (RF) energy.

involving expensive maintenance of batteries, or in which batteries are undesirable, such as
wearable devices in healthcare applications [10], [17]–[21]. Second, they reduce the cost of
devices. Third, they offer potentially indefinite operational life, attractive for monitoring and
maintenance activities in the aviation sector [22]–[25]. The battery-less, low-cost simplicity and
perpetual, maintenance-free operational life of these small-scale computing platforms represent
a compelling proposition for their use as devices in the IoT and cyber-physical systems.
Figure 1.1(a) illustrates a CRFID device exemplified by the popular WISP, first developed by
Intel Research, Seattle, United States (US) [26]; (b) shows a CRFID wearable developed for
on-body movement monitoring applications [10], [11], [27]. Despite the various CRFID device
embodiments, the typical architecture of a device is depicted in (c). The RF antenna is excited
by incident electromagnetic waves, starting from the left-hand side, and excites charges into the
impedancematching network. The impedancematching techniquemaximises energy-harvesting
efficiency at the operating frequency bands. The rectifier ensures that charges flow in only one
direction, producing a direct current (DC). The device can employ an optional charge pump
to collect charges, and the generated charges are buffered into an energy-storage component
or reservoir—normally a capacitor. The buffered electricity is regulated to the desired voltage
before being delivered to the load, such as the microcontroller unit (MCU) of a CRFID device.
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The MCU can perform computing tasks including functions that use peripheral sensors and
actuators to support applications.

Software
40%

RFID Tags
23%

Sensors
21%

Wearables
13%

Beacons
3%

Hardware
60%

Figure 1.2: Internet of Things market revenue percentage in the US in 2020. The plot was recreated based on the
data provided by Grand View Research [28].

Interestingly, according to a 2021 Grand View Research report (summarised in Figure 1.2),
traditional RFID technologies, battery-less and operating on harvested RF energy capable of
automatic and unique identification, are currently the largest revenue source in the world’s
biggest IoT market, the United States (US) [28]. More concretely, in the US in 2020, IoT
hardware sales produced 60% of overall revenue [28]. Further delineating hardware into RFID
tags, sensors, wearables and beacons, RFID tags and sensors represent 23% and 21% of the
total revenue. Thus, it can be expected that merging sensing and computation capabilities using
Computational RFID devices will conquer a significant portion of the hardware and software
IoT market.

1.2 Challenges and Opportunities

‘A wise man always seizes the
opportunity to turn it into a better future.’

Armored Warfare
JFC Fuller

Despite the significant potential of low-cost, battery-less devices—and the many attractive
properties of these devices—it is critical to avoid deploying systems built on such technologies
without considering security. Accordingly, this dissertation concentrates on a broad class of
problems related to the provision of security services for the kinds of resource-limited and
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intermittently powered devices exemplified by CRFID. This section outlines the challenges and
opportunities associated with provision of security services to such devices.

1.2.1 Challenges

Working with low-cost and resource-limited devices is non-trivial, and providing security
services presents challenges. This section elaborates on those challenges with reference to
CRFID devices, as illustrated in Figure 1.1.
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Figure 1.3: An example of sudden state loss when the reservoir capacitor voltage falls below 1.8 V on a CRFID
device due to a brownout event. The energy stored in the reservoir capacitor enables the device to complete its
operation. A backscatter event indicates a communication event originating with the device where incident radio
waves are reflected back with modulated data encoding.

Limited and Indeterminate Powering.

Energy-harvesting systems operate intermittently and only when energy is available from the
environment. During operation, a device gradually buffers energy into a storage element (such
as a reservoir capacitor, as shown in Figure 1.1). Once sufficient energy has been accumulated,
the device begins operation. However, energy depletes more rapidly (i.e., in milliseconds)
during operation than during accumulation and charging (i.e., in seconds). Furthermore, energy
accumulation during RF energy harvesting is sacrificed by backscatter communication links,
with a portion of the incident energy reflected back during communications. Therefore, power
failures are common and occur at a millisecond timescale [22], [29], [30], as experimentally
validated in Figure 1.3.
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Figure 1.4: Distribution of available clock cycles (top panel) and corresponding time (bottom panel) before
brownout—exhaustion of available energy under computational load—for the open hardware and open software
CRFID WISP 5.1 LRG [9] built with an MSP430 microcontroller. A message authentication code was executed as
the computational load, and the device location was increased from 40 to 60 cm above a powering source (an RFID
reader antenna). We observed that limited available MCU clock cycles and operational time periods before state
loss for each charging–brownout cycle.

The timing of power-loss events across devices is ad-hoc, as illustrated in Figure 1.4. For
example, because harvested energy varies between different distances, a computation task may
be only partially executed before power failure, and it is difficult to predict when this will
occur. Furthermore, saving and subsequently retrieving states at code execution checkpoints
for a long-running application in an intermittent execution mode [31] is not only costly in terms
of computations and energy [32] (saving a state in non-volatile memory [NVM], such as flash or
electrically erasable programmable read-only memory [EEPROM], consumes more energy than
static random-access memory [SRAM], and reading a state from ferroelectric random-access
memory [FRAM] consumes more energy than writing it, as demonstrated in Figure 4.2) but
also leaves devices vulnerable to attacks [33] when the checkpoint state is stored on an off-chip
memory (due to the lack of internal MCU memory), where non-invasive contact probes can
be used to readout values when the memory bus is easily accessible [34], [35]. For example,
common memory readout ports, such as the I2C (Inter-Integrated Circuit) bus used by a
microcontroller to connect to external devices, are often exposed on the top layer of a printed
circuit board (PCB); or debug interfaces are often left open after product rollout to facilitate
the extraction of secret keys from non-volatile memory. Appendix. B uses two case studies to
demonstrate how such attacks can be easily committed by a person with inexpensive equipment
and limited knowledge. These issues make the execution of long-running security algorithms,
such as the Elliptic Curve Diffie-Hellman (ECDH) key exchange, difficult to deploy securely1.

1We are aware of optimised public key exchange implementations, such as ECDH and Ring-LWE [36], [37];
however, these implementations are impractical for passively powered, resource-constrained devices. For example,
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Consequently, power must be managed carefully to avoid power loss and ensure the device is not
left in a potentially vulnerable state. Furthermore, computationally efficient security schemes
must be sought.

Unavailability of Hardware Security Support.

Because highly resource-constrained devices lack hardware security support, many security
features are unavailable, including a trusted execution environment (e.g., Advanced RISC
Machines [ARM] TrustZone [39] and memory dedicated to explicitly maintaining the secrecy
of long-term secret keys, as in [40]).

Constrained Air Interface Protocols.

In the context of CRFID devices that communicate over the ultra-high frequency (UHF)
industrial, scientific and medical band, the widely used wireless protocol for long-range RFID
communications only provides insecure unicast communication links [41]. For example,
the ISO-18000-6C protocol supports maximum data rates of 640 kbps for RFID tag to
reader and 128 kbps for reader to RFID tag, given equiprobable ones and zeros in the data
stream. Importantly, the air interface does not support broadcast features or device-to-device
communication in mesh networking, which is typical of wireless sensor networks [22].

Unavailability of Supervisory Control from an Operating System.

Unlike wireless sensor network nodes, severely resource-limited systems, such as CRFID
devices, do not operate under the supervisory control of an operating system to provide support
for secure executions or security services. Firmware for such devices has been described as
monolithic.

Lack of Secure Storage Space.

Security mechanisms rely on the secure storage of keys. Traditional key-storage methods in
NVM are vulnerable to various invasive and non-invasive attacks. Non-invasive attacks on
the readout of keys from exposed ports between off-chip Flash memory or EEPROM memory
units and MCUs have been demonstrated in both [34] and this thesis’s study, Appendix B. It is
ECDH [36] with Curve25519 requires 4.88 million clock cycles on a MSP430 MCU. In contrast, an extremely
limited number of clock cycles are available from harvested energy before energy depletion [29], [38] (e.g., 400,000
clock cycles are expected even at a proximity of 50 cm from an energy source; see Figure 1.4). There is limited time
available for computations in which a CRFID must reply before the breach of strict air interface protocol time-outs.
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difficult to protect keys from invasive attacks without using costly methods, such as protective
coatings [42] and active tamper-sensing circuitry requiring batteries. Low-end devices usually
lack a secure NVM to maintain key security. Therefore, providing a secure key-storage method
without an additional implementation overhead, hardware modifications or additional costs to
the device represents a challenge.

1.2.2 Opportunity 1: Secure Wireless Firmware Update

A shocking 2016 Cable News Network report broadcasted a market-research company’s claim
that products made by implantable cardiac devices manufacturer St. Jude Medical were
hackable [43]. Implantable cardiac devices, such as pacemakers and defibrillators, are important
life-saving medical devices that help heart disease patients live a normal life. These devices are
connected to the Internet via a base station installed in the user’s home. Physicians can remotely
monitor patient health and make adjustments to the therapeutic device accordingly. Although
St. Jude Medical denied the allegations that its products were hackable, a report issued by the
US Food and Drug Administration (FDA) confirmed the claim, holding that the vulnerabilities
could allow a hacker to wirelessly log in to devices, allowing them to conduct malicious attacks,
such as depleting the device’s batteries or introducing incorrect pacing or shocks. Fortunately,
no patient fitted with a St. JudeMedical device was harmed, with a software patch soon installed
via a remote system update to resolve the vulnerabilities. The FDA subsequently advised that
patients could continue using the devices.
Despite the wide range of possibilities and various manifestations of the resource-limited-device
concept, including the St. Jude Medical pacemakers and examples of CRFID iterations,
existing realisations feature a relatively similar basic architecture: MCUs, transceivers, sensors,
batteries, power harvesters and/or actuators are combined with important components of the
application-specific software or, more simply, the ‘code’ that enables the Things to communicate
with other parties and fulfil interactive tasks [44]–[46]. Consequently, as exemplified by
the St. Jude Medical story, updating and patching firmware is necessary and inevitable.
Without standard protocols or system-level support, firmware is typically updated using a
wired programming interface [9], [14]. In practical applications, wired interfaces are often
inaccessible without significant effort, as in the case of the pacemaker, presenting a potential
attack vector for tampering with the device behaviour [47]. Furthermore, compromised devices
can be hijacked to attack other networked entities [48]. Disabling a wired interface after the
initial programming phase, when the device is still at the manufacturer, can prevent further
access. However, doing so makes the wireless update option the only approach to altering
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the firmware or repurposing the device post-manufacture. Therefore, this thesis considers the
development of mechanisms for securely and wirelessly updating code for CRFID devices
that can address the challenges faced by resource-limited and intermittently powered devices
discussed in Section 1.2.1 while complying with current communication protocols, ultimately
enabling their practical implementation.

1.2.3 Opportunity 2: Security Functions from Device Memory

Fingerprints

Fingerprinting pervasively available embedded memory (including SRAM [49]–[51], dynamic
random-access memory (DRAM) [52], Flash memory [53], [54] and EEPROM) in commercial
off-the-shelf (COTS) devices is highly desirable for providing security functions, particularly
in the absence of cryptographic modules for key security. This is because: i) memory cells
are intrinsic to computing platforms and available in large volumes to obtain many independent
fingerprints or secret keys; ii) memory biometrics are a physical source of true randomness;
iii) using memory biometrics remove the need for a protected NVM for secret keys (root keys can
be generated on-demand and ‘forgotten’ after usage); and iv) implementing memory biometrics
imparts no extra hardware cost to existing COTS devices.

PUFChallenge Response

Manufacturing randomness

(input) (output)

Figure 1.5: The generalised physical unclonable function (PUF) concept. A PUF takes a challenge (input) and
uniquely maps it to a response (output), depending on the manufacturing randomness of the hardware in which the
PUF resides.

Hardware fingerprinting is closely related to the notion of a physical unclonable function
(PUF) [55]–[57]. As Figure 1.5 shows, a PUF reacts with an instance-specific response
(output) by exploitingmanufacturing randomness when queried by a challenge (input) [58], [59].
Commodity memory fingerprinting techniques are not new, including SRAM PUF [60]–[62],
Flash PUF [53] and the so-called memory PUFs [63]–[65]. However, despite the many
attractive features of using intrinsicmemory to incorporate security functions built uponmemory
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fingerprints into low-end resource-constrained devices, in practice, deriving usable keys for
security functions remains a challenge [38], [62], [66].
A fingerprint (or PUF response) generated from a given device should always be exact for
security functions. However, fingerprints generated at different time instances are susceptible
to unpredictable noise, including thermal noise, supply-voltage fluctuations and device ageing.
Consequently, fingerprints differ in various ways [64], [67]–[69]. For example, the positions
of flipped raw bits vary, and the exact number of flipped raw bits varies over time. Thus, it
is a challenge to reliably determine raw bits, and existing memory fingerprinting schemes may
not naturally tolerate noise in the raw noisy fingerprint space. Hence, it is typically infeasible
to directly employ on-demand device-generated fingerprints (or PUF responses) for security
functions.
Until now, using approximate and noisy renditions of biometric fingerprint templates in security
functions has been demonstrated using fuzzy extractors [70], [71], a method that relies on
post-error correction using generated helper data from a reference fingerprint to reconcile bits
errors2. However, employing a fuzzy extractor on-device engenders two fundamental problems.
First, the fuzzy extractor logic responsible for mitigating errors introduces high on-device
computational overhead [72]. Second, the associated helper data, assumed to be publicly
known, can be actively manipulated in helper data manipulation (HDM) attacks to weaken or
compromise the security of the derived fingerprint or secret key [73], [74]. Creating a generic
countermeasure to HDM attacks remains an ongoing challenge [74].
Therefore, this thesis investigates the significant leap from the desire to repurpose ubiquitously
available memory on devices for security functions and the practicability of exploiting memory
fingerprints for security, especially given this approach removes the need for a protected NVM
for secret keys.

2This concept is elaborated upon in Section 2.3.3 in Chapter 2.
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1.3 Research Questions

‘If you are not moving closer to what you
want, you probably aren’t doing enough
asking.’

Chicken Soup for the Soul
Jack Canfield

Capitalising on the opportunities discussed, this thesis considers the following two research
questions:

RQ 1. How can we realise a secure and wireless code update mechanism that is compliant with
current communication protocols under resource constraints and intermittent powering
without additional hardware components?

RQ 2. How can we address the problems associated with exploiting ubiquitously available
memory fingerprints for security functions on resource constrained devices?

1.4 Summary of Original Contributions

‘Once you make a decision, the universe
conspires to make it happen.’

Ralph W. Emerson

In addressing the proposed research questions, this dissertation makes several original
contributions to the broader field of computer security and the specific area of developing
security functions for resource-limited computing platforms and memory fingerprinting:

1. To address the challenges posed and meet the demands of a secure wireless firmware
update method for resource-constrained and intermittently powered CRFID devices, we
present SecuCode. It is evident that building hardware security primitives with on-device
memory fingerprints or memory-based PUFs is a compelling proposition given the
ubiquity of memory in electronic devices, especially for the types of low-end devices for
which cryptographicmodules are often unavailable. Hence, we first address the challenges
associated with using on-chip SRAM fingerprints to realise lightweight, reliable, secure
key generation for a resource-constrained device. Second, we demonstrate an end-to-end
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design that extends from firmware compilation to a successful firmware update process
supported by an intermittent execution model for task scheduling on a CRFID device,
managing the transient nature of power availability. Third, we develop a tool (the
SecuCode App) to update firmware and conduct the complete end-to-end implementation
and evaluation on resource-constrained and intermittently powered CRFID devices.
SecuCode is fully compatible with the existing communication protocols employed by
CRFID devices, particularly the ISO-18000-6C protocol, and it is built on a standard
and industry-compliant firmware compilation and update method realised by extending
a recent Texas Instruments framework for firmware updates. SecuCode is the first secure
firmware dissemination scheme for a battery-less CRFID devices. This work addresses
RQ 1 and RQ 2 and was published in the journal IEEE Transactions on Dependable and
Secure Computing (TDSC) under the title ‘SecuCode: Intrinsic PUF Entangled Secure
Wireless Code Dissemination for Computational RFID Devices’ [38]. A demonstration
video of the end-to-end implementation in an example application scenario can be viewed
here:
https://www.youtube.com/watch?v=nWcwGLsjJK0

scan to watch

2. We introduce Wisecr as a means of solving the limited efficiency associated with the
one-to-one firmware update scheme and the lack of intellectual property (IP) protection
provided by SecuCode’s wireless channel. Wisecr performs three security functions
for secure and fast updates, preventing malicious code injection attacks, preventing IP
theft and attesting to code installation. Wisecr achieves rapid updates by supporting
simultaneous updates to multiple CRFID devices via the secure broadcasting of firmware
over a standard non-secure unicast air interface protocol. Wisecr represents the first
secure, simultaneous (fast) firmware dissemination scheme for multiple battery-less
CRFID devices. In the first step in the development process, we build an efficient
broadcast session key exchange method. Second, to avoid power loss, and therefore,
achieve uninterrupted execution of a firmware update session, we propose the power-aware
execution model (PAM). The task scheduling method embodied by PAM provides
adaptive control of the execution model on devices using RF powering channel state
information collected and reported by field-deployed devices while also reducing
disruptions to broadcast data synchronisation across multiple devices via the introduction
of the concept of a pilot tag selection from participating devices in the update scheme
to drive the protocol. These methods negate the need for costly, secure checkpointing
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methods and avoid scenarios in which a device is left in a vulnerable state during power
loss. Third, we extensively evaluate Wisecr by comparing it with current non-secure
methods and SecuCode as well as validating our scheme via an end-to-end implementation
and demonstration. This research addresses RQ 1 and was published in the journal
IEEE Transactions on Dependable and Secure Computing (TDSC) under the title ‘Wisecr:
Secure Simultaneous Code Dissemination to Many Batteryless Computational RFID
Devices’ [75]. A demonstration video of the end-to-end implementation in an example
application scenario can be viewed here:

https://www.youtube.com/watch?v=GgDHPJi3A5U
scan to watch

3. Although it was possible to employ memory fingerprinting methods or a PUF-based
key generator in SecuCode, doing so in the Wisecr broadcast presented a considerable
challenge due to the overhead associated with even the lightweight key generation
method developed in SecuCode. Interestingly, all extant PUF key generators and
memory-fingerprinting-based key generation methods enrol only one response evaluated
in the nominal operating corner (e.g., room temperature) at a server. In proposing
and exploring the multiple reference responses (MRR) concept, we show that enrolling
multiple responses at a server in discrete operating corners engenders an exponential
reduction in the overhead of the reverse fuzzy extractor (RFE) implementation at the
device, helping to further reduce the overhead of SecuCode’s lightweight key generator.
This involves first leveraging MRR enrolled under discrete operating conditions for key
generation. As an immediate application, we propose a lightweight mutual-authentication
protocol based on such an RFE called M3RFE. We subsequently analyse the key
failure rate of M3RFE. Second, we demonstrate a significantly reduced implementation
overhead usingM3RFE via experiments employing software implementations that target a
resource-constrained CRFID device with an embedded SRAMPUF. Third, to examine the
generalisability of MRR, we experimentally showcase its applicability to a fuzzy extractor
and validate the substantially reduced implementation overheads. This work addresses
RQ 2 and was published in the journal IEEE Transactions on Information Forensics
and Security (TIFS) under the title ‘Lightweight (Reverse) Fuzzy Extractor with Multiple
Referenced PUF Responses’ [76].

4. Using fingerprints in security functions is challenged by small-but-unpredictable
variations in fingerprint reproductions from the same device due to measurement
noise. SecuCode’s lightweight key generation method and the proposed MRR concept
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represent a significant step towards addressing the challenges in the context of
reverse-fuzzy-extractor-based key generation methods for resource-constrained devices.
However, we challenge current thinking by considering alternative methods to potentially
avoid the significant overhead attached to a reverse-fuzzy-extractor-based method on
a resource-constrained device and the security issues associated with such extractors
whilst seeking a pragmatic approach for obtaining highly reliable fingerprints from
device memories. We investigate the transfer of raw fingerprints to a noise-tolerant
space where fingerprint generation is intrinsically highly reliable and propose two
methods for doing so, S-Norm and D-Norm. Subsequently, we derive formal
performance bounds for both methods to facilitate the implementation of the methods
by practitioners. We demonstrate the expressive power of our formalisation by
using it to investigate the practicability of extracting noise-tolerant fingerprints from
commodity devices. Alongside extensive simulations, we employ 119 chips from five
different manufacturers for extensive experimental validations. Our results, including an
end-to-end implementation demonstration with a low-cost wearable Bluetooth inertial
sensor capable of on-demand and run-time key generation, show that key using
noise-tolerant fingerprint based generators with failure rates below 10−6 can be obtained
with significantly more efficiency than RFE methods together with ease-of-enrolment
supported by the use of a single fingerprint snapshot. This work addresses RQ 2 and was
published in the journal IEEETransactions onDependable and Secure Computing (TDSC)
under the title ‘NoisFre: Noise-Tolerant Memory Fingerprints from Commodity Devices
for Security Functions’ [77]. A demonstration video of the end-to-end implementation in
the example application scenario can be viewed here:

https://www.youtube.com/watch?v=O5NWZw-swpw
scan to watch

5. NoisFre assumes that memory is freely available and abundant. Because this may
not be the case for highly resource-constrained devices, such as CRFID devices with
limited SRAM memory, we propose NoisFre-Lite, which can provide a root key
on commodity electronic devices even when computational and memory resources
are highly-constrained. More concretely, given the critical challenge associated with
employing a NoisFre key generator on devices with limited memory space is the
undesirably low extraction efficiency (the number of noise-tolerant bits extracted versus
available intrinsic memory size), NoisFre-Lite addresses the need to derive more key
bits from SRAM memory with highly constrained resources (in terms of both memory
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capacity and computational power). Similar to NoisFre, NoisFre-Lite transforms raw
SRAM fingerprints into noise-tolerant fingerprints. However, it develops two new
algorithms for transformation and noise-tolerant bit selection that are built around a
trade-off between reliability and extraction efficiency. Consequently, some noise-tolerant
bits can remain below the level of reliability needed for a highly reliable key generator.
Therefore, we devise a trial-and-error (TRE) method to optimise key reliability by
using the server’s computational resources without imposing any overhead on the highly
resource-constrained device. We formulate analytical models for the proposed key
extraction method to evaluate their performance to help practitioners accurately estimate
the best key size and reliability given a specific memory chip, and the complexity of
the on-server TRE function. We extensively evaluate NoisFre-Lite in terms of key
reliability, extraction efficiency, bias, uniqueness and bit-aliasing. The experiments affirm
the validity of our formulations and the efficacy of our approach. We implement a
NoisFre-Lite key generator on a battery-less CRFID with a highly constrained 2 KiB
SRAM memory. A 128-bit key with a key failure rate of < 10−6 is provided by
the NoisFre-Lite method using as few as 20,238 clock cycles for key generation; this
is a 92.8% reduction in computational overhead compared to the state-of-the-art error
correction–based key derivation using a reverse fuzzy extractor (needing 280,063 clock
cycles). Furthermore, the approach negates the security concerns associated with key
generation using a reverse fuzzy extractor. This contribution addresses RQ 2.

6. Based on the extensive systems research conducted, this thesis contributes three
open-source code releases:

• The source code for the complete end-to-end system for SecuCode [38] in Chapter 3:
A secure wireless firmware update to a single device is available at https://

github.com/AdelaideAuto-IDLab/SecuCode

Acknowledgement. Michael Chesser contributed to the development of the SecuCode
App (the desktop application) (SecuCode/src/SecuCodeApp) and the immutable
on-device SecuCode bootloader (SecuCode/src/wisp5-bootloader).

• The source code for the complete end-to-end system for Wisecr [75] in
Chapter 4: A secure wireless firmware update for multiple devices with IP
protection over the insecure channel is available at https://github.com/

AdelaideAuto-IDLab/Wisecr

Acknowledgement. Michael Chesser contributed to the development of the
Wisecr App (the desktop application) (Wisecr/src/SecuCodeApp), the immutable
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1.5 Thesis Structure

on-device SecuCode bootloader (Wisecr/src/wisp5-bootloader) and implementing
the broadcast method over the RFID air interface through the Wisecr App
(Wisecr/src/wisp5-base/CCS/wisp-base/RFID).

• The source code for the complete end-to-end system demonstration for NoisFre [77]
in Chapter 6: A reliable memory fingerprinting-based remote attestation method is
available at https://github.com/AdelaideAuto-IDLab/NoisFre

This thesis also contributes two extensive datasets . These have been publicly released to
support research on memory fingerprinting and PUFs:

• Adataset of 2 KiB internal SRAM from 20MSP430 chips measured at 5 temperature
corners (-15 °C, 0 °C, 25 °C, 40 °C and 80 °C) is available at https://dx.doi.
org/10.21227/H27T0S

• A dataset of 64 KiB internal SRAM from 12 nRF52 chips measured at 3 temperature
corners (-15 °C , 25 °C and 80 °C ) is available at https://dx.doi.org/10.
21227/ktc9-x515

1.5 Thesis Structure

This thesis is organised into eight chapters. The structure is summarised in Figure 1.6 and
described below.
Chapter 1 introduces resource-constrained devices (with an emphasis on CRFID devices) and
device fingerprinting (or PUFs). It also discusses the challenges and opportunities associated
with providing security services to these devices and facilitating their implementation and
provides an overview of the thesis’s contributions before concluding with an outline of the
structure of the work.
Chapter 2 defines notations and conventions before outlining the fundamentals of CRFID
devices andmemory fingerprinting (or PUFs), and state-of-the-art key generationmethods based
on memory fingerprints before detailing the datasets used.
Chapter 3 studies the problem of developing mechanisms for securely and wirelessly updating
code that comply with current communication protocols under resource constraints and
intermittent powering. We propose SecuCode, a first attempt at securing wireless firmware
updates for a single CRFID device, disseminating code to a single device at a time. A
lightweight and secure RFE-based device key-generation method is developed that uses on-chip
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need for a RFE 
Two methods are proposed and investigated for extracting highly reliable fingerprints: S-Norm and D-Norm 
Analytical models are developed to predict bounds for unreliability and highly reliable fingerprint extraction
efficiency 
Develop, implement, evaluate and compare NoisFre-based key generators 
Demonstrate an end-to-end design and implementation of on-demand (run-time) generation of a highly reliable key
for a remote attestation security function 

A secure wireless firmware dissemination scheme to a single CRFID device 
A lightweight physically obfuscated key derivation method using on-chip SRAM and reverse fuzzy extractor (RFE) 
Intermittent execution model (IEM), programmatically encoded at device provisioning time to support the long-run
execution of tasks under intermittent powering conditions
Demonstration of an end-to-end design from firmware compilation to a successful firmware update process

A secure and simultaneous (fast) wireless firmware dissemination scheme to multiple CRFID devices 
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Reducing disruptions to broadcast data synchronisation across multiple devices via the introduction of the concept of
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NoisFre-Lite approach for achieving highly reliable fingerprints from highly resource-constrained devices with
limited memory capacity and computational power
Two methods that trade reliability for extraction efficiency are proposed and investigated for extracting highly
reliable fingerprints
A trial-and-error (TRE) method is proposed for resolving any potential errors in the extracted highly reliable
fingerprint at the server (this method benefits from the server's computational power without introducing additional
overheads on the highly resource-constrained device)
Analytical models are developed to predict extraction efficiency and key failure rate of highly reliable fingerprints
from the proposed methods,  and the complexity of the on-server TRE function 

Figure 1.6: Thesis structure.

SRAM fingerprints (or an SRAM PUF). We propose the intermittent execution model (IEM),
encoded at the device provisioning time, to support the long-running execution of tasks under
intermittent power. Additionally, we demonstrate an end-to-end design that extends from
firmware compilation to a successful firmware update process to illustrate the practicability of
implementing SecuCode for an extremely resource-limited CRFID device.
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Chapter 4 considers four unresolved issues associated with SecuCode. First, SecuCode only
disseminates code to a single device at a time, largely limiting the efficiency of firmware
updates in cases involving a large number of devices. Second, SecuCode does not address
privacy or IP protection goals. Firmware is sent as plaintext over the wireless channel, making
eavesdropping possible for any attacker equipped with a simple RF sniffer. Third, in SecuCode,
the server is notified by a simple acknowledgement (ACK) response; however, an attacker
could easily spoof this command to cause incomplete firmware installation. It is important
to provide a mechanism for the server to verify that the firmware update has been performed
correctly. Fourth, the IEM developed in Chapter 3 uses programmatically encoded intermittent
operating settings for the fuzzy extractor (helper data generator) and message authentication
code functions. Because these settings are determined when the bootloader is provisioned,
there is no flexibility to dynamically adjust the execution model based on available power
at run-time. Wisecr, the first secure and simultaneous (fast) firmware dissemination scheme
addresses these problems. Notably, Wisecr includes PAM, a task scheduling model that provides
the flexibility to dynamically adjust the execution model based on available power at run-time,
and an attestation function that facilitates the verification of firmware installation. The chapter
describes a holistic design trajectory that builds from a formal secure scheme design to an
end-to-end implementation for resource-limited devices. Wisecr no longer uses an SRAM PUF
(or memory fingerprints) due to the outstanding key reliability issues, the substantial overheads
imposed by even the lightweight RFE-based key generator and the cumbersome PUF-enrolment
procedures. Although, these omissions challenge the feasibility of scaling the implementation
of PUF-based device fingerprinting, they are addressed in subsequent chapters.
Chapter 5 examines the problem of the computationally expensive and challenging nature of
implementing an RFE-based key-generation method using memory fingerprints in the context
of resource-limited and intermittently powered devices. This chapter proposes the adoption
of MRR. The MRR methodology of enrolling responses at the server reduces the burden on
the on-device RFE function by allowing the server to reconcile a larger number of errors with
minimal compromise on the level of security afforded by the key generator. However, the
MRR-based method still relies on the underlying RFE to generate reliable keys, and the cost
of implementing the RFE generator for resource-limited devices inhibits practical applications
(such asWisecr), especially if the aim is to achieve a widely accepted industry standard operating
temperature range (over -15 °C to 80 °C ) and industrial-standard key reliability (failure rate less
than 10−6).
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Chapter 6 investigates an alternative to the traditional RFE-based method by contemplating
avoiding employing an RFE completely. The chapter proposes NoisFre, a method for achieving
highly reliable fingerprints from commodity device memory. NoisFre demonstrably obviates
the need for an RFE, circumventing the vulnerability of helper data manipulation attacks
(a known and open problem with using fuzzy-extractor-based methods) and significantly
reduces implementation and execution overheads. NoisFre requires a single readout of
memory fingerprints during the enrolment phase and can achieve industrial standard key
reliability, making implementation feasible. However, NoisFre’s extraction efficiency (how
many noise-tolerant bits can be extracted from a given memory space) is too low for use by
extremely resource-constrained devices with very limited intrinsic memory space, such as a
chip-embedded system with only a few KiB of memory.
Chapter 7 addresses NoisFre’s extraction efficiency problem, proposing two fingerprint
transformation and selection algorithms to trade reliability for improved extraction efficiency. A
trial-and-error method is developed to resolve the remaining errors in the generated fingerprint
key at the server rather than the device, exploiting the server’s computational power without
introducing additional overheads.
Chapter 8 summarises the research conducted and discusses future research avenues.
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Chapter 2

Fundamentals of CRFID and
Memory PUFs

T
His chapter defines the notations and conventions used in
this thesis (Section 2.1) before introducing the fundamentals
of CRFID (Section 2.2) and memory PUFs, or memory

fingerprints (Section 2.3).Section 2.2 provides a brief summary of Electronic
Product Code (EPC)-enabled UHF RFID technology, the development of CRFID
devices and RF energy harvesting. Section 2.3 outlines common memory PUFs,
evaluation measures for memory PUFs, state-of-the-art methods used for reliable
key generation with memory PUFs, and the datasets used in this work, including
those produced by this research and those publicly available.
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2.1 Notations and Conventions

2.1 Notations and Conventions

This section defines the notations and symbols used in this thesis, following the approach used
in [62].
Scalar. An italic lowercase name is used for a scalar, for example, the index i.
Vector. A bold lowercase name is used for a vector, for example, the PUF response r.
Collection. A bold all-uppercase name is used for a collection, for example, the database DB.
Set. A blackboard uppercase symbol is used for a set, for example, the whole number set ℤ.
Cardinality. Two vertical bars enclosing a vector variable represent the cardinality (
dimension) of the variable, for example, the size of memory |mem|.
Quantity. An italic upper case name is used for a physics- or mathematics-based quantity, for
example, capacitance C and entropyH .
Function. A sans-serif font function name followed by a bracket is used for a function, for
example, PUF().
EPC Gen2 commands. A typewriter font is used to represent an EPC Gen2 command, for
example, the Query command.

2.2 Battery-less Edge Computing: CRFID Devices

We mainly use CRFID devices to exemplify ultra-low-power energy-harvesting computing
devices. As explained in Section 1.1, CRFID devices are lightweight and require less
maintenance than traditional battery-powered platforms, anticipating more flexibility in some
special applications, particularly in deeply embedded cases. This section outlines the basic
concepts of Radio Frequency Identification (RFID) technology before discussing developments
in CFRID technology. Interested readers can find more information about other RFID
technologies, networked RFID systems and applications in [78].

2.2.1 RFID Preliminaries

Passive or battery-less RFID technology combines wireless transmission and reception of
RF energy with automatically and uniquely identifying objects [79]. RFID has been widely
adopted in commercial and industrial applications for logistics and inventory control, as
well as to complement and even replace barcodes, which have several limitations, including
line-of-sight access, rigorous alignment requirements (for readability) and propensity for
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Chapter 2 Fundamentals of CRFID and Memory PUFs

physical damage [80]. This ubiquity is partly attributed to the establishment of standards such
as the ISO/IEC 18000-63:2015 air interface protocol and the Electronic Product Code (EPC)
identification number format.
The widespread adoption of the EPC Gen2 standards and diffusion of EPC Gen2-related RFID
technology have made RFID infrastructure available globally [81]. The Ultra High Frequency
(UHF) band facilities longer-range communication than other RFID technologies [82],
benefiting battery-less sensing applications [17], [83]–[88]. Therefore, developing solutions
based on EPC Gen2-compliant RFID technologies represents a natural path forward [29].
Hence, this thesis mainly considers EPC Gen2-compliant CRFID devices that operate on
the license-free UHF Industrial Scientific and Medical bands located between 860 MHz and
930 MHz [80]. Although considering the characteristics of different RFID technologies is
beyond the scope of this dissertation, such discussion, including comparisons between different
technologies, can be found in [80].
As shown in Figure 2.1(a), a typical EPC Gen2 RFID system comprises four components: a
Host computer, an RFID reader, RFID reader antenna(s) and RFID tag(s). The Host computer
communicates to the RFID reader via a local area network (LAN) using the Low Level Reader
Protocol (LLRP). A coaxial RF cable connects the RFID reader to the RFID reader antenna.
The reader antenna wirelessly transmits power and downlink data modulated in amplitude shift
keying (ASK) to the RFID tag(s), and the RFID tag backscatters3 uplink data modulated in ASK
or phase-shift keying (PSK), as defined in the EPC Gen2 air-interface protocol [90].

2.2.2 RFID Protocol Overview

A typical RFID system uses the following steps to communicate with an RFID tag (or, in general,
any transponder compliant with the EPC Gen2 protocol, including CRFID devices):

• Host to Reader. An application on the Host machine constructs LLRP commands to build
an ROSpec and AccessSpec to control the reader and transmits these specifications to
a reader. In some documents, the Host is a client, and the RFID reader is a server, such
as the LLRP specification [91]. This thesis treats the Host as the coordinator of the entire
system and the RFID Reader as a wireless gateway, analogous to a typical wireless sensor
network.

3‘Backscatter’ describes a technique that allows the RFID tag to change the impedance of its own antenna over
time, enabling the tag to reflect back more or less of the incoming signal in a pattern that encodes the uplink data,
such as the tag’s ID.
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Figure 2.1: (a) Overview of a typical RFID system and (b) Control commands and data flow over the LLRP and the
EPC Gen2 air interface. Our focus is on the insecure communication channel between the RFID reader connected
antenna and the RFID tags or CRFID devices. Hence, we assume that the communication between a host and a
reader is secured using standard cryptographic mechanisms [89].

• Reader to tag. As part of the anti-collision algorithm in the media access control (MAC)
layer, the reader must first singulate an RFID tag and obtain a handle, RN16. Singulation is
achieved as part of the inventory operation to discover RFID devices in a reader’s powering
and reading range. Inventory is performed using a combination of Query, QueryRep,
and QueryAdjust commands. At the start of the inventory cycle, the reader transmits
a Query command that notifies any tag within range of the beginning of a new inventory
session. Each tag then selects a random slot counter between zero and an upper value, Q,
defined by the Query command. If the selected slot counter is zero, the tag backscatters
its handle, RN16, to the reader. If the slot counter is greater than zero, the tag waits
for a QueryRep or QueryAdjust command. Upon receiving a QueryRep, the tag
decrements its slot counter, and if the resulting counter value is zero, it backscatters the
previously described response. Upon receiving a QueryAdjust, the tag adjusts the Q
value and re-generates its slot counter.
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The protocol flow is illustrated in Figure 2.1 (b). After the singulation of a tag, the Host can use
EPC Gen2 access command specifications such as BlockWrite (specified in the EPC Gen2 )
to instruct the device to perform further operations, such as writing to device memory. For more
information, please refer to the EPC Gen2 protocol [92].

2.2.3 Computational RFID Devices

As discussed, CRFID devices represent an emerging class of battery-less, computational,
sensor-enabled devices that operate on harvested energy. More importantly, CRFID devices
retrieve sensor readings and exchange computational data via RFID-compatible channels.
CRFID devices can be seamlessly integrated with existing passive RFID systems and extend
RFID to sensing and ubiquitous computing applications. The development of UHF-based
CRFID technology is illustrated in Figure 2.2. A conventional UHF RFID tag appears on the
left-hand side, providing support for unique identification and a small amount of data storage
(up to several KiB) [78]. The �-WISP next to it allows sensor sampling via the RFID channel
by toggling mercury switches to enable one of two RFID chips with different identification (ID)
numbers. By remotely reading the ID of the �-WISP, it is possible to read the orientation of
the tagged object using an unmodified COTS RFID reader [82], [93], [94]. The Farsens Spider
is a commercial RFID sensor tag that passively supports sensor sampling and data retrieval
through the standardEPCGen2 channel [15]. However, the Farsens Spider is not programmable,
largely limiting its flexibility. However, advances in low-power microelectronics mean that
it is now possible to power programmable logic circuits and sensor sub-systems purely using
harvested RF energy, as exemplified by the WISP—Intel WISP [13] and the WISP 5.1 LRG [9]
in Figure 2.2 and introduced in Section 1.1. AWISP-equipped accelerometer and barometer can
sample a plural number of sensors, process data and backscatter the result via the standard EPC
Gen2 channel [95]. Furthermore, combining sensor-enabled CRFID devices with flexible textile
antennas, as in the case of the Wearable WISP [10], [11], make it possible to use battery-less
devices as wearables in healthcare applications[17].

WISP 5.1 LRG WISP with accelerometer 
and barometer

UHF RFID Tag α-WISP Farsens Spider Wearable WISPIntel WISP

Figure 2.2: The development of computational RFID technology.
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2.2.4 RF Energy Harvesting

CRFID devices operate on harvested RF energy. As illustrated in Figure 2.3 (a), even in an
ideal setting, the harvested power is inversely proportional to the squared distance between the
device and the radiating RFID reader antenna according to the Friis transmission equation [78],
[96]–[98].

Host and
RFID reader

(a)

Available power:

CRFID
device

RF
antenna

(b)

(c) (d)

WISP 5.1 LRGRF side MCU side

CPU active

+
-

Impedance
matching 

Rectifier and
Charge pump

Reservoir
capacitor 

Voltage
Regulator

 MCU 

Boot up 

Brownout

Figure 2.3: (a) Due to the free space path loss, ideally, the available power at the CRFID device is inversely
proportional to the square of the operational distance; (b) The schematic (modified from the WISP 5 schematic [9])
of the RF energy-harvesting circuit of a typical passively powered device–WISP 5.1 LRG; (c) Charge burst
operational mode and (d) A close-up view showing each component of the energy harvesting network of the WISP
5.1 LRG.

While a typical RF energy-harvesting architecture appeared in Figure 1.1 in Chapter 1,
Figure 2.3 (b) uses WISP 5.1 LRG as an example to illustrate the circuit-based realisation of
RF energy harvesting. This circuit features five major functional blocks: 1) a dipole antenna,
which interacts with the incident electromagnetic waves and transfers the RF energy to the flow
of electric charges; 2) an L-network impedance matching circuit, which provides maximum
power transfer from the antenna to the rectifier; 3) the combination of rectifier diodes and an
S-882Z charge pump, which converts the small and alternating charge flow into a usable DC
voltage; 4) a 47 uF reservoir capacitor, which buffers and stabilises the harvested energy; and 5)
a TPS7803 Low-Dropout Regulator (LDO), which ensures the output voltage is maintained at
the desired level ready to be delivered to the load (in this example, the MCU and sensors).
Once the voltage at the reservoir capacitor, Vcap, reaches a threshold, Vcharged—see
Figure 2.3 (c)—the MCU is booted up. The CPU inside the MCU can execute code, sample
sensors, prepare the up-link packets, and control the backscattering of data to the RFID reader.
If Vcap drops below the minimum supply voltage required by the MCU, a brownout occurs, and
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the MCU ceases to work. The CRFID device must then start recharging its reservoir capacitor.
This boot-up and brownout cycle characterises the intermittent powering conditions experienced
by CRFID devices.
Figure 2.3 (d) shows the corresponding RF energy-harvesting components on theWISP 5.1 LRG
studied in this thesis as an example.

2.3 Memory PUFs or Memory Fingerprinting

We use the terms ‘memory fingerprints’ and ‘memory PUFs’ interchangeably. As discussed
Section 1.2.3 in Chapter 1, memory is ubiquitously available in electronic devices and computing
platforms such as microcontrollers, with memory PUFs (or memory fingerprints) simply
re-purposing ubiquitously available memory to build security functions.

2.3.1 Memory PUFs

In this section, we review the construction of memory PUFs using different memory
technologies. Although some researchers [99], [100] classify PUFs built upon memory-like
synthesised circuits as memory PUFs (e.g., Latch PUF [101], Flip-flop PUF [102], Butterfly
PUF [103], and Buskeeper PUF [104]), these require either expensive configurable logic (such as
FPGA or CPLB) or fabrication on dedicated hardware. This makes it challenging to implement
such PUFs in low-cost commodity devices. This section reviews memory PUFs built on popular
memory technologies commonly available to commodity electronic devices. The PUF variants
we discuss employ various methods for extracting fingerprints from device memories, including
SRAM,DRAMand Flash. Although PUF construction based on emergingmemory technologies
are popular in the literature (e.g., SHIC [105], STT-MRAM PUF [106] and memristive
PUFs [107]–[109]), these memory types as yet unavailable to low-cost computational modules,
such as microcontrollers. Therefore, this thesis does not discuss these. Interested readers can
obtain further information on these emerging memory-based PUFs from [99], [110].

SRAM PUF

Static random-access memory (SRAM) is probably the most common digital memory type.
Inside an SRAM chip—depicted in Figure 2.5—an essential component is an SRAM array.
Besides the SRAM array, some auxiliary circuits, such as the control logic, coordinate
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communication with other devices, such as a CPU. There are also address latch and decoders,
I/O latch and bus drivers to perform address and data read/write operations.
In addition to standalone chips, SRAMs are also commonly integrated with other logic circuits,
such as the cache inside a CPU, directly addressable via a CPU’s internal high-speed bus [111].
Regardless of how they are constructed, all SRAM types share the same principle: the SRAM
cells store information, and each SRAM cell holds one binary bit. As Figure 2.4 illustrates, one
SRAM cell comprises six transistors (M1-M6). PMOSM1,M3 and NMOSM3,M4 form two
cross-coupled digital inverters, and two additional transistors M5 and M6 act as bit selectors
to perform read/write operations on one specific SRAM cell. The cross-coupled inverter-pair
creates a bi-stable state. In normal conditions, SRAM tends to maintain its existing state. During
write operations, an external driving signal applied to a single SRAM cell changes its state.
However, because SRAM’s bi-stable state requires uninterrupted powering to avoid losing its
state upon losing power, SRAM is a volatile memory type.
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Figure 2.4: The basic architecture of SRAM.

In 2007, Guajardo [49] and Holcomb [60] each independently proposed an SRAM PUF. Their
approaches consider the SRAM memory address a PUF challenge and the start-up state the
response, as shown in Figure 2.5 (a). Notably, the SRAM PUF is an intrinsic PUF [100],
[112], meaning that realisation of the PUF does not require a custom design, additional chip
area overhead or hardware modification [49], [113].
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Memory address
(Challenge)

Power-up pattern
(Response)

0x0000

(a) (b)

Figure 2.5: (a) an SRAM PUF (start-up state) and (b) mismatched MOSFET threshold voltage Vtℎ.
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Upon power-up, the two digital inverters in an SRAM cell are trying to overcome each other,
akin to two tug-of-war combatants. Eventually, the SRAM cell will fall into one of the two
stable states. Digital inverters have different ‘strengths’, and as in a game of tug of war, the
stronger participant often wins. As shown in Figure 2.5 (b), the thickness of gate oxide tox in a
MOSFET determines its threshold voltage Vtℎ. A MOSFET with lower Vtℎ may switch faster
than others, meaning the corresponding digital inverter has a ‘stronger’ driving force, enabling
it to (usually) dominate the SRAM start-up state. Notably, the tox is randomly assigned during
the manufacturing process.
Because the initial power-up state of each SRAM cell is random but reproducible [60], the
power-up pattern of bits generated from an SRAMmemory can be considered a unique identifier.
In such an SRAM PUF, the address of the SRAM cell acts as the challenge, and the initial
power-up state—‘1’/‘0’—acts as the response.
The analytical model constructed by Roel Maes et al. [114] to describe the SRAM start-up
state (Equation 2.1) sees two random components contribute (response r(j)i ). For the itℎ SRAM
cell, the stochastic variable mi models the mismatched inverter’s inherent property, and another
stochastic variable n(j)i describes the electrical noise at the moment of jtℎ evaluation (i.e., the jtℎ
start-up for SRAM PUF). Roel Maes et al. assume that both mi and n(j)i are subject to normal
distributions, with T a threshold parameter for a specific SRAM technology.

r(j)i =

{

0 , if mi + n(j)i > T
1 , if mi + n(j)i ≤ T

(2.1)

Meanwhile, Xu et al. [115] investigated SRAM data retention voltage (DRV) in 2015. As
previously discussed, SRAM requires uninterrupted power to maintain its state. If the supply
voltage is gradually reduced, some SRAMcellsmay lose their state, and somemaymaintain their
state. The minimum voltage required for an SRAM cell to maintain its state is the DRV. Each
cell’s DRV is subject to uncontrollable random variation during the manufacturing process, and
measuring the DRV requires that the SRAM bank be separately powered and the supply voltage
be finely adjusted, which most electronic systems do not support. This impracticability hinders
implementation and further development of the SRAM PUF.

DRAM PUF

DRAM is another memory type frequently used in modern computing systems, with examples
including the RAM module in PCs and mobile phones. DRAM also plays a vital role in IoT
scenarios, such as providing a web camera’s first-in-first-out buffer [116]. Because DRAM has
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only one transistor in each cell instead of the six that SRAM features, DRAM typically has a
much higher capacity than even SRAM in identical manufacturing technology contexts.
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Figure 2.6: The basic architecture of DRAM, showing the array, cell and physical layout of a single DRAM cell.
Modern DRAM uses deep trench capacitors to maximise component density [117].

DRAM’s basic architecture is depicted in Figure 2.6. The top-level architecture of DRAM is very
similar to that of SRAM. However, there is only one access transistorM1 and one capacitor C1
in a DRAM cell. DRAM stores information by charging and discharging the C1. To write logic
‘1’ into a DRAM cell, the corresponding word-line (WL) is pulled up, and the bit-line (BL)
is fed with Vcℎarge, charging the C1. In contrast, the BL is grounded to discharge the C1 while
writing logic ‘0’. TheDRAM read-out is somewhat complicated. The controller first pre-charges
the BL to Vcℎarge∕2 and then energises the WL. If the C1 is charged, charges will flow out of
the DRAM cell, with a positive current captured by the underlying sense amplifier. Otherwise,
charges flow into the discharged DRAM cell and induce an opposing current. The direction of
the current flow is subsequently translated to the logic ‘0’ and ‘1’. It must be emphasised that
the DRAM reading operation is destructive, meaning the information is destroyed after reading
it out, making a subsequent write-back necessary.
Factors including junction leakage, gate-induced drain leakage, off-leakage, field transistor
leakage and capacitor dielectric leakage cause the charge in C1 to escape over time [118],
demanding periodically refreshing DRAM to compensate for this loss. In modern computers,
the DRAM controller automatically performs regular read-out and write-back. Charge leakage
means DRAM eventually loses its state upon losing power, which makes DRAM a volatile
memory.
In 2015, Tehranipoor et al. [119] observed that the discharge rate of each DRAM cell is
determined by the random hardware variation of M1 and C1 and could be used to instantiate
a PUF concept known as retention-based DRAM PUF.
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The leakage charge from one DRAM cell may also affect the state of an adjacent DRAM cell.
Again, the strength of this correlation is subject to the random fabrication variation. In 2017,
Schaller et al. exploited this phenomenon to propose DRAM row hammer PUF [120].

Flash PUF

Flash memory is currently probably the most well-known non-volatile memory. It is used in the
solid-state drives of PCs, mobiles and servers and the firmware storage of computer components,
routers, modems, and switches. Many MCU, transceivers and sensors store executable code and
calibration settings in Flash memory in IoT scenarios.
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Figure 2.7: The basic architecture of NAND Flash, showing the Flash Plane, block, page and the physical structure
of one floating-gate MOSFET.

The basic structure of Flash memory is illustrated in Figure 2.7 using the NAND Flash
architecture as an example. NOR is a less common Flash-type storage due to its lower density
and slower speed. One Flash chip die contains one or more Flash Planes, and each Plane features
auxiliary circuits, including control logic, decoder and sense amplifier circuits. There are many
Flash blocks in a single Flash Plane, and a block is the smallest unit for erase operation. The
Flash block is further divided into pages. Flash cells in a row sharing the same WL form a
Flash page. A page is the smallest unit to perform read and write operations. Manufacturers
define the size of pages and blocks, with page size of 4 KiB and planes size of 256 KiB being
common practice. Each Flash cell features only a single floating-gate MOSFET (FGMOS) and
no access transistor, making it infeasible to access a single specific Flash address in the matter
of RAM types. However, its single-transistor organisation means Flash can be manufactured to
be incredibly high dense.
Digital bits are represented by charges trapped in the floating gate of FGMOS, which can be
injected and removed by applying a higher program voltage. If charges are present in the floating
gate, they prevent a channel forming between the drain (D) and source (S) of the FGMOS,
meaning no current flows through, read as logic ‘0’. Otherwise, if no charges are trapped in
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the floating gate, a current, IDS , will flow from D to S via the channel and be captured by the
underlying sense amplifier, read as logic ‘1’. Flash memories are non-volatile memory. Because
insulators contain the floating gate, it is difficult for trapped charges to escape. Modern NAND
Flash memories feature typical data retention of about ten years.
Wang et al. [53] first proposed a Flash-based PUF in 2012, applying a technique called partial
programming, which builds on the understanding that injecting charges into the floating gate
of Flash memory does not happen in no time. Instead, this time is measured in hundreds
of microseconds, and the process can be interrupted by sending a reset command (RST)
during the Flash programming process, producing Flash cells in a partially programmed state.
Random hardware fabrication variations mean that different Flash cells may be programmed at
distinct speeds. Furthermore, following a particular partial program time, some cells may be
programmed while others not. The address to a specific Flash page is considered a challenge,
and the partial program bit pattern acts as the response.
In 2015, Jia et al., [121] proposed two new methods for extracting a Flash PUF’s randomness:
partial erasure and program disturbance. As previously noted, Flash erasing is performed block
by block, and Flash programming is performed page by page. Partial erasure is 64 times
faster than partial programming. The program disturbance utilise the interference between two
physically adjacent Flash pages, which is conceptually much similar to the DRAM row hammer
we have discussed in Section 2.3.1. In addition to the randomness extraction methods, this study
also proposes a post-processing scheme to acquire reliable responses based on the differential
programming time between two adjacent Flash addresses.

Summary

This thesis focuses on SRAMPUFs (or SRAMfingerprints) because SRAM instances are widely
available in various devices, including battery-less and intermittently powered CRFID devices.
As an intrinsic PUF, realising SRAM PUFs does not require a custom design, additional chip
area overhead or hardware modifications [100]. Additionally, in some embedded systems [122],
each memory bank can be individually powered off by exploiting a particular power control
register, facilitating the run-time fingerprinting of the integrated device memory.
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2.3.2 Memory PUF Evaluation Measures

This section outlines the common PUF evaluation measures applicable to memory PUFs,
including reliability, uniformity and uniqueness. The derivation and formalisation of these
measures are available in [112], [123].

Reliability

Reliability [73], [112], [124]–[126] (also referred to as robustness, steadiness, stability or
reproducibility [53], [127], [128]) indicates how stable the PUF responses are, that is, the
extent of the PUF’s ability to reproduce the same response to a corresponding challenge. Ideally,
reliability should be 100% (i.e., without any error across repeated PUF evaluations). In practice,
some factors may inhibit a PUF’s ability to reproduce responses reliably, most prominently
environment temperature variations, supply voltage offsets and ageing.
A reference response, ri, is recorded from hardware instance i under normal operating conditions
(such as room temperature and rated voltage supply) before another response, r′i , is requested
under different operating conditions for the same challenge. We calculate the Hamming distance
(HD) between ri and r′i , calling it the intra-class HD (intra-HD) because we are evaluating the
same PUF instance with the same challenge. The ideal intra-HD value is 0.
Generally, the expected bit error rate (BER) is used to describe intra-HD, estimating the average
ratio of the number of bit errors in the total number of evaluated response bits over the n-bit
binary response vector. If the n-bit response ri is re-evaluated from the same hardware instance
i over m times, under a different operating condition with value r′i,t at the ttℎ time, the average
intra-class HD or the expected BER is defined as:

BER = 1
m

m
∑

t=1

HD(ri, r′i,t)
n

× 100% (2.2)

Then, the reliability of a PUF is defined as:

reliability = 1 − BER (2.3)

We follow the definition in [112] and refer to the worst-case BER as the largest intra-HD
which can be expected within a given range of operating conditions with respect to a particular
reference condition. To find the worst-case BER in a given range of operating conditions, we can
selectively evaluate the intra-HD around the boundaries of this operating range. This technique is
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reasoned based on the assumption that intra-HDwith respect to the reference condition increases,
if the evaluation is conducted under an operating condition further away from the reference.
Some of the literature [53] also uses the correlation coefficient between two responses repeatedly
evaluated on the same challenge from the same device to describe reliability.

Uniqueness

Uniqueness describes how easily we can distinguish one PUF device from another. When
applying the same challenge, c, to different PUFs, the response vectors from different PUFs are
expected to differ due to the intrinsic variations of each PUF. Uniqueness is a highly desirable
characteristic that measures the amount of unique information extracted from a PUF. Uniqueness
is measured by inter-class HD (inter-HD). If two distinct PUFs, i and j, have n bit responses,
they produce ri and rj response vectors, which correspond to the same challenge c. Ideally,
uniqueness should equal 50%, with the average inter-HD among k PUF instances defined as:

Uniqueness = 1
(k
2

)

k−1
∑

i=1

k
∑

j=i+1

HD
(

ri, rj
)

n
× 100% (2.4)

Some of the literature [53] also uses the correlation coefficient between responses from two
PUFs to describe uniqueness.

Uniformity

Uniformity (also referred to as randomness or bias [129]) is an indicator of the balance between
‘0’ and ‘1’ in a response vector. Ideally, a PUF should have equal probability to output ‘0’ or ‘1’
in its response vector, that is, uniformity should equal 50%. Uniformity is analytically defined
as:

Uniformity = 1
n

n
∑

l=1
ri,l × 100% (2.5)

Where ri,l is the lth binary bit of an n-bit response from a hardware instance i.

2.3.3 Reliable Key Generation with PUFs

PUF response re-generation is susceptible to fluctuations in environmental conditions, including
thermal noise and power supply and temperature variations (as discussed in Section 1.2.3
in Chapter 1). Thus, PUF responses cannot be used directly as keys in security functions and
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require error correction to reconcile flipped response bits (errors) in relation to a reference
response. This section details the state-of-the-art techniques used to generate reliable and
secure keys from PUFs or memory fingerprints: 1) (reverse) fuzzy extractor to perform noise
compensation or error correction; and 2) fingerprint pre-processing to enhance the reliability of
the memory fingerprints.

(Reverse) Fuzzy Extractor

(a) (b)

Figure 2.8: (Reverse) fuzzy extractor. Based on f , the first phase concurrently generates helper data p via the
encoding function (also referred to as the helper data generation function FE.Gen()) and secret sk via an entropy
extractor (typically a hash function Hash()). The re-generation phase uses p and reevaluates f ′ to restore f by
reconciling errors in f ′ using a decoding function (also referred to as a reproduction function FE.Rep()) to reproduce
sk. In a reverse fuzzy extractor, (a) is embedded in a device and (b) is offloaded to the server.

A fuzzy-extractor-based PUF key generator can turn a fingerprint, f , into a cryptographic key,
sk, with full bit entropy, as shown in Figure 2.8. A fuzzy-extractor (FE) comprises of a secure
sketch and an entropy extractor [73], [124], [130]. The secure sketch computes helper data
based on the provisioned fingerprint and subsequently utilises helper data to correct errors in
the re-generated fingerprint. Two prevalent secure sketch schemes are used to realise an FE:
code-offset construction and syndrome construction [73]. This thesis considers syndrome-based
construction because syndrome (helper data) has been demonstrated to not leak information
about the original memory fingerprints [129], [131]. We shall briefly describe this construction
here.
The secure sketch construction has two functions: FE.Gen() and FE.Rep(). During the key
enrolment phase, helper data, p, are computed using FE.Gen(f), where p = f × HT, and H
is a parity check matrix of a linear error correction code. The key reconstruction described by
FE.Rep(f ′,p), where f ′ is the reproduced fingerprint, which may slightly differ from the enrolled
fingerprint, f , first constructs a syndrome, s = (f ′×HT)⊕p = e×HT, where e is an error vector.
Next, an error location algorithm determines e. Subsequently, the fingerprint f is recovered via
f = e⊕ f ′. Because the recovered PUF fingerprint f may be non-uniformly distributed, an
entropy extraction operation—for example, via a universal hash function—compresses the PUF
fingerprint into a cryptographic key with full bit entropy.
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Server Device
DB PUF

enrolment(under secure environment)
f ← PUF( )

f
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

p ← FE.Gen(f )
sk ← Hash(f )
Store (sk,p) into DB

re-generation(after deployed in-field)
Get (sk,p) from DB

p
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

f ′ ← PUF( )
f ← FE.Rep(f ′,p)

sk ← Hash(f )

Figure 2.9: Fuzzy extractor concept.

Server Device
DB PUF

enrolment(under secure environment)
f ← PUF( )

f
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

Store f into DB
re-generation(after deployed in-field)

Get f from DB
f ′ ← PUF( )

p
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← p ← FE.Gen(f ′)

sk ← Hash(f ′)
f ′ ← FE.Rep(f ,p)
sk ← Hash(f ′)

Figure 2.10: Reverse fuzzy extractor concept.

Normally, in an FE setting, as shown in Figure 2.9, the FE.Gen() function is executed by the
server during the provisioning phase to compute helper data. In the field, the FE.Rep() function is
implemented on a token. By recognising that the computational burden of the FE.Rep() function
significantly exceeds the FE.Gen() function, Van Herrewege et al. [66] place the FE.Gen() on the
resource-constraint token and leave the computationally intensive FE.Gen() function execution
to the resource-rich server. This method, known as the reverse fuzzy extractor (RFE) method,
is depicted in Figure 2.10.
However, as discussed in Section 1.2.3 in Chapter 1, the high implementation overhead of
the encoder in its use in the RFE setting is not desirable for resource-limited devices. More
importantly, the vulnerability of the associated helper data to helper data manipulation (HDM)
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attacks remains unsolved. Solutions considered to mitigate HDM, including hashing the helper
data with the generated PUF key, can be found in [73].

Fingerprint Pre-Processing Techniques

Differing from RFE, fingerprint pre-processes, including pre-selection and majority voting , can
be adopted during one-off enrolment. These methods incur no overheads during fingerprint
re-generations but introduce more complex enrolment steps.
Pre-Selection. According to Maes [114], each SRAM cell may have a different start-up value
across repeated evaluations. Building on this, Böhm et al. [132] developed a technique called
pre-selection to exclusively select those SRAM cells that always produce reliable start-up values
across repeated evaluations. The selected stable SRAM cells are used for secure key generation.
However, this [114], [132] requires numerous repeated evaluations, which is tedious and
time-consuming. Additionally, the reliability measurement is empirical and coarse-grained. For
example, when a given bit is constantly ‘1’/‘0’s across 1000 repeated measurements under a
given operating condition, one can only empirically conclude that the BER for this bit is below
10−3. However, this conclusion cannot be firmly held following a shift in operating conditions.
Worse, identifying bits with a BER below 10−9 requires billions of physical measurements,
which is infeasible in practice.
Hofer et al. [133] proposed a delay-basedmethod to identify reliable SRAM cells, understanding
that highly mismatched SRAM cells not only tend to always produce a certain start-up value but
also take less time to settle down. This method requires low-level access to each cell to monitor
the settling time, which is generally not supported by commercial devices.
Majority voting. Two types of majority voting on enrolment enhance reliability. Guajardo
et al. [49] developed temporal majority voting (TMV), which involves sampling the device
fingerprint several times before adopting the majority result as the enrolled reference. Similar
to pre-slection, TMV requires multiple evaluations; however, it requires comparatively small
numbers during the enrolment phase. According to [102], TMV is effective if the raw noise
level is already relatively low. However, TMV becomes inefficient for fingerprints with a higher
BER.
Spatial majority voting (SMV) has also been proposed. According to Maes et al. [102], in SMV,
instead of sampling the same fingerprint bit multiple times, various nearby fingerprint bits can
be grouped, with the majority value taken to produce a more reliable bit, improving a device
fingerprint’s uniformity by selecting a skewed threshold.

Page 37



2.3 Memory PUFs or Memory Fingerprinting

2.3.4 Memory Fingerprinting and Memory PUF Datasets

This section describes and compares the datasets used in this thesis, both those contributed to by
this research and those publicly available. Evaluation results are summarised in Table 2.1. The
memory types associated with the listed datasets are pervasive, especially in low-end devices.
Example COTS devices appear in Figure 2.11 alongside the evaluated memories.
We compare the evaluation conditions (temperature variation, supply voltage offset and chip
ageing) under which experiments have been performed for each dataset and report the number
of individual chips, size of physical chips and number of repeated evaluations in each dataset.
The evaluation results focus on the three fundamental measures outlined in Section 2.3.2:
uniqueness, reliability and uniformity.

(a) Shlage
electronic
lock. [35]

(b) Logitech
mouse.

(c)Ambient
wearable
sensor tag [21]

(d) Intel SSD. (e)Dell console
switch.

(f)Microsoft
Xbox.

(g)MSP430
MCU

(h) NORDIC
Bluetooth
Low Energy
transceiver [134]

(i) NORDIC
RF-enabled
MCU

(j) ISSI SRAM
buffer [135]

(k) IDT SRAM
chip [136]

(l)Winbond
Flash for DVD
driver
firmware [137]

MSP20 NRF12 NRF12 ISSI4 IDT6 WINB7
Figure 2.11: Evaluated memories (middle), example products (top) that use these types of memories and
corresponding datasets (bottom).

To distinguish the datasets, we use the following naming convention: [Chip name
abbreviation]+[number of chips]. For example, ‘MSP20’ indicates a dataset collected from
20 MSP430FR5969 MCUs.

MSP20 dataset (Thesis Contribution)

The dataset MSP20 collected in Chapter 3 evaluates the start-up states of the 2 KiB SRAM block
inside 20 fresh MSP430FR5969MCU chips. The data were collected at five temperature points:
-15 °C , 0 °C , 25 °C , 40 °C and 80°C. The evaluation was repeated 100 times and the evaluation
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Table 2.1: Overview ofmemory fingerprinting (or memory PUF) datasets, both those contributed to by this research
and those publicly available.

