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Abstract

Rapid advancements in computational science and artificial intelligence are transforming
virtually every industry. In many situations however, uninterpretable modelling techniques
are challenging to implement, and raise significant governance, operational and ethical
challenges.

In this thesis, we focus on three domains where there is limited data availability,
significant complexity, and human decision makers. Rather than focusing on increasing
data collection in these domains, we focus on developing useful models based on readily
available data, describing a model’s usefulness as being based on five characteristics of
interest: performance, scalability, comprehensibility, justifiability and actionability.

In Chapter 3, we model Australian Rules Football as spatial systems rather than
individual possession events. Several methods are introduced to disentangle relative team
performance and the functioning of sub-systems to evaluate historical games and predict
future performance.

Next, Chapter 4 explores startup transformation pathways in South Australia. Working
with limited data in the South Australian startup ecosystem to map startup capitalisation,
we follow 151 startup journeys over an eight year period to develop an approach to support
policy-makers to understand ecosystem transformation, with a focus on grant interventions
and private capitalisation events.

In Chapter 5, we explore creativity and the writers room, working alongside the TV
series Aftertaste to evaluate the limits and potential for natural language processing to
support the creative process. By approaching the intersection of creativity and data
analysis from the direction of usefulness, we are able to evaluate an existing method for
story arc generation and rethink the approach to make it a more useful tool to support
creative development.

Finally, we conclude in Chapter 6 by discussing our results and the role of data science
modelling in these three domains. This includes a summary of results across the three
domains, the relationship between governance and data science projects, and areas for
further research in each direct domain.

This work presents advances in each of the three domains explored, presenting new
practical approaches as well as revealing significant new areas for further research. In
addition, the work demonstrates the viability of usefulness characteristics for data sci-
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ence research, with positive implications for governance, research, and development of
complementary techniques to uninterpretable artificial intelligence and machines learning
methods.



Chapter 1

Introduction

The advent and rise of information technologies has ushered in a new social and techno-
logical era, often called the Information Age. Exponential advancements in computation,
digital information storage, data capture, and data transmission over the past fifty years
have radically transformed economies, society, and culture (Castells (1996)), and enabled
new frontiers of value creation through productivity gains, automation, and the formation
of new industries.

Mathematical and computer sciences have been central to this evolution, as the
digital foundations on which these new technologies are all built are conceptualised,
developed, governed and understood through the lens of mathematical models and processes.
This includes discrete mathematics working with binary information systems, software
engineering, computational algorithms, data structures and data based theory (Aho &
Ullman (1992)), and the critical importance of logic in system design (Huth & Ryan
(2004)).

These advances have spawns important new fields of research that are adjacent to
traditional applied mathematics, such as data science, computer science, machine learning,
and cryptography, which have in turn transformed virtually all industries and disciplines
by unlocking new tools for modelling and analysis (Prabhu et al. (2011)).

As these new fields have become more powerful, a range of challenges have emerged.
The ethics of artificial intelligence are of growing interest, as nations navigate concerns
around emerging and rapidly escalating ethical issues (Barocas & Boyd (2017), Hagendorff
(2020), Jobin et al. (2019)). In an effort to guide this development, Australia has launched
an Artificial Intelligence (AI) Ethics Framework to evaluate how automated decision
making and prediction of human behaviour can be placed within an ethical framework, and
how development in AI can be refocused on improving well-being (Dawson et al. (2019)).

Another challenge is the trade-off in machine learning between the predictive power
of models and interpretability (Gilpin et al. (2018)). As deep learning techniques have
become increasingly powerful, their “black-box” nature has resulted in a prioritisation
of model performance and outcome prediction over the traditional statistical focus of

1



2 Chapter 1. Introduction

explaining relationships in data (Kelleher & Tierney (2018)). The lack of interpretability
is a source of growing distrust (Zhang et al. (2021)) though technological advancements
show no signs of slowing (Theis & Wong (2017)).

Furthermore, as research and technological capability has rapidly advanced, the rapid
implementation of artificial intelligence and data science in many domains has led to a
range of biases (Brown et al. (1998)). The “golden hammer” bias, for instance, refers to an
over-reliance on tools that are familiar and available, based on the observation by Abraham
Maslow’s that “I suppose it is tempting, if the only tool you have is a hammer, to treat
everything as if it were a nail” (Maslow (1966)). This has become increasingly concerning
as artificial intelligence has been deployed across the social services, where predictive
modelling on biased data sets have critical implications in criminal justice, healthcare,
public education, and welfare. Flawed algorithms can amplify biases through feedback
loops (Zou & Schiebinger (2018)), and whilst regulation is starting to occur (Regulation
(2018)), oversight continues to lag behind implementation.

Whilst there is no doubt big-data approaches can be tremendously powerful, not all
problems have sufficient data for these techniques to be effective, and can result in tools
either being inappropriately used, or inconvenient problems being deprioritised in favour
of domains more suited to big-data analysis.

These and other concerns continue to mount. To generalise the problem, the American
sociobiologist Edward O. Wilson noted during a debate at the Harvard Museum of Natural
History in 2009, that: “The real problem of humanity is the following, we have Paleolithic
emotions, medieval institutions, and god-like technology” (Wilson (2009)).

In response to these concerns, a new trend is emerging in data science research to
grapple with the responsibility of these new tools, with a focus on the purpose of modelling
as well as a rethink of the measures of success beyond predictive power.

Interpretability and usefulness are new terms that are fast becoming utilised to deter-
mine whether tools are suitable for the problems to which they are being applied. These
measures include predictive power and performance, but also additional underlying charac-
teristics such as scalability, comprehensibility, justifiability and actionability (Coussement
& Benoit (2021)).

This approach is congruent with traditional data analysis, suggesting that this is part
of a cycle that the mathematical and computer sciences have navigated before. In John
Tukey’s 1962 article “The Future of Data Analysis”, data analysis was defined as a science
because it passed three tests (Tukey (1962)):

1. intellectual content;

2. organisation into an understandable form;

3. reliance upon the test of experience as the ultimate standard of validity.

In this thesis, we explore the notion of usefulness in data science, focusing on regimes
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that are heavily reliant on human action, complex decision making, and limited data
availability.

For our analysis, we explore and develop novel modelling approaches in areas where
there is limited data availability and significant complexity. These problems are commonly
known as “small n large p” problems, or systems that suffer from the curse of dimensionality
(Bellman (1966)) where there are relatively few data points compared to the many features
and variables.

Our objective in this analysis is to develop approaches that have increased usefulness,
including measures of performance, scalability, comprehensibility, justifiability and action-
ability. Drawing on Tukey’s third condition, we have selected domains that are not readily
automatable and where human experience is the standard of validity.

The three disparate domains selected for this analysis are:

• high performance sport, in particular, complex systems analysis in the Australian
Football League (AFL);

• startup capital transformation pathways in early stage entrepreneurship;

• story arc analysis in screenwriting, with a focus on supporting the creative develop-
ment process.

These three areas align with the author’s own experience working professionally across
these fields, which enables a sufficient understanding of practical problems that exist at
the intersection of applied data science and industry challenges.

With an increasing focus on how digital technologies and AI-based solutions support
human decisions and actions (Nahavandi (2019)), this research is timely and relevant.

1.1 Selecting decision makers and consultation

Given the importance of usefulness characteristics of actionability and justifiability, to
develop useful approaches, the decision making stakeholders in each domain must to be
identified. Direct industry consultation in each domain was undertaken to identify critical
decision makers, as well as their availability for direct dialogue and interest for data science
support. The author’s relationships in each domain enabled models and their usefulness
to be actively evaluated throughout the research process.

For Australian Football League analysis, our objective is to improving decision making
processes of coaching departments, and hence the decision makers are coaches and football
departments at each club. A significant amount of the research in the Australian Football
League is concerned with “beating the odds” (Leushuis (2018)), however, this appears
solely interested in outcome prediction rather than systems improvement. The author’s
direct experience implementing technology and training programs at AFL clubs enabled
direct consultation to occur with senior and assistance coaching staff.
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For startup capital transformation pathways, governmental policy decision makers
are the primary decision makers given the extent of government support for incubators,
accelerators, grant funding programs and other startup transformation entities. The
author’s role on the Government of South Australia’s Entrepreneurship Advisory Board,
experience with multiple startup endeavours and direct relationships with both startups
and policymakers provided exposure to decision making pressures and requirements.

Lastly, application of natural language processing to story arc analysis resulted in
creative producers and screenwriters being identified as the primary decision makers. The
author has an established post-production company in the film industry and explored
multiple decision making interfaces. In 2021, the opportunity for speaking engagements
at national screen industry conferences Screen Forever and Screenmakers provided direct
opportunity for the author to engage with broad audiences, as well as direct consultation
with the Australian Government’s screen funding agency Screen Australia and the South
Australian Film Corporation. Screenwriters were selected as the primary decision makers
given their fundamental role in crafting the underlying texts, and participation in the
development of active television episodes and streaming shows provided a direct opportunity
to actively test insights during the creative process.

1.2 Usefulness, explainability and interpretability

In his 1933 book Science and Sanity, Alfred Korzybski described the need to recognise
that models are only representations of the system that they describe. He writes: “A map
is not the territory it represents, but, if correct, it has a similar structure to the territory,
which accounts for its usefulness.” (Korzybski (1933)).

The relationship between a model’s usefulness to the world that it seeks to explain is
more recently defined in data science using the interpretable Decision Support System
(iDSS) (Coussement & Benoit (2021)). This system proposes five characteristics of interest
to describe a model’s usefulness:

1. performance,

2. scalability,

3. comprehensibility,

4. justifiability,

5. actionability.

This approach enables the evaluation of relationships between the human decision
makers with the data, the identified problem, and the proposed modelling approach. In
machine learning and data science, terms such as interpretability and explainability are
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defined as “the degree to which a human observer can understand the reason behind a
decision (or a prediction) made by the model” (Dam et al. (2018)). We include these
terms within the concept of comprehensibility, using comprehension to include both how
to interpret and explain the applied models.

The five characteristics have very different meanings in our three domains of interest,
and so each was evaluated independently.

1.2.1 Performance

The performance characteristic of modelling Australian Football League games to coaches
and football departments describes whether the model accurately predicts game, or
sub-game, outcomes. Sub-game outcomes may refer to smaller in-game systems that
might unfold within the broader match, at an appropriate resolution for decision making
and implementation. Australian Rules Football is very different to many other sports
such as American gridiron or basketball as there are fewer opportunities for set plays
to be coordinated, and the continuous nature of the game makes deterministic analysis
challenging. Some sub-game systems were identified, such as center bounces following a
goal event, kick-ins following a point event, or throw-ins after an out-of-bounds event,
however, there was demand for a more generalised approach to modelling game outcomes.

For policymakers evaluating startup ecosystems, performance of a model is based
on its ability to predict startup pathways and likelihood of private capitalisation events.
Given the objectives of encouraging high-risk, high-reward startup endeavours suitable to
attracting early stage capital investment, the focus of decision makers was less in producing
stable companies, and more in whether startups were able to raise private capital through
venture capital or alternative routes.

Performance in screenwriting was interpreted very differently as a characteristic, as
the creative process is not necessarily a problem to be solved. Performance instead was
defined by screenwriters as the ability of the model to be able to accurately describe the
experience that is being created, and was considered of less importance relative to other
characteristics such as actionability.

1.2.2 Scalability

The scalability characteristic examines a given models ability to perform and fulfill the
expectations of other characteristics as the size of the application increases. For the
football environment, the ability to describe both individual systems, the performance of
subsystems, and the performance over a set of matches was critical.

For modelling startup ecosystems, a model is considered scalable if it effectively applies
to small startup ecosystems, such as South Australia or industry sectors, as well as large
ecosystems.
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Lastly in screenwriting, the ability to apply a technique to an individual scene, an act,
an entire screenplay, or a season of episodes was critical for screenwriters to be able to
comparatively assess elements in different contexts. Furthermore, the experience of the
arc should be the same for the viewer or reader at a given point in time regardless of the
resolution of the analysis.

1.2.3 Comprehensibility

Comprehensibility is another very important characteristic that describes a model’s ability
to be understood. The characteristic has different meanings in different scenarios, and
is often referred to as explainability, intelligibility or interpretability depending on the
domain and application (Gadzinski & Castello (2022)).

The value of this characteristic has become rapidly increasing, as the use of black box
machine learning models in high-stakes decision making is causing significant problems in
a range of applications (Rudin (2019)). Simply “dumping data into “smart” algorithms
is not the silver bullet” (Flath & Stein (2018)), and the need to understand modelling
processes and outcomes has both moral and governance implications.

In medicine, ceding decision-making to black box systems without clear reasoning or
rationale is seen by many as contravening the profound moral responsibility of clinicians
(London (2019). The automation of the criminal justice system also creates a range of
serious concerns, as predictive computer systems play increasing roles in every stage of the
system, from policing to parole (Wexler (2017)).

There is a growing acceptance that there is a trade-off relationship between a model’s
comprehensibility and its performance, and research continues to strive to understand this
relationship, identify practical challenges and develop best practice approaches (Caruana
et al. (2020)).

In each of our domains of interest, the decision makers that were consulted had
little interest in “black-box” models, particularly given that they would be personally
accountable for actions that would potentially be taken. This lens of accountability
will significantly shape the application of artificial intelligence into the future, and has
implications for not just individual decision makers, but also the structure of corporate
governance (Hilb (2020)).

1.2.4 Actionability

There was significant demand from decision makers in each domain for any developed
model to produce results that were actionable.

Actionability in the domain of football relates to a coach’s ability to direct players and
staff either through strategic direction to players on game style, development of targeted
set-play configurations, directing the on-field positioning of players, or team selection.
It can also extend to personnel list selection, popularised in baseball by the 2003 book,



1.2. Usefulness, explainability and interpretability 7

Moneyball: The Art of Winning an Unfair Game (Lewis (2004)). From consultation
with coaching departments of three different AFL teams, a consistent sentiment was
communicated about statistical observations of their sport. Readily available player
possession data was useful for evaluating player performance, however, broader application
to strategic game-plan development was limited. In short: “it’s all well and good to predict
whether we win or lose, but what can I do about it?”.

In the startup ecosystem domain, as the decision makers for our analysis are those
developing and implementing public policy regarding support for startups and ecosystem
transformation entities, actionability relates directly to available “policy levers”. This
can include grant funding programs, investment into physical infrastructure, or providing
services to support startup transformation.

For screenwriting, actionability relates to a writer’s ability to interpret the results
of the natural language processing model, in our case story arc visualisation, to enable
discussion and to potentially lead to changes to the script.

1.2.5 Justifiability

Lastly, we look at justifiability. A model that fulfills the other criteria of being scalable,
comprehensible, actionable, and has sufficiently high performance, is considered to be
useless if it cannot be justified.

This speaks less to the construction of the model, but rather to its relationship with
established heuristics from both the decision makers, and how they would typically justify
their reasoning to their subsequent stakeholders. To evaluate this, an understanding of
the stakeholder environment in each domain was critical, but given the multiplicity of
stakeholders within each industry of interest, priority was given to the primary relationships.
For example, in Australian Rules Football, the fans are obvious stakeholders of each club,
but the coaching stakeholders are primarily interested in being able to justify strategy to
those executing the strategy.

Domain Decision maker of interest Primary stakeholders

Australian Rules Football Coach Coaching staff and players
Startup ecosystems Policymakers Startups and ecosystem actors

Film and television industry Screenwriters Screen industry

Table 1.1: Primary stakeholders in each of the domains of interest.

1.2.6 Importance of characteristics in each domain

Our five characteristics are not necessarily of equal importance in each domain, and the
iDSS approach does not combine the five characteristics into a single metric of usefulness.
In many domains, a characteristic might be linearly correlated with usefulness, and in
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others it might be a step function. Rather than attempt to unify the characteristics, our
analysis evaluates each domain as qualitatively different. The relative importance of each
of the domains is summarised below to highlight these differences:

Characteristic Australian Rules Football Startup Ecosystem Film industry

Performance Medium Medium Medium
Scalability Low High High

Comprehensibility Medium Medium Medium
Justifiability High High Low
Actionability High High High

Table 1.2: Relative importance of each characteristic in each domain.

1.3 Outline of thesis

This thesis is separated into six chapters. We begin Chapter 2 by providing a background of
research into model usefulness in human decision making, in particular the intersection of
data science and machine learning techniques with model interpretability and actionability.

This is followed by relevant research into small-data modelling of complex systems
where humans perform critical tasks and cannot be readily replaced by automation.
We introduce several important concepts for disentangling data, particularly pairwise
performance metrics, Markov chain modelling, and natural language processing.

In Chapter 3, we explore our first modelling approach, modelling Australian Rules
Football as spatial systems rather than individual possession events. Several methods are
introduced to disentangle relative team performance and the functioning of sub-systems to
evaluate historical games. This approach is optimised and proposed as a methodology for
supporting coaching decision making regarding team selection and evaluation, as well as a
potential future framework for setting fairer fixtures. The 2015, 2016 and 2017 Australian
Football League seasons are analysed to develop the model.

In Chapter 4, we evaluate startup transformation pathways, working with limited data
in the South Australian startup ecosystem to map startup capitalisation. We follow 151
startup journeys over an eight year period to develop an approach to support policymakers
to understand ecosystem transformation, with a focus on grant interventions and private
capitalisation events.

In Chapter 5, we explore creativity and the writer’s room, working with the writers of
the television program Aftertaste to evaluate the limits and potential for natural language
processing to support writers rooms. By approaching the intersection of creativity and
data analysis from the direction of usefulness, we are able to evaluate an existing method
for story arc generation and rethink the approach to make it more suitable for use on
individual projects.
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Finally, we conclude in Chapter 6 by reflecting on the role of data science modelling
in these three domains of human action with a discussion and outlook for further work.
This includes a summary of results across the three domains, the relationship between
governance and data science projects, and areas for further research in each domain, as
well as more broadly with regards to usefulness.

Literature reviews and connections to academic work in each of three domains are
contained within each chapter.

1.4 Publication of work

Methods developed in our domains of interest demonstrate significant progress in each
field and the author intends to publish each of the works independently.

The research into new modelling techniques for Australian Rules Football, which
features in Chapter 3, has been published in the Journal for Quantitative Analysis in Sport
under the title “Modelling Australian Rules Football as spatial systems with pairwise
comparisons” (Andreacchio et al. (2022)).

Two additional papers are currently in development, focusing on the research into
modelling startup transformation pathways, shown in Chapter 4, and new natural language
processing techniques for story arc generation and analysis, from Chapter 5.
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Chapter 2

Background

In this chapter, we introduce core concepts and methods that are used in our exploration,
including Markov chain analysis, pairwise performance metrics, natural language processing
and machine learning techniques for model testing. These concepts will be used to develop
new analyses, methods and results in each of our three domains, and enable discussion
about model usefulness characteristics.

Further domain-specific background will be introduced in each chapter, including
targeted literature reviews.

2.1 Markov model

A Markov model is a stochastic model used to describe changing systems (Markov (1971)).
Markov models require a central assumption that future states depend only on the current
state, and not previous states that have led up to a current point in time. This assumption
enables us to simplify complex system analyses that might otherwise have been intractable.

2.1.1 Discrete-time Markov chains

The simplest type of Markov model, a discrete-time Markov chain, describes a chain of
events that move states at discrete time steps.

This can be represented as a sequence of random variables X1, X2, X3, . . . with the
Markov property that the future state only depends on the present state and not on the
previous states. This can be represented as:

Pr(Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = x|Xn = xn)

if both conditional probabilities are well defined. The values of Xi are taken from a
countable set, defined as the state space of the Markov chain.

11
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To describe the transition probabilities between states of a Markov chain for a given
temporal unit, we use a transition matrix to represent the state transition probabilities.
If the probability of moving from state i to state j in one discrete time step is given by:
Pr(Xn+1 = j|Xn = i) = Pij , the matrix T is constructed by placing Pij in the i-th row and
the j-th column. This transition matrix allows us to describe the stepwise transformation
of the Markov chain as follows:

T =

P11 P12 . . . P1n
...
Pn1 Pn2 . . . Pnn

 .
Since the sum of transition probabilities from a state i to all other states must be 1,

S∑
j=1

Pij = 1.

The Markov chain model can be expanded to include decision processes with the addition
of actions and rewards. This is referred to as a Markov decision process and is important
for future applications of this research.

2.1.2 Absorbing states and absorbing probabilities

In Markov chain models, a state can be defined as an absorbing state if it only communicates
with itself. In other words, state i is an absorbing state if:

Pr(Xn+1 = i|Xn = i) = 1.