Work Experiment Setups Evaluation Results
Name[reference] Evaluation conditions Chip

number Memory size Repeat
times Uniqueness BER

(worst-case) Uniformity

Datasets contributed from this thesis

MSP20 [Chapter 3] -15 °C to 80 °C 20 2 KiB 100 45.30% 11% 49.99%
NRF12 [Chapter 6] -15 °C to 80 °C 12 64 KiB 100 49.89% 6.09% 54.94%
Datasets publicly available

ISSI4 [138] 25 °C to 80 °C 4 256 KiB 30 24.43% 8.29% 49.40%
IDT6 [138] 25 °C to 80 °C 6 512 KiB 50 49.74% 5.42% 48.66%
WINB7 [54] 0-100,000

P/E Cycles Aging 7 69,696 Bytes 99 48.75% 16.26% 49.34%

results were saved as binary (.bin) files . The average uniqueness of the 20 devices in the MSP20
dataset is 45.30%. The worst-case BER (11%) occurs at 80 °C , when the reference template is
collected at 25 °C . The average uniformity of the dataset is 49.99%.
This dataset is available at: https://dx.doi.org/10.21227/H27T0S

NRF12 dataset (Thesis Contribution)

The dataset NRF12 collected in Chapter 6 evaluates the start-up states of the 64 KiB SRAM
blocks inside 12 nRF52832 chips. The nRF52832 is a popular RF-enabled MCU and supports
various protocols, including Bluetooth 5, Bluetooth mesh, ANT andNFC. It is worth mentioning
that the NORDIC chips are typical of a low-cost device MCU. The data were collected at three
temperature points: -15 °C , 25 °C , 80 °C . The evaluation was repeated 100 times at each
temperature and the evaluation results were saved as binary (.bin) files .
The average uniqueness of the 12 devices in the NRF12 dataset is 49.89%. The worst-case
BER (6.09%) occurs at 80 °C , when the reference template is collected at 25 °C . The average
uniformity of the dataset is 54.94%.
This dataset is available at: https://dx.doi.org/10.21227/ktc9-x515

ISSI4 and IDT6

The ISSI4 and IDT6 datasets were collected by Guo et al. [138] from two COTS SRAMmodels:
IS61WV25616BLL and IDT71V416S, respectively. The data were collected at two temperature
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points: 25 °C and 80 °C . The evaluation was repeated a varying number of times at each
temperature point for each dataset (see Table 2.1). The evaluation results were saved as Matlab
workspace variable (.mat) files.
The average uniqueness of the four devices in the ISSI4 dataset is 24.34%. The worst-case
BER (8.29%) occurs at 80 °C , when the reference template is collected at 25 °C . The average
uniformity of the dataset is 49.40%.
The average uniqueness of the six devices in the IDT6 dataset is 49.74%. The worst-case BER
(5.42%) occurs at 80 °C , when the reference template is collected at 25 °C . The average
uniformity of the dataset is 48.66%.
These datasets are available at:
https://www.trust-hub.org/#/data/memory-aging-recycling

WINB7 Dataset

The dataset WINB7 was collected by Guo et al. [54] from sevenW29N02GVCOTS Flash chips.
A partial program technique (described in Section 2.3) was used to test the Flash chips. Differing
from the SRAM datasets, this Flash dataset uses ageing as an evaluation condition (from fresh
to 100,000 program/erase cycles). The results were saved as Matlab workspace variable (.mat)
files.
The average uniqueness of the seven devices in the WINB7 dataset is 48.75%. The worst-case
BER (16.26%) occurs at 100,000tℎ Program/Erase cycles where the reference template is
collected when the chips are fresh. The average uniformity of the dataset is 49.34%.
This dataset is available at:
https://www.trust-hub.org/#/data/memory-aging-recycling

2.4 Chapter Summary

This chapter has defined the notations and conventions used in this thesis before detailing the
fundamentals of CRFID (EPC-enabled UHF RFID technology, the development of CRFID
devices and RF energy harvesting) and memory PUFs (or memory fingerprints; common
memory PUFs, memory PUF evaluation measures and state-of-the-art methods used for reliable
key generation using PUFs). The chapter also summarised the relevant observations of both
publicly available memory-oriented datasets and the datasets produced by extensive chip
measurements conducted as part of this research.
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Chapter 3
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T
HE security of wireless code updates for resource-constrained and
intermittently powered devices, such as the Computational RFID
(CRFID), is a challenging problem due to the resource limitations and

lack of hardware security features discussed in Chapter 1. This chapter develops,
for the first time, a secure wireless code dissemination (SecuCode) mechanism for
such an intermittently powered and resource-limited device by entangling a device
intrinsic hardware security primitive—Static Random Access Memory Physical
Unclonable Function (SRAM PUF)—to a firmware update protocol. The design of
SecuCode: i) overcomes the resource-constrained and intermittently powered nature
of the target CRFID devices; ii) is fully compatible with existing communication
protocols employed by CRFID devices—in particular, ISO-18000-6C protocol; and
ii) is built upon a standard and industry compliant firmware compilation and update
method realised by extending a recent framework for firmware updates provided by
Texas Instruments. We built an end-to-end SecuCode implementation and conduct
extensive experiments to demonstrate standards compliance, evaluate performance
and security.
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3.1 Motivation and Contribution

Firmware updates can help to enhance devices’ computational or storage performance, impart
new functionality, fix software bugs or address system compatibility. In the absence of standard
protocols or system-level support, application specific software in the form of firmware for
resource-limited devices such as CRFID is typically updated using a wired programming
interface [9], [14]. However, a wired connection not only negates the benefit of the battery-free
feature andmakes the process unscalable when potentially millions of devices need to be updated
but is a more acute problem in the context of deeply embedded devices, such as when devices
are deeply embedded in reinforced concrete structures [29], integrated with aircraft parts [22],
[25] or inserted inside body organs [139]. In such a case, physical access to the device poses
practical challenges and risks to the end-user. Therefore, wireless firmware updates are highly
desirable for such kinds of applications.
The fundamental problem of a wireless firmware update for CRFID devices was addressed in
two recent approaches [29], [140]; both focused on transmission reliability, miniaturisation of
firmware code size, and energy efficiency. None of them addressed the difficult problem of
assuring the security of wireless firmware updates, although Tan et al. [29] highlighted that
secure wireless code dissemination remains the most urgent need to be addressed. This implies
that both wireless approaches allow any party to remotely andwirelessly install code on a CRFID
device, irrespective of their trustworthiness. Consequently, malicious firmware injection from
an adversary remains a direct threat that can lead to, for example, private information leakages
such as health conditions to unauthorised parties or the installation of malicious code in deeply
embedded hardware such as a blood glucose monitor with devastating consequences for the
victim.
Therefore, this chapter considers the challenging problem of a secure wireless firmware update to
eschew the cumbersome and, often impractical, cable-connected download method and address
the following problems:

Problem 1. How can we securely update firmware under resource constrains and intermittent
powering, as illustrated in Figure 1.3 and Figure 1.4, relying only on harvested power and
without additional hardware components?

Problem 2. How can we develop an update protocol compliant with current communication
protocols to ensure translation into practice?

Page 42



Chapter 3 Securing Wireless Code Updates to Intermittently Powered Devices

We summarise the contributions made in this chapter towards addressing the aforementioned
problems below:

• Develop a first secure wireless firmware update protocol. SecuCode is the first
secure wireless firmware update or reprogramming method for CRFID devices to prevent
malicious firmware injection attacks4(Problem 1).

• Develop a lightweight physically obfuscated key derivation mechanism. We develop
a key derivation mechanism using a physical unclonable function (PUF). A PUF converts
hardware instance specific random variations such as gate and wire delays of circuitry to
a binary value. In particular, we take advantage of an SRAM PUF built-upon random
start-up state of intrinsic SRAM on microcontrollers to extract key material on the fly
without extra hardware overhead and modifications. The key derived from such an
SRAM PUF is therefore: i) intrinsically tamper-resistant (unclonability) compared to
a permanently stored key in non-volatile memory; ii) unique, through the hardware
instance specific nature of SRAM cells’ startup state; iii) unpredictable, through the
physical randomness leading to random startup states of SRAM cells; and iv) never stored
permanently in NVM as it is derived on the fly and discarded after usage. The contribution
in this chapter is to address the challenges faced in realising a lightweight, reliable and
secure5 key generator using an on-chip SRAM PUF on a resource-constrained device
(Problem 1).

• Complete end-to-end design and implementation. We demonstrate an end-to-end
design from firmware compilation to a successful firmware update process supported by
an execution model on a CRFID token to manage the transient nature of power availability.
We develop a tool (SecuCode App) to update firmware and conduct a complete end-to-end
implementation and evaluation on a resource-constrained and intermittently powered
CRFID device (Problem 1). Demonstration video of the firmware update process is
available at:
https://www.youtube.com/watch?v=nWcwGLsjJK0

scan to watch
4The security provided by the wireless firmware update scheme prevents an attacker from injecting malicious

code. We achieve this aim by establishing the integrity and authenticity of a firmware. To reduce the burden on a
resource-limited device, we do not consider the provision of confidentiality protection.

5Specifically, we refer to the security of the fuzzy extractor scheme expressed as the complexity of recovering
the derived key by an attacker. Eventually, the security (authenticity and integrity) of the firmware update scheme
rests on the security of the key derived from the reverse fuzzy extractor method.
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• A standards compliant method. SecuCode is fully standards compliant: i)
we implement SecuCode over the EPC C1G2v2 air interface protocol—ISO/IEC
18000-63:2015—commonly used by modern Radio Frequency Identification technology,
including CRFID devices; and ii) given the specific Texas Instruments (TI)
ultra-low power micro controller employed by CRFID devices, the bootloader
implemented in this chapter is based on TI’s recent framework for wireless firmware
updates—MSP430FRBoot [141]—to ensure a standard tool chain for compilation
and update of new firmware whilst taking advantage of the features supported by
MSP430FRBoot (Problem 2).

• Public code and SRAM PUF dataset release. We provide the complete end-to-end
solution, including the SecuCode App source code, and research data collected on 20
devices (contributed as the MSP20, detailed in Section 2.3.4) to support future research
in the field. The links of released source code and dataset are available in Section 1.4.

3.1.1 Chapter Overview

Section 3.2 presents the SecuCode protocol. Section 3.3 details the building blocks required to
realise SecuCode and their instantiation on a CRFID device. Section 3.4 performs extensive
experiments, including an end-to-end SecuCode implementation on a CRFID token as well
as analyse its security. Section 3.5 discusses related work. Section 3.6 is dedicated for our
collaborator who made remarkable contribution to this chapter. We conclude this chapter in
Section 3.7.

3.1.2 Notations and Concepts

Adding to the general notations and conventions defined in Section 2.1 in Chapter 2, Table 3.1
summarises some key concepts introduced and referred to in this chapter.

3.2 SecuCode: Protocol Design

We ease into the design of the protocol by a formal description of the SecuCode protocol.
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Table 3.1: Table of notations in this chapter.

 The prover  is a single entity consisting of a host computer and a networked RFID reader. Token  is a CRFID device. The adversary  is an attacker seek to commit malicious code injection into the  .
DB Server’s database, where each element is a two-tuple describing each CRFID token: i) the

unique and immutable identification number idi; and ii) enrolled challenge response pairs
(c1, r′1),… , (cm, r′m).

firmware The new firmware binary for the update.
firmware(j) The jth block of the firmware.
k The device-specific PUF key (for more details, pelase refer to Section 3.2.2).
nonce The nonce is a randomly generated number that to be used only once in secure

communication to prevent reply attacks.
s AMAC tag computed over the firmware and a nonce by a token  (for more details, please

refer to Section 3.2.2).
seq The sequence number seq labels each block of the f irmware, to store the received

f irmware block into the correct address of the code memory.
□′ An apostrophe denotes a value computed by a different entity, e.g., s′ the MAC tag

computed by the prover  .
□i A subscript i denotes a specific entity out of a collection, e.g., ci is the ith PUF challenge.
RNG() The random number generator RNG() outputs a truly random number when invoked. (for

more details, please refer to Section 3.3.2)
MAC() MAC() computes a bit string s of fixed length to establish the authenticity and the integrity

of a message (for more details, please refer to Section 3.3.4).
TEMP() The temperature measurement function TEMP() sets an over-temperature flag (OTF) if the

in-built chip thermometer reports a temperature outside of a legal range (for more details,
please refer to Section 3.2.2).

PUF() The SRAM PUF takes a challenge c (memory address) as input and reacts with a
corresponding response r (SRAM start-up value) as output, where r ← PUF(c) (for more
details, please refer to Section 3.2.2).

FE.□() A fuzzy extractor FE is a noise compensation or error correction utility defined by two
functions: key generation algorithm FE.Gen() and key reconstruction algorithm FE.Rep().
For more details please refer to Section 2.3.3.

3.2.1 Adversary Model

This chapter focuses the communication between the Reader and the CRFID transponder
or Token  as depicted in Figure 2.1 in Chapter 2. We assume that the communication
between a Host and a Reader is secure using standard cryptographic mechanisms for securing
communication between two parties over a network [89]; hence a Host computer and a Reader
are considered as a single entity, the Prover, denoted as  .
There is no previous CRFID firmware update protocol that considers security. Therefore,
no existing adversary model has been reasoned. In this initial secure wireless firmware
update investigation, we follow a relevant model and assumptions in PUF-based authentication
protocols designed for resource-constrained platforms [62], [66].
Notably, a wireless firmware update of a CRFID device is only possible after: i) the
commissioning of the device whereby an immutable program called the bootloader is installed
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on the device; and ii) the prover  has enrolled—extraction and secure storage of—SRAM PUF
responses in a secure environment using a one-time access wired interface. We assume that
the wired interface is disabled after the installation of the bootloader and enrolment of the PUF
responses. In other words, the adversary  cannot directly access the SRAM PUF responses,
only the immutable bootloader maintains this access at power-up and for a very short duration
of time. After the commissioning of the device, both a trusted party and the adversary  must
use the wireless interface for installing new firmware on a token.
Subsequent deployment of a token  will place it in an adversarial environment where only the
prover remains trusted. We assume that the adversary can eavesdrop on the communication
channel, isolate the CRFID transponder from the system and carry out a man-in-the-middle
attack and forward tampered information from  to  and vice versa. Further, following
the assumptions in [62], within the adversarial environment, the adversary  may obtain any
data stored in the NVM of the devices. However, as in [62], the adversary  cannot mount
implementation attacks against the CRFID, nor gain internal variables stored in the registers, for
example, using invasive attacks and side-channel analysis. Similar to other adversarial models,
we do not consider Denial of Service (DoS) attacks because, in practice, it is not possible to
defend against an adversary that, for example, disrupts or jams the wireless communication
medium [142], or attempts to heat the intrinsic SRAM cells to prevent a firmware update as a
result of the proposed conditional firmware update method (detailed in Section 3.3.3).

3.2.2 SecuCode Protocol

SecuCode protocol described in Figure 3.2 relies on the simplicity of transmitting the firmware
in plaintext and assumes the adversary  can gain full knowledge of the firmware—this is
consistent with the adversary model in this chapter which assumes that an adversary can read
the contents of the NVM of a CRFID device. This chapter focuses to prevent malicious code
injection attacks. SecuCode achieves this goal by facilitating the authentication of the prover by
the token and ensuring the integrity of the firmware by the token before accepting the firmware.
Therefore, only firmware issued by the trusted prover will be accepted.
The SecuCode protocol is designed to be implemented over the EPCGen2 protocol. We employ
the recently defined extended Access command features for supporting future security services
on RFID transponders. Consequently, firmware update initialisation employs TagPrivilege
and Authenticate while downstream data transmissions in SecuCode are carried out
by employing the EPC Gen2 protocol specification of BlockWrite and SecureComm

commands. The SecureComm command specification allows the encapsulation of other EPC
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Gen2 protocol commands, such as BlockWrite but the payload is encrypted. Hence, we
employ the SecureComm command to transport the message authentication code to the token.
We employ BlockWrite command to write firmware to a memory space, or download area,
allocated and managed by the bootloader on a CRFID transponder. Although the specification
of TagPrivilege, Authenticate and SecureComm commands are defined in the EPC
Gen2 protocol, it is important to mention here that these commands are yet to be supported on
CRFID transponders and this also constitutes one of the tasks in this study. The key phases in
the proposed SecuCode protocol are summarised below:

• Prover initialisation phase in a secure environment: This phase is carried out in a
secure environment. A publicly known unique identification string id is stored in a token’s
NVM. The prover  enrols in a database DB the id of the target token  as well as the
challenge-response pairs (CRP) from the PUF (also known as the enrolment phase [59]).
The bootloader, immutable program stored in a write protected memory space, is installed
on the token  by the prover  and, subsequently, the physical interface to  is disabled.
The bootloader is responsible for the SecuCode protocol implementation on the token.

• Firmware update phase in a potential adversarial environment: For each code
dissemination session, there will be a compiled firmware at the prover  to be transmitted
along with a setup profile which describes the size of the firmware, starting memory
address and the MAC method for the token  . In particular, the following occurs:
i) lightweight physically obfuscated key derivation on the token and the subsequent
transmission of the token generated random challenge seed c and helper data h to the
prover; ii) firmware updatewhich includes the wireless transfer of firmware to the token,
the establishment of the veracity of the firmware on the token to accept/abort the firmware
update issued by the prover and update of firmware on the token. We elaborate on these
stages below.

Lightweight Physically Obfuscated Key Derivation

After the token  harvests adequate power from the prover  , a nonce is generated for use in the
firmware update session, meanwhile a random number ci is generated as the seed challenge; ci
can be viewed as a challenge seed that determines the starting index into a byte level address in
a block of highly reliable and unbiased SRAM PUF cells; for a detailed discussion please refer
to Section 3.3.3. These responses are subsequently readout; ri ←PUF(ci).
We propose a conditional firmware updatemethod based on evaluating the on-chip temperature
prior to the key derivation phase since response reliability of SRAM PUFs are more sensitive
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to changes in temperature than supply voltage. This is to significantly reduce the computational
burden on the PUF key generation overhead while meeting error correction and security
bounds—details in Section 3.3.3. Immediately before key derivation, the TEMP() function sets
an over-temperature flag (OTF) if the in-built chip thermometer reports a temperature outside
of a legal range (0◦C to 40◦C is the chosen legal range in this chapter). Setting OTF will result
in aborting key derivation and triggering a re-booting of the token.
A token  operating under a legal temperature range will execute the private key ki derivation
and helper data hi generation as (ki,hi)←FE.Gen(ri). The private key ki is used in the following
firmware update process and only retained in the SRAM on the token  for the duration of the
protocol session and discarded: i) at the completion of a session; or ii) during a power loss event.

Firmware Update

The id of the token  is checked by the prover  to select the target token and once the
target is confirmed to be visible to the prover and is singulated, the prover  can employ
Access commands Authenticate, BlockWrite and SecureComm—see Figure 2.1 for an
illustration of the EPC Gen2 protocol behaviour—to execute the firmware update. We describe
the update phase below.
The prover issues an Authenticate command to deliver setup parameters. The token
responds with the nonce, ci and hi back to the prover. The prover  reconstructs the private
key ki through ki ← FE.Rep(r′i , hi); here, r′i is the enrolled response corresponding to ci. Now
the prover  and the token  have a shared private key.
The firmware cannot generally be sent to the token  in a single transaction. The EPC
Gen2 protocol implies a limitation on the length of a payload string to 255 words; this can be
inadequate to encapsulate a practical CRFID firmware[29]. Therefore, we partition the firmware
input into n chunks {f irmware(0), f irmware(1), f irmware(2), ..., f irmware(n)} and transmit
sequentially indexed chunks {seq0, seq1, ..., seqn} to the token  using the BlockWrite

command. Here, seqi indicates the relative offset of firmware chunk f irmware(i).
Before the firmware update is applied, the token  must validate the authenticity of the prover
 and the integrity of the firmware. First, a message authentication code s′ is computed
by the prover  using a MAC() function as s′ ←MACki(f irmware‖nonce), with ki the
reconstructed PUF key. Second, the prover sends s′ to the token. The token computes s =
MACki(f irmware‖nonce) locally to compare s and s′. If s and s′ match, the token  accepts
and applies the firmware update. Success of a firmware update is signaled to the prover  by
the token backscattering an ACK. This process ensures:
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1. The integrity of the received firmware at the token  . Any corruption or mutation will
lead to the failure of the integrity check on the token owing to the MAC() and subsequent
discarding of the firmware.

2. The authority of the prover  . Only the trusted prover can obtain same secret key ki to
issue a valid MAC tag s′.

3.3 Implementation

In this section:

1. We generalise the SecuCode control flow on a token  and provide an overview of the
required functional blocks.

2. We describe the challenges in instantiating the functional blocks and propose approaches
to address them.

3. We complete the end-to-end implementation based on the instantiated functional blocks.

We have selected the open-hardware and software implementation of WISP5.1-LRG [143]
CRFID transponder as our token  for a concrete implementation and experiments. This
intermittently powered CRFID transponder is built using the ultra-low power microcontroller
unit (MCU) MSP430FR5969 from Texas Instruments. Therefore, when required, we provide
specific implementation examples on a CRFID transponder based on the WISP5.1-LRG and
MSP430FR5969 MCU in the discussions that follow.

3.3.1 Protocol Control Flow on a Transponder

Following the SecuCode protocol in Section 3.2.2, the generalised control flow on a transponder
is illustrated in Figure 3.1 and detailed below.
1 When a token  is adequately powered, it initialises the MCU hardware, and determines
whether to run in firmware update mode or application execution mode. If OTF is not set (the
token is operating in a legal temperature range), the token enters the key derivation phase and
2 a challenge ci and a nonce are generated using the RNG. 3 The token  reads the response
ri corresponding to ci. 4 The token  derives a key ki and computes helper data hi through
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Figure 3.1: (a) Control flow and (b) Protocol functional blocks implemented to instantiate SecuCode protocol on a
CRFID transponder.

(ki,hi)←FE.Gen(ri). These steps complete the key derivation phase and 5 the token  awaits
for further commands from the prover  .
6 The token  responds to an Authenticate command consisting of the firmware update
setup parameters with hi, ci, and nonce to enable the prover  to reconstruct the PUF key ki.
The Authenticate command also directs the token  to enter the Firmware Updatemode.
7 Whilst in this state, the prover  can transmit new firmware in chunks.
8 Given a firmware chunk, f irmware(i), it is transmitted using BlockWrite commands
and stored in the download area in a receive and store process. At the completion of the
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wireless firmware transmission, the MAC tag s′ computed by the prover is encapsulated in a
SecureComm command and sent to the token  .
9 The MAC value s computed by the token using the received f irmware and nonce with
the secret key ki is compared; if the integrity of the firmware and authenticity of the prover
is established, 11 the f irmware is accepted and 12 the token sends an ACK to the prover.
Otherwise, 10 the update is discarded. Regardless of the acceptance or rejection decision, the
token exits the Firmware Update mode by triggering a power-on-reset.
13 If a firmware update is not required, the token  executes the user code, 14 if the token
receives a TagPrivilege command, indicating entry into firmware update mode, the token
restarts in firmware update mode by setting a firmware update flag—FirmwareUpdate—and
triggering a power-on-reset. Whenever the token  is rebooted by a TagPrivilege command
to enter the Firmware Update mode, nonce and derived key ki is refreshed. The ki changes
because: i) the challenge seed is refreshed; and ii) a varying response is produced even for the
same challenge as a consequence of the naturally noisy nature of the response bits.
A power failure such as a brownout event, as shown in Figure 1.3 in Chapter 1, during the
execution of the protocol will result in a reset and rebooting of the token  . In such an
event, the immutable bootloader’s functionality is preserved. Therefore, a prover  can attempt
another secure firmware update. In the following sections, we describe the instantiation of each
functional block shown in Figure 3.1(b).

3.3.2 Random Number Generator

The implementation of the SecuCode protocol is shown in Figure 3.2 employs an 8-bit challenge
seed and a 128-bit nonce. As with other low-end computing platforms, acquiring true random
numbers on a CRFID device is challenging given the lack of resources to implement a
cryptographically secure random number generator (RNG). Ideally, the RNG should be a true
random number generator (TRNG) and its implementation should require no modifications to
existing hardware. We evaluate and summarise the performance of three RNGs in Table 3.2 in
terms of random bits per request, time overhead, power consumption and required hardware.
We provide a summary of the random number generator methods we have evaluated.

CTR-DRBG. Texas Instrument has demonstrated a Counter Mode Deterministic Random
Byte Generator (CTR-DRBG) in [144] to meet the needs of security mechanisms on MSP430
MCUs. The CTR-DRBG is developed by National Institute of Standard and Technology
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Prover  Transponder 
DB = (id′, (c1, r′1),… , (cm, r′m)) id
setup, f irmware = (f irmware(0), f irmware(1),… , f irmware(n))

Power UP
←←←←←←←←←←←←←←←←←←→ OTF← TEMP()

if (OTF is set) abort
otherwise do
(nonce, ci)← RNG()
ri ← PUF(ci)
(ki,hi)← FE.Gen(ri)

Query
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RN16
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
ACK(RN16)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
id

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
if id′ ≠ id reject and abort

Req_RN(RN16)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

handle
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

Authenticate(handle,setup)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ if(setup is accepted)

enter Firmware update mode
and continue

ACK(hi,nonce, ci)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

r′i ← DB(ci)
ki ← FE.Rep(r′i ,hi)
s′ ← MACki(f irmware‖nonce)

BlockWrite(handle, seq0, f irmware(0))
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ store f irmware(0) into

code memory at seq0
ACK

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
⋅
⋅
⋅

BlockWrite(handle, seqn, f irmware(n))
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ store f irmware(n) into

code memory at seqn
ACK

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
SecureComm(handle,confirm, s′)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ s ← MACki(f irmware‖nonce)
if s′ ≠ s reject and abort
otherwise accept and

ACK apply firmware update
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

Figure 3.2: SecuCode protocol.

(NIST) in NIST SP 800-90A [145] and is built upon a block cipher algorithm (e.g., AES256).
The CTR-DRBG passes all NIST randomness test criteria; implying that the CTR-DRBG has
comparable performance to a true random number generator.

Page 52



Chapter 3 Securing Wireless Code Updates to Intermittently Powered Devices

Table 3.2: Random Number Generator Comparison.

Name Bits per
request Time overhead Energy

consumption Hardware requirement
CTR-DRBG 128 214 us 14.83 nJ AES ,FRAM
Thermal noise 16 27.2 us 2.69 nJ ADC
SRAM-TRNG 128 23.10 us 2.32 nJ –

Note: the calculations are based on the technical details obtained from MSP430FR5969
datasheet for a 1 MHz MCLK and 3.3 V power supply.

Thermal noise. Thermal noise (Johnson–Nyquist noise) has been exploited [146][147][148] as
an entropy source for a TRNG. Thermal noise results in unpredictable small voltage fluctuations
in resistive components at any temperature above 0°K. The least significant bit (LSB) of sampled
data is significantly affected by thermal noise over other bits[149][150]. Therefore, random bits
can be extracted by sampling the LSB from a noisy sensor or measuring signal propagation
variations [69]. Random number generators from this method has passed the NIST randomness
tests [69], [151].
Noisy SRAM responses. The noisy SRAM PUF responses can be used to generate true random
numbers; this method has been extensively studied, for example in [50], [62]. Sufficient entropy
can be extracted through, e.g., exclusive-or and bit shift operations[50], [62] over a number of
SRAM PUF responses. Random bit streams from this method has passed the NIST random
number generator test suite [50].
We can see that the SRAM TRNG, implementation based on the study in [62], outperforms the
rest with regards to time and energy overhead. Most importantly, it requires no extra hardware.
Therefore, an SRAM TRNG is chosen for implementing the SecuCode protocol.

3.3.3 Lightweight Physically Obfuscated Key Derivation

Deriving and sharing a private key between the prover  and the token  should also be:
i) lightweight; and ii) secure. Realising both requirements on a resource-limited token is
challenging. Thus we: i) employ an SRAM PUF to derive a key instead of a stored key in
non-volatile memory—prone to extraction through physical means and requiring expensive
secure NVM—with the ability to refresh the key between protocol sessions; and ii) employ
a reverse fuzzy extractor to realise a lightweight FE.Gen() on the token to compute helper data
necessary for the server to independently reconstruct the shared key with very high probability of
success. In particular, we propose the following mechanisms to derive a lightweight and secure
PUF key:
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• Enhancing reliability of key material. Time complexity of the generator function
FE.Gen() and security—information leakage—is related to the amount of helper data
needed to correct noisy SRAM PUF response bits. Therefore, we extract SRAM PUF
responses with high bit specific reliability using response pre-selection with an on-chip
selection meta-data storage structure together with the proposed conditional firmware
update method to significantly reduce the demand on helper data (see Section 3.3.3).

• Removing information leakage through response bias. PUF response bias, an
imbalance between the number of zeros and ones, has shown to leak additional
information [73], [152]. Therefore, to guarantee the security bounds of the reverse fuzzy
extractor, we propose a Hamming weight-based response de-biasing method to eliminate
response bias (see Section 3.3.3).

Enhancing Reliability

We consider a syndrome-based construction as in [66] and use a BCH(n, k, t) linear block code
encoder to build FE.Gen(). The FE.Gen() function is responsible for generating the helper data
h used by the prover to reconstruct the PUF response extracted by the token using a previously
enrolled response that is securely stored at the prover. Here, t denotes the number of errors a
BCH(n, k, t) code is capable of correcting, n denotes the number of bits extracted from a PUF
or the length of the response ri where the length of the helper data is |h| = (n− k)—which also
defines the well known upper bound on information leakage.
Although we can select a BCH(n, k, t) code with appropriately large parameter values to achieve
the desired attack complexity, error correcting capability to achieve an industry standard key
failure rate of less than 10−6 and number of key bits k, the computational time complexity of a
BCH encoder,(n2), forces the use of parallel blocks of BCH(n, k, t) code with smaller values of
n. For |ri|∕n parallel blocks of BCH(n, k, t) code using a syndrome construction, the complexity
of finding ri is 2k|ri|∕n [73].
The key failure rate when employing a BCH(n, k, t) code is expressed as:

P1 = 1 − binocdf (t, n,BER) (3.1)

where binocdf is the binomial cumulative distribution function, BER describes the response
unreliability as introduced in Section 2.3.2.
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As we use multiple blocks, the failure rate when |ri|∕n blocks are employed is expressed as:

P Failr = 1 − (1 − P1)|ri|∕n (3.2)

Therefore, we can see that it is imperative to reduce BER to significantly decrease the key
failure rate P Failr and reduce the complexity of the BCH encoder required. We devise the
following two methods to significantly reduce the complexity of the BCH encoder required
on the resource-constrained token: i) response pre-selection together with on-chip selection
meta-data storage structure; and ii) a conditional firmware update strategy. As shown by detailed
experimental evaluations in Section 3.4.1, our approaches significantly reduce the expected BER
to be less than 1%.

Pre-selection. SRAM PUF pre-selection was first noted by Hofer et al. in [132]. The idea is to
locate SRAM cells which tend to generate stable PUF responses. During the enrolment phase,
unstable responses are identified and discarded for key generation [153].
We employ an approach similar to the multiple-readout method in [153]. Given that a
microcontroller’s SRAMmemory is byte addressable, we employ a byte-level response selection
method illustrated in Figure 3.3. In particular, we first select response bytes that are reliably
reproduced under repeated measurements generated under two corner temperatures—selected
as 40 °C and 0 °C in our implementation. Subsequently, under nominal temperature (25 °C ),
the former response bytes are further subjected to multiple readouts and majority voting (e.g.,
if 8 out of 10 readouts of a bit yields logic ‘1’, then this bit is enrolled as a logic ‘1’) is applied
enrol values for the response bytes.

Conditional firmware update. It is recognised that the BER of SRAM PUF is sensitive
to temperature but insensitive to supply voltage variations [154]. Therefore, in addition to
reliable response pre-selection, we propose performing a conditional firmware update based
on the core operating temperature of the token. A firmware update is executed only when the
core temperature of the chip is within a legal temperature range; considering most practical
applications, we selected 0 °C to 40 °C range for SecuCode. Without extra hardware
overhead, we take advantage of the available temperature sensor within the MSP430FR5969
microcontroller used by the CRFID transponder to sample the temperature before the PUF
responses are readout. A temperature breaching the legal range terminates further execution
and triggers a power-on-reset.
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Figure 3.3: (a) Procedure for pre-selection, enrolment and de-biasing to enhance the response reliability and
generate unbiased PUF response, and (b) Memory maps detailing each step—only the first 64 words are shown
here.

Proposed De-biasing Scheme

Most studies assume that PUF responses are uniformly distributed and hence an n-bit response
has the fully entropy of n bits. Using aBCH(n, k, t) code, (n−k)-bit helper data hwill be publicly
known. Under the disclosure of helper data h, there is no less than k-bit entropy remaining.
However, as highlighted recently [152], [155], response bias incurs extra entropy loss. Thus, the
k-bit min entropy bound guaranteed by a BCH(n, k, t) encoder might be decreased. To prevent
extra entropy leakage, response de-biasing methods can be employed [155], [156]. In general,
de-biasing converts a response rx into an unbiased enrolled response ry, where response rxmight
have a bias and |rx| ≥ |ry|. De-biasing needs to consider four aspects: i) de-biasing should
not deteriorate or increase response error rate; ii) efficiency; iii) information leakage; and iv)
reusability [152], [155]; to this end, we propose the following Hamming weight (HW)-based
de-biasing method.

HW-basedDe-biasing. In our application scenario, there are three design specific requirements:
i) minimise the de-biasing computational overhead on the token  ; ii) avoid any additional
data transmission overhead between the prover  and the token  ; and iii) reduce additional
de-biasing information stored on the token  . We discuss how we achieve the first two goals in
this section and explain how we achieve the third goal in Section 3.3.3.
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To achieve the first two goals, we offload the computational burden to the prover  by
performing a one-time de-biasing during the enrolment phase. In the Pre-selection stage
described in Section 3.3.3, stable SRAM PUF bytes are identified. We further refine HW
balanced bytes from those stable bytes in our one-time de-biasing process. In general, we
determine the address of bytes which are not only reliable but also HW balanced; HW close to
0.5. This approach leads to PUF responses—a linear combination of de-biased stable bytes—to
be HW balanced. The HW-based process applied post pre-selection is shown in Figure 3.3.

Remark. The proposed HW-based scheme does not deteriorate reliability of PUF responses,
eschews leakage from potential bias and enables re-usability. As a trade-off, efficiency is
decreased as the |rx|

|ry|
is low as demonstrated by our experimental results in Section 3.4.1.

However, efficiency is not a concern in our implementation of SecuCode as there are always
sufficient SRAM responses while we only need to use a small fraction of them. In [155], due to
the de-biasing method—i.e., classic von Neumann de-biasing (CVN)—the token  generates
different de-biasing data for each re-evaluation of the response rx. Thus, multiple observation
of the de-biasing data given the re-generation of rx leads to extra entropy loss. Therefore, the
key generator based on such a de-biasing method is not reusable unless further optimisation,
e.g., pair-output VN de-biasing with erasures (�-2O-VN), is implemented to prevent extra
entropy loss from the multiple production of the de-biasing data. In contrast, in our HW-based
de-biasing method, the de-biasing data is generated only once during the enrolment phase, we
do not generate multiple de-biasing data and thus incurs no further entropy leakage from the
de-biasing data. This implies that our HW-based de-biasing is reusable.

On-chip meta-data storage structure

It is inefficient to store the absolute addresses of winnowed bytes post pre-selection and
de-biasing process, described in Figure 3.4, on the CRFID device and to subsequently perform
an exhaustive search to find them on demand. We propose the data storage structure named
CRP-block map to refer to those reliable and HW balanced SRAM PUF responses.
The CRP-block map data structure is illustrated in Figure 3.4(c). The CRP-block data structure
divides the SRAMmemory into multiple blocks. Each block has an integer index such as Block
0, Block 1, and Block 2. The size of each block may vary, however, each block is designed
to contain an equal number of reliable and HW balanced bytes required for the physically
obfuscated key derivation mechanism. To map a CRP-block into a physical memory address,
each block has an absolute starting address and several offsets pointing to the winnowed bytes.
The starting address of each block and the offsets are stored in a look up table LUT in a token’s
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Figure 3.4: CRP-block map, a compact data structure to store the mask configuration on the CRFID transponder
for fast response readout.

NVM indexable via block number. To produce a PUF key, the RNG() generates a seed challenge
that is a block number. Consequently, a look up of a block number will resolve the targeted
block’s starting memory address and the offsets point to the response bytes. Hence a random
challenge ci can be used to select a CRP-block and, subsequently, the power-up states of the
bytes in the selected CRP-block are readout and concatenated as the response ri that is both
highly reliable and unbiased.

3.3.4 Message Authentication Code

SecuCode requires one cryptographic primitives: a keyed hash function to build a message
authentication code (MAC) to realise the MAC() function. The two dominant factors
determining their selection are:

1. The CPU clock cycles required for execution. For example, from the figure Figure 1.4 we
have seen in Chapter 1 that at a 50 cm distance, we may not expect more than 500,000 to
600,000 clock cycles before harvested power is exhausted.

2. Memory (RAM) budget. Since available on-chip memory is shared by the RFID
communication stack, sensor data, user code, and SecuCode, the state space available
for a cipher execution is limited.
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Therefore, power and memory efficient primitives are highly desirable. The construction of a
secure, computation and power efficient message authentication code MAC() on the token is
extremely challenging as the entropy compression task is resource intensive and attacks, such as
birthday attacks, demand that we use a MAC function with a large enough output size.
Given the lack of MAC benchmark data for MSP430 microcontroller series, we selected and
implemented a set of existing secure keyed hash functions expected to yield a computationally
efficient software implementation. Notably, benchmarks of software implementations of MAC
function on desktop platforms are not suitable since these implementations use specific CPU
instructions, such as the Streaming SIMD Extensions (SSE) instruction set, where SIMD stands
for single instruction, multiple data [157], and advanced paradigms like out-of-order execution,
which are not supported on resource-constrained embedded systems. We implemented
and evaluated: BLAKE2s-256, BLAKE2s-128, and hardware-AES (HWAES) functions
HWAES-GMAC and HWAES-CMAC for comparison; here HWAES functions benefited from
the AES hardware accelerator module on the MSP430 MCU.
The MAC function tests were based on two WISP firmwares; i) LED firmware (short string);
and ii) 3-axis accelerometer firmware (long string). Table 3.3, and 3.4 detail our results. We
selected HWAES-CMAC to obtain a 128 bit MAC in our SecuCode implementation.

Table 3.3: MAC evaluation with LED firmware size = 153 bytes.
MAC Digest size (bits) Byte in digest Clock Cycles Cycle per message byte Code size (bytes) Internal state size (bytes)
BLAKE2s-256 256 32 81,036 530 4,964 238
BLAKE2s-128 128 16 79,276 518 4,961 238
HWAES-GMAC 128 16 432,337 2,826 3,538 268
HWAES-CMAC 128 16 15,876 104 3,198 58

Table 3.4: MAC evaluation of Accelerometer firmware size = 419 bytes.
MAC Digest size (bits) Byte in digest Clock Cycles Cycle per message byte Code size (bytes) Internal state size (bytes)
BLAKE2s-256 256 32 183,230 437 4,964 238
BLAKE2s-128 128 16 181,470 433 4,961 238
HWAES-GMAC 128 16 1,106,538 2,641 3,538 268
HWAES-CMAC 128 16 37,041 88 3,198 58

Based on results above, we selected a 128 bit MAC using HWAES-CMAC, Cipher-based
Message Authentication Code 6 built using AES since it yields the lowest clock cycles per byte.

6We used the implementation detailed in NIST Special Publication 800-38B, Recommendation for Block Cipher
Modes of Operation: the CMAC Mode for Authentication
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Figure 3.5: (a) Illustration of a brownout event and the proposed intermittent execution model (IEM) to prevent
brownouts during computationally intensive operations (notations are given in Figure 1.3) and (b) Comparison of a
PUF key derivation on a CRFID transponder at 50 cm from an RFID reader antenna with and without our proposed
IEM.

3.3.5 Intermittent Execution Model

The nature of intermittently powered devices that rely on harvested power is typically described
by a power harvesting and charging phase where energy is generally stored in a reservoir
capacitor and then released for powering computations. We refer to this cycle as the intermittent
power cycle (IPC). A brownout event can occur when the available energy in an IPC subceeds
the energy needs of the computations, and the power harvester is unable to replenish energy
as rapidly as it is consumed. A brownout results in state loss and termination of the execution
thread as highlighted in Figure 1.3. Hence, as illustrated in Figure 3.5, we cannot always expect
to continue a computation task to completion.
Studies such as Alpaca [158], Mementos [159], CCCP [160] and Clank [161] consider the
problem of continuing the thread of execution over periods of power loss. In general, these
studies employ checkpoint-based methods with various degrees of programmer support. The
basic concept is to save state—checkpoint—and to restore state to a previously valid checkpoint
to allow the resumption from a previous state of execution after a power loss event. With the
exception of CCCP, state is saved in a device’s non-volatile memory; CCCP proposes the saving
of state in an untrusted server. However, in SecuCode, process state such as the PUF key is
intentionally volatile to eliminate the need to protect key storage. If power-loss or brownout
does occur, all unfinished process state based on old keymaterial should be discarded. Therefore,
approaches to save and restore state from non-volatile sources are not desirable. Further, writing
to NVM is energy intensive and we would like to avoid the additional overhead of checkpointing.
In contrast, Dewdrop [162] considers execution under frequent power loss by attempting to
prevent a brownout event by solving a task scheduling problem; execute tasks only when they
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are likely to succeed by monitoring the available harvested power. Dewdrop provides an elegant
dynamic scheduling method, however, requires the overhead of sampling the harvester voltage
within the application code and task scheduling.
In order to deal to with frequent intermittent power loss, we consider the following intermittent
execution model (IEM) for computation intensive building blocks of the protocol: MAC()

and FE.Gen() functions. The IEM proposed in this chapter is built on the basic concept of a
task in Alpaca [158]—a code block proportioned to execute to completion under a minimum
number of available clock cycles or energy— and the concept in Dewdrop [162] attempting to
prevent brownouts. We first identify the computationally intensive functions in the firmware,
and construct an execution plan based on factoring the function to sub-tasks. These subtasks
are then interleaved with low power sleep states in the code. We selected the lowest power
consumingmicrocontroller sleep state from the target microcontroller such that thememory state
is maintained during sleep. The duration of the imposed sleep state—termed the intermittent
operating setting—is realised using an on-chip timer interrupt to wake up the transponder at the
conclusion of a given intermittent operating setting; upon wake-up the transponder continues
the execution of the following sub-task.
Immediate benefit of the IEM is the possible prevention of an intentional brownout event
by allowing the replenishment of the reservoir capacitor energy by the power harvesting and
charging circuity as illustrated by the graph at the bottom of Figure 3.5(a). Figure 3.5(b), shows
an experimental validation of of our IEM; here, we plot two captures of reservoir capacitor
voltage with and without the IEM. The voltage capture traces show that the IEM restores power
during low-power sleep states interleaved between sub-tasks—shown by the recovery of the
voltage developed across the reservoir capacitor. In contrast, as shown by a falling reservoir
capacitor voltage, the CRFID device without IEM fails due to brownout. Here, the CRFID
device is unable to harvest adequate power to replenished the reservoir capacitor fast enough to
provide the minimum operating voltage (1.8 V) necessary for the MCU.
In this chapter we hard-code the IEM setting. We further investigated the possibility of using the
read-rate reported from the RFID reader to dynamically adjust the IEM setting to suit different
powering channel conditions in Appendix A.
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3.3.6 End-to-end Implementation

The complete SecuCode-based firmware update process is illustrated in Figure 3.6. We describe
below the memory arrangement, the development of the bootloader together with the complete
tool chain to realise a standards compliant secure firmware update process.

Memory Arrangement. As shown in Figure 3.6 (c), the 2 KB SRAM embedded in the
MSP430FR5969 MCU is divided into two sections. The lower address space is used for the
SRAM TRNG and occupies 64 words of SRAM. The address space above the SRAM TRNG
forms the SRAM PUF. The SRAM PUF and SRAM TRNG do not span the full space of the
SRAM memory. This is necessary to allocate space for initialisation routines and PUF state
variables. One hundred and sixty bytes of higher addresses are allocated as stack space, and
480 bytes from the lower address space is designated for static variables such as ci, nonce and
hi. The SRAM PUF and SRAM TRNG are only active during the Physically Obfuscated Key
Derivation stage in Figure 3.1; once the response ri is readout and ki and hi are generated, the
SRAM memory is released for regular operations.
The CRFID devicewe employed has an embedded 64KBFerroelectric RandomAccessMemory
(FRAM) as NVM. FRAM is partitioned into 64 KB code memory and 1 KB for Device
Descriptor Info [163]. In this chapter, we only employ the 64 KB code memory space. The
FRAMmemory layout of the specific CRFID device we used is shown in Figure 3.6(c). FRAM
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is divided into three sections: i) the bootloader; ii) Application code, and iii) User Memory
(Download Area). The User Memory segment can be manipulated using BlockWrite

commands, however only the bootloader can write to the Application Code memory space.

Bootloader. The SecuCode implementation for the CRFID device requires a bootloader to be
provisioned onto the device. This is because the CRFID device has no supervisory control of
an operating system and is designed in the manner of a low-end and low-cost device.
The bootloader developed in this chapter is based on TI’s bootloader framework,
MSPBoot [141]. The Comm interface in MSPBoot is designed to operate on trusted data, and
therefore, should not directly communicate with the RFID MAC layer. Instead, the received
firmware is buffered in a Download Area in memory. After the SecuCode protocol verifies the
authenticity and the integrity of the firmware, it is passed to theMSPBoot via theComm interface.
In our implementation, we adopted the WISP5 firmware7 for the RFID MAC layer.
In order to realise an immutable bootloader, we considered the full memory protect mode
(FMPM) and partial memory protect mode (PMPM) offered by the microcontroller together
with setting an e-Fuse [164] to disable the potential for wired re-programming using the on-chip
Joint Test Action Group (JTAG) interface after deployment in the field. In FMPM, the MPU
(memory protection unit) is configured to prevent writing to the bootloader. Most importantly,
the MPU is locked from being accessed. These actions are performed during the initialisation
process, before execution of user code, and therefore, it is infeasible for the bootloader to be
modified in FMPM mode. In PMPM, writing to the bootloader is still prevented, however, the
MPU is not locked. Such an MPU configuration provides basic protection for the bootloader
against programming errors, while still allowing the bootloader to be remotely updated. In this
context, the firmware temporarily disables memory protection, overrides parts of the original
code, then re-enables memory protection. We employ FMPM mode to realise an immutable
bootloader.

Secure Firmware Update Process. The provisioning and the secure wireless update process is
illustrated in Figure 3.6. A CRFID device is first provisioned whereby the immutable program
called the bootloader is installed on the device in a secure environment. We assume the
wired interface is disabled after the installation of the bootloader, and therefore, wireless code
dissemination is the only practical mechanism by which to alter the firmware. The provisioned
CRFID device is deployed in the field and can be subsequently updated with new firmware
following the process below.

7https://github.com/wisp
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• Compile the new firmware using a standard MSP430 compiler and pass the output,
together with a linker map that specifies the memory allocation scheme shown in
Figure 3.6, to an MSP430 linker to generate a binary file in ELF format8.

• Use our SecuCode App, available from [165], to load and parse the resulting ELF file to
wrap the LOAD segments into MSPBoot commands specified in the MSPBoot framework
[141]. The resulting binary is broken up into 128-bit blocks for transmission to a CRFID
transponder.

• The SecuCode App subsequently uses LLRP commands to construct AccessSpecs
and ROSpecs—refer to Section 2.2.2 for LLRP. These encodes EPC Gen2 protocol
commands employed by SecuCode such as Authenticate, BlockWrite and
SecuComm commands9 to setup a networked RFID reader to execute the SecuCode
protocol to wirelessly and securely update the firmware of the target device.

3.4 Experimental Results and Analysis

In this section, we describe the extensive set of experiments conducted to evaluate SecuCode.
Here, we employed 20 MSP430FR5969 MCU chips (we release the data set as MSP20, more
details plerase refer to Section 2.3.4) and a WIPS5.1LRG CRFID device built with the same
microcontroller. TheMSP430FR5969microcontrollers consists of 2KB (16,384 bits) of internal
SRAMmemory and 64 KB of internal FRAMmemory. In our implementation we employed an
8-bit challenge ci and a 128-bit nonce. We summarise our experiments below:

1. We evaluate and validate the response pre-selection and HW-based de-biasing methods,
and subsequently, determine the BER of the CRP-block maps to determine the parameters
n, k, t for the BCH encoder used to realise the FE.Gen() function on the CRFID
transponder (Section 3.4.1).

2. Given that: i) security protocol implementation costs are rarely examined in the
literature; and ii) the resource-constrained nature of the CRFID devices demand security,
performance as well as practicability; we evaluate the memory requirements (code size in
FRAM and state space in SRAM) and computing clock cycles for the security functional

8Alternatively, Texas Instrument’s Code Composer Studio integrated development environment which bundles
all the necessary tools can also be used to simplify the task

9Given that Impinj R420 RFID readers do not yet support the recent EPCGen2 protocol changes, we implement
the unsupported commands using BlockWrite commands. The implementation of the employed commands are
detailed in Appendix.C.1
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blocks (those in addition to MSPBoot and RFID MAC Layer) necessary for SecuCode
(Section 3.4.1 and Section 3.4.2).

3. We evaluate the impact of the most energy and computationally demanding SecuCode
functional blocks—key derivation and MAC function—on performance and evaluate
the effectiveness of our intermittent execution model on these energy intensive building
blocks. (Section 3.4.3 and Section 3.4.3).

4. We present a case study to demonstrate the end-to-end implementation of SecuCode in an
application scenario—the source code of our case examples are released on our project
website to facilitate further research, experimentation and adoption of our SecuCode
scheme (Section 3.4.3).

5. We evaluate the security of SecuCode under the adversary model detailed in Section 3.2.1
(Section 3.4.5).

3.4.1 Physically Obfuscated Key Derivation

In this section, we validate the lightweight physically obfuscated key derivation method using
experimental data. Details about the evaluated MSP20 dataset can be found in Section 2.3.4 in
Chapter 2.

SRAMPUFReliability. Considering that SRAMPUFs are insensitive to voltage variations [67]
and the voltage can be eventually controlled well in practice, we focus on its performance under
differing temperature corners (-15 °C , 0 °C , 25 °C , 40 °C and 80 °C ). The evaluated MSP20
dataset has a average BER of 11% when referenced at 25 °C and reevaluated at 80 °C . The
applied pre-selection reduces the BER significantly to no more than 0.94% over the defined
legal temperature range of 0 °C to 40 °C—see Section 3.3.3.

SRAM PUF Bias. We follow the method described in Section 2.3.2 to evaluate the bias
of our SRAM PUF. Ideally the bias distribution should close to 0.5, otherwise, more close to 0
or 1 suggests more bias.
After response pre-selection, we implemented our HW-based de-biasing method. As shown in
Figure 3.7(d), experimental results from the 20 SRAM PUFs show that the mean of the bias is
0.499; very close to the ideal value of 0.5.
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Figure 3.7: (a) BER across differing operating temperatures. Bias distribution of 20 tested chips: (b) raw PUF
responses; (c) after pre-selection and (d) after HW-based de-biasing. Where � stands for the mean value, the
corresponding standard deviation value is denoted as � and the worst-case is marked with wc. We can observe the
HW-based de-biasing could effectively reduce the bias of the SRAM PUF response.

Table 3.5: CRP-block efficiency.

Chip ID Blocks produced Available PUF bits Efficiency
1 4 992 11.2%
2 8 1,984 22.3%
3 2 496 5.58%
4 2 496 5.58%
5 8 1984 22.3%
6 7 1736 19.5%
7 2 496 5.58%
8 5 1,240 13.9%
9 3 744 8.36%
10 6 1,488 16.7%
11 6 1,488 16.7%
12 6 1,488 16.7%
13 6 1,488 16.7%
14 7 1,736 19.5%
15 6 1,488 16.7%
16 8 1,984 22.3%
17 7 1,736 19.5%
18 4 992 11.2%
19 6 1,488 16.7%
20 6 1,488 16.7%

WISP5.1 LRG 7 1,736 19.5%

SRAM PUF Pre-selection Efficiency. Efficiency evaluates the ratio of number of the selected
reliable bits in the CRP Blocks selected over the total number of possible response bits (8,896
bits; obtained by deducting 2,048 bits reserved for the stack, 5,440 bits for the SRAM-TRNG
and static variables from 16,384 SRAM bits). We tested 20 newMSP430FR5969 chips and one
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Table 3.6: Memory & execution load of SecuCode functional blocks. Data measured from MSP430FR5969
embedded platform, under the Code Composer Studio (CCS) 7.2.0 development environment, with GNU Compiler
Collection (GCC) for MSP430 version 6.2.1.16. Optimisation settings: -O = 3; -opt_for_speed = 5.

Protocol Steps Memory Footprint (Byte) Clock Cycles
Data(SRAM) Code(FRAM)

nonce ←RNG() 6 68 375
ri ←PUF(ci) 6 32 615

OTF← Temp() 10 204 734
hi ← FE.GEN(ri) 1 53 621 109,234

s′ ← MACki(firmware‖nonce) 2 58 3,198 22,197 3
SecuCode total 133 4,123 133,155

1FE.Gen() based on BCH(31,16,3) code.
2using a 128-bit HWAES-CMAC message authentication code.
3For a moderate firmware size of 240 bytes.

WISP5.1LRG. The result are summarised in Table 3.5. The efficiency depends on the noise
level of the SRAM cells in the candidate chip, if a chip cannot provide adequate number of CRP
Blocks, it should be excluded before deployment. Nonetheless, for 20 tested chips, at least two
independent CRP-blocks—each consisting of 248 bits—are obtained.
Reverse Fuzzy Extractor using BCH(n, k, t). Although our BER is less than 1%, as
experimentally evaluated and shown in Figure 3.7, we selected to evaluate: i) 8 blocks of
BCH(31,16,3) code capable of correcting up to 3

31 or 10% of bits with P Failr = 1.6 × 10−3 for
8 parallel blocks; and ii) 6 parallel blocks of BCH(63,24,7) code capable of correcting up to
7
63 or 11% of bits with P Failr = 8.94 × 10−7 for 6 parallel blocks according to Equation 3.2.
Executing eight BCH(31,16,3) blocks to derive a 128-bit key requires 146,535 clock cycles
while computing 6 blocks of BCH(63,24,7) to obtain a 144-bit key consumes 346,776 clock
cycles.
Although employing a BCH(63,24,7) code allows us to achieve an industry standard key failure
rate of less than 10−6, we will see in Section 3.4.3 that protocol failure due to external conditions
such as intermittent powering is more likely than protocol failure due to a failed key recovery.
Therefore, we employed parallel blocks of BCH(31,16,3) code as a compromise between
error correction capability, computational complexity and performance in practice. In general,
for each block, the computational complexity of finding the 31-bit response ri through the
corresponding 15-bit public h is 216—assuming that the response bits are uniformly distributed
and have no correlations with each other. In order to achieve a 128-bit security level with an
attack complexity of 2128, we need eight such blocks as discussed in Section 3.3.3. Thus, an
SRAM PUF response ri with 31 × 8 = 248 bits need to be readout from the SRAM PUF for
each protocol session.
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3.4.2 SecuCode Implementation Footprint

In Table 3.6, we summarise the cost, in terms of CPU clock cycles, FRAM memory usage for
code size and SRAMmemory usage for state space size, for implementing each security related
building block of SecuCode on a CRFID transponder. These blocks represent the necessary
overhead imposed on the CRFID transponder to build our secure update method to prevent
malicious code injections attacks. While the computational cost of the reverse fuzzy extractor
is significant, it is fixed for each iteration of an update session. In contrast, the computational
cost of the MAC() function can increase with larger firmware code blocks (see our evaluations
in Section 3.3.4).

3.4.3 SecuCode Overhead and IEM Settings

Table 3.6 shows us that the most computationally intensive security building block are the
FE.Gen() (key derivation building block) and MAC() (needed for firmware integrity checks
and prove authentication) implementations. Hence these building blocks are likely to be most
impacted by as well as be the cause for brownout events. Therefore, both FE.Gen() and MAC()

implementations operate under our IEM.
A cold start-up is when a CRFID tag is activated from a completely powered down sate—i.e.,
where the reservoir capacitor of the CRFID device has been discharged in the absence of a
wireless powering source. Cold start time is defined as the time taken by a CRFID device
to respond to an RFID reader inventory command from a cold start-up. As illustrated in the
control flow diagram in Figure 3.1, physically obfuscated key derivation steps occur after a cold
start-up. Therefore, the FE.Gen() or key derivation method will place additional energy and
computation burdens on a cold start-up initialisation process and potentially lead to unsuccessful
device start-ups at the initiation of a firmware update. Hence, we evaluate the cold start-up
success and time overhead of a key derivation operation.
We also evaluate the success rate of our FE.Gen() and MAC() functions under wireless
powering conditions—different distances from a wireless powering source, i.e., RFID reader
antenna—and intermittent operating settings to understand the overhead imposed by our IEM
as well as the effectiveness of IEM to mitigate brownouts. We detail our experimental method
in Appendix C.1.1
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Figure 3.8: Physically obfuscated key derivation: (a) Cold start-up time overhead and (b) success rate.

Physically Obfuscated Key Derivation

In this experimental setting, we place the CRFID transponder (WISP5.1-LRG) provisioned with
our bootloader at 20 cm, 40 cm, 60 cm and 80 cm apart from a 9 dBi circularly polarised reader
antenna oriented towards a high ceiling to minimise interference from multipath signals on our
observations. We used each of the eight BCH code computations as subtasks for our IEM.
The results of cold start-up times and success rates are plotted in Figure 3.8(a) and (b),
respectively; here we plot mean cold start-up times and success rates over 100 repeated
measurements collected for each intermittent operating setting and distance pair. At 20 cm
interrogation range, the CRFID transponder completes key derivation from a cold start-up with a
high success rate; approximately 100%. When the distance is 40 cm, the success rate witnessed
a dramatic drop down to less than 50%, unless we increase the intermittent operation setting to
30 ms. When the distance is beyond 60 cm, the success rate cannot be guaranteed even using a
large intermittent operation setting. Achieving higher success rates beyond 60 cm will require
further division of subtasks capable of utilizing the available clock cycles before brownout.
Most importantly, we observe that the IEM can increase the success rate of completing the key
derivation process from a cold start-up but the trade-off is an increase in the cold start-up time
overhead as illustrated in see Figure 3.8(a).

MAC Computation

We defineMAC function latency as the time interval between calling aMAC function to perform
a calculation over a block of pre-loaded data on the CRFID transponder and the generation of
a valid result. We employ a single data block size. Following the definition in [166], the data
size is large enough such that the latency is mainly dominated by multiple compression rounds.
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Figure 3.9: (a) MAC function success rate and (b) success rate at different distances from an RFID reader antenna
under different intermittent operation settings. With data size 1280 bytes.

In this experiment, a random string of 1,280 bytes is used. Notably 1,280 bytes is twice the size
of the largest firmware update used in our experiments. Since the hardware AES accelerator is
very efficient in terms of clock cycles, instead of considering each AES compression round as a
subtask, we employ 32 rounds of AES computations as a subtask in our IEM implementation.
We report the mean latency and success rate obtained over 10 repeated MAC computations
collected for each intermittent operating setting and distance pair in Figure 3.9. As expected,
the observed latency increases linearly along with the intermittent operating setting. Overall,
increasing the intermittent operation setting improves the mean success rate of the MAC()

computation. For example, in Figure 3.9(b), we can see that at a 60 cm distance, the success
rate of the MAC computation improves from 20% to 80% with an intermittent operating setting
of 30 ms. Further, we can achieve success of no less than 60% at 80 cm distance when the
intermittent operating setting is greater than 20 ms.

SecuCode Case Study

As a demonstration of SecuCode in an application scenario, we evaluate SecuCode in the
following setting: There are several CRFID transponders embedded in plasterboards mounted
as ceiling tiles in a chemical warehouse. We require three different types of services from
these transponders. Some are to be programmed with Accelerometer service code to monitor
potential structural failures, some are to be programmed with Thermometer service code to
detect potentially dangerous thermal storage conditions while others are to be programmed
with basic firmware to respond with a fixed Global Location Number (GLN) as anchor points
to identify storage locations. The embedded CRFID transponders need to be reprogrammed
wirelessly to support monitoring and location service needs of the warehouse; further, over
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Figure 3.10: SecuCode case study set-up. The CRFID transponder is embedded in a plaster tile and placed 20 cm
above the antenna to emulate the target application scenario.

time, changes to the warehouse layout and monitoring needs such as hazardous temperature
levels can require alterations to existing firmware.

As shown in Figure 3.10, to emulate such a scenario, we embedded a WISP5.1-LRG into a
plaster tile after provisioning the device with our bootloader. The plaster tile with the embedded
WISP is then placed 20 cm above an RFID reader antenna. We used an IEM setting of 30 ms
as it provided a good compromise between latency (time to complete a firmware update) and
a high success rate over a range of wireless transfer distances. The results from 100 repeated
wireless firmware updates based on the three firmwares specific to three distinct applications in
our scenario description is summarised in Table 3.7. We successfully reprogrammed all three
application firmwares within a few seconds. Most notably we observed an increased number of
failures due to brownout for the larger firmware owing predominately to the increased energy
required for the FE.Gen() computation. Further, as expected, all of the failures were due to
brownout as opposed key recovery—recall that the key failure rate for the BCH code used is less
than 0.2% as shown in Section 3.4.1. Demonstration video of the firmware update process and
the source code of SecuCode App are available from[165].

3.4.4 Summary

Results in this chapter demonstrate: i) the practicability and robustness of the developed
SecuCode protocol; ii) the relationship between operating conditions, intermittent operation
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Table 3.7: SecuCode case study performance measures.

Application code Size
(Bytes) Latency (mean, std)1(s) success rate (%)

Accelerometer service code 399 (3.1, 1.0) 81
Thermometer service code 273 (2.5, 0.6) 92

GLN identifier code 223 (2.1, 0.5) 90

1Latency was measured as the time interval between the SecuCode App transmitting the
firmware to an RFID reader using LLRP commands and the time SecuCode App confirms the
acknowledgement of a successfully updated firmware.

settings and protocol performances; and iii) the effectiveness of the proposed IEM on realizing
successful secure firmware updates under intermittent powering from harvested energy.

3.4.5 Security Analysis

We analyze the security of SecuCode under the adversary model detailed in Section 3.2.1 in the
following.

Man-in-the-middle Attack

Here, security is related to the complexity of the adversary  fooling the token  in order to
inject malicious code. Such an adversary is faced with the task of determining the secret key
ki and therefore, we evaluate the security of the reverse fuzzy extractor which leaks helper data
during a firmware update session.
We employ a reverse fuzzy extractor where the helper data computation is placed on the
resource-constrained token  . In this context, different helper data corresponding to the same
response ri will be generated during different firmware update sessions; thus, multiple helper
data are exposed. It has been proved that the entropy leakage from the helper data is independent
of the number of enrolments for SRAM PUF [167]. In other words, one can evaluate the
entropy leakage from the helper data of the reverse fuzzy extractor for a single helper data
generation case; or the entropy leakage from multiple helper data observations is same as the
entropy leakage from a single helper data observation, as with a traditional fuzzy extractor.
Further, we assume that the de-biasing mask does not leak information. This is a reasonable
assumption as themask is limited to indicating the reliable CRP-blocks only and not the response
itself. In addition, it has been demonstrated through extensive experiments that modern SRAM
PUFs possess good uniqueness properties [168]. In other words, the highly reliable bits are not
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correlated across different instances of SRAM PUFs. Therefore, knowledge of an SRAM PUF
instance’s mask can safely be assumed to not leak responses information of other SRAM PUFs.

Then, given the BCH(n,k,t) code used to implement the reverse fuzzy extractor helper data
computation, no more than (n − k)-bit entropy is leaked. To be precise, the residual min
entropy [152] of the n-bit response is given by H∞ = −n ⋅ log2(max(b, 1 − b)) − (n − k) when
the helper data is public, where b is the bias or the uniformity of the PUF response, more details
please refer to Section 2.3.2. Ideally, the bias b is 50%. However, as we have seen, PUF responses
can display a slight bias. Therefore to guarantee the (n − k)-bit entropy leakage we employed
the de-biasing method proposed in Section.Section 3.3.3.
As we use 8 blocks of BCH(31,16,3) code, we achieve a key ki with 128-bit entropy—strictly,
127.6 bits entropy considering the experimentally evaluated bias of 0.4990 post our de-biasing
method. Therefore, without knowledge of ki, the probability of fooling the token  to update a
malicious firmware by  is no more than the brute-force attack probability of 2−127.6.

Helper Data Manipulation Attack

We are aware of helper data manipulation attacks based on exposed helper data reported in [73],
[169]. However, both works acknowledge that such an attack is error correction code dependent
and cannot be mounted on a linear code such as BCH employed in SecuCode [73], [169].
Further, mounting such an attack on SecuCode is difficult; in the first place, we notice that
such a helper data manipulation attack is very easy to be detected by the prover  . The reasons
are as follows:

1. The frequency of normal firmware updates is very low in comparison with other services
that are built with reverse fuzzy extractors, such as authentication or attestation services.
However, helper data manipulation attacks require a large number of queries. Recall, that
helper data is generated by the token  and then sent to the prover  and the firmware
update process is initiated by the prover. Hence the opportunity to mount a helper data
attack is limited to the few occasions during which a firmware update is required by
the prover. In a reverse fuzzy extractor attack, the adversary is forced to perform a
trial-and-error measure by continually sending malicious helper data to the resource-rich
prover  . The prover can perceive such malicious behaviour and stop responding to a
firmware update session that is hijacked by an adversary.
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2. There exists a built-in throttling and obfuscationmechanism that prevents rapid helper data
submissions needed for such an attack. Recall that in a man-in-the-middle attack where
the adversary is able to submit manipulated helper data, the success or failure is masked by
failure from external factors such as powering and the determination of success or failure
is only evident at the near conclusion of the update session—this can be 2-4 seconds.

3. Under tampered helper data queries, the failure rate of reconstructing ki will significantly
increase. Thus, the prover  can detect such an abnormal failure rate as a potential
attack [72]. This can deem the target CRFID as being compromised. Alternatively,
detection can also be achieved by extending the protocol to allow a request to the token
 to send back MACki(nonce‖hi) that the prover  can subsequently compare using its
computed ki from the securely stored response r′ and the provided helper data hi.

Modeling Attack

Weare also aware thatmodeling attacks on the reverse fuzzy extractors have been shown in [129],
[170]. These attacks are applicable to arbiter PUFs (APUFs) [59], mainly due to the fact that
the responses from APUFs are correlated. However, modeling attacks cannot be mounted on
SRAM PUFs [62] because PUF responses are information-theoretically independent since each
response is derived from a spatially separate SRAM cell.

3.5 Related Work and Discussion

Table 3.8: Comparison between related works.

Protocol Passively
powered

In-application
behaviour

modification
Wireless
firmware
update

Broadcast to
multi-CRFID Security

Bootie [171] 8 8 8 8 8

FirmSwitch [172] 4 4 8 8 8

R2/R3 [173] 4 4 4 8 8

Wisent [29] 4 4 4 8 8

Stork [22] 4 4 4 4 8

MSPboot [141] 8 4 4 8 8

SecuCode 4 4 4 8 4

For emerging battery-free computing devices such as CRFID platforms including WISP[13],
MOO[14] and Farsens Pyros[15], firmware updates are usually done with a wired programming
interface; for example by way of a JTAG [14] interface or a Serial interface [174]. The
main difficulties that hinder CRFID platform to be reprogrammed using a wireless method
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are: i) the transiently powered nature where encountering power failures are highly likely[29];
ii) reprogramming code memory such as FLASH that require the device attaining an adequate
voltage level from harvested power[173]; and iii) the lack of supervisory control of an operating
system for managing a devices’ tasks [171]. We have seen recent efforts to bring wireless
reprogramming to CRFID transponders[29], [171]–[173], however, to the best of our knowledge,
SecuCode is the firstwork to resolve the requirement for security for wireless code dissemination
for intermittently powered passive CRFID devices. Therefore, in the following we review
studies to: i) develop a bootloader and modify application behaviour; and ii) progress towards
developing on-the fly wireless firmware update methods. We summarise the key characteristics
of these studies in Table 3.8 and provide benchmark results for SecuCode with the non-secure
wireless update method, Wisent [29], in Section 3.5.3.

3.5.1 In-application Behaviour Modification

An early version of a bootloader for a CRFID platform, Bootie was proposed by Ransford
in [171]. Bootie was designed to accept two (or more) firmware and cross-compile them
into one executable to be preloaded onto a CRFID transponder. The compiled firmware was
then downloaded and tested on Olimex MSP430-H2131 minimum system board. The author
showed that Bootie could be used as a basis for wireless firmware updates. However, as a
proof-of-concept, Bootie only enables the platform to execute pre-loaded firmwares one-by-one
and did not allow responding to user demands nor operating conditions to determine the
switching between firmware.
The FirmSwitch scheme was later demonstrated in [172] to offer firmware flexibility for CRFID
transponders. This approach allowed a user to switch between pre-loaded firmware instances
on a CRFID platform using downstream commands to the CRFID transponder. However,
FirmSwitch was not developed to support wireless firmware updates.

3.5.2 Wireless Code Dissemination

More recently, theWisentmethod by Tan et al. [29],R2 andR3 method byWu et al. [140], [173]
demonstrated a robust wireless firmware update method for CRFID transponders using WISP
platforms. In particular, R3 was implemented on three different types of CRFID transponders.
Subsequently, in Stork, Aantjes et al. [22] proposed a fast Multi-CRFID wireless firmware
transfer protocol that involves ignoring the RN16 handle sent from an RFID transponder (i.e.,
the tags still save the downstream data even if their handle does not match the one specified by
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the reader). Stork enables an RFID Reader to simultaneously program multiple CRFID devices
in the field to reduce the time to update multiple devices. Although these works achieved on
the fly wireless update of firmware along with a bootloader design, none of wireless firmware
update approaches address the issue of security and the trustworthiness of the prover, therefore,
malicious firmware injection remains an open issue.
In late 2016, Brown and Pier from TI presented an application port[141] extending TI’s previous
work, MSPBoot[175]. In this chapter, wireless updating was demonstrated in two examples;
using UART or SPI bus to interconnect an MSP430 16-bit Reduced Instruction Set Computer
(RISC) microcontroller and a CC1101 sub-1GHz RF transceiver. The enhanced bootloader
design supported: i) application validation; ii) redirecting interrupt vectors; and iii) code sharing
via pre-configured callbacks. Additionally, a dual image fail-safe mechanism is introduced; here,
before the application in executable area is overwritten, the new image would be verified in a
download area. Therefore any interruption in communication would not affect the function of
the device. However, like other boot-loaders and wireless firmware update methods, security is
not considered.

3.5.3 End-to-end Comparison

In the absence of another secure method, we selected Wisent [29] as the non-secure protocol
to benchmark SecuCode against, because: i) Wisent focuses on the dissemination of firmware,
albeit non-secure, to a single device, as we do; ii) both projects employ the same CRID device;
and iii) Wisent code is publicly available. Notably, a comparison of Wisent to Stork [143],
capable of broadcasting code to many CRFID devices, is found in [143] already.
It is difficult to make a direct comparison since the secure and non-secure approaches have
fundamentally different goals and tradeoffs. For example: i) the write and check method in
Wisent vs. write all and validate method of SecuCode; and ii) use of a custom bootloader in
Wisent vs. our bootloader design built on the MSPboot framework of Texas Instruments for
industry compliance.
However, to provide an understanding of the overhead the secure method, we provide
measurements for three performance measures: i) mean latency to successfully transfer a given
firmware; ii) success rate; and iii) throughput (successful firmware bytes written/time taken).
Both Wisent and SecuCode require a pre-installed bootloader which includes the WISP 5 base
firmware (5,600 to 5,700 bytes). TheWisent bootloader requires an additional 608 bytes of code
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memory, while the SecuCode bootloader requires 6,024 bytes of code memory as a consequence
of additional security routines10

In Figure 3.11 and in Figure 3.12, we compare the end-to-end performance at three different
operating distances. These results are obtained from evaluations based on 100 repeated firmware
update attempts. We used two firmware sizes: i) Short (210 bytes); and ii) Long (376 bytes).
SecuCode and Wisent configure the reader to transmit the same BlockWrite multiple times
to increase BlockWrite success rate without the overhead of checking the result on the host.
In addition Wisent includes a checksum for each block, if the checksum does not match then
Wisent re-sends the block. Notably, SecuCode only checks that the BlockWrite command
was ACKed by the tag.

10These values are dependent on optimisation settings/compiler versions and are only approximate. Tested under
the Code Composer Studio (CCS) 7.2.0 development environment, with GNU Compiler Collection (GCC) for
MSP430 version 6.2.1.16. Optimisation settings: -O = 3; -opt_for_speed = 5
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Wisent is able achieve 100% success rate at 20 cm and 40 cm, however the overhead of the
per-block checksum and message header decreases the throughput. SecuCode only validates
data integrity once the firmware has been completely transmitted; and refusing the firmware
update if the integrity check fails. Further, any power loss event causes SecuCode to enter into
a new firmware update sessions. Consequently, the success rate for SecuCode varies between
73% and 89% and depends on firmware size. However, compared toWisent, SecuCode has better
throughput. Notably, Wisent attained only one successful firmware update out of 100 trails at
60 cm and the update took 178.1 seconds to complete with a resulting throughput 1.18 byte per
second. While SecuCode ceased to complete the firmware update successfully at 60 cm due to
brownout.
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Michael Chesser contributed to the development of the SecuCode App (the desktop application)
and interfacing with the RFID reader, and the immutable on-device SecuCode bootloader
described in Section 3.3.6.

3.7 Chapter Summary

This chapter presents the first secure wireless firmware update scheme, SecuCode, for
resource-constrained and intermittently powered CRFID devices. We derived a volatile secret
key on demand and discard it after usage to remove the difficulty of permanent secure key storage
in NVM. The SecuCode protocol developed in this chapter only allows an authorised party to
perform a wireless firmware update and does not require any hardware modifications whilst
being standards compliant. As noted in [62], cryptographic engineering of a protocol must
consider the complex environment for physical devices, such as noise and energy constraints,
performance and cost of protocol instantiating. To this end, we have successfully addressed
security and implementation challenges, realised an end-to-end SecuCode implementation on
the popular CRFID transponder and extensively evaluated the cost and performance of our
realisation, including an application case study along with a complete public release of code
and experimental data.
The next chapter focuses on the following issues. As the first attempt towards securing wireless
firmware update for CRFID, SecuCode only considers the dissemination of code to a single
device at a time. However, this will largely limit the efficiency of the firmware update if there
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Figure 3.13: Upcoming chapter sneak peek.

are large of number of devices. Although SecuCode has addressed the problem ofmalicious code
injection attacks, the privacy or intellectual property (IP) protection goals are not addressed by
SecuCode since the firmware is sent as plaintext over the wireless channel. In SecuCode, the
server is notified whether the firmware update is successful or not by a simple ACK response,
however an attacker can easily mimic this command and the server cannot validate the firmware
installation. It is important to provide a mechanism for the server to verify the firmware
installation. Meanwhile, the IEM developed in this chapter, used programmatically encoded
intermittent operating settings (low power deep sleep duration) for the FE.Gen() and MAC()

functions. These settings are determinedwhen the bootloader is provisioned, and therefore, lacks
flexibility to dynamically adjust the execution model based on available power at run-time. For
example, themethod can unnecessarily slow down firmware updates at short operating distances.
Therefore an execution model aware of harvested energy is desirable. We summarise the issues
above in Figure 3.13 and provide a sneak peek into the upcoming Chapter 4 where the issues
raise herein are addressed.
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Chapter 4

Secure Simultaneous Code
Updates to Multiple CRFID
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T
He first secure wireless firmware update scheme for CRFID, SecuCode
was demonstrated in Chapter 3. However, in SecuCode, only one CRFID
device can be updated at a time. This chapter proposes Wisecr, the

first secure and simultaneous wireless code dissemination mechanism to multiple
devices that preventsmalicious code injection attacks and intellectual property (IP)
theft, whilst enabling remote attestation of code installation. Importantly, Wisecr
is engineered to comply with existing ISO compliant communication protocol
standards employed by CRFID devices and systems. We comprehensively evaluate
Wisecr’s overhead, demonstrate its implementation over standards compliant
protocols, analyse its security and implement an end-to-end realisation with popular
CRFID devices.
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4.1 Motivation and Contribution

Wired programming interfaces, such as the Joint Test Action Group (JTAG), are convenient
tools for developing electronic products. For security reasons, such kind of wired programming
interface shall be disabled at manufacture to prevent further access, as discussed in Chapter 1 and
Chapter 3. Hence, it leaves the wireless update option as the only method to alter the firmware
or to re-purpose the devices post-manufacture.
When a large number of devices are required to be reprogrammed, with their wired programming
interface disabled, a secure and simultaneous firmware update mechanism to many CRFID
devices is highly desirable. For example, Federal Aviation Administration (FAA) of the
United States granted the installation of RFID tags and sensors on aeroplanes in 2018 [176];
consequently, an increasing number of CRFID sensors are integrated with small aircraft and
commercial airliners for maintenance history logging [22] and aircraft health monitoring [24].
In such a scenario, a high-efficiency (simultaneous) and secure update is desirable to ensure
operational readiness and flight safety.
Although the Chapter 3 has addressed the problem of malicious code injection attacks whereby
a single CRFID device is updated in turn, it neither supports simultaneous updates to many
devices nor protects firmware IP and lacks a mechanism to validate the installation of code
on a device. While the recent study Stork [22] protocol addressed the challenging problem of
fast wireless firmware updates to multiple CRFID devices, Stork allows any party, authorised
or not, armed with a simple RFID reader to: i) mount malicious code injection attacks; ii)
result in an incomplete firmware installation by cheating the Host with a fake indication of a
successful firmware update; and iii) steal intellectual property (IP) by simply eavesdropping on
the non-secure over-the-air communication channel.
Therefore, this chapter considers the following problems:

Problem 1. How can we develop a secure and simultaneous code dissemination to multiple
passively powered CRFID devices operating under constrained protocols, device
capability, and extreme on-device resource limitations—computing power, memory, and
energy as introduced in Section 1.2 in Chapter 1?

Problem 2. How can we address the security threats including: Malicious code injection (code
alteration, loading unauthorised code, loading code onto an unauthorised device, and code
downgrading), Incomplete firmware installation, and IP theft (reverse engineering from
plaintext binaries)?
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Table 4.1: Table of Notations in This Chapter

 Server  is a single entity consisting of a host computer and a networked RFID reader. Tokens  is a collection of individual (CRFID) devices Ti. The adversary  is an attacker seek to commit IP theft, cause incomplete firmware
installation and conduct malicious code injection, by interposing the communication
between  and  .

DB Server’s database, where each element is a three-tuple describing each CRFID token: i) the
unique and immutable identification number idi; ii) the device specific secret key k; and
iii) a flag denoting a device requiring an update valid.

firmware The new firmware binary for the update.
firmware(j) The jth block of the firmware.
nver The new version number (a monotonically increasing ordinal number with a one-to-one

correspondence with each updated firmware).
veri The current firmware version number of token Ti.
sk The broadcast session key (for more details, please refer to Section 4.2.2).
s AMAC tag computed over the firmware, veri and nver, computed by the Server (for more

details, please refer to Section 4.2.2).
c, r Attestation challenge and response, respectively (for more details, please refer to

Section 4.2.2).
□′ An apostrophe denotes a value computed by a different entity, e.g., s′ the MAC tag

computed by a Token.
□i A subscript i denotes a specific entity, e.g., ki is the device key of the ith Token.
⟨□⟩ Encrypted data, e.g. ⟨ski⟩ denotes the encrypted session key sk, with token Ti’s device key

ki.
RNG() A cryptographically secure random number generator (for more details, please refer to

Section 4.2.2).
SKP.Enc() Symmetric Key Primitive encryption function described by ⟨m⟩ ← SKP.Encsk(m). Here,the plaintext m is encrypted with the sk to produce the ciphertext ⟨m⟩ (for more details,

please refer to Section 4.2.2).
SKP.Dec() Symmetric Key Primitive decryption function where m ← SKP.Decsk(⟨m⟩) (for more

details, please refer to Section 4.2.2).
MAC() Message Authentication Code function. By appending an authentication tag s to the

message m, where s ← MACk(m), a message authentication code (MAC) function can
verify the integrity and authenticity of the message by using the symmetric key k (for more
details, please refer to Section 4.2.2).

SNIFF() The voltage Vti established by the power harvester within a fixed time t from boot-up at
token i, is measured by SNIFF() described by Vti ← SNIFF(t) (for more details, please
refer to Appendix D.4).

PAM() Family of functions employed by the Power Aware Execution mode of operation proposed
for the token to mitigate power-loss (brownout) events (for more details, please refer to
Figure 4.3.2).

Consequently, the study in this chapter fulfils the urgent and unmet security needs in the existing
state-of-the-art multiple CRFIDwireless dissemination protocol—Stork [22]. The contributions
made in this Chapter are summarise below:

• Develop a first secure and simultaneous (fast) wireless firmware update
protocol. Wisecr is the first secure and simultaneous (fast) firmware dissemination
scheme to multiple batteryless CRFID devices. Wisecr provides three security functions
for secure updates: i) preventing malicious code injection attacks; ii) IP theft; and iii)
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attestation of code installation. Wisecr achieves fast updates by supporting simultaneous
update to multiple CRFID devices through a secure broadcasting of firmware over a
standard non-secure unicast air interface protocol (Problem 1 and Problem 2).

• A holistic design trajectory. Wisecr starts from a formal secure scheme design to an
end-to-end implementation requiring only limited on-device resources. Ultra-low power
conditions and on-device resource limitations demand both a secure and an efficient
scheme. First, we built an efficient broadcast session key exchange exploiting commonly
available hardware acceleration for crypto on microcontroller units (MCUs). Second,
to avoid power loss and thus achieve uninterrupted execution of a firmware update
session, we propose new methods: i) adaptive control of the execution model of devices
using RF powering channel state information collected and reported by field deployed
devices; ii) reducing disruptions to broadcast data synchronisation across multiple devices
by introducing the concept of a pilot tag selection from participating devices in the
update scheme to drive the protocol. These methods avoid the need for costly, secure
checkpointing methods and leaving a device in a vulnerable state during power loss.
Third, in the absence of an operating system, we develop an immutable bootloader
to: i) supervise the control flow of the secure firmware update process; ii) minimise the
occurrence of power loss during an update session whilst abandoning a session in case
an unpreventable power loss still occurs; and iii) manage the secure storage of secrets
by exploiting commonly available on-chip memory protection units (MPUs) to realise an
immutable, bootloader-only accessible, secrets (Problem 1).

• A standards compliant method and an end-to-end realisation. We develop Wisecr
from specification, component design to architecture on the device, and implementation.
We evaluate Wisecr extensively, including comparisons with current non-secure methods,
and validate our scheme by an end-to-end implementation with an open source code
release on GitHub (the link is available in Section 1.4). Wisecr is a standard compliant
secure firmware broadcast mechanism with a demonstrable implementation using the
widely adopted air interface protocol—ISO-18000-63 protocol albeit the protocol’s lack
of support for broadcasting or multi-casting—and using commodity devices from vendors.
Hence, theWisecr scheme can be adopted in currently deployed systems (Problem 1). We
demonstrate the firmware dissemination process here:

https://www.youtube.com/watch?v=GgDHPJi3A5U
scan to watch
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Chapter 4 Secure Simultaneous Code Updates to Multiple CRFID Devices

4.1.1 Chapter Overview

Section 4.2 presents the threat model, security requirements and Wisecr design; Section 4.3
details how could we achieve the desired security requirements under challenging settings;
Section 4.4 discusses our end-to-end implementation, followed by performance and security
evaluations; Section 4.5 discusses related work with which Wisecr is compared. Section 4.6 is
dedicated for our collaborator who made remarkable contribution to this chapter. Section 4.7
concludes this chapter.

4.1.2 Notations and Concepts

Adding to the general notations and conventions defined in Section 2.1 in Chapter 2, Table 4.1
summarises some key concepts introduced and referred to in this chapter.

4.2 Wisecr Design

In this section, we describe the threat model followed by details of Wisecr design, and then
proceed to identify the minimal hardware security requirements needed to implement the
scheme.

4.2.1 Threat Model

Our analysis and design are based on the networked RFID system illustrated in Figure 2.1 in
Chapter 2. The RFID reader resides at the edge of the network and is typically connected
to multiple antennas to power and communicate with RFID or CRFID devices energised by
the antennas. The reader network interface is accessed by using a Low-Level Reader Protocol
(LLRP) from a host machine. Communication with an RFID device operating in the UHF range
is through the EPC Gen2 protocol.
Our focus is on the insecure communication channel between the RFID reader connected antenna
and the CRFID transponder or token Ti ∈  . Hence, we assume that the communication
between a host and a reader is secured using standard cryptographic mechanisms [89].
Therefore, a host computer and a reader are considered as a single entity, the Server, denoted
as  (a detailed execution of an EPC Gen2 protocol session to singulate a single CRFID device
from all visible devices in the field can be found in [22], [29]).

Page 85



4.2 Wisecr Design

We assume a CRFID device can meet the pragmatic hardware security requirements, detailed
in Section 4.2.3. Further, after device provisioning, the wired interface for programming is
disabled—using a common technique adopted to secure resource-constrained microcontroller
based devices [30], [38]. Subsequently, both the trusted party and adversary  must use the
wireless interface for installing new firmware on a token.
Building upon relevant adversary models related to wireless firmware update for low-end
embedded devices [142], [177], we assume an adversary  has full control over the
communication channel between the Server  and the tokens  . Hence, the adversary  can
eavesdrop, manipulate, record and replay all messages sent between the Server  and the tokens
 . This type of attacker is referred to as an input/output attacker [178].
We assume the firmware (application), potentially provided by a third party in the form of
a stripped binary, may contain vulnerabilities or software bugs that can cause the program
to deviate from the specified behavior with potential consequences being corruption of the
bootloader and/or the non-volatile memory (NVM) contents. Such an occurrence is possible
when firmware is frequently written in unsafe languages such as C or C++ [179], [180].
Hence, the firmware (application) cannot be trusted. In this context, similar to [142], [177],
we also assume that the adversary cannot bypass any of the memory hardware protections
(detailed in Section 4.2.3) and an adversary cannot mount invasive physical attacks to extract
the on-chip non-volatile memory contents. Such an assumption is practical, especially in
deeply embedded applications such as pacemaker control [29] where wireless update is the only
practical mechanism by which to alter the firmware and physical access is extremely difficult.
As in [62], we also assume the adversary  cannot mount implementation attacks against
the CRFID, or gain internal variables in registers, for example, using invasive attacks and
side-channel analysis. We do not consider Denial of Service (DoS) attacks because it appears to
be impossible to defend against such an attacker, for example, that disrupts or jams the wireless
communication medium in practice [142].

4.2.2 Wisecr Update Scheme

Wisecr enables the ability to securely distribute and update the firmware of multiple CRFID
tokens, simultaneously. Given that a Server  must communicate with an RFID device  using
EPC Gen2 , Wisecr is compatible with EPC Gen2 by design. Generally, our scheme can be
implemented after the execution of the anti-collision algorithm in the media access control layer
of the EPC Gen2 protocol, where a reader must first singulate a CRFID device and obtain
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Server  Tokens  = {T1...Tm}
DB = (idi,ki, veri) for i = 1...m Tokens idi,ki
f irmware,nver Memory

Prelude
sk ← RNG()
f irmware = (f irmware(1)‖...‖f irmware(n))
for j = 1...n
⟨f irmware(j)⟩ ← SKP.Encsk(f irmware(j))

Security Association
for each Token Ti ∈  idi do, veri,Vti Vti ← SNIFF(t)

if idi ∉ DB then ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
reject and abort

else
si ← MACki(f irmware‖veri‖nver)
⟨ski⟩ ← SKP.Encki(sk) ⟨ski⟩, si,nver, tLPMi

, tactivei
(tLPMi

, tactivei)← PAM.Get(Vti) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sk ← SKP.Decki(⟨ski⟩)
Secure Broadcast

Simultaneously broadcast the new firmware ⟨f irmware(1)⟩
to all Tokens Ti ∈  ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

…
⟨f irmware(n)⟩
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ PAM.Enter(tLPMi

, tactivei)
for j = 1...n

f irmware(j) ← SKP.Decsk(⟨f irmware(j)⟩)
f irmware = (f irmware(1)‖...‖f irmware(n))

Validation
for each Token Ti ∈  s′i ← MACki(f irmware‖veri‖nver)

PAM.Exit()
if si == s′i then accept and apply update

idi, veri veri ← nver
if veri == nver then update successful ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← else reject and abort

Remote Attestation
for each Token Ti ∈ 

sk ← RNG()
c ← RNG()
⟨ski⟩ ← SKP.Encki(sk)
M ← memory segment to attest ⟨ski⟩, c, elaborate, M
r ← MACsk(c‖f irmware‖idi‖veri) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sk ← SKP.Decki(⟨ski⟩)

f irmware ← Memory(M)
r′ r′ ← MACsk(c‖f irmware‖idi‖veri)

if r == r′ then Attestation successful ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
else failure

Figure 4.1: Wisecr: The proposed wireless, secure and simultaneous code dissemination scheme to multiple tokens.
Notably, the functions SNIFF() and PAM() facilitate the secure and uninterruptible execution of an update session.
A single symmetric key cipher SKP can be exploited in practice to realise all of the primitives needed, including
the MAC() function, to address the demands of a resource-limited setting.

a handle, RN16, to address and communicate with each specific device. After singulating
a device, the server can employ commands such as: BlockWrite, Authenticate,
SecureComm and TagPrivilege specified in the EPC Gen2 access command set [181],
to implement the Wisecr scheme. Firmware update will take place once a device enters
the Access state and by implementing Wisecr over Access command specifications such as
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Authenticate. We describe the update scheme in Figure 4.1 and defer the details of our
scheme implemented over the EPC Gen2 protocol to the Appendix D.2.
As described in Figure 4.1, the Server  maintains a database DB of provisioned tokens, issues
the new firmware and the corresponding version number (nver).
Each token Ti has a secure storage area provisioned with: i) an idi, the immutable identification
number; ii) ki, the device specific secret key stored in NVM that is read-only accessible by
the immutable bootloader. The ki assigned to different devices are assumed to be independent
and identically distributed (i.i.d.); iii) veri, the token’s current firmware version number. The
secure storage area is only accessible by the trusted and immutable bootloader provisioned on
the device; this region is inaccessible to the firmware (application), and therefore, cannot be
modified by it.
We describe a dissemination session in four stages: i) Prelude; ii) Security Association;
iii) Secure Broadcast; iv) Validation. An update can be extendedwith an optional; and v) Remote
Attestation to verify the firmware installation.

STAGE 1: Prelude (Offline). In this stage, the Server  undertakes setup tasks. The Server
uses RNG() to generate a broadcast session key (sk). The new firmware is divided into
segments—or block; each block j is encrypted as ⟨f irmware(j)⟩ ← SKP.Encsk(f irmware(j)),
where ⟨f irmware(j)⟩ denotes the encrypted firmware block j. The division of firmware is
necessary as the narrow band communication channel and the EPC Gen2 protocol does not
allow arbitrary size payloads to be transmitted to a token.

STAGE 2: Security Association. In this stage, the Server  distributes the broadcast session
key (sk) to all tokens  and builds a secure broadcast channel over which to simultaneously
distribute the firmware to multiple tokens.
More specifically, each token in the energizing field of the Server responds with idi, Vti
and veri. The token will not be included in the following update session if: i) the idi of
the responding token is not in Server’s DB; or ii) the token is not scheduled for an update
(validi == False). For tokens selected for an update, the Server computes a MAC tag si ←
MACki(f irmware||veri||nver). In practice, we cannot assume that each token is executing the
same version of the firmware, therefore, a token specific MAC tag is generated over the device
specific key whilst the firmware is encrypted with the broadcast session key.
The Server establishes a shared session key with each token Ti by sending ⟨ski⟩, where ⟨ski⟩←
SKP.Encki(sk) and ki is specific to the ith token, and nver. The ⟨ski⟩ and si are transmitted to
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each token Ti. Each token decrypts the broadcast session key sk← SKP.Decki(⟨ski⟩)—thus, all
tokens selected for an update now possess the session key.
Notably, as detailed in Section 4.3.2, each tokenmeasures its powering channel state or its ability
to harvest energy by measuring the voltageVti established by the power harvester within a fixed
time t from boot-up, as Vti ← SNIFF(t) to transmit to the Server. There are two important
reasons for measuringVti. First, to facilitate the power aware execution model (PAM) employed
to mitigate power-loss at a given token. The Server uses the reportedVti to control the execution
model of the ith token. Specifically, the reported Vti is used by the Server to determine the
length of time that a token dwells in low power mode (LPM) tLMPi and active mode tactivei when
executing computationally intensive tasks in the Secure Broadcast and Validation stages; here,
the server determines (tLPMi

, tactivei) ← PAM.Get(Vt i). Second, the Server uses the reported
Vti to realise the Pilot-Observer Mode of operation where one token is elected based on its
Vti, termed the Pilot, to control the flow in the Secure Broadcast stage by responding to server
commands as detailed in Stage 3.

STAGE 3: Secure Broadcast. In this stage, the encrypted firmware blocks ⟨f irmware(1..n)⟩ are
broadcasted; and each token stores the new encrypted firmware blocks in its application memory
region (SegmentM defined in Section 4.3.1). Once the broadcast is completed, each token starts
firmware decryption and validation. The ⟨f irmware⟩ is decrypted using the session key sk as
f irmware(j) ← SKP.Decsk(⟨f irmware(j)⟩).
To realise a secure and power efficient logical broadcast channel under severely
energy-constrained settings, we use the Pilot-Observer mode. Herein, all tokens, except
the Pilot token elected by the Server, enters into an observer mode. The tokens in the observer
mode silently listen and store encrypted data disseminated by the server; the Pilot token
performs the same operation whilst responding to the server commands. We employ two
techniques within the Pilot-Observer Mode to mitigate power-loss and to achieve a secure
broadcast to tokens: i) disabling energy consuming communication command reply from
observers; and ii) the concept of electing a Pilot CRFID device to drive the update session as
detailed in Section 4.3.2.
Notably, the techniques described in Stage 2 and 3 form the foundation for the uninterrupted
execution of the bootloader to ensure security and enhance the performance of the firmware
dissemination under potential power-loss events.

STAGE 4: Validation. In this stage, firmware is validated before installation. More precisely,
a token specific MAC tag s′i ← MACki(f irmware||veri||nver) is computed by each token
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Ti. If the received MAC tag si matches the device computed s′i, the integrity of the firmware
established and the issuing Server is authenticated by the token. Subsequently, the new firmware
is updated and the new version number nver is stored as veri. Otherwise, the firmware is
discarded and the session is aborted. Notably, the EPCGen2 protocol provides a reliable transfer
feature. Each broadcast payload is protected by a 16-bit Cyclic Redundancy Check (CRC-16)
error detection method. Hence, the notification of a CRC failure to the Server results in the
automatic re-transmission of the packet by the Server. Therefore, a MAC tag mismatch is more
likely to be adversarial and discarding the firmware is a prudent action. At stage completion,
each token switches from the observer or Pilot to the normal mode of operation after a software
reset (reboot). Subsequently, all the temporary information such as session key sk and the token
specific MAC tag s′i in volatile memory will be erased.
Once the firmware is installed, the Server is acknowledged with the status of each participating
token in the session. This is achieved by performing an EPC Gen2 handshake after a reboot of
the tokens, and comparing the version number veri reported from each token specified by idi to
the new firmware version number nver expected from the token. If the veri is up-to-date, the
Server is acknowledged that the token Ti has been successfully updated.

Remark. It is theoretically possible to include a MAC tag in the acknowledgement message at
the end of the Validation stage to authenticate the acknowledgement. But the implementation
of this in practice is difficult under constrained protocols and limited resources typical of
intermittently powered devices. This is indeed the case with the EPCGen2 air interface protocol
and CRFID devices we employed. We discuss specific reasons in Appendix D.2 where we detail
implementation of the Wisecr Update Scheme over the EPC Gen2 air interface protocol.

STAGE 5 (Optional): Remote Attestation.

The Server can elect to verify the firmware installation on a token by performing a remote
attestation; a mechanism for the Server to verify the complete and correct software installation
on a token. Considering the highly resource-limited tokens, we propose a lightweight challenge
response based mechanism re-using theMAC() function developed forWisecr. The server sends
a randomly generated challenge c ← RNG() and evaluates the corresponding response r′ to
validate the installation. We provision a new session key sk to enable the remote attestation to
proceed independent of the previous stages, whilst avoiding the derivation of a key on device to
reduce the overhead of the attestation routine.
We propose two modes of attestation; a fast mode and an elaborate mode to trade-off veracity of
the verification against computational and power costs. The fast mode only examines the token
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serial number (idi) and the version number (veri). While the elaborate mode traverses over an
entire memory segment. The elaborate mode is relatively more time consuming but allows the
direct verification of the code installed on the target token Ti.
We illustrate (in Figure 4.1) and demonstrate (in Section 4.4.5) the elaborate mode (more
veracious and computationally intensive) where response r′ ← MACsk (c‖f irmware‖idi‖veri)
attests the application memory segment containing the installed firmware. In contrast, the fast
method computes the response as r′ ← MACsk(c‖idi‖veri).

4.2.3 Token Security Requirements and Functional Blocks

Our design is intentionally minimal and requires the following security blocks.

Immutable Bootloader (Section 4.3.1) We require a static NVM sector Mrx that is
write-protected to store the executable bootloader image to ensure the bootloader can be
trusted post deployment where, for example, firmware (application) code vulnerabilities
or software bugs do not lead to the corruption of the bootloader and the integrity of the
bootloader can be maintained.

Secure Storage (Section 4.3.1) To store a device specific secret, e.g., ki, we require an NVM
sectorM read-only accessible by the immutable bootloader in sectorMrx. This ensures
the integrity and security of non-volatile secrets post deployment since the firmware
(application) code cannot be trusted, for example, due to potential vulnerabilities or
software bugs that can lead to the corruption of non-volatile memory contents).

Uninterruptible Bootloader Execution (Section 4.3.2) During the execution of the bootloader
stored in sectorMrx, execution cannot be interrupted until the control flow is intentionally
released by the bootloader.

Efficient Security Primitives (Section 4.3.3) The update scheme requires: i) a symmetric key
primitive; and ii) a keyed hash primitive for the message authentication code that are both
computationally and power efficient.

In Section 4.3 we discuss how the associated functional blocks are engineered on typical
RF-powered devices built with ultra-low power commodity MCUs.
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4.3 On-device Security Function Engineering

To provide comprehensive evaluations and demonstrations, we selected the WISP5.1LRG [9]
CRFID device with an open-hardware and software implementation for our token  . This
CRFID device uses the ultra-low power MCU MSP430FR5969 from Texas Instruments.
Consequently, for a more concrete discussion, we will refer to the WISP5.1LRG CRFID and
the MSP430FR5969 MCU in the following.

4.3.1 Immutable Bootloader and Secure Storage

For resource-limited MCUs, several mechanisms—detailed in the Appendix D.1—exists for
implementing secure storage: i) Isolated segments; ii) Volatile keys; iii) Execute only
memory; and iv) Runtime access protections. We opt for achieving secure storage and
bootloader immutability using Runtime Access Protection by exploiting the MCU’s memory
protection unit (MPU), which offers flexibility to the bootloader. In particular, the MPU
allows read/write/execute permissions to be defined individually for memory segments at
power-up—prior to any firmware (application) code execution. Wisecr requires the following
segment permissions to be defined by the bootloader to prevent their subsequent modifications
through application code by locking the MPU:

SegmentM is used as the secure storage area. During application execution, any access
(reading/writing) to this segment results in an access violation, causing the device to restart
in the bootloader.

SegmentMrx contains the bootloader, device interrupt vector table (IVT), shared code (e.g.,
EPCGen2 implementation). During application execution, writing to this segment results
in an access violation.

SegmentMrwx covers the remainingmemory, and is used for application IVT, code (firmware)
and data.

4.3.2 Uninterruptible Bootloader Execution

The execution or control flow of the bootloader on the token must be uninterruptible by
application code and power-loss events tomeet our security objectives but dealingwith brownout
induced power-loss events is more challenging. Power loss leaves devices in vulnerable states for
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attackers to exploit; therefore, we focus on innovative, pragmatic and low-overhead power-loss
prevention methods. Our approach deliberately mitigates the chances of power-loss. In case a
rare power-loss still occurs, the token will discard all state—including security parameters such
as the broadcast session key; subsequently, the Server will re-attempt to update the firmware by
re-commencing a fresh update session with this token. We detail our solution below.

Managing Application Layer Interruptions

The bootloader must be uninterruptible (by application code) for security considerations. For
instance, the application code—due to an unintentional software bug or otherwise—could
interrupt the bootloader while the device key is in a CPU register, so that the application code
(exploited by an attacker) can copy the device key to a location under its control, or completely
subvert access protections by overriding the MPU register before it is locked.
Recall, the memory segment Mrx (see Section 4.3.1) includes the memory region containing
the IVT. This ensures that only the bootloader can modify the IVT. Since the IVT is under the
bootloader’s control, we can ensure that any non-maskable interrupt is unable to be directly
configured by the application code, whereas all other interrupts are disabled during bootloader
execution. Consequently, the interrupt configuration cannot be mutated by application code.

Managing Power-Loss Interruptions

Frequent and inevitable power loss during the bootloader execution will not only interrupt the
execution, degrading code dissemination performance but also compromise security. Although
intermittent computing techniques relying on saving and retrieving state at check-points from
NVM—such as Flash or EPPROM—is possible, these methods impose additional energy
consumption and introduce security vulnerabilities revealed recently [34].
Confronted with the complexity of designing and implementing an end-to-end scheme under
extreme resource limitations, we propose an on-device Power Aware execution Model (PAM)
to: i) avoid the overhead of intermittent computing techniques; and ii) enhance security without
saving check-points to insecure NVM.
We observe that only a limited number of clock cycles are available for computations per charge
and discharge cycle (Intermittent Power Cycle or IPC) of a power harvester, as illustrated via
comprehensive measurements in Figure 1.4. Further, the rate of energy consumption/depletion
is faster than energy harvesting. We recognise that there are three main sources of power-loss:
i) (CPU) energy required for function computation exceeding the energy supply capability from
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the harvester; ii) (FRAM.R/W) memory read/write access such as in executing Blockwrite
commands; and iii) (RFID) power harvesting disruptions from communications—especially for
backscattering data in response to EPC Gen2 commands.
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Figure 4.2: Impact of four key device tasks on power-loss: CPU (computations); FRAM.R/W (memory read/write
accesses); and RFID (communications). The data above are collected by using special firmware. The power-loss
event is captured by monitoring through a GPIO pin. We conduct 10 repeated measurements and report the mean
time before power-loss. The plot provides a lateral comparison among four operations. The data is measured from
a single CRFID device with oscilloscope probes attached to measure the device’s internal state.

To understand the severity of these four causes, we measure the maximum time duration
before brownout/power-loss versus the harvested power level for each task—CPU, FRAM.R,
FRAM.W and RFID. In the absence of a controlled RF environment (i.e., anechoic chamber),
it is extremely difficult to maintain the same multipath reflection pattern. Especially when
changing the distance between the radiating reader antenna and an instrumented CRFID device
considering the multipath interference created by the probes, cables, and the nearby oscilloscope
and researcher to monitor the device’s internal state. To minimise the difficulty of conducting
the experiments, we place the CRFID device at a fixed distance (20 cm) whilst keeping all of
the equipment at fixed positions, and adjust the transmit power of the RFID reader through the
software interface. According to the free-space path loss equation [97], adjusting the transmit
power of the RFID reader or changing the distance can be used to vary the available power
at the CRFID device. We describe the detailed experimental settings in Appendix D.8. For
experiments without the requirement for monitoring the device’s internal state, we still employ
distance-based measurements as in previous studies [22], [32], [38].
The results are detailed in Figure 4.2. For a transmit power greater than 800 mW, the CRFID
transponder continuously operates without power failure within 100 seconds. If the reader
transmit power is below 800mW, the average operating time of the RFID task drops as the power
level decreases. This is because the RFID communication process invokes shorting the antenna,
during which the energy harvesting is interrupted. Notably, different from Flash memory,
reading data from FRAM (FRAM.R) consumes more power than writing to it (FRAM.W) as
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a consequence of the destructive read and the compulsory write-back [182]. Consequently, we
developed:

• The Pilot-Observer Mode to reduce the occurrence of RFID tasks by enabling observing
devices to listen to broadcast packets in silence whilst electing a single Pilot token to respond
to the Server.

• The Power Aware Execution Model (PAM) to ensure memory access (FRAM tasks) and
intensive computational blocks of the security protocol (CPU tasks) do not exceed the
powering capability of the device.
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Figure 4.3: A sequence diagram describing our proposed PAM and illustrating the interaction between the Token’s
CPU execution and the hardware timer. One PAM execution cycle consists of an active mode followed by a
low power mode (LPM), one complete task may involve multiple PAM cycles. Other operations, such as RFID
communications and FRAM access, are coordinated by the token CPU. If the CPU is in the LPM state, the entire
system will be halted to allow energy to accumulate.

Power Aware Execution Model (PAM). The execution mode enables a token to dynamically
switch between active power mode and lower power mode (LPM)—LPM preserves (SRAM)
state and avoids power-loss while executing a task. PAM is illustrated in Figure 4.3. In active
power mode, the token executes computations, and switches to LPM before power-loss to
accumulate energy; subsequently, the token is awoken to active power mode to continue the
previous computation after a period of tLPM.
Our PAM model builds upon [38], [162] in that, these are designed for execution scheduling
to prevent power-loss from brownouts. Compared to [38], we consider dynamic scheduling
of tasks and in contrast to [162] sampling of the harvester voltage (only possible in specific
devices) within the application code, we consider dynamic scheduling determined by the
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more resourceful Server  using a single voltage measurement reported by a token  (see
Appendix D.3 for detailed comparison). We outline the means of achieving our PAM model
on a token below.
During the Security Association stage shown in Figure 4.1, a token measures and reports the
voltage Vti ← SNIFF(t) to the Server. The Vti measurement indicates energy that can be
harvested by token Ti under the settings of the current firmware update session. According to
Vti, the Server determines the active time period tactive and LPM time period tLPM for each
CRFID device (detailed development of a model to estimate tactive and tLPM from Vt is in
Appendix D.4). Consequently, each CRFID device’s execution model is configured by the Server
with device specific LPM and active periods at run-time. Hence, an adaptive execution model
customised to the available power that could be harvested by each CRFID device is realised.
Notably, this execution scheduling task is outsourced to the resourceful Server.
In this context, we assume the distances between the antenna and target CRFID devices
are relatively constant during the short duration of a firmware update. Firmware updates
are generally a maintenance activity where CRFID integrated components are less likely to
be mobile to ease maintenance, such as during the scheduled maintenance of an automated
production line [183]; night time updates in smart buildings when people are less likely to be
present and facilities are inoperative [184]; or the pre-flight maintenance or inspection of aircraft
parts while parked on an apron [24]. Further, it is desirable tomaintain a stable powering channel
in practice by ensuring a consistent distance during the maintenance or patching of devices for
a short period. This is a more reasonable proposition than the wired programming of each
device. Hence, the relatively fixed distance is a reasonable assumption in practice. Notably,
given the challenging nature of the problem, previous non-secure firmware update methods,
such as R3 [32] and Stork [22], were evaluated under the same assumption.
PAMExperimental Validation. To understand the effectiveness of our PAMmethod to reduce
the impact of brownout, we execute a computation intensive module, MAC() using PAM, at
power-up on a CRFID. We employ a few lines of code to toggle GPIO pins to indicate the
successful completion of a routine. Notably, it is difficult to track a device’s internal state without
a debug tool attached to the device; however, if the debug interface is in use, it will either interfere
with powering, or affect the timing by involving additional Joint Test Action Group (JTAG)
service code. Wemeasure the time taken to complete theMAC() execution (latency) and success
rate (success over 10 repeated attempts under wireless powering conditions) with digital storage
oscilloscope connected to GPIO pins indicating a successful execution before power loss. We
compute aMAC over a 1,536-Byte randomly generated message to test the effectiveness of PAM
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Figure 4.4: Experimental evaluation of the latency and success rate of our proposed power aware execution model
(PAM) compared to the Intermittent Execution Mode (IEM) method in [38] and a typical continuous execution
model (CEM). The long-run task used in this evaluation is a MAC computation over a 1,536-Byte random message
typically requiring 125.5 ms to complete in CEM. Notably, CEM fails when the reader transmit power is below
200 mW. We conduct 100 repeated measurements and report the mean.

in preventing a power loss event due to brownout and compare performance with the execution
method—denoted IEM—of a fixed LPM state (30 ms) programmatically encoded during the
device provisioning phase as in [38].
The results in Figure 4.4 show the effectiveness of PAM to mitigate the interruptions from power
loss. This is evident when the success rate results without PAM—using the continuous execution
model (CEM)—is compared with those of PAM at decreasing operating power levels. However,
as expected, we can also observe that the dynamically adjusted execution model parameters
(tLPM and tactive) of PAM at decreasing power levels to prevent power loss events and increase
latency or the time to complete the routine. When PAM is compared with IEM, the dynamically
adjusted execution model parameters allow PAM to demonstrate an improved capability to
manage interruptions from power-loss at poor powering conditions; this is demonstrated by the
higher success rates when the reader transmit power is at 188 mW and 178 mW. Since IEM
encodes operating settings programmatically during the device provisioning phase [38], we can
observe increased latency at better powering conditions when compared to PAMwhich allows a
completion time similar to that obtained from CEM when power is ample. Thus, PAM provides
a suitable compromise between latency and successful completion of a task at different powering
conditions.
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Notably, the RFID media access control (MAC) layer on a CRFID device is implemented in
software as assembly code and executed at specific clock speeds to ensure strict signal timing
requirements in the EPC Gen2 air interface protocol. Additionally, protocol message timing
requirements places strict limits on waiting periods for devices responses. Hence, we do not
consider the direct control of the execution mode during communication sessions for managing
power consumption and instead rely on the Pilot-Observer mode method we investigate next.

Table 4.2: Execution overhead of pilot and observer tokens when receiving broadcast packets.

Clock Cycles1 Memory Usage (Bytes) OperationROM RAM
Pilot token receiving 23,082 12 2 apply decoding,

prepare reply (e.g., compute CRC)
Pilot token replying 1,131 0 0 communication (backscattering)
Observer token receiving 22,002 12 2 apply decoding
1Numbers are collected using a JTAG debugger where the reported values are averages over
100 repeated measurements. We provide a detailed discussion of the experiments and analysis
process in Appendix D.7.

Pilot-Observer Mode.

We observed and also confirmed in Figure 4.2 that the task of responding to communication
commands will likely cause power loss. During the Secure Broadcast stage shown in Figure 4.1,
communication is dominated by repeated SecureComm commands with payloads of encrypted
firmware and the data flow is uni-directional. Intuitively, we can disable responses from all the
tokens to save energy. However, the SecureComm command under EPC Gen2 requires a reply
(ACK) from the token to serve as an acknowledgement [181]. An absent ACKwithin 20 ms will
cause a protocol timeout and execution failure.
To address the issue, we propose the pilot-observer mode inspired by the method in Stork [22].
A critical and distinguishing feature of our approach is the intelligent election of a pilot token
from all tokens to be updated—we defer to Appendix D.5 for a more detailed discussion
on the differences. As illustrated in Figure 4.5(a), our approach places all in-field tokens
to be updated into an observer mode except one token elected by the Server to drive the
EPC Gen2 protocol—this device is termed the Pilot token. By doing so, observer tokens
process all commands such as SecureComm—ignoring the handle designating the target device
for the command—whilst remaining silent or muting replies to all commands whilst in the
observermode. Muting replies significantly reduce energy consumption and disruption to power
harvesting of the tokens.

Page 98



Chapter 4 Secure Simultaneous Code Updates to Multiple CRFID Devices

Random

La
te

nc
y 

(s
)

HighestLowest Highest RSSILowest RSSIHighest VtLowest Vt

A
tte

m
pt

s

Read Rate Read Rate

Host Reader An
te

nn
a

All In-field devices measure
Vti

Vt

i

The Host elects

 as the pilot

and report powering channel state (      )

Server

Pilot CRFID

 the device with the

(b)

(a)

Lowest Vt

Vti

P
er

ce
nt

ag
e 

of
 s

uc
ce

ss
fu

l
up

da
te

s 
to

 a
ll 

4 
to

ke
ns

Measurements

1(89%)

23

0 50 100
0

50

100 (11, 4)
100%

1(73%)

2

3
4
 5

Fail

0 50 100

(23, 11)
98%

1(66%)
2
3
4
 5Fail

0 50 100

(28, 22) 91%

1(29%)

2
3

4  5

Fail

0 50 100

(23, 15)
56%

1(35%)

2 3 4  5

Fail

0 50 100

(39, 26)
67%

1(6%)
2

3
4

 5

Fail

0 50 100

(26, 12)

50%

1(47%)
2

3

4

Fail

0 50 100
0

50

100(21, 12) 74%

Observer CRFIDs

Figure 4.5: (a) Our proposed Pilot-Observer method. Only the elected Pilot using the Vti based election method
responds while observers listen silently; (b) Evaluation of Pilot Token selection strategies. Measured Tokens are
placed 40 cm above the reader antenna, where the powering condition is critical; we defer the reader toAppendixD.6
for further results from other operational distances. The number of attempts to have all 4 CRFIDs (Tokens) updated
(pie chart) and the corresponding latency (scatter plot) over 100 repeated measurements. The mean number and
the standard division for successful updates for all four tokens are also labeled in the scatter plot with (mean, std)
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.

We propose electing the token with the lowest reported Vt as the pilot based on the
observation: measuring powering channel state from the token, obtained from Vti ← SNIFF(t),
is the most reliable measure of power available to a given device (see the discussion in
Appendix D.4).
We recognise that it is very difficult to implement an explicit synchronisation method to ensure
the observer tokens stay synchronised with the pilot token in the secure broadcast update session.
This is due to the level of complexity and overhead that an explicit method would bring and the
consequence of such an overhead would be the increased occurrence of failures of a secure
broadcast update session due to the additional task demands on tokens—we discuss the problem
further in Section 4.7. Although synchronisation between the pilot and observer tokens are not
explicit, the Pilot-Observer method implicitly enforces a degree of synchronicity. The selected
pilot token—tasked with responding to the Host commands during the broadcast—has to spend
more time than observer tokens to prepare the uplink packet and send a reply (ACK) to the Host
(RFID reader) to meet the EPC Gen2 specification requirements as summarised in Table 4.2;
hence the update process is controlled by the slowest token. Further, sincewe elect the tokenwith
the lowest powering condition as the pilot, the update is controlled by the most energy-starved
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token. This strategy leads to other tokens having higher levels of available power and extra
time to successfully process the broadcasted firmware and remain synchronised with the update
process. Hence, if the pilot succeeds, observers are expected to succeed.

Validation of Pilot Election Method. To demonstrate the effectiveness of our pilot token
election method, we considered seven different pilot token selection methods based on token
based estimations of available power and indirect methods of estimating the power available to a
token by the server: 1) LowestVt: this implies the pilot is selected based on themost conservative
energy availability at token; 2) Highest Vt: the pilot has to reply to commands, hence we may
expect higher power availability to prevent the failure of a broadcast session due to brownout at
the pilot; 3) Lowest Read Rate: a slow pilot allows observers to gather more energy during the
broadcast and remain synchronised with the protocol to prevent failure of the observer tokens;
4) Highest Read Rate: a faster pilot could reduce latency; 5) Lowest Received Signal Strength
Indicator (RSSI): successful communication over the poorest channel may ensure all observers
are on a better channel (RSSI acts as an indirect measure of the powering channel at a token);
6) Highest RSSI: prevent pilot failure due to a potentially poor powering channel at the pilot
token; and 7) Random selection: monkey beats man on stock picks.
We have extensively evaluated and compared all of the above seven pilot token selection
methods. The experiment is conducted by placing 4 CRFID tokens at 20 cm, 30 cm, 40 cm
and 50 cm above an reader antenna; each CRFID is placed in alignment with the four edges of
the antenna (See Figure 4.6). We repeated the code dissemination process 100 times at each
distance test, for each of the 7 different pilot selection methods. We recorded two measures:
i) latency (seconds); and ii) number of times the broadcast attempt updated all of the 4 in-field
devices.
As illustrated in Figure 4.5.(b), at 40 cm where the power conditions are more critical at a token,
the selected pilot token with the lowest token voltage (Vt) shows an enormous advantage, in
terms of both latency and attempt number. Overall, our proposed approach (electing the lowest
Vt) ensures that most observer tokens are able to correctly obtain and validate the firmware in
a given broadcast session on the first attempt in the critical powering regions of operation (we
provide a theoretical justification in Appendix D.4).
We also evaluated the reduction in power consumption achieved from computational tasks, in
addition to eliminating the communication task. While we provide a detailed discussion of
the experiments and analysis process in Appendix D.7, we summarise our experimental results
in Table 4.2. The measurements show that the observer tokens, compared to the pilot token,
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④

③

② ①

Figure 4.6: Experiment setup showing: 1 a host PC, 2 a RFID reader, 3 a reader antenna and 4 four CRFID
devices mounted on a foam frame, supported by a wooden tripod.

consumes 2,211 less clock cycles per firmware packet from the Host. This is a reduction of
9.13% to process each firmware packet sent from the Host.

Summary. Our pilot-election based method effectively reduces the chance of power failure as
well as de-synchronisation of the observer tokens during a firmware broadcast session. Our
approach is able to ensure that more of the observer tokens are able to correctly obtain and
validate the firmware during a single broadcast sessions.

4.3.3 Efficient Security Primitives

Wisecr requires two cryptogrpahic primitives: i) symmetric key primitive SKP(); and ii) a
keyed hash primitive for themessage authentication codeMAC(). When selecting corresponding
primitives in the following, two key factors are necessary to consider:

1. Computational cost: The CPU clock cycles required for a primitives quantifies both the
computation cost and energy consumption. Therefore, clock cycles required for executing
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the primitives need to be within energy and computational limits of the energy harvesting
device.

2. Memory needs: On-chip memory is limited—only 2 KiB of SRAM on the target MCU—and
must be shared with: i) the RFID protocol implementation; and ii) user code.

Symmetric Key Primitives. We fist compare block ciphers via software implementation
benchmarks—clock cycle counts and memory usage—on our target microcontroller [185],
[186]. We also considered the increasingly available cryptographic co-processors in
microcontrollers: our targeted device uses an MSP430FR5969 microcontroller and embeds
an on-chip hardware Advanced Encryption Standard (AES) accelerator (we refer to as
HW-AES) [187]. Based on the above selection considerations, HW-AES is confirmed to
outperform others. Specifically, HW-AES to encrypt/decrypt a 128-bit block consumes 167/214
clock cycles with a power overhead of 21 �A/MHz; therefore, we opted for HW-AES for
SKP.Dec function implementation on our target device. We configured AES to employ the
Cipher-Block Chaining (CBC)mode11 similar hardware AES resources can be found in a variety
of microcontrollers, ASIC, FPGA IP core and smart cards. In the absence of HW-AES, a
software AES implementation, such as tiny-AES-c can be an alternative.

Message Authentication Code. MACs built upon BLAKE2s-256, BLAKE2s-128,
HWAES-GMAC and HWAES-CMAC on our targeted MSP430FR5969 MCU were taken
into consideration [38]. We selected the 128-bit HWAES-CMAC—Cipher-based Message
Authentication Code12—based on AES since it yielded the lowest clock cycles per Byte by
exploiting the MCU’s AES accelerator (HW-AES).

4.3.4 Bootloader Control Flow

We can now realise an uninterruptible control flow for an immutable bootloader built upon on
the security properties identified and engineered to achieve our Wisecr scheme described in
Section 4.2.2. We describe the bootloader control flow in Figure 4.7.
At power-up, 1 the token performs MCU initialisation routines, 2 setup MPU protections
for bootloader execution and carries out a self-test to determine whether a firmware update

11We are aware of CBC padding oracle attacks; however, in our implementation, the response an attacker can
obtains is to the CMAC failure or success and not the success or failure of the decryption routine. Alternatively,
the routines can be changed to employ authenticated encryption in the future, with an increase in overhead.

12The implementation in NIST Special Publication 800-38B, Recommendation for Block Cipher Modes of
Operation: the CMAC Mode for Authentication is used here.
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Figure 4.7: Wisecr Bootloader control flow. The Bootloader manages Security Association, Secure Broadcast,
Validation and Remote Attestation stages.

is required, or if there is a valid application installed. If no update is required and the user
application is valid, 3 the bootloader configures MPU protections for application execution,
before handing over control to the application. During the application execution, 4 the user
code is executed, 5 then the token T waits for command from the Server  , the Server  may
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send an Inventory commands to instruct the token T to 6 send back e.g., sensed data, or in
7 setup the WisecrMode flag and trigger a software reset in preparation for an update.
Security Association. Upon a software reset, a setWisecrMode flag directs the token T to enter
the Security Association stage. 8 Subsequently, the token waits for further instructions from
the Server. On reception of an Authenticate command, carrying an encrypted broadcast
session key ⟨sk⟩i and the MAC tag si of the new firmware, 9 the token T decrypts ⟨sk⟩i with
its device key ki and acquires the session key sk.
Secure Broadcast. Recall, at this stage, all tokens selected for update will be switched into the
observer mode except the pilot token that is set to respond to the Server. The pilot token in
state 10 receives a new chunk of encrypted firmware ⟨f irmware(j)⟩, and 11 stores it into the
specified memory location. 12 The pilot token sends reply to the Server. In 13 , for tokens
in observer mode, they silently listen to the communication traffic between the Server and the
Pilot token without replying. In other words, tokens under observer mode receives the encrypted
firmware chunks, 14 store chunks in memory but ignores unicast handle identifying the target
device; this significantly saves observers’ energy from replying as detailed in Section 4.3.2.
Once an End of Broadcast (EOB) message is received, all tokens stop waiting for new packets
and start firmware decryption 15 .
Validation. The token computes a local MAC tag s′i, including the decrypted firmware, and
compares it with the received MAC tag si 16 . The firmware is accepted, applied to update 17
the token, if s′i and si are matched, and 19 the WisecrMode flag is reset; otherwise, 18 the
firmware is discarded and the update is aborted. Subsequently, each token performs a software
reset to execute the new firmware or reinitialise in bootloader mode if the firmware update is
unsuccessful.
Remote Attestation. On reception of an Authenticate command with an instruction to
perform remote attestation, 20 the token first decrypts the session key sk and reads 21 idi, veri
and f irmware from the NVM according to the specified memory address and size (firmware
is only used in the elaborate mode, in the fast mode 23 only idi and veri are involved). The
attestation response is then computed as r ← MACsk(c‖f irmware‖idi‖veri) if the elaborate
mode is selected 22 or r ← MACsk(c‖idi‖veri) if using the fast mode 24 . Subsequently, the
response r is sent back to the Server  , 25 the WisecrMode flag is cleared and 19 the device
is reset.
Notably, a power-loss event during the control flow will result in a reset and rebooting of the
token T and a transition out from the firmware update state. Most significantly, in such an
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occurrence, the immutable bootloader functionality is preserved. Although the loss of state
implies that a Server  must reattempt the secure update, we prevent the token from being left
in a vulnerable state to inherently mitigate security threats posed in the power off state [34].

4.4 End-to-end Implementation and Experiments

This section elaborates on software tools, the end-to-end implementation of Wisecr and
extensive experiments conducted to systematically evaluate the performance of Wisecr.

4.4.1 End-to-end Implementation

We implement a bootloader and a Server Toolkit to wirelessly and simultaneously update
multiple CRFID transponders using commodity networked RFID hardware and standard
protocols. We realise the Wisecr scheme in Figure 4.1 and the identified security property
requirements. Specifically, we employ MSP430FR5969 MCU based WIPS5.1LRG CRFID
devices. The MSP430FR5969 microcontroller has a 2 KiB SRAM and a 64 KiB FRAM internal
memory. The implementation is a significant undertaking and includes software development for
the CRFID as well as the RFID reader and backend services for the server update mechanisms.
Given that we have open sourced the project, we describe: i) the bootloader in Section 4.4.2; and
ii) the Sever Toolkit and the protocols for Host-to-RFID-reader and Reader-to-CRFID-device
communications for implementing Wisecr over EPC Gen2 in Appendix D.2.

4.4.2 Bootloader and Memory Management

Wisecr Bootloader. The immutable bootloader supervises firmware execution while needing
to be compatible with standard protocols, we developed our bootloader based on the Texas
Instrument’s recent framework for wireless firmware updates—MSP430FRBoot [141] —and
the code base from recent work [38] employing the framework. Such construction ensures a
standard tool chain for compilation and update of new firmware whilst the usage of industry
standards is likely to increase adoption in the future. We compile the firmware code into ELF
(Executable and Linkable Format) made up of binary machine code and linker map specifying
the target memory allocation—the memory arrangement is illustrated Figure 4.8.
Wisecr Memory Management. For implementing the Secure Storage component, several
different mechanisms are available (as summarised in Appendix D.1). In Wisecr, we select
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Figure 4.8: Memory Protection Unit (MPU) segmentation diagram and memory arrangement during bootloader
execution (left) and application code execution (right). Due to hardware limitations, only 3 segments can be defined,
and the secure storage area must be at least 1 KiB in size due to segment boundary alignment requirements [188]

to use the Runtime access protection (e.g. using MPU segments at run-time) In this scheme,
secure storage is available on device boot-up, but is locked (until next boot-up) by the bootloader
before any application code is executed. We employed thismethod and the implementedmemory
arrangement is described in Figure 4.8. Switching to privilege mode is done by the bootloader
on boot up, and the applications do not need to make any specificmodifications. If an application
attempts to access a privileged resource, e.g. overwriting the bootloader segment, a power-up
clear (PUC) will be triggered by the MPU to cause reboot, before any risky operation.
Importantly, any power-on reset, regardless of the cause, will result in a reboot and the execution
of the bootloader before transferring control to application code—see Application execution
stage in Figure 4.7. Prior to entering the application execution stage, the bootloader enforces
the MPU policy for application execution (see 3 ). This step is necessary with the target MCU
used in our implementation as it only allows defining three memory segments for protection.
Thus, we are able to rely on the very limited protections provided by the MCU to achieve the
security objectives of a trusted bootloader; recall, in our threat model, the bootloader is trusted,
and we realise this in practice by ensuring that the bootloader provisioned is immutable where
the secrets stored on device must remain inaccessible and immutable to the application firmware.
Now, it is infeasible to revoke the policy enforced during the application execution stage, unless
the device is power-cycled. But, the device will enter the bootloader stage after a reboot and
MPU protections will be re-enabled prior to executing any application code. We summarise the
memory protections developed using the limited MPU configurations to realise Wisecr security
requirements in bootloader and application execution modes in Section 4.3.2; therein, we also
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discuss alternative methods to realise such protections to ensure the generalisation of Wisecr to
other MCUs.

Secure Storage
App Code
(firmware)

k  , ver

id

firmware

Device Info.

(a) id  || ver

c MAC sk

r'

(b)

c MAC sk

r'

firmware || id  || ver(c)

.
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memory

...
...

addr
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SKP.Dec

<sk   >

sk

Figure 4.9: (a) Token memory and allocations; (b) fast mode; and (c) elaborate mode.

Table 4.3: Wisecr Implementation and Execution Overheads. Tested under the CCS 9.0.1.0004 development
environment, with compiler TI v18.12.1.LTS Optimisation settings: -O = 3; -opt_for_speed = 5.

Clock Cycles Memory Usage (Bytes) HW RequirementROM RAM
Functional blocks
sk ← SKP.Decki(⟨ski⟩) (For a 16-Byte block) 772 7062 62 HW-AES
f irmware(j) ← SKP.Decsk(⟨f irmware(j)⟩) (For a 16-Byte block) 772 690 62 HW-AES
si ←MACsk(f irmware||veri||nver) 26,6981 2,374 72 HW-AES
Vti ← SNIFF(t) 1,530 276 12 ADC
PAM.Enter(tLPMi

, tactivei) and PAM.Exit()3 51 86 6 Timer
Setup MPU for bootloader execution 76 58 0 MPU
Setup MPU for application execution 91 60 0 MPU
Secure Storage (used for ki, idi and veri) 0 19 0 MPU
Stages
Security Association 2,302 982 74 ADC, HW-AES
Secure Broadcast 11,6041 760 68 HW-AES, Timer
Validation 26,7241 2,390 77 HW-AES, Timer
Remote Attestation (elaborate mode) 18,3604 3,172 80 HW-AES
Remote Attestation (fast mode) 5,574 3,172 80 HW-AES
Total
Wisecr (excluding Remote Attestation, for the pilot Token) 40,6301 3442 154 All of the above
SecuCode (using fixed key, updates a single token) 27,0921 2442 78 HW-AES, Timer
1For a typical 240-Byte firmware
216 Bytes of this value incorporates the device key ki in secure storage3A single PAM execution, as defined in Figure 4.3
44,397 clock cycles for the setup routine–a constant overhead for any block size, 1,060 clock cycles for each 16-Byte block and n + 2 clock
cycles for an n-Byte padding to form a 16-Byte block, if required.

Remote Attestation. As shown in Figure 4.9 (a), Remote Attestation routine is an integral part
of the immutable bootloader, it has access to all memory segments: Token device key ki, version
number veri, tag serial number idi and the installed user application code firmware. A challenge
c is a one-time use random string that is generated by the Server  . The r′ is the report to be
transferred back to the Server. On receiving an encrypted session key ⟨ski⟩, the Token decrypts
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it with SKP.Dec and obtains the session key sk. In the fast mode illustrated in Figure 4.9(b),
the response r′ is calculated based on idi and veri. In contrast, the response r′ is computed
over an entire memory segment, such as the firmware, in the elaborate mode as depicted in
Figure 4.9 (c).

4.4.3 Wisecr Implementation Overheads

We first evaluate the execution and implementation overhead of each Wisecr security functional
block; results13 are summarised in Table 4.3. The execution overhead is measured in
terms of clock cycles for installing a firmware of 240 Bytes. The implementation overhead
is measured in memory usage, consisting of ROM for code and constants and RAM for
run-time state. Secondly, we assess the necessary hardware modules such as hardware AES
accelerator (HW-AES), analog-to-digital converter (ADC) and Timer. All functional blocks
are implemented in platform independent C source files. We summarise the implementation
costs for each stage; the most significant implementation and execution overhead is from
the Validation stage because of the computationally heavy MAC() function—recall Remote
Attestation is an optional stage.
In Table 4.3, we also compare with SecuCode14; presently, the only CRFID firmware update
scheme considering security—notably, the scheme only prevents malicious code injection
attacks and is designed to update a single device at a time as highlighted in the method
comparison Table 4.4. In summary,Wisecr consumes 49.97% more clock cycles, 40.95% more
ROM and 97.43% more RAM space than the SecuCode. However, Wisecr can update multiple
devices simultaneously to attain a performance advantage as we demonstrate in Section 4.4.3
because SecuCode only updates one device at a time. In addition, Wisecr provides IP protection
(encryption of the firmware transmitted over the insecure wireless channel) and validates
firmware installation. As expected, the performance improvements and additional security
features are achieved at an increased implementation overhead.

13Tested under the CCS 9.0.1.0004 development environment, with compiler TI v18.12.1.LTS Optimisation
settings: -O = 3; -opt_for_speed = 5.

14In [38], the device key is derived from SRAM PUF responses. In our comparison, we opt for a device key in
the protected NVM instead to make a fair overhead comparison. Further, the key derivation module only adds a
fixed overhead at start-up.
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4.4.4 Experiment Designs and Evaluations

We employed fourWIPS5.1LRGCRFID devices and an Impinj R420 RFID reader with a 9 dBic
gain antenna to communicate with and energise the CRFID devices. All of the experiments are
conducted with the RFID reader feeding the antenna with 30 dBm output power. Given that,
the recent EPC Gen2 V2.0 [181] security commands such as the SecureComm are not yet
widely supported by commercial RFID readers, like the Impinj Speedway R420, we map the
unsupported EPC Gen2 command to the BlockWrite command as in [38]. We summarise
our evaluations below15:

• We evaluate performance—latency and throughput in Section 4.4.5—and compare with:
i) SecuCode [38], the scheme only prevents malicious code injection attacks and is designed
to update a single device at a time as shown in the method comparison Table 4.4; ii) Wisecr
intentionally set to sequential mode—broadcasting/updating one token at a time—termed
Wisecr (Seq), to assess the gains from Wisecr broadcasting firmware to multiple devices
simultaneously; and iii) non-secure multi-CRFID dissemination scheme, Stork [22] (see
Section 4.5.1)

• We evaluate the efficacy of our Power Aware Execution Model (PAM) and Pilot Token
selection method (results in the Section. 4.3.2).

• We demonstrate Wisecr in an end-to-end implementation, see Section 4.4.6 and
demonstration video at:
https://www.youtube.com/watch?v=GgDHPJi3A5U

scan to watch

4.4.5 Performance Evaluation and Results

We use two performance metrics: i) end-to-end latency; and ii) throughput (bits per second).
Latency is the time elapsed from the Server Toolkit transmitting the firmware to an RFID
reader using LLRP commands to the time the Server Toolkit confirms the acknowledgement
of successfully updating all chosen tokens. Throughput is the total data transferred over the
latency, where Tℎrougℎput (bps) = (|firmware| × Num. of Tokens)∕Latency. Our evaluation
is carried out under three different controlled variables: i) distance; ii) number of tokens; and

15Notably, our extensive experiments to evaluate techniques and modules we developed are detailed in the
Appendices with references in the main article
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Figure 4.10: Comparing Wisecr, Wisecr (Seq)—Wisecr operating in sequential mode, SecuCode [38] with no
secure broadcast support under increasing: (a) Distance (4 Tokens with a 407 Byte firmware); (b) Number of
Tokens (at 20 cm with 407 Byte firmware); and (c) Firmware size (at 20 cm with 4 Tokens).

iii) firmware size. In each experiment, only one variable is changed and our results are collected
over 100 repeated measurements, with outliers outside of 1.5 times upper and lower quarterlies
removed.
First, we transfer the same firmware code (a 407 Byte accelerometer service) to four target
devices located at distances from 20 cm to 40 cm, covering good to poor powering channel states,
to evaluate the stability of the Wisecr scheme. As expected, we can observe in Figure 4.10(a)
that the performance of all three schemes downgrades with increasing distance. Notably,
Wisecr and SecuCode outperforms the Wisecr (Seq). Because, Wisecr (Seq) incurs a larger
overhead through the need for executing a Security Association stage to setup the broadcast
security parameters, for each device. Further, SecuCode (without IP protection) does not need to
execute the power intensive firmware decryption operations, and thus is less likely to encounter
power-loss and update session failure or require the extra time necessary by Wisecr to decrpyt
the firmware. As expected, Wisecr outperforms albeit the added security functions provided in
comparison to SecuCode.
Second, following the method and metrics in Stork [22], we tested the performance of the
schemes by increasing the number of CRFID devices to be updated. We can see in Figure 4.10(b)
that the latency of both Wisecr (Seq) and SecuCode increases linearly while Wisecr remains
relatively steady regardless of the number of devices to update. Consequently, Wisecr exhibits
significantly improved throughput as the number of device increases. Further, we examine
performance under increasing firmware size: 115 Bytes; 407 Bytes (a sensor service code);
and 1280 Bytes (a computation code firmware). Efficacy of broadcasting to multiple devices
simultaneously is validated by latency and throughput performance detailed in Figure 4.10(c).
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Third, all three candidates show improved efficiency as larger firmware sizes are transmitted;
Wisecr’s significantly better efficiency can be attributed to the broadcast method.
We also conducted an evaluation of the execution overhead (latency) introduced by the remote
attestation routines. Since remote attestation is performed on one singulated token at an instance,
we only examine its impact on one individual device. The latency can be aggregated for multiple
devices. As illustrated in Figure 4.11, the remote attestation in fast mode always completes in
1.1 ms, regardless of the firmware size. While the time required to complete the elaboratemode
scales from 1.3 ms to 6.5 ms with respect to firmware sizes from 115 Bytes to 1280 Bytes.
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Figure 4.11: The execution overhead of the attestation function with respect to different firmware sizes in an
end-to-end experiment setting. Mean values over 100 repeated measurements are plotted.

4.4.6 Case Study

As shown in Figure 4.12, we employ four CRFID devices embedded in a 3D printed unmanned
aerial vehicle (UAV) rotor prototype. The CRFID devices are factory programmedwith firmware
for monitoring the centrifugal load and the wired programming interface is disabled prior to
embedding and deployment. All four CRFID devices are required to be updated wirelessly and
securely with code for monitor the blade flapping vibration in a wind tunnel test.

We employed Wisecr to simultaneously, securely and wirelessly update the four CRFID sensor
devices with the 391-Byte firmware code. The experimental results summarised in Figure 4.12
show successful updates for 100 repeated attempts in two settings: i) when the rotor is attached to
the UAVWisecr updated all of the devices in the first attempt in 76% of the time with an average
latency of 28.12 seconds; and ii) when the rotor assembly is free standing, Wisecr updated all
of the devices in the first attempt in 89% of the time with an average latency of 14.27 seconds16.

16Although previous studies have performed experiments with static tags, we also attempted to update the tokens
while the rotor blades are mobile by rotating them at approximately 1 RPM. We were able to update tokens over
50% of the time. As expected, the changing powering conditions dramatically reduced the update rate (see details
in Appendix D.9)
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Figure 4.12: (a) Application scenario: wirelessly updating the firmware of four CRFID sensor devices embedded
in an unmanned aerial vehicle (UAV) rotor prototype. The UAV rotor aerodynamic model is adopted and
modified from: https://grabcad.com/library/4-bladed-propeller-experimental-1 .
With Wisecr, we simultaneously, securely and wirelessly updated the four devices with a 391-Byte code.
Experimental results when: (b) the rotor assembly is attached to the UAV and (c) when the rotor assembly is
free standing over the antenna. The green bar graph denotes the percentage of successful updates to all 4 devices.