We can then define the absorbing probability aik as the probability of being absorbed
in the absorbing state k when starting from the initial state i.

aik = lim
n→∞

Pr(Xn = k|X1 = i).

2.2 Pairwise performance comparisons

Pairwise comparison is generally any process where pairs are compared to determine which
entity is preferred, or successful. In our research, we are interested in the use of pairwise
comparisons to disentangle data where relative participant skill is measured. We will use
this in Chapter 3 for our analysis of Australian Rules football.

A simplified model for sports is that the probability that Team A beats Team B is
defined by a function of each teams’ strength or proficiency (Aldous (2017)). This can be
described further, such that if each team i has some strength xi, when teams A and B
play:
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P (A beats B) = W (xA − xB)

for a specified win-probability function W . W must satisfy the following conditions (which
we regard as the minimal natural conditions):

W : R → (0, 1) is continuous and strictly increasing, (2.1)

W (−x) +W (x) = 1 and lim
x→∞

W (x) = 1. (2.2)

Condition (2.1) defines that the win-probability function maps from the set of real
numbers onto (0, 1) enables the result of a game, where the difference or relative difference
in team score is in the set of real numbers, to be mapped to a standardised measure for
match outcome, where 0 is defined as a win for the away team and 1 a win for the home
team. The function has to be continuous and strictly increasing as a team’s strength
occurs within a continuous distribution, and a better team is always expected to have a
higher probability of winning.

Condition (2.2) explains that a win is only expected to be 100% certain if a team
is infinitely stronger than the opposition, and as the difference between two opponents
broadens, the expected outcome tends towards 100%. The sum of the likelihoods of each
team winning is equal to 100%, which means that there are no other outcomes to the
pairwise model.

There are several techniques for evaluating W , including Elo, Glicko, and Glicko-2
(Glickman (1995)).

2.2.1 Elo rating system

The Elo rating system is a method for calculating the relative skill levels of players in
zero-sum games (Elo (1978)). Named after its creator, Arpad Elo, the rating system is
commonly used in chess, but also in other sports (Aldous (2017)).

The rating systems has two components: estimation of outcome based on ratings of
opposing players, and an update mechanism for updating the ratings after new information
unfolds.

Supposing Player A has a rating of RA and Player B a rating of RB, using the logistic
curve for expected outcome, we say that the probability of Player A winning is given by:

EA =
1

1 + 10(RB−RA)/400
.

Similarly, the expected score for Player B is

EB =
1

1 + 10(RA−RB)/400
.
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The selection of 10 as the basis for the exponential, and 400 for the denominator, are
arbitrary, and are values that are typically chosen for Elo models. This selection indicates
that a difference of 400 points between two players corresponds to the stronger player
having a 90% probability of winning.

Once a game has concluded, the outcome of the game can be used to update the
ratings, with R′ denoting the updated ratings, SA the outcome of the game and K the
update factor:

R′
A = RA +K(SA − EA).

The K-factor is the upper bound of the rating change from a single game, since when
the predicted outcome tends towards being completely certain, yet the actual outcome is
the opposite, the ratings for each player are updated by K.

Additional updating variables can be introduced, including an additive variable to the
rating to represent home-ground advantage in the expected outcome. Defining this as
HGA, we can say:

EA =
1

1 + 10(RB−(RA+HGA))/400
.

2.3 Natural language processing

To complement our use of Markov chain analysis and pairwise performance metrics, natural
language processing is utilised in Chapter 5 for screenplay analysis. Natural language is
the type of language used in every day conversation and writing, and is important for our
evaluation of creative writing in story analysis.

Natural speech, however, is not designed for machine analysis, and the way that a
human conveys information is not easily understood by computers. The field of natural
language processing (NLP) studies interactions between humans and computers and is a
subfield of linguistics and computer science (Chowdhary (2020)).

2.3.1 Tokenisation

The foundation of natural language processing is tokenisation, a process where individual
words or phrases are interpreted as data points for analysis. For screenplays, each word
can be interpreted as action or dialogue, and attributed to a scene and a character if the
text is dialogue.

2.3.2 Sentiment analysis

Sentiment analysis, or opinion mining, is the contextual analysis of text to extract subjective
information (Feldman (2013)). Often used for analysing social media streams, sentiment
analysis is enabled by natural language processing to study affective states.
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Different dictionaries can be used based on the objectives of the modelling, such as
AFINN -lexicon or Senti-Strength methods for Twitter Sentiment Analysis (Islam & Zibran
(2017)). These dictionaries contain information attributed to each word, such as the
emotional valence or polarity, which enables each word to be mapped as a sentiment data
point.

Dictionary approaches can be very powerful, but they are often limited in their ability
to handle the complexities of language, as they do not account for context, sarcasm, or
relationships with adjacent words.

2.3.3 Sentiment arcs

The trajectory of sentiment indicators over time can provide insight into narrative arcs for
stories, movies and other written works by taking a moving average of sentiment over the
course of a text. A big data analysis of Project Gutenberg’s 1,327 stories demonstrated
that these arcs can be clustered to show that there are six core emotional arcs to stories
(Reagan et al. (2016)), demonstrating the ability for natural language processing to provide
quantitative insights to story structure.

Sentiment analysis of movie dialogues has also been utilised to create measures such as
Utterance Emotion Dynamics to measure dialogue valence and arousal. This enables mea-
sures such as emotional variability, rise and recovery rate, peak distance and displacement
count and length of dialogue emotion (Hipson & Mohammad (2021)).

We will use this in Chapter 5, evaluating the usefulness of the sentiment arc approach
for supporting story development, and exploring new methods to increase the usefulness
to screenwriters.

2.3.4 Screenplay analysis

Screenplays have a unique structure, with different formats for action and dialogue, and
conventions around scene headers and numbering (Field (1982)). When interpreted as
text corpora for natural language processing, the structure of the text makes examination
of the narrative more complex.

A range of techniques can be used to extract insights from a screenplay, such as parsing
dialogue to understand social networks in movies (Agarwal et al. (2014)), evaluating
the presence and participation of characters of different genders (Agarwal et al. (2015))
(Selisker (2015)), and analysing narrative turning points (Papalampidi et al. (2019)).

Researchers have strived to create new works using natural language processing and
artificial intelligence. Recent advances have yielded results, with a proposed AI model
writing under the pseudonym “Alyce Garner Peterson” able to effectively generate a
screenplay from an underlying story (Eldhose et al. (2021)).
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2.4 Forgetting curves

Forgetting curves model the decline of information retention over time. We evaluate this
in Chapter 5 as we review the methodology for story arc generation, and explore methods
for modelling the retention of sentiment information.

The rate and nature of this curve has been the subject of significant debate. The
Ebbinghaus savings function proposes that forgetting is produced by two factors, time and
interference and can be modelled by the strength and fragility of memory (Ebbinghaus
(1885)). This can be reduced under typical conditions to the Wickelgren Power Law, a
power law where m is considered the memory coefficient over time t, λ is the state of long
term memory at t = 0, and β, ψ > 0 (Wixted et al. (2007)):

m =
λ

(1 + βt)ψ
.

Choosing variables ψ = 0 or β = 0 produces a curve with no forgetting or memory
decay.

Other proposed distributions approximate forgetting as an exponential curve, measuring
R as retrievability, against stability of memory S over time t (Woniak et al. (1995)).

R = e−
t
S .

For our analysis, we use the simplified Wickelgren Power Law. Bayesian analysis of the
Wickelgren Law has shown to favor a power law distribution rather than an exponential
distribution (Averell & Heathcote (2011)).

2.5 Statistical modelling techniques

Lying at the intersection of computer science and statistics, statistical modelling techniques
and machine learning can be used for building predictive models. Techniques have different
degrees of interpretability, and different approaches are used to assist with understanding
the importance of predictors and variables, as well as the precision and accuracy of our
models.

2.5.1 Regression analysis

Regression analysis is utilised to estimate the relationship between predictors and a response
variable. Most regression models take the form where response variable Yi = f(Xi, β) + ei,
where Xi is an independent variable, Yi is a dependent variable, f is a function, β is an
unknown parameter, and ei are error terms to account for statistical noise. The general
linear model is used for p independent variables, such that:
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yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ei

where xij is the i-th observation of the j-th independent variable.
To model this, we utilise the least squares technique that finds the value of β that

minimises the sum of squared errors, where the error ei =
∑

i(Yi − f(Xi, β))
2 or the more

general expression above.

2.5.2 Decision tree learning

Decision tree learning is a method of hierarchical supervised learning that uses decision
trees to move from observations about an item (branches) to conclusions about the item’s
target value (leaves) (Suthaharan (2016)).

There are two types of categories: classification trees (Gupta et al. (2012)) and
regression trees (Loh (2011)). Both produce simple visual aids that assist users with
understanding relationships between variables and data, and are popular for supporting
decision-making processes.

In Chapter 3, we use classification and regression trees to analyse multiple team ratings
and measures, utilising the R package rpart (Therneau et al. (2019)).

2.5.3 k-nearest neighbours

The k-nearest neighbours (k-NN ) algorithm is a machine learning technique that determines
the probability of an outcome based on comparison of similar events across a given number
of variables (Fix & Hodges (1989)).

The method is a supervised learning classifier, where for each test point, the k nearest
training points are identified from a given training set. The output of the model is
dependent on whether the model is being used for classification or regression.

For k-NN regression, the output is the average of the values of the k nearest neighbours,
whereas for k-NN classification, the output is class membership. The class is assigned
based on the most common among its k nearest neighbours.

We use these for our Australian Rules Football analysis, evaluating the performance
of our new system metrics by exploring the predictive power of games using the k-NN
method.

2.5.4 Confusion matrix

To understand the effectiveness of our models, we are interested in more than just predictive
accuracy. We utilise receiver operating characteristics (ROC) graphs to organise classifiers
and visualise performance (Fawcett (2006)).

To explain ROC, we first define the confusion matrix (fixed threshold) which summarises
a model’s predictions. The confusion matrix can be visually represented as shown below:
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Figure 2.1: Confusion matrix example

The results in each box show the relationship between the the prediction outcome from
a model and the actual value.

• True Positive, or TP, is defined as an outcome where the model correctly predicts
the positive class.

• True Negative, or TN, is defined as an outcome where the model correctly predicts
the negative class.

• False Positive, FP, is defined as an outcome where the model incorrectly predicts
the positive class.

• False Negative, or FN, is defined as an outcome where the model incorrectly predicts
the negative class.

These test results can be further evaluated to provide insight into the model perfor-
mance.

The True Positive Rate, or TPR, is the probability that the actual positive will test
positive. This is also defined at the recall or sensitivity.

True Positive Rate =
TP

TP + FN
.

The False Positive Rate, or FPR, is the probability that the actual negative will test
positive.

False Positive Rate =
FP

TN + FP
.

Similarly, the False Negative Rate and True Negative Rate can be calculated.
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True Negative Rate =
TN

TN + FP
,

False Negative Rate =
FN

TP + FN
.

The Accuracy, Precision and Prevalance of the model can be calculated based on these
values such as:

Accuracy =
TP + TN

TP + TN+ FP + FN
,

Prevalence =
TP + FN

TP + TN + FP + FN
,

Precision =
TP

TP + FP
.

The F1 Score is defined as the harmonic mean of precision and sensitivity, and is
calculated by:

F1 Score =
2TP

2TP + FP + FN
.

A range of other measures can be derived from these indicators.
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Chapter 3

Modelling Australian Rules Football
as spatial systems with pairwise
comparisons

3.1 Introduction

Statistical analysis is used widely across Australian Rules Football to develop insights into
player performance (McIntosh et al. (2018)), possession value (O’Shaughnessy (2006)),
team play style (Greenham et al. (2017)), and passing networks (Braham & Small (2018)).
The majority of statistical modelling techniques however, focus on the analysis of possession
event data, which has three significant limitations that limit the applicability and usefulness
for developing coaching strategy.

First, the opposition matters. Teams have strengths and weaknesses, and event data
for a given team needs to be interpreted based on the proficiency or strength of that team’s
opponent.

Second, possession event data does not describe off-the-ball play. Positioning and
activity of players that do not have the ball are critical factors to understanding the
context of a possession or chain of events.

Third, given the complex and multi-variate nature of Australian Rules Football, there is
insufficient possession event data available for meaningful analysis, resulting in multivariate
approaches having relatively low statistical power. This is a common problem for many
complex team sports (Atkinson & Nevill (2001)).

3.1.1 Decision makers and usefulness

As a result of these limitations, research has struggled to be directly applied to football
strategy and tends to find most of its value in predicting match outcomes, which has

21
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potential application for gambling or ‘tipping’ competitions.
Our interest is in supporting the decision makers in the domain, namely coaching

staff and football departments. The author had direct experience and relationships with
professional clubs in the national competition, the Australian Football League (AFL),
through the implementation of trial virtual reality training programs. Relationships
were developed with senior coaching staff at multiple clubs through these projects, and
discussions regarding existing and proposed statistical modelling techniques consistently
revealed a frustration with many existing approaches. Player possession event data is
considered useful for analysing player performance, however overall descriptions of the
game are limited and do not systematically support strategic decision making.

To expand on our definition of usefulness, we can evaluate the expectations of coaching
decision makers.

The model is required to have a high degree of performance, as if the model does not
accurately predict game outcomes, it cannot be considered to be useful.

There is also a requirement that the model be actionable, so that insights can be
obtained and action can be taken to improve competitiveness or create advantage. For
coaches, this may take the form of player positioning, level of aggression of game style, list
management decision making, or analysis of opposition strategies.

Scalability is important for the model so that insights can be obtained on an individual
game basis, whilst also being applicable for modelling changes over the course of a season.

Comprehensibility and justifiability are also critical to the model development given
the complexity of the stakeholder environment. Coaching staff and players are all required
to implement strategic directions, often in high pressure environments, and the buy-in of
the playing group is directly impacted by its ability to be understood.

3.1.2 Proposed approach

To support coaching personnel and football departments in strategic decision making, and
to overcome the limitations described above, we propose an approach for interpreting
event data from AFL matches into a model composed of spatial systems. The modelling
approach has three components:

• categorisation of possession events into spatial systems that is consistent with player
role designations and coaching departments;

• interpretation of events as a function of both a team’s proficiency and its opposition’s
proficiency, using pairwise performance metrics to extract relative team performance
that can be updated on a match-to-match basis;

• reconstitution of team ratings for each match-up to estimate the probability of
transition between each system.
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This approach produces a model that is more interpretable and useful for coaching
decision making by providing a clear methodology for analysing upcoming match-ups, and
enabling performance analysis to be undertaken on systems rather than players.

Possession event data from official AFL data provider Champion Data is used to
develop and optimise the model, with a focus on data from the 2015, 2016 and 2017 AFL
Premiership Seasons. This source is not publicly available, however it is the industry
standard for teams across the AFL. We find that the geometry of different spatial states,
home ground advantage, rating sensitivity and seasonal change are all important factors
in optimising a model that is useful for coaching departments.

3.2 Defining spatial systems in AFL

Our model first defines spatial systems that can provide a framework for pairwise perfor-
mance comparison.

From Chapter 2, we described pairwise performance metrics where the probability that
Team A beats Team B in a given sport is defined by a function of each teams’ strength or
proficiency (Aldous (2017)). We expanded this further such that each team i has some
strength xi, when teams A and B play:

P (A beats B) = W (xA − xB)

for a specified win-probability function W . W must satisfy the following conditions (which
we regard as the minimal natural conditions):

W : R → (0, 1) is continuous and strictly increasing, (3.1)

W (−x) +W (x) = 1 and lim
x→∞

W (x) = 1. (3.2)

Our interest is in the functioning of systems within an AFL game, so rather than
determining the probability that Team A beats Team B in a given match, we look at the
probability of outcomes whenever the ball enters a spatial state. This requires a clear
definition of a win or loss for each spatial state, so that the win-probability function has a
meaningful interpretation.

AFL teams separate their player roles into Forward, Midfield and Defensive players
(Dawson et al. (2004)), with each category having a specialised coach, corresponding
trade-craft, defined objectives and general spatial positioning on an AFL ground. Players
will move between roles over the course of a game or season, and GPS tracking enables
meaningful analysis of individual player behaviour (Brewer et al. (2010)). Our interest
however, is in defining state spaces based on the spatial positioning of the ball, and a
team’s objective in each state. This enables us to contextualise individual player actions
into outcomes produced by the entire team. Drawing from research in other football codes,
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particularly soccer (Bialkowski et al. (2014)), different segments of the AFL ground are
partitioned to enable possession data to be mapped to transitions between segments.

The forward state is defined as the area where goals can be scored from. The AFL
ground has arcs marked approximately 50 metres out from goal, which roughly corresponds
with a forward line, however it is not uncommon for players to have the ability to score
from further away. The distribution of possession location for each goal scored shows
that there is a significant decline in goals scored from further out than 50 metres and
we select 56m from goal as our limit. Across the 2015, 2016 and 2017 AFL Premiership
seasons, 98.9% of goals were scored from within this limit, and goals from further away
are considered outliers.

The corresponding defensive state is the reflection of the forward state at the opposing
end of the ground. The midfield state is defined as the area between a team’s defensive
and forward state, with the general objective of moving the ball into their forward state
or stopping the concession of the ball into their defensive area. These states enable clear
motivational assumptions to be made:

• when a team is in their forward line, the objective is to score a goal.

• when a team is in the midfield, the objective is to move the ball into a position
where they can score from, ie. the forward line.

• when a team is in defense, the objective is to move the ball out of the opponent’s
scoring range into the midfield.

These assumptions enable transitions between states to be classified as clear win or loss
outcomes, which is critical for separating transitions between systems into relative team
proficiency ratings using pairwise performance metrics. These assumptions are inline with
research into team performance indicators, in particular midfield performance and number
of forward system entries (Woods (2016)) and offensive or defensive power measurements
(Azhari et al. (2018)).

In addition to the spatial systems, goal states are also added to the model as absorbing
states. The absorbing probability can then be interpreted as the probability the ball will
end up in a particular team’s goal from a centre bounce reset.

The five states are shown in Table 1 and Figure 1 below:

State Description
1 Away team goal state
2 Away team forward line
3 Midfield
4 Home team forward line
5 Home team goal state

Table 3.1: Defined system states in Australian Rules Football
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Figure 1 shows a state space diagram overlaid over an Australian Rules Football ground,
where Sx→y is the number of transitions from state x to state y.

Figure 3.1: State space areas overlaid over a typical Australian Rules Football ground

We are now able to determine the probability that a team scores a goal from a centre
bounce by looking at all of the potential transition paths from the midfield state to either
goal state. It is appropriate for each goal state to be the end of each transition change as
the game is effectively reset after a goal is scored, and the ball is returned to the centre
spatial state during a formal break in the game.

3.3 Determining relative team performance of match

systems

By interpreting possession event data into spatial state data, we can now separate teams
based on team proficiency. Several approaches have been researched in Australian Rules
Football to interpret outcomes based on relative team proficiency, including Kalman filters
(Leushuis (2018)) and pairwise performance metrics (Ryall (2011), Stefani & Clarke (1992)),
however, the focus has been on match outcomes rather than the outcome of spatial states
within each match.

We use the Elo rating system (Elo (1978)) as it enables our state space data to be
decomposed into team ratings, which can then be utilised to determine expected outcomes
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against different opponents.
Recalling from Chapter 2, the expected probability of an outcome, in this case Team

A winning (PA), is based on the ratings of opposing teams A, RA, and B, RB:

PA =
1

1 + 10(RB−RA)/s
.

.
Here, s is an arbitrary factor and is chosen as 400 based on the original Elo model,

which corresponds to a winning probability of 90% for a player that has a rating of 400
greater than their opponent. When the teams have the same rating (RA = RB), the
probability of winning is 0.5. Choosing 400 for our scaling factor is appropriate for each of
our systems as it provides a consistent definition and is readily interpretable. Whilst the
choice is arbitrary, numerical exploration showed that the overall results are insensitive to
the choice of this parameter.

As each match is undertaken, ratings are updated to include the new information as a
team’s relative performance evolves over time. The updated rating of Team A is given by:

R′
A = RA +K(SA − PA),

where K is a constant defined as the update factor and SA is the relative score, or result,
for the game. To avoid inflation or deflation of ratings across the league, a team’s change
in rating is equal to the opposite of their opposing team’s change in rating. SA is defined
as the ratio of Team A’s final score, ScoreA, over the total scores of the game, such that:

SA =
ScoreA

ScoreA + ScoreB
.

This approach can be adapted for our spatial system approach to determine a rating
for each team’s forward, midfield and defensive system: RAFwd, RAMid and RADef . The
motivational assumptions that have been defined for each state allow us to calculate the
expected probability of transition between states, defined as Px→y where x is the current
state, y is the potential future state and RAx is the rating of Team A in state x:

Px→y =
1

1 + 10(RBx−RAx)/s
.