A demonstration of the secure firmware update process in using our end-to-end implementation
illustrated in Figure 4.12 is available at:

https://www.youtube.com/watch?v=GgDHPJi3A5U
scan to watch

We open source the complete source code for Wisecr and related tools at:
https://github.com/AdelaideAuto-IDLab/Wisecr .

4.4.7 Security Analysis

Under the threat model in Section 4.2.1, we analyse Wisecr security against: i) IP theft
(code reverse engineering); ii) malicious code injection attacks under code alteration, loading
unauthorised code, loading code onto an unauthorised device, and code downgrading; and
iii) incomplete code installation.
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IP Theft or Code Reverse Engineering. The wirelessly broadcasted firmware is encrypted
using a one-time 128-bit broadcast session key ski. Without the knowledge of the broadcast
session key, the adversary  is unable to obtain the plaintext firmware through passive
eavesdropping. Once the firmware is decrypted on the token, the binaries cannot be accessed
outside the immutable bootloader. Therefore, the probability of a successful IP theft is now
determined by the security provided by the size of the selected keys—we employ 128-bit keys
in the Wisecr implementation.

Loading Unauthorised Code. The security property of a MAC tag si ←

MACki(f irmware||veri||nver) ensures that the adversary  cannot commit a malicious
firmware injection attack without the knowledge of the session key sk—recall that the sharing
of sk is protected through a secure channel established with a token specific private key ki.
Hence, only the Server with the session key sk is able to produce a valid MAC tag to a token
T . Hence, the probability of launching a successful attack by the adversary  is limited
to the probability of successfully obtaining the device key ki and/or the session key sk in a
man-in-the-middle attack to successfully construct a MAC tag and disseminate a malicious
firmware that will be correctly validated by the target tokens. Therefore, without knowledge of
ki or sk, the probability of fooling a token T to inject a malicious firmware by  is no more
than the brute-force attack probability 2−128 determined by the key size |ki| = 128.

CodeAlteration. For each firmware update, aMAC tag si ←MACki(f irmware||veri||nver) is
used to verify code integrity. Therefore, without knowledge of the session key sk, the adversary
 can not generate a valid MAC tag for an altered firmware. Any attempted changes to the
firmware during the code dissemination will be detected and, thus, firmware discarded by the
token.

Loading Code onto an Unauthorised Device. Each authorised device i maintains a unique
and secret device specific key ki only known to the Server  . Therefore, an unauthorised
device cannot decrypt the session key ski to install a recorded firmware encrypted with ski of
an authorised device.

Code Downgrading. The adversary  can attempt to downgrade the firmware to an older
version to facilitate exploitation of potential vulnerabilities in a previous distribution. This can
be attempted through a replay attack by impersonating the Server. However, for each firmware
update, a specific MAC tag: si ← MACki(f irmware||veri||nver) is generated based on two
monotonically increasing version numbers: veri and nver. Without direct access to modify the
Secure storage contents in region M to re-write the current version number of a device to an
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older version, the attacker cannot replay a recorded MAC tag from a previous session to force a
token to accept an older firmware. By virtue of the monotonically increasing version numbers,
and the secure MAC primitive protected by the session key sk, a successful software downgrade
using a replay attack cannot be mounted by the adversary.
Incomplete Firmware Installation. In a man-in-the-middle attack, the adversary  may
attempt to prevent a new firmware installation and spoof a device response with an updated
version number during an interrogation—the version number is public information and sent in
plaintext as shown in Figure 4.1. Hence, a token may be left executing an older firmware version
with potential firmware vulnerabilities. The Server can verify that a specific disseminated
firmware deployed by the token is the same as the one issued by the Server by performing a
remote attestation. In our Wisecr scheme, we have considered an optional remote attestation
stage (detailed in Section 4.2.2) to allow the Server to verify the firmware installation on a given
token. In general, both code installation and attestation are bounded to the device key ki, thus,
it is infeasible to fool the Server without knowledge of the device key.
Related-key Differential Cryptanalysis Attack. In our security association stage, the session
key sk is encrypted multiple times with different device keys ki. A related-key differential
cryptanalysis of round-reduced AES-128 is demonstrated in [189]. The prerequisite to mount
such an attack is that the attacker knows or is able to choose a relation between several secret
keys and gain access to both plaintext and ciphertext [190]. In our approach, as mentioned in
Section 4.2.1, ki chosen by the server are i.i.d., and only the ciphertext is publicly available
where the attacker is not able to force the server to encrypt a plaintext of their choosing.
Therefore, related-key attacks cannot be mounted under our threat model. Even if such an attack
is possible, to the best of our knowledge, there is no successful full-round related-key differential
cryptanalysis attack against AES-128, which serve as the SKP function in our implementation.

4.5 Related Work and Discussion

Here, we discuss related works in the area of wireless code dissemination to CRFID devices.
Notably, the topic of wireless code updating has been intensively studied for battery powered
Wireless Sensor Network (WSN) nodes. For example, a recent study by Florian et al. [142]
proposed updating the firmware and peer-to-peer attestation of multiple mesh networked IoT
devices. Physical unclonable functions [38] and blockchains [191] have also been utilised
in code dissemination. But, such schemes [142], [191] are designed for battery powered
WSN nodes featuring device-to-device communication capability, and supervisory control
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of operating systems (e.g TinyOS), absent in batteryless CRFID devices (see challenges in
Section 4.1). Further, batteryless devices operate under extreme energy and computational
capability limitations. In particular, harvested energy is intermittent and limited and thus
devices face difficulties supporting security functions such as key exchange using Elliptic Curve
Diffie-Hellman used in [142]. Therefore, we focus on research into wireless dissemination
schemes for CRFID like devices in our discussions. Further, we also discuss and compare our
work with existing wireless methods developed for CRFID to highlight the aim of our scheme to
fulfil unmet security objectives for simultaneous wireless firmware update to multiple CRFIDs.
Wireless Code Dissemination to CRFID. Given the recent emergence of the technology,
there exists only a few studies on code dissemination to CRFID devices. Wisent from Tan
et al. [29], and R3 from Wu et al. [32] demonstrate a wireless firmware update method for
CRFIDs. Subsequently, Aantjes et al. [22] proposed Stork, a fast multi-CRFIDwireless firmware
transfer protocol. Stork forces devices to ignore the RN16 handle in down-link packets—a
form of promiscuous listening—to realise a logical broadcast channel in the absence of EPC
Gen2 support for a broadcast capability; RN16 specifies the designated packet receiver. This
technique enables Stork to simultaneously program multiple CRFIDs to achieve fast firmware
dissemination. Our Pilot-Observer mode (Section 4.3.2) is based on a similar concept, but
instead of always selecting the first seen device, as in Stork, we strategically elect the token
with the lowest Vt as the Pilot to achieve higher broadcast success. Brown and Pier from
Texas Instrument (TI) developed MSPBoot [175] in late 2016. They demonstrate an update
using a UART or SPI bus to interconnect a MSP430 16-bit RISC microcontroller and a CC1101
sub-1GHz RF transceiver.
However, none of the schemes, Wisent, R3, Stork and the work in [175], considers security
when wirelessly updating firmware. SecuCode [38] took the first step to prevent malicious code
injection attacks where a single CRFID device is updated. But SecuCode lacks scalability and
performs device by device updates, cannot protect the firmware IP, and provides no validation
of firmware installation.
Remote Attestation. Attestation enables the Server to establish trust with the token’s hardware
and software configuration. Existing mainstream remote attestation methods are unsuitable for
a practicable realisation in the context of intermittently powered, energy harvesting platforms
we focus on. For example, peer-to-peer attestation adopted in [142] is impractical in the CRFID
context due to the lack of a device-to-device communication channel. In boot attestation [192],
a public-key based scheme is proposed to fit ownership and third party attestation, however
public-key schemes are too computationally intensive for the batteryless devices we consider.
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Recently, a publish/subscribe mechanism based asynchronous attestation for large scale WSN
is presented in SARA [193], however, such a publish/subscribe paradigm is yet to be supported
over a standard EPC Gen2 protocol. In contrast, our lightweight-remote-attestation mechanisms
(see Section 4.2.2) are inspired from the recent study in [30] where methods are designed for
resource-limited platforms and require no additional building blocks besides those necessary for
Wisecr.

Table 4.4: Comparison with Related Studies.

Work Multiple
devices

Power-loss mitigation Security Public
source
code
release

Communication
Energy

Reduction
Adaptive
IEM

Prevent
Malicious
Code

Injection

Prevent
IP

Theft
Code

installation
attestation

Wisent [29] 8 8 8 8 8 8 3

R3 [32] 8 8 8 8 8 8 8

Stork [22] 3 3 8 8 8 8 3

SecuCode [38] 8 8 8 3 8 8 3

Wisecr (Ours) 3 3 3 3 3 3 3

Comparisons. Table 4.4 summarises a comparison ofWisecr with wireless code dissemination
studies specific to passive CRFID devices. Wisecr is the only secure scheme (prevent IP theft
and malicious code injection, and provide attestation of firmware installation) for simultaneous
update of passively powered devices. We have also extensively compared the performance of
Wisecr with the non-secure code update method of Stork to provide an appreciation for the
security overhead in an end-to-end implementation below.

4.5.1 Comparison with Stork (Insecure Method)

We extensively compared the performance of our secure Wisecr scheme with Stork [22]. Both
methods aim to offer multiple CRFID wireless firmware updates, but security objectives are not
considered by Stork. Comparisons are carried out under three different test settings:

• Four different operating ranges from 20 to 50 cm.
• Updating 1 to 4 tags concurrently in-field to evaluate reduced latency to update (or

improvements to scalability) (as in Stork, tags are at 20 cm from the antenna).
• Consider three different firmware sizes (as in Stork, tags are at 20 cm from the antenna).

We measured two performance metrics: i) latency; and ii) throughput as defined in Section 4.4.5
for each test setting. For both Stork andWisecr, we used the same binary files generated from the
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same compilation. The settings in the Wisecr Server Toolkit are: 10 attempts per broadcast run;
lowest voltage Vti pilot token selection method; Send Mode is set to Broadcast. Meanwhile, the
settings in Stork are: BWPayload is set to throttle; Update Only is set to True; Reprogramming
Mode is set to Broadcast; Compression is Disabled (as compression simply reduces the size of
the firmware, we did not enable this option). Results are mean values from 100 repeated protocol
update runs. Comparison results from our experiments are detailed in Figure 4.13:
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Figure 4.13: We repeated the firmware update process for Wisecr (ours) and Stork to compare between Stork
(providing no security properties) and our Wisecr scheme under three different test settings: (a) increasing
operational range; (b) increasing number of tokens; and (c) payload sizes.

• From Figure 4.13 (a): when powering channel state is reasonable, that is from 20 cm to 40 cm,
Wisecr outperforms Stork, as Wisecr does not need per-block checking and relies on the pilot
token selection method to improve broadcast performance. However, Stork performs better
thanWisecr at 50 cm when the powering channel condition is very poor because Stork is able
to continue to transmit the firmware across power failures since the stork scheme does not
need to meet any security requirements, and therefore, is able to send firmware payload in
plaintext from the last correctly received payload. In contrast Wisecr gracefully fails when a
power interruption cannot be prevented and all states (such as the session key) are lost and a
new broadcast attempt must be made by the Server Toolkit.

• From Figure 4.13 (b): Wisecr exhibits significantly better latency and throughput as the
number of tokens increases.

• From Figure 4.13 (c): both protocols show improved efficiency as larger payload/firmware
sizes are transmitted. Notably, Wisecr exhibits much better efficiency attributed to the
significantly reduced latency experienced during the broadcast method.

The gains in performance and faster updates to many devices achieved by Wisecr can be
attributed to: i) our pilot token selection method to drive the protocol where a significantly large
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proportion of in-field tokens are updated in a single attempt; and ii) our validation method of
complexity O(n ⋅ 1) where n is the number of tokens—although computationally intensive—is
more lightweight than the read back mechanism of Stork, O(n ⋅ k) where k is the code size,
relying on the narrow band communication channel employed by CRFID devices.
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Michael Chesser contributed to the development of the Wisecr App (the desktop application)
and interfacing with the RFID reader, the immutable on-device SecuCode bootloader
implementation and implementing the broadcast method over the RFID air interface through
the Wisecr App.

4.7 Chapter Summary

In this chapter, we have proposed and implemented the first secure and simultaneous wireless
firmware update to many RF-powered devices with remote attestation of code installation. We
explored highly limited resources and innovated to resolve security engineering challenges to
implement Wisecr. The scheme prevents malicious code injection, IP theft, and incomplete
code installation threats whilst being compliant with standard hardware and protocols. Wisecr
performance and comparisonswith state-of-the-art through an extensive experiment regime have
validated the efficacy and practicality of the design, whilst the end-to-end implementation source
code is released to facilitate further improvements by practitioners and the academic community.
In this chapter, the lightweight physically obfuscated key derivation using on-chip SRAM
fingerprints were not employed since the implementation overheads of even the lightweight
on-device reverse fuzzy extractor encoder in Chapter 3 was found to be too high for Wisecr.
Even though in Section 3.3.3 in Chapter 3, we have applied a number of techniques in SecuCode,
including a narrow legal temperature range, we still need to sacrifice the key reliability to reduce
the time complexity of the reverse fuzzy extractor encoder operate under the resource—energy
and computational capability—limitations imposed by the devices. Hence, the following
chapters will investigate the problem of implementing an RFE-based key derivation method
on resource-limited devices.
Meanwhile, the PAM proposed in this chapter requires on-device power measurements by
sampling harvested voltage level using ADC integrated inside the MCU, which may not be
available on some devices and sampling the ADC comes at the expense of consuming some of
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Figure 4.14: Upcoming chapter sneak peek.

the harvested energy. Therefore, we introduce a Read-rate based dynamic execution scheduling
mechanism in Appendix A based on the read-rate reported from the reader without any
implementation overhead on-device. However, due to the throughput limitation of an ALOHA
channel and multi-CRFID interference, read-rate based method becomes inaccurate under the
multi-device environment. It requires further investigations to be adopted to the Wisecr.
In Figure 4.14 we illustrate the problems addressed in this chapter and explore the problems to be
examined in the upcoming chapters. Notably, Chapter 5 will consider the problem of reducing
the computational complexity of the on-device RFE generator function by investigating a novel
enrolment strategy.
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Chapter 5

Lightweight Key Generation
with Multiple Reference

Response Strategies

Server Evaluations under multiple
operating conditions

Multiple reference response (MRR)
enrollment in a controlled environment

Server

Sensor node Sensor node

The device is under an
unknown operating condition

Key generation in an 
insecure environment

High temperature

Room temperature

Low temperature
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Trial-and-errorSave into
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Load from 
DB 

C
Hater 3 demonstrates the computationally expensive and challenging
nature of implementing a reverse fuzzy extractor-based PUF key
generationmethod in the context of resource-limited devices operating

under intermittent powering settings. In this chapter, we propose the adoption of
multiple referenced responses (MRR), subject to the same PUF challenge, produced
under multiple discrete operating conditions at the resourceful server during the
secure response enrolment stage. The MRR methodology reduces the burden
on the on-device reverse fuzzy extractor encoder function, as used in Chapter 3,
by allowing the server to reconcile a greater number of errors with a minimal
compromise in the level of security afforded by the key generator. The reduction in
computational cost achieved by the proposed MRR method is demonstrated from
software implementations on a batteryless, resource-limited CRFID device, where
the PUF data (memory fingerprints) are collected from intrinsic SRAM within the
CRFID devices.
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5.1 Motivation and Contribution

Resource-limited devices provide challenging environments for building security mechanisms,
where traditional secure key-storage methods are hardly applicable [194]. As an alternative,
reverse fuzzy extractor (RFE)-based key generators have been widely accepted to derive reliable
cryptographic keys from device memory fingerprints, which are inherently noisy [66], [73].
Although an RFE-based key generator—introduced in Chapter 2—assures a high-level of
security, as shown in Chapter 3, they are challenged by expensive implementation overheads
resulting from the error correction process responsible for stabilising a noisy response. The
prohibitive resource demands for error correction poses a major roadblock for adopting memory
PUF key generators on resource-constraint embedded computing platforms such as CRFID
devices with limited computational capability, memory and power.
The lightweight physically obfuscated key derivation method in SecuCode, designed
in Section 3.3.3 in Chapter 3, applied a number of complex techniques to enhance the reliability
of key material (i.e., the SRAM PUF responses) and reduce the computational complexity of a
reverse fuzzy extractor-based physically obfuscated key derivation method, including imposing
a narrow legal temperature range for device key generation. Consequently, the legal temperature
range limits the application scenario of SecuCode and introduces more implementation overhead
to the resource-limited device by sampling the chip temperature using an internal thermometer.
Therefore, this Chapter considers the following problem:

• How can we reduce the overheads of the (reverse) fuzzy extractor-based physically
obfuscated key derivation without imposing a constraint on the operating conditions?

In addressing the problem, this chapter takes an important step to investigate a novel enrolment
methodology to substantially optimise the overhead of implementing a PUF key generator on
resource-limited devices such as CRFID devices and wireless sensor nodes.
One of the key observations is that all previous PUF key generators solely enrol a single
reference response that is evaluated under the so-called nominal operating condition, e.g., room
temperature. This is ineffective for reducing the unreliability caused by the fact that the operating
condition of a PUF in-the-field can vary significantly from the nominal operating condition
used in the enrolment process17. In contrast, we propose multiple reference response (MRR)

17We recognise that the study in [195] conducted Ring Oscillator frequency measurements under two discrete
operating conditions with the objective of maximising the number of independent response bits enrolled from an
RO-PUF whilst facilitating the selection of highly reliable bits at a given selection threshold [195]; however, only
the derived single reference is enrolled.
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enrolment under discrete operating conditions. The crucial observation is that one of the
operating conditions of an enrolled reference response will be closer to the operating condition
of the PUF in the field. Alternatively, though the reproduced response is fixed and is based
on the operating condition of the PUF that is out of the control of the server, the reference
response can indeed be flexibly selected by the server. The overall result is a significant reduction
in the expected unreliability when compared with the conventional single reference enrolment
methodology.
As an immediate application, we combine MRR with a RFE to realise a MRR-based
RFE (MR3FE) that suits lightweight key derivation; attributing to the greatly decreased
implementation overhead. To examine the MRR method’s generalisation, it is adopted to a FE,
termed MR2FE. Performance efficiency of both MR3FE and MR2FE are evaluated by software
implementations on a CRFID device that is batteryless and resource-limited. For instance,
when a key restoration failure rate of less than 10−6 is required and pre-selection-based MRR
enrolment using only three references at {−15 ◦C , 25 ◦C , 80 ◦C} is utilised, MR3FE can reduce
the clock cycle overhead by 45% in comparison with a conventional RFE, while MR2FE can
reduce the clock cycle overhead by 42% in comparison with a conventional FE.
The main contributions made in this chapter are summarised as below:

• A novel multiple reference responses (MRR) enrolment strategy. For the first time, we
leverage MRR enrolled under discrete operating conditions for PUF key generation.

• ARFE-based key derivationmethodwithMRR strategy.As an immediate application,
a lightweight key derivation method is proposed, by putting the RFE and MRR strategy
together, dubbed MR3FE. This chapter also analyse the key failure rate of MR3FE.

• Practical use cases targeting resource constraint devices. To demonstrate the
significant reduction in implementation overhead of MR3FE, this chapter performed
extensive experiments using software implementations targeting a resource constraint
device—a batteryless CRFID device—with an embedded SRAM PUF. To examine the
generalisation of MRR, this chapter experimentally showcase its applicability to a fuzzy
extractor and also validate the substantially reduced implementation overhead.

5.1.1 Chapter Overview

Section 5.2 introduces MRR enabled RFE-based key derivation (MR3FE), which is
experimentally validated in Section 5.3. Section 5.4 demonstrates the generalisation of theMRR
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by adopting it into FE (MR2FE). We discuss related work and analysis the security of the MRR
when it is employed for FE and RFE aswell as limitations of current investigations in Section 5.5.
Section 5.6 concludes this chapter.

5.1.2 Notations and Concepts

Adding to the general notations and conventions defined in Section 2.1 in Chapter 2, Table 5.1
summarises some key concepts introduced and referred to in this chapter.

Table 5.1: Table of notations in this chapter.

 A resourceful server. A resource-limited device. The adversary is an attacker, for the adversary’s goal ability please refer to Section 5.5.
DB Server’s database, where each element is a two-tuple describing each token  : i) the unique

and immutable identification number idi; and ii) enrolled responses r1,… , rj ,… , rJ .
r A PUF response.
k A secret key for secure communications.
p Helper data, for more details please refer to Section 2.3.3.
n A randomly generated nonce.
u A hash digest.
□′ An apostrophe denotes a quantity evaluated at different time, e.g., r′ denotes the reproduced

response.
□i A subscript i ∈ [1, 2,…] denotes a specific item out of a collection, e.g., r2 is the PUF

response measured under the 2nd operating condition.
□ A subscript  denotes a value forged by the adversary , e.g., p is a helper data

manipulated by an adversary.
OCi The itℎ operating condition (OC), e.g., temperature, (for more details, please refer to

Section 5.2.2).
RNG() A random number generator RNG() outputs a random number when invoked.
Hash() A cryptographic hash function (for more details, please refer to Section 5.3.2).
PUF A function denoting an SRAM PUF that outputs response r (SRAM start-up value) when

invoked. (for more details, please refer to Section 2.3 in Chapter 2).
FE.□() A fuzzy extractor FE is a noise compensation or error correction utility defined by two

functions: key generation algorithm FE.Gen() and key reconstruction algorithm FE.Rep().
For more details please refer to Section 2.3.3.

5.2 Multiple Reference Response-based Reverse

Fuzzy Extractor (MR3FE)

This section explains our intuition for developing the multiple reference response (MRR)
approach, and then focus on the application of the approach in its most interesting context,
the reverse fuzzy extractor (RFE). We explain our rationale by developing an understanding
of response unreliability.
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5.2.1 Our Observation

The commonly used PUF reliability model, e.g., in [124], [125], assumes a fixed error rate,
specifically, each response reevaluation is assigned the same error rate. This is also referred
to as the homogeneous response error rate. In practice, PUF responses are experimentally
demonstrated to exhibit a bit-specific reliability—heterogeneous error rate [114], [126].
In this chapter we use the expected value of BER concept introduced in Section 2.3.2 in Chapter 2
to provide not only a convenient but also a valid method to analyse the key failure rate in relation
to a (reverse) fuzzy extractor.
Commonly, r is a reference response evaluated under a given operating condition and r′ is
the reproduced response evaluated, most likely, under a differing operating condition. BER is
influenced by factors such as thermal noise as well as environmental parameters such as supply
voltage and temperature.
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Figure 5.1: Referenced response under three operating conditions: (a) the referenced response is enrolled under
nominal operating condition of 25 ◦C . To the best of our knowledge, actually all current PUF applications enrol
only a single nominal response evaluated under a temperature around 27 ◦C that is the room temperature; (b) the
referenced response is enrolled under 50 ◦C; and (c) the referenced response is enrolled under 0 ◦C .

An example is used to explain our observations and rationale. Figure 5.1 (a)18 illustrates a single
reference response enrolled under 25 ◦C19; the nominal reference operating condition. We can
see that the BER increases when the operating temperature deviates away from the reference
operating condition of 25 ◦C . The maximum BER is around 10%, which occurs at −25 ◦C . The
minimum BER is under the reference temperature of 25 ◦C . Here, we reason the minimum BER
to be solely caused by thermal noise. In Figure 5.1 (b), the reference response is enrolled under
50 ◦C . We can see that the minimum BER appears at 50 ◦C; the nominal reference operating
condition in this case. ThemaximumBER is approximately 12%when the re-generated response

18The BER value in this figure is not obtained from experimental evaluations, it is used only for illustrative
purposes.

19Herein, for simplicity, supply voltage is assumed to be constant.
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is evaluated under −25 ◦C , that is 75 ◦C lower the reference operating condition. Similarly, in
Figure 5.1 (c), when the reference response is enrolled under 0 ◦C , the minimum BER occurs
at 0 ◦C and the maximum BER around 12% occurs when the operating condition increases by
75 ◦C .
In summary, no matter which specific nominal reference operating condition is selected, for
example, −25 ◦C , 25 ◦C or 50 ◦C , the minimum BER is always at the reference operating
condition. BER increases as the difference between the reference operating condition and the
operating condition under which response r′ is reproduced increases.
A deviation of the operating conditions of the PUF in the field from that under which a response
is enrolled will always lead to a deterioration in the expected BER. Although we cannot change
the operating condition under which the PUF operates in the field, we recognise that we can
choose a suitable reference operating condition during response reconciliation to reduce the
maximum number of erroneousness bits we expect in a re-generated response. Next, we
utilise this important observation to reason about the MRR-based RFE key derivation (MR3FE)
mechanism.

5.2.2 RFE-based Key Derivation with MRR Strategy

Figure 5.2 depicts the proposed MR3FE key derivation protocol. In comparison with
conventional RFE-based key derivation (as depicted in Figure 5.7), there are two distinct
differences:

• In the enrolment phase, instead of enrolling a single reference response, the server 
enrolled multiple reference responses; each reference response is evaluated at a different
operating condition. This is highlighted in 1 .

• In the key derivation phase, the server  recovers the re-generated response r′ of the token
 based on the enrolled multiple reference responses. This is highlighted in 2 .

Next we elaborate on the MR3FE key derivation by taking two reference responses as an
example.

An Example with Two Referenced Responses

In Figure 5.1, during the enrolment phase, we assume that the server  enrols two reference
responses, r1 and r2, evaluated under 50 ◦C and 0 ◦C , respectively. It is worth reminding that
r1 and r2 are subject to the same challenge applied to the same PUF.
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Server Token
DB idi, PUFi

(one-time task)

r1
OC1
←←←←←←←←←←←←←←←←←←←← PUFi
⋮

r
OCj
←←←←←←←←←←←←←←←←←←← PUFi

r1… rj… rJ ⋮
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break
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Abort
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Figure 5.2: RFE-based key derivation with MRR enrolment strategy. OC stands for operating condition.

In the key derivation phase, the token  measures the response r′ and then computes helper data
p ← FE.Gen(r′). In addition, verification data u1 ← Hash(idi, nt, p, k) is computed, where u1
is a keyed hash value with k as the key. The idi is the identification number of current token  ,
nt is a nonce generated by the token  . idi, nt, p along with u1 are publicly sent to the server  .
The server  now attempts to reconstruct the response r′ based on its enrolled responses: r1
and r2. This can be handled in an iterative way. The server  first uses r1 to generate r′′ ←
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FE.Rep(r1, p). Once response r′′ is obtained, the server  verifies whether Hash(idi, nt, p,
k′) equals the verification value u1 sent by the token  using the recovered secret key k′ ←
Hash(r′′). If the verification is successful, then k = k′, for this reason, response r′ is deemed to
be successfully restored. The key derivation can now proceed based on the shared secret session
key k. If Hash(idi, nt, p, k′) is not equal to u1 and the verification fails, the server  continues
to use r2 for reconstructing r′ to determine whether r′ can be successfully recovered.
Notably, it is only after both r1 and r2 are exhausted in the recovery of the response r′ that
MR3FE-based key derivation fails. This occurs on the condition that the verification of u1 has
failed and implies that the recovery of r′ has failed.

Advantages

The example above illustrates the advantages of a MR3FE. Let us first assume that the
computed helper data p by the token  is only supposed to guarantee a successful secret key
k reconstruction by the server  with k ←Hash(r′) when the BER is no more than 5%—in
other words, less than 5% of response bits being erroneous under a reevaluation. Assume a
single reference response r under 25 ◦C is utilised for key reconstruction by the server  , as
in the conventional RFE case, and the response r′ is reproduced under an operating condition
of −25 ◦C . We can observe from Figure 5.1 (a) that the r′ is highly unlikely to be correctly
recovered by the server  because the BER based on the reference response r evaluated under
25 ◦C is much higher than 5% at −25 ◦C .
Let’s now assume employing two reference responses, r1 and r2, as in the MR3FE setting, and
still assume that r′ is from the PUF operating under −25 ◦C . We can see that reference response
r2 has a high chance to successfully recover response r′ relying on the fact that the BER based
on r2 evaluated under 0 ◦C as a reference response is now less than 5%—see Figure 5.1 (c).
Similarly, if r′ is measured from a PUF operating under 75 ◦C , then using r1 evaluated under
50 ◦C as a reference response will lead to a BER of less than 5%, see Figure 5.1 (c), and
consequently, a successful response recovery.
Overall, we can see that in practice, the server  is unable to change the operating condition
under which the re-generated response r′ is evaluated. Consequently, an approach using a
single reference response is forced to account for a significantly higher BER than at the nominal
operating condition. In contrast, we can observe that the proposed MRR approach facilitates
the server  to employ an appropriate reference response to minimise the expected difference
between a reference response r and the re-generated response r′ to meet a given error correcting
capability threshold d.
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Next, we analyse the key reconstruction failure rate of MR3FE key derivation; this is also the
false rejection rate of the key derivation mechanism.

5.2.3 Key Failure Rate

To validate the efficiency of the proposed MR2FE and MR3FE, we focus on the average failure
rate of the PUF key generator. In [126], it is demonstrated that the expected value of key failure
rate based on a bit-specific reliability model is equivalent to the key failure rate predicted under
the commonly used reliability model with a fixed response error rate—as in equation (2.2) in
Section 2.3.2 in Chapter 2. In other words, the homogeneous reliability model correctly captures
the average key failure rate of a PUF key generator [73], [126]. Therefore, we will use BER
defined in equation (2.2) to derive key failure rate.
This chapter studies the family of BCH(n, k, t) linear codes with a syndrome-based decoding
strategy to realise a reverse fuzzy extractor considering its popularity [73], [124] and its security
property [73], [74]—we discuss security of (reverse) fuzzy extractors in Section 5.5. Here, n is
the code word length, k is the code size, t is the number of errors that can be corrected within
this n-bit block. Assuming response bit are i.i.d., we can express the average key failure rate of
recovering an n-bit response r′ based on a selected reference response rj , termed as P1j , where
the j ∈ {1, .., J} with J as the number of multiple references employed by the server  , as:

P1j = 1 − binocdf(t; n,BERj) (5.1)

where BERj is the BER using rj as the reference response. Here, binocdf() is a cumulative
density function of a binomial distribution with t successes in n Bernoulli trials, with each trial
having success probability of p, expressed as:

binocdf(t; n, p) =
t

∑

t=0

(

n
t

)

pt(1 − p)(n−t) (5.2)

A BCH(n, k, t) encoding produces (n − k)-bit helper data assumed to be publicly known
while k bits form the secret key material. For a single BCH(n, k, t) block, the complexity
of finding the k-bit response from r′ is 2k. It is not common to use a single large BCH(n, k,
t) block; typically a large block is split into small processing blocks to reduce implementation
complexity (overhead) [196]. For k bits of key material, response r′ can be divided into multiple
non-overlapping blocks of a BCH(n1, k1, t1) code where n1 < n and k1 < k for a parallel
implementation. Now the complexity of finding the k bit secret is 2k1⋅L where L is the number
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of parallel BCH(n1, k1, t1) code blocks used to realise k bits of secret key material. Given a
BCH(n1, k1, t1) code employed to gain a security level of k bits with L = ⌈k∕k1⌉ blocks, the
key recovery failure rate under the assumption of i.i.d code blocks is:

P2j = 1 − (1 − P1j)L. (5.3)

When all J reference responses {r1, ..., rj , ..., rJ} are employed, r′ reconstruction fails only
when all reference responses cannot restore the response r′. Therefore, the key failure rate
P failr for J reference responses can be expressed as a joint probability distribution:

P failr = P (r1,∩...∩, rj ,∩...∩, rJ ) (5.4)

However, due to the complexity of PUF response properties, e.g., correlations, formally deriving
a joint distribution without assuming that {r1, ..., rj , ..., rJ} are independently drawn under
distinct operating conditions is a non-trivial task20. Here, we take a very conservative evaluation
of the key failure rate P failr without a prior notion of independence implied on the reference
responses {r1, ..., rj , ..., rJ}21. We recognise that we can express an upper bound for the key
failure rate P failr as:

P failr = P (r1,∩...∩, rj ,∩...∩, rJ ) ≤ min{P2j}, j ∈ {1, ..., J} (5.5)

Now we adopt the very conservative estimate:

P failr = min{P2j}, j ∈ {1, ..., J} (5.6)

in our analysis.

5.3 Experimental Validations

We employ the ultra low power MCU used in CRFID transponders (WISP 5.1 LRG) to evaluate
the overhead of the proposed MR3FE key derivation mechanism as illustrated in Figure 5.3. As
discussed in Chapter 1 and Chapter 3, a CRFID device is battery-less device representative of
a low-end resource-limited computing platform. Since a CRFID device has SRAM memory, it

20Under an assumption of independence, the key failure rate P failr =
∏J

j=1 P2j.21Our conservative evaluation of the key failure rate P failr implies that the overhead reduction benefits reported
by our MRR approach is also conservatively assessed.
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Debug Interface

CRFID device:
WISP 5.1 LRG

MSP430 USB

MSP430FR5969 MCU

Figure 5.3: Experiment setup. The CRFID transponder is enlarged.

has the potential to use an intrinsic SRAM PUF as a trust anchor without requiring additional
hardware [38].

5.3.1 SRAM PUF Dataset

The SRAM PUF dataset used is from 23 MSP430FR5969 MCUs, three of them are collected
from CRFID transponders (as shown in Figure 5.3) and the rest 20 are from the MSP20 dataset
contributed in Chapter 3. From each MCU, the power-up states of 16,384 KiB SRAM cells are
read as SRAM PUF responses. The dataset consists of 100 repeated response measurements
under the temperature conditions: −15 ◦C , 0 ◦C , 25 ◦C , 40 ◦C and 80 ◦C . It has been
experimentally shown that the SRAMPUF reliability is much less sensitive to voltage variations
compared with temperature fluctuations attributing to a SRAM cell’s symmetric structure [67],
[197], [198]. Hence, we focus on reliability under varying temperature conditions in our study.

5.3.2 Overhead Evaluations
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Test Setup

The test environment used is Texas Instruments’ (TI) Code Composer Studio (CCS) 7.2.0, the C
code used is downloaded to a MSP430FR5969 LaunchPad Evaluation Kit via USB. TI CCS has
a built-in GCC toolchain for our hardware kit. This includes the msp430-gcc-6.4.0.32
win32 compiler. Considering that our main goal is to demonstrate the enhanced efficacy of
MR3FE compared to the conventional RFE in a relative manner, dedicated optimisation of
the C code was deemed out of scope. optimisation [199] of the fuzzy extractor software
implementation can be carried out in the future to further minimise the absolute implementation
overhead of the MR3FE.
The software instructions are executed sequentially as advanced out-of-order execution is
unavailable for typical resource constraint MCUs. The overhead measured in terms of clock
cycles to complete the algorithm is our primary concern. We measured clock cycles using the
Profile Clock tool supported in the CCS environment. In addition, we also measured memory
usage. Besides the 2 KiB SRAM memory embedded in the MSP430FR5969 microcontroller,
it is configured with a 63 KiB FRAM. Here FRAM usage (overhead) is reflective of code size,
while the SRAMusage represents size of the internal state used by the algorithm. The code size
is assessed by the .text block in FRAM using the Memory Allocation tool in CCS where the
internal state is manually counted for any local variables declared inside the algorithm routine.
Hash function and BCH code encoding are two pivotal components for realising the MR3FE
and dominates the overhead of the MR3FE implementation. We comprehensively evaluate these
building blocks by testing the following.

• Hash Functions. Six different hash functions are tested. The results are listed in
Table E.1 in the Appendix. E We evaluate clock cycles and memory overhead. The input
message size we selected is 240 bytes for these tests. Among all six software-based hash
implementations, the BLAKE2s-128 with a 128-bit hash presents the best performance.
Therefore, BLAKE2s-128 is selected for our evaluations.

• BCH Code Encoding. BCH(n1, k1, t1) code encoding overhead under different n1, k1, t1
settings are tested. Results are detailed in Table. E.2 in the Appendix. E

5.3.3 Comparisons

We first evaluate BER under three different response enrolment strategies: i) single readout;
ii) majority voting ; and iii) pre-selection.
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• In the single readout response enrolment, all the enrolled responses under a distinct
temperature is evaluated only once.

• In the majority voting response enrolment, all the responses under a distinct temperature
are evaluated 9 times and then the majority vote is applied for enrolment.

• In the pre-selection response enrolment, first, each response under 25 ◦C is repeatedly
measured 10 times, only the response bits exhibiting 100% reliable re-generations (all
‘1’s/‘0’s) are selected—12% of bits are discarded during this process. Then the reference
responses under other temperatures,−15 ◦C, 0 ◦C, 40 ◦C, 80 ◦C are obtained by applying
majority voting to the pre-selected responses under 25 ◦C using 9 repeated measurements.
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Figure 5.4: BER when single readout response enrolment strategy is utilised: (a) reference response is enrolled
at −15 ◦C; (b) reference response is enrolled at 0 ◦C; (c) reference response is enrolled at 25 ◦C; (d) reference
response is enrolled at 40 ◦C; and (e) reference response is enrolled at 80 ◦C .
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Figure 5.5: BER when majority voting response enrolment strategy is utilised: (a) reference response is enrolled
at −15 ◦C; (b) reference response is enrolled at 0 ◦C; (c) reference response is enrolled at 25 ◦C; (d) reference
response is enrolled at 40 ◦C; (e) reference response is enrolled at 80 ◦C .

BER evaluations based on the three different response enrolment approaches—single readout,
majority voting and pre-selection—are illustrated in Figure 5.4, Figure 5.5 and Figure 5.6,
respectively.
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Figure 5.6: BER when pre-selection response enrolment strategy is utilised: (a) reference response is enrolled
at −15 ◦C; (b) reference response is enrolled at 0 ◦C . (c) reference response is enrolled at 25 ◦C; (d) reference
response is enrolled at 40 ◦C; (e) reference response is enrolled at 80 ◦C .

We observe the following:

• Regardless of response enrolment strategy, it is empirically verified that the BER increases
as a function of the temperature difference between the response re-generation temperature
and the reference temperature.

• As expected, both majority voting and pre-selection approaches reduce BER; the
pre-selection strategy is more efficient.

Key Failure Rate. Based on BER values obtained from the three different response enrolment
strategies, we are able to evaluate the key failure rate. We use parallel BCH(n1, k1, t1) blocks as
discussed in Section 5.2.3. We consider an evaluation under the preference of deriving a 128-bit
secret. Therefore, we determine the number of BCH(n1, k1, t1) blocks required by using

⌈

128
k1

⌉

.
The key failure rates we have determined is detailed in Table. 5.3. We observe the following:

• Before applying MRR, majority voting and pre-selection reduces the BER and thus
decreases the key failure rate.

• Regardless of response enrolment approaches, our MRR approach further suppresses the
key failure rate. In other words, the MRR approach complements response reliability
enhancement approaches such as majority voting and pre-selection performed in the
enrolment phase.

Overhead. We are now able to compare the overhead of the MR3FE (RFE with MRR) with
the conventional RFE (only using a SRR) when they are implemented on a CRFID token
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Table 5.2: Key failure rate achieved for single readout, majority voting and pre-selection response enrolment
strategies to realise a 128-bit key.

Single readout Majority voting pre-selection
(n1,k1,t1) block num. SRR 2MRR 3MRR SRR 2MRR 3MRR SRR 2MRR 3MRR
(63,18,10) 8 0.6074 0.2821 2.67 × 10−2 0.4355 0.1446 2.7 × 10−3 2.26 × 10−2 1.10 × 10−2 8.21 × 10−6

(63,16,11) 8 0.3789 0.1342 8.2 × 10−3 0.2366 5.9 × 10−2 6.22 × 10−4 6.8 × 10−3 3.0 × 10−3 9.85 × 10−7

(127,29,21) 5 0.1712 2.86 × 10−2 2.49 × 10−4 7.55 × 10−2 7.1 × 10−3 2.82 × 10−6 1.79 × 10−4 4.36 × 10−5 2.97 × 10−11

(127,22,23) 6 6.62 × 10−2 7.4 × 10−3 3.04 × 10−5 2.39 × 10−2 1.4 × 10−3 1.91 × 10−7 2.08 × 10−5 4.19 × 10−6 5.47 × 10−13

(127,15,27) 9 5.7 × 10−3 2.95 × 10−4 2.66 × 10−7 1.4 × 10−3 3.51 × 10−5 5.09 × 10−10 1.66 × 10−7 2.67 × 10−8 < 10−21

(255,47,42) 3 2.48 × 10−2 9.0 × 10−4 1.25 × 10−7 5.4 × 10−3 6.8 × 10−5 2.47 × 10−11 6.69 × 10−8 4.58 × 10−9 < 10−21

(255,29,47) 5 2.8 × 10−3 3.96 × 10−5 8.27 × 10−10 3.83 × 10−4 1.62 × 10−6 3.66 × 10−14 3.92 × 10−10 1.65 × 10−11 < 10−21

(255,21,55) 7 1.52 × 10−5 4.72 × 10−8 4.59 × 10−14 9.90 × 10−7 7.17 × 10−10 < 10−21 1.79 × 10−14 < 10−21 < 10−21

(255,13,59) 10 7.97 × 10−7 1.45 × 10−9 < 10−21 3.56 × 10−8 1.59 × 10−11 < 10−21 < 10−21 < 10−21 < 10−21

Table 5.3: Overhead of RFE and FE when SRR, 2MRR and 3MRR are used.

Reverse Fuzzy Extractor Fuzzy Extractor
CPU cycles Memory Usage CPU cycles Memory Usage

(n1,k1,t1) block num. FRAM SRAM SRR 2MRR 3MRR FRAM SRAM
(63,18,10) 8 745,721 5,819 bytes 352 bytes 3,360,134 6,720,268 10,080,402 6,843 bytes 1,464 bytes
(63,16,11) 8 722,193 5,699 bytes 355 bytes 3,689,662 7,379,324 11,068,986 6,983 bytes 1,406 bytes
(127,29,21) 5 1,221,359 6,019 bytes 470 bytes 8,081,576 16,163,152 24,244,728 11,563 bytes 1,466 bytes
(127,22,23) 6 1,319,223 6,033 bytes 477 bytes 10,663,102 21,326,204 31,989,306 12,095 bytes 1,464 bytes
(127,15,27) 9 1,316,184 6,015 bytes 484 bytes 19,129,444 38,258,888 57,388,332 13,159 bytes 1,466 bytes
(255,47,42) 3 2,063,241 6,407 bytes 708 bytes 18,515,476 37,030,952 55,546,428 28,925 bytes 1,466 bytes
(255,29,47) 5 2,200,269 6,467 bytes 728 bytes 35,091,151 70,182,302 105,273,453 31,535 bytes 1,466 bytes
(255,21,55) 7 2,377,650 6,481 bytes 734 bytes 58,631,390 117,262,780 175,894,170 31,535 bytes 1,466 bytes
(255,13,59) 10 2,329,519 6,379 bytes 742 bytes 85,493,076 170,986,152 256,479,228 39,527 bytes 1,536 bytes

The FRAM and SRAM memory can be reused when multiple BCH blocks and hash are
sequentially computed.

 . Considering performance advantages, BLAKE2s-128 is chosen for the hash function (see
Table. E.1 in the Appendix. E). It is worth reminding here that RFE-based key derivation requires
a hash operation for three times as highlighted in 3 , 4 and 5 (see Figure 5.2). In Table. 5.3,
the overhead of RFE-based key derivation is detailed when SRR, 2MRR, 3MRR are deployed.
We observe the following from our experiments:

• Single Readout Response (SRR) enrolment. To achieve P failr < 10−6, ten
BCH(255,13,59) blocks are required when the conventional single reference response
under 25 ◦C is used, whereas nine smaller BCH(127,15,27) blocks are adequate when
3MRR under −15 ◦C , 25 ◦C , 80 ◦C is deployed. In this context, the MR3FE with 3MRR
reduces clock cycle overhead by 43.50% in comparison with the conventional RFE.

• Majority Voting Response enrolment. To achieve P failr < 10−6, seven BCH(255,21,55)
blocks are needed when the conventional single reference response under 25 ◦C is used.
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In contrast, six smaller BCH(127,22,23) blocks are adequate when 3MRR under −15 ◦C ,
25 ◦C , 80 ◦C is used. In this context, theMR3FEwith 3MRR reduces clock cycle overhead
by 44.52% in comparison with the conventional RFE.

• Pre-selection Response enrolment. To achieve P failr < 10−6, nine BCH(127,15,27)
blocks must be applied when the conventional single reference response under 25 ◦C is
used. Conversely, eight smaller BCH(63,16,11) blocks are adequate when 3MRR under
−15 ◦C , 25 ◦C , 80 ◦C are used. In this context, the MR3FE with 3MRR reduces clock
cycle overhead by 45.13% in comparison with the conventional RFE.

Although memory usage reduction is not significant, our MRR approach leads to usage of a
smaller BCH code size (less FRAMusage) and less internal state (less SRAMusage) at run time.
In terms of the most concerned performance measure—MCU clock cycles—we can observe that
MRR always greatly outperforms SRR. TheMRR approach significantly reduces the clock cycle
overhead (nearly over 43% reduction) to achieve the same key failure rate as the conventional
SRR method. Alternatively, given the same overhead, the key failure rate is reduced by several
orders of magnitude by employing our MRR method.

5.4 Multiple Reference Response-based Fuzzy

Extractor (MR2FE)

This section examines the generalisation of the developed MRR methodology. We investigate
the practicality of MRR when it is adopted into a FE scenario. In this context, the target
device for implementation is not necessarily a highly resource constraint device like the CRFID
transponder. We assume that the employment of a FE is mainly to derive a secure cryptographic
key, while minimising the FE implementation overhead is always a desirable goal. In the case
of MRR enabled FE—termed MR2FE, recall that it is the PUF device that iteratively carries out
decoding and checking to identify whether the key is correctly recovered.

5.4.1 MR2FE

The MR2FE key generator operates as follows:

1. During the key enrolment phase, the server  registers {r1,...,rj ,..., rJ}, which
are responses subject to the same challenge but generated under differing operating
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conditions: {OC1,...,OCj ,...,OCJ}. Response rj is hashed to gain a cryptographic key
kj ← Hash(rj). The server  computes helper data pj ← FE.Gen(rj), where j ∈
{1, ..., J}.

2. During the key reconstruction phase, the PUF device re-generates response r′. Then the
PUF device loads helper data pj , assumed to be public information and sent from the
server  at run time or loaded from an insecure off-chip/on-chip NVM. Simultaneously,
the server sends a verification value uj ← Hash(id,ns,pj ,kj) alongwith idi and ns—the
nonce generated by the RNG on the server —-to the PUF device.

3. The PUF device performs r′j ← FE.Rep(pj ,r′), where r′j=rj only on the condition that
uj = u′j ← Hash(idi,ns,pj ,k′j), with k′j = Hash(r′j). Once this occurs, the PUF device is
deemed to have successfully restored the response rj . Thus the secret key kj is recovered
and the following steps are skipped.

4. Otherwise, if u′j ≠ uj , then the secret key kj reconstruction fails. Step 2 and 3 must be
repeated for reconstructing another key ki using helper data pi, where i ≠ j.

5. If none of the kj , ∀ j ∈ {1, ..., J}, reconstructions are successful, the key reconstruction
fails.

As we can observe here that the server actually enrols J helper data; each corresponding to one
reference response generated under a varying operating condition. The PUF device iteratively
conducts key reconstruction attempts to recover one enrolled cryptographic key, kj . If one
of them is successfully reconstructed, the key recovery succeeds. Otherwise, if none of them
succeeds, key reconstruction failure occurs.
To study the overhead of the MR2FE key generator, we comprehensively evaluate the BCH code
decoding overhead—this corresponds to the FE.Rep() implementation overhead.

5.4.2 BCH Code Decoding

BCH(n1, k1, t1) code is chosen again for consistency, its decoding overhead under different n1,
k1, t1 settings are tested, results are detailed in Table. E.2 in the Appendix. E The experimental
setup is same as that described in Section 5.3.2.
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5.4.3 Comparison

Following the operational steps of the MR2FE key generator (see Section 5.4.1), we are able
to quantitatively compare the MR2FE implementation overhead imposed on the token  given
SRR, 2MRR and 3MRR. Similar to Section 5.3.3, we still select BLAKE2s-128 hash function.
MR2FE needs to execute the FE.Rep() function at most J times and the Hash() function 2 ×
J times. This is significantly different from the MR3FE where increasing J , the number of
reference responses, brings no extra computational overhead to the token  .
In practice, the recovery of secret key kj that is from a nominal operating condition, e.g., room
temperature, is recommended to be tried first. Because, the response r′ will be more likely
reproduced under an operating condition that is close to the nominal operating condition. On
the condition that such a trial succeeds, the remaining trials are no long needed—step 4) and
5) are skipped—and the imposed overhead is further reduced. Nevertheless, we analyse the
worst-case scenario, that is assuming that all J trials have to be performed by the PUF device
before a successful key recovery. Overhead comparisons for a FE with SRR, 2MRR, 3MRR are
detailed in Table 5.3. We can make the following observations.

• Single Readout Response enrolment. To achieve a P failr < 10−6, ten BCH(255,13,59)
blocks are required when the conventional single reference response under 25 ◦C is used.
In contrast, nine smaller BCH(127,15,27) blocks are adequate when 3MRR under−15 ◦C ,
25 ◦C , 80 ◦C is used. In this context, the MR2FE with 3MRR reduces clock overhead by
32.87% in comparison with the conventional FE.

• Majority Voting Response enrolment. majority voting To achieve a P failr < 10−6, seven
BCH(255,21,55) blocks are required when the conventional single reference response
under 25 ◦C is used, whereas six smaller BCH(127,22,23) blocks are adequate when
3MRR under −15 ◦C , 25 ◦C , 80 ◦C is used. In this context, the MR2FE with 3MRR
reduces clock overhead by 45.44% in comparison with the conventional FE.

• Pre-selection Response enrolment. To achieve a P failr < 10−6, nine BCH(127,15,27)
blocks are required when the conventional single reference response under 25 ◦C is used.
Conversely, eight smaller BCH(63,16,11) blocks are adequate when 3MRR under−15 ◦C ,
25 ◦C , 80 ◦C are used. In this context, the MR2FE with 3MRR reduces clock overhead
by 42.14% in comparison with the conventional FE.

MR2FE still greatly outperforms the conventional FE with SRR. The reason lies on the fact
that MR2FE alleviates the demanding for a large BCH code block for decoding (BCH decoder
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Server  Token  i
DB = {(idi, r)} idi, PUFi

Enrolment (one-time task)
r

DB(idi)← r ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← r ← PUFi
Key derivation (multiple times)

r′ ← PUFi
k ← Hash(r′)

idi,p,nt p ← FE.Gen(r′)
Identify idi ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← nt ← RNG( )
r ← DB(idi)
r′ ← FE.Rep(r,p)
k′ ← Hash(r′)
ns ← RNG( ) u1,ns
u1 ← Hash(idi,ns,nt,p,k′) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ if Hash(idi,ns,nt,p,k) == u1Accept Server 

else
u2 Abort

if Hash(idi,ns,k′) == u2 ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← u2 ← Hash(idi,ns,k)Accept token 
else
Abort

Figure 5.7: RFE-based key derivation scheme between the token  and server  .
complexity grows approximately with the square of the block size [200]). Therefore, given same
key failure rate and a moderate number J of enrolled models, for example J = 3, MR2FE still
consumes significantly less overhead even when it is the PUF device that performs J recovery
attempts. Overall, the overhead experimental results in Table 5.3 demonstrates that the efficiency
gains from the MRR methodology also applies to a fuzzy extractor setting.

5.5 Related Work and Discussion

This section first describes the conventional RFE-based key derivation, and conducts security
analysis, including helper data manipulation attacks, brute-force attacks and entropy leakage of
(reverse) fuzzy extractors with MRR. Then shows that MRR is not specific to SRAM PUFs, but
appears to be generic to other silicon PUF types as well. Last, through hash and secure sketch
overhead comparisons, we highlight the significance of reducing the overhead of a secure sketch
implementation for constructing a lightweight (reverse) fuzzy extractor.

5.5.1 RFE-based Key Derivation

The RFE is beneficial to implementation overhead of the token  attributing to a cheaper
FE.Rep(). The key derivation based on the RFE is thereby enabled and firstly proposed by Van
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Herrewege et al. [66], later improved by Maes [197]. In Figure 5.7, it depicts Maes’s RFE-based
key derivation protocol [197]. Notably, the shaded k ←Hash(r′) in Figure 5.7 is not explicitly
utilised in [197], whereas the r′ itself is treated as a shared key between the server  and the
token  . Herein, instead of using r′ that might not be uniformly distributed—not having full
bit-entropy, we adopt a hash to extract a key k with full bit-entropy.
During the one-time enrolment phase, a response r is registered by the server  and saved
in the database (DB). During the key derivation phase, the token  computes a helper data
p ←FE.Gen(r′), where r′ is the reproduced response. The server  receives the public p and
uses the registered r to restore the r′′ ←FE.Rep(p,r′). Only when the distance between r′ and
r is small—smaller than a threshold d, can r′′ = r′. Only the token  and the server  have the
knowledge of the r′, thus, the k ←Hash(r′) with k is a shared session key. The key derivation
is assisted by nonces nt and ns that are generated by the token  ’s and the server ’s RNG,
respectively. Nonces are responsible for halting replaying attacks.
The RFE should hold two properties: correctness and security.

• Correctness means that the r′ will be successfully recovered based on the r and the p
through r′ ←FE.Rep(r,p) only on the condition that FHD(r,r′)≤ d

|r| , FHD() evaluates
fractional Hamming distance (FHD) between two binary vectors.

• Security implies that given the exposed p, there are enough entropy left in the r′.

This chapter focuses on the correctness requirement as we are aiming to significantly reduce
the FE.Gen() implementation overhead on a token  based on the MRR method. We are not
intending to invent a methodology to enhance the security of RFEs or the RFE-based key
derivation mechanism, we retain their security properties [201]–[203]. Nonetheless, for the
sake of completeness, we discuss the security of (reverse) fuzzy extractors in Section 5.5.

5.5.2 Helper Data Manipulation Attack

Delvaux et al. [131], [204], first introduced HDM attacks, although not on helper data generated
from fuzzy extractors. In [73], HDM attacks are applied on a soft-decision error correction
decoding. Here, the adversary  sends manipulated helper data to the PUF key generator and
observes key recovery failures. Over multiple queries, the adversary learns information about
the PUF response, which eventually allows the adversary to recover the response. To prevent
such an attack, one potential countermeasure is to check the integrity of helper data [73]. During
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the key enrolment phase, the helper data p and the enrolled response r are hashed together
to produce the hash value u. The hash value u is validated during the key recovery phase.
Consequently, a helper data manipulation attack will always fail because the adversary  is
unable to provide a valid hash u since the adversary has no knowledge of the response r.
Becker [74] recently revealed a new HDM attack strategy against robust fuzzy extractors. In
general, instead of attempting to recover the secret PUF response, the HDM attack attempts to set
the PUF response corrected by the key generator to a response r predetermined by an adversary
. Consequently, the adversary attempts to defeat the helper data integrity checks by crafting
a hash value u and helper data p in an attempt tomanipulate the PUF key generator with a high
probability of producing the response r crafted by the adversary  during the response error
correction process. Such an HDM attack now allows an adversary  to impersonate the PUF
integrated device. Further, Becker’s extended HDM attack allows the adversary to recover the
original response r, and the secret key. Various error correction codes including Reed-Muller
codes [205], [206] based on different decoding strategies, soft-decision codes [114], [206] and
even-numbered repetition decodes [206] are examined and shown to be vulnerable [74].
A generic countermeasure against Becker’s HDM attacks does not yet exist and remains an open
challenge [74]. However, the ability to mount the attacks depends on: i) the error correction
code employed; and ii) the method used for error correction. Becker [74] shows linear BCH
code-based syndrome decoding is immune to HDM attacks; an adversary  is unable to set a
specific response, although helper data may be manipulated to cause the corrected response bits
to flip22. The evaluations in this chapter on MR2FE and MR3FE is built upon BCH codes and
employ syndrome decoding secure under HDM attacks. Nevertheless, the method we propose
is agnostic to the fuzzy extractor employed, because we do not rely on any specific code or
decoding strategy.
Further, recall that helper data is manipulated and sent to the PUF device, while the adversary
 tests the key failure to determine their success. This implies that the adversary  is able to
conduct an arbitrary number of queries albeit less than the complexity of a brute force attack or
random guessing. In a reverse fuzzy extractor setting, it is the PUF device or token  performing
the FE.Gen() operation to generate helper data. Thus, whenever a HDM attack is orchestrated by
an adversary, the manipulated helper data is sent to the server  . Consequently, HDM attacks
target the server  in the context of a reverse fuzzy extractor. In this setting, the HDM attack is
very likely to be detected by the resourceful server because of the abnormal key reconstruction

22A detailed discussion and a proof that syndrome-based decoding is immune from the HDM attacks presented
by Becker can be found in Section 6.1 of the article in [74]. Therein, Becker also derives a security criterion to
validate the immunity of a decoding method against the HDM attacks presented in [74].
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failure rates resulting from the tampered helper data. It is not unreasonable to conjecture that in
a reverse fuzzy extractor setting, and when faced with a more intelligent server  , an adversary
 will lose the assumed ability to apply an arbitrary number of queries.

5.5.3 Entropy Leakage

Given a secure sketch with BCH(n,k,t) code, entropy leakage is caused mainly from the public
helper data. The well-known min-entropy loss is the n− k bound given the exposure of helper
data. This n − k bound is conservative. Research studies have explored the derivation of a
tight bound for min-entropy loss [73], [152], [201]. However, calculation of min-entropy loss
using the tight bound in [152] requires undertaking exhaustive simulations as a straightforward
analytical method is not available. The purpose of our work is to demonstrate that the MRR
method significantly reduces a token  ’s (reverse) fuzzy extractor implementation overhead.
Therefore, we consider the conservative (n− k) min-entropy loss bound where the public helper
data generated by the BCH(n,k,t) code leaks (n − k)-bit entropy [152], [201]. Then, taking
response bias b into account (more details please refer to Section 2.3.2), the residual min entropy
H∞ of the n-bit response r conditioned on the public helper data p can be expressed as:

H∞ = n ⋅ log2(max(b, 1 − b)) − (n− k) (5.7)

The reverse fuzzy extractor and a conventional fuzzy extractor might not provide identical
security guarantees expressed by equation (5.7). This is because a reverse fuzzy extractor can
result in unanticipated entropy loss under repeated helper data exposure associated with a given
PUF response r′; unless, PUF responses demonstrate a symmetry property. In other words, the
one-probability, the probability of a given bit attaining a binary one value, of PUF responses is
a symmetric distribution [167]; alternatively, are unbiased. Generally, the extra entropy loss is
a result of the leakage of bit-specific reliability information [152].
The extra entropy loss is important only when PUF response bias is considerably different from
the ideal value of 50% as shown by the analysis in [152], [207]. We can see that for the SRAM
PUFs tested in our work, the extra entropy loss is very small. For instance, at 25C the evaluated
mean bias of SRAM PUFs we tested is 49.87%. Such a small bias aligns with expectations from
modern silicon PUFs according to other studies [197]. In this context, employing a few more
response bits in the reverse fuzzy extractor can compensate for the small extra loss in entropy.
As observed by Delvaux [207], for a PUFwith low bias within [0.42, 0.58], increasing the length
of raw responses alone is an effective measure.
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Figure 5.8: Bias of 23 tested SRAM PUFs under five different temperatures.

If the bias is severe, entropy compensation by solely increasing the length of raw responses
becomes ineffective. As a result, de-biasing the biased raw responses [201] must be undertaken
first, e.g., via classic von Neumann (CVN) de-biasing, pair-output von Neumann de-biasing with
erasures (�-2O-VN). Notably, not all de-biasing schemes offer re-usability—multiple use of the
same PUF response—for a reverse fuzzy extractor [152]. Nevertheless, a reverse fuzzy extractor
with MRR is naturally compatible with de-biasing schemes that offer re-usability.
We also tested the SRAMPUF bias in our dataset under the five different operating temperatures.
We want to examine if there is a relationship between the bias—fraction of ‘1’s—and the
temperature. If there are more ‘1’/‘0’ responses, indicative of severe bias, when the temperature
is higher or lower, then the temperature might cause an unanticipated entropy loss. The bias
of 23 SRAM PUFs under varying temperature is detailed in Figure 5.8. We can observe that
the mean bias is almost invariant to temperature. Therefore, we can expect that a change in the
operating temperature to not lead to additional entropy loss.

5.5.4 Brute Force Attack Complexity under MRR

We recognise that under a MRRmodel, whilst retaining the security properties of a given secure
sketch, brute force attack complexity will reduce. Consider, using six parallel BCH(127,22,23)
codes as outlined in Table. 5.2 and Table. 5.3. According to equation (5.7), we can obtain
a key k having a 129-bit entropy given a bias of 0.4987 obtained from SRAM PUF test data.
Therefore, without knowledge of k, the probability of an adversary succeeding in a brute-force
attack to determine k is 1

2129 when a conventional single reference response is employed in the
reconstruction. When J multiple response references are employed, the server  or token  can
attempt to reconstruct the response, effectively, J times to obtain the key k. Correspondingly,
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the brute-force attack complexity decreases linearly as a function of the number of multiple
reference response models J ; in our example, the probability of a brute force attack succeeding
is J

2129 . In general, for J multiple reference responses and min-entropy bound as expressed in
equation (5.7), we can express the probability P brute of a successful brute force attack as

P brute = 2−H∞+log2(J ). (5.8)

Now, given J MRR models, brute-force attack complexity reduces only slightly while
significantly alleviating failure probability P failr and the token  ’s FE.Gen() or FE.Rep()
implementation overhead as shown in Table. 5.2 and Table. 5.3, respectively. For example,
consider the probability of key failure Pfail = 2.08 × 10−5 for SRR and 5.47 × 10−13 for 3MRR
for the BCH (127,22,23) code in our example given in Table. 5.2, when pre-selected response
enrolment approached is utilised. Compared to the 3 fold increase in the success of a brute
force attack, still extremely low, 3MRR has resulted in more than 107 fold decrease in the key
failure rate. Further, consider achieving a key failure rate of less than 10−6 using SRR. We can
see from Table. 5.2 that 10 parallel blocks of BCH(255,13,59) have to be used when a single
readout response enrolment is adopted. Considering the implementation overhead of a reverse
fuzzy extractor on a token  to also achieve key failure rate less than 10−6 employing MRR,
nine smaller BCH(127,15,27) are adequate. In this context, the overhead in terms of CPU clock
cycles is reduced by 43% with 3MRR—2,329,519 vs 1,316,184 clock cycles. We can see that
the gains in failure rate and implementation overhead more than compensate for the very small
reduction in brute force attack complexity.

5.5.5 Generalisabilty of MRR

We have validated the MRR method with SRAM PUFs where operating conditions that deviate
from the reference condition results in responses that exhibit a higher BER than that responses
generated at the enrolled reference condition. We can observe that this behaviour agree with
other experimentally validated silicon PUFs such as RO-PUFs [208], Latch PUFs, Data flip-flop
PUFs, Buskeeper PUF and Arbiter PUFs [197] summarised in Table 5.4 and obtained from
published literature. We can see that, in general, the BER increases when the difference between
the reference operating condition and the condition under which the response is re-generated
increases. We have shown in our study that in this context, our MRR approach provides the
capability to select a reference operating condition that is potentially closer to the specific
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operating condition of the in-the-field PUF. Therefore, in general, we can expect the MRR
approach to provide an implementation efficiency for silicon PUFs.
Table 5.4: BER evaluated as the difference between the enrolled and working operating conditions. The data is
obtained from [197].

(−40 ◦C , 1.02 V) (−40 ◦C , 1.32 V) Reference condition
(25 ◦C , 1.20 V) (85 ◦C , 1.02 V) (85 ◦C , 1.32 V)

Latch PUF 23.10% 23.38% 2.61% 10.62% 10.60%
Data Flip-flop PUF 12.79% 12.90% 3.54% 18.10% 17.89%
Buskeeper PUF 9.68%% 9.77% 4.16% 17.71% 17.48%
Arbiter PUF 7.41% 5.41% 3.04% 5.23% 5.34
RO PUF 9.01% 7.81% 1.53% 7.11% 8.35%

5.5.6 MRR Enrolment

We observe that an improvement in the error correction efficiency is always achieved with
trade-offs; for instance, increasing the enrolment overhead while reducing the key failure rate.
We can see in a soft-decision decoding approach as in [61], the PUF-key generator efficiency
is enhanced but requires repeated response measurements, in the order of 10 to 100, to collect
individual bit’s reliability information as additional helper data [61]. A pre-processing method
such as majority voting that can be used with hard decision decoding to reduce key failure rates
also requires repeated measurements during the response bit enrolment phase [153].
In our MRR approach, we trade-off the overhead of enrolling multiple reference responses
during enrolment with a significantly reduced implementation efficiency on a token  . More
specifically, we can see that our MRR approach requires a moderate increase in enrolment
overhead—enrolling J reference responses given J operating conditions23 while it significantly
reduces the encoding/decoding implementation overhead on a PUF token  .
We can see that MRR facilitates minimising the token  overhead. We can also see that the
corresponding implementation efficiency on a token  increase the computation burden on a
server  because multiple reference responses now need to be evaluated in parallel. Our results
demonstrate a small number of reference models, for example J = 3 in our evaluation, already
greatly improves (reverse) fuzzy extractor implementation efficiency on a token  . For instance,
in the reverse fuzzy extractor case, compared to a single readout response enrolment strategy
used to achieve a key failure rate of P failr < 10−6, the reverse fuzzy extractor with 3MRR reduces

23In practice, one can set up several temperature zones in one temperature oven, similar to the reflow oven, or
employ an environmental chamber with rapid temperature transition times. Naturally, any such method will incur
a time and cost overhead.
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the clock cycle overhead by 43%. In addition, theMRR enrolment overhead is only incurred once
during the enrolment phase but the benefits from the MRR approach extends to the life of the
token  . In the context of resource-limited devices such as CRFID tokens we have employed
in our evaluations, minimising implementation overhead is highly desirable in practice. We can
expect a resourceful server  in such a context to easily manage the increase in computation
overhead.

5.5.7 Hash and Encoding/Decoding Overhead

Based on Table E.1, Table E.2 and Table E.3 in Appendix E, we can see that it is paramount
to minimise the absolute error correction overhead for not only the FE.Gen() but also FE.Rep()
function because the overhead of a hash function is always much less than that of secure sketch.
In other words, regardless of whether a RFE or a FE is employed, the FE.Gen() and FE.Rep()
implementation overhead is always dominant.
According to the fully implemented PUF-based key generator on an FPGA platform by Maes
et al. [124], where concatenated (7, 1, 3) repetition code and a BCH(318, 174, 17) code was
used, the BCH(318, 174, 17) and (7, 1, 3) repetition code decoder costs were 112 and 37
FPGA slices, respectively, while the hash implementation of SPONGENT-128 only occupied
up 22 slices. The hash function logic overhead was only 15% of the error correction logic. Our
code encoding/decoding overhead evaluation agrees with this observation but from a different
implementation. In particular, our results are from implementations in software rather than
hardware, as in [124]. In fact, in the software implementation of the hash and BCH decoder, in
comparison to the hardware implementation, the relative hash overhead is much less than the
BCH decoder. We can conclude, based on our results, that a lightweight PUF key generator
is very hard to achieve without optimising the error correction coding/decoding overhead
regardless of a hardware or software implementation approach. The MRR method we present
provides a new approach to substantially minimise the error correction overhead.