The midfield game has two potential successful outcomes for each team: either an
entry into the forward line, or a goal from the midfield. The forward line was defined
as being within 56 metres from goal to capture the significant majority of goals scored,
with goals from the midfield to be considered outliers. This enables us to assume that the
probability of transition from the midfield state to each goal state directly is 0.

It is also assumed that the number of events that occur within a state is not of interest
in this case, only the transition, such that the probabilities can therefore be calculated
directly from the teams’ system ratings:
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P2→3 =
1

1 + 10(RBFwd−RADef)/s
= 1− P2→1

P3→4 =
1

1 + 10(RBMid−RAMid)/s
= 1− P3→2

P4→5 =
1

1 + 10(RBDef−RAFwd)/s
= 1− P4→3

Rather than update the ratings after every individual transition, an AFL match can
be processed using the tournament approach for processing Elo ratings. This requires all
outcomes for a spatial state in a match to be assessed as a ratio, rather than a binary win
or loss, and is utilised in other sports when a tournament or multiple games are played.
As an example, assessing the outcomes of the midfield spatial state for a given match,
where the number of times Team A wins the system is given by S3→4 and the number of
times that Team B wins the system is given by S3→2, the spatial state score for Team A is
defined as S3A, such that:

S3A =
S3→4

S3→4 + S3→2

.

The update function is therefore:

R′
AMid = RAMid +KMid

(
S3→4

S3→4 + S3→2

− P3→4

)
.

Corresponding update calculations can be performed to update the other system ratings.

3.3.1 Describing AFL as a Markov model

So far, we have constructed a methodology that enables us to describe a team’s forward,
midfield and defensive system, and expectations of these systems against a given opposition,
however to observe the functioning of each system relative to match outcome, we must
define a method for combining these systems together.

To do this, we must observe the Markov condition that the outcome of each system is
memoryless, and not impacted by what happened prior to entry into that system. This
fits intuitively with our Elo approach, as the outcome of each system is based only on
team ratings and Elo model parameters.

We must evaluate whether this is a justifiable assumption to make. A midfield system
for instance, may function differently depending on whether it is a centre bounce following
a goal being score, or a transition play where the ball is quickly moved from defense
through the midfield into the forward line. This is a particularly relevant case as in 2019,
the AFL implemented a rule to increase the flow of the game, where for each centre bounce,
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each team must have six players in their forward 50 arc, six players in their defensive 50
arc, and six players between the arcs.

As our ratings are a broad representation of the relative proficiency of a team’s system,
the memoryless assumption is a fair one to make, though development of a second-order
Markov chain is potentially an area for further exploration.

We also define each transition from one system to another as a discrete step. The model
can therefore be defined as a discrete-time Markov chain and the expected probability of
transition between each of the state spaces can then be used to populate our model.

Previous applications of Markov chain modelling in the Australian Football League
(AFL) have focused on transitions between possession types (Forbes (2006)), however
whilst the Markovian property was demonstrated, the focus was on individual possessions
as states rather than the spatial system states.

The system ratings of two teams can be used to construct a Markov chain model for
an upcoming match. The transition matrix T for the model can be defined as:

T =

1 2 3 4 5


1 1 0 0 0 0
2 P2→1 0 P2→3 0 0
3 0 P3→2 0 P3→4 0
4 0 0 P4→3 0 P4→5

5 0 0 0 0 1

.

The absorbing probability of Team A’s goal state, or equivalently the probability that
Team A will score a goal after a centre bounce is:

πA = lim
n→∞

P (Xn = 5|X0 = 3).

We can derive an equation for this by using the Markov property and the time-
homogeneous assumption, such that:

lim
n→∞

P (Xn = 5|X0 = 3) = lim
n→∞

P (Xn = 5|Xk = 3) = πA, for all k.

By expanding the absorbing probability across the first two discrete transition steps
after a centre bounce, we can use standard arguments to solve for absorbing probablity
using our transition probabilities, such that:

πA = lim
n→∞

P (Xn = 5|X0 = 3) =
P3→4P4→5

P3→2P2→1 + P3→4P4→5

This result demonstrates that the probability of a goal being scored by either team in
two steps, or after a direct forward system entry after a centre bounce, is equal to the
probability of a goal being scored by either team in any number of steps.
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Similarly, the probability of Team B scoring a goal after a centre bounce is:

πB =
P3→2P2→1

P3→2P2→1 + P3→4P4→5

We can then use these goal-scoring probabilities as estimates of the win probabilities
for each team.

3.4 Defining and tuning model parameters

To tune the model, match event data from the 2015, 2016 and 2017 AFL Premiership
Seasons was utilised. The available data is focused on individual player possession events,
so classification of each event into state-space enabled transitions is required.

The parameters that require tuning are:

• the initial team ratings R0 for each system, since the ball is returned from a forward
system to the centre system more often than a goal is scored;

• the update factor K for each system, which changes the sensitivity of ratings updates
based on each match outcome;

• home ground advantage HGA, and whether it is different for each system, and;

• seasonal decay factor j, to describe the off-season changes to a team.

The state space boundaries are a key variable to determine when the ball is in a
midfield state as opposed to a forward, or defensive state. This is defined as the radius of
the circle from each goal position, and from observation of goal scoring locations in our
data, the radius was selected as 56m. Manual selection of this distance was appropriate
given the motivational assumption of forward states identified earlier.

We found that win prediction is an inappropriate measure to tune these parameters, as
the number of accurately predicted wins produced a noisy surface that made optimisation
processes ineffective. This was particularly pronounced when predicting close games, as
small changes to the tuning parameters produced different win outcomes in inconsistent
ways. Instead we optimise the Pearson correlation coefficient between the absorbing
probability and the relative score outcome as it produces a smooth surface for optimisation
and enables the magnitude of a score difference to be considered.

This was considered a justifiable approach as the effectiveness of the team strategy can
be evaluated as the probability to score relative to the opposition.

The optimisation approach selected is the L-BFGS-B algorithm (Zhu et al. (1997)),
enabling simple bounds to be placed on each variable.

We also choose the initial values for state space ratings for each team, R0 Fwd, R0 Mid

and R0 Def. For the midfield, 1500 is selected as the initial rating, inline with the default



30Chapter 3. Modelling Australian Rules Football as spatial systems with pairwise comparisons

for Elo ratings. From observation, a forward win of scoring a goal is less likely than a
defensive win where the ball is cleared into the midfield. The average defensive rating is
therefore higher than the average forward rating and these variables are selected to be
symmetrical above and below 1500. Tuning is therefore only undertaken on the initial
defensive and forward ratings.

Home Ground Advantage has been demonstrated to have a non-trivial impact in the
AFL. This has been quantified using the average margin of home teams (Clarke (2005)), as
well as least squares method and exponential smoothing (Stefani & Clarke (1992)). As our
approach uses a pairwise comparison, the home ground advantage (HGA) is defined as an
additive factor to the home team’s rating (Ryall (2011)). This can be applied to each of
the system ratings in our model and included as separate parameters in the optimisation.
Therefore

P2→3 =
1

1 + 10(RBFwd−(RADef+HGAADef ))/400
= 1− P2→1

P3→4 =
1

1 + 10(RBMid−(RAMid+HGAAMid))/400
= 1− P3→2

P4→5 =
1

1 + 10(RBDef−(RAFwd+HGAAFwd))/400
= 1− P4→3.

The strategic environment in the Australian Football League evolves significantly over
time, with new innovations unlocking changes to how teams approach the game with
regards to possession, zone positioning and other tactics (Woods (2016)). These major
innovations tend to occur between seasons, where teams have the time and flexibility to
redesign their game-plan and approaches to team strategy. Distinct periods of change
have been identified across 2001 to 2015 (Woods et al. (2017)).

Furthermore, between seasons, teams often undertake significant personnel and coaching
changes, and the off-season period often enables time for player injuries to be overcome or
managed.

As a result of these changes to team structure, composition and strategy, the ratings
from a previous season might not be appropriate at the start of the new season, and so a
seasonal decay factor is introduced (Ryall & Bedford (2010)). This factor reverts a team’s
rating towards the initial rating by a constant proportion, to account for some, but not
all, information from previous seasons factoring through. Defining for Team A, jA as the
seasonal decay factor for Team A, RA as the ratings at the end of a season, R̃A as the
ratings at the start of the following season, and R0 as the initial calibrated rating of the
system being measured (e.g. 1500 for the midfield ratings):

R̃A = (1− jA)(RA −R0) +R0 = jAR0 + (1− jA)RA.

If the seasonal decay factor is at 1, then R̃A = R0 and when there is no ratings decay
across the season change, jA = 0, then R̃A = RA.
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3.5 Predictive accuracy of the system model

To avoid over-fitting, random samples of 80% of games were selected for optimisation
against the Pearson correlation coefficient. Each optimised model was then tested on the
remaining 20% of games to determine the accuracy of the model in predicting the outcome.
This was repeated for 100 samples using the full set of games across the 2015-2017 AFL
Premiership Seasons.

Analysis was undertaken using R 3.6.2 (R Core Team (2019)), the tidyverse (v1.3.0;
Wickham et al. (2019)), rpart (v4.1.15; Therneau et al. (2019)), stats (v3.6.2; R Core
Team (2013)) and rattle (v5.3.0; Williams (2011)) packages.

The seasonal decay factor was introduced to model teams’ reversion towards the initial
rating at the end of each season. However, to further evaluate the impact of the off-season
changes, the sampling approach was also undertaken on a subset of the matches. The first
five rounds of each season were were still used to update ratings, but they were excluded
from the training and test sets. This enabled the distribution of each optimised variable
to be analysed across two sample sets to evaluate whether the model needs time for new
information in each season to update ratings appropriately.

A comparison of the model results is shown in Table 3.2. The median values of each
variable are also displayed as several of the variables exhibited a skewed distribution. The
distribution of true positive, true negative, false positive and false negative rates were also
analysed for each optimised model.

The mean accuracy of the models in predicting the outcomes of games across the full
season data was 66.38%, and 67.81% when excluding the first five rounds of each season.
This is in the range of other statistical modelling approaches but is significantly more
interpretable and useful given the ability to separate relative team performance of spatial
systems.

Whilst the average accuracy was 66.38%, the model was significantly better at predicting
home team wins at 74.19%, compared to away team wins at a rate of 58.58% accuracy.
This result is shown in the confusion matrix in Table 3.

The difference between these two rates of win prediction is significant, however it is a
comparable difference to the the natural home team win rate of 56.9% of games and the
natural away team win rate 43.1% across the 2015 to 2017 period.

We can also evaluate the home ground advantage factor, which was negligible for
forward and midfield lines, but material for defensive lines. This can also be interpreted
as a disadvantage for away team forward lines, which is plausible given unfamiliar ground
conditions, wind, and potentially hostile crowds.

Evaluating the variables for the models optimised across the full season data, the
update factor K for the forward and defensive states had a lower standard deviation than
the midfield update factor. This indicated that the model was better at optimising the
update factor of this system, however the midfield update factor had less variation when
excluding the first five rounds of the season.
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Dataset Full Season Excluding First 5 Rounds

Variable Mean Median Std. Dev Mean Median Std. Dev

KFwd / KDef 95.19 95.53 15.06 68.50 70.78 17.15
KMid 59.62 60.66 22.75 23.16 20.98 10.30
HGAFwd 0.36 0 1.88 7.45 0 10.40
HGAMid 2.03 0 3.95 0.57 0 2.24
HGADef 41.94 37.77 28.32 29.76 25.71 21.13
jFwd / jDef 0.12 0 0.17 0.58 0.58 0.19
jMid 0.68 0.69 0.14 0.84 0.84 0.11
R0Fwd 1326.20 1316.40 47.63 1325.30 1312.85 49.26

Accuracy 0.6638 0.6694 0.0387 0.6781 0.6804 0.0450

TP 37.06% 37.10% 3.91% 38.75% 39.18% 4.32%
TN 29.31% 29.03% 3.69% 29.06% 28.87% 4.21%
FP 12.90% 12.90% 2.53% 13.95% 13.40% 2.72%
FN 20.73% 20.16% 3.18% 18.24% 17.53% 2.57%

Table 3.2: Predictive accuracy of optimised spatial system model based on sampling across
2015, 2016 and 2017 AFL Premiership Seasons

The seasonal decay factor showed significant difference between forward and defensive
systems compared to midfield systems. When the first five rounds were excluded, the sea-
sonal decay factor for each system was significantly higher. This is due to our optimisation
not requiring games to be accurately predicted in the first five rounds, giving time for the
model to update to newer information without requiring accurate predictions.

The seasonal decay factor appeared to be significantly more relevant for a team’s
midfield, particularly when optimised across the full season of games. This is potentially
due to the impact of strategic planning across the offseason affecting the midfield system
more than forward or defensive systems, or greater sensitivity to personnel changes, whether
returning from injury or through transition between clubs.

When the first five rounds were excluded, the update factors changed considerably. The
home ground advantage for the midfield and forward systems were mostly zero, however
the home ground advantage for the defensive system was again significant. The seasonal
decay factors were more significant, which is expected given the games had the first five
rounds of each system to resolve.

Based on the results of the optimisation process, parameters can be selected to produce
a model for further analysis, shown in Table 3.3. As the improvement in accuracy was
only marginal when the first five rounds were excluded, the values for the full season are
utilised.
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Variable Selected Value

K Fwd/Def 95
K Mid 60
HGA Fwd 0
HGA Mid 0
HGA Def 40
Decay Fwd/Def 0
Decay Mid 0.68
Initial FWD Elo 1325

Table 3.3: Selected variables for spatial system model based on distribution of tuned
parameters.

The confusion matrix in Table 3.4 demonstrates that the model is significantly better
at predicting home team wins than away team wins.

Actual Outcome
Home Win Away Win Total

Predicted Outcome
Home Win 222 78 300
Away Win 131 189 320

Total 353 267 620

Table 3.4: Confusion matrix of spatial state model across 2015, 2016 and 2017 AFL
Premiership Seasons

The accuracy of the model generated by the selected values is summarised in Table 3.5.
The periods of highest accuracy are rounds 6 through 23, with the Finals and Grand Final
significantly lower. This is potentially due to the small sample size, however, it indicates
that there are potentially other factors in play. The year 2016 had the highest accuracy
and 2017 the lowest level of accuracy.

The relationship of projected absorbing probability of the home team and the score
outcome for matches is shown in Figure 3.2. Using greater projected absorbing probability
as the indicator of likely game winner, the top right and bottom left quadrants show
accurately predicted game outcomes.
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Win prediction accuracy

Rounds All 2015 2016 2017

All 66.29% 65.05% 71.01% 62.80%
1 to 5 60.00% 51.11% 66.67% 62.96%
6 to 23 68.99% 69.74% 73.20% 64.05%
Finals 51.85% 55.56% 44.44% 55.56%
Grand Final 33.33% 0.00% 100.00% 0.00%

Table 3.5: Predictive accuracy across 2015, 2016 and 2017 AFL Premiership Seasons

Figure 3.2: Distribution of projected home team goal scoring against actual match outcome

3.6 Line ratings as a description of team strategy

Using our model, the evolution of teams’ forward, midfield and defensive ratings can be
examined to understand winning strategies relative to the competition. Team profiles are
often analysed for clustering (Spencer et al. (2016)) including factors such as forward line
entries and goal conversion rates, and we can now compare the effect of individual line
performance against the goal absorbing probability, which is a factor of an entire team’s
system proficiency.
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Comparing the three teams that won the AFL Premiership in 2015, 2016 and 2017
reveals that different game-styles were successful in different years. Figure 3.3 shows the
evolution of each team’s ratings across the three seasons, with the grey area representing
the range across all teams in the league.

Figure 3.3: Comparison of team system ratings for Premiership winners across 2015, 2016
and 2017 AFL Premiership seasons.

In 2015, the Hawthorn Football Club won the AFL Premiership, and had a notably
higher forward system rating, indicating that forward system conversion of forward entries
to goals was a winning strategy in that year. In the following year, the Footscray Football
Club (known as the Western Bulldogs) won with a strong midfield rating compared to
the other competitors, though had limited advantage with regards to their forward or
defensive systems. Notably in 2017, the Richmond Football Club won the Premiership
with a defensive rating that was significantly higher than the other two clubs in that year.

To understand the extent that individual system ratings and absorbing probability are
useful measures for predicting match outcome, regression and machine learning methods
can be employed (Rosli et al. (2018)). Analysis is undertaken on all matches from the
2015, 2016 and 2017 AFL Premiership seasons, utilising the values previously selected in
Table 2.

Logistic regression provided a useful insight into the relative importance of factors.
This has been demonstrated to be a useful approach in other football codes, where logistic
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regression of forward and defensive lines have been used successfully for outcome prediction
(Prasetio et al. (2016)).

Three logistic regression models are analysed, with results shown in Table 3,6. The
first model consists of both teams’ system ratings and absorbing probability as variables,
the second contains only the system ratings, and the final model is solely the absorbing
probability.

Parameter Model 1 Model 2 Model 3
Intercept 43.57 25.84 23.70
Home Team Forward Rating 0.02103 0.008533
Home Team Midfield Rating 0.006986 0.02067
Home Team Defensive Rating 0.01749 0.005093
Away Team Forward Rating -0.02132 -0.008624
Away Team Midfield Rating -0.08037 -0.03109
Away Team Defensive Rating -0.02367 -0.01118
Absorbing Probability -34.37 -11.52
AIC 744.8 743.2 738.9

Table 3.6: Comparison of logistic regression models using different variable combinations

Model 3 has the lowest AIC value, indicating that it is the best model for the data. To
examine the coefficients of Model 3, we can assess a team entering a given match with
home team absorbing probability of 0.5, indicating that the teams are approximately
equal after the defensive home ground advantage rating has been included. There is an
expected probability of home team victory of 58.17%, indicating that the home ground
advantage factor in the spatial system models does not completely summarise the general
home ground advantage.

Using Model 3, for there to be an equal expected probability of each team winning,
the home team absorbing probability is 48.42%.

Whilst Model 3 had the lowest AIC value, Model 2 is insightful in understanding the
relative importance of home and away team line ratings in predicting match outcome.
Midfield ratings have significantly higher coefficients than the forward or defensive ratings,
indicating that the midfield proficiency has a greater impact on forecasting match outcome
than the proficiency of other systems. Model 1 coefficients do not provide similarly clear
insights, given the absorbing probability is a non-linear function of both team’s line ratings.

Exploring the system ratings data using classification and regression trees also yields
insightful results. Unpruned trees show interesting sub-classifications, as seen in Figure
4 below. For a home team absorbing probability above or equal to 52%, a home team
victory is predicted with an accuracy of 83%. For an absorbing probability of less than
52%, there are further branches including individual line ratings and further segments of
the home absorbing probability.
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Using the rpart package (Therneau et al. (2019)), we can optimise the complexity
parameter to prune the tree and avoid overfitting. This parameter is specified by how
much the cost of a tree is penalized by the number of terminal nodes.

Figure 3.5 shows that the once optimised, the only variable that is useful is the home
team goal state absorbing probability, and the individual system ratings do not add
additional value. If the home team has a goal absorbing probability of greater than or
equal to 52%, they have an 83% probability that the home team will win the game. If the
home team absorbing probability is less than 52%, then there is a 57% chance of the away
team winning the game, and 43% chance of the home team winning the game.

From a coaching strategy perspective, this shows that the functioning of the team as
a whole, particularly when interpreted through the goal state absorbing probability, is
more important in predicting and understanding the impact on match outcome than each
individual system in isolation.
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Figure 3.4: Classification and regression tree of system ratings and home team absorbing
probability across the 2015, 2016 and 2017 AFL Premiership Season.

Figure 3.5: Classification and regression tree of system ratings and home team absorbing
probability across the 2015, 2016 and 2017 AFL Premiership Season, optimised for
complexity parameter.
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3.7 Discussion and usefulness

The proposed modelling approach enables event data in Australian Rules Football to
be reinterpreted to understand the relative impact of each team’s forward, midfield and
defensive systems, as well as factor in a given opponent’s system proficiency. In addition
to predictive value, the model enables a clear understanding of the value of each system
and allows for the simulation of incremental change on each system and the resultant
change in absorbing probability.

The results of our model indicated that over our period of interest, the midfield perfor-
mance of teams was less variable than their forward and defensive systems, demonstrated
by the difference in optimised update factor. Home ground advantage seemed to be limited
to the defensive system, which can also be interpreted as a disadvantage for the forward
lines of away teams.

This fulfills our criteria for usefulness, and after engagement with AFL clubs and
coaching departments, shows significant promise for implementation.