5.6 Chapter Summary

This chapter developed the MRR approach to significantly reduce the overhead of RFE and
FE implementations and proposed MR3FE and MR2FE for lightweight key derivation and key
generation. We validated our approach using a class of ultra low power MCUs employed by
a CRFID transponder (WISP 5.1 LRG) as an exemplary resource-constrained device. The
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extensive experimental results and analysis in this chapter included SRAM PUF data from the
MSP20 dataset and demonstrated that, regardless of response enrolment approaches, (R)FE with
MRR will always greatly outperform the conventional (R)FE with a single reference response.
Enrolling more reference responses under fine-grained operating conditions can further reduce
a token  ’s overhead, specifically, in MR3FE case, because its overhead is dependent on the
number of enrolled MRR. The proposed MRR is not only applicable to the studied SRAM PUF
but also to other silicon PUF types. Dedicated and specific implementation optimisations, e.g, C
code optimisations, can be exploited to further decrease the absolute overhead we have reported
in this chapter. We leave discussion for future research direction to Chapter 8.
In the physically obfuscated key derivation method in SecuCode developed in Chapter 3, a
very narrow legal operation temperature range from 0 °C to 40 °C is required to achieve a key
failure rate as low as 1.6 × 10−3, as discussed in Section 3.4.1 in Chapter 3. On the one hand,
this legal temperature range reduces the applicability of SecuCode. On the other hand, it also
requires sampling the on-chip thermometer, i.e., the use of the TEMP() function in SecuCode,
and introduces additional overhead. However, if we want to achieve an industrial standard key
failure rate below 10−6 over the entire -15 °C to 80 °C temperature range (where raw BER =
11%), with the conventional SRR method, the use of a much more computationally intensive
RFE encoder as shown in Table 5.5—see SRR—is needed. If we apply the MRR technique at
three different temperatures: -15 °C, 25 °C and 80 °C (shown as 3MRR in Table 5.5), a key
failure rate of 9.85 × 10−7 that meets an expected industrial standard is achievable. Compared
to the SRR-based method, the clock cycles required for MRR-based method is reduced by 45%,
while the FRAM (code memory) and SRAM (data memory) usage is also reduced by 5.25% and
26.6%, respectively.
Table 5.5: Comparing the implementation overhead of applying MRR to achieve an extended operational
temperature range and an industry standard key reliability.

Parameters Implementation overhead of RFE encoder
method Temperature range Pfail (n1,t1,k1) blocks CPU FRAM SRAM
SecuCode (Chapter 3) 0 °C to 40 °C 1.6 × 10−3 (31,16,3) 8 146,533 621 bytes 53 bytes
SRR -15 °C to 80 °C 1.66 × 10−7 (127,15,27) 9 1,316,184 6,015 bytes 484 bytes
3MRR -15 °C to 80 °C 9.85 × 10−7 (63,16,11) 8 722,193 5,699 bytes 355 bytes

Although we have seen the MRR-based methods can reduce the on-device implementation
overhead for an RFE encoder function, compared to traditional SRR-based methods, the
proposed MRR-based methods, such as the MR3FE, still rely on the underlying RFE to
generate reliable keys. The implementation overhead is still too high for adoption into highly
resource-limited devices, especially if a full operating temperature range and industrial standard
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key reliability are desired. In Chapter 6 we will investigate an alternative to the traditional
RFE-based method to further reduce the on-device implementation overhead of the lightweight
physically obfuscated key generator by removing the need for an RFE, as previewed in
Figure 5.9.

Lightweight physically obfuscated key derivation

Reverse fuzzy extractor (RFE)-based device key
generation method using SRAM PUF (memory
fingerprinting) for resource-limited devices. 

Chapter 3

Multiple referenced response (MRR) enrollment
strategies.
Trail-and-error (TRE)-based method to offload
computational load from the resource-limited device to
the server. 

Chapter 5

The implementation overhead of the on-device RFE
encoder remains too high for achieving industrial strength
key failure rates and imposes restrictions on the
operational conditions.

Noise-tolerant memory fingerprints (NoisFre), a highly
reliable fingerprinting method of commodity device
memories, remove the need for an RFE.

Chapter 6

The MRR-based physically obfuscated key derivation
generation methods still need an RFE, and the
implementation overheads are too high for resource-
constrained devices if we want to achieve an industrial
standard key failure rate over a full operating temperature
range. 

Figure 5.9: Upcoming chapter sneak peek.

Page 148



Chapter 6
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B
Uilding hardware security primitives with on-device memory
fingerprints is a compelling proposition given the ubiquity of memory
in electronic devices, especially for resource-limited devices where

cryptographic modules are often unavailable. However, as highlighted in Chapter 1,
Chapter 3 and Chapter 5, the use of fingerprints in security functions is challenged
by the small, but unpredictable variations in fingerprint re-generations from the
same device due to measurement noise. This chapter formulates a novel and
pragmatic approach to achieve highly reliable fingerprints from device memory able
to significantly reduce the overhead imposed by reverse fuzzy extractor-based key
generators employed to reconcile noisy key bits. We investigate the transformation
of raw fingerprints into a noise-tolerant space where the generation of fingerprints
is intrinsically highly reliable. We derive formal performance bounds to support
practitioners to easily adopt our methods for applications. Subsequently, we
demonstrate the expressive power of our formalisation by using it to investigate
the practicability of extracting noise-tolerant fingerprints from commodity devices.
Together with extensive simulations, we have employed 119 chips from five
different manufacturers for extensive experimental validations. The results,
including an end-to-end implementation demonstration with a low-cost wearable
Bluetooth inertial sensor capable of on-demand and runtime key generation, show
that key generators with failure rates less than 10−6 can be efficiently realised
with noise-tolerant fingerprints with a single fingerprint snapshot to support
ease-of-enrolment.
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6.1 Motivation and Contribution

Due to the unpredictable noise such as thermal noise, supply voltage fluctuations, device ageing,
fingerprints generated from the same device at different time instances are not exactly identical.
Therefore, the usage of (reverse) fuzzy extractors [70], [71] becomes a common practice to
derive reliable secure keys from device fingerprints to be used in a security function.
As seen in the studies in this thesis, the main issue with using the RFE-based methods is
the high implementation overheads of the RFE encoder; thus, making it less attractive for
resource-constrained platforms, such as the passively powered batteryless CRFID devices. In
Chapter 5, a multiple reference response (MRR)-based enrolment strategy was proposed to
reduce the complexity of the on-device RFE encoder. However, the implementation overhead is
still too high for adoption into resource-limited devices, especially if a full operating temperature
range and industrial standard key reliability are desired. Consequently, this chapter will
investigate the challenging problems below:

Problem 1. How can we extract intrinsically reliable fingerprints from device memories?
Problem 2. If an approach does exist, is the method pragmatic and usable for fingerprinting

memory resources on pervasive commodity computing devices?

Current memory fingerprinting schemes extract a fingerprint bit from each memory cell.
Fingerprinting under this scheme is susceptible to noise. To the best of our knowledge, for
commodity memories, existing techniques fail to accurately capture the noise-tolerance degree
of each raw bit to formally determine those extremely reliable bits for direct key usage without
the problematic error reconciliation.
We recognise that device memories are a cost-free and abundant source of entropy. Attributing
to the ever-decreasing fabrication costs, the size of memory pervasively embedded within
devices has become increasingly large. Hundreds of kilobytes (KiB), even in low-end devices,
are common (see the devices we tested in Table 6.2). Consequently, we envision that the
entropy of extracted information may be sacrificed for improved reliability. Therefore, we
propose the concept of transforming the raw fingerprint space of high information density
into a lower-dimensional space with the attribute of being largely invariant to noise—bit
flips—observed in the digitised raw fingerprint space or memory biometrics. We refer to this
noise-tolerant memory fingerprinting concept as NoisFre.
We illustrate our concept in Figure 6.1. Building upon a raw memory biometric source that is a
noisy fingerprint space, we propose extracting new fingerprints F in the deliberately transformed
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Figure 6.1: Illustrating the use of noise-tolerant memory fingerprints from commodity devices for security
functions. We transform the raw fingerprint from an n-dimensional noisy fingerprint space to an m-dimensional
space, we refer to as the noise-tolerant fingerprint space, where m < n. In the noise-tolerant space, as long as
the noise ei is less than a bound �, the re-generated and transformed fingerprint can be correctly projected to the
reference transformed fingerprint templateF securely enrolled and stored on the server. Red curves in the fingerprint
symbol depict errors in the raw fingerprint upon re-generation at time instances t1 to t3. Now, the F obtained can
serve as a root of trust or a root key for a security function.

noise-tolerant fingerprint space, which can tolerate a desirable noise bound �. Here, as long
as the noise ei (induced number of raw fingerprint bit errors) is less than �, the re-generated
and transformed raw fingerprints are guaranteed to be projected to its reference counterpart
F enrolled at the server. More generally, the re-generated and transformed fingerprint F is
insensitive to bit errors (resulted from noise) in the raw fingerprint space. Therefore, it can be
directly employed—without error reconciliation—as a root key in a security function, despite
the noisy renditions of the raw fingerprints at times t1, t2, and t3.
Significantly, we recognise that the best strategy for fingerprint memory is not always directly
from the raw noisy fingerprint space, such as directly treating the power-up state of an SRAM
memory of a cell as a fingerprint bit, the foundation for all current memory fingerprinting
schemes. We argue for exploiting the freely available, abundant entropy of memories. We do
not focus on individual raw fingerprint bits but seek to find an invariant property of a group of
raw bits to measure, so we can be less concerned of the complexity about the process generating
those bits.

The main contributions of this chapter are summarised as follows:

• NoisFre approach for achieving highly reliable fingerprints. We exploit the freely
available and abundant entropy from memories to propose a new concept—NoisFre—for
highly reliable fingerprinting of commodity device memories. The principle is based on
transforming from a noisy raw fingerprint space to a lower dimensional, noise-tolerant
fingerprint space capable of reconciling noise inherent across multiple measurements
of the same raw fingerprint. To corroborate the proposed NoisFre concept, we have
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developed two specific transformation methods: i) S-Norm and ii) D-Norm (Problem
1).

• Analytical model formulations. We formulate analytical models with the expressive
power to support the design of security functions and evaluate the transformationmethods.
We express: i) an upper bound for the unreliability of the transformed F bits with
respect to the transform function parameters; and ii) the expected fingerprint extraction
efficiency—the number of transformed F bits that can be extracted from a given memory
size (Problem 2).

• Extensive evaluations to validate the analytical models. We conduct elaborate and
extensive evaluations with a synthetic chip model to obtain the massive number of
repeated fingerprint measurements necessary to validate our formalisation of unreliability
and extraction efficiency. Billions of repeated measurements were simulated using the
synthetic chip model with bit-level modelling capable of capturing bit-error behaviour in
SRAM device memories. Our formal models are confirmed to be worst-case bounds in
practice (Problem 2).

• Validations with Physical chip tests and dataset contribution. We extensively test:
i) 110 SRAM memory devices from three different manufacturers to experimentally
validate NoisFre performance. We focus on SRAM memory, as it is the most commonly
embedded memory, especially for low-cost IoT devices. Further, we employ: ii) seven
Flash memories and iii) two EEPROM memories for validating the generalisability of
NoisFre. We release the NRF12 memory fingerprint dataset that we collected and
open-source code artefacts to facilitate future research. The download link to the NRF12
dataset is available in Section 1.4 (Problem 2).

• Propose and evaluate NoisFre-based key generators. To demonstrate the expressive
power of our formalisation, we investigate the derivation of a root key—the foundation for
realising various security functions. We demonstrate a 128-bit root key with an extremely
low key failure rate of less than 10−6 can be directly obtained by transformed fingerprints
to obviate the need for computationally intensive on-device RFE encoder. Significantly, a
fingerprint snapshot or single measurement is sufficient for enrolling a key, a process we
follow in all our experiments (Problem 2).

• End-to-end security function design and implementation. As a case study, we
implement a NoisFre key generator and a security function on a low-end wearable
Bluetooth inertial sensor. We extract a root key directly from native SRAM fingerprints
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transformed into noise-tolerant fingerprint for use in a remote attestation primitive. By
fundamentally obviating the state-of-the-art method necessary for reconciling noisy key
bits, we demonstrate a significant overhead reduction (i.e., 54% compared to reverse FE
and 82% compared to FE) and enhanced security. By utilising the power isolation features,
we also demonstrate the realisation of run-time and on-demand generation of robust SRAM
fingerprints F on this low-end device (Problem 2). A video demo is available at:

https://www.youtube.com/watch?v=O5NWZw-swpw
scan to watch

6.1.1 Chapter Overview

Section 6.2 describe the NoisFre concept and devises two specific transformation methods.
Section 6.3 formulates the reliability and extraction efficiency models of the NoisFre methods.
Section 6.4 comprehensively validate the formalisation’s through extensive experiments.
Section 6.5 investigates the power of the formalisation’s and demonstrates that the transformed
fingerprints can directly meet the stringent reliability requirement of the cryptographic keys
without any post stabilisation operations. Section 6.6 completes an end-to-end implementation
case study of a remote attestation function on a low-end Bluetooth device by solely using the
transformed fingerprints as the root key. Discussion and related work are provided in Section 6.7
and Section 6.8, respectively. Section 6.9 concludes this chapter.

6.1.2 Notations and Concepts

Adding to the general notations and conventions defined in Section 2.1 in Chapter 2, Table 6.1
summarises some key concepts introduced and referred to in this chapter.

6.2 NoisFre Transformation

We provide the impetus for developing NoisFre fingerprinting and its key insights, followed by
two specific and practical NoisFre transformation methods.

6.2.1 Our Pragmatic Approach

In contrast to extracting one fingerprint bit from each memory cell, we propose a many-to-one
transformation possessing a property of invariance to underlying raw bit patterns: more
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6.2 NoisFre Transformation

Table 6.1: Table of notations in this chapter.

 A Verifier  is a server and a smart gateway, for more details please
refer to Section 6.6. A Prover  is a device whose memory contents are validated in the
remote attestation. An adversary is an attacker, for the adversary’s goal ability please
refer to Section 6.7.3.

DB Verifier’s database, where each element is a three-tuple corresponding
to each prover  : i) the unique and immutable identification number
id; and ii) enrolled noise-tolerant fingerprint F and iii) a corespondent
mask to the enrolled F (it is optional to stored the mask in DB, it can
also be stored on-device).

f A noisy raw fingerprint vector (for more details, please refer to
Section 6.2.1).

e A vector of error bits in the re-generated raw noisy fingerprint f ′.
F A transformed noise-tolerant fingerprint vector (for more details, please

refer to Section 6.1).
mask Positions of transformed bits F should be provisioned during the key

enrolment phase and provided during the key re-generation phase. We
refer to these positions using a mask (for more details, please refer to
Section 6.5.1).

tag A MAC tag check the integrity of the mask (for more details please
refer to Section 6.5.1).

chal A challenge randomly generated with RNG(), that is employed in the
remote attestation security function.

resp A response in the remote attestation security function.
bin The target application program (App) code bin in the Prover ’s

memory (for more details, please refer to Section 6.6.1).
f One bit in the noisy raw fingerprint vector f
F One bit in the transformed noise-tolerant fingerprint vector F.
� The noise-tolerance parameter (for more details, please refer to

Section 6.2.2 and Section 6.2.3).
n The group size n (for more details, please refer to Section 6.2.2).
m The block size m (for more details, please refer to Section 6.2.3).
BERf The expected BER of raw noisy fingerprints f .
BERF The expected BER of noise-tolerant fingerprints F.
□′ An apostrophe denotes a quantity evaluated at different time, e.g., f ′

denotes a reproduced raw noisy response.
‖□‖1 The l1-Norm value, which is the distance of the vector from an

all-zero vector—or the Hamming weight of a vector, as described in
Definition 6.2.1.

RNG() A random number generator RNG() outputs a random number when
invoked.

MAC() MAC() is a message authentication code function. For example,
tag ←MACF(mask) computes a MAC tag from the mask to ensure
the mask integrity of the mask.

NoisFre.Transform() The NoisFre transformation function described in Section 6.2.
Memory() The Prover ’s device memory, denotes the memory region used for

device fingerprint extraction.
WORM A write-once-read-many memory.

generally, invariant to the unpredictable, complex and dynamic raw fingerprint generating
processes. Our desire is to project all of the fingerprint measurements conducted from the same
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NoisFre
Transformation

NoisFre fingerprint

"0"

Raw fingerprint
Mapped to the

same    

= "0" = "1"

f

Figure 6.2: NoisFre transformation concept. A group of raw bit vectors exhibiting errors measured at different
times can be transformed into the same NoisFre fingerprint bit F (e.g., ‘0’), attributing to the invariance of the
transform patterns to: i) permutations of raw bit vectors (e.g., at time t = 0 and t = 1); and ii) vectors with different
combinations of raw bits (e.g., at times t = 2 and t = 3)

block of memory at different time instances to the exact same transformed bit, F ∈ {0, 1}1. The
concept is illustrated in Figure 6.2. Note that:

• Bit errors leading to permutations of raw bits—where the positions of ‘1’ and ‘0’ values
change in a bit vector but the number of ‘1’s and ‘0’s do not, as seen at t = 0 and t = 1 in
Figure 6.2—are projected to the exact same transformed bit F ∈ {0, 1}1.

• Bit errors leading to vectors constituting different combinations of ‘1’s and ‘0’s (e.g., the
fingerprint from the same block of memory at time t = 1 with two ‘1’ binary bits and that
re-generated at time t = 2 with only one ‘1’ binary bit in Figure 6.2) are projected to the
exact same transformed bit F ∈ {0, 1}1.

We observe that a transformed bit, F , is able to mitigate the impact frommultiple raw fingerprint
bit errors manifesting as permutations or combinations of an n-bit raw fingerprint, f . The
concept we propose is surprisingly simple but efficient and practical because of the important but
inadvertent reality of large memory volumes intrinsic to devices. From a practical consideration,
our critical insight is that memory embedded within modern electronics is large and provides
abundant entropy to be exploited without additional costs for security functions. This fact is the
foundation for our NoisFre transformation method: trade-off entropy for reliability.
This chapter proposes two specific NoisFre transformation methods: Single l1-Norm (S-Norm)
and Differential l1-Norm (D-Norm).

6.2.2 Single l1-Norm Transformation (S-Norm)

The l1-Norm of a vector is the distance of the vector from an all-zero vector—or the Hamming
weight of a vector, as described in Definition 6.2.1.
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Definition 6.2.1 (l1-Norm). Let f be a binary vector length n representing a noisy raw
fingerprint where fj is the jth bit in f ; then the l1-Norm of f is defined as:

‖f‖1 ≜
n
∑

j=1
fj . (6.1)

NoisFre fingerprint

"0"

Raw fingerprint

= "0" = "1"
2
2
1

4

5
4 "1"

Block 1

Block 2

At time
instance

is an odd integer

Figure 6.3: NoisFre transformation via S-Norm; the transformed bit F is extracted using the l1-Norm of a group
of raw bits. The group size is an odd integer number (e.g. 7 in this illustration) to ensure a balance between zeros
and ones in the F bits. We illustrate the re-generated raw fingerprints from two blocks of memory—Block 1 and
Block 2—at times t = 0, 1, and 2.

Interestingly, an l1-Norm of a vector is permutation invariant. Hence, a new bit F can be
obtained by applying an l1-Norm over a raw fingerprint vector f as ‖f‖1 and as described by
the S-Norm below.
Definition 6.2.2 (S-Norm). Let the i-th raw fingerprint bit vector of n bits, where n is an odd
integer, be fi. Then S-Norm transform is defined as:

F =

{

1, ‖fi‖1 ≥ ⌈

n
2⌉

0, ‖fi‖1 ≤ ⌊

n
2⌋

(6.2)

An illustrative example of S-Norm-based transformation is provided in Figure 6.3. When
‖f‖1 > n

2 , where n is an odd integer, the F bit is ‘1’, and otherwise ‘0’. This transform
has the first desirable property of being insensitive to bit errors manifesting as permutations
of a raw fingerprint f . For example, despite the raw bit errors at time t = 1 for the raw
fingerprint from Block 1 that lead to a permutation in respect to the bit vector referenced at time
t = 0, the corresponding l1-Norm remains invariant; the memory Block 1 is still projected to
F = ‘0’. The transform has the second desirable property of being insensitive to bit errors
manifesting as combinations of an n raw fingerprint bit vector. Notably, errors that lead to
different combinations of raw binary ‘1’ and ‘0’ values can increment or decrement l1-Norm
but these can still be projected to the same transformed F bit. For example, see l1-Norm values

Page 156



Chapter 6 Noise-Tolerant Secret Keys from Device Memory

for memory Block 1 at time t = 1 compared to t = 2 in Figure 6.3. Hence, S-Norm achieves
the two qualities we desire from a transform expressed in Section 6.2.1.
In Figure 6.3, we can expect the transformed F bit from Block 2 with l1-Norms at the
decision boundary, defined in equation (6.2), to more likely be affected by error bits within
the raw fingerprint, resulting in different combinations of an n-bit raw fingerprint. A resulting
combination of n bits with a single change in the number of raw binary ‘1’ bits can lead to an
l1-Norm projection that crosses the decision boundary. We recognise the resulting F bits from
such raw fingerprints to effectively display low reliability. Therefore, we propose winnowing
raw fingerprints based on treating l1-Norm as a reliability measure for F bits. For this purpose,
we define the S-Norm-based Selection method described in Definition 6.2.3 and generalise the
approach using a noise tolerance parameter � to provide an upper bound of tolerance on raw bit
errors or the combinations of n-bit patterns; the transform will faithfully project to a specific F

bit. Interestingly, the evaluation of l1-Norm only require a single measurement, while a larger
� can be chosen to facilitate higher noise tolerance. Therefore, we propose selecting based on
the l1-Norm of raw fingerprint vectors obtained from a single measurement defined as being
at time t = 0. Notably, this approach facilitates rapid characterisation of raw fingerprints from
device memories, as l1-Norms can be acquired in a single measurement. All our experimental
and theoretical analyses assume such a characterisation.

Definition 6.2.3 (S-Norm-based Selection). Let the raw fingerprint in the i-th n-bit block
extracted at time t be f ti . Then for a chosen noise tolerance parameter � ∈ ℕ0, an extracted
raw fingerprint vector f0i is selected at time t = 0 if:

‖f0i ‖1 ≤ ⌊

n
2
⌋− � or ‖f0i ‖1 ≥ ⌈

n
2
⌉+ � (6.3)

To understand and demonstrate the significant role of the noise tolerance parameter � in the
mitigation of raw bit errors, we consider the distribution of ‖f0‖1. We used the experimental
dataset obtained from Nordic Semiconductor chips detailed in Table 6.2. Figure 6.4 plots the
resulting distribution of enrolling measurements (at time t = 0) for two cases of a small and a
large � for an f of n = 15-bit. As expected, the distribution of ‖f0‖1 approximates a bell curve.
Consider the groups of f0 raw fingerprints (green bar) at the boundary of the selection criteria
in equation (6.3), where ‖f0i ‖1 = ⌈

n
2⌉ + � for the two cases of a small and large �. These

groups represent those closest to the decision boundary, ‖f0i ‖1 = ⌈

n
2⌉ (green line), consequently

representing those most likely to lead to a bit error in a transformed bit F when raw bit errors
changes the l1-Norm of f0. When � is small (� = 2), a change in more than two bits in a
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given pattern can lead to ‖f‖1 crossing the decision boundary n
2 in a subsequent raw fingerprint

extraction, resulting in a F bit flip.
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Figure 6.4: Illustrating the role of the noise tolerance parameter � in S-Norm-based selection. The plots show
the l1-Norm distribution of raw noisy fingerprints. It approximates normal distribution. A larger � ensures the
transformed F bits can tolerate a higher degree of noise.

In contrast, when � is large, set to 4, the l1-Norm of the selected fingerprint vectors or ‖f0‖1 are
further away from the decision boundary. Consequently, a change in more than four bits in a f is
needed to flip the corresponding F in a subsequent fingerprint evaluation. Such a probability
is smaller than a change in more than two raw fingerprint bit flips for vectors selected with
� = 2. Therefore, we can expect the F bits selected employing a larger � to be significantly
more reliable. Our study, thus far, leads to the following observations:

1. The S-Norm ‖f‖1 yields a representation analogous to the reliability of the new bit F .
2. The S-Norm transformed bits are invariant to permutations and combinations of raw bit

patterns. Further, � provides a desirable lower bound on raw bit errors tolerated by the
transform.

3. There is an expected trade-off evidence in Figure 6.4. While increasing � increases the
noise tolerance of the transform, it reduces the number of noise-tolerant fingerprint bits
extractable from a given memory.

6.2.3 Differential l1-Norm Transformation (D-Norm)

Considering Observation 3 and the distribution in Figure 6.4, we recognise that a distance
measure capable of presenting a bimodal distribution could provide an intrinsic separation
of groups of underlying raw fingerprint bits with the potential to yield higher numbers of
noise-tolerant bits. We hypothesise that a differential distance measure may afford such a
desirable distribution and propose the D-Norm transform based on a differential distance
measure.
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Definition 6.2.4 (D-Norm). Let the lowest and highest l1-Norm of m groups (each group is an
n-bit vector) be l and ℎ, respectively, where:

ℎ ≜ arg max
fi|i∈{1,..,m}

(‖fi‖1) (6.4)

l ≜ arg min
fi|i∈{1,..,m}

(‖fi‖1) (6.5)

Now, following the general definition in Section 6.2.1, the D-Norm transform is defined as:

F =

{

1, ℎ− l ≥ 0 and [ℎ] < [l]
0, l − ℎ < 0 and [ℎ] > [l]

(6.6)

Here, we denote the spatial index i (memory address, in practice) of the vector fi chosen for ℎ
based on equation (6.4) or l based on equation (6.5) using a square bracket, ‘[ ]’.

= "0" = "1"

NoisFre fingerprint

"1"

5
1

5

2

6

1

3

3

2

1

1

3

Raw fingerprint f

3

3

2

3

"0"Block 1

Block 2

At time
instance

Figure 6.5: D-Norm-based NoisFre transform illustration, where n = 8 and m = 3. We show the results of reading
out two blocks of memory (Block 1 and Block 2). Here, each block (n × m bits) is formed by accessing three
bytes from a byte-level addressable memory, and each block provides a new bit F . Hence, the new bit F is a
transformation from a block of raw bits with m = 3 groups, where each group is an n = 8 bit vector. The raw bit
values are measured at two different time instances, t = 0 and t = 1, from each block to illustrate the manner in
which the D-Norm transform is reliable against raw bit error.

The D-Norm-based transformation is illustrated in Figure 6.5. In the illustration, the l1-Norm
of two blocks of m = 3 groups of n = 8 bit vectors are evaluated at time t = 0. In subsequent
evaluations of the fingerprint at t = 1:

• In Block 1, we can observe the permutation invariance property, similar to the S-Norm.
For example, the highest l1-Norm at t = 0 and t = 1 is ℎ = 5 for the third 8-bit vector
despite repeated generation of the raw bits not being exact.
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• In Block 2, we further observe the difference of ℎ− l is 6 − 1 = 5 at t = 0 and shows an
extreme case of 3 − 3 = 0 at t = 1, where F bit of ‘1’ remains invariant. Which reflects
the combination invariance property.

In both Block 1 and Block 2, the fingerprint bit F remains robust to the raw fingerprint bit
error patterns observed at different measurement times. However, a combination of n bits with a
single change in the number of raw binary ‘1’ bits can lead a D-Norm projection at the proximity
of the decision boundary in equation (6.6) to cross that boundary. Hence, the resulting F bits
from such raw fingerprints effectively display low reliability. Therefore, similar to S-Norm,
we propose winnowing raw fingerprints based on their |ℎ − l| projections. We describe the
D-Norm-based Selection method in Definition 6.2.5 and generalise the approach using a noise
tolerance parameter � to bound the combinations of bit patterns the transform needs to tolerate,
using the differential l1-Norm of the raw fingerprint vectors measured once (i.e., at t = 0).

Definition 6.2.5 (D-Norm-based Selection). From a block of m different n-bit raw noisy
fingerprint vectors f0i for i ∈ {1,… , m} extracted at t = 0, the block is selected for fingerprinting
the device using D-Norm if ℎ and l as defined in equation (6.4) and equation (6.5) satisfy:

|ℎ− l| ≥ � (6.7)

To understand the significance of the D-Norm-based selection method and the role of the noise
tolerance parameter �, we employ the Nordic Semiconductor chip fingerprint dataset used in
S-Norm. The resulting distribution of enrolling measurements (at time t = 0) for two cases of a
small and a large � for blocks of n×m raw fingerprint bits is shown in Figure 6.6. Interestingly,
the distribution of |ℎ − l| approximates a bimodal distribution; each mode represents those
vectors mapping to F = ‘1’ and ‘0’, respectively. Importantly, the two clear groupings of n×m
bit blocks based on the D-Norm distance measure results in an intrinsic separation.
Now, consider the blocks of ℎ− l raw fingerprint bit vectors (green bar) in blocks at the boundary
of the selection criteria, in equation (6.7), where |ℎ− l| = � for the two cases of a small and a
large �. These blocks of bits represent those most likely to lead to a bit error in a transformed bit
F . When � is small, e.g. � = 2, two bit flips in the raw fingerprint in a subsequent measurement
is enough to push |ℎ− l| across the ℎ− l = 0 decision boundary, defined in equation (6.6), and
result in a F bit flip. In contrast, when � is large, e.g. � = 4, at least five raw fingerprint bit
changes are required to flip the F bit in a subsequent evaluation. Therefore, we can expect the
F bits selected upon a larger � to be more reliable.
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Figure 6.6: The role of the noise tolerance parameter � in D-Norm-based selection. The plots depict the differential
l1-Norm distributions—the difference between the ℎ and l—of raw fingerprints. The distribution of differences
leads to a bimodal distribution. Here, n = 16 and m = 32, where n ×m raw bits are transformed into a 1-bit F . If
[ℎ] has a lower memory address than [l], the D-Norm would be ℎ− l which is positive and plotted on the right half
of the x-axis (otherwise, left). The reliability of F increases when the l1-Norm difference between selected groups
is away from 0. Significantly, the proportion of F that tolerates a chosen noise tolerance � is greatly increased
under D-Norm compared to the S-Norm. For example, the uncovered (grey area) for D-Norm is much larger than
that of S-Norm in Figure 6.4 for the same � values.

The D-Norm method effectively sacrifices more of the available entropy (n × m raw bits are
transformed into 1-bit F ) than S-Norm. However, the differential distance measure ℎ − l is
bimodal and, thus, D-Norm is expected to yield a significantly higher number of noise-tolerant
F bits.

6.3 Formalising Performance Measures

Wenow formulate and derive analytical models to: i) provide an upper bound for the unreliability
of noise-tolerant fingerprint bits; and ii) evaluate the expected number of noise-tolerant
fingerprint bits that can be extracted from each of the transform methods—the extraction
efficiency. We summarise the analytical formulations from our detailed derivations differed to
Appendix F.1 for interested readers.

6.3.1 Reliability

We employ the well-known measure of bit error rate (BER) to quantify the reliability of
transformed fingerprint F, more details please refer to Section 2.3.2.
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S-Norm Reliability. The expected BER of noise-tolerant fingerprints BERF of the S-Norm
transformation is formulated in equation (6.8); we defer details of the derivation to
Appendix F.1.2:

BERF =
⌊

n
2⌋−�
∑

i=0

(

(1 − binocdf(� + i, ⌈n
2
⌉+ �,BERf)) × binopdf(i, ⌊n

2
⌋− �,BERf)

) (6.8)

Here, binopdf and binocdf are density and cumulative density functions of a binomial
distribution, respectively. The BERF is a function of �, n and the expected BER of the raw noisy
fingerprint bits, BERf. If we select the worst-case BERf of any memory chip, equation (6.8)
provides a worst-case (upper-bound) assessment of BERF (for more details of expected BER
and worst-case BER, please refer to Section 2.3.2 in Chapter 2).

D-Norm Reliability. A D-Norm transform employs a block of m groups—each group with n
raw fingerprint bits—to be transformed into a 1-bit F . The expected BER of noise-tolerant
fingerprints BERF of D-Norm is expressed in equation (6.9); we defer the derivation of the
formula to Appendix F.1.3:

BERF =
n−�
∑

i=0

(

(1 − binocdf(� + i− 1, n+ �,BERf)) × binopdf(i, n− �,BERf)
) (6.9)

We can observe the reliability of transformed bits from the D-Norm to be related to �, n and
BERf. Again, equation (6.9) provides an upper-bound estimation when the worst-case BERf is
assumed. Notably, the BERF is independent of the number of groups m within the block.

6.3.2 Extraction Efficiency

We define extraction efficiency � as the number of obtainable transformed bits, F , subject to a
given noise-tolerance �, from the total number of available memory bits expressed in KiB.

S-NormExtraction Efficiency. The extraction efficiency of S-Norm can be expressed as below;
the detailed derivation is deferred to Appendix F.1.4:

�SNorm =
1
n
×
(

1− binocdf(⌊n
2
⌋+ �, n, 0.5)+ binocdf(⌈n

2
⌉− �−1, n, 0.5)

)

× (1024× 8) (6.10)
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Table 6.2: Memory Datasets.
Manufacturer

Model 1 Abbr Tech
Node

Memory
Type

Memory
Size Quantity Repeat

Times
Operating
Range2

Enrolling
Condition

Worst
Condition Worst BERf

Nordic (ours)
nRF52832 NRF12 55 nm SRAM 64 KiB 12 + 886 100 −15-80 ◦C 25 ◦C 80 ◦C 6.09%

ISSI [138], [209]
IS61WV25616BLL ISSI4 110 nm SRAM 256 KiB 4 30 25-80 ◦C 25 ◦C 80 ◦C 8.29%
IDT [138], [209]
IDT71V416S IDT6 130 nm SRAM 512 KiB 6 50 25-80 ◦C 25 ◦C 80 ◦C 5.42%
Winbond [54]
W29N02GV WINB7 46 nm FLASH 69,696 Bytes/

256 MiB3 7 99 0-100,000
P/E Cycles

0th P/E
Cycle

after 100,000th
P/E Cycles4 16.26%

Microchip (ours)
24LC256 MICRO2 350 nm EEPROM 2 KiB/

32 KiB5 2 100 14-80 ◦C 14 ◦C 80 ◦C 16.37%

1The NRF12 and MICRO2 datasets we collected will be released, remaining public datasets are from https:
//www.trust-hub.org/data .
2Notably these public datasets focus on room temperature and high-temperature evaluations. Other operating
corners are incomplete.
3The tested memory size in the public WINB7 dataset is 69,696 bytes, while the total memory size is 256 MiB.
4Experimental studies demonstrate that the BERf of Flash memory is mainly affected by the programming/erase
(P/E) cycles, equivalent towear-out or aging, but negligibly affected by voltage and temperature [54]. Themaximum
endurance is 100,000 according to the datasheet.
5The EEPROM chip has 32 KiB capacity, while the first 2 KiB memory is evaluated here.
6In addition to the 12 chips from the NRF12 dataset with three corner measurements {−15, 25, 80} ◦C , we
evaluated 88 additional chips with a single 25 ◦C corner measurement.

Here, the term 1 − binocdf(⌊n2⌋ + �, n, 0.5) expresses the case when the l1-Norm of an n-bit f
is larger than the selection threshold ⌊

n
2⌋ + �, assuming that the probability of each bit being

‘1’/‘0’ is 50%. While the term binocdf(⌈n2⌉− � − 1, n, 0.5) formulates the alternative case when
the l1-Norm of a n-bit f is less than or equal to ⌈n2⌉− � − 1. Both cases comprise vectors that
satisfy the selection criterion in equation (6.3). We can see that the overall extraction efficiency
should be the sum of the above two cases divided by n—recall that n raw bits transform into a
1-bit F . The 1024 × 8 term expresses the extraction efficiency as bit/KiB—number of selected
reliable bits F out of 1 KiB memory.

D-Norm Extraction Efficiency.AD-Norm transform obtains a 1-bit F from a block of m, n-bit
raw fingerprint vectors. We define the probability that a given block will meet the selection
criterion (| ℎ− l | ≥ �) in equation (6.7) as P selectDNorm (recall that we refer to the lowest l1-Norm
as l, and the highest l1-Norm as ℎ, out of all m groups within a block). The direct derivation of
P selectDNorm is non-trivial. Instead, we use a different but equivalent problem and defer the details to
Appendix F.1.5. We formulate the extraction efficiency of D-Norm as:

�DNorm =
1

n ×m
× P selectDNorm × (1024 × 8) (6.11)

Here, the term of 1
n×m expresses n × m raw bits producing a single F bit, while the 1024 × 8

constant facilities express the result in terms of bits/KiB of memory. Given the complexity of
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6.4 Experimental Validations

formulating �DNorm, the fitness of the formalised expression is further validated through running
extensive numerical experiments (defined in Section 6.4), with the results detailed in Figure F.3
in Appendix F.1.

6.3.3 Summary

Our formulation of reliability allows a security practitioner to evaluate, for a given transform,
suitable transform parameters (e.g., the number of bits n to employ in a raw fingerprint vector
f and noise tolerance parameter �) for extracting new fingerprint F. The extracted F will have
an expected worst-case error bound given by BERF. Then, the � yields the total number of such
noise-tolerant bits BERF that can be extracted from a given memory size.

6.4 Experimental Validations

For comprehensively evaluating NoisFre we used 119 commodity chips consisting of three
memory types pervasive in COTS devices, especially in low-end IoT devices and extensive
simulation based experiments with billions of bit generations to overcome the practical hurdle
of demonstrating extremely low BER and key failure rates with physical chips. In the following:

• We validate our analytical models for reliability and extraction efficiency.
• We we assess the performance of the noise-tolerant fingerprints by evaluating the

uniqueness and uniformity of F.

6.4.1 Evaluation Approaches

We consider three evaluation approaches described below.

Predictions (Analytical model). In this evaluation, we use the analytical models formalised in
Section 6.3 to predict extraction efficiency and the BERF of the transformed fingerprints.

Simulations (Synthetic chip model). To evaluate the reliability of the transformed fingerprint,
a massive number of repeated measurements and the management of the data for analysis are
required. For example, if we want to validate whether a 128-bit NoisFre enabled key can achieve
a failure rate of 10−6 as done in Section 6.5.2, the BERF needs to be no more than 7.81 × 10−9.
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To test this with physical measurements, approximately 108 repeated measurements are required
from the same chip instance. Such a measurement process would take more than nine years
and generates roughly 6 Terabyte (TB) of data—this is merely for one 64-KiB chip. Such a
massive testing regime is impractical, as detailed in Measurement (Physical chips). Instead,
we employed a synthetic memory chip model (detailed in Appendix F.1.1). The model follows
the physical unclonable function (PUF) response model summarised in [126] and assumes
each bit to have a binomial probability of a bit flip across repeated measurements based on
employing a worst-case BER measured from a physical SRAM chip (see Table 6.2) as the
binomial probability parameter value for p. Using the synthetic chip model, for instance, 100
million (108) times of simulations can be completed in approximately 53 hours or 2.2 days using
a laptop equipped with quad-core Intel Core i7-10510U CPU and 16 Gigabyte (GiB) RAM. The
synthetic chip, models bit errors and when applied with the worst-case BER is sufficient for
evaluating reliability and extraction efficiency. Therefore, we employ the data from the simulated
measurements to determine � and the BERF.

Measurements (Physical chips). Performing massive testing on physical chips is impractical.
For example, obtaining 100 repeated measurements from an nRF52832 physical chip (in the
NRF12 dataset) takes four minutes and 45 seconds, and this generates 6.25 Megabyte (MiB)
of data (the SRAM memory size of the single chip is 64 KiB). Then, we can estimate that 100
million (108) repeated measurements for a single physical chip under a single operating corner
will take 3,298.6 days (or nine years) and generate 5.96 TB of data. Therefore, we confirm
extraction efficiency and the transformed fingerprints’ BER validated using the synthetic chip
model with a limited number of repeated physical chip measurements. However, we dedicate
the physical chip measurements across a large batch of 100 chips to evaluate the quality of the
transformed bits because properties such as fingerprint uniformity and uniqueness are affected
by fabrication variations not incorporated in the synthetic chip model used for simulations. The
datasets we used are described in below:

• Specifications of: i) three SRAM; ii) one Flash memory; and iii) one EEPROM datasets
are summarised in Table 6.2 and described in detail in Section 2.3.4 in Chapter 2. Each
dataset is obtained from chips from a different manufacturer. Further, the datasets
describe multiple repeated measurements of raw fingerprint bits under each operating
condition—see the operating range in Table 6.2.

• We use the NRF12 dataset for extensive validations, considering the fact that it is collected
with the broadest operating range and highest number of repeated measurements (100
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repeated measurements). In addition, we use the remaining datasets to corroborate the
generality of our approaches. When we evaluate the BER of transformed bits, BERF, we
report the average from repeated evaluations. Notably, the enrolled reference template is
only based on the first single measurement.

6.4.2 Validating Extraction Efficiency and Bit Error Rate

We employ simulations with the synthetic chip model to conduct the necessary massive number
of repeated measurements to assess the reliability of transformed fingerprint F. To generate
the results, for each parameter combination (i.e., n, � in S-Norm and m, n, and � in D-Norm)
of a NoisFre transform in Figure 6.7 for S-Norm and Figure 6.8 for D-Norm, we simulated
one million repeated measurements using a synthetic chip with a memory capacity of up to 16
MiB24

Using Simulations
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Figure 6.7: S-Norm BERF and extraction efficiency �SNorm validation using the synthetic chip model constructed
based on the NRF12 chip dataset. The evaluation is conducted for different n and noise-tolerance parameter �,
where � ranges from 1 to n∕2. Here, n raw bits are transformed into one F bit.

S-Norm. The evaluation results from S-Norm are detailed in Figure 6.7 under various n and �
settings. Based on Figure 6.7, we can confirm that the formalisation of BERF in equation (6.8)
provides a conservative estimation of the selected F bits. The results for extraction efficiency

24We start with a memory size of 64 KiB, the SRAM capacity of the nRF52832 chip, but we double the size
when a 128-bit F cannot be obtained. Thus, for each parameter setting, at least 128 bits are ensured to be produced.
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are in good agreement with equation (6.10) used to predict the number of F bits that can be
expected from a given chip.

D-Norm. The validation results of D-Norm are shown in Figure 6.8. As expected, the BERF

plotted in Figure 6.8 reduces substantially as the � is increased. Again, we can confirm that
the formalised BERF in equation (6.9) is a conservative estimate because it is always shown
to be higher than the synthetic chip model results. Further, the extraction efficiency derived in
equation (6.11) provides an accurate prediction of the number of bits of F that can be expected
from a given chip under various D-Norm settings (n, m, and �).
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Figure 6.8: D-Norm BERF and extraction efficiency �DNorm validation on the synthetic chip model constructed
based on the NRF12 chip dataset. The evaluation is conducted under different n and noise-tolerance parameter �
where � ranges from 1 to n and m = 4. Here n ×m raw bits are transformed into one F bit.

Using Measurements

Three SRAMdatasets (our NRF12, public ISSI4 and IDT6 datasets); one publicWINB7 dataset;
and our MICRO2 dataset are used to validate the generality of the NoisFre approach based
on physical chip measurements. The results of S-Norm and D-Norm validated on these five
datasets are detailed in Figure 6.9. In contrast to our simulation-based study in Section 6.4.2, here
we use a synthetic chip of identical data capacity and worst-case BERf matching the physical
chip under investigation and simulate 100 repeated measurements in sympathy with the physical
measurement regime.25 Overall, we can observe from the plots in Figure 6.9 that simulations
with the synthetic chip model agree well with the measurements for both S-Norm and D-Norm.

25One hundred measurements are due to the impracticality of conducting the necessary number of repeated
measurements with physical chips, as detailed in Section 6.4.1
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Figure 6.9: S-Norm and D-Norm validation on the datasets including three types of SRAM memories from three
different manufacturers (NRF12, ISSI4, and IDT6), one type of Flash memory, and one type of EEPROMmemory
with S-Norm setting (n = 63) and D-Norm settings (n = 64, m = 4). Note 1 : the number of repeated
measurements is finite (see Table 6.2) and inadequate to demonstrate any errors when the expected BERF is
considerably less than 1∕(number of repeated measurements).

Based on our comprehensive experimental validations on SRAM memories from three different
manufacturers, Flash memories, and EEPROM memories, we can now conclude that our
formalised model of the unreliability, BERF, and extraction efficiency, �, in Section 6.3 are
indeed reliable measures. Most importantly, the formalised models serve as bounds for BERF

and � in practice; the measurement results and synthetic chip model results are the same or
better than those predicted by the analytical models.

6.4.3 Evaluating Uniformity and Uniqueness

In addition to the two crucial performance measures we formulated, reliability and extraction
efficiency, we further consider measures that evaluate other qualities of the transformed bits
in terms of uniqueness and uniformity (see [112] for a definition of these measures). In the
following, our evaluations are based on the measurements obtained from the 100 physical chips
in the augmented NRF12 dataset.
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Figure 6.10: Uniqueness evaluation using physical nRF52832 chips. The plots summarise the mean (�) and
standard deviation (�) across a subset of S-Norm parameters, S(n, �), and D-Norm parameters, D(n, m, �) applied
to our large dataset of 100 chips.

Uniqueness Evaluation. Essentially, uniqueness measures how different the fingerprints are
between devices. However, the formal definition of uniqueness based on fractional Hamming
distance 26 [112] cannot be directly applied for F fingerprints because the transformed bits are
generated from different physical memory blocks from chip to chip, and the number of such
bits obtained could also vary from chip to chip. To account for this, we propose evaluating the
uniqueness of S-Norm and D-Norm transformed fingerprints based on the following approach:

1. Given a set of transformation parameters (such as n, m, and � for D-Norm), we extract all
the F bits for each of theN (i.e., 100) devices.

2. Given a pair of devices out of (N2
), we identify the device which produces the F string

with the smaller number of F bits within this pair, and truncate the longer bit string to the
same length. Then, we calculate the fractional inter-chip Hamming distance for this pair.

3. We repeat the process in Step 2) for all the (N2
) pairs to obtain the uniqueness measurement

over the 100-chip dataset.

The uniqueness of raw fingerprints, S-Norm fingerprints, and D-Norm fingerprints is illustrated
in Figure 6.10. The mean uniqueness of the raw fingerprints is 0.48, with a standard deviation
of 0.037. For S-Norm, the mean uniqueness achieves the ideal value of 0.50 under all tested
settings, and the largest standard deviation is 0.037 under the setting of (n = 15 and � = 7)

26Fractional Hamming distance (FHD) is a distance measure between two vectors of equal length, defined as the
number of positions in the two vectors with different values, normalised by the vector length.
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and (n = 47 and � = 9). The mean uniqueness of the D-Norm fingerprints also exhibits the
ideal value of 0.50, except for settings (n = 32, m = 128, � = 16), but the mean uniqueness of
0.49 is still nearly the ideal value. In general, as the number of extracted fingerprints in a tested
sample decreases, we also observe an increase in standard deviation; this is expected because of
the resulting small sample size for statistical analysis.

Uniformity (Bias) Evaluation. Uniformity measures the balance between zeros and ones in
a fingerprint vector. The uniformity distribution of raw fingerprints, S-Norm fingerprints and
D-Norm fingerprints is illustrated in Figure 6.11. The uniformity of the raw fingerprint is very
close to the ideal value of 0.5, with a very small standard deviation. The uniformity of S-Norm
and D-Norm methods—across the various parameter settings—is close to the ideal value, albeit
with a slight bias toward ‘1’. Notably, such slight biases are acceptable for key derivation and
can be simply compensated by using a few more fingerprint bits when deriving a key [201].
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Figure 6.11: Uniformity evaluation using physical nRF52832 chips. The plots show the mean (�) and standard
deviation (�) for uniformity across a subset of S-Norm parameters, S(n, �), and D-Norm parameters, D(n, m, �)
applied to our large dataset of 100 chips.

6.5 Deriving Cryptographic Keys for Security

Functions

We demonstrate the expressive power of our formalisation by investigating the derivation of
root keys from commodity memory chips facilitated by our analytical models. The dynamic
and direct generation of cryptographic keys from memory fingerprint transformations into
noise-tolerant bits is a basis for building security functions because: i) memory biometrics
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is a true source of randomness; and ii) it removes the need for a protected non-volatile
memory—keys can be generated on-demand and ‘forgotten" after usage.
In the following sections, we elaborate on amethod for employing the new fingerprintF obtained
from the NoisFre transformation to realise a cryptographic key generator (Section 6.5.1) and
evaluate the practical realisation of such a key generator (Section 6.5.2); we defer the security
analysis of the key generation process to Section 6.7.3.

6.5.1 A Method for Realising a NoisFre Key Generator

A typical memory fingerprint-based key generation method involves two steps: i) a one-time
secure key enrolment on the server-side; and ii) on-demand secure key re-generation on the
device-side [38], [56], [72], [124]. Positions of transformed bits F should be provisioned during
the key enrolment phase and provided during the key re-generation phase. We refer to these
positions using a mask . Recall that we have referred to those raw bits that produce a 1-bit F

as a block. For the S-Norm, one block has n raw bits, while one block has n ×m raw bits in the
D-Norm; for both methods, n raw bits form one l1-Norm. In the discussion that follows, we
consider key generation under two practical settings:

• Devices with write-once-read-many (WORM) memory for storage of themask defined to
select the memory regions to be used in the NoisFre transform prior to deployment.

• Devices without WORM memory where the mask has to be transmitted, for example,
through a wireless communication channel.

On-Server Secure Key Enrolment

First, we describe the one-time secure key enrolment process, depicted in Figure 6.12. This
process
Protocol. The one-off on-server secure key enrolment protocol with NoisFre is as follows:

1. Fingerprint memory is a memory region from which the raw device memory fingerprint f
is extracted.

2. The raw fingerprint f is processed by the server. The NoisFre Transform Selection process
determines a noise-tolerant fingerprint vector F and the corresponding mask based on
the parameters n, m, and � determined by a security practitioner. Notably, a practitioner
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NoisFre.
Transform
Selection 

Fingerprint
memory 

Device Server

WORM
memory

(optional) 

Figure 6.12: NoisFre secure key enrolment process. The raw fingerprints are extracted and used in the NoisFre
Transform Selection process (as defined in equations (6.6) and (6.7) for D-Norm) to determine the selected memory
addresses (mask) for subsequent use in security functions. Although we have only focused on the generation of
a single mask, several masks may be defined to allow the server to subsequently generate different secret keys
on-demand.

can employ the analytical expressions derived in Section 6.3 to determine the appropriate
parameter values.

3. Both F and the mask are stored in the server’s secure database (DB, indexed by, for
example, the device identification number [id], although not explicitly shown here for
simplicity).

4. Optionally, the mask can be stored inside the device’s WORM memory.

Dynamic On-Device Secure Key Generation

Now, we consider the realisation of on-device secure key generation with a device memory
fingerprint biometric. We illustrate the key generation method in Figure 6.13.

Protocol. The dynamic on-device secure key generation protocol with NoisFre is as follows:

1. If the device implements WORM memory to store the mask, as in Figure 6.13 (a), the
server fetches device-specific information from the DB, such as the enrolled F.

2. If the device does not implement WORM memory, the server fetches device-specific
information from theDB, such as the enrolledF andmask, as in Figure 6.13 (b). Themask
is transferred from the server to the device over a (non-secure) wireless communication
channel. To ensure the integrity of the mask, a message authentication code (MAC) tag
is computed by the server as tag ← MACF(mask) and appended to the mask.
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3. The device dynamically generates a new noisy raw fingerprint f′ from the fingerprint
memory.

4. The device computes F ← NoisFre.Transform(f′,mask), where NoisFre.Transform() is a
function defined by, for example, the D-Norm transform in equation (6.6).

5. If the device does not implement a WORM memory, then the mask is sent by the server,
as shown in Figure 6.13 (b); the device computes tag′ ← MACF(mask). To check the
integrity of the mask, the tag′ is compared to the tag supplied by the server. If the two
values match, output the NoisFre fingerprint F; otherwise, output ⊥.

6. Now both the server and the device share the same highly reliable F to be used as a shared
secret in a security function.

NoisFre.
Transform 

MAC

yes

no

MAC

Fingerprint
memory 

Server Device

==

NoisFre.
Transform Fingerprint

memory 

WORM
memory

Device

(a)

(b)

Server

Figure 6.13: On-device NoisFre key generation: (a) the mask is stored in a device’s WORM memory; and (b) the
mask is supplied by the server over the wireless communication channel, if there is no WORM memory available
on-device, for example. Although the illustration shows the production of one F-based key using one mask, it is
possible to enrol and generate several keys if desired.

Page 173



6.5 Deriving Cryptographic Keys for Security Functions

6.5.2 Evaluations

We begin our systematic evaluation of cryptographic key generation with the following question
and employ the formal models and the physical chip measurements for our evaluations.

The Reliability of a k-bit NoisFre Fingerprint F

Transformed fingerprint F can be directly utilised as a cryptographic key because they are
invariant to a desirably high number of noise-induced bit error patterns—these F bits exhibit a
high noise tolerance. The overall failure rateP failF of a k-bit noise-tolerant keyF can be expressed
as:

P failF = 1 − (1 − BERF)k (6.12)

Recall that the formalised BERF in Section 6.3.1 is conservative. Therefore, the P failF in
equation (6.12) will also yield a conservative estimation. We expect a key failure rate in
practice to be lower than our prediction here. This hypothesis is validated with an extensive
simulation-based on a large simulated chip with up to one billion repeated noise-tolerant key bit
extraction, as illustrated in Figure 6.14.
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Figure 6.14: Validation of equation (6.12). The simulated chips are based on the worst-case BERf = 6.09% from
the NRF12 chip dataset. The parameters selected are n = 32,m = 16 and varied D-norm parameter � from 1,… , 17.
We conducted 10 million re-evaluations of a 128-bit noise-tolerant fingerprint for each value of � = 1,… , 16 and
one billion evaluations for � = 17. Our results corroborates equation (6.9) and equation (6.12) as an upper bound
on the failure rate of a NoisFre fingerprint employed as a cryptographic key. An even lower P failF is achievable if a
larger � is used. We halted our investigation at �=17 as it answers the question we investigated.

Next, considering a practitioner’s desire for a P failF < 10−6 performance target27 for typical
industrial applications, as highlighted in [155] and recent studies [56], [74], [196], [210]–[212],
we investigate the following question.

27Notably, there is nothing fundamentally preventing us from aiming for a lower key failure rate. We can see
from Figure 6.14 that a larger � will achieve a lower failure probability.
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The Most Efficient Transformation Method

Consider the problem: What is the most efficient transformation method presenting the highest
extraction efficiency while ensuring sufficient reliability for F to be direct use as a 128-bit
cryptographic key with a failure rate lower than 10−6 under worst-case raw fingerprint BERf?
We employ NRF12 SRAM-based synthetic data to facilitate the massive number of evaluations
necessary to address the question. The evaluation process is described below:
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Figure 6.15: Extraction efficiency comparison betweenD-Norm and S-Norm. For S-Norm andD-Norm extractions,
we have evaluated 16,384 and 8,388,480 parameters combinations, respectively. The � of D-Norm may take any
value in [1, n], while in S-Norm, the � is restricted within [1, n∕2]. Meanwhile, D-Norm extraction employs the
additional parameter, m. Therefore, the possible combinations of parameters for D-Norm are magnitudes larger
than that of S-Norm.

1. We determine the BERF corresponding to a 128-bit key with a failure rate of 10−6 using
equation (6.12). The resulting BERF is 7.81 × 10−9.

2. For each n ∈ {1, 2, 3, ..., 256}, evaluate the minimum � for the required BERF

(equation (6.8) for S-Norm and equation (6.9) for D-Norm) to ensureBERF < 7.81×10−9.
In these equations, we employ the mean of the worst-case BERf = 6.09% of NRF12
dataset to compute an upper bound for BERF.

3. For S-Norm, the extraction efficiency � is calculated with equation (6.10) using the n and
� determined in the previous step.

4. D-Norm requires us to further determine the m value that can provide the highest �. As
observed in Figure F.3 in the Appendix, � changes smoothly with respect to m. To reduce
the search-time overhead, we applied a grid-based search technique: i) evenly select j
sample points from the entire domain of m ∈ {1, 256}; ii) calculate the � for each m =
1, 2, 3, .., j; iii) find the m values corresponding to the highest and the second highest �;
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iv) refine the search domain to be between the two points found in step iii); and v) repeat
from i) to iv) to locate the m that gives the highest �.

The results from our investigation are depicted in Figure 6.15; here, we plot the occurrences
of extraction efficiency as a function of � from all the combinations of S-Norm parameters (n
and �) and D-Norm parameters( n, � and m). We can conclude that the D-Norm always affords
significantly higher extraction efficiencies conditioned on the 128-bit P failF < 10−6 constraint.
Therefore, in the following discussion, we focus on the D-Norm.

Given: i) different sizes of memories embedded within various COTS electronics; and ii) BERf
characteristics of noisy fingerprints from different memory technologies:

The Lowest Key Failure Rate

Consider the question: What is the lowest key failure rate P failF achievable for a 128-bit key F
from each memory technology and manufacturer considered in our study?
This scenario resembles a practical application setting where the computing platform or
micro-controller unit, for example, needs to be selected based on meeting security and
application requirements. We can assume that inherent (worst-case) BERf of raw fingerprints
are known (i.e., published measurement studies on memory technologies). Thus, we test our
suite of memory technologies using the following approach:

1. For each memory dataset listed in Table 6.3, we conduct an exhaustive parameter search
using possible combinations of D-Norm parameters (n, m ∈ [1, 128], and � ∈ [1, n]) using
our analytical models. This step identifies the (n, m, �) combination exhibiting the lowest
P failF while still providing least 128-bit F.

2. We employ the formulated equation (6.9) to obtain the BERF of the extracted F using the
identified m, n, � and the mean of BERf characterised across the chips in a given memory
type dataset.

3. We use BERF substituted into equation (6.12) to determine the best P failF of the selected
and transformed F with at least 128 bits.

Results are summarised in Table 6.3. Taking the expected BERf across the smallest SRAM
dataset, the lowest P failF expected from a chip with SRAM capacity of 64 KiB is in the magnitude
of 10−5. Notably, P failF reported in Table 6.3 is conservatively estimated from formulations.
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Table 6.3: The lowest key failure rate P failF achievable for obtaining a 128-bit key F for each investigated memory
dataset using D-Norm. worst-case BERf is the mean of the value calculated across the chips in a given dataset.
Notably, as described in Section 6.5.2 and illustrated in Figure 6.14, equation (6.12) provides a conservative upper
bound, the actual key failure rates will be much lower in practice.

Dataset (Type) worst-case
BERf (mean) Memory size n m � P failFequation (6.12)

NRF12 (SRAM) 6.09% 64 KiB 29 65 13 4.04 × 10−5
ISSI4 (SRAM) 8.29% 256 KiB 50 128 19 3.56 × 10−5
IDT6 (SRAM) 5.42% 512 KiB 83 128 25 5.29 × 10−9
WINB7 (Flash) 16.26% 256 MiB 1 120 128 41 2.52 × 10−4

MICRO2 (EEPROM) 16.37% 32 KiB 1 14 61 9 4.01 × 10−1

1Recall that the tested size ofWINB7 andMICRO2 datasets are 69 KiB and 2 KiB.When calculating the number of
selected noise-tolerant bits, the memory sizes are scaled up by assuming the entire 256 MiB (WINB7) and 32 KiB
(MICRO2) memory spaces are available for fingerprinting.

In practice, P failF is expected to be much better. Importantly, with more abundant and freely
available on-chip SRAM, represented in the IDT6 dataset, a remarkably low key failure rate of
5.29 × 10−9 is achievable.
As expected, the higher worst-case BERf of the MICRO2 and WINB7 datasets implies that
the techniques in NoisFre are not able to select a 128-bit F with a satisfactory P failF . However,
the WINB7 tested benefits from a high memory capacity (256 MiB compared to 32 KiB for
MICRO2) and we can achieve orders-of-magnitude better P failF than MICRO2.
In summary, for SRAM—the most prevalent memory type in IoT devices—a 128-bit key with
a key failure rate less than 10−6 can be efficiently obtained given an adequate SRAM memory
capacity. However, for memory types exhibiting severely high BERf, for example, MICRO2
and WINB7, the method itself is insufficient to gain a satisfactory P failF . Although, NoisFre
does significantly reduce the key failure rate given the higher capacity of WINB7 for selecting
bits. Notably, with such high BERf memory characteristics, even the state-of-the-art, efficient
method of RFE-based key generators are unlikely to deliver a computationally tractable solution
on resource-limited devices. We discuss this limitation further in Section 6.9.

6.6 Security Function Implementation for Comparison

Here, we describe a case study implementing a NoisFre-based key generator followed by
performance and implementation overhead comparisons against the lightweight, state-of-the-art
(R)FE-based method.
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Network

Server Gateway Sensor node

Prover

(a)

(b)
1

2
3

Secure network channel Insecure wireless
channel

Verifier

Figure 6.16: NoisFre (a) System overview; and (b) Experiment setup: Verifier  consists of: 1 a laptop as the
cloud server; 2 a smartphone as the gateway; device is 3 a commercial widely used nRF52832 Bluetooth-LE
sensor. Watch the demo video for more details:
https://www.youtube.com/watch?v=O5NWZw-swpw

scan to watch

6.6.1 An Overview

The entities, a Verifier  and a Prover  , involved in this case study are illustrated in
Figure 6.16 (a). TheVerifier consists of a server and awireless network gateway (smartphone).
The Prover  refers to a wireless sensor node (Bluetooth sensor). In this setup, the server
functions as a coordinator, holds the enrolled Prover ’s information in the database, and issues
commands to instruct the Prover  to perform remote attestation. The gateway bridges the
communication between the server and the Prover  . The traffic between the server and the
gateway is assumed to be secure by applying standard security protection mechanisms. The
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Prover  , communicating wirelessly, is deployed in an (insecure) environment. Details of the
corresponding attestation protocol are provided in Figure 6.17. Our case study aims to:

• Implement a lightweight remote attestation routine suitable for a Prover  with a
constrained resource by following [30].

• Experimentally demonstrate that SRAM fingerprints can be accessed on-demand and at
run-time by exploiting the low-cost micro controller unit (MCU)’s memory power control
features—SRAM regions are arranged in blocks can be individually powered on or off.

Verifier Prover
DB = {(id,F,mask), ...} id,Memory
App = (bin, addr, lengtℎ)

hello
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

id
if id ∈ DB ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
[F,mask]← DB(id)
tag ← MACF(mask)

else mask, tag
abort ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Power cycling

Fingerprint zone
f ′ ← Memory(Fingerprint zone)
F ← NoisFre.Transform(f ′,mask)
tag′ ← MACF(mask)
if tag ≠ tag′
reject and abort

ready for attestation else
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← continue

chal ← RNG() chal, addr, lengtℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ bin′ ← Memory(addr, lengtℎ)

resp ← MACF(bin, chal) resp′ ← MACF(bin, chal)
resp′

if resp == resp′ ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
attestation succeed

else
reject

Figure 6.17: Remote attestation protocol, with mask transmitted from the Verifier  , In case the WORM is not
supported on the Prover  .

Remote Attestation Mechanism. An overview of the remote attestation mechanism based on
a NoisFre key generator is illustrated in: i) Figure 6.17, where we assume the Prover  has
no WORM memory available for storing a mask and that it has to be transmitted over the
wireless communication channel (the worst-case setting in terms of implementation overhead);
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and ii) Figure 6.18, where we assume the Prover  has available WORM memory. We assume
the Prover  has already undergone the enrolment phase we described in Section 6.5.1. The
enrolment is conducted by the Verifier  in the current setting.
A remote attestation can be requested anytime. First, the Verifier  scans for visible Provers 
by sending a ‘hello" message. Once there is a Prover in the horizon responding with its unique
identifier id, the Verifier fetches the Prover’s information (e.g., F andmask) from the secure
database DB by using the id as an index. Second, if the received id matches one of that stored
in the Verifier ’s DB, the Verifier  instructs the Prover  to perform attestation—by sending
the mask and MAC tag for Provers  with no WORM memory, as in Figure 6.17. In this
context, the Prover  performs a power cycling of memory banks solely corresponding to the
fingerprint zone28 and dynamically generates Fi following the steps described in Section 6.5.1.
After confirming a ready acknowledgement from the Prover , theVerifier randomly generates
a challenge (a nonce) chal, and sends it to the Prover  along with the address addr and the
lengtℎ of the target application program (App) code bin in the Prover ’s memory. The Prover
’s response resp′ is generated usingMAC computed with the noise-tolerant fingerprint F. The
Verifier  compares the received response resp with a locally calculated reference response
resp′. The remote attestation is accepted if resp and resp′ match and rejected otherwise.
If the Prover  implements WORM memory for storing amask, the protocol can be simplified
as shown in Figure 6.18; in our end-to-end demo implementation, we consider this simpler case,
and describe the implementation details in Figure F.5 in Appendix. F.2.

6.6.2 Overhead Comparisons

Implementation Details. We provide an overview of the system implemented in Figure 6.16 (b)
and defer details to Appendix F.2. Further, we refer the reader to our open-source code release29
for detailed descriptions of our implementation, including dynamic and run-time key generation
from SRAM fingerprints. A video demonstration of the end-to-end implementation is available
at:
https://www.youtube.com/watch?v=O5NWZw-swpw

scan to watch
We implemented a D-Norm-based key generator on an nRF52832 chip with the smallest on-chip
SRAM capacity and BERf of 4.93% tested under −15 to 80 ◦C operating range. We used n=32,

28Each memory bank can be individually powered off by exploiting particular power control registers, thus
enabling run-time SRAM fingerprinting.

29See https://github.com/AdelaideAuto-IDLab/NoisFre
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Verifier Prover
DB = {(id,F), ...} id,Memory
App = (bin, addr, lengtℎ) WORM

hello
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

id
if id ∈ DB ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
F ← DB(id)

else prepare for attestation
abort ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Power cycling

Fingerprint zone
f ′ ← Memory(Fingerprint zone)

ready for attestation mask ← WORM
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← F ← NoisFre.Transform(f ′,mask)

chal ← RNG() chal, addr, lengtℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ bin′ ← Memory(addr, lengtℎ)

resp ← MACF(bin, chal) resp′ ← MACF(bin, chal)
resp′

if resp == resp′ ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
attestation succeed

else
reject

Figure 6.18: Remote attestation protocol, with mask stored in Prover ’s WORM. In the demo, we implement this
version.

m=48, �=13 for D-Norm parameters determined by equation (6.9), (6.11), and (6.12) to be able
to extract a 128-bit NoisFre key capable of a key failure rate below 9.15 × 10−6.
For comparisons, we implemented the (R)FE-based key generators summarised in Table 6.4
to achieve a key failure rate to closely match 10−6. As discussed in Section 2.3.3, in an
FE, the device executes the computationally-heavy decoding function, while in an RFE, the
device executes the more lightweight encoding function. In our end-to-end demonstration, to
achieve a comparable failure rate to that of the D-Norm-based NoisFre key generator, the (R)FE
implementation needs 13 parallel blocks of (n = 63, k = 10, t = 13) BCH code30 to provide a
similar key failure rate.