This also creates a significant opportunity for further research, such as analysing the
effects of personnel changes on system ratings to support list management and team
selection. As a player is substituted either into the side, or into the game off the bench,
the ratings can be analysed to understand a player’s relative impact on a given system.

Additional states could potentially be included such as centre-bounce states or wing
states but systems require clear objectives for either team to enable the win-loss outcomes
to be measured using pairwise performance measures. A potential centre-bounce state
would separate the scenario from the general midfield state, given the 2019 rule change
requiring six players from each team to be in each of the three ground states at each centre
bounce.

Currently, our model does not use the history of how the ball moved into each space,
for example whether a forward entry was a fast transition from a team’s defensive system
through the midfield into the forward line, or whether the opposing team exited their
defensive line only for a team to cause a turnover and re-enter their forward line. The
Markov chain model can also potentially be reconstructed as a second-order Markov chain,
to explore an additional memory to each transition.

Alternative pairwise comparison approaches can also be explored further, including
methods that account for uncertainty in a team’s skill level such as Glicko-2 (Glickman
(1995)), more sophisticated Elo models that have variable update factors dependant on the
scoring outcome, and more generalised Bradley-Terry models which have proven effective
in other sports such as basketball and soccer (Cattelan et al. (2013)).

Additional states could potentially be included such as time-dependent centre-bounce
states or wing states. As discussed, however, this would require clear objectives for either
team to enable the win-loss outcomes to be measured using pairwise performance measures.
A potential centre-bounce state would separate the scenario from the general midfield
state as in 2019, a rule was added to require six players from each team to be in each of
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the three ground states.
Despite these limitations, the approach is successful in translating possession event

data into system analysis, and is a valid and powerful tool for coaching departments and
match analysts.

The approach also has significant potential in its application to other sports, particularly
soccer given the similar importance of player spatial positioning and identifiable forward,
midfield and defensive systems. Research has been undertaken into soccer as a Markov
process to estimate zonal variation of team strengths (Hirotsu et al. (2022)) and understand
coordinative structures (Shafizadeh et al. (2013)), however, our pairwise comparison
approach has the potential to contribute to further research.



Chapter 4

Capitalisation pathways of South
Australian startups

4.1 Introduction

Startups play an important role in modern economies and are increasingly recognized as
drivers of potential future economic growth (Amezcua (2010)). Whilst there is a broad
and well-recognised historical relationship between government-financed innovation and
new startup creation (Fabrizio et al. (2007)), policy approaches in Australia have been
largely focused on attempts to emulate the business environment in Silicon Valley that
has grown since the 1970s (Mattar (2008)). This includes strategic support for a range of
entities and programs designed to support ecosystem development, such as incubators,
accelerators, grant funding programs and a variety of subsidies.

Little is known about the value of these programs as their effectiveness on both the
individual startups and the broader ecosystem is difficult to measure (Cohen & Hochberg
(2014), Hallen et al. (2014), Amezcua (2010)). This poses a significant challenge, not just
for policymakers and startups, but also the broader economic environment as corporations
seek to engage with startups to enhance corporate innovation (Weiblen & Chesbrough
(2015)).

The objective of our analysis is to develop an approach that is useful for supporting
policy development, particularly for regions that have relatively new and evolving startup
ecosystems. We do this by identifying policy decision makers in South Australia to
understand the data that they have available, challenges that they face, and insight into
the usefulness of model outcomes.

41
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4.1.1 Decision makers and available data in startup capitalisation
pathways

In August 2019, the South Australian Department for Innovation and Skills issued a
call for Expressions of Interest to provide a “System of Systems Analysis” of the South
Australian entrepreneurship ecosystem. The aim of the project was to obtain “deep
understanding and ongoing evaluation of the South Australian entrepreneurial ecosystem”
and the document described an interest in understanding the ecosystem as a “complex
system” to help inform policy development, improve on existing interventions, and explore
new areas of opportunity.

To explore the problem, the author engaged with the Department for Innovation and
Skills, in particular the Office of the Chief Entrepreneur of South Australia, to understand
the scope of the problem, the objectives of decision makers, and the available data.

Data was available on 152 startups in South Australia over the period from 2012 to 2019,
with a focus on tracking grants received and capital raised. The data set commissioned
reports including the South Australian Early Commercialisation Fund, Axant SA Startup
Reports (2018, 2019) and Techboard (2019).

Consultation with the Department revealed that there were several weaknesses with
the dataset, namely:

• inconsistent definition of startups, as opposed to small businesses;

• a perceived lack of feasible methods for systematic data capture and reporting;

• the variety of startups and their different circumstances make them difficult to
compare;

• skepticism of some data points given the reliance on startup self-reporting;

• the prevalence of startup “theatre” and the projection of success.

Given that there is limited data available, a significant number of variables to be
accounted for, and presence of complex human decision making, new approaches are
needed that don’t rely on big data analysis. We look to our usefulness characteristics to
evaluate the startup ecosystem in South Australia and develop a useful model.

Based on the weaknesses in our data set, we define three research questions to provide
insight for policy makers. First, what is the effectiveness of grant funding in unlocking
private capital? One of the primary objectives of grant funding was to encourage venture
capital or angel investment, but the impact of previous and current interventions was
challenging to understand.

Second, is it possible to empirically understand where the system needs the most
support? This was important given the range of recommendations and requests directed
at policymakers from the startup ecosystem, from focusing on encouraging more early
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stage startups to providing targeted support to more advanced startup that have already
raised capital.

Last, can we measure the effectiveness of different programs, such as incubators and
accelerators? There are a variety of programs that appear critical to the ecosystem,
however, it is challenging to disentangle the actual impact of the support from outcomes
in raising private capital or long-term system sustainability.

4.1.2 Model requirements for usefulness

Having established the need for the model and an understanding of the limitations of
available data, usefulness characteristics can be evaluated. Recall that these include:
performance, scalability, actionability, justifiability and comprehensibility.

For the first characteristic, performance, there is a need for the proposed model to
accurately describe the startup ecosystem, enable scenario modelling to test the effectiveness
of interventions, and provide sufficient insight to answer and explore the critical questions
posed by the key decision makers.

Scalability in this scenario can be interpreted as meaning that the modelling approach
needs to be relevant for subsets of data, and maintain effectiveness as the ecosystem
potentially grows, changes or shrinks. It also means that the models needs to describe
the South Australian ecosystem so that it can be compared to other systems that are at
different stages of maturity, such as interstate or overseas.

To define actionability, the model must be able to be provide insights that enable
actions to be taken by policymakers, particularly the Department for Innovation and Skills.
Potential actions may include analysis of existing programs to understand the effectiveness,
projections of the future ecosystem to support planning, or scenario analysis based on
different intervention options.

Comprehensibility and justifiability are critical to the model’s usefulness, given the
interventions are using government funds and require significant accountability to stake-
holders, in particular the taxpayer. A “black-box” approach would not be satisfactory to
stakeholders across the ecosystem in understanding why some actions are taken and not
others, and the ability to clearly justify decisions is critical to underpinning programs and
maintaining support.

4.1.3 Markov chain approach

The proposed approach utilises a Markov chain analysis on the startup ecosystem in South
Australia, where there is limited data availability and a small-data approach is required.
The approach is based on describing the startup ecosystems based on capitalisation events.

Startup capital-raising states are often used to describe the stage of a startup’s financing,
such as “Pre-seed”, “Seed”, “Series A” and “Series B” investment. These definitions signal
to capital markets and other stakeholders the stage of a startup’s development or maturity
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(Islam et al. (2018)), and whilst they are often self-reported, it is useful as a descriptive
tool. These states, however, are not standardised measures and further quantification is
required.

To do this, the proposed approach utilises this concept of capitalisation states based on
observations of the distribution of startup capitalisation in South Australia. This enables
startups and their capitalisation journeys to be objectively compared, overcoming the
stakeholder concerns regarding the validity and objectivity of startups self-reporting their
stage of development.

This state-based approach is suitable for regions with relatively new ecosystems with
limited available data, as it enables companies and transformations to be generalised into
groups that are suitable for the size of the ecosystem. Furthermore, it aligns with our
motivation to develop modelling techniques that are useful, with a particular focus on
interpretability and actionability to support policy decision making.

We consider the model to be a Markov chain as we assume a memoryless property to
startup capitalisation. Once a startup reaches a given capitalisation state, we make the
assumption that no previous information influences its next step.

The scope of this analysis is limited to startups that have capitalisation events, and
it is acknowledged that other modes of company growth are missed in this analysis, in
particular self-funding or “bootstrap” strategies (Vanacker et al. (2010)). This limits the
modelling approach to a subset of the startup ecosystem, and after consultation with the
identified decision makers, the usefulness of this approach appears based on its ability to
understand and interpret the impacts of interventions on stimulating private investment
into new startups.

The analysis will be undertaken using three different variables from the dataset: total
capitalisation of companies, cumulative grants received, and cumulative private investment
received on an annual basis. A hybrid, 2-dimensional model of cumulative grant and
cumulative private investment received will then be developed to understand pathways
and the effectiveness of grant intervention.

4.2 Startups in South Australia

South Australia is a relatively small startup and entrepreneurship state, accounting for 2%
of startup and young company funding in Australia in the 2021 financial year (Techboard
(2021)). The Government of South Australia has implemented significant policies to grow
the South Australian startup ecosystem and encourage entrepreneurship, including the
establishment of an Office of the Chief Entrepreneur, appointment of a voluntary Chief
Entrepreneur, and significant support for startup capitalisation and ecosystem development
(OSACE (2019)).

The dataset used for this analysis has been provided by the South Australian Govern-
ment (Department for Innovation and Skills) and is composed of information from several



4.2. Startups in South Australia 45

different sources, including:

• Axant SA Startup Report 2018 2019 - report on survey of SA Entrepreneurship
ecosystem including employee counts and funding amounts;

• South Australian Early Commercialisation Fund - data from Department for Inno-
vation and Skills grant programs including employee counts, revenue and funding
amounts;

• Startup surveys conducted by the Office of the Chief Entrepreneur.

Information about 152 companies is contained within the data, including longitudinal
details about capitalisation events with different types of classifications, such as Seed
Investment, Angel Investment, Series A, Series B, Grant, Private Investment and Initial
Public Offering. The labelling of private investment appears to be inconsistent, and “Series
A”, “Seed” and “Preseed” appear to be self-defined labels.

The date range for the dataset is from 2012 to 2019, though information from the first
three years of this range is sparse. This is potentially attributable to a rapid increase in
new startups in this period, but it is more likely that there is more complete data available
from more recent events. To manage this in our modelling, all data is included for the
model development, but the period from 2015 to 2019 will be the focus of our analysis.

To process the data, the following approach was used to process the events into company
transformation pathways:

• Recode the type of capital event to private investment or grant funding;

• Normalise events for inflation by adjusting against the Australian Consumer Price
Index;

• Temporal normalisation, sampling companies on an annual basis rather than a per
event basis;

• Allocate to capital states rather than events;

• Define how startups enter the “high growth” system;

• Define how startups exit the “high growth” system.

4.2.1 Recoding capital events

The dataset contains a range of information on startup capital events including the size,
date, and type of finance received. Given the self-reporting nature of much of the data,
the classification of each capital event varies significantly, with variants of “Seed”, “Angel
Investment”, “Private Investment” and “Series A” all used to describe similar events.
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As our interest is in understanding the relationship between grant funding and private
capital events, the dataset was simplified to size, date, and the type of capital event,
reinterpreted to a binary classification of either grant funding or private capital events.

4.2.2 Adjusting capital events for inflation

Given the startup activity was tracked over an 8 year period, it is necessary to adjust
capitalisation events to account for inflation. To do this, we used historical data of the
Consumer Price Index from the Australian Bureau of Statistics to normalise each grant
and private capitalisation event, so that all amounts are expressed in 2019 Australian
Dollars.

Figure 4.1 below shows the distribution of events using a log scale.

Figure 4.1: Startup capital events distribution in South Australia from 2012 to 2019

We observe that a significant number of grants were issued between $50,000 and
$100,000, and the private capital events appear to be more evenly distributed.

4.2.3 Temporal normalisation

The frequency of events differs significantly for each company with some companies
registering multiple capital events in a given year, and others receiving single events once
every few years. To account for this, we define the temporal unit for our model as one
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year, meaning if a company receives multiple events in a given year, they are combined as
a single transformation.

To continue our processing, events were aggregated so that each startup has an annual
profile that includes total capital received, cumulative grants received, and cumulative
private capital raised.

4.2.4 Cumulative amounts and state allocations

Next we examine the cumulative capitalization of startups, which will be the foundation
for understanding their capitalization “path”.

To do this, we observe the quartiles of cumulative capital received for the period of
2015 to 2019, shown in Table 4.1 below.

0% 25% 50% 75% 100%
10,093 100,154 253,516 772,242 70,667,285

Table 4.1: Quartiles of cumulative total capital received by startups in South Australia
from 2015 to 2019.

Interpreting these quartiles, we say that the lowest capitalization quartile is less than
$100,000, which is intuitively aligned with companies raising “Pre-Seed” or “Seed” funding.
In addition, the median of $253, 516 appears plausible given the size of the South Australian
economy and entrepreneurship ecosystem, and we use these numbers to select capitalization
ranges as the basis for our state spaces.

State Lower Bound Upper Bound
1 10,000 101,000
2 101,001 255,000
3 255,001 775,000
4 775,001 unbounded

Table 4.2: Selected states for total capitalization of individual startups in South Australia

We choose values that are slightly above the quartile number, to act inclusively on
round numbers of similar domains. For instance, we observe that there is a significant
number of 250 000 events over the period of interest, however inflation adjustment makes
this slightly more every year. As these are qualitatively similar, we want to include these
within the same states.

There is an increasing number of companies in our data over time, from 42 at the start
of the 2015 financial year to 152 in 2019, as shown in Table 4.3. It can also be seen that
the number in each state increases, aside from State 2.
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Quartile
Financial year 1st 2nd 3rd 4th Total

Lower Bound ($ ,000) 10 101 255 775
2015 14 13 7 8 42
2016 18 19 13 11 61
2017 32 22 16 23 95
2018 41 27 28 35 131
2019 44 30 32 46 152

Table 4.3: Number of South Australian startups in selected total capitalisation states from
2015 to 2019

As we are measuring only capital events, companies that ceased operations, were
acquired or stopped increasing capitalisation remain in their existing state. We address
this in an upcoming section.

4.3 Mapping capitalisation pathways

To understand how startups develop, the transformation of startups between states is
examined over time. We now look to understand these pathways.

4.3.1 Startup transformation count matrix

To do this, we first observe the number of companies that move from one state to another,
which can in turn enable a matrix to be constructed that counts the number of transitions.

As an example, there were 2 companies that raised sufficient capital to move from
State 1 capitalisation to State 2 in the 2015 financial year. By designating the count
matrix row as the current year, and the column as the subsequent year, we say that for
2016, the value at row 1 and column 2 is 2. In other words, for a count matrix C where
cij equals the count of companies that move between State i and State j, c12 = 2.

Using this method, we construct the following count matrix:

C2015 =

State 1 State 2 State 3 State 4


State 1 12 2 0 0
State 2 0 12 1 0
State 3 0 0 7 0
State 4 0 0 0 8

.

Interpreting this count matrix, we can say that 12 companies in State 1 remained in
this state and 2 companies that started the year in State 1 moved to State 2. Similarly,
we interpret each row to understand the end state of companies at the end of the year.
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This can be visualised as a state diagram:

State 1 State 2 State 3 State 4

12

2

12

1

7 8

Figure 4.2: State diagram of startup capitalisation in 2015 financial year

The columns can also be interpreted as the number of startups in that state for the
next year. These values however, do not completely align with the values in Table 4.3 as
whilst we follow the transformations of existing companies, new companies also enter the
system.

We can make the further observations that the diagonal values can be referred to as
the immobile states, where companies do not change capitalisation in a given year and the
values below the diagonal are all zero as companies are unable to reduce capitalisation
over time.

4.3.2 New startups entering the ecosystem

For our model to be complete, we need to incorporate new startups entering the system.
From our dataset, in 2015, there were:

• 6 new companies in State 1;

• 5 new companies in State 2;

• 5 new companies in State 3;

• 3 new companies in State 4.

To capture this, we add a State 0 for companies that have received no capitalisation.
This then enables a row to be added to our matrix to capture this information.

C2015 =

State 0 State 1 State 2 State 3 State 4 Row Sum


State 0 0 6 5 5 3 19
State 1 0 12 2 0 0 14
State 2 0 0 12 1 0 13
State 3 0 0 0 7 0 7
State 4 0 0 0 0 8 8

Column Sum 18 19 13 11
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The sum of each row and the sum of each column are noted to show that the amounts
for the 2015 and 2016 financial year in Table 4.3 are exactly the same. We revisit our state
space diagram to include these additional transformations, as shown in Figure 4.3 below:

State 0

State 1 State 2 State 3 State 412

2

12

1

7 8

6

5

5

3

Figure 4.3: State diagram of startup capitalisation in 2015 financial year including no
capitalisation state

4.3.3 Startup ecosystem transition matrices

The count matrix provides a simple summary of the number of transformations over a
given year, yet for us to make projections and understand the probability of companies
moving between states, the matrix needs to be processed into a transition matrix.

To do this, each row can be normalised by dividing by the sum of the row. More
sophisticated approaches to calculating these probabilities can potentially be developed,
but for the purposes of developing our model, we focus on interpretable methods that are
appropriate for our small dataset.

Using C2015 again as our example we calculate the transition matrix below:

T2015 =

State 0 State 1 State 2 State 3 State 4


State 0 0 0.316 0.263 0.263 0.158
State 1 0 0.857 0.143 0 0
State 2 0 0 0.923 0.077 0
State 3 0 0 0 1 0
State 4 0 0 0 0 1

.

The transition matrix allows us to make observations about the probability of each
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potential transformation between states and enables a systematic means of describing the
ecosystem and its components. This satisfies our usefulness criteria of comprehensibility
and justifiability, and creates a transition matrix that by construction takes advantage of
the memoryless assumption required for our Markov chain.

The transition matrix also allows us to describe transformations using a matrix mul-
tiplication, enabling direct comparisons between years, and projections across multiple
years.

4.3.4 Application of the transition matrix

Suppose we describe the profile of startups at the start of a given year, i, as a vector Si,
where each value is the number of startups in each state. We also include a variable ni as
the number of new startups in the year i.

For 2015, this would be:

S2015 =
State 0 State 1 State 2 State 3 State 4
[ ]n2015 14 13 7 8 .

Using this vector, we apply the transition matrix to project the startup profile one year
into the future. To validate this, we take the 2015 startup vector S2015 and the number
of new startups entering the system as n2015 = 19, to show that the S2016 profile can be
generated.

S2016 = S2015 × T2015

= [ ]19 14 13 7 8 ×




0 0.316 0.263 0.263 0.158
0 0.857 0.143 0 0
0 0 0.923 0.077 0
0 0 0 1 0
0 0 0 0 1

=
State 0 State 1 State 2 State 3 State 4
[ ]0 18 19 13 11 .

This result can be confirmed comparing the startup profile with Table 4.3. We observe
that the resultant vector is zeroed at State 0, and if we are to multiply to project the
following year 2017, we would need to add a further value n2016.

The matrix calculation can be rearranged to accommodate this, defining N as the
new-startup vector so that:

S2016 = (S2015 +N)× T2015.
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Based on our previous calculation N will take the form of a vector with first value
representing the new startups, n2015. This also allows us to accommodate startups that
might enter the ecosystem with a non-zero accelerated capital state.

4.3.5 Multi-year projections using the startup transition matrix

This approach can be used to project multiple years into the future. Using the transition
matrix generated from 2015 as a consistent transition matrix T , and assuming a consistent
new-startup vector, we predict two years into the future, rearranging our equation to
produce:

S2017 = (S2016 +N)× T

= ((S2015 +N)× T +N)× T

= ((S2015 × T +N × T +N)× T

= (S2015 × T +N × T +N)× T

= S2015 × T 2 +N × T 2 +N × T

Assuming the number of new startups is the same as the previous year, we write

N = [ ]19 0 0 0 0

and can therefore calculate that:

S2017 =
State 0 State 1 State 2 State 3 State 4
[ ]0 12.43 25.10 19.46 14.00 .

We round these variables as a company cannot partially transform between a state
and these values must be integers. The result can also be compared against the actual
observed number of startups in each state in 2017.

Quartile
Financial year 1st 2nd 3rd 4th Total

Lower Bound ($ ,000) 10 101 255 775
Projected (2017) 12 25 19 14 70
Actual (2017) 32 22 16 23 95

Table 4.4: State space profile of South Australian startup ecosystem in 2017

We see the actual profile is quite different from the projected startup profile, indicating
that the transition matrix and number of new startups weren’t consistent in 2017. This is
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potentially due to a change in economic factors, the advent of new government programs
or a recency bias in the dataset.

We limit the interpretation at this stage until our method is developed further, but
this demonstrates the ability to use transition matrices to be able to not only analyse the
startup ecosystem, but make projections about startup transformations into the future.

This can be generalised so that for a transition matrix T with consistent startup
generation N , we can predict the startup profile S at a time k years from a given year y
as:

Sy+k = Sy × T k +N

k∑
i=1

T i

Using this approach as a foundation, we now develop the model further by adding
additional states, evaluating different types of capitalisation, and developing better ways
of constructing transition matrices.

4.3.6 Defining additional states

In our model so far, startups either remain in their existing capitalisation state, or increase
to a state of greater capitalisation. Over time, this would lead to an accumulation of
startups in the upper quartile, yet in practice, startups exit the “high growth” system.

To capture this information, exit states can be defined as additional states. Startups can
exit the system for a range of reasons, however, for this analysis we define two categories:
“Stable” and “Death” states. Further categories such as merger, acquisition, Initial Public
Offering, or others could be defined, but the limited data available means it is appropriate
for us to start with as low a resolution as possible.

Firstly, a “stable” state is defined when a startup is no longer participating in the
startup capitalisation pathways. There could be a multitude of reasons for this, including
reaching a desired size, market interest, or finding an upper limit to growth in a given
domain.

By analysing the distribution of time between capital events for each startup in our
dataset, a significant majority of capital events occurred within one to two years of a
previous event. Hence companies that do not have a capital event for three consecutive
years are considered to be “stable”.

Secondly, “death” states are defined as occurring when a startup ceases operations.
This is defined as when companies formally cease operations or all founders have concluded
their employment with the startups. This information is not included within the data
provided, so a manual scan of the 152 companies was undertaken.

We explore this by reviewing the 2015 financial year count matrix with the two
additional states. We include these as columns to represent transitions when a company
in a given row transitions to a stable state or death state. It is possible to not include
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Stable or Death states as a row, but for our projection approach, we need the ability to
multiply transition matrices together, so adding two zeroed rows enables this transition
matrix to be square.

C2015 =

State 0 State 1 State 2 State 3 State 4 Stable Death Row Sum



State 0 0 6 5 5 3 0 0 19
State 1 0 10 2 0 0 1 1 14
State 2 0 0 10 1 0 1 1 13
State 3 0 0 0 6 0 1 0 7
State 4 0 0 0 0 7 0 0 7
Stable 0 0 0 0 0 0 0 0
Death 0 0 0 0 0 0 0 0
Col Sum 18 19 13 11 3 2

We note that the row sum is the same for all states except for State 4, where it is
one less than the original model. This is due to a company in a previous year exiting the
system, rather than accumulating in State 4.

The transition matrix generated from this count matrix can be used to make projections,
though our startup profile vector for a given year needs two additional zero states to make
the matrix calculation appropriate.

We visualise this expanded model for the 2015 financial year below in Figure 4.4. The
count values for each transformation have been removed given the increasing number
of paths, and instead the line width represents the relative number of startups moving
through the system.
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State 0

State 1 State 2 State 3 State 4

Stable Death

Figure 4.4: State diagram of startup capitalisation in 2015 financial year including exit
states

Whilst this approach allows us to describe the startup ecosystem as transformation
pathways, the model has limited actionability for stakeholders and does not answer the
key questions around the impact of grant funding on private capitalisation.

To explore this further, we evaluate different subsets of capitalisation based on type
over a greater time period from our data.

4.4 Startup capital transformation pathways

The model can now be used to evaluate the transformation of startups through the system
based on different types of capitalisation. This will enable the comparison of startup
journeys from three perspectives: total startup capitalisation, cumulative grant funding
received and cumulative private capital raised.

To do this, we take transformations across a multi-year period to create a transition
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matrix that can be analysed. The pathways to stable state or death state are also evaluated
to enable us to look at the likely exit paths of startups moving through the ecosystem.
We do this by looking at the absorbing probabilities, or the probability that a startup in a
given state will enter the Stable or Death state, regardless of the path or amount of time.

Examining our dataset, it appears that every year there is an increasing number of
startups in the ecosystem, and as noted previously, it is challenging to interpret whether
this is the result of a growing ecosystem, or a limitation of the dataset due to recency
bias. To manage this, we focus on the period from 2015 to 2019, though data from 2012 is
included so there are companies that have been operating for several years included within
the analysis.

4.4.1 Model 1 - Total capitalisation pathways

For our first model, we examine the total capitalisation of startups over time to understand
their trajectory. As above, our period of interest is 2015 through to 2019, in which case
there are four transformations.

To construct our transition matrix over the period, we create a transition matrix
for each year and then take the average over the four periods. As we’ve defined Ti as
the transition matrix for a given financial year i, we therefore take the average for total
capitalisation as:

T̄total =
1

4
(T2015 + T2016 + T2017 + T2018).

Processing the four periods, this produces:

T̄total =

State 0 State 1 State 2 State 3 State 4 Stable Death



State 0 0 0.385 0.174 0.230 0.191 0 0.020
State 1 0 0.642 0.106 0.026 0.062 0.104 0.059
State 2 0 0 0.683 0.088 0.027 0.155 0.046
State 3 0 0 0 0.742 0.141 0.108 0.010
State 4 0 0 0 0 0.971 0.020 0.008
Stable 0 0 0 0 0 1 0
Death 0 0 0 0 0 0 1

.

The transition matrix can be analysed to make observations about the startup ecosystem.
These include:

• The state where startups are least likely to move is from State 4;

• The state where startups are most likely to move from is State 1. This can be seen
by the immobile probability for State 1 as being 64.2% which means the probability
of transformation is 35.8%;
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• Startups are most likely to enter a stable state from State 2;

• Startups have the highest probability of entering the death state from State 1;

• New startups enter at a rate of 38.5 % to state 1, 17.4% to state 2, 24.4% at state 3,
and 17.6 % at state 4. A small number also ceased activity in their first year.

We also look at the absorbing probabilities from each state into either a stable state
company or a death state. It is noted that the objective of many startups is not necessarily
to reach a stable state if the total capitalisation is small, however, it is of interest from
a policy perspective given the range of startups and the impacts of grant funding on
stimulating private investment.

The absorbing probability is defined as the probability that a startup will enter a given
state k from any starting state i, regardless of the path or time, and is given by:

aik = lim
n→∞

Pr(Xn = k|X1 = i).

Table 4.5 shows the calculated absorbing probabilities from each state.

Initial State Stable State Abs. Probability Death State Abs. Probability
State 0 72.69% 27.31%
State 1 70.13% 29.87%
State 2 77.39% 22.61%
State 3 80.88% 19.11%
State 4 70.97% 29.03%

Table 4.5: Absorbing probabilities using Model 1 (Total Capitalisation) 2015-2019 state
transition matrix

An immediate observation is that no matter the starting state, the probability of a
startup entering a stable state is much higher than the probability that it will enter a death
state. This result is counter to expectations, as whilst there are considerable efforts in
precincts around the world to reduce the failure of startups (Cho et al. (2014)), the average
industry failure rate around the world is approximately 90% (Krishna et al. (2016)). This
result either demonstrates that South Australia has an exceptionally successful startup
support ecosystem, or more likely, it is a reflection of its lack of maturity as an ecosystem.
High rates of startup failure is not necessary a negative indicator, as the domain is
considered a high-risk, high-reward environment. Rather, this high success rate could
suggest that the South Australian ecosystem is not tackling high-reward environments.

An evaluation can also be made of specific state absorbing probabilities. The startups
with the highest probability of achieving a stable state are those that make it to State 3.
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The lowest probability is interestingly, those who have the smallest capitalisation alongside
those with the largest.

This is curious as companies with capitalisation momentum appear to have a higher
chance of stability, but the drop off at the upper quartile reflects that some companies
raise more aggressively looking for a more significant payoff. This approach does not
qualitatively look at the types of stable state exits, which is potentially an area for further
research.

Three further considerations should be made to contextualise the result. Firstly, the
largest capitalisation state has a relatively small sample size. Secondly, the time required
to reach a higher capitalisation state or stability means that our data set is limited. And
thirdly, the lack of data capture for businesses that fail, or perhaps never raise any capital.

4.4.2 Model 2 - Grant funding pathways

As one of the key objectives is to understand the impact of grant funding on startup
transformation, we can re-evaluate the startups and their transformations through the
perspective of cumulative grant funding received, rather than total capitalisation.

To do this, the state spaces can be redefined based on an analysis of cumulative grant
funding that startups have received. Again using the quartile approach, we examine
the distribution of cumulative grant funding states, as shown in Table 4.6, to enable
appropriately dense states to be selected.

0% 25% 50% 75% 100%
13,040 83,560 151,631 414,481 33,750,000

Table 4.6: Quartiles of cumulative grant funding received by startups in South Australia
from 2015 to 2019.

The states are designated g0 through g4 to differentiate between our total capitalisation
states.

Grant Funding
State Lower Bound Upper Bound
State g0 0 10,000
State g1 10,000 85,000
State g2 85,001 155,000
State g3 155,001 425,000
State g4 425,001 unbounded

Table 4.7: Selected states for total grant funding of individual startups in South Australia
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To calculate the transition matrix, the same method is used of measuring the number
of transformations every year from the 2015 financial year through to 2019, aggregation
into a series of count matrices, normalisation into a transition matrix for each year and
then the calculation of the average probability for each transformation pathway. It should
be noted that the definition of whether a company is Stable is independent of the analysis
being used. Previously, companies that didn’t receive further capitalisation events for a
period of 3 years, but continued operations were considered stable. If a company receives a
grant, but continues raising private capital for more than three years, it is still considered
growing within our ecosystem model.

The mean transition matrix, this time denoted T̄grant, is shown below:

T̄grant =

State g0 State g1 State g2 State g3 State g4 Stable Death



State g0 0 0.186 0.228 0.237 0.170 0.137 0.043
State g1 0 0.720 0.128 0.016 0.016 0.067 0.054
State g2 0 0 0.683 0.085 0.040 0.168 0.025
State g3 0 0 0 0.702 0.202 0.048 0.048
State g4 0 0 0 0 0.991 0 0.009
Stable 0 0 0 0 0 0 0
Death 0 0 0 0 0 0 0

.

Analysing the transition matrix, we make further observations about the grant funding
capitalisation pathways:

• Startups that received grant funding for the first time, received a range of amounts,
with probability of entering each state within a similar range;

• The most immobile state was the lowest quartile, between $10,000 and $85,000. This
was partly due to fewer companies exiting the ecosystem from this state compared
to other states;

• Companies that receive a small amount of grant funding, have a higher probability
of receiving more grants rather than exiting the system. Once companies reach state
2, this likelihood of further funding is reduced;

• Startups were most likely to enter a stable state from State g2 and most likely to
enter the death state from State g1;

• Companies that receive the highest quartile of funding do not have evidence of stable
outcomes, though the sample size is small.

The absorbing probabilities into the stable state or the death state can also be evaluated.
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Initial State Stable State Abs. Probability Death State Abs. Probability
State g0 39.98% 60.02%
State g1 50.55% 49.45%
State g2 57.00% 43.00%
State g3 16.11% 83.89%
State g4 0% 100%

Table 4.8: Absorbing probabilities using Model 2 (Grant funding) 2015-2019 transition
matrix

Comparing the stable state and death state absorbing probabilities in Model 1 (Table
4.5) and Model 2 (Table 4.8) shows that companies that enter grant funding states have a
higher probability of entering the death state than companies through private capitalisation
states. This indicates that grant funding is less effective in producing companies that enter
a stable state.

To undertake the comparison more directly, a third model looking solely at private
capitalisation pathways can be evaluated.

4.4.3 Model 3 - Private capitalisation pathways

We now explore private capitalisation pathways through cumulative private capital raised
states. As in Model 1 and Model 2, we define states based on the distribution of cumulative
private capitalisation states, using the quartiles to select appropriate states and generate a
transition matrix that reflects the probability of transformation between states in a given
year.

0% 25% 50% 75% 100%
10,050 101,244 268,900 1,606,000 70,667,285

Table 4.9: Quartiles of cumulative private capital received by startups in South Australia
from 2015 to 2019.

Based on these quartiles, we again designate capital states by including the lower
bounds of each quartile for a given state. The cumulative private capital states are denoted
pn to differentiate from the total capitalisation and grant funding states. These smaller
states have the potential to be assigned more colloquial capital raising states such as angel,
pre-seed or seed funding rounds, with state p4 and perhaps state p3 being more likely to
be assigned to Series capital raising rounds.
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State Lower Bound Upper Bound
State p0 0 10,000
State p1 10,001 105,000
State p2 105,001 275,000
State p3 275,001 1,650,000
State p4 1,650,001 unbounded

Table 4.10: Selected states for total private capitalization of individual startups in South
Australia

As with Models 1 and 2, we construct an annual transition matrix over the 2015 to
2019 period

T̄private =

State p0 State p1 State p2 State p3 State p4 Stable Death



State p0 0 0.222 0.119 0.268 0.182 0.099 0.110
State p1 0 0.650 0.033 0.069 0 0.187 0.060
State p2 0 0 0.677 0.136 0 0.188 0
State p3 0 0 0 0.856 0.047 0.097 0
State p4 0 0 0 0 0.956 0.023 0.021
Stable 0 0 0 0 0 0 0
Death 0 0 0 0 0 0 0

.

We make a series of observations about the transformation of startups based on the
Model 3 transition matrix.

• For new startups, the most likely amount raised is between $275,000 and $1,650,000
at 26.8% or less than $105,000 at a probability of 22.2%;

• Startups that enter state p1 are unlikely to then subsequently directly enter p4 as
based on the available data, there is no precedent. There is a probability that a
startup can enter the state indirectly through State p3.

• By observing the probabilities along the diagonal, we see that startups are likely to
raise at a slower rate the bigger they get, which is an expected observation.

• The highest probability that a startup enters a stable state is from p2 and p3 as all
observed companies appeared to become stable or raise further capital.

• Companies that raised the most amount of private capital, in the fourth quartile,
appeared to have similar stable and death rates. This is potentially due to companies
moving from strategies that prioritise high growth to lower risk configurations
with different priorities. Additionally, this could be a result of organisational
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transformation as the role of the entrepreneurial founder changes more to conventional
management structures.

The exit transformations of startups can be evaluated by exploring the absorbing
probabilities from each state.

Initial State Stable State Abs. Probability Death State Abs. Probability
State p0 70.71% 29.29%
State p1 78.91% 21.09%
State p2 95.75% 4.25%
State p3 84.42% 15.58%
State p4 52.27% 47.73%

Table 4.11: Absorbing probabilities using Model 3 (Private capitalisation) 2015-2019
transition matrix

These absorbing probabilities show that companies in South Australia that enter State
p2 have the highest probability of entering a stable state at 95.75%. Notably, those that
have raised in the upper quartile, State p4, have the lowest probability of entering the
Stable State at 52.27%.

We compare the transition matrices between Models 2 and 3. As one of our key
questions of interest is the relationship between grant funding and private capitalisation
events, we subtract the transition matrix from Model 2, which evaluated grant funding
quartile states, from the transition matrix from this model. It is noted again that the
quartiles are calibrated independently for the grant funding and private capitalisation
states, and the difference in the transition matrices is:

T̄private − T̄grant =

State 0 Stable Death



State 0 0 0.036 −0.109 0.031 0.012 −0.038 0.067
0 −0.070 −0.095 0.053 −0.016 0.120 0.006
0 0 −0.006 0.051 −0.040 0.020 −0.025
0 0 0 0.154 −0.155 0.049 −0.048
0 0 0 0 −0.035 0.023 0.012

Stable 0 0 0 0 0 0 0
Death 0 0 0 0 0 0 0

.

Whilst the quartile states differ, the difference in matrices allow us to test the hypothesis
that the transformation of startups between grant funding quartiles and private funding
quartiles are the same.

Aside from the new startup State 0, we observe that all of the stable state column
are positive, indicating that the probability of a company entering the stable state from
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each quartile in the private funding model is greater than the probability of a company
entering the stable state from the corresponding grant funding quartile.

A weakness of this approach is that we are comparing two different subsets of companies.
Companies that raise no capital, but receive grant funding, are included in the grant
model, and companies that receive no grants and only raise private capital exist in the
private model. This explains why the column sums do not equate to zero, as if all startups
were included in both systems, the difference in transformations entering the stable state
should equal zero.

This comparison yields some insight, however, in the next section we propose a 2-
dimensional model of states to further explore the direct relationship between grant funding
and private capital events.

4.5 Does grant funding unlock private capital in South

Australia?

Whilst the transition matrix approach is useful in describing startup capital transformation
pathways, it does not directly help us with understanding whether grant funding unlocks
private capital events for startups.

To do this, we create a Markov model but construct our state spaces based on two
dimensions, cumulative grant funding received and private capital raised. The allows us to
look at the relationship between startups as they move through the state spaces in either
or both dimensions.

In the previous sections, we utilised the quartiles to create states with sufficient density
within our dataset.

We see that if the quartiles in each dimension were utilised for constructing a count or
transition matrix, there would be twenty seven states: our stable and death states, and
then an array of five by five states including our generative state at (0,0). Furthermore,
these matrices will be relatively sparse, given the inability of companies to move backward
in capitalisation in either dimension.

As a result, we take the second quartile, the median, to define three states in each
dimension. For private capital, we define this no capital (p0), lower 50% of total private
capitalisation (p1), and upper 50% of total private capitalisation (p2). Similarly for grant
funding, this is defined as no grants (g0), lower 50% of total grant funding received (g1),
and upper 50% of total grant funding received (g2).

This enables us to create the subsequent states as a combination of grant funding and
private funding (pi, gj), shown in Table 4.10.
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Private Capitalisation
p0 p1 p2

p = 0 p ∈ (0, 275, 000) p > 275, 001

Grants
g0 g = 0 (p0, g0) (p1, g0) (p2, g0)
g1 g ∈ (0, 155, 000) (p0, g1) (p1, g1) (p2, g1)
g2 g > 155, 000 (p0, g2) (p1, g2) (p2, g2)

Table 4.12: Selected states for total private capitalization and total grant funding of
individual startups in South Australia

Using the same methodology as the previous models, we construct a transition matrix
to describe startup transformation pathways across the period from 2015 to 2019. As a
result, we let T4[2015,2019] equal:

(p0, g0) (p1, g0) (p2, g0) (p0, g1) (p1, g1) (p2, g1) (p0, g2) (p1, g2) (p2, g2) Stable Death



(p0, g0) 0 0.128 0.128 0.367 0.020 0.013 0.238 0.027 0.059 0 0.020
(p1, g0) 0 0.646 0.016 0 0.046 0 0 0.016 0 0.244 0.033
(p2, g0) 0 0 0.718 0 0 0.048 0 0 0.127 0.108 0
(p0, g1) 0 0 0 0.666 0.075 0.062 0.049 0 0.019 0.079 0.049
(p1, g1) 0 0 0 0 0.515 0.061 0 0.030 0.030 0.333 0.030
(p2, g1) 0 0 0 0 0 0.811 0 0 0.056 0.133 0
(p0, g2) 0 0 0 0 0 0 0.895 0 0.044 0.025 0.035
(p1, g2) 0 0 0 0 0 0 0 0.667 0.250 0.083 0
(p2, g2) 0 0 0 0 0 0 0 0 0.978 0 0.022
Stable 0 0 0 0 0 0 0 0 0 0 0
Death 0 0 0 0 0 0 0 0 0 0 0

.

4.5.1 Probability of private capital transformation from different
grant states

This transition matrix can be analysed to make observations about the startup ecosystem,
and the relationships between grant funding and private capital funding.

To test whether companies that raise grant funding are likely to raise private capital we
compare Pr((p0, g0) → (p1, g0)) against Pr((p0, g1) → (p1, g1)) and Pr((p0, g2) → (p1, g2)).

Pr((p0, g0) → (p1, g0)) = 0.128

Pr((p0, g1) → (p1, g1)) = 0.075

Pr((p0, g2) → (p1, g2)) = 0.

This shows that for companies undertaking their first private capital raise up to the
median private capitalisation state, the probability of transformation decreases the more
grant funding they’ve received. For new startups, the probability of raising this private
capital is 12.8% per annum compared to startups that have received some grant funding,
who transform at 7.5% per annum. There was no instance in our data of companies that
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had solely received grant funding to place them in the upper half of grant funding amounts
raising private capital into this state, and hence the probability of this transformation is 0.