Implementation Overhead. The implementation overhead evaluates the usage of two system
resources: clock cycles (for code executions) and random-access memory (for run-time data).
Overall, in terms of obtaining a 128-bit reliable key with a key failure rate of 9.15 × 10−6, the
implementation of the D-Norm-based NoisFre method with parameters (n=32, m=48, �=13)

30BCH code is a class of cyclic error-correcting codes, named after its inventors Bose, Chaudhuri, and
Hocquenghem, constructed using polynomials over Galois field
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takes 51,044 clock cycles31. If themask is provided by the server and transmitted over a wireless
channel, an additional 45,622 clock cycles are required for mask integrity checks.
In contrast, the FE-based and the lightweight state-of-the-art RFE-based method introduces
significantly higher overheads to achieve a 128-bit reliable key with a slightly inferior key failure
rate of 2.45 × 10−5. Specifically, as evaluated and shown in Figure 6.19, the on-device FE
decoding and RFE encoding functions consume 285,311 and 109,850 clock cycles, respectively.
Both methods need an additional 60,755 clock cycles for helper data integrity checks. In
comparison with the state-of-the-art FE and RFE, for meeting a comparable key failure rate,
NoisFre reduces clock overhead by 72% and 43%, respectively, if the mask or helper data is
transmitted over the wireless channel requiring helper data integrity checks. However, if the
mask or helper data for all of the method are stored on a device’s WORMmemory, clock cycles
required in comparison to NoisFre reduces by 82% (compared to FE) and 54% (compared to
RFE).
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Figure 6.19: Comparison of implementation overhead of the proposed NoisFre key derivation against traditional
(R)FE-based key derivation. The integrity checks are necessary if the helper data or the mask is transmitted over a
wireless channel.

It is worth emphasising that we have compared NoisFre with an RFE capable of deriving a key
with a failure rate of P failF ≈ 10−6. However, as we show in Table 6.3, if an chip from the

31This was tested with nRF52832 SoC, via J-link EDU V10.1 debugger, with nRF5 SDK Ver. 15.3.0, Keil
uvision 5.25.2.0 and ARM CC compiler Ver. 5.06 Update 6. Optimisation setting = -O3.
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Table 6.4: Implementation overhead of R(FE) employing BCH codes.

Fingerprint source
(BERf ) BCH(n,k,t) Block

number
Key

failure rate Key size Helper
data size

Clock cycles
Fuzzy Extractor

decoding
Reverse Fuzzy

Extractor encoding
Helper data

integrity check
NRF12 (4.93%) (63,10,13) 13 2.45 × 10−5 130 689 285,311 109,850 60,755
IDT6 (5.42%) (127,15,27) 9 1.69 × 10−9 135 1008 967,599 188,487 84,013

IDT6 dataset is used in the implementation, we can obtain a key with a significantly lower key
failure rate by exploiting the free, abundant memory; now, P failF can be ≈ 5 × 10−9. Attempting
to achieve such a small P failF using an (R)FE will lead to significantly higher overheads. The
(R)FE-based key provisioning method introduces increasing execution overheads if a lower key
failure rate is desired as illustrated in Table 6.4. For example, if an IDT6 SRAM chip is used as
the fingerprinting barometric source instead of the nRF52832 chips’ internal SRAM, a 128-bit
key with failure rate of 1.69 × 10−9 requires 188,487 (3.69 times larger) clock cycles with the
REF-based method or 967,599 (18.95 times larger) clock cycles with the FE-based method,
compared with 51,044 clock cycles for our NoisFre-based method. Hence, in contrast to (R)FE
methods, the on-device computational overhead of the proposed NoisFre key generator remains
constant, regardless of the desired key reliability and only depends on the size of the key to be
derived.

6.7 Discussion

6.7.1 Generality of NoisFre

Although our work focused predominantly on SRAM, considering its ubiquity in low-end
IoT devices and the simplistic nature of fingerprint extraction, the NoisFre fingerprinting
methods presented are applicable for other memories, including Flash (WINB7) and EEPROM
(MICRO2) memories validated in our study. In principle, it can be applied to other hardware
fingerprinting methods [213], [214], given an abundant raw digital fingerprint bit space.

6.7.2 Provisioning Fingerprints at Run-time

Flash and EEPROMmemory fingerprints can be accessed during run-time. However, for SRAM
fingerprinting, the most common method is to utilise its initialisation pattern at power-up as a
fingerprint, although there are other means [115]; for example using data retention voltage [115]
or intentionally putting SRAM cells under a meta-stable state. Those methods usually require
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customised peripheral circuitry, which tends to be unavailable in COTS devices. Thus, SRAM
fingerprinting generally requires power cycling to read the start-up values. As a matter of fact,
some low-end microcontrollers allow direct control over the powering of individual SRAM
banks [122] (e.g., the low-end nRF52832 studied in this chapter). Consequently, by leveraging
such a feature, SRAM fingerprint-based root keys can be requested during run-time.

6.7.3 Security Analysis

We have looked at the problem of achieving a pragmatic, on-device key derivation method
using noisy memory fingerprints. NoisFre fundamentally obviates the need for computationally
intensive on-device Error Correction Code (ECC) logic for the task. It is thus immune to HDM
attacks [73], [74] that strategically tamper the helper data associated with the ECC to weaken
or compromise the key extracted using the state-of-the-art (R)FE methods. The vulnerability is
induced by the usage of ECCs (were introduced in Chapter. 2). Various ECCs are examined and
shown to be vulnerable to HDM attacks [74]. A generic countermeasure against HDM attacks
appears to be an open challenge. The NoisFre scheme has sought to remove the necessity for
helper data associated with key generation in an RFE and, thus, avoid the HDM attacks that
exploit helper data. In the following, we consider the security of our proposed key derivation
method in the context of prior methods based on the state-of-the-art (R)FE methods.

Threat Model

Memory fingerprint-based key provisioning studies rarely explicitly define a threat model [196],
[201], [215] and operate under the assumption that the key material (i.e., memory fingerprint)
cannot be directly accessed. However, studies focusing on incorporating key derivation methods
to provide a security function, such as authentication or remote attestation [62], [142], [177],
[216], follow a threat model. Therefore, we follow the threat model reasoned therein, along
with the assumption that the key material cannot be directly accessed.
Specifically, we consider that an adversary cannot access the raw fingerprint and temporary
data stored in RAM or internal chip registers during key derivation. The attacker can tamper
with public information used to assist the key derivation. Notably, in prior work, such
information would be the ECC associated helper data in a (R)FE-based reliable key derivation
method [74]—in our key derivation approach, we assume the mask is public information. The
mask is sent to a device over a communication channel together with a method for assessing the
integrity of the mask or is stored in WORM.
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Mask Manipulation Attack

In use cases where the mask is sent to a device over a communication channel, it is possible for
an attacker to manipulate the mask. Therefore, we consider mask manipulation attacks.
In the context of a NoisFre-based key generator, a MAC tag is produced over the mask using
the derived F to ensure the integrity of the mask—more specifically, tag ←MACF(mask), with
F being the reliable secret key, as illustrated in Figure 6.13 (b). Themask and MAC tag can be
publicly stored off-chip and/or stored on-chip. Subsequently, the MAC tag can be re-generated
to validate the integrity of a mask stored on-device or transmitted to the device prior to the use
of the key derived on-demand, as illustrated in Figure 6.13 (b). Now, the probability of making
a modification without being detected is 1

2k with k the length of the derived key. It will be 1
2128

for a typical 128-bit key.
Although we adopted a simple mechanism in this study to ensure mask integrity, other
mechanisms have been proposed to ensure the integrity of helper data in the context of
state-of-the-art (R)FE methods [73]. Thus, we can also employ these existing methods to ensure
the integrity of the mask for NoisFre key derivation method.

Brute-force Attack

For completeness, we also assess the attack complexity of a brute-force attack on a
NoisFre-based key derivation method. The attacker may utilise a brute-force attack to determine
the derived key. However, this is extremely challenging when the key is appropriately sized.
For a brute-force attack, the probability of finding the correct derived key is 1

2k , which is
computationally infeasible given a reliable key with a typical length of k = 128 bits.

Ageing Attack

The data stored in a SRAM cell can gradually affect its start-up state. This is called
data-dependent ageing [68]. Given that the key derivation is based on a physical primitive,
we also consider ageing attacks that may attempt to exploit the small changes in behaviour of
memory cells that occur as a result of ageing the underlying electronic components.
In use cases where a write access protected (e.g., using a memory protection unit [MPU])
memory cannot be allocated for generating fingerprints and where the memory space used for
fingerprints must be shared with user application code, an attacker may utilise malicious code
on the device to continuously write specific memory patterns to the SRAM used for device
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fingerprinting. Such an attempt can accelerate ageing and can potentially degrade the reliability
of a NoisFre key generation method.
In use cases where a dedicated memory cannot be allocated for generating fingerprints, several
simple mitigation strategies already exist. First, the ageing effect is data dependent. The user
can employ an anti-ageing method, such as writing reverse data patterns to mitigate the ageing
effect validated as an efficient approach to counter ageing [68]. Second, the SRAM unreliability
induced by ageing, even over six years, is small—only 2% [68]. Hence, a simple anti-ageing
method for NoisFre is to allow the server to intentionally assume a higher worst-case BERf

during the enrolment phase to count for or tolerate the ageing effect by trading off a slight
increase in SRAM volume required to retain the same NoisFre key reliability. If the available
memory volume is constrained, a further low-cost anti-ageing measure is for the server to adopt
the trial-and-error method reported in [217] to recover the least reliable transformed F bits,
because the server can ascertain the bit-specific reliability of each F bit. Notably, in this
approach, all the computation overhead is offloaded to the server without imparting any overhead
to the device.

6.8 Related Work

Besides memories, various on-board sensors, such as cameras, accelerometers, gyroscopes,
magnetometers, and other components, such as CPU magnetic radiations, are utilised to
provide fingerprints [218]–[226]. Other recent works also explore commodity scanners to
fingerprint 3D objects to track them [227] and exploit the package variations as fingerprints for
anti-counterfeiting [228]. However, to obtain hardware fingerprints, those fingerprint extractions
are relatively complicated in comparison with memory, especially SRAM, enabled fingerprints.
Notably, hardware fingerprinting is closely related to the notion of PUFs [55]–[57], [229], [230].
Commodity memory fingerprinting, such as SRAM PUF and Flash PUF, is not new. However,
mounting them on low-end IoT devices to derive a usable key for security functions relies on
post-error correction to reconcile bits errors, which is cumbersome in terms of both overhead and
security in practice. Our simple yet efficient NoisFre memory-fingerprinting approach addresses
this gap.
We exploit the idea of a differential measurement in the formulation of the D-Norm method
based on the base distance (l1-Norm) to improve the extraction efficiency (number of F

bits with a desired noise tolerance) from a given memory. Interestingly, in PUF studies,
formulating methods to exploit a differential gap or comparison has been utilised by extrinsic
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PUFs–implemented with additional hardware—such as ring oscillator PUF (RO-PUF) [59],
[229]–[231] and arbiter PUF (APUF) [232] to obtain responses with improved reliability.
The concept has subsequently been applied in [229], [230] to enhance reliability and address
ageing of electronic components in RO-PUFs facilitated by the ease with which RO frequency
differences are already measured and can be directly used. In our intrinsic memory studies, we
exploit a base distance, l1-Norm, to generate a differential measurement to build the D-Norm
transform for memory PUFs intrinsic to COTS devices. As discussed in Section 6.2.3, we
recognised that the differential formulation can yield significantly more reliable bits compared
to S-Norm employing (simply, the l1-Norm base distance). Thus, in this chapter, we combine
these two mathematical concepts (base distance with a differential measure) together to extract
more noise-tolerant bits from a memory PUF—a method that can be used with intrinsic
memories widely exist in COTS devices.

6.9 Chapter Summary

By exploiting ubiquitously embedded memory within commodity computing devices, the
proposed NoisFre approach constructively extracts transformed memory fingerprints that were
embodied with a high tolerance to noise affecting the generation of fingerprints. With a simple,
single, one-off fingerprint enrolment measurement, NoisFre is able to judiciously identify highly
reliable transformed fingerprints serving as a hardware root key or root of trust to directly support
various security functions for a wide range of COTS electronic devices. Besides formalisation of
two specific S-Norm and D-Norm fingerprint transformation methods and extensive empirical
validations on SRAM, Flash, and EEPROM memories using 119 physical chips in total, we
have conducted a case study with an end-to-end implementation of a remote attestation security
service employing NoisFre fingerprints to significantly reduce the overhead in comparison with
the state-of-the-art RFE method for constructing reliable fingerprints for a key generator. We
also demonstrate how SRAM fingerprints can be generated at run-time by utilising individual
memory-bank power control features on MCUs. Overall, NoisFre is a simple but practical
method, especially for existing low-end commodity electronic devices.
The study in this chapter is not without limitations. As shown in Figure 6.15, the highest
extraction efficiency (i.e., the number of fingerprint bits with a BERF < 7.81 × 10−9 that can be
extracted from a unit-sized memory block) that NoisFre can achieve is 0.62 bits per KiB. Hence,
extracting a usable (e.g., 128-bit) secure key from a highly resource-constrained device with a
mere 2 KiB memory space (i.e., the SRAM size of the passively powered computational radio
frequency identification (CRFID) device studied in Chapter 3 and Chapter 4) with NoisFre is
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Lightweight physically obfuscated key derivation

Reverse fuzzy extractor (RFE)-based device key
generation method using SRAM PUF (memory
fingerprinting) for resource-limited devices. 

Chapter 3

Multiple referenced response (MRR) enrollment
strategies.
Trail-and-error (TRE)-based method to offload
computational load from the resource-limited device to
the server. 

Chapter 5

The implementation overhead of the on-device RFE
encoder remains too high for achieving industrial strength
key failure rates and imposes restrictions on the
operational conditions.

Noise-tolerant memory fingerprints (NoisFre), a highly
reliable fingerprinting method of commodity device
memories, remove the need for an RFE. 

Chapter 6

The MRR-based physically obfuscated key derivation 
generation methods still need an RFE, and the
implementation overheads are too high for resource-
constrained devices if we want to achieve an industrial
standard key failure rate over a full operating temperature  
range. 

The extraction efficiency of NoisFre is too low to be applied
to highly resource-constrained devices with only several
KiB of memory for device fingerprinting.

New fingerprint-extraction methods trade reliability for
improved extraction efficiency.
TRE-based method for resolving any potential errors 
in the extracted fingerprint. This method makes use   
of the server's computational power without imposing
additional overheads on the highly resource-
constrained device.

Chapter 7

Figure 6.20: Upcoming chapter sneak peek.

still not immediately possible. In the upcoming Chapter 7, we will look at approaches to extract
more noise tolerant bits from a given memory. We contrast the proposed NoisFre method in this
chapter against the corresponding problem to be explored in Chapter 7 in Figure 6.20.
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Noise-Tolerant Key Generators
for Highly Limited On-device

Memory

Server Device

RNG

TRE

TransformationMAC

DB

Trade key reliability for
extraction efficiency

Take advantage of the
server's rich computing
power to tolerate errors

T
HeNoisFre concept proposed in Chapter 6 enables simple and efficient yet
practical construction of key generators from noisy COTS devicememory
fingerprints. However, extraction efficiency (the number of noise-tolerant

bits extracted compared to memory size) can be a limiting factor for highly
resource-constrained devices with limited on-chip memory capacity. This chapter
introduces NoisFre-Lite to address the considerable challenge of deriving keys from
SRAM memory in contexts where resources are highly constrained, in terms of
memory size available for device fingerprinting. NoisFre-Lite builds on NoisFre by
similarly transforming raw SRAM fingerprints into noise-tolerant fingerprints but
also developing two new algorithms for the D-Norm transform-based noise-tolerant
bit selection around a compromise between reliability and extraction efficiency.
Employing these algorithms means few noise-tolerant bits can remain below the
level of reliability needed to produce a highly reliable key generator. But, the
proposed NoisFre-Lite utilises a server’s rich resources to withstand transformed
bit errors via a trial-and-error (TRE) approach that ultimately establishes a highly
reliable key. We evaluate NoisFre-Lite in the context of the battery-less CRFID
device studied in Chapter 3, which represents a highly resource-constrained device.
NoisFre-Lite easily derives a 128-bit key with a key failure rate below 10−6 from a
2 KiB SRAMmemory. NoisFre-Lite induces an on-device computational overhead
as low as 20,238 clock cycles, a 92.8% reduction compared to the state-of-the-art
reverse-fuzzy-extractor-based generation method, which requires 280,063 clock
cycles.
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7.1 Motivation and Contribution

Although physically obfuscated key derivation from device memory fingerprints is a highly
secure and cost-efficient key storage solution, mounting such techniques on resource-constrained
devices is challenging due to the implementation overhead of key generators constructed from
such memory fingerprints.
The NoisFre scheme proposed in Chapter 6 fundamentally obviates the need for the
computationally-intensive on-device reverse fuzzy extractor encoder with a method that maps
the raw, noisy fingerprint space into the noisy-tolerant fingerprint space to enable extraction
of transformed noisy-tolerant fingerprints. A crucial benefit of NoisFre is that it provides a
noise-tolerance measure for each transformed noise-tolerant bit to judiciously select highly
reliable bits to meet the stringent reliability requirement of a root key. This means that on-device
key generation no longer relies on an error correction operation.
However, the transformation and selection process sacrifices the entropy of the raw, noisy
fingerprint space: a large number of raw fingerprint bits can only be transformed into a single
F bit, and selecting noise-tolerant bits with a high degree of noise-tolerance further discards
raw fingerprint bits. Consequently, although NoisFre benefits from large memory sizes in
many COTS devices, the methods explored in Chapter 6 remain difficult to implement on
highly resource-constrained devices where, having tens of thousands of bytes of memory, is
increasingly becoming common [233].
Hence this chapter investigates the following problem:

• How can we generate reliable root keys from pervasive SRAMmemory fingerprints under
stringent restrictions on: i) computational capability; and ii) memory size?

The following summarises this chapter’s contributions to addressing this problem and the main
results from the experiments conducted:

• Noise-tolerant key generation for highly resource-limited devices. We propose
NoisFre-Lite, which can provision root keys on highly resource-constrained devices
by re-purposing memory in contexts of extremely limited computational and memory
resources. The approach devises two complementary algorithms that transform and
select raw, noisy fingerprint bits into noise-tolerant bits using the D-Norm method,
improving extraction efficiency (extracted highly reliable noise-tolerant bits compared to
rawmemory fingerprint bits). NoisFre-Lite is built around its ability to trade key reliability
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for improved extraction efficiency. Subsequently, to optimise the key failure rate, we
devise the TRE algorithm, which restores the errors in the transformed bits by utilising
the abundant server-side computational power and the prior information concerning the
expected worst-case noise-tolerance degree from the transformation and selectionmethod.
Importantly, we effectively use the server’s computational power without adding any
computational overhead to the highly resource-constrained device.

• Analytical model formulations. We formulate analytical models for each of the proposed
transformation and selection algorithms to describe their performance. These models will
help practitioners accurately estimate key size and key failure rate, given a specific device’s
memory capacity. We also formulate analytic models to predict the number of error bits
for a given device fingerprint reliability, and an upper-bound of on-server computing load
for running the TRE algorithm.

• Extensive evaluations. We extensively evaluate NoisFre-Lite in terms of key failure rate,
extraction efficiency, uniformity (bias), uniqueness, bit-aliasing of the derived key and
on-server TRE complexity. The experiments affirm the efficacy of our method and the
validity of our formulations.

• Practical use case and comparisons. We implement and test a NoisFre-Lite key
generator on a battery-less CRFID device with a constrained 2 KiB SRAM memory—a
highly resource-limited device. NoisFre-Lite is demonstrated to be capable of obtaining a
128-bit key with a failure rate below 10−6 using only 20,238 clock cycles—this represents
a 92.8% reduction in comparison to the state-of-the-art RFE-based method which requires
280,063 clock cycles.

7.1.1 Chapter Overview

The rest of this chapter is organised as follows. First, Section 7.2 provides an overview
of the proposed NoisFre-Lite concept. Section 7.3 details the proposed algorithms for
improving extraction efficiency. Next, Section 7.4 describes and applies the on-server
TRE technique, which restores erroneous bits in the derived device fingerprint key over
re-generations, if any exist. Section 7.5 formally derives analytical expressions for key failure
rate, extraction efficiency and the time complexity of the TRE method. We evaluate the
proposed NoisFre-Lite techniques using synthetic chip model-based simulations and physical
chip measurements in Section 7.6. Section 7.7 demonstrates a use case of the proposed
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Table 7.1: Table of notations used in this chapter.

 A server  is a single entity comprising a networked host computer and a wireless gateway
(such as a RFID reader). A device  is a highly resource-constrained device. An adversary  is an attacker. For adversary ’s goals and ability, please refer to
Section 7.7.3.

DB Server’s database, where each element is a three-tuple describing each device  in terms
of: i) its unique and immutable identification number id; ii) its enrolled noise-tolerant
fingerprint F; and iii) its noise-tolerance parameter �.

f A noisy raw fingerprint vector.
F A transformed noise-tolerant fingerprint vector.
mask Positions of transformed bits F should be provisioned during the key enrolment phase and

provided during the key generation phase. We refer to these positions using a mask.
nonce The nonce is a randomly generated number that should be used only once in the secure

communication context to prevent replay attacks.
tag A MAC tag computed over the nonce (for more details, please refer to Section 7.7.1).
e A vector of error bits in the re-generated raw noisy fingerprint f ′.
� A vector of error bits in the re-generated noise-tolerant fingerprint F′
� A vector of possible error bits to be corrected using the TRE method (for more details,

please refer to Section 7.7.1).
f One bit in the noisy raw fingerprint vector f
F One bit in the transformed noise-tolerant fingerprint vector F.
� The noise-tolerance parameter.
x The TRE capability—expected number of erroneous bits |�| in a re-generated noise-tolerant

fingerprint F′ in the worst-case scenario (for more details, please refer to Section 7.4).
n The group size n.
m The block size m used in NoisFre (Baseline method).
� The extraction efficiency, measured as how many F bits can be extracted from 1 KiB of

memory.
BERf The expected BER of raw noisy fingerprints f .
BERF The expected BER of noise-tolerant fingerprints F.
□′ An apostrophe denotes a quantity evaluated at a different time. For example, f ′ denotes a

reproduced raw noisy response.
‖□‖1 The l1-Norm value, which is the distance of a vector from an all-zero vector, also known

as the Hamming weight of a vector, as described in Definition 6.2.1 in Chapter 6.
RNG() A random number generator RNG() outputs a random number when invoked.
MAC() A message authentication code (MAC) function.
NFL.Trans() The NoisFre-Lite transformation function, which is described in more detail in Section 7.3.
Memory Denotes the Device’s internal memory region used for device fingerprint key generation.
WORM A write-once-read-many memory.

NoisFre-Lite method, namely, a NoisFre-Lite-based key derivation protocol. Quantitative
comparisons between the proposed method’s on-device implementation overhead and existing
solutions demonstrate the significant efficacy and practicability of NoisFre-Lite as a method for
generating keys on highly resource-limited devices. This is followed by a discussion of potential
security risks and our defensive position against them. Section 7.8 concludes this chapter.

Page 192



Chapter 7 Noise-Tolerant Key Generators for Highly Limited On-device Memory

7.1.2 Notations and Concepts

Adding to the general notations and conventions defined in Section 2.1 in Chapter 2, Table 7.1
summarises some key concepts introduced and referred to in this chapter.

7.2 NoisFre-Lite Concept

This chapter focuses on two competing challenges hindering the adoption of NoisFre device
fingerprints in highly resource-constrained devices: i) limited computing capability;and
ii) limited intrinsic memory capacities for generating device fingerprints. Although we have
addressed the first problem in Chapter 6 by transforming raw noisy device fingerprints to a
noise-tolerant space, for devices with limitedmemory, it is challenging to directly apply NoisFre,
because it is preferential to operate NoisFre on a device with abundant memory. This eventually
leads to a conflict between the need for large memory capacities and the reality posed by very
limited memory in highly resource-constrained devices that is difficult to address solely from the
device side.
We consider tackling this conflict from two aspects. First, we reconsider the transform and
selection approach used during the enrolment of noise-tolerant fingerprints. We propose the
relaxation of noise-tolerant parameter � during the fingerprint selection step. According to the
analytical model derived in Section 6.3 in Chapter 6 and experimentally affirmed in Figure F.3 in
Appendix F, the extraction efficiency � is expected to see a significant improvement as a result.
We also consider redesigning the transformation method originally proposed in Section 6.2 in
Chapter 6, to further improve the extraction efficiency �. The overall affect is to increase the
number of noise-tolerant bits selected by making a small compromise on the bit reliability of
noise-tolerant bits.
Second, instead of solely considering a formulation that addresses the problem from the device
side, we also consider the role a server can play in the process of key generation. We take
advantage of the server’s resource richness to mitigate the impact of the reliability compromise
we made in the generation of noise-tolerant bits.
In our method, the resourceful server attempts to revert an expected number of erroneous bits
in a worse case BER setting, noting that most bits are reliable. The resource-rich server now
performs a trial-and-error process to reconcile the small number of erroneous noise-tolerant
bits that could have occurred during the re-evaluation of a fingerprint on the device side. The
TRE technique exploits: i) the expected worst-case noise-tolerance degree over all bits in a
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transformed F (i.e., the noise-tolerance parameter � described in Section 6.2.3 in Chapter 6);
and ii) the computationally resourceful server to remove the potentially erroneous noise-tolerant
bits resulting from employing those less-noise-tolerant bits in the root key. In this manner,
most of the computational burden is offloaded from the highly resource-limited device to the
resource-rich server to address the resource constraints on the device and improve execution
performance. Importantly, in terms of the TRE algorithm, its execution time is negligible at a
resourceful server. Notably, our method is inspired by the TREVERSE approach in [234] where
authentication in the presence of noisy fingerprint bits is achieved by trying to reconcile a certain
number of erroneous bits produced by responses with low-reliability confidence obtained from
a simulatable PUF (simPUF) enrolled at the server. The SimPUF is a parameterised model
that could mimic a physical device biometric source’s behaviour. For example, it provides a
binary fingerprint vector and corresponding bit-wise reliability confidence. Researches [61],
[114] show that for SRAM device fingerprints, bit-specific reliability models can be construed
to build a simPUF. However, to establish an accurate model, a considerable amount of repeated
measurements are required for each hardware instance, which is not preferable in practice. In
contrast, we employ an analytical model to predict and make corrections to the potentially
erroneous bits within the key generated on-device, at the server.
In summary, the method in NoisFre is inadequate for providing a sufficient number of
transformed noise-tolerant bits with high reliability in instances of devices with limited on-chip
memory without imposing a computational burden on the device. The concept we proposed
mitigates the relatively low extraction efficiency of NoisFre without increasing the burden
on the device. Given our solution builds upon NoisFre but is further optimised for highly
resource-constrained devices, we name this solution NoisFre-Lite.

7.2.1 An overview of the NoisFre-Lite Scheme

We describe the proposed NoisFre-Lite scheme for deriving a highly reliable fingerprint,
for example, to serve as a secure key, for security functions in Figure 7.1. The
NoisFre-Lite fingerprint enrolment process is illustrated in Figure 7.1 (a), and the
NoisFre-Lite fingerprint re-generation and its use in a security function is depicted in
Figure 7.1 (c).
The fingerprint enrolment is an one-time process carried out in a secure environment. The
raw, noisy fingerprint f is read out from the highly resource-constrained device’s memory
space. The resourceful server employs a transformation and selection algorithm, as detailed
in Figure 7.1 (b). The transformation and selection algorithm takes the f as input, parameterised
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Figure 7.1: An overview of NoisFre-Lite scheme: (a) NoisFre-Lite fingerprint enrolment process; (b) An illustration
of transformation and selection function; (c) NoisFre-Lite fingerprint re-generation process; here, the re-generated
fingerprintF′ is used directly as a secret key for a security function; (d) The function of the lightweight noise-tolerant
fingerprint transformation block on the device; and (e) The computationally intensive TRE block outsourced to the
server.
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with group size n and the desired number of fingerprint bits k (parameters decided by a security
practitioner, for instance kmay be 128 bits, used as a root key). The transformation and selection
algorithm generates three outputs: i) the transformed noise-tolerant fingerprint F; ii) a mask
indicating the selected devices memory addresses used to produce F; and iii) a noise-tolerant
parameter �. F and � are securely stored in the server’s database DB to provide information
necessary for the TRE function in subsequent re-generation phases. The mask can be stored in
a device’s WORM, alternatively the mask can also be stored on the server and supplied to the
device during the fingerprint re-generation phase, as discussed in Section 6.5.1 in Chapter 6.
TheNoisFre-Lite transformation and selection algorithm transforms device fingerprints from the
noisy fingerprint space to the noise-tolerant fingerprint space, as originally proposed in NoisFre
(see Section 6.2 in Chapter 6). However, the new algorithm: i) aims to consider a trade-off of
reliability for improved extraction efficiency; ii) improves the extraction efficiency � by removing
the n ×m-bit block-based transformation approach used in NoisFre; and iii) instead of treating
� as an immutable value to achieve the desired F bit error rate, the new transformation and
selection algorithm adaptively relaxes the constraint imposed by � to transform and select more
F bits.
After the highly resource-constrained device is deployed in field, all communications between
the server and the device are initiated through an insecure communication channel. The
NoisFre-Lite fingerprint re-generation provides a basis for the underlying security functions,
for example to build a secure communication channel. First, the device dynamically generates a
new noisy raw fingerprint f ′ from its memory. Notably, the noisy fingerprints generated at each
time instance ti are likely to contain different errors ei. The transformation function is identical to
NoisFre D-Norm-based transformation described in Section 6.2.3 in Chapter 6. However, due to
the side-effect of trading reliability for efficiency in the enrolment phase, the reliability attributes
of F bits obtained from the memory addresses located by the mask maybe inadequate. If the
number of error bits (|ei|) is greater than the noise-tolerant parameter �, for a noisy fingerprint
fi re-generated at time ti, the transformed F′ in the noise-tolerant fingerprint space will suffer
from error bits �i. The existence of �i make the noise-tolerant F′i to be unequal to the enrolled
F, and render it difficult to use directly in a security function, for example, as a root key.
Instead of selecting only noise-tolerant bits F with a high noise-tolerance level, as in NoisFre,
NoisFre-Lite allows error bits � to exist in re-generated F′. As a counter measure, we propose
the TRE technique to resolve those erroneous bits �, as illustrated in Figure 7.1 (e), based on the
enrolled reference F, the � and worst-case BERf (defined in Section 2.3.2 in Chapter 2) recorded
from a given memory technology and manufacture.
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In realising the TRE method, to avoid directly exposing F′ over the insecure communication
channel, the server generates a nonce from its random number generator RNG(), and the nonce
is transmitted to the device. A MAC tag is computed by the device over the nonce with a
MAC() function keyed with the F′. Subsequently the tag is sent to the server. Now, provided
the number of erroneous bits |�| is below the TRE capability x, the server is guaranteed to
reconstruct a F�i from the referenced F and exactly match the re-generated F′ on the device.
Recall that the TRE is executed by the resource-rich server, and does not add an overhead to the
highly resource-constrained device; hence, NoisFre-Lite requires the same on-device overhead
as NoisFre.
This intuitive combination of NoisFre and the approach for tolerating errors with a trial-and-error
process—TRE—is the basis for NoisFre-Lite; a method for lightweight memory-root-key
generation even: i) under substantial memory constraints; and ii) without the overhead imposed
by relying on the reverse-fuzzy-extractor-based methods as discussed in Section 3.3.3 in
Chapter 3. The next section details the two transformation and selection algorithms proposed
for improving extraction efficiency.

7.3 Transformation and Selection Algorithms

This section develops two new transformation and selection algorithms (the Fixed-d and the
Variable-d) that address the key limitation of NoisFre—its relatively low extraction efficiency
(see Section 6.9 in Chapter 6). Although this was not an impediment for devices with large
enough memory capacity for fingerprinting (e.g., 512 KiB), it is very difficult to integrate
NoisFre into highly resource-constrained devices (e.g., the CRFID device studied in Chapter 3
with only 2 KiB of SRAM available for device fingerprinting).
As a basis for the algorithms, we adopt the D-Norm transform developed in Chapter 6 and this
ensures that we can adopt the analytical model developed in Chapter 6 to analyse the performance
of the new methods. Here, we consider the following:

• Constraint. Each bit vector used for generating an l1-Norm can be used only once. This
avoids the risk of correlations between transformed fingerprint bits.

• Goal.The primary goal is to maximise extraction efficiency to facilitate the use of memory
fingerprints for security function in highly resource-constrained devices (i.e., devices with
an extremely small amount of memory available for fingerprinting).
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In NoisFre, the extraction efficiency � is inversely proportional to the noise-tolerance parameter
�, as formulated in equation (6.11) in Chapter 6 and experimentally affirmed in Figure F.3 in
Appendix F. Themost direct approach to increasing the � is to simply reduce the � value. But, has
the side effect of sacrificing the transformed noise-tolerant fingerprint’s reliability. This becomes
the central concept of NoisFre-Lite: to trade reliability for improved extraction efficiency.
In addition to simply decreasing the � value, we study theNoisFre transformation algorithm itself
to understand whether we can improve �. Here, it is worth recapitulating the D-Norm-based
transformation and selection procedure developed in Chapter 6 (referred to as the Baseline
method in this chapter).

NoisFre
Tansformation 

Only two groups    and   
are used to produce  

Memory cells other than      
are discarded

Figure 7.2: The problem with the Baseline D-Norm-based transformation and selection procedure. Within an n×m
block, only two groups (ℎ and l) produce a single F bit, whilst the remaining m− 2 groups are simply discarded.

The Baseline method generated only one noise-tolerant fingerprint bit F from n×m rawmemory
bits. The binary value of the F bit was only determined by the relative address of ℎ (the
group with the highest l1-Norm value) and l (the group with the lowest l1-Norm value). This
approach discarded the vast majority of memory cells, as exemplified in Figure 7.2. However,
beyond the selected (ℎ, l) pair, there may exist combinations that also meet the noise-tolerance
parameter �. If we could utilise as many memory cells as possible, we might expect extraction
efficiency to improve and facilitate an adaptation to a limited memory setting. Thus, we
recognise that the block-based selection method is a significant cause of the low extraction
efficiency observed in NoisFre. Therefore, we consider methods to remove this block-based
restriction. This leads to the problem of how transformation and selection can be performed
across the memory space whilst maximising extraction efficiency and meeting bit specific
reliability requirements.
Interestingly, the l1-Norm computed from SRAM start-up values can assess the noise-tolerance
of a raw fingerprint bit vector or provide a measure of noise-tolerance. Thus, in contrast to
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Figure 7.3: The basis for the two proposed methods: (a) the l1-Norm pattern before sorting and (b) after l1-Norms
are sorted in an ascending order. The data is randomly sampled from the synthetic chip model described in
Section F.1.1, with parameter n=16. For a given l1-Norm (marked by red circle) it is much easier to locate another
l1-Norm (from the regionmarkedwith green dash line) to satisfy the selection condition |ℎ− l| ≥ � whilst reducing
the discarded l1-Norm bit vectors after the sorting.

employing blocks of bits to apply a transformation method and discarding unused groups of
bit vectors, we propose sorting groups of n-bit vectors based on their l1-Norm values, prior
to transformation and selection of noise-tolerant bits. This approach allows pairing two n-bit
vectors from the sorted list, where 2 × n bits can be transformed into a F bit as opposed to m× n
block of bits. Therefore, the proposed approaches could contribute to making effective use of
raw fingerprint values. The approaches proposed are dissimilar to DRV-hashing proposed by Xu
et al. [115], which we discussed in Section 2.3 in Chapter 2. DRV-hashing sorts each SRAM
cell’s DRV value in ascending order and matches those pairs from the two ends in the sorted
table to generate the PUF response. This technique maximises resilience against small DRV
fluctuations, common-mode DRV shift induced by thermal noise and changes in operational
temperature. Notably, in contrast to the problem posed by measuring DRV values in commodity
devices—the authors [115] recognised that measuring DRV requires generating fine-tuned test
voltages on device, a feature not yet supported by most commodity devices—there are no
special requirements on the hardware platform when employing l1-Norm functions. Hence,
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the approaches we propose are generic, practical, and forms the basis for the transform and
selection methods we investigate and simplifies the analysis of the approach.
To illustrate the basis for the two algorithms we propose, Figure 7.3 shows sorted l1-Norms
obtained from a synthetic chip model. Prior to sorting, it is difficult to search for two groups that
satisfies the selection condition |ℎ− l| ≥ � that reduces the discarded l1-Norms bit vectors, as
depicted in Figure 7.3 (a), to transform to a F bit. Previously, we employed a block of n × m
bits and selected within a block, as hinted in Figure 7.3. However, after the l1-Norms are
sorted, as shown in Figure 7.3 (b), for any l1-Norm value we can search and locate another
l1-Norm to form a pair for a D-Norm transformation and selection by evaluating whether the
vertical distance is greater than or equal to � in a manner that reduces the discarded l1-Norms
bit vectors.
Therefore, instead of using the n × m block-based method as in NoisFre, we apply sorting as
a common pre-processing step for the two transformation and selection algorithms developed
in this section. Having sorted l1-Norms, the next step is to develop algorithms capable of
performing transformation and selection from the sorted l1-Norms with due consideration for
extraction efficiency.

7.3.1 Sorted D-Norm Selection with Fixed Distance (Fixed-d)

We first develop a variant of the D-Norm-based transformation and selection method with the
design target of maximising extraction efficiency by evenly selecting the ℎ, l pairs with the same
fixed distance (fixed |ℎ− l| value). This is based on the wooden barrel principle: the capacity
of a barrel is determined by the shortest wooden bar. If we select all ℎ, l pairs with the same
|ℎ − l| value, there will be no ‘short bar’ that fails the selection condition �. Therefore, we
maximise extraction efficiency. We refer to this concept as sorted D-Norm selection with fixed
distance (Fixed-d) and illustrate it in the toy example in Figure 7.4 (a) before describing it in
detail in Algorithm 1. The algorithm starts from the largest � value (i.e., � = n). Following an
exhaustive search, if the number of F bits extracted remains below the required fingerprint size
k, the proposed � is relaxed (in decrements of one) to trade reliability for improved extraction
efficiency. Subsequently, the search is repeated to determine if the new value of noise tolerance,
�, is able to meet the required fingerprint size k.
In contemplating a Fixed-d method, it is intuitive to consider the consequence of not attempting
to determine and select all |ℎ− l| bit blocks satisfying a � value (the minimal distance between
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Figure 7.4: Sorted D-Norm with: (a) fixed distance (Fixed-d); and (b) variable distance (Variable-d). We select to
use n = 8, assume � = 5 was obtained through Algorithm 1 and we use the same � value in both methods, and
assume BERf = 5.30% (the same as the MSP20 dataset across the temperature range of 0 °C to 40 °C studied in
Section 3.2.2 in Chapter 3). The Fixed-d method extracts six F bits from 192 raw bits (32.00 bit/KiB), and the
Variable-d extracts four F bits from 192 raw bits (21.34 bit/KiB). The |ℎ− l| value of Fixed-d is 5 and the average
|ℎ− l| value of Variable-d is 5.5, corresponding to BERF of 3.23×10−4 and 1.87×10−4, respectively. In summary,
Fixed-d achieves higher extraction efficiency, and Variable-d demonstrates better fingerprint reliability. Here, the
# tag at the left side of each sorted l1-Norm denotes its original memory address in the raw memory fingerprints.

ℎ and l that can be used) in selecting k, F bits. Accordingly, we propose the Variable-d method
as an alternative.
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Algorithm 1: The Fixed-d method.
Input: raw noisy memory fingerprint f , group size n and required noise-tolerant

fingerprint bit size (e.g. key size) k;
Output: transformed noise-tolerant fingerprint F, noise-tolerance parameter � and a mask

indicates all memory addresses selected to produce F bits;
1 Reshape f into n-bit groups and calculate the l1-Norm for each group;
2 Sort l1-Norms in ascending order and obtain a sorted sort_norm;
3 The orig_idx monitors each group’s order in the original unsorted l1-Norm;
4 F ← empty ;
5 mask ← empty ;
6 Mark all elements in sort_norm as available;
7 for � = n, n− 1,… , 0 do
8 for i = 1,2,...,|sort_norm| do
9 if sort_norm[i] is unavailable then
10 skip and continue with i = i+ 1;// one l1-Norm can only be used

once.
11 end if
12 l ← sort_norm[i];
13 for j = i+1, i+2, . . . , |sort_norm| do
14 ℎ← sort_norm[j];
15 if sort_norm[i] is unavailable OR � > |ℎ− l| then
16 skip and continue with j = j + 1; // one l1-Norm can only be

used once, and selected pairs must meet the
selection condition.

17 end if
18 if orig_idx[i] > orig_idx[j] then
19 F ← 1;
20 else
21 F ← 0;
22 end if
23 Append F to the F;
24 Append orig_idx[i] and orig_idx[i] to the mask;
25 Mark both sort_norm[i] and sort_norm[j] as unavailable;
26 if k ≤ |F| then
27 return F, � and mask ;
28 end if
29 end for
30 end for
31 /* Unable to extract k noise-tolerant bits, try � = � − 1

(trade reliability for improved extraction efficiency).

*/
32 end for
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Algorithm 2: The Variable-d method.
Input: raw noisy memory fingerprint f , group size n and required noise-tolerant

fingerprint bit size (e.g. key size) k;
Output: transformed noise-tolerant fingerprint F, noise-tolerance parameter � and a mask

indicates all memory addresses selected to produce F bits;
1 Reshape f into n-bit groups and calculate the l1-Norm for each group;
2 Sort l1-Norm in ascending order and obtain a sorted sort_norm;
3 The orig_idx keeps track of each group’s order in the original unsorted l1-Norm;
4 F ← empty ;
5 mask ← empty ;
6 Mark all elements in sort_norm as available;
7 for � = n, n− 1,… , 0 do
8 for i = 1,2,...,|sort_norm| do
9 if sort_norm[i] is unavailable then
10 skip and continue with i = i+ 1;// one l1-Norm can only be used

once.
11 end if
12 l ← sort_norm[i];
13 for j = |sort_norm|, |sort_norm|-1, |sort_norm|-2,. . . ,i+1 do
14 ℎ← sort_norm[j];
15 if sort_norm[i] is unavailable OR � > |ℎ− l| then
16 skip and continue with j = j − 1; // one l1-Norm can only be

used once, and selected pairs must meet the
selection condition.

17 end if
18 if orig_idx[i] > orig_idx[j] then
19 F ← 1;
20 else
21 F ← 0;
22 end if
23 Append F to the F;
24 Append orig_idx[i] and orig_idx[i] to the mask;
25 Mark both sort_norm[i] and sort_norm[j] as unavailable;
26 if k ≤ |F| then
27 return F, � and mask ;
28 end if
29 end for
30 end for
31 /* Unable to extract k noise-tolerant bits, try � = � − 1

(trade reliability for improved extraction efficiency).

*/
32 end for
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7.3.2 Sorted D-Norm Selection with Variable Distance

(Variable-d)

The sorted D-Norm with variable distance (Variable-d) is similar to the Fixed-d method and
also requires that the l1-Norms be sorted first, as exemplified in Figure 7.4 (b). In contrast to
Fixed-d , the Variable-d approach aims to maximise the number of highly reliable F bits from
a given memory size. Notably, it only differs from the Fixed-d method in Algorithm 2 at lines
13 and 16: instead of formulating a search for the |ℎ− l| = � to employ, the Variable-d method
attempts to select the ℎ, l pairs with the largest possible |ℎ− l| values before gradually selecting
pairs with smaller |ℎ− l| values until no further pairs, subject to the noise-tolerance parameter
�, are available. Again, the � value will be relaxed (in decrements of one) if the requested
noise-tolerant fingerprint size k cannot be satisfied. This is indeed the basis of the proposed
methods—trading reliability for improved extraction efficiency.

7.3.3 Summary

This section has proposed two new variants of the D-Norm-based fingerprint transformation
and selection method, namely, the Fixed-d method and the Variable-d method. Both approaches
share the same basic principle of trading reliability for improved extraction efficiency, and
both sort l1-Norm values before performing transformation and selection. Sorting is only
conducted once by the server during the enrolment phase (i.e., the on-server fingerprint
enrolment as described in Section 7.7.1) and is no longer required during subsequent fingerprint
re-generations.
The Fixed-d method provides better extraction efficiency (first, selecting all F bits that satisfies
the same noise-tolerance parameter � as possible) but, in doing so, compromises reliability.
Meanwhile, the Variable-d method achieves better reliability for the transformed fingerprint
F. Because, it attempts to first, select F bits that maximise the differential, |ℎ − l|, values.
Consequently, a resultant fingerprint bit vector (for example the secret key) will possess a lower
BERF. However, it compromises extraction efficiency.
Thus, it is apparent that trading reliability for improved extraction efficiency can engender
unacceptably high key failure rates, as Section 6.4.2 in Chapter 6 illustrates. The next section
addresses this dilemma.
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7.4 Tolerating Errors with Trial-and-error

This section considers the problem posed by the desire to increase both extraction efficiency
and fingerprint reliability. As Section 7.2 recognised, it is difficult to solve this dilemma within
a highly resource-limited device’s capabilities. Accordingly, it is imperative to consider other
parties in a communication system, which reveals that the two essential entities in a typical
communication system (shown in Figure 7.1) are highly heterogeneous, meaning that the server
is much more resourceful than the device. Therefore, we propose a trial-and-error (TRE)
technique to reconcile errors caused by the resulting, reduced noise-tolerance parameter � (a
function of trading reliability for improved extraction efficiency as detailed in Section 7.3),
by utilising the server’s plentiful computational power. TRE is performed by the server;
consequently, places no additional implementation overhead on the highly resource-limited
device. The following subsections elaborate on the TRE technique developed in NoisFre-Lite.

7.4.1 Design of the TRE algorithm

We start with the simplifying assumption that each F bit in the noise-tolerant fingerprint is
equally likely to be erroneous. However, it is possible for each F bit to have different bit error
rates; the exploitation of this additional information, we leave for future work (for more details,
please refer to Section 8.3.6 in Chapter 8). In a practical application, a k-bit noise-tolerant
fingerprint F will fail to serve as a root key in security functions if there are more than zero
erroneous bits. The probability of such a key failing is described analytically in equation (7.1).

P failF = 1 − binocdf(0, k,BERF) (7.1)

Where binocdf() is the cumulative function of the Binomial distribution and the BERF is the
expected bit error rate of noise-tolerant fingerprints F. Notably, in NoisFre-Lite the D-Nrom
selection criterion (| ℎ− l | ≥ �) still holds, therefore, we can continue to use the equation (6.9)
derived in Section 6.3 in Chapter 6 to calculated the BERF for a given BERf and �.
The TRE approach will be able to correct up to x error bits (i.e., expected number of erroneous
bits in a re-generated F′ in the worst-case operating condition) by exhaustively attempting to flip
the power set of binary sub-stings in the key. We use a toy example to facilitate understanding
of the power set. For example, a set S = {a, b, c} has three elements a, b, and c. The power set
of S is (S) = {�, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, where � denotes an empty set.
With TRE, the maximum number of allowable erroneous bits |�| in F′ can be relaxed from zero
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to x bits, since the TRE method is employed to mitigate the impact of erroneous bits. Now, the
expected key failure rate P failF , under at most x bit errors, becomes:

P failF = 1 − binocdf(x, k,BERF). (7.2)

Hence, the TRE capability, x, for any F with size k and known BERF can be determined using
equation (7.3), where P failF is the expected failure rate of the key desired, after applying the TRE
technique.

(TRE Capability) x = binoinv(1 − P failF , k,BERF) (7.3)

Where binoinv( ) is the inverse function of the Binomial cumulative density function binocdf ( ).
Therefore, the number of bits to be tried using the TRE approach (the x) can be easily estimated
using equation (7.3), given knowledge of the k, the BERF and the desired P failF . Notably, given
that the TRE capability is derived based on assuming the worst-caseBERF, the determined value
of x accounts for the worst-case operating condition.
We refer to the x as the TRE capability—expected number of erroneous bits |�| in a re-generated
F′ in the worst-case scenario. That is, for any number of error bits � ∶ |�| ≤ x, the on-server
TRE mechanism can effectively reconstruct all error bits.
An exemplar case (see Figure 7.5) can facilitate understanding of the mechanics of the TRE
approach. First, we have a re-generated fingerprint F′ marked 1 that contains several error
bits � (highlighted in red boxes). The re-generated fingerprint F′ is secure and never exposed
to other parties, meaning neither the server nor a hypothetical attacker has direct access to the
noise-tolerant fingerprint, dynamically generated on-demand. Instead, the device computes tag
(a MAC tag) over the re-generated fingerprint and makes the tag available to the server and the
tag is assumed to be public information.
Although the server may compute the MAC tag over the reference fingerprint 2 , the existence
of potential error bits � could lead to the two MAC tags mismatching. The server employs the
analytical model for expected number of bit errors, equation (7.3), to predict the number of error
bits that could exist in the re-generated fingerprint. This example uses x = 2, which assumes
the number of error bits � is less than or equal to 2.
The server, given its abundant computational capability, can search (kx

) combinations to examine
all possible locations of error bits as in 3 . For each for each error pattern, the server employs
the systematic strategy of using the power set described earlier to try to revert any possible
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Figure 7.5: Example demonstrating the TRE approach, showing: 1 a re-generated noise-tolerant fingerprint which
contains error bits �, in this example, the number of error bits is |�| = 2 (highlighted in red boxes); 2 a reference
noise-tolerant fingerprint securely managed by the server; 3 the server generates all possible combinations of error
bit locations, for x = 2 in this example; 4 for each possible combination of error bit locations, generate the power
set and attempt to reconcile error bits. Here we only expand and demonstrate with one bit vector in 4 containing
the successful match for the re-generated noise-tolerant fingerprint; 5 a matched MAC tag indicates the current
noise-tolerant fingerprint generated in TRE 6 matches the noise-tolerant fingerprint re-generated on the device.
We describe the approach underlying the TRE method in Algorithm 3.

combinations of error bits, as indicated by 4 . If the MAC tag value of the current TRE
fingerprint F� matches the MAC tag received from the remote device, as in 5 , we ascertain
that the current TRE fingerprint is identical to the re-generated fingerprint 6 . We elaborate
the on-server TRE algorithm in Algorithm 3. The on-server TRE algorithm takes several
input values including the enrolled noise-tolerant fingerprint F, its size k, the TRE capability x
predicted using equation (7.3), the same random nonce sent to the device, theMAC tag received
from the device.
Having now elaborated two new transformation and selection algorithms that trade reliability for
improved efficiency and mitigated the consequent increase in unreliability using this section’s
TRE method, benefiting from the server’s rich computing power, the following section develops
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Algorithm 3: The on-server TRE generation algorithm.
Input: The referenced noise-tolerant fingerprint F, the size of the noise-tolerant fingerprint

k, the TRE capability x predicted using equation (7.3), the same nonce as sent to
the device, MAC tag received from the device;

Output: Re-generated noise-tolerant fingerprint F′;
1 tag′ ← MACF(nonce);
2 if tag′ = tag then
3 return F′ ← F; // there is no error in the re-generated F′
4 end if
5 /* Search

(k
x

)

combinations to examine all possible locations

of error bits in F. Here, L is a set with x elements. */

6 for L in (k
x

) do
7 /* (L) is the power set generated from L. */
8 for � in (L) do
9 F� ← (invert bits in F at indices ∈ �);
10 tag′ ← MACF� (nonce);
11 if tag′ = tag then
12 return F′ ← F� ; // Fingerprint re-generation is

successful
13 end if
14 end for
15 end for
16 return ⟂ ; // Unable to reconcile error bits, fingerprint
re-generation is failed

analytical models for the proposed methods to support the practical use of NoisFre-Lite, ease
analysis and evaluations.

7.5 Formalising Performance Measures

This section develops analytical models for the two variants of the D-Norm-based noise-tolerant
fingerprint transformation and selection methods developed in Section 7.3: the Fixed-d and the
Variable-d. Same as Chapter 6, our main focuses are key failure rate and extraction efficiency.
We also formulate the on-server time complexity associated with executing the TREmechanism
developed in Section 7.4. This section’s analysis is based on the synthetic chip model detailed
in Appendix F.1.
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For a given group size n, the occurrence of a l1-Norm equals to q|q ∈ {0, .., n} can be expressed
as:

P (‖f‖1 = q) = binopdf(q, n, 0.5) =
(

n
q

)

⋅ 0.5q ⋅ (1 − 0.5)n−q (7.4)

Where binopdf() denotes the Binomial probability density function. The constant 0.5 indicates
in an n-bit group, each bit has 50% probability of being ‘1’/‘0’ (recall, the synthetic chip model
is constructed based on an assumption). Indeed, as shown in Figure 7.6, the data collected from
physical chips is in a good agreement with the theoretical distribution of l1-Norms based on
equation (7.4). Therefore, we use equation (7.4) as the basis of all of the analyses in this section.

Figure 7.6: The distribution generated from data collected from the 25 physical chips studied in this chapter (for
more details about physical chips, please refer to Section 7.6) is in a good agreement with the theoretical Binomial
distribution plot of l1-Norms based on equation (7.4). The physical chip has memory spaces of 2 KiB for device
fingerprinting. Both the theoretical distribution and the physical chip measurement are obtained with parameter
n=16.

7.5.1 Key Failure Rate

For device fingerprint reliability, we continue to use the bit error rate measurement, detailed in
Section 6.3.1 in Chapter 6, to describe the reliability of F bits in F . We further consider the
key failure rate P failF , introduced in Section 6.5.2 in Chapter 6, for a k-bit F.
Notably, in NoisFre-Lite the D-Nrom selection criterion (| ℎ − l | ≥ �) still holds, therefore,
we can continue to use the equation (6.9) derived in Section 6.3 in Chapter 6 to calculate the
BERF for both Fixed-d and Variable-d with a given BERf and resultant � obtained from each
algorithm.
We recognise that, in Variable-d method, the resultant � is the smallest value determined and
hence employing this value results in a worse than expected BERF in practice. However, we
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focus on considering the worst-case scenario, where all F bits are assumed to meet |ℎ− l| = �.
Therefore, the overall failure rate P failF of a k-bit noise-tolerant key F can still be expressed using
equation (6.12) for both methods.

7.5.2 Extraction Efficiency

Following the definition in Section 6.3.2 in Chapter 6, we describe extraction efficiency in terms
of the number of F bits extracted per unit memory space (1 KiB).

Fixed-d Extraction Efficiency. To analyse the extraction efficiency of the Fixed-d method, we
apply the Algorithm 1 described in Section 7.3.1 to a demonstrative example with the following
settings: memory size |mem| = 2048 bytes, n = 16 bits, � = 3. The selected l-Norms are
visualised in Figure 7.7, to ease understanding, selected l are coloured red, and selected ℎ are
coloured yellow, where |ℎ− l| = �.
In the probability density function plot Figure 7.7, the area indicates probability. Hence, the
extraction efficiency of Fixed-d , �Fix, can be derived by simply considering the area coloured
whilst employing the Fixed-d method. Because, the combination of a pair of l1-Norms, l and
ℎ, two groups produces one noise-tolerant bit F . In such case, only one coloured area (red or
yellow) needs to be accounted for extraction efficiency.

0 n
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

O
cc

ur
re

nc
e

θ

Partition one Partition two
θ

(A)

(C)

(D)

q=6

(B)

(E)

q+θ n-

-

Figure 7.7: In Fixed-d method, when � ≤ n
2 , for example, n = 16 and � = 3, the selected l (coloured red), and the

selected ℎ (coloured yellow) are closely interwoven.
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Subject to the D-Norm selection criterion |ℎ − l| = �, the selected l values (area coloured
in red) may span {0, 1,… , n − �}. Hence, q, as described in equation (7.4), is in the range
[0, n − �]. To facilitate the analysis, we can split the red area into two partitions. First, for
q in [0, � − 1], all l1-Norms are selected as l. Therefore, the area of partition one, Pone, is
simply ∑�−1

q=0 binopdf(q, n, 0.5). However, the area of partition two, Ptwo, is somewhat complex
to analyse. Considering the constraint defined in Section 7.3, some l1-Norms in the second
partition have already been used to match l1-Norms in the first partition. For example, at q = 6
in Figure 7.7, the probability of ‖f‖1 = 6, labelled (A), can be calculated using the formula
in equation (7.4) by setting q = 6. However, some l1-Norms, labelled (C), have already been
matched with ‖f‖1 = q − �, labelled (D). Given the area of (C) and (D) is binopdf(q − �, n, 0.5),
the area of (B) can be calculated by deducting (C) from (A), i.e., binopdf(q, n, 0.5)− binopdf(q−
�, n, 0.5). Nonetheless, the maximum area of (B) is also limited by the available l1-Norms at
‖f‖1 = q + �, labelled in (E), implying the smaller of (E) and (B) will be the final red region for
‖f‖1 = q = 6. Based on this analysis, the extraction efficiency �Fix of the Fixed-d method can
be formulated as:

Pone =
�−1
∑

q=0
binopdf (q, n, 0.5) (7.5)

Ptwo =
n−�
∑

q=�
min

(

binopdf (q, n, 0.5) − binopdf (q − �, n, 0.5)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(B)=(A)−(C)

, binopdf (q + �, n, 0.5)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(E)

) (7.6)

�Fix = Pone + Ptwo (7.7)

Variable-d Extraction Efficiency. In Variable-d method, l1-Norms can be considered
to be, effectively, selected starting from the two ends of the Binomial distribution of the
l1-Norms. Recall, to facilitate our analysis, we employ the theoretical distribution described by
equation (7.4). Given that n and � can be chosen flexibly, we can consider extraction efficiency
under four cases for resulting distributions based on weather the chosen values for n and � are
odd or even. We consider the following four cases: a) both n and � are even numbers; b) n is
odd but � is even; c) n is even but � is odd; and d) both n and � are odd numbers. As depicted
in Figure 7.8, in an ideal setting, the selected l1-Norms (red and yellow regions) are always
symmetrically allocated regardless of the chosen n and � values. Consequently, the extraction
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Figure 7.8: Selected area with different parameter combinations: (a) even n and even �; (b) odd n and even �;
(c) even n and odd �; (d) odd n and odd �. We can observe that the selected l1-Norms are always sparsely and
symmetrically located at two ends of the Binomial distribution histogram.

efficiency for the Variable-d method (�Var) can be concisely formulated using equation (7.8),
which simply describes the coloured regions at one end of the Binomial distribution.

�Var =

⌊

n
2−

�
2

⌋

∑

q=0
binopdf (q, n, 0.5) (7.8)

7.5.3 Trial-and-error Complexity

TRE complexity in iterations. To evaluate the complexity of the on-server TRE mechanism,
we consider the required number of trials (including one MAC computation and the subsequent
MAC tag comparison) rather than the actual time taken, because the actual computation times
can depend on many factors such as the server’s hardware specifications, system loads and CPU
temperatures. The following equation expresses the upper-bound (worst-case) complexity in
iterations, for a TRE procedure conducted over a k-bit fingerprint F with TRE capability of
tolerating x error bits:

(TRE(k, x)
)

=
(

k
x

)

⋅ 2x = (2 ⋅ k)x. (7.9)

Here, the term (k
x

) represents the total number of possible positions that x error bits may appear
in a k-bit fingerprint F, and the 2x term computes the x-bit power set described in Section 7.4.

Page 212



Chapter 7 Noise-Tolerant Key Generators for Highly Limited On-device Memory

TRE complexity in execution time. As discussed above, the time overhead of the on-server
TRE algorithm may be affected by many factors, such as hardware specification. However, it
is beneficial to have an intuitive understanding of the on-server TRE computation time. To
calculate the time overhead of our TRE algorithm  (TRE(k, x)

), we employ the following
model to estimate the time required to perform the MAC computations.

 (TRE(k, x)
)

=
((TRE(k, x)

)

× k
)( 1
MACspeed

× 1
NGPUcore

× 1
NCPUcore

)

(7.10)

Where (TRE(k, x)
) is the upper-bound complexity of TRE algorithm in iterations, k is the

length of noise-tolerant fingerprint F, MACspeed32 is a hardware-specific factor to quantify the
MAC computation speed in Mbps33, the two coefficients NGPUcore and NCPUcore quantify the
gains from parallelisation of the iterations across CPU and GPU cores.

TRE complexity growth rate. To characterise the growth rate of the worst-case TRE
complexity, we can use the Big- notation. Because the noise-tolerant fingerprint size k is
a constant, we can now substitute 2 ⋅ k with the constant symbol c and refer to TRE capability x
as problem size factor:

(TRE(x)
)

= (cx) (7.11)

The Big- notation of TRE method not only helps describe the complexity of the algorithm
but also provides a reference for comparing potentially different TRE methods in the future as
discussed in more details in Section 8.3.6 in Chapter 8.

7.6 Experimental Evaluations

This section comprehensively evaluates the Fixed-dmethod and the Variable-d method proposed
in this chapter in terms of the following metrics (for detailed definitions, please refer to
Section 2.3.2 in Chapter 2 and Section 6.3 in Chapter 6):

• Key failure rate, lower is better (Section 7.6.2).

• Extraction efficiency, higher is better (Section 7.6.3).
32We obtained aMACspeed = 1,911 Mbps when tested with OpenSSL 3.0.2 build 15 Mar 2022 using command

"openssl speed -cmac aes128" on a laptop equipped with i7-10510U @1.8GHz processor, utilising a single CPU
thread.

33Where Mbps stands for 1,000,000 bits per second.
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• Uniformity (Bias), closer to 0.5 is better (Section 7.6.4).
• Uniqueness, closer to 0.5 is better (Section 7.6.5).
• Bit-aliasing, more bits close the ideal 0.5 is better (Section 7.6.6).
• (On-server) TRE complexity, fewer iterations are better (Section 7.6.7).

7.6.1 Evaluation Approaches

Following a methodology similar to that adopted in Section 6.4.1 in Chapter 6, we consider the
following three evaluation approaches.
Predictions (Analytical model). This evaluation uses the analytical models formalised in
Section 7.5 to predict key failure rate and extraction efficiency and of the transformed fingerprints
as well as the complexity of the on-server TRE mechanism.
Simulations (Synthetic chip model). Evaluating the reliability of the transformed fingerprint
demands a massive number of repeated measurements and robust management of data for
analysis, as discussed in Section 6.4.1 in Chapter 6. Therefore, we employ data from the
simulated measurements using the synthetic chip model detailed in Appendix F.1.1 to determine
the key failure rate, the extraction efficiency and the TRE complexity.
Measurements (Physical chips). We employ physical chip measurements for evaluating the
quality of fingerprints transformed with new algorithms developed in Section 7.3, because
properties such as fingerprint uniformity, uniqueness, and bit-aliasing are affected by fabrication
variations not incorporated into the synthetic chip model used for simulations. We employ
25 MSP430FR5969 (20 from the MSP20 dataset introduced in Section 2.3.4 in Chapter 2
and five additional chips measured for this study). The MSP430FR5969 MCU is embedded
within the CRFID token studied in Chapter 3, and possessing only 2 KiB of internal SRAM
for device fingerprinting, is representative of a highly resource-constrained device. To ensure a
fair comparison, we fix key size at k = 128 bits (for consistency with our analyses in previous
chapters) and group size at n = 16 (because the MSP430FR5969 MCU’s native memory data
bus is 16-bit [163]).

7.6.2 Key Failure Rate

To accurately validate the analytical models derived in Section 7.5 with ample sample size, we
first leverage the ideal chip model with the same worst-case BERf = 5.30% when the MSP20
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Figure 7.9: To evaluate the key failure rates of the Fixed-d and Variable-d methods, we compare the predictions
against simulations produced by the synthetic chip model. Both the predictions and simulations are based on the
worst-case BERf = 5.30% from the MSP20 chip dataset measured across the temperature range of 0 °C to 40 °C to
be consistent with the study in Chapter 3. Up to 100,000,000 simulated key re-generations are employed to generate
the results for key failure rate. The results corroborate the prediction with equation (6.12) in Chapter 6 as an upper
bound of the key failure rate of both the Fixed-d and Variable-d methods. This simulation result also reaffirms
the position articulated in Section 7.3: the Variable-d method should demonstrate a lower key failure rate than the
Fixed-dmethod. Notably, the target key failure rate less than or equal to 10−6 is achievable with both the Fixed-d and
Variable-d methods at � = 12. Although further simulation results are possible, it would demand exponentially
more simulation time and memory usage; hence, we conclude our investigation at � = 13.

is measured repeatedly within the operational range 0◦C to 40◦C (as used in Section 3.4.1 in
Chapter 3).
The key failure rate is plotted in Figure 7.9. Because the predictions for the Fixed-d method and
the worst-case the Variable-d method can be calculated using equation (6.12) in Section 6.5.2 in
Chapter 6, they are depicted by the solid green line. Simulations of both the Fixed-d method and
the Variable-d method, plotted as blue and red dash lines in Figure 7.9, show that both methods
follow the trend of our analytic predictions, with the Variable-d method demonstrating slightly
better reliability (i.e., a lower key failure rate). This simulation result also reaffirms the position
articulated in Section 7.3: the Variable-d method should demonstrate a lower key failure rate
than the Fixed-d method.

7.6.3 Extraction Efficiency

We continue to use the same setting as the key failure rate evaluation, and plot the result
in a bar chart. As Figure 7.10 shows, the Baseline method cannot achieve a 64 bit/KiB
extraction efficiency (equivalent to extracting a 128-bit device fingerprint from a 2KiBmemory),
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Figure 7.10: Evaluating the extraction efficiency � for different methods involves comparing predictions against
empirical results produced by simulations using a synthetic chip model with 2 KiB SRAM. Given the extraction
efficiency formulation of the Baseline method has been intensively validated and confirmed in Figure F.3 in
Appendix F, here we use only the value predicted by equation (6.11) derived in Section 6.3.2 in Chapter 6. As
expected, the Baseline method can not achieve 64 bit/KiB extraction efficiency necessary to generate a 128 bit key
from a 2 KiB SRAM memory, regardless of the � value. Meanwhile, the Fixed-d (predictions from equation (7.7),
simulations from using Algorithm 1 on the synthetic chip) and Variable-d (predictions from equation (7.8),
simulations from using Algorithm 2 on the synthetic chip) methods both significantly improve extraction efficiency
compared to the Baseline. The Fixed-d method outperforms the Variable-d method for all � values, which reaffirms
our position in Section 7.3.2.

regardless of the � value used. Among the most critical design targets of NoisFre-Lite is
optimising the extraction efficiency. The bar chart indicates that both the Fixed-d method
and the Variable-d method demonstrates better extraction efficiency than the Baseline method.
The Fixed-d method shows better extraction efficiency across all � values, as predicted in
Section 7.3.2. Meanwhile, our derived analytical model can accurately predict the extraction
efficiency of the two proposed transformation and selection methods.
In summary, both the Fixed-d method and the Variable-d method can achieve extraction
efficiency exceeding 64 bit/KiB. The Fixed-d method performs better across all selection
threshold � values, achieving slightly higher extraction efficiency than the Variable-d method.

7.6.4 Uniformity (Bias) Evaluation

Here, we measure and compare the uniformity (also known as the bias; for more details on
the uniformity measure, please refer to Section 2.3.2 in Chapter 2) of the device fingerprints F
extracted using the Baseline, the Fixed-d and the Variable-d methods for the 25 physical chip
dataset, as shown in Figure 7.11.
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Figure 7.11: Uniformity (bias) evaluation of three methods: Baseline, Fixed-d, and Variable-d. Results from all
of the methods closely approximate the ideal value (0.5). Each transformation and selection method is evaluated
using the 25 MSP430FR5969 physical chip dataset.

For the 25 physical chips tested, the Baseline method exhibits the ideal mean bias of 0.50, with a
standard deviation of 0.06. Neither the Fixed-d method nor the Variable-d method produces any
noticeable bias, themean biases of bothmethods are around 0.53, with standard deviations below
0.05. In summary, the proposed methods do not lead to a bias in the noise-tolerant fingerprint.