We test this across the upper half of cumulative private capital states, Pr((p0, g0) →
(p2, g0)) against Pr((p0, g1) → (p2, g1)) and Pr((p0, g2) → (p2, g2)).

Pr((p0, g0) → (p2, g0)) = 0.128

Pr((p0, g1) → (p2, g1)) = 0.062

Pr((p0, g2) → (p2, g2)) = 0.044.

Similarly, the probability of private capital being raised decreases when companies
have already received grant funding.

We also test whether companies that raise private capital are more likely to then receive
grant funding by considering

Pr((p0, g0) → (p0, g1)) = 0.367

Pr((p1, g0) → (p1, g1) or (p1, g2)) = 0.052

Pr((p2, g0) → (p2, g1) or (p2, g2)) = 0.056.

.

To do this, we observe that Pr((p0, g0) → (p0, g1)) = 0.367, and Pr((p0, g0) → (p0, g2)) =
0.238. This cumulatively shows us that new companies with no funding of any type have
a 60.5% probability that they will receive only grant funding over the next year.

4.5.2 Absorbing probabilities of Stable and Death states

The indicators described provide a useful means of comparing transition probabilities to
develop insights into the functioning of the startup ecosystem. The primary challenge
with this approach is that they represent only direct transformations and do not capture
paths where companies move between states before entering a final state.

To address this, we look at the absorbing probability of stable state and death states
based on the transition matrix.
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Initial State Stable State Abs. Probability Death State Abs. Probability
(p0, g0) 47.22% 52.78%
(p1, g0) 82.35 % 17.65%
(p2, g0) 50.16 % 49.84%
(p0, g1) 58.16% 41.84%
(p1, g1) 79.14% 20.86%
(p2, g1) 70.59% 29.41%
(p0, g2) 24.14% 75.86%
(p1, g2) 25.00% 75.00%
(p2, g2) 0 % 100.00%

Table 4.13: Absorbing probabilities using Model 4: 2-dimensional 2015-2019 transition
matrix

These absorbing probabilities reveal that as grant funding increases, the likelihood of
companies eventually entering the death state increases significantly.

Of all new startups, the probability that companies will end up in the stable state
is 47.22%. The highest probability states for companies to end up being stable is those
that enter (p1, g0) at 82.35% and (p1, g1) at 79.14%. Interestingly, as that grant amount
increases to state (p1, g2) we see this drop sharply to 25.00%

It is noted that the density of data in states (p1, g2) and (p2, g2) is limited, which is
largely due to companies that raise private capital being less likely to receive grant funding,
particularly in the upper half of cumulative grant funding.

4.5.3 Does grant funding unlock private capital?

Whilst absorbing probabilities are useful for understanding the probability that startups
will end up in exit states, the different transformation pathways of startups are critical to
understanding the effectiveness of interventions and support structures.

For instance, for a company to reach state (p1, g1) they have three different pathways.
They could raise both grant funding and private capital in one year, or start with grant
funding followed by private capital in a subsequent year, or conversely, raise private capital
before receiving public support.

This becomes additionally complex when the temporal component is considered. A
company for instance could receive grant funding, remain in state (p0, g1) for a further
year, and then raise capital. To account for this, we normalise the probabilities against the
probability of the startup moving at all from each state, as well as excluding the stable
and death state transformations.

The three pathways are shown below, and can be interpreted as a comparison of
conditional probabilities.
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Pathway Probability
(p0, g0) → (p1, g1) in one step 2.0%

(p0, g0) → (p0, g1) → (p1, g1)
36.7%×7.5%
1−66.6%

= 8.1%

(p0, g0) → (p1, g0) → (p1, g1)
12.8%×4.6%
1−64.6%

= 1.7%

Total Probability (p0, g0) → (p1, g1) 11.8%

Table 4.14: Pathways from startup capitalisation state (p0, g0) → (p1, g1)

This difference in probabilities confirms that the capital transformation pathways
matter. The probability of raising both grant funding and private capital in a given year is
similar to the probability that a company will raise private funds first before subsequently
receiving grant funding. This is compared to the probability of raising grant funding first
which is approximately four times more likely.

This difference can be interpreted in two different ways. Either companies that receive
grant funding are more likely to receive private capital, meaning the grant funding is
potentially helpful in unlocking private investment and accelerating new startups, or that
companies that have already raised capital find it harder to receive grant funding.

To test this, we also compare the probability of obtaining only private capitalisation in
the following year for companies that have had no grants, a small amount of grants (in
the lower half), and large amounts of grants.

Pathway Probability
(p0, g0) → ((p1, g0) or (p2, g0)) 35.6%
(p0, g1) → ((p1, g1) or (p2, g1)) 13.7%
(p0, g2) → ((p1, g2) or (p2, g2)) 4.4%

Table 4.15: Comparison of grant funding transformation probabilities from private capital-
ization states

Similarly we look at the rates of private capital raised once a small amount p1 has
already been raised.

Pathway Probability

(p1, g0) → (p2, g0)
1.6%
35.4%

= 4.5%

(p1, g1) → (p2, g1)
6.1%
48.5%

= 12.6%

(p1, g2) → (p2, g2)
25%
33.3%

= 75.8%

Table 4.16: Comparison of private capitalization transformation probabilities from grant
funding states

These results allow us to make observations about the South Australian startup
ecosystem:
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• Table 4.11 shows us that significantly more companies receive grant funding before
raising private capital compared to the reverse.

• Table 4.12 reveals that the probability of new companies raising private capital
decreases the more grant funding they receive.

• For companies that have raised a small amount of private capital, grant funding
increases the probability of further private capital being raised.

Based on this analysis, if the intention for policymakers is to increase capitalisation
outcomes, the order of grant funding and private capitalisation is important. The most
effective means of support for companies to raise capital is to direct grant funding to
companies that have already raised a small amount of private capital, not new companies
that have only received grant support.

4.5.4 Probability of mobility from each state

We generalise this analysis to evaluate the probability of mobility from each state, as well
as decomposing to the probability of transformation in either grant funding or private
capitalisation. Using the probability of receiving grant funding as an example:

Pr(Receiving grant funding from (p0, g0)) =
2∑
i=0

2∑
j=1

((p0, g0) → (pi, gj)) = 72.4%.

We apply this methodology to each state to produce the following table of probabilities
that a company will transform in a given year. Values are listed as NA when they are in
their highest state, as raising private capital when in the top half of capitalised companies
means the company will remain in the top half.

It should also be noted that the starting state (p0, g0) probabilities can be discounted
given that there is no immobile state for new companies, as they are only registered in
this analysis once their first capital event occurs.
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Starting state Any Event Grant Private Capital
(p0, g0) 100% 72.4% 37.5%
(p1, g0) 7.8% 6.2% 1.6%
(p2, g0) 17.5% 17.5% NA
(p0, g1) 20.5% 6.8% 15.6%
(p1, g1) 12.1% 6% 9.1%
(p2, g1) 5.6% 5.6% NA
(p0, g2) 4.4% NA 4.4%
(p1, g2) 25% NA 25%
(p2, g2) NA NA NA

Table 4.17: Probabilities of general startup transformation in South Australia in a given
year

Each of these probabilities tells an interesting story about start ups in each of these
states.

As companies raise more capital, the probability of further raising goes down, which is
to be expected given the failure rate of startups. Similarly to previous analysis, we see
that for companies who have raised no capital, the probability of raising private capital
decreases as they receive more grants.

Companies that have raised private capital have an increasing probability of raising
further private capital as they receive more grant funding. From receiving no grant funding,
the probability of 1.6% increases to 9.1% after receiving a small grant, and then to 25% if
further grants are received.

This leads to the observation that the most effective grant funding goes to companies
that have already raised private capital, and has a significant impact on the probability of
further private capital being raised.

4.6 Application as a forecasting tool

To understand this approach’s usefulness, the comprehensibility, justifiability, performance
and scalability have all been demonstrated in the analysis so far. Actionability requires
that the model provides not just insights into the current ecosystem and transformation
probabilities, but also the ability to model and make projections about future ecosystem
profiles given different interventions.

In Section 4.3.5, we defined the following formula for making projections about future
ecosystem states:

Sy+k = Sy × T k +N

k∑
i=1

T i,
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where Sn is the startup profile vector at time n, T is the transition matrix, and N is the
vector of new startups in each year. y is defined as the starting year, and k is the number
of years projected into the future.

This model assumes that the transition matrix and new-startup vector does not change
in a given year, which is satisfactory for our analysis.

Three scenarios are implemented for analysis:

• The “Current trajectory” Scenario, where the ecosystem grows using the same
transition matrix and new-startup vector as for the 2015 to 2019 perid;

• The “More startups” Scenario, where the profile of new startups entering the
ecosystem increases linearly over time;

• “No grant funding” Scenario, where all grant funding is ceased, and hence transfor-
mations through non-zero grant funding states are removed.

Each of these scenarios is evaluated for a forecast period that commences following the
2020 financial year, for a period of ten years.

For the purposes of this analysis, we evaluate the ecosystem through the lens of total
startup capitalisation to evaluate the overall ecosystem profile. The total capitalisation
matrix Ttotal is utilised for the analysis.

4.6.1 Forecast 1: “Current trajectory” scenario and forecast

To understand the “Current trajectory” Scenario, we first recall the transition matrix of
total capitalisation from 2015 to 2019:

T̄total =

State 0 State 1 State 2 State 3 State 4 Stable Death



State 0 0 0.385 0.174 0.230 0.191 0 0.020
State 1 0 0.642 0.106 0.026 0.062 0.104 0.059
State 2 0 0 0.683 0.088 0.027 0.155 0.046
State 3 0 0 0 0.742 0.141 0.108 0.010
State 4 0 0 0 0 0.971 0.020 0.008
Stable 0 0 0 0 0 1 0
Death 0 0 0 0 0 0 1

.

From observation, the immobile probability of State 4 is 97.1%, which suggests that a
company will on average remain in this state for over 30 years before entering the Stable
or Death states. This is not justifiable, and is likely a result of a dataset that is too small
and a time frame that is too short to capture large scale capital exits. As a result, we
review the State 4 row by extrapolating the immobile probability of each state linearly,
and proportionally increasing the Stable and Death states.



4.6. Application as a forecasting tool 71

As the probability of immobility in State 1 is 64.2%, 68.3% in State 2, and 74.2% in
State 3, the linear extrapolation of this is 78.9%. This is justifiable as it is plausible that
the amount of time between capital events increases as the size of the events increase. The
remaining probability of 21.1% is distributed as 15.1% chance of entering a stable state
and 6.03% chance of entering a death state.

We therefore use the our transition matrix:

T̃total =

State 0 State 1 State 2 State 3 State 4 Stable Death



State 0 0 0.385 0.174 0.230 0.191 0 0.020
State 1 0 0.642 0.106 0.026 0.062 0.104 0.059
State 2 0 0 0.683 0.088 0.027 0.155 0.046
State 3 0 0 0 0.742 0.141 0.108 0.010
State 4 0 0 0 0 0.789 0.151 0.060
Stable 0 0 0 0 0 1 0
Death 0 0 0 0 0 0 1

.

At the conclusion of the 2019 financial year, the profile of startups in South Australian
is given in our dataset as:

S2019 =
State 0 State 1 State 2 State 3 State 4 Stable Death[ ]

0 32 18 25 31 0 0

We set the number of companies in the stable state or death state as being 0 so the
projected number in each state can accumulate over time.

Lastly, the new-startup vector is required. To calculate this, we observe the average
number of new startups over the period, with 21 new startups in 2019, 38 in 2018, 31 in
2017 and 19 in 2016. The average of 27 new startups can be assumed moving forward as a
baseline, such that:

N =
State 0 State 1 State 2 State 3 State 4 Stable Death
[ ]27 0 0 0 0 0 0 .

Recalling our projection equation, we now calculate the startup ecosystem profile at
the end of the 2030 financial year as:

S2030 = S2019 × T 11 +N
11∑
i=1

T i.

This produces the following profile:

S2030 =
State 0 State 1 State 2 State 3 State 4 Stable Death
[ ]0 29 24 35 56 187 71 .
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As the Stable and Death states are absorbing, these numbers represent the total
accumulated amount of companies that reached these states. The other states represent
the number currently in that state at the conclusion of the 2030 financial year.

We track this on an annual basis to examine the changes year on year.

Startup Profile State 0 State 1 State 2 State 3 State 4 Stable Death

S2019 0 32 18 25 31 0 0
S2020 0 31 20 27 36 13 5
S2021 0 30 22 29 40 28 11
S2022 0 30 23 30 43 44 17
S2023 0 30 23 32 46 60 23
S2024 0 29 24 32 48 77 30
S2025 0 29 24 33 50 95 36
S2026 0 29 24 34 52 113 43
S2027 0 29 24 34 53 131 50
S2028 0 29 24 34 55 150 57
S2029 0 29 24 35 55 168 64
S2030 0 29 24 35 56 187 71

Table 4.18: Forecast of startup ecosystem profiles - Model 1: Current trajectory

We can plot this to show the projected number of companies in each state over our
period of interest.
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Figure 4.5: Plot of startup ecosystem states - Model 1: Current trajectory

The number of companies in State 1 declines slightly over the 11 year period to a limit
of 29. States 2 and 3 increase a similar amount over the same period. State 4 increases
rapidly, from 31 to 56, showing an accumulation in the upper quadrant.

4.6.2 Forecast 2 - “More startups” scenario and forecast

For our second forecast, we examine the scenario where there is an increasing number
of startups entering the ecosystem. This is aligned with a policy option of focusing all
resources on increasing the amount of startup creation.

To determine this increased rate of startup creation, a linear regression is fitted to our
data from 2015 to 2019. Over this period, there were approximately 1.3 more startups
created each year, so for our model we increase the number of new startups by 1.3 each
year. As a result, we use the following new-startup matrix, where n is the number of years
after 2019 and:

Nn =
State 0 State 1 State 2 State 3 State 4 Stable Death

[ ]27 + 1.3× n 0 0 0 0 0 0 .
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As our new-startup vector is no longer constant, we revise our equation so that:

S2030 = S2019 × T 11 +
11∑
i=1

Ni × T (11−i).

Utilising the same transition matrix as Model 1, and the same startup profile in 2019,
we forecast the number of startups in each state to 2030. This is shown in the table below:

Startup Profile State 0 State 1 State 2 State 3 State 4 Stable Death

S2019 0 32 18 25 31 0 0
S2020 0 31 21 27 36 13 5
S2021 0 32 23 30 40 28 11
S2022 0 32 24 32 44 44 17
S2023 0 33 25 34 48 62 24
S2024 0 34 27 36 52 80 31
S2025 0 35 28 38 56 100 39
S2026 0 37 29 40 59 120 46
S2027 0 38 30 42 63 142 55
S2028 0 39 31 44 66 164 63
S2029 0 41 33 45 69 188 72
S2030 0 42 34 47 72 212 81

Table 4.19: Forecast of startup ecosystem profiles - Model 2: More startups scenario

We can again plot this result to show the number of startups in each state over time.
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Figure 4.6: Plot of startup ecosystem states - Model 2: More startups scenario

As to be expected, an increasing number of new startups entering the ecosystem results
in a similar increase in the number of startups in State 1 over the 11 year period. The
number of startups in State 2 and State 3 almost doubled over the period, and the volume
in State 4 more than doubled, rising from 31 in 2019 financial year to 72 in 2030 financial
year.

This projection is potentially useful for programs that are anticipated to increase the
number of startups in the ecosystem over time, which can now be tested based on outcomes
over time. In addition, if the number of startups entering the ecosystem did increase, but
the startup profiles were not as expected, this would indicate that the intervention is also
impacting the transition matrix and various transformation probabilities between states.

4.6.3 Forecast 3 - No grant funding scenario

For our third scenario, we examine the case where all grant funding is ceased and startup
capitalisation only increases through private capital events.

There are two options for this analysis, we evaluate only transformations of companies
that have not received any grant funding, or we take the private capitalisation approach
used in Model 3.
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For the first option, we focus on companies that have only received private capital
and haven’t engaged with grant funding at all in their journey. To do this, we evaluate
the 2D transition matrix and select only states where there is no grant funding, being
states (p0, g0), (p1, g0) and (p2, g0). The transition matrix can be reduced to the following
transition matrix TPrivate Only, which after renormalisation looks like:

TPrivate Only =

(p0, g0) (p1, g0) (p2, g0) Stable Death


(p0, g0) 0 0.464 0.464 0 0.072
(p1, g0) 0 0.688 0.017 0.260 0.035
(p2, g0) 0 0 0.869 0.131 0
Stable 0 0 0 1 0
Death 0 0 0 0 1

.

The transition matrix reveals that the highest stable state transition probabilities
and Stable to Death ratios occur in the model, with Pr((p1, g0) → S) = 0.260 and
Pr((p2, g0) → S) = 0.131. The matrix also infers that companies in South Australia that
only raise private capital, very rarely enter a Death state. This is potentially due to the
small sample size, or potentially reveals that companies that are most likely to succeed,
avoid the grant funding pathways.

To make projections we must also make an assumption of the number of new startups
entering the ecosystem. Keeping our observation that 27 startups enter the ecosystem,
and there is a 12.8% chance of entering state (p1, g0) and 12.8% chance of entering state
(p2, g0), we assume that 7 startups enter the ecosystem into these domains each year, such
that:

N =
(p0, g0) (p1, g0) (p2, g0) Stable Death
[ ]7 0 0 0 0 .

This number of new startups is significantly fewer than the amount in the other models,
as we are solely focusing on those that are raising capital without grant funding.

In 2019, there were also 12 companies in each of the sole private capital states, such
that:

S2019 =
(p0, g0) (p1, g0) (p2, g0) Stable Death
[ ]0 12 12 0 0 .

This enables us to project the subset of companies that will not receive grant funding
over time.
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Startup Profile State (p0, g0) State (p1, g0) State (p2, g0) Stable Death

S2019 0 12 12 0 0
S2020 0 11 14 5 1
S2021 0 11 16 9 2
S2022 0 10 17 14 3
S2023 0 10 18 19 4
S2024 0 10 19 24 4
S2025 0 10 20 29 5
S2026 0 10 21 35 6
S2027 0 10 22 40 7
S2028 0 10 22 45 8
S2029 0 10 23 51 9
S2030 0 10 23 56 10

Table 4.20: Forecast of startup ecosystem profiles - Model 3A: No grant funding

We plot this result over time to show the number of startups in each of the capitalisation
states.

Figure 4.7: Plot of startup ecosystem states - Model 3A: No grant funding

We observe an accumulation in the upper state as the annual probability of exiting
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the state is 13.1%, compared to the lower capitalisation state which remains relatively
constant at 10.

Whilst this yields some insight, the assumption that companies that receive grant
funding won’t be appropriate for receiving private capital is not justifiable.

To compare this, we take the Private Capitalisation approach used earlier in Model 3.
Recall the transition matrix for this model is:

T̄private =

State p0 State p1 State p2 State p3 State p4 Stable Death



State p0 0 0.222 0.119 0.268 0.182 0.099 0.110
State p1 0 0.650 0.033 0.069 0 0.187 0.060
State p2 0 0 0.677 0.136 0 0.188 0
State p3 0 0 0 0.856 0.047 0.097 0
State p4 0 0 0 0 0.956 0.023 0.021
Stable 0 0 0 0 0 0 0
Death 0 0 0 0 0 0 0

.

In this system we find that

S2019 =
State p0 State p1 State p2 State p3 State p4 Stable Death
[ ]0 15 8 16 12 0 0 .

Over the four years prior, the average number of new startups entering this system is
approximately 18. This amount is lower than the total capitalisation model as it doesn’t
include companies entering the system using a grant funding pathway. As a result, we let:

N =
State p0 State p1 State p2 State p3 State p4 Stable Death
[ ]18 0 0 0 0 0 0

We then produce the result:
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Startup Profile State p0 State p1 State p2 State p3 State p4 Stable Death

S2019 0 15 8 16 12 0 0
S2020 0 14 8 21 16 8 3
S2021 0 13 8 25 19 16 6
S2022 0 12 8 28 23 25 9
S2023 0 12 8 31 26 34 13
S2024 0 12 8 33 30 43 16
S2025 0 12 8 35 33 52 19
S2026 0 12 8 37 37 62 23
S2027 0 12 8 38 40 71 26
S2028 0 11 8 39 43 81 30
S2029 0 11 8 40 47 92 33
S2030 0 11 8 41 50 102 37

Table 4.21: Forecast of startup ecosystem profiles - Model 3B: No grant funding

Plotting this over time shows a divergence in the number of early stage startups in
lower private capitalisation states and upper capitalisation states.

Figure 4.8: Plot of startup ecosystem states - Model 3B: No grant funding

This projection is useful in understanding the private capitalisation states, but for us
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to utilise it to analyse a scenario where there is no grant funding, we have to make the
assumption that grant funding makes no difference to private capital outcomes. As we’ve
seen in our 2-dimensional model, this isn’t the case, so we have two alternative approaches
that provide limit cases.

The model is therefore useful in establishing a range, where the two models can provide
an upper limit by including all startups, and a lower limit, by focusing only on those that
would have not participated in grant funding regardless of whether it was available.

4.7 Discussion and further research

Based on this preliminary analysis, the modelling approach has proven useful in exploring
the research questions.

Firstly, grant funding has different effectiveness in stimulating private capital depending
on previous capitalisation events.

Secondly, we have demonstrated that the ecosystem can be evaluated empirically based
on capitalisation states and transformations.

Lastly, the method can be used to measure the effectiveness of different programs based
on the probabilities of transformation between states as well as survival and exit states.

We demonstrated applications for understanding startup pathways using total capitali-
sation, cumulative grant funding received, and cumulative private capital raised, as well
as a 2-dimensional approach linking both grants and private capital.

The approach enables us to make projections around individual startups and the
probabilities of different outcomes, as well as evaluating the system as a whole to understand
the likely pathways, areas of stagnation, and probability of different exit outcomes.

The relatively small dataset that was available limited the resolution of our capitalisation
state spaces, with only 152 companies tracked over an 8 year period. This dataset had
questionable completeness in the early years, which potentially resulted in a recency bias,
and so conclusions regarding the overall growth or decline of the ecosystem were not
possible.

We avoided further data collection in this analysis, as part of our objective was to
develop a modelling approach that was useful using the existing data available, but the
approach is expected to be enhanced by better data availability. For a more robust analysis,
further work into data collection by the Department of Innovation and Skills is strongly
recommended.

4.7.1 Insights in the South Australian startup ecosystem

Preliminary insights were obtained in our analysis regarding the South Australian startup
ecosystem.
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Firstly, the conversion rate of startups from the ecosystem to stable state is very high
relative to the number that fail.

As startup and venture capital ecosystems are considered to be a high-risk, high-reward
activity, this demonstrates that either South Australia has a conspicuously effective startup
ecosystem, or startups have a lower appetite for risk than their interstate and international
counterparts. The latter is more plausible, and can be confirmed by the limited companies
that have received significant private capitalisation. This also suggests that the data
collection process does not sufficiently filter companies that are engaged in high-risk,
high-reward activity from companies that could otherwise be classified as small businesses.

Secondly, the most effective grant funding for unlocking private capitalisation is directed
towards companies that have already raised some amount of private capital.

Third, startups are taking longer between capitalisation events as they grow in size.
This is potentially a natural occurrence as a company scales in size, or the resultant size
of funding rounds, or alternatively it suggests that it is easier to raise small amounts of
funding in South Australia.

The preliminary insights enable us to make the following recommendations regarding
the startup ecosystem and potential policy decisions:

• grant funding should be prioritised to companies that have already raised private
capital;

• programs should focus on encouraging startups towards higher-risk, higher-reward
domains;

• increase the data collection of capitalisation events of startups over time;

• compare transformation probabilities for different industries to understand which
domains are successfully transforming companies.

4.7.2 Evaluation of model usefulness

The relationship of grant funding to private capitalisation was able to be explained and
explored and we fulfilled the criteria we have established for usefulness.

The model demonstrated predictive power and performance, is very scalable but still
able to operate effectively with small datasets, and by drawing influences from the startup
language of capital raising states, is understandable and justifiable.

The model also appeared to be actionable, and developing the model further would
potentially assist with this criteria. Whilst the approach has been demonstrated to provide
insights into the startup ecosystem, it can also be extended to look at the functioning of
subsystems.

By breaking the ecosystem down into different components, transition matrices can
potentially be decomposed to pose questions about the different pathways of companies
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depending on their attributes. These attributes for instance might be location, industry,
participation in programs, or other factors.

This would enable subsystems to have their own transition matrices, which would
enable direct comparison between incubators and accelerators, or reveal the underlying
contribution of ecosystem participants to the overall picture.

For larger ecosystems, or as more data becomes available over time, the model could
potentially be expanded to include additional states. This could include greater resolution
for the cumulative grant capitalisation or cumulative private capitalisation states, or
additional states such as entry into programs or locations.

The results were presented to a subset of key stakeholders, who responded very positively
about the intuitive structure of the transition matrix and potential for scenario planning.
Interest was shown in engaging with this thesis after its submission, as well as the potential
for further research in the space and potential application in ecosystem analysis.

The approach, whilst relatively simple, is an effective method for analysing and
describing the startup ecosystem in South Australia, and is demonstrably useful to those
trying to cultivate it.



Chapter 5

Natural language processing in
screenplay development

5.1 Introduction

Innovation has significantly transformed the creative industries across the Information
Age. Digital technologies have revolutionised almost every part of the film and screen
production sectors, including the transformation of celluloid cinematography to digital
cameras (Korris & Macedonia (2002)), the rise of visual effects and computer generated
imagery (Prince (2011)), and new tools and pipelines for editing and post production
(Case (2013)).

Advances in the sector have not been limited to production, as the evolution of the
internet has also given audiences direct access to film and series content from around
the world through online streaming services (Burroughs (2019)). This has unlocked
unprecedented new data sources that enable greater insight into audience demand (Carey
(2003)), trends, and viewing habits (Matrix (2014)).

The creative development process, however, is an area of significant interest and debate,
with research exploring the role of artificial intelligence in the creative process (Boden
(1998)) and many believing that its dominance in the screen industries is inevitable (Datta
& Goswami (2021)).

Given the field of natural language processing (NLP) is positioned at the intersection
of artificial intelligence, data science and linguistics (Chowdhary (2020)), research into
screenplays using NLP has become the primary analytical approach.

A range of script analysis techniques have been introduced, including story plot
generation (Gervás et al. (2004)), character personality analysis (Leitch (2013)), power
and agency modelling (Sap et al. (2017)), and semantic progression in narrative analysis
(Laurino Dos Santos & Berger (2022)).

The author of this thesis has over a decade of experience working with the film and

83
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screen industries, founding a post-production company, producing several feature film
and virtual reality projects, as well as a range of other collaborations and governance
roles. From consultation with screen practitioners, there is significant skepticism around
the potential for technology to support the creative process. Despite this, conference
presentations by the author about the promise of natural language processing as a tool in
the story development process (vNAB (2017), Screen Forever (2021), Screenmakers (2021)
and Southstart (2021)) have generated constructive dialogue with screenwriters, producers
and other screen professionals.

The area of most interest from these stakeholders was the application of emotional
story arc analysis (Reagan et al. (2016)) to screenplays, and its potential for supporting
novel adaptations. This was due to a recognition of the concept of story arcs in traditional
story analysis, which is generally defined as a described “line of action or events” that
pushes a story plot forward from conflict to resolution (Marks (2015)).

Though feedback was constructive, there was skepticism as to the justifiability and
comprehensibility of the approach for generating story arcs from a text corpus, motivating
our interest in reviewing the usefulness of the approach and barriers to its application.

5.1.1 Usefulness of story arc analysis

Story arc analysis has been effectively used across large data sets to uncover fundamental
arcs of stories (Reagan et al. (2016)) and test the relationships between different arcs and
box office success (Del Vecchio et al. (2021)).

As we are interested in its application through the creative development process, we
focus on how the analysis can support individual story development rather than big
data analysis. To address the stakeholder skepticism, we again turn to our framework of
usefulness to evaluate the approach.

The standard approach for generating a story arc utilises a “window” method, where
we analyse the sentiment of a fixed-length number of consecutive words that we slide
across the text corpus.

To do this we define the following:

• a text corpus of length N words;

• a fixed window size of Nw words;

• n as the number of points in our time series analysis.

The segment length is then calculated by Ns =
(N−(Nw+1))

n
.

The total sentiment over each window segment is calculated and used as a representative
of that segment. This process enables a transformation of a string of sentiment values
associated with each word in the text corpus, to a time series of generalised sentiment at
sampled moments across the story (Reagan et al. (2016)).
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The role of window size is important as it determines the number of samples in the
time series.

By standardising the number of points in a time series, the arcs of stories that have
different lengths can be compared, enabling large numbers of stories to be analysed to
evaluate similarities and differences. This raises an important question: Does the arc of a
story change if we’re sampling it in different ways?

Many of the selected works choose arbitrary window lengths and sampling increments
for the time series, which if varied would produce different arcs. The motivation for
choosing the right window length does not appear to be rigorously evaluated in existing
research and is a significant weakness in the approach’s justifiability.

Furthermore, the approach for calculating the sentiment of the window sample does
not appear to be congruent with how a human would experience reading a text. As the
window length is fixed, the approach can use either the average or cumulative sentiment
over the window of words. A human, however, reads one word at a time, not as a block of
text, and doesn’t recall exactly the last Ns words.

The challenge does not impact performance or actionability, as the arcs reveal objective
measures of a story’s sentiment arc, which enables screenwriters or producers to take
action by addressing sentiment and tone within different sections of the screenplay. The
method also appears to be scalable, as the size of the “window” can be altered depending
on the size of the text corpus, though as noted, this approach raises challenges, as if the
the story arc is intrinsic, it should not change depending on the window size.

This leaves us with an opportunity to evaluate and develop an improved approach for
processing a sentiment arc that is more interpretable and justifiable.

5.1.2 Proposed methodology

To do this, we challenge the “window” method and develop an alternative approach that
is a more intuitive representation of how human’s read.

In our analysis, we apply story arc analysis to episodes from Season 1 of the Series
Aftertaste, a six-episode series by South Australian based production company Closer
Productions. Practical application of the techniques enabled insights to be tested and
shared with the “writers room” during development of the Season 2 Series, and enables
us to test the scalability to answer further questions, such as: does continuous episode
viewing produce different sentiment arcs to episodes watched independently?

5.2 Natural language processing and understanding

story arcs

The field of natural language processing bridges human language with computation, and
has a variety of applications. In the screen industries, there are two main data sources
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that can be utilised for analysis, namely the project’s input, the script, or the output,
through the text used for subtitles.

For our criteria of usefulness, we are interested in working with a text corpus when
there is the ability to impact the screenplay development process, and to enable this
actionability, we focus on the script, or screenplay, as a text foundation.

5.2.1 Analysing episode scripts as text corpora

Story arc analysis focuses on interpretation of prose as a text corpus, however, the
formatting conventions of screenplays means that pre-processing of the documents is
required. This formatting includes different indentation and spacing for action, dialogue
and description. Additional information is also included, such as scene headers to tag the
location and character names whenever dialogue occur. This is necessary as screenplays
are used as foundations that will eventually be transformed into production.

Using Episode 1 of Aftertaste as an example, we can demonstrate the structure and
formatting of the screenplay. Figure 5.1 below shows an excerpt from the start of the
episode.

Figure 5.1: Excerpt from screenplay of Aftertaste - Season 1, Episode 1

The first refers to the scene description, with the number representing the scene
number, “INT.” indicating that it is an interior scene, the scene location and the time of
day. Following this, the characters in the scene are listen in brackets.
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This sort of information is unique to screenplays, and as it does not contribute to the
sentiment “arc” of the story, it can be separated in our processing.

This information may be useful for other analyses, such as evaluation of the distribution
of information in each location, or the social network of the characters using shared
participation in a scene to define adjacency.

Each word can be separated as a data point, or token, shown in the Table 5.1. This is
a key aspect of working with text data, and enables us to separate each word and attribute
to it the corresponding scene number, screenplay line, and word number. Additionally, if
it is dialogue, we can also attribute to it a character.

Data Point Scene ID Line ID Word ID Character (dialogue only)
The 1 1 1
quiet 1 1 2
hum 1 1 3
of 1 1 4
an 1 1 5

elevator 1 1 6
. . . . . . . . . . . .

Sorry 1 12 112 Young Elevator Guy
excuse 1 12 113 Young Elevator Guy
can 1 12 114 Young Elevator Guy
we 1 12 115 Young Elevator Guy
. . . . . . . . . . . .

Table 5.1: Table of tokenised data from excerpt of Aftertaste - Season 1, Episode 1

The scene headings and character lists are not included within this tokenisation as
they are considered to be attributes and not part of the story arc.

5.2.2 Attributing sentiment

The tokenisation of the script now enables us to attribute a sentiment value to each data
point. This is a technique frequently used in story arc analysis, and we use the AFINN
Sentiment Lexicon to ascribe a corresponding sentiment value to each token.

Developed by Finn Årup Nielsen, the AFINN lexicon is a list of English language terms,
each with a sentiment valence between -5 (negative) and +5 (positive) (Nielsen (2011)).
For example, the word “pleasure” has a valence of 3, indicating that it is associated with
relatively positive sentiment. The word “inadequate” on the other hand has a valence of
-2, showing that it has a negative sentiment. Many words, such as “the”, “and” and other
determiners or connectives do not have a valence associated with them as they do not
have meaningful sentiment.
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We can update our table to include this valence, and observe that most of the words
in our selection do not have a valence associated with them.

Data Point Scene ID Line ID Word ID Character (dialogue only) AFINN valence
The 1 1 1 0
quiet 1 1 2 0
hum 1 1 3 0
of 1 1 4 0
an 1 1 5 0

elevator 1 1 6 0
. . . . . . . . . . . .

Sorry 1 12 112 Young Elevator Guy -1
excuse 1 12 113 Young Elevator Guy -1
can 1 12 114 Young Elevator Guy 0
we 1 12 115 Young Elevator Guy 0
. . . . . . . . . . . .

Table 5.2: Token valence using AFINN dictionary from excerpt of Aftertaste - Season 1,
Episode 1

5.2.3 Generating story arcs using the window method

To generate the story arc from a text corpus, the standard method used is a window
method (Reagan et al. (2016)). This approach works by:

• selecting a window size, such as Nw number of words;

• calculating the net valence score over this subset of words by summing the sentiment
scores;

• sampling n times across the text corpus by moving the window a fixed proportion
through the text.

This creates a time series with a net sentiment valence at each point, which is used to
generate the story arc.

As discussed, this approach has created significant interest from writers, producers, and
the stakeholder network that was engaged. The ability to compare stories, particularly for
adaptations, appears to have significant potential and a range of use cases, but evaluating
against our usefulness criteria, the approach appears to be limited.

The justifiability, comprehensibility, and resultant actionability of the method has
limitations since whilst the arc is potentially insightful, it is not how humans read. The
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approach effectively assumes that the sentiment of a moment in the story is based on an
instantaneous aggregation of sentiment across Nw words.

This creates two questions: what is the “right” window size to capture how humans
read?; and what is the right distribution of importance given to the valence of words
across the window? The window approach is potentially useful for comparative analysis,
but if the intent is for the model to be useful in supporting creative intellectual property
development, it requires reform to enable it to be interpretable.

To explore this further, we can reframe the approach based on processing the sentiment
in a manner that a human might if they were reading the text.

To develop the approach, we can make two observations:

1. Humans read one word at a time.

2. The impact of each word is forgotten over time.

One interpretation of the sliding window approach is that it simulates a reader reading
Nw words simultaneously with no memory of previous words. Alternatively, the window
approach could be interpreted as a reader reading one word at a time, but with perfect
memory for Nw words before completely forgetting the rest of the text.

Neither interpretation appears plausible as a quantification of reader experience, so
whilst the window approach has been effective for big data analysis, we now look at an
alternative approach that is more useful for representing how a person reads.

5.3 Introducing forgetting curves

Human memory and forgetting is a significant area of research in psychology and neuro-
science, and has evolved significantly over the past century. There are a range of reasons
why humans forget (Connerton (2008)), but whilst traditional theories are focused on how
forgetting assists with navigating everyday life, recent approaches postulate that memory
development is a complex process of formation and consolidation, which can be susceptible
to interference (Wixted (2004)).

As the objective of our approach is to understand and simulate the human experience
of reading, we focus on memory as information retention.

Ebbinghaus Savings Function

One of the first expressions of memory as a mathematical function was produced by
Hermann Ebbinghaus (Ebbinghaus (1885)). In an incomplete study, Ebbinghaus produced
a “savings” function that modelled forgetting as a function of the strength and fragility of
memory.



90 Chapter 5. Natural language processing in screenplay development

The model is represented as a “savings” expression b which decays over time t based
on parameters c and k, such that:

b =
100k

(log(t))c + k
.

It is widely acknowledged that forgetting and memory formation is impacted by
other factors, such as spaced repetition (Hintzman (1976)), though this preliminary
approximation is an adequate starting point.

5.3.1 Alternative models

Following this analysis, several, more generalised models have been proposed including a
direct exponential function (Woniak et al. (1995)). The exponential approach is represented
by:

R = e−
t
s ,

where R is the retrievability of information, S is the stability of memory, and t is time.
An alternative approach to modelling the distribution of memory retention over time

is the Wickelgren Power Law. Derived from the Ebbinghaus savings function, the Law
proposes that forgetting is again produced by two factors, time and interference, and can
be modelled by the strength and fragility of memory (Wickelgren (1974)(Wixted et al.
(2007))) such that:

m =
λ

(1 + βt)ψ
,

where β, ψ > 0 and govern the nature of the forgetting curve.

5.3.2 Application to text corpora

We can utilise the forgetting curve to produce an alternative methodology for calculating
the sentiment valence at any point in time. The Wickelgren Power Law is selected as the
model for information retention as it enables us to grapple with two clear parameters that
govern the speed and extent of memory decay. This provides us with the flexibility to be
able to analyse different types of readers and different modes of consumption.

Using the Power Law, we can construct a function that generates a coefficient for the
valence of each word based on the location of the reader within the text.

To do this, we let p be the current word being read, and q be the word being analysed.
As the difference between p and q is our unit of time t, we can say that for all p > q:

mp,q =
λ

(1 + β ∗ (p− q))ψ
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Applying this to the excerpt from Aftertaste and letting λ = 1, ψ = β = 0.5, we present
a sample of such values in Table 5.3.

Data Point Word ID AFINN Valence m1,q m2,q m3,q m114,q

The 1 0 1.000 0.816 0.707 0.132
quiet 2 0 0 1 0.816 0.132
hum 3 0 0 0 1 0.133
of 4 0 0 0 1 0.134
an 5 0 0 0 0 0.135

elevator 6 0 0 0 0 0.135
. . . . . . . . . . . . . . . . . . . . .

Sorry 112 -1 0 0 0 0.707
excuse 113 -1 0 0 0 0.816
can 114 0 0 0 0 1
we 115 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .

Table 5.3: Decay parameters of token valence from using λ = 1, β = ψ = 0.5 from excerpt
of Aftertaste - Season 1, Episode 1

We define the sentiment at a given word as the cumulative sentiment of all preceding
words, with each valence decayed using the forgetting curve. Expressed as a function, we
can say that the sentiment st at time t is given by:

st =
t∑
i=1

vi ×mt,i

=
t∑
i=1

vi
(1 + β × (t− i))ψ

.

Here we have a method that is comprehensible and justifiable for generating story arcs,
where sentiment is accumulated based on historical sentiment, but decayed over time.

5.4 The story arcs of Aftertaste

We can now apply this approach to episodes from the first season of the series Aftertaste.
We explore different variables for β and ψ, compare each episode from the series, and then
evaluate the difference between continuous watching of episodes and independent viewing.

This analysis provided the opportunity to present interim results to the writers and
producers during the development of the second season, in particular the writers room, to
obtain direct feedback on usefulness.
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5.4.1 Analysing Episode 1

Analysing Episode 1, we start by processing the episode as described. Filtering out zero
valency words, we can provide a summary of the first 10 words, identifying whether they
are dialogue or action.

Word Word ID valence type
no 17 -1 action
cuts 35 -1 action

intimidating 38 -2 action
smiling 77 2 action
stop 102 -1 action

difficult 111 -1 action
sorry 122 -1 dialogue
excuse 123 -1 dialogue
like 128 2 action

stunned 148 -2 action
. . . . . . . . . . . .

Table 5.4: First non-zero valence words from Aftertaste - Season 1, Episode 1

Forgetting Scenario Parameters

We can analyse the episode by selecting four cases for the forgetting curve. This enables
us to compare the different shapes of the curves based on different selected values for β
and ψ. We also include an additional scenario of window decay for comparison, using
a step function to replicate the concept of the sliding window. A window length of 250
words is selected for the analysis given the relative decay in other scenarios.