7.6.5 Uniqueness Evaluation
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Figure 7.12: Uniqueness performance of the three methods: Baseline, Fixed-d and Variable-d. Each transformation
and selectionmethod is evaluated using the 25MSP430FR5969 physical chip dataset. For each evaluation, themean
value (�), standard deviation (�) and worst-case (w.c.) are detailed. All three methods maintain a mean value close
to 0.5, indicating good and comparable uniqueness performance.

Uniqueness describes a device’s ability to uniquely distinguish itself from a large population. In
the context of key generation, the better the uniqueness, the lower the chance of key collision
(repetition). For more details on the uniqueness measure, please refer to Section 2.3.2 in
Chapter 2. Ideally, the uniqueness should be 0.5. Again, we applied the three methods to
the 25 MSP430FR5969 physical chip dataset. The uniqueness evaluations are presented in
Figure 7.12. In summary, all three methods maintain mean values close to 0.5, indicating good
and comparable uniqueness performance.

7.6.6 Bit-aliasing Evaluation

Bit-aliasing is a common problem for many physical key derivation methods [209]. Bit-aliasing
is an undesirable effect, in which case, different hardware instance may produce nearly identical
device fingerprints [123]. We examine bit-aliasing by measuring the inter-class bit frequency.
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The bit-aliasing of k-bit device fingerprints across l hardware instances can be described by
equation:

Bit aliasing = 1
l

l
∑

i=1
F i,j (7.12)

Where, F i,j is the jth bit in the F generated from the ith hardware instance out of a total of l
hardware instances. A bit-aliasing close to 0.5 is ideal.
We include the detailed bit-aliasing plot and analysis in Appendix. G.1 and summarise the key
statistics in Table 7.2.
Table 7.2: Comparing bit-aliasing between the proposed transformation and selection methods. Data is collected
from the 25 MSP430FR5969 described in Section 7.6.1. The mean and standard deviation obtained from the
evaluated bit-aliasing results are denoted as � and �, respectively. We observe that the Baseline method shows
perfect bit-aliasing statistics, while both the Fixed-d and Variable-d show slight deviations from the ideal value.

Method � �

Baseline 0.50 0.13
Fixed-d 0.53 0.12

Variable-d 0.54 0.13

As Table 7.2 shows, we applied all three methods to the 25 physical chips datasets. For each
of the methods, we present the aliasing statistics, which describe the overall bit aliasing across
the physical chip population. The aliasing statistics report two quantities: the mean � and the
standard deviation �. The mean indicates the overall ‘0’/‘1’ preference of all key bits, which
effectively resembles bit bias, as detailed in Section 7.6.4. A � close to 0.5 is ideal. Standard
deviation describes the extent of the differences in bit aliasing results across the key bits.
In summary, the mean bit-aliasing values of the proposed methods are slightly deviated from the
expected, ideal value. This can be explained from the detailed results in Appendix G, where for
instance, the Fixed-d method records a worst-case value of 1.00 for bit-aliasing (see Figure G.2
in Appendix G); this indicates that, for all 25 chips, the corresponding F bit is ‘1’. However, a
designer may consider excluding such bits from keys to avoid entropy leakage.

7.6.7 TRE Complexity

Although the TRE mechanism is executed by the resource-rich server, it remains important
to maintain TRE execution complexity at a manageable level. Here, we evaluate the
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time complexity associated with incorporating the TRE procedure into the Fixed-d and
Variable-d methods. Notably, one TRE execution comprises multiple iterations, with one
iteration defined as one MAC tag computation and one corresponding MAC tag comparison.
The Fixed-d method with TRE. According to Figure 7.10, using the Fixed-d method, 7 is the
largest � to extract a 128-bit key from a 2 KiB memory space. The predicted key failure rate is
1.12×10−2 and the corresponding simulated key failure rate is 5.96×10−3. Neither immediately
meets the 10−6 key failure rate requirement. Thus, to further improve the key failure rate, we
apply the TRE technique in an attempt to restore unmatched bits in re-generated keys. Using
equation (7.3), we can estimate the required TRE capability, the upper bound for the number
of error bits x that needs to be corrected under the worst-case operating condition to achieve
the desired key failure rate of 10−6. In this context, for an expected key failure rate P failF =
10−6 with key bit error rate BERF = 8.76 × 10−5, obtained using equation (6.9), the necessary
TRE capability is x = 2. Therefore, the maximum number of trials (or iterations) associated
with applying the TRE method to achieve a key failure rate below 10−6 can be estimated using
equation (7.11):

(TRE(128, 2)) =
(

128
2

)

⋅ 22 = (2 ⋅ 128)2 = 65, 536

We further validate the complexity using an extensive empirical evaluation; we perform
1,000,000 key generations and record the number of TRE routine iterations or trials for each key
generation. According to the formal models, we would not expect a key failure in the 1,000,000
key generations, and the maximum number of iterations should fall below the 65,536 computed
previously. Even under the worst-case scenario of 65,536 iterations, the TRE process can be
completed within 2.86microseconds on a laptop with a quad-core CPU@1.8 GHZ and 384-core
GPU, withMACspeed = 1, 911Mbps according to the estimate from equation (7.10).
The results from our extensive simulations are illustrated in Figure 7.13. The Fixed-d method
achieves a failure rate of 6.46 × 10−3, producing 6,458 errors over 1,000,000 repeated key
generations. However, the TRE procedure is proven capable of correcting all 6,458 errors
with a maximum cost of 7,862 iterations, well below the estimated upper bound of 65,536.
Consequently, we did not observe a single key failure after the application of the TRE method.
In summary, combining the Fixed-d method with the TRE approach can generate a 128-bit key
from 2 KiB of SRAMwith a failure rate below 10−6, with up to microseconds on-server latency.
The Variable-d method with TRE. We also evaluated the performance of the
Variable-d method after incorporating the TRE mechanism. As Figure 7.10 shows, � = 6

Page 219



7.6 Experimental Evaluations

0 100 200 300 400 500 600 700 800 900 1,000

Repeated key generations (x1,000)

100

101

102

103

104

105

Ite
ra

tio
ns

max = 7,862

min = 1

upper bound = 65,536

Figure 7.13: Evaluating the TREmechanismwith setting x = 2 over 1 million (1,000,000) repeated key generations
using the Fixed-d method with � = 7. In the vast majority of cases, we observe that the TRE procedure only
requires a single iteration, suggesting that no error exists in the re-generated noise-tolerant device fingerprint key.
On average, key generations require 1.47 TRE iterations. In the worst-case scenario (max), TRE complexity is
7,862 iterations, which remains well below the predicted upper bound of 65,536.

is the largest value the Variable-d method can use to obtain a 128-bit key from a 2 KiB of
memory space, with predicted and simulated key failure rates of 6.10 × 10−2 and 3.94 × 10−2,
respectively—as shown in Figure 7.9. Based on � = 6 and the worst-case BERf = 5.30%
we can calculate BERF = 4.92 × 10−4 with equation (6.9). Then, equation (7.3) models the
expected number of error bits x = 3 to be corrected to achieve a key failure rate < 10−6. Now,
the predicted upper bound for TRE complexity can be calculated as:

(TRE(128, 3)) =
(

128
3

)

⋅ 23 = (2 ⋅ 128)3 = 16, 777, 216

The result presented in Figure 7.14 shows that the vast majority of key generations do not feature
error bits. In such cases, the TRE process requires only one iteration. Only 3.40% (33,972 out
of 1,000,000) of key generations require the TRE mechanism to intervene. The mean number
of TRE iterations is 6.54, and the maximum number of iterations in our tested 1,000,000 key
generations is 301,308, almost two order of magnitudes below the estimated upper bound of
16,777,216. According to equation (7.10), a laptop with only a quad-core CPU@1.8 GHz and
384-core GPU can complete the 16,777,216 iterations of TRE computations required under
the worst-case condition in 0.73 milliseconds. Therefore, the TRE mechanism can reduce the
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Figure 7.14: Evaluating the TRE approach with the setting x = 3 over 1 million (1,000,000) repeated key
generations using the Variable-d method with � = 6. In the vast majority of cases, we observe that the TRE
mechanism only requires a single iteration, suggesting that no error exists in the re-generated noise-tolerant device
fingerprint key. On average, a key generation requires 6.54 TRE iterations. In the worst-case scenario (max), TRE
complexity is 301,308 iterations, more than one order of magnitude below the predicted upper bound of 16,777,216.

key failure rate of the Variable-d key generation method from 3.40% to below 1 × 10−6 with a
minimal on-server computational cost.
In summary, we have demonstrated that the TRE mechanism can substantially reduce the key
failure rate of NoisFre-Lite by utilising the server’s superiority over resources without adding to
the execution overhead of the highly resource-limited device. Having demonstrated the efficacy
of NoisFre-Lite through the extensive evaluations in this section, the following section will:
i) present a practical use case of NoisFre-Liteby consideringmechanisms for its application in the
derivation of a root key for security functions; and ii) evaluate and compare the implementation
cost of a NoisFre-Lite key generation method on a highly resource-limited devices.

7.7 Key Derivation for Security Functions

Here we contemplate a key derivation protocol to demonstrates a use case of the proposed
NoisFre-Lite method. The overview of the NoisFre-Lite design presented in Figure 7.1 (d)
shows that for a key generator, only a simple fingerprint transformation is needed on the device
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side to transform f ′ into F′, fundamentally removing all other post-processing from the highly
resource-limited device, including, for example, the computationally insensitive encoder of the
RFE. The server adopts the TRE technique to reconstitute the re-generated F′ from the enrolled
F, even when the reevaluated bits from the in-field device and the enrolment counterpart in
the server differ to some degree. Notably, the device-side secure key generation is identical
to that in NoisFre (see Figure 6.17 in Chapter 6), meaning NoisFre-Lite imposes no additional
implementation overhead on the highly resource-limited device.

7.7.1 A Method for Realising a NoisFre-Lite-Based Key Generator

We adopt a simple challenge-response-based method for a device and a server to agree on the
key derived by the device. The overview of the NoisFre-Lite-based key derivation protocol we
constructed is presented in Figure 7.15. The protocol comprises of three stages: i) On-Server
Secure Key Enrolment; ii) On-device Dynamic Secure Key Generation; and iii) On-Server
TRE. We elaborate on these stage below.

Server  Device 
DB = {[id,F, �],…} id,Memory

WORM

On-Server Secure Key Enrolment
(one-time task, under secure environment)

f , id
[F,mask, �] ← NFL.TransSel(f ) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← f ← Memory
[id,F, �] → DB mask

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ mask → WORM

On-device Dynamic Secure Key Generation
(whenever requested, after deployment)

hello
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ mask ← WORM

id f ′ ← Memory
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← F′ ← NFL.Trans(f ′,mask)

[F, �] ← DB(id) nonce
nonce ← RNG() ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ tag ← MACF′(nonce)

tag
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

On-Server TRE
x← TRE.Predict(�,BERf )
F′ ← TRE.Gen(F, x,nonce, tag)

Figure 7.15: The NoisFre-Lite-based key derivation protocol enables lightweight key establishment between a
highly resource-limited device and a server. Here, we assume the device implements write-once-read-many
memory (WORM), and the mask is stored in the WORM. In cases where WORM is not supported by the device,
the mask can also be transmitted during the On-device Dynamic Secure Key Generation stage, as discussed in
Section 6.5.1 in Chapter 6.
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On-Server Secure Key Enrolment

This stage is conducted in a secure environment and represents a task that is performed only once
across a device’s life cycle. The start-up state of the device’s SRAMmemory (raw fingerprints f )
is extracted, for example, through a wired programming interface, and sent to the server. The raw
device memory fingerprint f is fed into the NoisFre-Lite transformation and selection function,
NFL.TransSel()—as described by Fixed-d and Variable-d Algorithms in Section 7.3 to acquire
a noise-tolerant fingerprint F and a noise-tolerant parameter �—and the corresponding memory
addresses are employed to generate the mask.
The triplet comprising id, F and � is inserted into the server’s databaseDB and indexed with the
device’s identification number id. Themask is transferred to the device and stored in the device’s
WORM. Alternatively, themask can also be transmitted during theOn-device Dynamic Secure
Key Generation stage if WORM is not supported by the device, as discussed in Section 6.5.1
in Chapter 6.

On-device Dynamic Secure Key Generation

During this stage, key establishment can be requested at any time after the device is deployed.
First, the server sends ‘hello’ to the device and the device replies with its identification
number id. Meanwhile, the device requests a new noisy raw fingerprint f ′ from its internal
memory’s fingerprint zone f ′ ← Memory. The f ′ may differ from the enrolled f due to noise.
The on-device NoisFre-Lite transformation function NFL.Trans() (identical to the function
NoisFre.Transform() defined in Section 6.5.1 in Chapter 6), produces a F′ from the re-generated
noisy fingerprint f ′ defined by themask. Notably, the re-generated noise-tolerant fingerprint F′
need not be exactly the same as the F enrolled at the server—a minor error � may exist.
In this example, themask is stored in the device’sWORMmemory. In the event that theWORM

memory is unavailable, the mask can also be transmitted during theOn-device Dynamic Secure
Key Generation stage (as discussed in Section 6.5.1 in Chapter 6).
On reception of the device’s response (containing device’s id), the server retrieves the enrolled
F and � from the DB indexed with the received id, before producing a nonce using a random
number generator, RNG(). Subsequently, the nonce is transferred to the device. The device
employs the noise-tolerant fingerprint F′ as the key in a message authentication code MAC()

generated over the nonce received from the server to produce the tag transmitted back to the
server.
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On-Server TRE

The subsequent on-server TRE phase reconciles the error bit vector � within the re-generated
F′, which distinguishes it from the enrolled version F and precludes its direct use as a device
key. The server determines the necessary TRE capability x (the expected number of error bits in
F′) by using the TRE.Predict() function. TRE.Predict() function performs two tasks: i) calculate
BERF according to the enrolled � and the worst-case BERf using equation (6.9) derived in
Chapter 6; and ii) employ analytical equation (7.3) to calculate the required TRE capability
x. The server subsequently re-generates F′ using the TRE generation function TRE.Gen() as
elaborated in Algorithm 3.
Having elaborated all of the necessary components for the NoisFre-Lite-based key derivation
protocol, we will investigate next, the implementation of NoisFre-Lite on a device representative
of a highly resource-constrained setting and evaluate the implementation overhead in
comparison to the current state-of-the-art RFE-based method for on-device reliable key
derivation.

Server  Device 
DB = ((c1, r′1),… , (cm, r′m))

ci ← RNG()
ri ← PUF(ci)

hi, ci (ki,hi)← FE.Gen(ri)
r′i ← DB(ci) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
ki ← FE.Rep(r′i ,hi)

Figure 7.16: The RFE-based lightweight physically obfuscated key derivation method described in Figure 3.2 in
Chapter 3. Here, we removed functions not related to key derivation. The RNG() is an on-device random number
generator. The function PUF() symbolise the SRAM PUF that takes a challenge ci (memory address) as input
and reacts with a corresponding response ri (SRAM start-up value) as output. The RFE encoding function (or
the helper data generation function) is denoted by FE.Gen() which derives a PUF key ki and corresponding helperdata hi. Both the challenge ci and the helper data hi are transferred to the server  . The server  accesses the
enrolled response r′i from its database DB, and the PUF key ki is reconstructed based on r′i and hi through RFE’s
reproduction function FE.Rep().

7.7.2 On-device Implementation Overhead and Comparisons

To demonstrate the real-world practicality of the proposed NoisFre-Lite-based key generation
method, we comparewith the lightweight physically obfuscated key derivationmechanism based
on an RFE and employed in SecuCode in Chapter 3 to secure the firmware update scheme for
battery-free CRFID devices [38]. The key derivation process employed therein, built upon a
BCH code-based encoding block, is depicted in Figure 7.16.
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Figure 7.17: A comparison between the implementation overhead of an RFE-based key generator following
the lightweight physically obfuscated key derivation method in Chapter 3 and NoisFre-Lite . We consider two
situations: i) using a hardware accelerated HWAES-CMAC implementation built with an on-chip AES accelerator
(HW-AES); and ii) using a software BLAKE2s implementation of the MAC function in the event that a hardware
AES accelerator is unavailable (w/o HW-AES). Overhead is evaluated based on: (a) CPU clock cycles; and (b) data
memory (SRAM). Results are acquired from an MSP430FR5969 embedded platform using the Code Composer
Studio (CCS) 10.0.0 development environment, with TI v20.2.0.LTS compiler using Optimisation settings: -O =
3; -opt_for_speed = 5.

We adopt themethods employed for the lightweight physically obfuscated key derivationmethod
in SecuCode to build anRFE-based key generator. Thus, we employ an encoder comprising of 19
parallel blocks of BCH code parameterised by (n=63, k=7, t=15) and employ a BERf = 5.30%
within the legal temperature range of 0 °C to 40 °C for the target MSP430FR5969 MCU (for
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more details please refer to Section 3.2.2 in Chapter 3) to generate a 128-bit key with a key
failure rate of 2.35 × 10−6 (calculated using equation (5.3) described in Chapter 5). Notably,
the proposed method avoids the need for performing helper data integrity checks, although the
helper data hi is sent over an insecure channel as discussed in Section 3.4.5 in Chapter 3. For
generality, we can adopt methods described in [73] to ensure the integrity of the helper data for
the RFE-based key derivation method. Hence we also compare with the addition of helper data
integrity checks for the RFE-based implementation.
We assume in NoisFre-Lite, the mask is stored in device ’s WORM memory and cannot be
modified after deployment. Notably, in Section 4.3.1 in Chapter 4 we discuss a number of
methods for realising immutable memory regions that can be employed for ensuring the mask
is not altered. However, NoisFre-Lite still requires an on-device MAC function to provide
important information for the on-server TRE as detailed in Figure 7.15. Similar to most modern
MCUs, the very low cost MSP430FR5969 MCU we studied is equipped with a hardware
AES accelerator. Therefore, to implement the on-device MAC() we use the HWAES-CMAC
developed in SecuCode (for more details, please refer to Section 3.3.4 in Chapter 3). But,
other platforms may not be equipped with a hardware AES accelerator (e.g., the ATmega328p,
widely used in transport ticketing systems [235] and smart cards [236]). Therefore, we
also consider and evaluate a software implementation of the lightweight cryptographic hash
function BLAKE2s [237]—for further options, comparisons and benchmarks for software hash
implementations please refer to [238].
The results of the overhead evaluation are reported in Figure 7.17. Although our main focus is
the CPU clock cycles consumed by the key derivation processes, we also consider the run-time
data memory (SRAM) usage and discuss the results below.

Clock Cycles. As depicted in Figure 7.17 (a), the NoisFre-Lite only consumes 20,238 clock
cycles to produce a 128-bit key to meets the 10−6 key failure rate requirement supported by the
on-server TREmechanism as detailed in Section 7.4. In contrast, the state-of-the-art lightweight
RFE-based method requires 280,063 clock cycles (including 227,766 clock cycles to generate
a 128-bit key with 2.35 × 10−6 key failure rate, plus 52,297 clock cycles for the helper data
integrity check). Thus, the proposed NoisFre-Lite method provides similar key reliability but
with a 92.8% reduction in the required CPU clock cycles.
Even without the availability of a hardware AES accelerator, using the software implementation
of the BLAKE2s, NoisFre-Lite (w/o HW-AES) consumes only 78,109 clock cycles; this is still
a 78.9% reduction over the RFE-based method which consumes 369,958 clock cycles.
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Data Memory (SRAM) Usage. As shown in Figure 7.17 (b), the data memory (for run-time
data storage) usage for NoisFre-Lite (with HW-AES) is 86 bytes, which is 183 bytes (or 68.0%)
less than the 269 bytes consumed by the RFE-based lightweight method (211 bytes for physically
obfuscated key derivation and 58 bytes for helper data integrity check). In addition, when
using the software implementation of BLAKE2s, the data memory usage of NoisFre-Lite (w/o
HW-AES) is 138 bytes, a decrease of 57.0% compared to the 321 bytes needed for the RFE-based
method (consisting of 211 bytes for physically obfuscated key derivation and 110 bytes for
checking the integrity of helper data).

Summary

In summary, the proposed NoisFre-Lite-based key generator achieves phenomenal
improvements to the computational overhead in terms of clock cycles, with fewer clock
cycles reducing the possibility of power loss for intermittently powered devices (e.g., CRFID
tokens). As an additional benefit, the reduced data memory occupation releases more system
resources for other on-device applications. However, despite the NoisFre-Lite-based key
generator’s outstanding implementation footprint, it remains unclear just how secure the
approach is. Accordingly, the next section investigates associated security issues.

7.7.3 Security Analysis

NoisFre-Lite is built upon the transformation concepts employed in NoisFre, proposed in
Chapter 6, the assumptions and analysis presented in therein remain relevant. Further,
the experimental validations with physical chip datasets confirm fingerprint quality, such as
uniqueness, uniformity and bit aliasing as analysed in Section 7.6. Therefore, the security
analysis presented in Section 6.7.3 in Chapter 6 is still valid for the NoisFre-Lite approach.
Consequently, we only consider attacks involving the TRE mechanism, introduced specifically
as part of the NoisFre-Lite approach.
For the reader’s convenience, it is worth re-introducing some concepts used in our analysis in
Chapter 6. First, we assume the adversary cannot directly access the fingerprints of the SRAM
memory, a common premise when fingerprints are used to derive keys. Second, we allow the
adversary to read code and constants (including themask) stored in the non-violate memory
region of the device . Third, we allow the adversary  to eavesdrop on the communication
channel, isolate the device from the system and conduct a man-in-the-middle attack allowing
the adversary to forward tampered information from the server  to the device and vice versa.
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Attack Against the TRE Method

As described in Section 7.7.1, the NoisFre-Lite approach relies on the TRE mechanism to
generate highly reliable device keys. We recognise that using a TRE-based method will increase
the success rate of brute-force attacks.
An adversary  can attempt to impersonate the device  and try to spoof the server  , by
brute-force guessing of F. We follow the definition in [234] and describe the probability of
correctly guessing a k-bit by:

P =
(

max(b, 1 − b)
)k (7.13)

In our setting, the b is the bias of the transformed noise-tolerant fingerprint F. As shown in
Section 7.6.4 both the Fixed-d and Variable-d methods evaluated in this chapter show bias, b,
values around 0.53. Hence, we can see that when k is sufficiently large, for example k = 128 bits,
even with a slight bit bias, the brute attack success rate is extremely small, that is approximately
(12 )

128. But, when the TRE technique is applied, x bits in a k-bit noise-tolerant fingerprint
could be wrong. Hence, the number of bits to guess are effectively reduced by the adopted
TRE capability. Then, the probability of correctly guessing the noise-tolerant key becomes:

P =
(

max(b, 1 − b)
)k−x (7.14)

To impersonate a device, an adversarymust correctly guess k− x bits to fool the server  .
For example, suppose k = 128 bits and x = 3 bits—based on the setting from Variable-d with
TRE in Section 7.6.7—to ensure a key failure rate below 10−6. Then, the expected brute-force
attack success rate is approximately (12 )125. Despite the slight increase in brute-force attack
success rate induced by the TRE technology, such an attack still remains computationally
infeasible in practice.

7.8 Chapter Summary

This chapter presents NoisFre-Lite for generating cryptographic keys from devicememory under
two practical constraints that are common in highly resource-constrained devices: i) limited
memory size; and ii) limited computing resources. NoisFre-Lite first transforms raw and noisy
SRAM fingerprints f into noise-tolerant fingerprints F and selects noise-tolerant bits by trading
some bit reliability to achieve significantly improved extraction efficiency to satisfy key bit

Page 228



Chapter 7 Noise-Tolerant Key Generators for Highly Limited On-device Memory

requirements of security functions. We have evaluated two new transformation and selection
algorithms for the task and provided not only systematic formulations but extensive experimental
validations.
Subsequently, in use cases, some noise-tolerant fingerprints F bits can remain below the level of
reliability required of a highly reliable key generator—to compensate the increased key failure
rate due to the reduction of bit reliability—the proposed TRE approach restores the minor
errors in F bits that may exist in repeated re-generations. Importantly, the TRE approach
only utilises server-side computational power, thus avoiding imposing any computational costs
to the device. The overall power of NoisFre-Lite has been demonstrated using a battery-less
CRFID device with a 2 KiB SRAM memory by demonstrating that the approach achieves a
92.8% reduction in computational overhead (measured in clock cycles) than the state-of-the-art
RFE-based approach to key generation.
The conclusion of this chapter signals the conclusion of this thesis’ investigations of outstanding
issues identified and the comprehensive proposal of new solutions to all of those problems. The
next chapter will briefly review the problems explored and conclude the thesis, highlighting its
myriad contributions to the field and outlining possible future research directions emanating
from this dissertation.

Page 229



Page 230



Chapter 8

Conclusion and Outlook

T
His chapter concludes the thesis and suggests several fertile future
research directions.

Page 231



8.1 Summary Preamble

8.1 Summary Preamble

This dissertation has considered the provision of security services to and their implementation
on resource limited devices exemplified by CRFID devices. A key focus of the thesis has been
the provision of a secure key generator to derive a root key for security functions under resource
constraints typical of low-end devices, such as those found in the Internet of Things.

8.2 Summary of Original Contributions

The thesis first investigated the challenging problem of realising a secure and wireless code
update mechanism compliant with current communication protocols under resource constraints
and intermittent power supply without additional hardware components. Those investigations
and their findings were presented in Chapter 3 and Chapter 4:

• Chapter 3 introduced SecuCode, a novel secure wireless firmware update scheme for
resource constrained and intermittently powered CRFID devices. We generated a dynamic
key on-demand that was discarded after use to eliminate the problem of permanent
secure key storage in NVM. Our SecuCode protocol only allows authorised parties to
perform wireless firmware updates and is standards compliant without requiring hardware
modifications. As noted in [62], cryptographic engineering of a protocol must consider
the complex environment for physical devices, including noise and energy constraints,
performance and the cost of protocol instantiations. To this end, we successfully addressed
security and implementation challenges, realised an end-to-end SecuCode implementation
on the popular CRFID transponder and extensively evaluated the cost and performance
of our actualisation, including an application case study for which complete code and
experimental data were made public.

• Chapter 4 proposed and implemented the first secure and simultaneous wireless firmware
update for many RF-powered devices to feature remote attestation of code installation. We
explored highly limited resource contexts and innovated to resolve security engineering
challenges to implement Wisecr. The scheme prevents malicious code injection, IP
theft and incomplete code installation threats while remaining compliant with standard
hardware and protocols. The performance ofWisecr and comparisons with state-of-the-art
approaches via an extensive experimental regime validated the efficacy and practicality
of the design, and the end-to-end implementation source code was released to facilitate
further improvements by practitioners and the academic community.
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Given the lack of security related features and protections on resource limited devices, we then
considered the question of exploiting ubiquitously available memory fingerprints for security
functions on resource-limited devices, investigating this challenge in Chapter 5, Chapter 6 and
Chapter 7:

• Chapter 5 developed the MRR approach to significantly reduce the overheads associated
with RFE and FE implementations, proposing MR3FE and MR2FE for lightweight
key generation. We validated our approach using a class of ultra-low-power MCUs
employed by a CRFID transponder (WISP5.1LGR) as an exemplary resource constrained
device. Our extensive experimental results and analysis, which included SRAM
PUF data from 23 ultra-lower-power MCUs, demonstrated that regardless of the
response-enrolment approach, (R)FE with MRR will always greatly outperform the
conventional single-reference-response(R)FE. Enrolling more reference responses under
fine-grained operating conditions can further reduce a token’s overhead, especially in the
MR3FE case, where the overhead is independent of the number of enrolled MRR. The
proposed MRR applies to not only the studied SRAM PUF but also other silicon PUF
types.

• Chapter 6 exploited the ubiquitously embedded memory within commodity computing
devices. The proposed NoisFre approach constructively extracts the transformed memory
fingerprints embodied with a high tolerance to noise affecting fingerprint generation. With
a simple, single, one-off fingerprint enrolment measurement, NoisFre can judiciously
identify highly reliable transformed fingerprints serving as hardware root keys or trust
roots to directly support various security functions for a wide range of COTS electronic
devices. Besides formalising two specific S-Norm and D-Norm fingerprint transformation
methods and introducing extensive empirical validations of SRAM, Flash and EEPROM
memory using 119 total physical chips, we have conducted a case study featuring the
end-to-end implementation of a remote attestation security service employing NoisFre
fingerprints to significantly reduce overheads in comparison to the state-of-the-art RFE
method for constructing reliable fingerprints for key generation. We also demonstrate
how SRAMfingerprints can be generated at run-time by utilising individual memory-bank
power control features on MCUs. Ultimately, NoisFre is a simple but practical method,
especially for existing low-end commodity electronic devices.

• Chapter 7 proposed NoisFre-Lite, which can generate cryptographic keys from SRAM
memory under the constraints of limited memory and limited computing resources
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common to many low-end devices. NoisFre-Lite transforms raw SRAM fingerprints into
new noise-tolerant fingerprints F with improved extraction efficiency whilst sacrificing
some bit reliability. We propose two new transformation and selection methods for the
task. Consequently, several F bits may remain erroneous upon re-generations. But,
the TRE approach proposed constructively restores the mismatched F bits. TRE is
undertaken by the server, with abundant computational resources, and, thus, avoids
adding any computation costs to the device. We propose formal models for the two
new transformation and selection methods to support their use in practice and conduct
extensive experimental validations. The chapter documented the overall capability and
efficacy of NoisFre-Lite by an implementation to derive a 128-bit key with a key failure
rate < 10−6 on a battery-less CRFID device with only 2 KiB SRAM memory. The
overhead assessment demonstrated a 92.8% reduction of computation overhead (measured
in CPU clock cycles) compared to state-of-the-art reverse fuzzy extractor-based methods.

8.3 Future Research Opportunities

During the time spent pursuing the PhD, numerous exciting notions presented themselves. Time
and resource limitations precluded these from developing into mature thesis chapters. This
subsection documents these possibilities for the benefit of my personal future career aspirations
and to guide other interested researchers.

8.3.1 Fingerprinting Emerging COTS Device Memory Types

• Ferroelectric Random Access Memory (FRAM) already exists in numerous COTS
devices, including the MSP430FR5969MCU that powers the CRFID device in Chapter 3.
The datasheet for the MSP430FR5969 MCU [163] indicates minimal write time to the
MCU’s internal FRAM. If the main clock exceeds 8 MHz, the firmware code should
include a wait state, a requirement suggesting a non-instantaneous FRAMwrite operation.
Failing to meet the rated write time may produce a partial programmed state. Our initial
experiments were encouraging and demonstrated that chips with FRAM memory show
different behaviour when the rated write time was violated. Thus, investigating FRAM
based key generators is a worthy future research direction.

• When collecting the memory PUF dataset for Chapter 6, we observed an interesting
memory type. In late 2008, Cypress launched the world’s first commercial nvSRAM. The
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nvSRAM represents an instance of non-volatile random access memory (NVRAM). As
observed in Chapter 2, SRAM supports fast and random access, allowing one to directly
read and overwrite any bit in the SRAM array without the demands of pre-charge or block
erasure. However, SRAM requires a stable power supply to maintain the state. Upon
powering down, it will lose its memory contents. Cypress developed nvSRAM by adding
one QuantumTrap to each SRAM cell. Upon losing power, a backup capacitor keeps the
nvSRAM live for a short time period, and the nvSRAM immediately copies all of the
data in its SRAM cells to the QuantumTrap. When power is restored, data are copied
back from the QuantumTrap to the SRAM array, with all procedures handled completely
automatically by the nvSRAM’s internal controller. The QuantumTrap implements a
silicon oxide nitride oxide silicon (SONOS) floating gate transistor, according to the
datasheet. The data backup typically takes 8 ms. If no capacitor is connected, the data
will be corrupted.

We believe it is possible to construct a key generator from fingerprinting the nvSRAM
using a backup capacitor with attributes below the recommended level, which produces
a partial programmed state. Given QuantumTraps are expected to have different program
latency, when applying the same programming time, somemay get programmed and some
may not, depending on manufacturing variations. Thus, investigating nvSRAM based key
generators is a worthy pursuit.

8.3.2 Securing Firmware Broadcasting for Fast Moving Passively

Powered Devices

• The study in Chapter 4 is not without limitations. Although Wisecr reasonably
assumes (as with the non-secure update methods in R3 [32] and Stork [22]) that
the devices are at a fixed distance from a reader antenna during the short firmware
update process (approximately 16 seconds in application demonstrations), this assumption
may occasionally not hold. For example, if the tags were on a conveyor belt being
re-programmed, it would be desirable to avoid delaying the movement of the tags and
enable re-programming while distances change. It may be possible to consider the
dynamic pilot election mechanism to support such settings. Developing a solution to the
problem in the context of resource-limited devices operating over a highly constrained air
interface protocol represents a research problem worth investigating in the future.
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• The problem of broadcast reliability is also noteworthy. One potential avenue involves
considering the observers to actively participate during a firmware broadcast. For
example, if an observer detects a CRC-16 mismatch, this observer can reply with a
negative acknowledgement to request a re-transmission.

8.3.3 Investigating Task Scheduling Mechanisms for Executing

Security Functions

• As an initial study, the PAM method was developed based on the assumption that the
device consumes power at a constant rate during the active mode. However, different tasks
have distinct power consumption profiles, making it worth considering a more adaptive
PAM in future work. One potential avenue for future research is the investigation of
compiler assisted power consumption characterisations for dynamic power scheduling
during run-time.

8.3.4 Investigating The Multiple Reference Concept Beyond

Silicon-Based PUFs

• Chapter 5 evaluated the MRR approach using SRAM fingerprints or PUFs. Although
Section 5.5.5 discussed its generalisability to silicon-based PUF types, in which the
expected bit error rate increases outside of the reference operating conditions, the MRR
approach may not provide implementation efficiency for PUF types that do not exhibit this
behaviour. We believe that investigating the applicability of MRR concept to other PUF
types represents an interesting research question that can be investigated in the future.

• Chapter 5 focused on hard-decision decoding and does not consider the impact of MRR
approach on soft-decision decoding. We believe that using the MRR approach with
a soft-decision decoding strategy can reduce the implementation overhead. Consider,
for example, the following two approaches: i) soft-in-soft-out [114], [196]; and
ii) hard-in-soft-out [206]. In these cases, data concerning bit-specific reliability is
employed to help identify reliable responses and improve PUF key generator gains. Rather
than enrolling bit-specific reliability and the response itself under a single reference
operating condition, bit-specific reliability and response can be deployed under multiple
reference operating conditions. This demonstrates the potential of the MRR approach to
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further lower the failure rate and, consequently, reduce the footprint of the needed key
generator implementation.
Given that it is apparent that soft-in-soft-out decision decoding in [114] and decoding
strategy based on hard-in-soft-out proposed in [206] are vulnerable to helper data
manipulation attacks proposed in [74], future research could probe the extent to which
the MRR approach can benefit soft-decision decoding.

• In Chapter 5, we limit the evaluation of the key failure rate P failr given in equation (5.4)
to min{P2j}, j ∈ {1, ..., J} to demonstrate the MRR’s efficacy in a very conservative
setting. But, future research could investigate a tighter bound for P failr by considering the
correlations between the reference responses.

8.3.5 Developing Theoretical Bounds for Transformation and

Selection

• In Chapter 7, we developed two new D-Norm-based noise-tolerant fingerprint
transformation and selection algorithms and formulated an analytical model for
each algorithm to describe its extraction efficiency. Simulations and measurements
demonstrated that these new methods outperform the original method (proposed in
Chapter 6). However, the potential to further improve extraction efficiency remains an
open question. It would be desirable to theoretically prove an upper bound for the highest
extraction efficiency possible for a D-Norm transformation and selection method.

8.3.6 Investigating TRE Algorithms with Lower Computational

Complexity

• Although Chapter 7 demonstrated that the worst-case TRE complexity is approximately
300,000 iterations (and the worst-case scenario occurs very rarely, twice per million in
our tests), demanding only limited effort from a resourceful server, the need to improve
scalability make it desirable to further investigate TRE efficiency. One identified problem
is that the current TRE method always performs trials on each key-bit, sequentially. One
interesting mitigation strategy involves employing Bayesian statistics[239] to consider
historic results and assign higher priority to the bits detected to be erroneous to further
reduce the computational load on the server across repeated requests.
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• The TRE developed in Chapter 7 assumes that each bit in the device memory fingerprint is
equally reliable. We consider this assumption too conservative for the Variable-d method,
in which some F have a higher bit error rate than others. This makes it reasonable to
develop a TRE algorithm that allocates greater TRE ‘strength’ to bits with a higher error
rate whilst skipping over bits that are highly reliable. Such interesting direction to further
develop the concepts in therein are left for future research.
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Appendix A

Read-Rate Based Dynamic
Execution Scheduling for
Intermittent RF-Powered

Devices

A.1 State of Problem

The power that a CRFID device receives from a radiating RFID reader antenna reduces as
distance increases[96]–[98], as illustrated in Figure A.1 (a), due to path loss, shadowing,
scattering and radio wave absorbing effects from obstacles [240]. Further, power harvesting
devices typically use burst-charge cycles based on a charge pump to deliver packets of
energy to power the devices. These bursts become intermittent at larger operating distances.
Consequently, these devices operate over a sequence of short-term bursts and work in so-called
intermittent powering conditions. Therefore, CRFID type devices may not always be able to
support long-run execution of tasks, as shown in Figure A.1 (b).
Recent studies have considered methods for operating under intermittent powering conditions
to support the long-run execution of tasks, such as cryptographic algorithms. However,
existing methods normally require specific hardware support [13], [162] or introduce additional
execution overhead [38], [160]. In this appendix chapter, we investigate the following problem:

• How can CRFID devices make efficient use of harvested power with minimal cost to the
device, in terms of hardware requirements and implementation overhead, to achieve long
run execution of tasks?

Our main contributions from our efforts to address the above problem are as follows:

• We formally analysed the relationship between the number of successful interrogating
rounds (read-rate) and the time required for a CRFID device to harvest adequate energy
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Figure A.1: RF energy propagation, harvest and brownout: (a) Due to the properties of RF energy propagation, at
a certain distance away from the reader (b) CRFID devices may be unable to finish the long-run execution of a task
due to a brownout event. Here, the voltage across the reservoir capacitor Vcap drops below the minimal operational
voltage of the MCU Vmin. (c) Shows the architecture of a typical passively powered device operating on harvested
RF energy.

(charge time) and subsequently formulated an analytical expression linking these two
quantities.

• To the best of our knowledge, this work is the first to attempt to achieve a reader-driven
dynamic execution scheduling method for intermittent RF powered devices utilising the
simplicity of read-rate measurements and with minimal implementation cost to the device.

• We designed, implemented and evaluated a reader-driven read-rate based dynamic
execution scheduling scheme for long-run executions suited for intermittent RF powered
devices.

The rest of this appendix chapter is organised as follows: We first review related works in
Section A.2, then provide the necessary background knowledge to understand an intermittently
powered system in Section A.3. We discuss the principle of our proposed method in Section A.4,
followed by the detail design of the ReaDmE scheme. We implement and evaluate ReaDmE in
Section A.5 and Section A.6.

A.2 Related work

The intermittent powering condition for CRFID is first considered in the original WISP design.
In [13], Sample et al. identified that, the harvested energy may not always be sufficient to
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accomplish the desired computational task. To overcome this issue, a dedicated hardware
voltage supervisor is employed to monitor the harvested energy level. The voltage supervisor is
a comparator with an internal voltage reference Vref . The device’s microcontroller unit (MCU)
may poll the voltage supervisor before running any power-intensive tasks, such as complex
computations or sensor sampling. If the harvested voltage level is below the threshold, the MCU
puts itself into a deep sleep state to accumulate energy. Once the voltage level reaches Vref , the
voltage supervisor sends an interrupt to wake-up the MCU. The CRFID device can then safely
launch the power-intensive task. Since the CRFID wakes up at a fixed voltage, via the hardware
voltage supervisor, this method is referred to as HwFixed [13]. A limitation of this setup is that
it relies on the dedicated hardware voltage supervisor available only on WISP 4.1DL. Notably,
this supervisor is absent in the more recent version of the WISP[9].
Buettner et al. proposed the Dewdrop [162] execution model to prevent a brownout event due
to unreliable powering; the method monitors available harvested power and executes tasks only
when they are likely to succeed. Dewdrop utilises a dynamic on-device task scheduling method
but requires the overhead of collecting samples of the harvester voltage and task scheduling by
the device’s application code. Further, Dewdrop is only suitable for CRFID devices equipped
with a passive charge pump, such as WISP 4.1 [13] since Dewdrop requires an analog to digital
converter (ADC) to directly measure the charging rate of the reservoir capacitor (the charge
storage element). In the follow-up, WISP version 5.1, the passive charge pump is replaced with
an active charge pump (S-882z) and the reservoir capacitor is only connected to the load when
Vcap developed across the capacitor exceeds the reference voltage of 2.4 V Vref . Consequently, in
WISP 5.1, the voltage delivered to the microcontroller is a sharp step-up, rather than a ramp-up
function related to harvested power. Therefore, the charging-up process cannot be directly
monitored using the technique in the Dewdrop model.
Su et al. [38] proposed the intermittent execution model (IEM) as a part of the SecuCode
executable code dissemination scheme. IEM is designed to prevent brownout by fragmenting the
power-intensive tasks into small sub-tasks and sandwiching them with low power sleep modes
(LPM), thus allowing the CRFID devices to recharge regularly. IEM makes use of the MCU’s
internal timer to wake the system up from LPM. Although SecuCode is designed to perform
firmware updates, securely, the IEM execution schedule is hard-coded as a part of the immutable
bootloader. IEM cannot dynamically adjust the schedule once the CRFID device is deployed.
Consequently, the fixed-term LPM states could be incurred unnecessarily, with resulting time
overheads, despite the availability of a good powering channel.
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Checkpointing is another well-studied technique to handle unpredictable intermittent powering
conditions. By regularly saving the run-time data into a device’s non-volatile memory
(NVM)[31], [159], [161] or uploading to a server after encryption [160] (i.e., the checkpoint),
the system can resume from the last intact checkpoint whenever a power failure occurs. However,
writing to NVM is energy intensive [160] and raises security concerns [34], [160]. Off-device
checkpointing methods [160] requires coordination between the reader and the device, as well
as time and energy overheads (e.g., for data transmissions and encryption functions).
Notably, received signal strength indicator (RSSI) has been investigated in numerous studies
[241], [242] for communication channel characterisation, but no studies to date have considered
using RSSI for task scheduling.

Summary. The existing methods for dealing with power loss are compared to in Table A.1. In
contrast to current approaches, we propose using remote measurements from the transceiver
(RFID reader in case of reading and writing to CRFID devices) to characterise the available
power at the CRFID device and allow the transceiver to determine, at run time, the dynamic
execution schedule for a device.

Table A.1: Comparing with related works.
Study Scheduling method Power measurement Scheduling action Hardware requirements
WISP 4.1 (HwFixed) [13] Programmatic On-device voltage Pre-task decision On-device voltage supervisor
Dewdrop[162] Dynamic On-device voltage In-task decision On-device ADC and passive voltage multiplier
IEM [38] Programmatic None In-task sleep None
Check-pointing[31], [159]–[161] None None In-task check-pointing On-device NVM or reader coordination
ReaDmE (this work) Dynamic Reader-driven In-task sleep None

A.3 Background

In this sections, we briefly describe the background information pertinent to our study.

A.3.1 Typical Energy-harvesting Device Architecture

A generic power supply design for an RF energy harvester architecture is depicted in
Figure A.1 (c). The RF antenna is driven by the electromagnetic waves, starting from the
left-hand side, and pushes charges into the impedance-matching network. The impedance
matching technique maximises energy harvesting efficiency at a specific frequency. The rectifier
ensures charges only flow along one direction to produce a direct current (DC). The generated
charges are buffered into an energy storage component, normally a reservoir capacitor. The
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buffered electricity is regulated to the desired voltage before delivering to the load, such as the
MCU of a CRFID device.

A.3.2 Execution Model in HwFixed Scheme

Normally, CRFID devices are under intermittent powering conditions as there is no guarantee
that the energy harvester can always supply the load with the required power. Figure A.2
describes the underlying execution model adopted in WISP version 4.1DL and the resulting
execution cycles from intermittent powering. On startup, the CRFID device first charges
its reservoir capacitor. We denote the time elapsed for the capacitor to be charged as Tc.
A conceptual plot of voltage at the reservoir capacitor Vcap versus time is illustrated in
Figure A.2 (b). Once the voltage at the reservoir capacitor Vcap reaches a threshold Vcharged—see
FigureA.2 (b)—theMCU is booted up. TheMCUmay execute code, sample sensors and prepare
the up-link packet. This process may take time Ta to finish, with ‘a’ denoting that the MCU is in
active mode. Subsequently, the CRFID enters the ‘Wait for query’ state until the reader instructs
it to backscatter the data packet generated earlier. The waiting and backscattering fall within the
time frame Tt .

Figure A.2: CRFID (a) Operational power cycle of a CRFID device; and (b) charge burst operational mode.
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Notably, Vcap is periodically charged and discharged. If nothing unexpected happens, the period
of one charge-discharge cycle, the intermittent power cycle (IPC) following the definition in
[38], is dominated by the three previously mentioned time variables: Tc, Ta and Tt .

A.4 Read-Rate Based Dynamic Execution Scheduling

Method

We recognise that it is possible for a Server that controls the RFID reader in our setting, to
estimate the time to harvest adequate energy at a CRFID device and hence, determine the length
of the IPC dynamically. Therefore, in contrast to an apriori chosen intermittent operating setting,
as in [38], we propose the dynamic selection of IPC settings by the Server to reduce unnecessary
delays in task execution.

A.4.1 Theory and Proof

Observation. The number of successful CRFID device interrogations per second [243],
commonly known as the read-rate Rread, reduces as the interrogation range d increases.

Proposition. Rread can be employed to infer information related to available harvested power
by a CRFID device at a given distance. At increasing distances, where harvesting RF power
is increasingly difficult, the Rread is largely determined by the IPC. We assume the time spent
executing code and communicating over the RFID channel is invariant at different powering
conditions. Therefore, Rread will be dominated by the charging time Tc.
Therefore, we expect a CRFID devices charging time can be expressed as a function f of its
read-rate: Tc = f (Rread).

Proof. Consider an ideal radio wave propagation environment. The relationship between the
transmitted power Pt by an RFID reader antenna and the received power Pr by a CRFID device
is expressed by the Friis transmission equation [97], illustrated in equation Equation A.1. The
available power at the receiver Pr is determined by transmitted power Pt, transmitter antenna
gain Gt, receiver antenna’s gain Gr, the radio frequency wavelength � and the distance from the
transmitter to the receiver d.

Pr =
PtGtGr�2

(4�d)2
(A.1)
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We can see that the received power Pr is inversely proportional to the square of distance d,
assuming all other parameters are constant.
Considering losses at the RF front-end and burst-charge pump, Pcharge = �Pr, where � is the
efficiency factor of the energy harvester. Nowwe can express the energy stored during a charging
cycle Estored as:

Estored =
1
2
C(V 2charged − V

2
min) = Pcharge × Tc (A.2)

As discussed in Section A.3.2, the length of a charging cycle is Tc, C is the capacitance of the
reservoir capacitor, Vcharged indicates the voltage at the end of the charging cycle when the MCU
starts up, Vmin is the minimum voltage a CRFID device requires for normal operation. Since C ,
Vcℎarged and Vmin are constants, Tc ∝ 1

Pr
∝ d2. This explains our observation that a CRFID

device takes a longer time charge and respond to interrogation at longer operating distances.
During Tc, a CRFID device’s power consumption is non-zero, although the MCU is in the
LPM; further, the reservoir capacitor has leakage power. We introduce a new term, Psleep,
to represent power losses during Tc. On the other hand, Pcharge would still be present when
the MCU is active Ta. Therefore we formulate Tc as in Equation A.3; if the charge power
Pcharge is greater than the system power consumption during LPM Psleep, the charge time Tc
is given by the ratio of the energy required to fully charge the storage component Estorage over
the difference between the charge power Pcharge and the system power consumption under LPM
Psleep. Otherwise, if Pcharge is lower than the Psleep, voltage across the reservoir capacitor C
can never build up, and thus Tc is infinite. The time Ta that the MCU (and thus the CRFID
device) is active is given by Equation A.5; the ratio of energy stored over the difference between
the system power consumption of active mode Pactive and the charge power Pcharge, if Pcharge is
below Pactive. Otherwise, Ta is the time elapsed to execute the CRFID’s application code (case
in Equation A.6).

Tc =
⎧

⎪

⎨

⎪

⎩

Estored
Pcharge − Psleep

, if Pcharge > Psleep (A.3)
∞ , if Pcharge ≤ Psleep (A.4)

Page 247



A.4 Read-Rate Based Dynamic Execution Scheduling Method

Ta =
⎧

⎪

⎨

⎪

⎩

Estored
Pactive − Pcharge

, if Pactive > Pcharge (A.5)
Texecute , if Pactive ≤ Pcharge (A.6)

As expressed in Equation A.7, the Rread is 0 if Pcharge < Psleep as the reservoir capacitor takes
an infinite time to be charged. Consequently, the CRFID never responds to an RFID reader’s
query. Alternatively, the CRFID device may respond at Rread = 1

Tc+Ta+Tt
. That is one closed

loop consisting of charge, activation and transmission as illustrated in Figure A.2 (c). For a
successful RFID inventory, Ta and Tt will be constant; the only variable is the charging time Tc .

Rread =
⎧

⎪

⎨

⎪

⎩

0 , if Pcharge < Psleep (A.7)
1

Tc + Ta + Tt
, if Pcharge ≥ Psleep (A.8)

We can easily express Tc as a function of Rread, shown in Equation A.9, while assuming K =
Ta + Tt is a constant.

Tc = (Rread)−1 −K (A.9)

Hence, we can express the charging time Tc as a function of read-rate Rread.■

A.4.2 ReaDmE Design

We develop our ReaDmE method by building upon the IEM scheme in [38] since it is the only
candidate requiring no specific hardware modifications and is realised with the popular CRFID
device, WISP 5.1 LRG[9]. IEM is part of the SecuCode bootloader as discussed in Section A.2.
Our proposed ReaDmE is distinguished from the continuous operation model (CEM) and IEM
in Table A.1 and Figure A.3.
As shown in Figure A.3 (a), the CEM tries to finish a long-run execution in a single burst, but
it fails due to the brownout, where the reservoir capacitor voltage Vcap cannot hold the system’s
minimal voltage requirement.
The IEM (Figure A.3 (b)) fragments the long-run execution into multiple small sub-tasks and
sandwiches them with LPM sleep with a fixed duration. Therefore Vcap can be maintained above

Page 248



Chapter A Read-Rate Based Dynamic Execution Scheduling

Figure A.3: Comparing: (a) CEM (continuous execution model); (b) IEM (intermittent execution model); and
(c) proposed ReaDmE.

the Vmin until the long-run execution successfully finishes. However, since the duration of LPM
is fixed, this may incur unnecessary time overhead.
Our proposed ReaDmE (Figure A.3 (c)) dynamically adjusts the duration of LPM sleep
according to theRread reported by the RFID reader. Also, if the powering condition is extremely
poor ReaDmE could assign longer LPM sleep time to allow for CRFID recharge.

A.5 ReaDmE Implementation

As shown in Figure A.4, we visualise the implementation of ReaDmE over the EPC
Gen2 protocol in a sequence diagram. We can identify three stages:
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Figure A.4: The implementation of ReaDmE over the EPC Gen2 protocol.

Stage 1. The reader powers up the CRFID device, and counts the Rread over a fixed period, for
example, one second. This is done by repeatedly performing the EPC Gen2 Inventory session
(as enclosed in the ‘loop’ box in Figure A.4). Rread is, therefore, the total number of successful
inventories over the time window.

Stage 2. Calculate Tc using Equation A.9. To increase fault tolerance, we let the calculated sleep
time Tsleep = � × Tc, for example � = 1.1 gives a 10% margin. In the sequence diagram, we
denote this function as Get_Tsleep(Rread).

Stage 3. Calculated Tsleep is downloaded to the CRFID device via a standard EPC Gen2 Write
command. On the CRFID device, the received Tsleep is stored in a volatile register SLEEPTIME,
and the IEM adjusts its LPM according to the received Tsleep.
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We employed the open source code release from SecuCode [38] at [165] to integrate ReaDmE
within the IEM model described therein. In order to integrate ReaDmE, two minor change
needed to be made to the IEM implementation:

• Server shall compute Tsleep based on the Rread and download it to the CRFID device, via
a Write command to the SLEEPTIME register.

• The CRFID device shall handle the Write command addressing the new SLEEPTIME

register and update the IEM settings according to the received data.

A.6 Experimental Validation

We conducted the following three experiments to: i) validate our model regarding the
relationship between the Rread and Tc (Section A.6.1); ii) show that ReaDmE is accurate
(Section A.6.2); and iii) practical (Section A.6.3).

Figure A.5: The experimental setup. 1 a host PC ruining the Server Tool, 2 an RFID reader (Impinj R420
RFID), 3 a digital storage oscilloscope (DSO), 4 a reader antenna and 5 a CRFID device suspended from a
wooden tripod.

All the experiments were conducted using the setup depicted in Figure A.5. We had a laptop
execute the Server tool, a modified version of the SecuCode Server tool at [165]) that included
the functions to count the read-rate and calculate the suitable Tsleep as described in Section A.4.2.
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The laptop was connected to an Impinj R420 RFID reader, which drives a 9 dBic panel antenna.
The CRFID sensor device being tested was suspended from a height adjustable wooden tripod.
Instead of using the Joint Test Action Group (JTAG) debugging interface, we monitored a
specific general-purpose input/output (GPIO) ping of the CRFID device with a digital storage
oscilloscope (DSO) to measure the internal timing state. Because the JTAG provides power
to the target device, it hinders us from investigating the CRFID device’s behaviour under a
passively powered condition. It also inserts extra debug-related code that interferes with our
timing analysis. Hence, we programmed the CRFID device with a special firmware; when the
CRFID device switches between its internal states—as shown in Figure A.2 (b)—the firmware
flips a specific GPIO pin corresponding to the current machine state.

A.6.1 Validating Our Model

The first experiment was conducted to collect and analyse all quantities mentioned in
Section A.4. We sought to identify whether the Rread is a meaningful parameter reflecting
CRFID device’s behaviour, and further validate our theory and assumptions developed in
Section A.4.
We recorded the read-rate Rread(Reader) as the successful Inventory sessions per second from
the reader side, averaged over 20 seconds. From the CRFID device side, we also measured
timing information, such as charge time Tc, active time Ta and transmit time Tt .
The results are presented in Figure A.6, with a white bar representing Tc, a blue bar representing
Ta and a green bar representing Tt . We can see a trend representing an exponential increase in Tc,
while Ta and Tt remain approximately constant; in accordance with our assumptions described
in Section A.4.1.
Using Equation A.8, we can calculate the CRFID device’s read-rate Rread(Device), which is
plotted with a blue dashed line in Figure A.6. The Rread(Device) is a good approximation
of Rread(Reader)—plotted by a red line in Figure A.6. Notably, both the Rread(Device) and
Rread(Reader) show a saturation for operation range between 10 and 30 cm. We can explain
this observation by recognising that the harvested power at this close operating range is able to
support the CRFID transponder to run continuously. Thus, the read-rate is dominated by Ta and
Tt . As the operational range increases, from 40 cm—see Figure A.6 (b) for a clearer view—Tc
follows an exponential trend. Meanwhile, Ta and Tt remain stable until the operational range
reaches 80 cm. At this point, Tt becomes unstable, presumably due to power failures during the
RFID backscatter under poor powering conditions.

Page 252



Chapter A Read-Rate Based Dynamic Execution Scheduling

Operational range (cm)

R
ea

d
 R

at
e 

(1
/S

)

Ti
m

e 
el

ap
se

d
 (

m
s)

Ti
m

e 
el

ap
se

d
 (

m
s)

0

100

200

300

400

500

600

700

800

900

1000

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100 110 120

Tc

Ta

Tt

Read Rate (Reader)

Read Rate (Tag)

Operational range (cm)

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90 100 110 120

R
ea

d
 R

at
e 

(1
/S

)

Figure A.6: The time elapsed (right y-axis) for charging up Tc, executing the program Ta, transmitting data Tt . Onthe left y-axis is the read-rate Rread reported from the RFID reader and calculated from on-device measurements
using equation (A.8). Results showing: (a) Tc increases as operational range (x-axis) becomes larger; and (b) a
magnified view to better illustrate the measurements.

The read-rate reported by the RFID reader closely follows the read-rate calculated by
Equation A.8 based on Tc, Ta and Tt measured directly on-device. We can confidently say that
our model derived in Section A.4.1 is valid and the read-rate is a reliable reflection of the CRFID
device’s internal state.

Table A.2: Measured values for Equation (A.9).

mean (�) standard deviation (�)
CPU active time (Ta) 0.630 0.190

Data transmission time (Tt) 1.641 0.635
K = Ta + Tt 2.271 0.792
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From this experiment, we can also find the constant K in Equation A.9, as K = Ta + Tt . The
average over all tested operational ranges from Figure A.7 are summarised in Table A.2. This
reaffirms our assumption in Section A.4 that Ta and Tt are invariant over different powering
conditions.

A.6.2 The Accuracy of Read-rate-based Charging Time

Predictions

Figure A.7: Comparing: (a) the actual charging time measured from the device T c (Device) and the charging time
calculated based on the Rread T c (Reader) with Equation A.9; and (b) the correlation between the T c (Device) andthe T c (Reader) evaluations.

From Figure A.7, we can see that the Tc measured directly from the device closely follows
that evaluated using Equation A.9 using the Rread reported by the RFID reader. However, a
systematic analysis is still required to determine whether Rread is an accurate measurement of
Tc.
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To examine the accuracy of the read-rate based powering condition measurement, we apply the
Pearson correlation test [244]. We use the Tc measured from the device as one tested variable
and use the Tc calculated based on Rread as the other tested variable. The result is plotted in
Figure A.7 (b). We can see that all measured points are located very close to the trend line. The
Pearson correlation coefficient of 0.9972 clearly shows that there is a solid correlation between
the Tc directly measured from the device and the Tc calculated based on Rread from the RFID
reader using Equation A.9.

A.6.3 Application Case Study with a Cryptographic Algorithm

To demonstrate the effectiveness of our ReaDmE method, we followed the same setup as in [38]
and performed a message authentication code (MAC) over a 1280-byte random string, and
compared against CEM and IEM with hard-coded 30 ms Tsleep. We repeated each measurement
ten times and report the success rate (successfully calculate the MAC tag) and latency (average
time taken). Notably, data was only collected when MAC computation commenced, where
the DSO was triggered by a GPIO event. Failures in underlying RFID communications were
ignored—notably, ReaDmE cannot be applied to RFID communications, as the injected LPM
can violate the strict RFID communication timing requirements.
The experimental results are summarised in Figure A.8. On the one hand, in terms of latency,
ReaDmE demonstrated very close performance to the CEM when power is plentiful at 20 cm
and 40 cm, while IEM suffered from large unnecessary time overheads due to the hardcoded
30 ms dead weight. On the other hand, ReaDmE achieved improved success rate due to the
dynamically generated LPM duration based on an accurate assessment of the power available to
the CRFID device. It is worth pointing out that ReaDmE could achieve a 100% success rate at
a 60 cm operational range while IEM fails on 20% of its trials at this range. ReaDmE was also
20% more successful than the IEM under the poor powering condition at an 80 cm operational
range. Notably, as shown in Figure A.8, the CEM’s success rate dropped to 20% at a 60 cm
range and to 0% at 80 cm range.

Page 255



A.6 Experimental Validation

This chapter

Figure A.8: Experiment results comparing the success rate and the latency across the continuous operational model
(CEM), the intermittent operational model (IEM), and our proposed ReaDmE.
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Appendix B

Memory Bus Snooping and
Open Debug Interface Exploits

B.1 State of Problem

A considerable amount of IoT devices have been adopted by consumers and industries over
the last decades; the strong growth momentum is set to continue. In 2020, the number of
Internet-connected smart devices reached 11.7 billion and is expected to increase by more
than five-fold by 2025 [6]. Apart from the popular consumer electronics, health care, and
manufacturing, the automotive industry is the next promising market, followed by retail,
logistics, agriculture, and animal husbandry sectors [7]. Despite the rapid growth, there are still
many challenges related to security, especially for devices involved personal and sensitive data.
By 2025, the amount of data gathered by those devices are expected to reach 73.1 zettabytes [6].
The widespread existence and access to sensitive data render Internet-connected devices a
lucrative attack target for malicious actors [245].
Despite user privacy concerns, it is difficult to choose products with adequate protections without
an in-depth knowledge on security and privacy [246]. Meanwhile, manufacturers have generally
focused on reducing time-to-market delays [247], improving cost-effectiveness and quality of
service [248] but skipping over some necessary security measures [249].

Our Focus and Contributions. This appendix focus on investigating the vulnerabilities arising
from common debug interfaces left open and exposed memory buses in IoT (Internet of Things)
devices. Notably, unlike software that can be patched, we focus on exploiting vulnerabilities
related to the hardware design that are difficult to be fixed after products are released to
the market. To demonstrate the ease with which snooping34 on exposed memory buses and
exploiting open debug interfaces can be, we apply techniques that are simple in practice, only
require inexpensive gadgets, and do not impose irrecoverable or noticeable damage to the device.
In particular, in this appendix chapter, we:

34Snooping: unauthorised access, similar to eavesdropping but not limited to data collection during
transmissions.
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• Investigate the practical threat posed by: i) debug interfaces left open; and ii) exposed
buses to off-chip memory commonly used for storing data and secrets in COTS
(commercial off-the-shelf) devices.

• Demonstrate the relatively low cost and the level of skills required to extract sensitive data
from devices.

• Conduct and describe two case studies, in the style of a tutorial, to demonstrate the
realistic threat by extracting executable code and secrets from COTS electronic devices.
A demonstration video of gaining remote access to a portable Internet connected camera
after an exploit is available at:

https://www.youtube.com/watch?v=fnIn9QugrXI
scan to watch

Organisation. The rest of this appendix chapter is organised as follows. In Section B.2,
we summarise previous work and useful resources related to physical attacks on IoT devices.
Section B.3 presents the threat model. Exploitable debug interfaces and memory buses are
discussed in Section B.4 followed by two case studies using popular IoT devices. Section B.7
provides concluding remarks.

B.2 Related Attacks Against IoT Devices

Software attacks. Attacks against software exploit security vulnerabilities of the
communication protocols, cryptographic algorithms, or software implementation of the
product [250]–[252]. Software attacks are possible without physical access to the victim
device. However, the manufacturer could easily fix the software vulnerabilities through system
updates [75], [253]. In this appendix, we would like to focus on exploiting vulnerabilities related
to the hardware design that are difficult to be fixed after products are released to the market.
Invasive physical attacks. These attacks require direct access, for example, dissect a smart
card and the use of microprobes to read the secure storage of cryptographic keys [254] from
its internal components [250], [255]. We consider methods that obviate invasive attacks since
it generally requires expensive equipment (e.g., a US$5,000+ microprobe workstation) and,
inevitably, leaves traces of tampering with the device [256].
Non-invasive physical attacks. Vasile et al. [257] summarised three major firmware extraction
techniques: i) Debug interfaces; ii) Raw Flash Dump; and iii) Software Methods. The authors
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also examined 24 popular COTS smart devices in 2018, and found all of them to be vulnerable
to at least one of the techniques. This work also proposed countermeasures for each of the
exploits. Although the study is inspiring and covers a wide spread of target devices, the
focus of the study was the techniques to dump the firmware from the devices—leading to
intellectual property theft. However, exploitation or what useful information the dumped
firmware could provide, time and monetary cost of an attack or the articulation of a practical
adversary model extracting the firmware and the consequence of having access to that firmware
was unclear. Krishnan and Schaumont, in [34] investigated exploiting the JTAG (Joint Test
Action Group) interface in an intermittent computing system. They demonstrated the extraction
of the AES (Advanced Encryption Standard) secret key from checkpoints stored in on-chip NVM
(non-volatile memory). In their adversary model, an active attacker has unrestricted physical
access and can corrupt and modify the target device’s memory content.

B.3 Threat Model

We build our threat model on the basic assumption that without technical knowledge, ordinary
users would not treat IoT devices without obvious mark of tampering as malicious and warrant
further investigation. The attacker’s goal is to extract sensitive information from the IoT device
hardware, including but not restricted to the user’s personal information, usage data, device
configuration and executable code.

B.3.1 Victim Devices

We classify the victim IoT devices into: i) Class-I: The device implements debugging or
programming interfaces, and such interfaces were left open in the final product; and ii)Class-II:
The devices store sensitive data in off-chip NVM, and the memory buses are exposed at the
top/bottom layer of the PCB (Printed circuit board) in the final product.

B.3.2 Attacker Capabilities

• Has physical procession to the victim device for a restricted time window—a few minutes
to half an hour—such a short time generally does not attract the device owner’s attention.
Notably, this setting renders it impractical for physical attacks that require a longer
time [255] for specialised laboratory setups and data collection.
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• Has a basic understanding of electronics, computer security, knows how debug interfaces
and serial buses function. It is important to highlight that it is easy to acquire the simple
knowledge needed from materials freely available online, such as [258] and [259].

• Has access to inexpensive tools as exemplified in Section B.3.3 and a computer with
open-source decryption and binary file analysis programs.

Our attacker capabilities are reasoned based on [34], with following changes to consider more
generic threats: 1) the duration of attacker’s physical access is restricted; 2) an attack does not
leave visible traces (e.g., modify the configuration or data) to avoid drawing a user’s attention;
and 3) we obviated attacks that requires expert knowledge or expensive equipment.

B.3.3 Resources and Costs

We assume an attacker has access to the tools listed in Section B.3.4 to facilitate memory
bus snooping and open debug interface exploits. The reference prices were obtained from
www.ebay.com. For the attacks we explore, the total cost of a memory bus exploit attack is
US$15, and the cost of an open JTAG interface exploit attack is US$45. We can observe that
an attack under this threat model is inexpensive, and tools can be easily acquired to facilitate
memory bus snooping and open debug interface exploits. Notably, an attack under the settings
does not leave irreversible or visible damage to the device [256] or attempt to modify firmware
(as that could permanently brick the device [253], [260]).

B.3.4 Attacker Tools

• Multimeter: An instrument that can measure basic electrical properties, such as voltage,
current, resistance, and so on. We recommend choosing a multimeter with diode forward
biasing andwire connectivity function. Themodel we used in this work is a US$33 Stanley
STHT77364, an US$10 alternative Gator XL830L from could be an alternative.

• Logic analyzer: An instrument that canmeasure fast varying digital signals, records those
signals over time domain, and performs analysis to discover the information encoded. In
this work, we did not use a logic analyzer, in future work we will use a US$300 Digilent
Analog Discover 2 to demonstrate the analysis of U-Boot entry point by monitoring the
off-chip Flash memory bus traffic. For such kind of task a 24MHZ 8 Channel open-source
logic analyzer priced US$15 is adequate.
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• Flashmemory programmer: A low-cost (US$15) device to read out the Flash (generally
also supports EEPROM)memory content from orwrite image files to Flashmemory chips.
A model with a test clip for fast and clean hooking up the exposed memory bus is more
useful. The CH341A Pro Flash memory programmer used in this work is priced US$10
on ebay.com.

• JTAG programmer/debugger: JTAG is also known as the IEEE 1149.1 standard for
deploying and debugging firmware on the chip and also offers low-cost and time-saving
testing for all components in a system through boundary-scan. JTAG is widely used in
industry. Different system architectures may require different JTAG programmers, the one
we used to extract electronic lock programming code from MSP430G2433 is an US$150
MSP-FET430UIF. Compatible MSP430 JTAG programmer from a third party is around
US$35. An universal JTAG programmer supports ARM, MIPS and RISC-V also priced
at US$35 on ebay.com.

• Embedded system development board: Such as Raspberry Pi Zero (US$10), Arduino
UNOR3 (US$22) or STM32 Bluebell (US$15). Those development boards are useful, for
example, to deploy JTAGenum35, an open-source program for identifying JTAG pin-out
definitions.

B.4 Exploitable Debug Interfaces and Exposed

Memory Buses

This section will introduce exploitable debug interfaces and memory buses in COTS IoT devices
and demonstrate how we can easily identify these interfaces for exploitation.

B.4.1 Open Debug Interfaces

JTAG is a commonly used debug interface for embedded systems. We may find one or two
rows of jumper pins with a printed JTAG, JTx or Jx label, where x might be a number as in
Figure B.1 (a). Occasionally, we can also find individual pins labelled with TDI, TDO, TMS or
TCK as seen in Figure B.1 (b). In some products, JTAG headers are there without any label—
Figure B.1 (c)—or even hidden from sight as seen in Figure B.1 (d).

35https://github.com/cyphunk/JTAGenum
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Figure B.1: JTAG debug interface found in IoT devices: (a) labeled with JTAG silk print; (b) labeled with JTAG
pin-outs (e.g., TDI, TDO, TMS or TCK); (c) one or two row of test points nearby the MCU; and (d) hidden JTAG.

Table B.1: Basic JTAG signals. A JTAG interfacemay also haveVsupply, VTref, RTCK andTRACE signals—as
described in the user manual of a JTAG debugger.

Signal name Direction Description
TRST_N Programmer → Device JTAG reset (active low)
TDI Programmer → Device JTAG scan-chain input
TDO Programmer ← Device JTAG scan-chain output
TMS Programmer → Device JTAG mode selection
TCK Programmer → Device JTAG clock
GND Programmer ↔ Device Common ground

To use the basic functionality of the JTAG debug interface, the five signals shown in Table B.1
need to be wired up correctly to a JTAG Debugger—see Figure B.6. There are no concrete
definitions of the pin-out order for the JTAG header. A manufacturer can place the JTAG pins
in any order. To determine the JTAG pin-definition, we can use the manual inspection method
in Section B.5 or use the open-source JTAGenum listed in attacker tools in Section B.3.4.

  

Figure B.2: Two-wire debug interfaces found in IoT devices: (a) ARM SWD debug interface; (b) TI SBW debug
interface; and (c) manufacturer defined proprietary two-wire debug interface.

Other than JTAG, manufacturers may implement different debug interfaces, such ARM
SWD (Serial Wire Debug in Figure B.2 (a)) and TI SBW (Spy-Bi-Wire in Figure B.2 (b)). IoT
device manufactures can also implement a proprietary two-wire debug interface (e.g., the that
found in a TP-Link Wi-Fi access point Figure B.2 (c). The two-wire programming interfaces
typically consist of one bi-directional data wire and one clock wire, sometimes including
GND (ground) and Vcc (common collector voltage) for potential reference and power supply.
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Two-wire debug interfaces benefit from the reduced pin design and are suitable for IoT devices
with small form factors.

B.4.2 Exposed Memory Buses

Since the on-chip NVM is limited and expensive [261], many IoT devices use off-chip Flash
or EEPROM (electrically erasable programmable read-only memory) to store firmware images,
settings, and secrets.

(a) (b) (c) (d)

Figure B.3: Different NVM chips in IoT devices: (a) EEPROM in SOT23-5 package; (b) Flash in SOP-8 package;
(c) Flash in TSOP-56 package; and (d) Flash in eMMC-153b package.

Figure B.3 lists a number of off-chip memory in IoT devices. EEPROM in SOT12-5 package
in Figure B.3 (a) often appears in tiny devices, such as a smartwatch, due to its small
footprint. Flash or EEPROM chips in the SOP-8 package are common off-chip storage in
many IoT devices; such memory communicates with the microcontroller via a serial bus
such as I2C (Inter-Integrated Circuit) and SPI (Serial Peripheral Interface), as exemplified in
Figure B.3 (b). IoT devices requiring relatively higher storage space and faster access speedsmay
employ Flash chips with parallel buses, such as those shown in Figure B.3 (c) and (d)—parallel
buses employ more wires to transfer data and address signals. We focus on memory chips using
serial buses, as parallel buses are generally difficult to access and require professional and costly
equipment. In addition, memory chips with parallel buses can use a BGA (ball grid array)
package where all signal pins are hidden behind the package; therefore, it is more difficult to
access [257].

B.5 Open JTAG Interface Exploit Case study

Post identification of interfaces for possible access, this section investigates the potential threat
posed by demonstrating the extraction of memory contents in IoT devices in two example case
studies under the practical threat model we consider in Section B.3.
Scenario. Consider the following scenario for our first case study: Elizabeth is an 87-year-old
widow, she lives alone in an apartment equipped with an electronic lock. One day the electronic
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lock runs out of battery. Elizabeth asked one of her neighbours to replace the battery for the
lock. However, the battery in the lock is an unusual model. The neighbour suggests bringing
the lock to the hardware store to match the correct battery model. Half an hour later, the
neighbour returned with the battery and re-installs the electronic lock for Elizabeth. Could
the neighbour extract the key code for the electronic lock within the 30-minute time window to
gain unauthorised access to Elizabeth’s house?

(a) (b) (c)

(d) (e)

Figure B.4: Tear-down of a Schlage electronic lock FE575 electronic lock: (a) front side; (b) back side; (c) with
back panel removed; (d) the electronic assembly; and (e) the circuit board is visible after removing the waterproof
silicone rubber keyboard.

Attack.We use a Schlage electronic lock FE575 as an example. The tear-down of the electronic
lock is summarised in Figure B.4. The mainboard of the Schlage electronic lock FE575 is shown
in Figure B.5. Its circuit layout is uncomplicated. The black square in the middle is a buzzer.
It makes a sound when the keyboard is pressed. At the left bottom corner of the buzzer is
an MSP430G2433 microcontroller– the electronic lock’s brain. Other components are mostly
responsible for powering, motor operation—the circuit needs to drive a DC motor to release
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the lock when a correct password is pressed. More importantly, there are seven pins in a row
labelled with JT1, which is highly like a JTAG interface.













 

















 



  

 

 





 

 

 

 

 









 









  

 

 

 






















  

Figure B.5: The main board (a) of the electronic lock. The embedded microcontroller in the lock is a
MSP430G2433, and JT1 is highly likely to be the JTAG interface. Highlighted JTAG signals on (b) are pin
definitions reproduced from MSP430G2433 datasheet [262]; and (c) the microcontroller on the main board.

Unfortunately, the pin definitions for JT1 are not labelled on the PCB; hence a strategy is
needed to identify the correct order of JTAG signals. Fortunately, as seen in Figure B.5, the
MSP430G2433 microcontroller is in an SOP-28 package, all pins are easily accessible. Hence a
US$10 multimeter is adequate to identify pin definitions of JT1 without using professional tools
such as the US$200 JTAGulator.
Our technique to find correct JTAG pins is to use the diode and continuity mode of a multimeter.
The diode and continuity mode is commonly labelled with a diode and a sound wave symbol
(e.g., ). This mode measures the forward bias of a diode (if there is one between the two
probes of the multimeter). If there is a direct wire connection (or short circuit), the multimeter
buzzer will sound. Depending on themultimetermanufacturer, different probe polarities in diode
test mode may be used. For our model Stanley STHT77364, the red probe is connected to the
cathode, and the black probe is connected to the anode of the tested diode (although, typically,
red is the anode and black is the cathode, refer to the multimeter model used for probe polarities).
We will start with seeking for the GND, which can be easily accessed at: i) The negative terminal
of the battery; ii) any EMI (Electromagnetic interference) shielding used; iii) any pin connected
to the ground copper pour; iv) metal case of connectors, such as USB; v) the GND or Vss pin of
a known IC.
Plug the probes into the correct receptacle of the multimeter, select the diode and continuity
mode. Attach the red multimeter probe to any of the exposed GND listed above. We choose to
use the negative terminal of the buzzer. As this terminal is relatively large, it is easy to attach
the probe and is directly connected to the ground copper pour. Then use the black multimeter
probe to explore each of the seven pins in JT1. As summarised in Table B.2 under the column
GND, the 5tℎ pin of the JT1 has forward-biased voltage drop VF = 0, which implies the JT1.5 is
the GND pin in this JTAG connector.
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Other JTAG signals can be determined using a similar method. By looking up the datasheet of
the MSP430G2433 microcontroller, we have highlighted the six JTAG signal pins in Figure B.5.
Now attach the multimeter’s black probe to each of the five highlighted microcontroller leads,
and measure the VF between them and each JT1 pin. The results are summarised in Table B.2.
Table B.2: The forward-biased voltage drop (in mV) measured between each JTAG signal and JT1 pins. Here, OL
stands for open loop.

GND TRST_N TDI TDO TMS TCK TEST

JT1.1 687 OL OL OL OL 0 OL
JT1.2 714 OL OL OL 0 OL OL
JT1.3 711 OL 0 OL OL OL OL
JT1.4 714 OL OL 0 OL OL OL
JT1.5 0 715 OL OL 478 450 430
JT1.6 716 0 OL OL OL OL OL
JT1.7 523 OL OL OL OL OL 0

Table B.3: The estimated JT1 pins definitions.

JT1.1 JT1.2 JT1.3 JT1.4 JT1.5 JT1.6 JT1.7
TCK TMS TDI TDO GND TRST_N TEST

Based on the results in Table B.2, we can conclude that JT1.1 is the TCK signal, as there is a
direct wire connection between the two points. Similarly, JT1.2 is TMS; JT1.3 is TDI; JT1.4
is TDO; JT1.5 is GND and JT1.6 is TRST_N. The JT1.7 is directly connected to the 25tℎ pin of
the MSP430G2433. According to the datasheet, this is the TEST pin connected to the internal
device protection fuse. The product manufacturer should blow the internal fuse by applying a
6 V, 100 mA current to prevent further JTAG access. In addition, Vcc is absent in JT1; in this
case, the board is powered from a battery while debugging instead of the JTAG debugger. The
estimated JT1 pin definitions are summarised in Table B.3.
Next, we use a TI MSP430 JTAG debugger (or a lower cost, compatible model from a third
party) and connect to the pins identified above. We opted to solder a connector to the PCB and
use jumper wires to connect to the JTAG debugger as shown in Figure B.6. Soldering is not
compulsory, a data repair tool (typically costing US$20) can be used instead.
To access the internal memory contents, we used Texas Instrument’s UniFlash software available
at: https://www.ti.com/tool/download/UNIFLASH . If a suitable JTAG debugger
is selected to match the target system, the connections are correct, and the JTAG fuse was
not blown by the manufacturer, UniFlash will automatically detect the chip model. As shown
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MSP430 JTAG debugger

Electronic lock
mainboard

Figure B.6: JTAG debugger attached to the electronic lock main board.

Figure B.7: The memory content read from the electronic lock, (a) contains secret programming code (‘539348’)
and user codes (‘5370’ and ‘2865’), in plain-text; (b) after the user change the programming code to ‘170712’ and
added a new user code ‘5015’, the new codes can still be read out.

in Figure B.7 (a), the memory content read out from information memory (0x1000-0x10FF
according to [262]), contains the lock’s programming code, and user codes. All stored in
plaintext. Those codes match that printed on the user’s manual of the electronic lock and should
be kept secret. Even if the user has changed the default codes, an adversary can still extract
the new value from the same address. With the user code, one can gain entry without letting
the homeowner know. This raises important questions regarding the security of such devices to
insider attacks, and in a more practical setting, leaving the house unattended and in the company
of individuals with lower degrees of trust—e.g. short term rental settings. Simple mitigation
would be to change the default programming code and blow the fuse by putting a 6 V by 100 mA
current to the TEST pin of JT1 to prevent further JTAG access.
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B.6 Memory Bus Snooping Case study

In the second case study, we consider the following.

Scenario. Emiko is an international student who lives in a shared house with a few housemates.
She bought a Wi-Fi IP camera to monitor her room when she was out. One day, her suburb
experienced power outages, and Emiko decided to stay at the University until power was
restored. We demonstrate the risk of a malicious actor, under our treat model, sneaking into
Emiko’s room (when the camera will not raise any potential alarms, given the power outage)
and access the Wi-Fi IP camera to gain control and potentially facilitate peeping whilst leaving
no visible marks of tampering and a fully operational device.

Figure B.8: The tear-down of the TP-link Tapo C100 IP camera: (a) the front side view; (b) with the front panel
removed; (c) the back side of the main board; and (d) the pin definition of the MX25QH64 SPI Flash chip.

Attack. We employed a TP-link Tapo C100 IP camera as shown in Figure B.8 (a) to illustrate
an attack that exploits an exposed memory bus. The casing of the camera is held together by
snap-fit joints; we could disassemble it with a simple lever without leaving irrecoverable damage
as shown in Figure B.8 (b). Most of the important logic components are located at the backside
of the mainboard, as shown in Figure B.8 (c). The brain of the IP camera is the Realtek SoC
(System-on-chip) RTS3903. Unfortunately, its datasheet is not publicly available. Besides the
RTS3903, there is an 8MiB SPI Flash chip XM25QH64C. In this case study, we target extracting
information stored in this Flash chip. The XM25QH64C Flash chip is in an SOP-8 package. All
its pins are exposed, pin definitions, reproduced from [263], are shown in Figure B.8 (d). As we
demonstrate, we can easily use low-cost tools to access the exposed memory bus.
To snoop on the Flash memory chip, the easiest way is to use a US$10 CH341A programmer
with a test clip as shown in Figure B.9. The programmer will power the Flash chip and override
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the SPI bus to send access commands, even when the camera is powered off. The memory
contents can be dumped out using freely available software36.
The IP camera we studied has the Flash chip and the Realtek SoC powered from the same power
rail. When the test clip powers the Flash chip, the Realtek SoC will also start up and attempt
to access the Flash chip. This will interfere with our memory readout. The easiest way to
prevent the interference is to keep the Realtek SoC in a reset state. We spotted four unpopulated
connectors near the SoC by inspecting the IP camera circuit board. Using the multimeter, we
can conclude pin 1 and pin 4 are GND and 3.3 V Vcc, respectively. Pin 3 is pulled up to 3.3 V
via a 4.7 KΩ resistor. We suspect it is either the reset pin or the TCLK signal of the cJTAG
(Compact JTAG designed by MISP company) debugging interface. By trying to short pin 3 and
pin 1, we observed the IP camera is reset, so we can conclude that pin 3 is the reset pin of the
Realtek SoC. During the entire readout process, we need to short the reset pin, and the GND pin
with tweezers to keep the SoC inoperative, as illustrated in Figure B.9 (b).












Figure B.9: (a) the CH341A USB Flash memory programmer; and (b) the test clip of the memory programmer
attached to the MX25QH64 SPI Flash chip.

At this point, the binary image is dumped from the Flash chip, and the victim device can
be re-assembled. No further physical access is required. Next, we follow the Blog post
at https://drmnsamoliu.github.io/ to extract the sensitive information. The
user configurations (password, Wi-Fi SSID, and passphrase) are located at memory address
0x40000-0x50000 in the dumped file. However, this partition is compressed with Zlib and
encrypted with DES (data encryption standard).
The camera must first decrypt the configurations at start-up and read the Wi-Fi password before
connecting to the Internet. Hence the DES key must be stored on-device. According to the

36Available: https://www.instructables.com/CH341A-Programmer/
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blog post, the key is derived from a string ‘C200 1.0’ (corresponding to the model number
and hardware version) at address 0x600c0. However, at this address, in the memory image
we dumped, there is a meaningless string (0x06 0x68 0x7a 0x88 0xa8 0xa7 0x01 0x97). We
know the model number of our IP camera is C100, and the hardware version is 2.0 according
to the nameplate. Therefore, it is natural to seek to search for ‘C100 2.0’ in the dumped file. A
matched string appears at memory address 0x700c0. The sting ‘C100 2.0’ is the model-specific
key material. To derive the correct DES key, a hash function37 extracted from IP camera’s
firmware is used. By replacing the key material ‘C200 1.0’ with ‘C100 2.0’, a 64-bit DES
key ‘249c6923’ can be derived. Since OpenSSL takes hex strings instead of character strings,
we must convert the key into hexadecimal value 0x3234396336393233. Subsequently, we can
employ the following command to decrypt the dumped memory image:
# openssl enc −d −des−ecb −nopad −K [DES key] −in [dumped image] −out [out file]

This command specified using the encrypting function ‘enc’ in the OpenSSL toolbox. The
parameter ‘-des-ecb’ specifies selecting the DES cipher and operating it in ECB (electronic
codebook) mode. No padding is used as ‘-nopad’. The DES key 3234396336393233 should
be filed after the keying flag ‘-K’. The dumped memory image is passed in, following the ‘-in’
flag. In the end, use the ‘-out’ flag to specify a location to save the decrypted file. Once the
dumped memory image is decrypted, we can use binwalk command to decompress it:
# binwalk −e [decrypted file]

binwalk is an open-source toolbox for firmware image analysis. Flag ‘-e’ indicates to extract
known file types automatically. The extracted user configuration will be placed in a new folder.
If successful, a readable user configuration should be available.
Inside the extracted user configuration file, we can see the IP address, supported network
protocols, user name, and passwords. Instead of storing a clear text password, the IP camera
stores a hash value of the password. As a hash function, it is undesirable to be able to invert
a hash value to its plaintext form (a.k.a., pre-image attack [252]). One promising attack to
revert the hash is to use a rainbow table. Rainbow table is a pre-computed mapping table
from chosen plaintext to hash values and vice versa. We have used the online rainbow table
website https://crackstation.net/ to successfully revert the password of one shared
account in our IP camera and used this information to successfully gain access to the RTSP
(real-time streaming protocol) from the IP camera.

37Available: https://drmnsamoliu.github.io/assets/code/key.c
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We demonstrate obtaining unauthorised access to a video stream using information extracted
from the Wi-Fi IP camera’s memory dump in:

https://www.youtube.com/watch?v=fnIn9QugrXI
scan to watch

Importantly, the entire attack process takes less than 25 minutes. Only the first 8 minutes
require physical access to the target camera. The firmware analysis and cracking of the dumped
firmware can be done offline, using freely available tools.

Summary. The data stored in off-chip Flash memory can be easily read out through the exposed
memory bus even when the system is powered off. The manufacturer has employed multiple
techniques to enhance the security, such as encrypting the user configuration partition and storing
hash value instead of the original password. The shared password can be reverted from hash
using a rainbow table in our demo. Password salting could effectively mitigate such attacks.

B.7 Conclusion and Discussion

This appendix considered the dangers of open debug interfaces and exposed memory buses
in commercial IoT devices. With two case studies, we showed the simplicity and the low
cost of attacks by a person with entry-level knowledge on embedded systems–notably, the first
attack only required less than 30 minutes and the second, only requires less than 8 minutes
of access to the device. Evidently, security of IoT devices still require further emphasis from
device manufacturers. Strategies such as disabling the debug interface supported by SoCs,
securing the exposed memory buses by encrypting sensitive memory partitions and salting
passwords are minimal to no additional cost step to improve current state-of-practice. However,
secure on-device key derivation remains a challenging problemwhere memory fingerprint based
methods can provide secure alternatives [38], [124], [264]. We hope our work will help support
development of mitigation methods, inform threat models, and increase awareness of a different
threat dimension posed by electronic devices employed in everyday life.
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Chapter 3 Appendix

C.1 EPC Global C1G2v2 Command Encoding

The Impinj R420 RFID reader used in our experiments does not yet support the recent
EPC Gen2 protocol changes, hence, we map the unsupported commands to BlockWrite

commands. The mapping for Authenticate and SecureComm commands are detailed
in Figure C.1 and Figure C.2, respectively. Similar to Authenticate, a TagPrivilege
command is mapped to a BlockWrite command with WordPtr = 0x7E. Additionally, the
Impinj reader does not have complete support for a BlockWrite command as outlined in the
EPCGen2 protocol specification. Internally, a BlockWrite command containing more than 1
word (16 bits) is split into multiple smaller BlockWrite commands; each of which needs to be
ACKed by the CRFID transponder. This is handled in the RFID MAC layer on a CRFID device.
In our experiments, we still send multi-byte BlockWrite commands to the reader from the
host running the SecuCode App as it reduces the reader-to-host communication overhead by
allowing the reader to send the next BlockWrite as soon as an ACK is received.

Command MemBank WordPtr WordCount RN CRC

Command RFU SenRep IncRepLen Length RN CRCCommand MemBank WordPtr WordCount Data

Data

SecureComm Headers

000011010101

Inner (encrypted) BlockWrite

11000111 11

BlockWrite

SecureComm

Figure C.1: SecureComm command encoding. SecureComm specification is defined to encapsulate an encrypted
command. Instead of encrypting the entire inner BlockWrite command, we encrypt the data field and restrict
the WordPtr to only allow writing to the Download Area.

C.1.1 Experimental Methods

We devised a simple method to evaluate the success rate. We used the ratio of the number
of occurrences of backscatter events immediately after a cold start for a fixed number of
cold-start attempts as the success rate. Each cold start attempt was realised with an RFID reader
interrogation signal; i.e., conducting an inventory round using an RFID reader.
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Command RFU SenRep IncRepLen CSI Length Message RN CRC

0000011010101 null

Command MemBank WordPtr WordCount Data RN CRC

13
(Authenticate)

0011000111

Authenticate

BlockWrite

Figure C.2: Authenticate command encoding. We use MemBank = 0 (Reserved) in the BlockWrite
command to indicate that the message is not a regular BlockWrite and WordPtr = 3 to indicate that the
command should be processed as an Authenticate command. The 8-bit CSI field is placed in the 16-bit
Data field of the BlockWrite command, and the RN and CRC fields are as specified for the BlockWrite
command.

In order to mitigate the possible network delays in using a networked RFID reader connected to
host machine to determine the delays, we employed two oscilloscope probes directly connected
to the CRFID device to measure reservoir capacitor voltage and backscatter events to determine
the time at which the backscatter event is initiated as well as to determine if the backscatter event
immediately followed a cold start.
In order to independently evaluate key derivation and hash function execution, we created a
second bootloader instance where the physically obfuscated key derivation code was replaced
with the execution of a selected hash function. This allowed us to use the samemethod described
to ascertain the success rate of the hash function execution under wireless powering conditions.
The success rate and latency of both lightweight physically obfuscated key derivation method
and hash function executions are evaluated using the experimental setup shown in Figure C.3.
Two probes are connected to the CRFID circuit board where the common ground (GND) is
coloured in black in the figure. The backscatter signal probe lead is coloured in red, the regulated
voltage (Vreg) is coloured in green. We define the time latency as the interval between the Vreg
reaching 2.0 V (t0) and the backscatter event (tb). An operation is successful if a backscattering
event occurs before Vreg drops below 1.8 V—minimum operating voltage of the MCU.
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Oscilloscope
WISP5.1LRG

reg

RFID Antenna

reg

Coaxial Cables

Experiment configuration

Probe connections

Laboratory setup

Oscilloscope capture

reg

Figure C.3: Experiment setup for measuring latency and success rate for PUF key derivation and MAC function
executions.
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Chapter 4 Appendix

D.1 Memory Management Comparison

For implementing the Secure Storage component, several different mechanisms can be used:

1. Isolated segments (e.g. using IP encapsulation hardware). Requirements and
limitations: It requires hardware features (such as IP encapsulation) to implement.

2. Volatile secret keys (see, for example, SRAM PUF [265]). Requirements and limitations:
It might be computationally expensive to derive and erase the secret key, need amechanism
to ‘restore’ the volatile area on device restart, and a different mechanism is required to
ensure the bootloader is immutable.

3. Execute only memory (e.g. using MPU segments at compile time) In this scheme
secure memory is encoded as instructions (e.g. MOV) in execute only memory (XOM)
(see [142]). Requirements and limitations: Implementation can be complex, since any
code in this region must ensure that it does not leak data (e.g. in CPU registers or volatile
memory), including from arbitrary jumps into the code. Additionally, since the bootloader
is also unable to write to this region, it cannot be used to protect dynamic secrets (e.g. the
broadcast session key).

4. Runtime access protection (e.g. using MPU segments at runtime) In this scheme,
secure storage is available on device boot-up, but is locked (until next boot-up) by
the bootloader before any application code is executed. We selected this method in
Wisecr. Requirements and limitations: Method requires MPU hardware with runtime
configuration and locking, and the implementation must ensure that the MPU is always
configured correctly before any application code is executed.
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D.2 Detailed Wisecr Update Scheme

Server Toolkit. Our Server Toolkit can be executed on a host with network connectivity to an
RFID reader. The App loads in the ELF file generated from the compilation process, parses
and slices it into MSPBoot specified 128-bit-long commands suitable for the RFID reader.
The App then uses LLRP commands to construct AccessSpecs and ROSpecs. These
encodeEPCC1Gen2 protocol commands such as BlockWrite and SecureComm commands
to discover, engage and configure a networked RFID reader to execute the Wisecr protocol.
Notably, we follow the same protocols for Host-to-RFID-reader and Reader-to-CRFID-device
communications as in [22], [38] and detail implementation of Wisecr over EPC Gen2 in the
Figure 2.1.
Wisecr Update Scheme Over EPC Gen2 . As described in Figure 7.15, Wisecr enables the
ability to distribute and update firmware of multiple CRFID tokens, simultaneously. Given
that a Server  communicates with an RFID device using EPC Gen2 , a practicable, scalable
and secure code dissemination scheme must be implemented over EPC Gen2 . This requires
communication between three separate entities: i) the host machine; ii) the reader; and
iii) CRFID transponders—see main text Figure 2.1. Our scheme description here focuses on
the communication between CRFID devices—tokens  —and the RFID reader—the Server 
over the EPC Gen2 protocol as illustrated in Figure D.1—our open source code base provides a
complete description ( https://github.com/AdelaideAuto-IDLab/Wisecr ).
Authenticating the Acknowledgement in the Validation Stage. It is theoretically possible to
compute and include a MAC tag in an acknowledgement message at the end of the Validation
stage but the implementation of this in practice is not possible. Our current acknowledgement
signal is based on exploiting the last message in a singulation session—see RFID singulation
phase in the Validation stage in Figure D.1. This last message returns the unique device identifier
or EPC (electronic product code). We piggy back the current version number veri in the data
field part of this message as our soft validation signal. This is possible because at power-up
(whether it be software or hardware reset) the device executes the bootloader and during its
execution copies the idi and veri to a global SRAM memory region for use after the MPU
(memory protection unit) prevents access to this content stored in the secure storage area (see
memory protection unit segmentation diagram in Figure 4.8.
Notably, even if a MAC tag was computed by the bootloader after power cycling (reboot) in
the Validation stage, and stored in global memory for access after MPU protections to be used
during the singulation phase that follows, the data field in the last EPC message is limited to 96
bits. Thus, there is inadequate room to piggyback a 128-bit MAC tag. Further, this would be an
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Figure D.1: Wisecr protocol implemented over the EPC Gen2 protocol. To reduce complexity, we only provide the
protocol sessions after a device is placed in the WisecrMode—as described in Figure 4.7—and highlighted here.

added overhead since the MAC computation would need to occur each time a CRFID device is
powered (booted), irrespective of whether the MAC is needed or not.
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Thus, it is better to compute a MAC tag after reboot, on demand and when necessary by:
i) singulating a token first; ii) instructing the token to compute the MAC tag; and iii) requesting
the MAC tag. This is essentially the method we employ in the Remote Attestation stage that
follows the Validation stage.

D.3 Low Overhead Execution Scheduling

Buettner, et al. proposed Dewdrop [162] execution model to prevent a brownout event under
unreliable powering by executing tasks only when they are likely to succeed by monitoring
the available harvested power. Dewdrop explores a dynamic on-device task scheduling method,
however, requires the overhead of collecting samples of the harvester voltage and task scheduling
by the device’s application code.
In addition, Dewdrop is only suitable for CRFID devices equipped with a passive charge pump,
such as WISP4.1 [13] since Dewdrop requires directly measuring the charging rate of the
reservoir capacitor—charge storage element. In the follow-up, WISP version 5.1, the passive
charge pump is replaced with a S-882z active charge pump and the reservoir capacitor is only
connected to the load when Vcap developed across the capacitor exceeds the reference voltage
of 2.4 V (Vref ). Consequently, in WISP5.1LRG the voltage delivered to the microcontroller
is a sharp step-up, rather than a ramp-up function related to harvested power. Therefore, the
charging-up process cannot be directly monitored by the technique in Dewdrop.

D.4 Powering Channel State Measurement and Power

Aware Execution Model (PAM)

Observation. Generally, increasing distance of the token from a powering source lowers the
harvester output power, RSSI and Read Rate of a given token.
Proposition. Measure powering channel state from the token is the most reliable measure of
power available at a device.
Validation.

RSSI = PtG2tG
2
patℎK , where Gpatℎ =

(

�
4�do

)2
|H|

2 (D.1)

H = 1 +
N
∑

i=1
gitg

iΓi
do
di
e−jk(di−de) (D.2)
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Although RSSI or received message rate (Read Rate) [29] measured by an RFID reader (Server)
could provide a simple method to measure the powering channel state at a CRFID transponder,
we observed these measures to be highly unreliable. This can be mostly understood by
considering the complexity of the signal propagation model [98]—see equations (D.1) to (D.2)
for details. We can see that RSSI depends not only on the transmit power Pt, the transmitter
antenna gain Gt and backscatter coefficient K , but also the path gain Gpatℎ. However, Gpatℎ
depends on signal wavelength �, line of sight distance d0 and the multi-path factorH ; whereH
is a complex function of angle alignment of the transmitter git and the device gi, angle-dependent
reflection coefficient Γi of i-th object, i-th path length for a total of N multi-paths—and the
influences from the random access nature38 of the media access control protocol used by the
RFID air interface affecting RSSI and read rate measurements.

Therefore, the powering channel state is best estimated by the field deployed CRFID device
harvesting available power at the device.

Thus, we introduce a power aware execution model where:

• The powering channel state at a CRFID tag is measured by the device using a single
measurement of harvested power at boot-up (called aPower Sniff denoted asVti ← SNIFF(t)

in the update scheme). The voltage measure, Vti, is used to estimate the power that can be
harvested by a given CRFID device in the field; and

• The workload of scheduling execution of on-device tasks is determined by the resourceful
Server (RFID reader and network infrastructure) as opposed to the resource limited CRFID
device based on the channel state measurements from a CRFID.

We consider a harvesting device operating under the commonly used charge-burst mode where
charge is first accumulated in a storage element—often a capacitor—and charge is released for
useful work when an adequate mount of charge (measured in terms of the voltage) is reached
at the charge storage element. Our power aware execution model (PAM) requires the Server
(RFID reader and/or host) involved in the update to derive two parameters: i) time estimation to
charge to a set voltage (tc); ii) time estimation to a brown-out (tb) based on the CRFID reported
measurement Vti. Here, we reason that the distance between the antenna and the given CRFID
device does not change during a given update session. Therefore, the power estimated at the
beginning of the session is valid during the entire session.

38Notably, the RFID air interface relies on a slotted ALOHA media access control protocol.
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Figure D.2: Power measurements: (a) charging while the MCU is in LPM mode; and (b) discharging when the
MCU is in active mode (we employed a MAC computation for the task). The charge and discharge experiments at
each fixed distance were repeated 10 times to obtain a mean response.

Unfortunately, the RF energy harvester on a CRFID device is a non-linear circuit component
whose output voltage changes over time as input RF power level varies. Therefore, it is
non-trivial to model the RF energy harvester [162]. Therefore, instead of relying on an analytical
model, we adopt an experimental method to derive the parameters for PAM empirically. We
measure, in repeated measurements, the output voltage generated by the power-harvesting
network on the WISP CRFID. We also measure the expected workload we can obtain from a
CRFID device, before a brownout causes power loss. We extrapolate from these measurements
to construct an empirical model for the PAM() function employed by the Server to determine
the best set of execution parameters from the reported voltage V t at runtime.
As depicted in Figure D.2 (a), the output voltage from the charge pump grows at different rates
and as a function of received power. The traces do not intersect, therefore, if we measure the
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charge pump output voltage at an early time, e.g, 30 ms as labelled in the picture, we can obtain
a voltage across the reservoir capacitor Vcap, with which we can predict the time required for
the reservoir capacitor to be charged to a certain voltage level. The charging rate of a capacitor
becomes slower following a logarithm trend. It is too conservative to use the time to charge to
nearly 100% saturated voltage; we empirically determined an adequate LPM time. We use the
time to charge to approximately 63% of the saturated voltage, then compared to waiting for a
nearly fully charged capacitor, we can reduce charge time by 75% and still accumulate adequate
energy to execute the chunk of task under the active time period tactive.
The time before brownout is also a function of received power. We can observe in Figure D.2 (b),
when the powering condition is good, the CRFID device can execute the MAC computation we
employed for the load, continuously; starting from ta = 110mswithout power failure. However,
the device starts to fail or brown-out causing a power loss at t=142.92ms, giving a time to brown
out of tb = ta+ 32.93 ms for V t below 2.183 V. As expected, we can see that tb decreases as the
received power decreases.
PAM function formulation. From our results, we can conclude: i) for V t ≥ 2.393V, the CRFID
token may continuously operate with no power loss. In such cases, tLPM = 0, and tactive =∞ is
used (execution does not need to be altered; ii) for V twithin 2.183 V and 2.393 V, we can employ
tLPM = 10 ms and tactive = 29 ms (90% the measured tb ) for a conservative approach to prevent
power failures; iii) for V t within 2.143 V and 2.183 V, use tLPM = 15 ms and tactive = 14 ms;
iv) for V t within 2.140 V and 2.143 V, use tLPM = 25 ms and tactive = 11 ms; and v) if V t ≤
2.140 V, then the CRFID device cannot accumulate adequate energy under such a condition to
complete a computation intensive task, and we strongly suggest to not perform a code update in
this case. We describe (tactive, tLPM )←PAM.Get(V t) function in equation (D.3).

PAM.Get(V t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[∞, 0] , V t ≥ 2.393 V
[29 ms, 10 ms] , 2.393 V > V t ≥ 2.183 V
[14 ms, 15 ms] , 2.183 V > V t ≥ 2.143 V
[11 ms, 25 ms] , 2.143 V > V t ≥ 2.140 V
[9 ms, 30 ms] , V t < 2.140 V

(D.3)

D.5 Transponder Modes & Broadcast Channel

Stork [22] proposed exploiting promiscuous listening by choosing one in-field token (CRFID) to
stay in the non-overhearing mode and the rest in overhearing (observer or promiscuous listening)
mode to create a logical broadcast channel. This method overcomes the unicast media access
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Table D.1: Comparing the settings of tokens.

Method Pilot/Non-Overhearing
role selection Transponder mode

Ignore handle in
SecureComm/
BlockWrite

SecureComm/
BlockWrite

response
Stork [22]

(insecure protocol) First seen by Host Overhearing 3 8

non-Overhearing 8 3

Wisecr
(Our secure protocol) The lowest Vt Token Observer 3 8

Pilot 8 3

layer protocol to facilitate wireless code dissemination to multiple CRFID devices. Building
upon Stork, our Pilot-Observer mode (Section 4.3.2) makes a key improvement. In contrast
to Stork [22], for the token under Non-overhearing/Pilot mode, instead of selecting the first
device responding to an interrogation signal from the Server, we elect the device with the lowest
reported voltage (Vt) as the pilot token. The similarities and differences between our work and
the Stork are summarised in Table D.1.
This method forces the broadcast session to be driven by the device with the lowest available
energy, and the highest probability to brownout; thus, increasing the chance of all non responding
tags remaining in synchronicity with the processing of the broadcasted firmware, simply because
these devices are able to harvest more power than the pilot tokenwhilst also not having to respond
to the Server.

D.6 Pilot Election Experiments

We have collected experiments for 20 cm, 30 cm, 40 cm and 50 cm as shown in Figure D.3.
Generally, at 20 cm and 30 cm, all methods can succeed, with little differences in terms of the
number of attempts and latency. In comparison, all methods failed to update all four tokens in 10
attempts at 50 cm; although several devices were often updated, no attempt resulted in all four
tokens being updated at this powering level, hence the success rate is reported as zero. However,
in the regions where devices are likely to operate at the threshold of powering, seen at 40 cm
in our experiments, our proposed pilot election method performs best. Further, the proposed
method is also seen to perform more consistently; indicated by the consistent success rate across
different powering conditions achieved with different distances.
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Figure D.3: Evaluation of the pilot token selection strategies we propose. Four tokens were placed at 20 cm, 30 cm,
40 cm and 50 cm above a reader antenna. The pie chart shows the number of attempts to have all 4 CRFID devices
or tokens updated. The scatter plot shows the corresponding latency for successful updates. The results are obtained
over 100 repeated measurements, where each measurement included 10 attempts to update all four CRFID devices.
The bar graph denotes the number of successful updates—defined as all four tokens being updated over the 100
repeated measurements. Here (mean, standard deviation) latency statistics are given in red text.
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D.7 Execution Overhead for Receiving Broadcast

Packets

It is non-trivial to analyze the clock cycles for receiving a packet and sending a reply, as opposed
to other tasks, as they are executed under a constant clock speed. Notably, the CRFID tokens
do not have a hardware implementation of the wireless communication protocol. The RFID
communication protocol is implemented in software. Since RFID communications require strict
timing requirements, the CPU clock is dynamically configured and the relevant source code is
written in assembly language to meet the strict timing requirements. For example, when the
device is receiving a packet, the CPU works at 16 MHz. When the device is sending a reply by
modulating its antenna impedance, the CPU works at 12 MHz. So it is difficult to employ our
previous method to predict clock cycles by monitoring GPIO pins.
To overcome the above challenge, we used debugger tools to read the CRFID device’s internal
states by inserting three breakpoints: Breakpoint 1: before the receiving routine is called;
Breakpoint 2: in between the receiving routine and the reply routine; Breakpoint 3: after the
reply routine (as illustrated in Figure D.4). Clock cycles for receiving and replying can be
acquired by looking at the clock profile counter at each breakpoint.

RFID
reader

Observer
token

Save data

Pilot token

Save data

Prepare reply  
(e.g., compute CRC)

Send reply Breakpoint 2

Breakpoint 1

Breakpoint 3

Figure D.4: Method to measure clock cycles for receiving a packet and acknowledging a received packet.

The SecureComm command in the EPC Gen2 specification is yet to be widely supported
in commercial RFID hardware. Therefore, as we mentioned in Section 4.3.2, we implement
this command over the existing BlockWrite specified to support variable payload size as
described in [181]. However, the Impinj R420 RFID reader we used in experiments implements
it in a distinct manner. Irrespective of the specified payload size, the Impinj R420 reader
(software version 5.12.3.240) always splits the payload into multiple BlockWrite commands,
each command carrying a payload of only 2 Bytes [266]. Further, busy waiting is used while
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receiving a command from the RFID reader (for example, at https://git.io/J1lO8

). Hence, clock cycle results can vary from measurement to measurement. Hence, in our
experimental results, we report the average clock cycles for such BlockWrite commands
over 100 repeated measurements. We summarise the results below:

• Pilot token’s cycles to receive a BlockWrite packet (with 2 Byte payload): 23,082
• Pilot token’s cycles to send a reply to the BlockWrite packet: 1,131
• Observer token’s cycles to receive a BlockWrite packet (with 2 Byte payload): 22,002

The clock cycles for an observer token to receive a BlockWrite packet is 1,080 smaller
than the pilot token (this number is obtained by calculating the difference between the pilot
and observer tokens’ clock cycle counter at Breakpoint 2, over the average obtained from 100
measurements). This is because the observer does not need to prepare the reply packet (ACK),
which requires a CRC-6 calculation, as illustrated in Figure D.4.
The total number of packets required in an update can be computed with:

Npackets =
firmware size (in Bytes)

2 Bytes per BlockWrite command
The number predicted using the above equation is in an ideal case, the actual number may be
higher considering retransmissions, for example, due to communications errors identified using
the CRC.

D.8 Experiment Setup to Access Token’s Internal

State

Some of our experiments require to measure the internal states of the token. For example the
impact of four key device tasks on power-loss and the evaluation of our proposed power PAM
method in Section 4.3.2. However, we do not have a precisely controlled RF environment (i.e.,
anechoic chamber) to remove the impact of themultipath signals constructively and destructively
interfering with the RF powering of a device.
The measurement processes for Figure 4.2 and Figure 4.4 were different and complicated by the
probes and wires that we need to attach to the device, the Digital Storage Oscilloscope (DSO)
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Digital storage oscilloscope (DSO)

CRFID device (token)

Probes

Probes

Researcher sits here to 
operate the  DSO

Wires connecting
probes to the DSO

to the
RFID reader

RF cable

Probes to measure harvested voltage
and the internal state of CRFID device

Figure D.5: Experiment setup and instrumented CRFID device used for the experiments summarised in Figure 4.2
and Figure 4.4. Notably conducting the experiments require a researcher to be seated next to the DSO. The probes,
the changing positions of the wires leading from the probes, especially at different distances, and the orientation of
the researcher significantly impacted these measurements.

we need to keep near the setup as well as the close proximal presence of the researcher to operate
the DSO to enable taking the measurement as shown in Figure D.5.
To try to mitigate the influence of factors discussed above, we conducted these experiments
following the method we describe below:

• Ensure we used the same CRFID device for both experiments.
• Try our best to keep the multipath environment the same across the two experiments.

Hence, instead of adjusting the distance (which suffers from different multipath reflection
and interference) and the changing positions of the probes and wires, we have the CRFID
device fixed at 20 cm above the reader antenna, and adjusted the transmit power of the
RFID reader following the method in [95].

We can employ this method because, according to the free-space path loss equation [97]
given below, adjusting the transmit powerPt of the RFID reader has a similar impact on the
received power Pr as changing the distance d. Because, the RF wavelength � is relatively
constant (notably RFID employs frequency hopping regulations) whilst the RFID reader
antenna gain Gt and CRFID device antenna gain Gr are fixed.

Pr = PtGtGr
( �
4�d

)2

Notably, in the evaluation of PAM, what we are interested in is the available harvested power,
distance is just one factor we can use to control the available power at the device in our
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experiments. Adjusting the transmit power endows us with a more accurate form of control
over the available power as that can be done using the RFID reader software, programmatically,
and without interfering with the devices setup (such as changing distances and the arrangement
of the probe wires and the multi-path environment).

D.9 Firmware Update to Mobile Tokens

We tested firmware updates to mobile CRFID devices. We rotated the rotor by hand, with a
rotation speed of approximately 1 RPM (revolutions per minute) and conducted 100 repeated
firmware updates to the four CRFID devices in the rotor blades (as illustrated in the video
https://youtu.be/AVrf0rNM0z8 ). Here, as in other experiments, for each firmware
update, the Host makes 10 attempts to update all 4 devices. The result in Figure D.6 shows that
3 updates resulted in disseminating firmware to all four tokens, and in 51 updates, at least one
token is updated. We can conclude that updating firmware to mobile CRFID devices is possible
but the success rate can be expected to reduce dramatically.

Tokens successfully updated

0 token

1 token

2 tokens

3 tokens

4 tokens

49%

(7%)

(29%)

(12%)
(3%)

Figure D.6: Attempt to update firmware while the UAV rotor is rotated by hand at approximately 1 RPM. The pie
chart shows the number of CRFID devices updated in the 100 repeated firmware update executions.
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Table E.1: The implementation overhead of different Hash functions (message size= 240 bytes).

name digest size clock cycles FRAM usage SRAM usage
DM-SPECK64 64 bits 178,448 1,566 bytes 52 bytes
BMW-256 256 bits 150,046 11,398 bytes 215 bytes
SHA1 160 bits 159,969 12,442 bytes 94 bytes

BLAKE2s-256 256 bits 106,482 4,964 bytes 238 bytes
BLAKE2s-128 128 bits 104,723 4,961 bytes 238 bytes
SHA3-256 256 bits 584,126 3,652 bytes 472 bytes

Table E.2: BCH code encoding overhead.

(n1,k1,t1) clock cycles FRAM usage SRAM usage
(63,18,10) 53,944 858 bytes 114 bytes
(63,16,11) 51,003 738 bytes 117 bytes
(63,7,15) 31,577 842 bytes 126 bytes

(127,64,10) 238,671 858 bytes 197 bytes
(127,57,11) 248,433 1,002 bytes 204 bytes
(127,50,13) 235,005 1,034 bytes 211 bytes
(127,43,14) 219,095 1,050 bytes 218 bytes
(127,36,15) 198,758 1,044 bytes 225 bytes
(127,29,21) 181,438 1,058 bytes 232 bytes
(127,22,23) 167,509 1,072 bytes 239 bytes
(127,15,27) 111,335 1,054 bytes 246 bytes
(255,123,19) 930,093 1,370 bytes 394 bytes
(255,63,30) 680,087 1,418 bytes 454 bytes
(255,47,42) 583,024 1,446 bytes 470 bytes
(255,37,45) 476,744 1,492 bytes 480 bytes
(255,29,47) 377,220 1,506 bytes 488 bytes
(255,21,55) 294,783 1,520 bytes 496 bytes
(255,13,59) 201,535 1,418 bytes 504 bytes
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Table E.3: BCH code decoding overhead.

(n1,k1,t1) clock cycles FRAM usage SRAM usage
(63,18,10) 393,836 1,882 bytes 1,226 bytes
(63,16,11) 435,027 2,022 bytes 1,168 bytes
(63,7,15) 626,881 2,572 bytes 1,154 bytes
(127,64,10) 670,622 3,676 bytes 1,226 bytes
(127,57,11) 748,933 3,942 bytes 1,228 bytes
(127,50,13) 1,030,444 4,466 bytes 1,228 bytes
(127,43,14) 978,775 4,728 bytes 1,228 bytes
(127,36,15) 1,057,415 5,006 bytes 1,218 bytes
(127,29,21) 1,574,426 6,602 bytes 1,228 bytes
(127,22,23) 1,742,276 7,134 bytes 1,226 bytes
(127,15,27) 2,102,222 8,198 bytes 1,228 bytes
(255,123,19) 2,515,163 11,958 bytes 1,228 bytes
(255,63,30) 4,116,796 17,700 bytes 1,228 bytes
(255,47,42) 6,102,010 23,964 bytes 1,228 bytes
(255,37,45) 6,582,507 25,530 bytes 1,226 bytes
(255,29,47) 6,976,341 26,574 bytes 1,228 bytes
(255,21,55) 8,345,992 30,750 bytes 1,226 bytes
(255,13,59) 8,528,363 34,566 bytes 1,298 bytes
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F.1 Derivation of Performance Metric Models

In this section, we detail the derivation of equations in Section 6.3, where the following ideal
chip model is adopted.

F.1.1 Synthetic Chip Model

Due to the size limitation of physical chips and difficulty of taking a massive number of repeated
measurements from physical chips, we adopt a synthetic chip model to evaluate our analytic
predictions. The synthetic chipmodel used is from [126] and is built under the following settings:

1. Each bit has a 50% chance being logic ‘1’ or ‘0’ during the enrolment phase. Each initial
bit value is randomly generated during chip initialisation.

2. Each bit has an equal probability, BERf, of being flipped during a regeneration.
3. The values of bits are independent and identically distributed (i.i.d.); hence, we assume

no spatial or temporal correlations.

F.1.2 Unreliability Formalisation of S-Norm Transformation

As described in Section 6.2.2, all possible cases of noise-tolerant S-Norm transformed bit F are
shown below.

F ← SNorm(fn×1, �) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, ‖f‖1 ≥ ⌈

n
2⌉+ �

0, ‖f‖1 ≤ ⌊

n
2⌋− �

⊥, Otherwise

The formalisation is visualised in Figure F.1. Recall that a F bit can be transformed from n raw
bits and the l1-Norm of the F is between [0, n]. To assess the worst-caseBERF, we consider the
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"0"
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Figure F.1: S-Norm-based NoisFre. Two boundary conditions are illustrated: when F = ‘1’ where ‖f‖1=⌈ n2⌉+ �,and when F = ‘0’ where ‖f‖1=⌊ n2⌋− �. Here we use F =‘1’ as an example to demonstrate the influence of flipped
raw bits on their transformed 1-bit F . The generated l1-Norm is partitioned into two segments: A and B. Consider
three representative cases: 1 any single raw bit flip in B will enhance the reliability of the transformed bit F ;
otherwise 2 any single raw bits flip in segment A will deteriorate reliability of the F ; 3 the F will fail/flip if
there are � or more raw bits flipped in segment A.

condition where the selected word’s l1-Norm is exactly equal to ⌈n2⌉+ �, as shown in boundary
condition F =‘1’ in Figure F.1. Here, � is a threshold to select highly reliable F bits.
Each raw bit is with BERf probability to be flipped under reevaluation. Using boundary
condition F =‘1’ as an example, on the one hand, 1 , if there are raw bits of ‘0’ (marked
as segment B) flipping, it will increase the tolerance of the number of raw bits of ‘1’ that allows
being flipped (in segment A) without influencing F bit. In contrast, 2 flipping raw bits of ‘1’
(marked as segment A) will potentially result in an error to the F bit. Further, 3 , supposing
that raw bits of ‘0’ (marked as segment B) remain unchanged, if more than � raw bits of ‘1’ flip,
the F will exhibit an error—flipping from ‘1’ to ‘0’. To be precise, the transformed F bit will
not exhibit error unless more than � + i raw bits of ‘1’ flipping.
Overall, bit flipping within raw bits of ‘0’ (marked as segment B) increases the reliability of
extracted F. In contrast, bit flipping within raw bits of ‘1’ (marked as segment A) decreases the
reliability of extracted F. The boundary condition F = ‘0’ is logically equivalent to the case
F = ‘1’ but, only inverts F ’s ‘0’/‘1’ value rather than its BERF.
Without losing generality, we focus on one case shown in 1 in Figure F.1. ‖fi‖1 = ⌈

n
2⌉ +

�, the probability of having exact x error bits in segment A can be expressed as Prf lip
|x|∈A =

binopdf(x, n2 + �,BERf), given that each raw bit has a BERf probability of flipping. Similarly,
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Figure F.2: D-Norm-based NoisFre: (a) Two boundary conditions are illustrated: when F = ‘0’ where (ℎ − l =
�) ∧ ([ℎ] > [l]); and when F = ‘1’ where (ℎ− l = �) ∧ ([l] > [ℎ]); (b) we use F = ‘0’ as an example to demonstrate
the influence of flipped raw bits on their transformed 1-bit F . The two l1-Norms are firstly reshaped to a single
row as shown above to backtrack to the same formulation strategy in S-Norm. The reshaped l1-Norm is partitioned
into two segments: A and B, the size of segment A is n+ �, and the size of B is n− � under the boundary condition
F = ‘0’. Consider three cases: 1 any single raw bit flip in B will enhance the reliability of transformed F bit;
otherwise, 2 any single raw bit flip in segment A will degrade the reliability of F. The case of F will fail/flip 3
if there are � or more raw bits flipped in segment A.
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the probability of y bits in segment B to be flipped is formulated as Prf lip
|y|∈B = binopdf(y, n2 −

�,BERf).
Although bit flip could occur in either segment A or B, consequential BERF of F bits are
opposite: flipped bits in segment A reduction in the margin or potentially increases the BERF

(shown as the dashed boundary line in Figure F.1 that moves toward the left). In contrast,
flipped bits in segment B increase the margin or potentially decreaseBERF (the boundary moves
toward the right). If the boundary crosses the middle point of n2 , the ‖fi‖1 falls below n

2 , and
consequently, the F bit flipped—exhibiting an error.
Starting from the extreme but straightforward condition—there is no bit flip in segment B (i.e.,
y = 0). the maximum number of erroneous bits that can be tolerated is � as discussed above.
This can be expressed as P fail

‖fi‖1
= Pr(x− y ≥ �) = Pr(x ≥ � | y = 0) = Pr(x ≥ �) × Pr(y = 0),

where the term Pr(x ≥ �) can be expressed as 1 − Pr(x < �) = 1 −
∑�
x=0

(

Prf lip
|x|∈A

)

= 1 −

binocdf|(�, ⌈n2⌉+ �,BERf). By substituting Prf lip
|y|∈B = binopdf(0, ⌊n2⌋− �,BERf) into the P fail

‖fi‖1
equation, P fail

‖fi‖1
is expressed:

P fail
‖fi‖1

=
(

1 − binocdf(�, ⌈n
2
⌉+ �,BERf)

)

× binocdf(0, ⌊n
2
⌋− �,BERf) (F.1)

However, there is more than one case that satisfies x − y ≥ � for {(x, y) ∶ |x| ∈ A, |y| ∈ B}.
Since A and B are finite sets, the combination of x and y are numerable. Another property
worth mentioning is |A| > |B|. Therefore, the total number of combinations is up bounded by
|B| = ⌈

n
2⌉− � where ‘| |’ denotes the cardinality or the size of a set. If we enumerate and sum

up all possible combinations, we obtain the complete form of equation (6.8):

BERF =
⌊

n
2⌋−�
∑

i=0

(

(

1 − binocdf(� + i, ⌈n
2
⌉+ �,BERf)

)

× binopdf(i, ⌊n
2
⌋− �,BERf)

)

(F.2)
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F.1.3 Unreliability Formalisation of D-Norm Transformation

As discussed in Section 6.2.2. The transformed bit via D-Norm is determined as below:

F ← DNorm(fn×m, �) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, ℎ− l ≥ � ∧ [ℎ] < [l]

0, ℎ− l ≥ � ∧ [ℎ] > [l]

⊥, ℎ− l < �

(F.3)

where [] indicates the index.
To apply the same derivation strategy as the S-Norm, as illustrated in Figure F.2 (b), the
two l1-Norms are reshaped into a single row, and four partitions are now rearranged as two
segments: A and B. The length of segment A is eventually ℎ + (n − l) by considering the fact
ℎ = l + �, whereas we can see that the length of A is n+ �. The largest number of errors/flips
within raw bits f that still can not result in error or flip to the transformed F bit is (n+ �) − n = �.
The rest of the steps are identical to those in S-Norm. Using 1 as an example, on the one hand,
Case 1 , if one raw bit in segment B is flipped, it will increase the tolerance of the number
of raw bits in segment A which allows being flipped without influencing F bit. On the other
hand, Case 2 flipping one raw bit in segment A will potentially result in an error to the F bit.
Further, for Case 3 , supposing that segment B’s raw bits remain unchanged, if more than � raw
bits flipped in segment A, the F will exhibit an error—flipping from ‘0’ to ‘1’. To be precise,
the transformed F will not exhibit error unless more than � + i raw bits in segment A flip.
Now, an extreme condition is considered as a starting point: as shown in the third column in
Figure F.2, we have two words, labelled with spatial index the ‘first’ and the ‘second’. We
denote the raw bits as ff irst and fsecond, respectively.
In the exemplified case, ff irst has the lowest l1-Norm while the fsecond has the highest l1-Norm
in the m-word block. (i.e., ‖ff irst‖1 = l, ‖fsecond‖1 = ℎ). From the diagram, we can write the
following equation:

‖fsecond‖1 − ‖ff irst‖1 = � (F.4)
By substituting ‖fsecond‖1 = ℎ and ‖ff irst‖1 = l into the equation above (the case 1 in
Figure F.2 (a)), we obtain:

ℎ− l = � (F.5)
Add n (number of bits in one word/group) to both sides of the equation. We obtain:

ℎ+ (n− l) = n+ � (F.6)
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If we reshuffle the four partitions in Figure F.2 (b), the error rate of D-Norm can be formalised in
a similar manner as the S-Norm (equation (6.8)). The margin (denoted as a dashed line) reduces
and results in an unstable trend if any bit flips in the segment A. Once the margin crosses n
(marked as a solid line) from the right to the left, the transformed F is, therefore, erroneous. In
contrast, bits flipped in segment B increase the margin and stabilise the F.
The probability of x error bits occurring in segment A can be expressed as Prf lip

|x|∈A =
binopdf(x, n + �,BERf). Similarly for y bits in segment B to be flipped can be expressed as
Prf lip

|y|∈B = binopdf(y, n− �,BERf).
Now consider the special case where there is no bit flip in segment B; then the highest number
of bits allowed to be flipped in segment A is simply �. Otherwise, the F will exhibit errors.
Consequently, the P failDNorm can be expressed as:

P failDNorm(y = 0) =
(

1 − binocdf(� − 1, n+ �,BERf)
)

× binopdf(0, n− �,BERf) (F.7)

If the number of flipped bits in segment B is non-zero, Prf lip
|y|∈B = binopdf(y, n− �,BERf), where

y ∈ [0, |B|], |B| = n − �. In other words, flipped bits in segment B allows more tolerance
of error bits in segment A, before F exhibiting error. Therefore, the D-Norm, BERF, is the
summation of P failDNorm(y) for all possible y, finally formulated as in equation:

BERF =
n−�
∑

y=0

(

(

1 − binocdf(y+ � − 1, n+ �,BERf)
)

×binopdf(y, n− �,BERf)

)

F.1.4 Extraction Efficiency of S-Norm Transformation

For the S-Norm, if one group/word f is selected, it must satisfy the selection criteria ‖f‖1 ∈
[0, ⌊n2⌋ − �] ∪ [⌈

n
2⌉ + �, n]. Hence, the probability of a group being selected can be expressed

as:

P selectSNorm = Pr(‖f‖1 ≤ ⌊

n
2
⌋− �) + Pr(‖f‖1 ≥ ⌈

n
2
⌉+ �)

=
⌊

n
2⌋−�
∑

i=0

(

Pr(‖f‖1 = i)
)

+
n
∑

k=⌈ n2⌉+�

(

Pr(‖f‖1 = k)
)
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By substituting Pr(‖f‖1 ≤ i) = binocdf(i, n, 0.5) and Pr(‖f‖1 ≥ k) = 1 − binocdf(k, n, 0.5), we
get:

P selectSNorm = binocdf(⌈n
2
⌉− � − 1, n, 0.5) +

(

1 − binocdf(⌊n
2
⌋+ �, n, 0.5)

)

(F.8)
The P selectSNorm formulates the probability that one group is selected under S-Norm. The extraction
efficiency �SNorm can be directly expressed via P selectSNorm:

�SNorm =
1
n
× P selectSNorm × (1024 × 8) (F.9)

Where 1
n means that a transformed F bit is from n raw bits, The last term 1024 × 8 is the

conversion factor between bit and Kilo bytes (bit/KiB). By substituting P selectSNorm into �SNorm, we
can finally obtain equation (6.10).

�SNorm =
1
n
×

(

binocdf(⌈n
2
⌉− � − 1, n, 0.5) +

(

1 − binocdf(⌊n
2
⌋+ �, n, 0.5)

)

)

× (1024 × 8)

(F.10)
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Figure F.3: Validation on equation (6.11) (extraction efficiency of D-Norm) using a simulated chip (the Simulation
test setting in Section 6.4). Here, n = 32, while m and the noise tolerance parameter � are varied. Overall,the
simulation agrees well with the prediction, as two values overlaps.
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F.1.5 Extraction Efficiency of D-Norm Transformation

To estimate the extraction efficiency of D-Norm, what we need to do first is estimate the
probability that amongm groups/words f1, f2,… , fm), the minimum l1-Norm ‖fi‖1 is any given
value a from 0 to n, and the maximum l1 norm ‖fi‖1 is another given value z from 0 to n:

P (a, z) ≜ Pr(l = a ∧ ℎ = z
)

Recall that:

ℎ ≜ arg max
fi|i∈{1,..,m}

(‖fi‖1)

l ≜ arg min
fi|i∈{1,..,m}

(‖fi‖1)

Once we comply with the above principle, the P selectblock , that one block to be selected for
noise-tolerant fingerprint extraction is simply the sum of all P (a, z) over z− a ≥ �.

P selectblock =
n−�
∑

a=1

n
∑

z=a+�
P (a, z)

P (a, z) is a non-trivial to estimate. Fortunately, we can solve an easier and related problem first:

Q(a, z) ≜ Prob(l ≥ a ∧ ℎ ≤ z
)

=
(

z
∑

i=a
binopdf(i, n, 0.5)

)m

Another angle to look at Q(a, z) is: What is the probability that among m words in a block with
all l1-Norm are at least a and at most z? That question can be answered because it poses an
independent question on each word fi: is a ≤ ‖fi‖1 ≤ z or not? The answer must be ‘yes’ for
all m words, and it is ‘yes’ for a single word with probability ∑z

i=a binopdf(i, n, 0.5) (the usual
formula for the number of ‖fi‖1 meet � divided by the number of all m words), and because
those events are independent, the probabilities can be consequentially multiplied.
The question becomes: how do we get from Q(a, z) to P (a, z)?
Note that:

{(f1, f2,… , fm) ∶ (l = a ∧ ℎ = z)}

= {(f1, f2,… , fm) ∶ (l ≥ a ∧ ℎ = z)} − {(f1, f2,… , fm) ∶ (l ≥ a+ 1 ∧ ℎ = z)}

because for the l to be equal to a it is equivalent to ask for the l to be at least a but not to be at
least a+1. In addition, the set we are subtracting is actually a subset of the set we are subtracting
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from, so we obtain:
P (a, z) = Prob{(f1, f2,… , fm) ∶ (l = a ∧ ℎ = z)}

= Pr{(f1, f2,… , fm) ∶ (l ≥ a ∧ ℎ = z)} − Pr{(f1, f2,… , fm) ∶ (l ≥ a+ 1 ∧ ℎ = z)}

Our two operands are of the same type. We can do the same operation to reduce each probability
to something expressible by some Q(r, s):

P (a, z) = {(f1, f2,… , fm) ∶ (l ≥ r ∧ ℎ = z)}

= {(f1, f2,… , fm) ∶ (l ≥ r ∧ ℎ ≤ z)} − {(f1, f2,… , fm) ∶ (l ≥ r ∧ ℎ ≤ z− 1)}

And we obtain:
Pr{(f1, f2,… , fm) ∶ (l ≥ r ∧ ℎ = z)} =

Pr{(f1, f2,… , fm) ∶ (l ≥ r ∧ ℎ ≤ z)} − Pr{(f1, f2,… , fm) ∶ (l ≥ r ∧ ℎ ≤ z− 1)}

= Q(r, z) −Q(r, z− 1)

And finally, for P (a, z), by substituting this in the above formula:

P (a, z) = (Q(a, z) −Q(a, z− 1)) − (Q(a+ 1, z) −Q(a+ 1, z− 1))

words

(  ,  )
(  ,  -1)
(  +1,  )
(  +1,  -1)
(  ,  )

...

P

Q
Q
Q
Q

a z

m

a z
a z
a z
a z
a z

Figure F.4: Showing the relationship between Pblock and Q terms.

The normalised D-Norm extraction efficiency �DNorm is finally given:

�DNorm =
1

n ×m
× P selectblock × (1024 × 8)

To be concise, we keep P selectblock , Pblock and Q(l, ℎ) to be expressed separately. The term of 1
n×m

stands for n ×m raw bits producing a 1-bit noise-tolerant bit, per (1024 × 8) 1 KiB memory. It
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tends be hard to follow when we substitute all terms and write a huge equation. To be concise,
we keep express P selectDNorm, Pblock and Q(l, ℎ) separately.

F.2 Remote Attestation

The following description is based on the setting shown in Figure 6.18 where the Prover device
implements a secure WORM memory for storing the enrolled mask . During the one-time
enrolment conducted by the trusted Verifier, we use a cabled JTAG interface and Segger J-link
command-line tool to read out the start-up state (fingerprints) of Prover’s (Nordic Semiconductor
nRF52832) SRAM. Readout raw fingerprints are saved as binary files and then processed (using
Matlab) for performing the D-Norm transform and selection (Section 6.2). Such a process
produces: i) a database entry containing Prover id and selected reliable noise-tolerant F bit;
and ii) a C language header file containing the mask indicating the memory addresses of raw
fingerprint bits to be employed for obtaining F bits to be compiled with the sensor node code.
Next, we elaborate on an efficient means for organising the memory addresses defined by the
mask.
D-Norm Mask. The mask first specify the starting address of the fingerprint zone, which is
set to 0x4000, reserving the lower 16 KiB of SRAM space for system run-time operations. To
reduce the storage footprint of the mask, only the relative offsets between selected memory
addresses, rather than the 32-bit absolute addresses are recorded. Once themask is determined,
the server computes a MAC tag over the mask with the derived key F for integrity checks.
Implemented System. During the attestation phase, we employ a command-line Verifier tool,
1 shown in Figure 6.16 (b), to randomly generate a challenge (nonce). We look up the DB
according to the Prover’s returned id and compute the expected response. To visualise the
data exchange for demonstration purposes, we built our Gateway 2 using an Android demo
APP based on FastBLE library39 and used the smartphone’s built-in Bluetooth-LE interface to
communicate with the Prover. In practice, the Gateway could be realised by any base station
with a Bluetooth-LE transceiver. The Prover 3 in this case study is a representative low-end
sensor node equipped with an ARM-Cortex M4-based nRF52832 Bluetooth-LE SOC. The code
to be attested on the Prover is statically allocated with a linker Preprocessor command. 40 The
noise-tolerant fingerprint regeneration function, the mask, and the immutable bootloader are
placed in WORM memory using an ARM MPU.

39FastBLE is available: https://github.com/Jasonchenlijian/FastBle
40For example __attribute__(section(‘.ARM.__at_0x50000’)) in Keil uVision specifies placing the function at

memory starting from address 0x50000.
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Figure F.5: Memory management and data flow for the remote attestation at the Prover. Notably, the total SRAM
memory size is 64 KiB. We only use 48 KiB for the fingerprint zone and reserve 16 KiB for system run-time
operations.
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Chapter 7 Appendix

G.1 Bit-aliasing Pattern

The bit-aliasing is measured with equation (7.12) to calculate bit frequency for each F bit. We
define three regions to describe the bit-aliasing for a given F bit: i) good if the bit frequency
within 0.5±0.1; ii) intermediate if the bit frequency fallen outside 0.5±0.1 but within 0.5±0.3;
and iii) highly aliased if bit frequency is beyond 0.5±0.3. The three regions good, intermediate
and highly aliased are colour coded in green, yellow and white, respectively in the plots below.
Our bit-aliasing evaluation is based on the physical chip dataset MSP20: introduced in
Section 2.3.4, the bit-aliasing measurement for the Baseline key extraction method recorded
mean is 0.50, the standard division is 0.13, and the worst-case is 0.96, as illustrated in Figure G.1.
In addition, 78 out of 128 bits fall into the green, good, region, 48 bits fall into the yellow,
intermediate, region, and only 2 bits fall into the white, highly aliased region.
For the same MSP20 physical chip dataset in Figure G.2, the Fixed-d method in the bit-aliasing
evaluation shows a mean = 0.53, standard division = 0.12 and a worst-case = 1.00 (this implies
bit 0 in all 25 tested chips always presented as logic ‘1’). The detailed statistic indicates 90 good,
35 intermediate and three highly aliased bits.
For the Variable-d method shown in Figure G.3, the mean aliasing value is 0.54, standard
division is 0.13 and the worst-case is 0.96. With 85 bits in good, 41 in intermediate, and 2
bits in the highly aliased region.
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Figure G.1: Evaluating bit-aliasing over 25 MSP430FR5969 chips. The key is extracted with the Baseline method.
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Figure G.2: Evaluating bit-aliasing over 25 MSP430FR5969 chips. The key is extracted with the Fixed-d method.
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FigureG.3: Evaluating bit-aliasing over 25MSP430FR5969 chips. The key is extractedwith theVariable-dmethod.
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