The five scenarios are:

1. Perfect memory where β = 0 and ψ = 0

2. Fast and shallow decay, with β = 2 and ψ = 0.1

3. Consistent decay, where β = 0.005 and ψ = 1

4. Fast and complete decay, where β = 0.5 and ψ = 0.5

5. Window decay, as a step function where the coefficient is 1 for the most recent 250
words, and 0 for the remainder.

The window decay case is slightly different to the standard window approach as the
time series typically begins at the first point where a full window length is measured. In
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our case, we apply the coefficient from the first word, so for the first 250 words, the window
approach is augmented for the available number of words.

We can visualise the five forgetting scenarios below by charting the different coefficients
against the number of preceding words.

Figure 5.2: Decay profiles across five sets of forgetting curve coefficients

The different coefficients create very different decay rates for the sentiment over time,
with the each action or dialogue word being a temporal unit.

The Perfect Memory Scenario, or hyper-attentive viewer, where β = 0 and ψ = 0, is
constant at 1, as the zero variables remove any decay. This can be represented by:

mp,q =
1

(1 + 0× (p− q))0
= 1.

If either variable for the forgetting curve distribution is zero, the denominator will be
equal to 1 and the coefficient will hence be constant at 1. This scenario is effectively the
cumulative sentiment arc, as with no decay, the Perfect Memory reader will accumulate
all the sentiment valence as they proceed through the story.

The second scenario is described as fast and shallow, as there is an immediate decay
which then slows significantly. Figure 5.2 shows this decay at approximately 0.50 over the
first 1000 words whereas other scenarios decay faster towards 0. This scenario describes a
reader who forgets sentiment relatively quickly, but not completely.
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The third scenario describes a more consistent decay, shown by the teal curve in Figure
5.2. Compared to the fast and shallow scenario, the reader forgets at a slower rate initially,
but the decay continues at a slower rate of decelaration.

The fourth scenario for comparison has a very fast decay that approaches 0 rapidly.
Unlike the second scenario, this scenario describes a reader that forgets more completely
and there is very little retention of sentiment valence over time. This could also be
considered the experience of a completely distracted viewer.

The last scenario, as defined previously, is the window approach. This is represented
as a step function with coefficient at 1 for the length of the window, in this case 250 words,
and then 0 for all other words.

Which curve is correct?

Whilst engaging with writers, producers, and other stakeholders, a common question arises:
“Which curve is the right one?”.

This question assumes that there is an objective underlying curve that’s being created
from the text corpus. Whether this is a reasonable assumption links back to our original
criticism of justifiability using the window approach. Rather than attempt to capture
an intrinsic story curve, we are trying to understand the reader experience as they are
consuming the text. Some forgetting parameters or alternative functions of emotional
valence retention over time might be more appropriate than others, nevertheless, this
approach allows us to produce targeted curves for different experience parameters.

As a result, this approach is focused on simulating reader experiences, rather than
discovering intrinsic underlying story properties. Based on this, methods might be utilised
to attempt to correlate properties across different experiential arcs, but the scope of this
investigation is to propose an approach that is more justifiable and hence more useful.

This idea is discussed further later, though is addressed now in the context of comparing
Aftertaste sentiment arcs.

Forgetting scenarios of Episode 1

Utilising our five different forgetting scenarios, the first episode of Aftertaste can be
analysed:
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Figure 5.3: Decayed cumulative sentiment arcs for Aftertaste - Season 1, Episode 1

The five different arcs show the different experiences that viewers with different memory
characteristics might experience.

Scenario 1, the red line, represents the cumulative sentiment with no memory decay
over time. Scenario 4, which describes the fast and deep forgetting scenario, more closely
describes the instantaneous sentiment of a scene or interaction in the script. Both scenarios
represent different insights.

Local peaks and troughs can be identified at different points throughout the story,
indicating features to be coherently identified between the different scenarios.

The arcs for scenarios 2 and 3 exhibit similar structure, whereas scenario 3 appears to
move around the 0 axis, whilst scenario 2 appears displaced over time. This is due to the
completeness of the forgetting curve, as incomplete decay results in a component of the
sentiment accumulating over time.

The curve for scenario 4, the fast and complete decay scenario, has limited structure
for analysis, and appears relatively noisy. This is intuitive as the scenario describes an
inattentive viewer whose engagement with information is fleeting.

Scenario 5, the window approach scenario, shows the peaks and troughs clearly at
the same moments as the other scenarios, though they appear to be clearer and more
pronounced. This shows the dampening effect that the cumulative memory approach can
have, as whilst Scenario 5 is focused on the most recent 250 words, the other scenarios
factor in all of the previous words with some degree of decay.

This is evident in the first major peak at approximately the 1,700th word. The window
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approach is focused only on a 250 word window, which is very positive leading to a
cumulative sentiment of nearly 40, whilst the other approaches factor in all of the negative
sentiment to that point and are all close to or less than 0.

5.4.2 Episode and scenario comparisons

We can now compare the decay scenarios across all six episodes of the first season of
Aftertaste. The word count of each episode script varies significantly, which is potentially
due to different content requirements in each episode or the writing styles of each episode’s
author. A comparison table below shows the different writers for each episode, as well as
the word count.

Episode Writer(s) Word Count
Episode 1 Julie de Fina 6,679
Episode 2 Matt Vesely 5,484
Episode 3 Matthew Bate & Jodie Molloy 5,279
Episode 4 Matthew Bate 6,679
Episode 5 Julie de Fina & Mathew Bate 5,590
Episode 6 Julie de Fina 6,122

Table 5.5: Credited writers for each episode of Aftertaste Season 1

For each of our five scenarios, we plot the generated Decayed Cumulative Sentiment
arc using the parameters previously described.
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Figure 5.4: Decayed cumulative sentiment arcs across forgetting scenarios of Aftertaste -
Season 1

The five scenarios show very different types of behaviour.
Scenario 1, the Perfect Memory arc, represents the case where the viewer accumulates

all sentiment as they read or consume the media over time. The arcs for each of the six
areas can be clearly compared, showing local maxima and minima at different stages.

Scenario 2, which factors in Fast and Shallow Decay, has similar features to each arc
visualised using Scenario 1, with local maxima and minima easily distinguishable at the
same points in time. They are incredibly similar, on different axis scales, though Scenario
2 has increased variability.

The third scenario, Consistent Decay, exhibits different relative features from one
episode to the next. There is a significant peak in episode 4, which is more pronounced
than in other scenarios. As noted in this scenario and Scenario 4, Fast and Complete
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Decay, the sentiment arc signal starts to appear noisier. This is to be expected as a viewer
with limited memory would be responding to immediate events, to the point where a
viewer with no memory will observe each word independently as a data point.

As identified in Figure 5.3, the amplitude of the Window Approach is closest to the
Consistent Decay scenario.

Rather than attempt to select the ultimate arc methodology, we can observe that each
scenario describes a different viewer, or mode, of consuming the content.

Each of these approaches, such as the hyper-attentive viewer in Scenario 1 or the
completely distracted viewer in Scenario 4, enables us to compare the story using different
lenses.

5.4.3 Reading an episode in context

This new methodology for visualising the emotional experience arc of a reader can also be
used to test the proposition that binge-watching, where a viewer watches multiple episodes
consecutively, creates a very different experience for the viewer than if they consumed the
episodes were consumed independently.

To do this, we compare three methodologies for sentiment arc calculation:

• Episode based - resetting the sentiment at the end of each episode as if watched
independently;

• Season based - continuing the cumulative decayed sentiment across consecutive
episodes as if watched continuously;

• Window-based Sentiment Arc approach for comparison.

We undertake this using two sets of forgetting parameters that were introduced earlier,
Scenario 1 which demonstrated perfect memory and no decay of sentiment, and Scenario
2, fast and shallow decay with β = 2 and ψ = 0.1. The two scenarios are interesting for
comparison given the perfect memory scenario is an objective measure of each arc, whereas
the second scenario enables our concept of sentiment forgetting to be evaluated.
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Figure 5.5: Perfect memory sentiment arcs comparing independent consumption, binge-
watching and window method: Aftertaste Season 1

The story arc for each episode when viewed on an independent episode basis resets
to zero at the end of each episode, whereas the cumulative sentiment arc using a series
basis to represent continuous binge-watching steadily accumulates. The first episode is
understandably identical between the two, as the same methodology is being used across
the first episode.

Local minima and maxima can be identified between the three different arcs, but the
curves appear to be very different in nature.

The series based curve is of significant interest for stakeholders, as the planning of
episodes in the writers room requires episodes to be assessed in the context of its place
within the season and relative to other episodes.

We can now add forgetting or memory decay to the methodology for curve generation,
using parameters from Scenario 2 previously analysed, where β = 2 and ψ = 0.1. This
approach adds an additional level of complexity as the decay function is not scaled as it is
applied and by analysing more episodes, we are able to observe the behaviour of the decay
curve being applied over a greater data set.
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Figure 5.6: Fast and shallow decayed cumulative sentiment arcs comparing independent
consumption, binge-watching and window method: Aftertaste Season 1

The second comparison shows a similar contrast between the episode based and the
series based curves, though with a smaller range on the y-axis due to the introduction of
decay.

If the decay is increased, so that there is faster decay to a complete forgetting, the
arc will tend towards a more instantaneous measure at any given point in time. This fits
with our alternative interpretations of the forgetting curve that describe different types of
consumption, such as a viewer with limited attention span or “low stakes” consumption.

This comparison validates that our proposed approach has the flexibility to describe
different modes of consuming the media, which has received positive feedback from our
engagement and increases the justifiability of using sentiment curves for story analysis.

5.5 Discussion and further research

The proposed new approach for story arc analysis fulfills our objective of finding a
methodology with an increased justifiability, and hence usefulness, for application in
screenplay development

Testing the approach with this author’s stakeholder network yielded a consistently
positive response, and the approach of using a model of memory and information retention
to decay sentiment valence was considered to be reasonable and intuitive.

Whilst the approach has yielded insights into the first season of the series Aftertaste,
there are several areas that warrant further discussion, including the overall usefulness of
the approach, reflection on the comparison with the “window” method, and the viability
of the forgetting curve.
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Discussion on the motivation of data science in this domain is also undertaken, given
the unique nature of creative industries and the role of data science in creative development
as an area for investigation and further research.

5.5.1 Usefulness of the experience arc approach

A model’s usefulness was defined earlier as a set of five characteristics of interest: perfor-
mance, scalability, comprehensibility, justifiability, and actionability.

Our analysis was motivated by a perceived need from stakeholders to increase the
justifiability of the methodology for constructing story arcs from a corpus of text using
natural language processing. In addition to increasing the justifiability, our proposed
new approach utilising memory and valence decay has also impacted several of the other
characteristics.

Firstly, the scalability of the model is significantly improved using our methodology.
The window approach, requires an arbitrary window to construct the model which creates
a series of challenges. For large data sets, this may require a larger window for the curve
to appear meaningful, and similarly if the data set is too small, the approach would result
in insufficient data being available.

For instance, if a scene that had approximately 250 words was to be analysed and
the window size was selected at 250 words, this would only produce a single data point.
Alternatively, our memory-based approach treats each word as a data point of reader
experience, it is still able to produce a coherent cumulative sentiment arc by analysing the
corpus one word at a time with memory decay based on chosen parameters. This means
that the methodology can be applied on a very small set of words or a large collection of
texts with similar effectiveness.

In addition, the scalability characteristic can be evaluated through our comparison of
binge-watching and individual episode viewing. The window approach did not meaningfully
capture the difference between the two modes of consumption, however, the memory-
based curve naturally described the difference in experience between binge-watching and
individual episode consumption.

This result also demonstrates that another characteristic, the performance of the
model, is also significantly improved, as it describes the binge-watching experience more
appropriately. To assess the performance of the model requires a qualitative link between
the screenwriter’s interpretation of what they have created, compared to the emotional arc
plotted from their text. As observed in our analysis, many of the local maxima and minima
can be observed across the different modelling approaches, but the memory-decayed model
appears to capture greater trajectories that represent the cumulative experience.

Comprehensibility can be said to be improved based on the ability of the stakeholders
to understand the method for story arc generation.

The actionability of the model does not appear to be significantly improved, as whilst
the story arc generated is noticeably different, it is a similar output for implementation. It
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is recommended that interested screenwriters engaged for this analysis could continue to
participate or stay adjacent to further research to understand the potential actionability
of this approach in future writers rooms or creative development processes.

Overall, the proposed model has a significantly increased usefulness based on the
analysis provided.

5.5.2 Comparison with the window approach

Given the conclusion about the usefulness of the memory-based arc construction approach,
it is necessary to review the comparison with the window approach.

To reiterate the concept, the memory-based arc treats sentiment valence as having
a cumulative impact on the reader or viewer, which decays over time based on memory
capacity or attention. This decay rate is modelled using a forgetting curve distribution,
subject to variables that describe the speed and extent of the decay. Using this description,
we can rethink the window approach, as it appears to represent perfect memory for a given
amount of words that form the width of the window, followed by no memory of anything
prior to that point.

Whilst this is an apt comparison, this suggestion is in some ways unfair to the users of
this method, as proponents of the window approach do not claim to represent the user
experience. It instead measures something more akin to an aggregated sentiment impulse
at a given point in a story.

This differentiation is further exhibited by considering the parameters for each method.
The memory-based method requires two parameters to describe the speed and extent
of a reader or viewer’s memory decay, which is useful for describing different types of
audiences and also different modes of consuming the media. The window approach is a
single parameter, the size of the window, which in turn represents the size of the impulse.

This demonstrates a qualitative difference between the models. The model that
incorporates memory as a representation of information decay allows the story arc to be
generated based on memory decay parameters. This reveals that there isn’t one objective
story arc, but rather a range of experience arcs based on the memory or attentiveness of
the viewer.

In comparison, the window approach produces an impulse at a moment in time in the
text corpus that isn’t subject to interpretation or a function of human experience. This is
markedly different, as it infers an objective measure of the underlying story.

Rather than judge the benefits or weaknesses of each, it’s appropriate to acknowledge
that they are measuring different things. The window approach has shown to be remarkably
efficient at comparing different story arcs across large sets text corpora, which whilst not
as useful to our screenwriting stakeholders, is a valid and exciting research frontier in the
domain as a big data problem.

As a result, we take this opportunity to differentiate the two approaches as three
different story arcs for analysing screenplays:
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• Sentiment Impulse Arc - the traditional method using the sliding window approach;

• Experience Arc - the decayed cumulative sentiment arc;

• Cumulative Sentiment Arc - cumulative sentiment arc over time with no decay.

We include the third classification as a type of Experience Arc, as the Cumulative
Sentiment Arc is a fixed measure where parameter selection is not required. This enables
objective comparison, and is the measure of a viewer with perfect memory and engagement.

All three of the curves communicate different information about the underlying text,
and are useful for different applications.

5.5.3 Alternative dictionaries

For our analysis, we have used the AFINN Dictionary to attribute sentiment valence to
each word in the text corpus.

Alternative dictionaries may generate different arcs with similar or differing structure.
Drawing on SentiBench, the benchmark comparison of “state-of-the-practice sentiment
analysis methods”, alternative dictionaries can be proposed using 3-class (positive, negative
and neutral) dictionaries (Ribeiro et al. (2016)). 2-class dictionaries (positive and negative)
are not recommended at this stage given they require removal of neutral messages prior
to analysis, which given our need to capture neutral moments in our time series, is not
appropriate for our analysis.

For 3-class dictionaries, only the VADER and LIWC15 dictionaries are ranked higher
than AFINN in the SentiBench rankings, and are hence recommended for further analysis.

Despite these rankings, dictionary performance is situation dependent (Reagan et al.
(2015)), and development of tailored dictionaries for screenplay analysis that differentiates
between dialogue text and action text is also appropriate.

Further research may include utilisation of higher-dimensional dictionaries, such as
the nrc dictionary that categorises words into not just positive or negative sentiments,
but also eight emotion categories such as anger, anticipation, disgust, fear, joy, sadness,
surprise, and trust.

The scalability of the proposed Experience Arc approach makes this multi-dimensional
analysis practical, as each emotion category will not require a threshold of words to
construct a meaningful arc.

5.5.4 Forgetting distribution

The Experience Arc generation method relies on an assumption of reader or viewer memory
decay over time, shown by a forgetting curve coefficient. Whilst this is a fair assumption
for the purposes of information retention, the previous name of the arc as an emotional
story arc, means that our approach is not necessarily completely appropriate.
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The forgetting curve approach assumes a continual and consistent decay of word and
its sentiment valence over time, however, we can hypothesise that emotional moments may
be more memorable than others.

To test this, direct research could be undertaken into understanding memory and
information retention of readers of screenplays, and to understand whether the forgetting
curve approach is an appropriate model of reader experience.

5.5.5 Further work

Whilst our focus has been on screenplays and the development of useful models for the
writers room, the development of the Experience Arc approach presents an exciting
opportunity for further research and development. The paper The emotion arcs of stories
are dominated by six basic shapes (Reagan et al. (2016)) strongly influenced this exploration,
though the work relied on the assumption that a story has an intrinsic underlying arc that
can be generated systematically for comparative analysis.

In our approach, we have begun to look at the additional interface of human subjectivity
and the role that different modes of consumption play. This leads to a range of questions,
such as “Is there a perfect way to read a screenplay”, or “What is similar / different in how
we interpret a text”. These questions are central to the field of natural language processing,
as the field continues to grapple with the role of human interpretation (Chowdhary (2020)).



Chapter 6

Conclusion

6.1 Summary of results

The purpose of the thesis is to explore the potential for increasing the usefulness of
modelling approaches, with a focus on “small data” regimes where data science and human
action intersect. As defined earlier, the concept of usefulness challenges the value of many
modelling approaches that are only interested in predictive performance, and requires
models to be evaluated based on additional characteristics such as comprehensibility,
justifiability, actionability, and scalability. Through this analysis, we have found significant
demand in our domains of interest for this research, particularly due to a skepticism from
stakeholders of the ability for data science to “solve” complex situations, rather than
support human decision makers as they navigate situations with limited data and a large
range of variables with substantial uncertainty.

This approach has led to contributions to the literature in each domain. In Chapter
3, we explored the foundations of statistics in the Australian Football League. Previous
research and the majority of data science applications focused on counting possession
events, however by engaging with coaching and football departments at multiple clubs, it
was found that this missed two critical features:

• The majority of the game is played “off-the-ball”, and is not captured by possession
events;

• It matters who you play against.

Combining these two observations with the acknowledgement that the complexity of
the game means that traditional models have low statistical power, our first principles
analysis led to a new and promising approach. By evaluating the functioning of subsystems,
and integrating pairwise performance metrics, we were able to produce a foundational
approach that has the potential to rethink the application of data science in the Australian
Football League.

105
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Chapter 4 focused on another unique field of human action, entrepreneurship. We
explored research into start-up transformation pathways, modelling start-up transformation,
and growth of companies through private capitalisation and grant funding routes. Through
engagement with government stakeholders and policy makers, similar frustrations were
found to those in Chapter 3, where models appear to have low statistical power and
usefulness, and analysis was focused on measuring inputs rather than outputs.

Using our usefulness rubric, an approach was formulated to disentangle startup trajec-
tories based on capitalisation and in turn create a method for understanding the impacts
of startup interventions and grant support on private capitalisation outcomes. This is
a significant contribution to the literature associated with entrepreneurship and startup
transformation as it enables a practical methodology for understanding the trajectory of
startups that is useful for ecosystems with limited data, and gauging the effectiveness of
ecosystem interventions.

Lastly, we evaluated the use of data science in creative development in Chapter 5,
specifically the use of natural language processing to produce story arcs from screenplays.
Previous approaches have yielded significant insights, comparing and clustering story
arcs as a big data problem, however the usefulness in the “writers room” during the
screenwriting stages appeared to be limited. Through engagement with screenwriters and
producers, and participation in a writers room for the series Aftertaste, an alternative
approach for generating story arcs was developed that increased justifiability, scalability,
performance and comprehensibility.

This new approach significantly contributes to the field of natural language processing
and its intersection with creative development, introducing the role of memory in story
analysis through techniques that model information retention. This enables us to review
how computers process information to better emulate the human process of reading or
consuming content. Rather than replace the existing window-based approach, the proposed
methodology creates a new way of generating story arcs that include acknowledgement of
human variation in memory or attentiveness.

The work in each domain received strong positive engagement from the participating
stakeholder networks, and the appetite for further engagement increased as results and
discussions progressed.

6.2 Governance and developing useful metrics

Through this analysis, progress was made in each of these domains by improving the
usefulness of modelling approaches. Engagement with a broad range of stakeholders
revealed consistent themes, such as an eagerness to engage with new tools and the data
landscape, but a frustration with data analysis projects that were uninterpretable or lacked
pathways for meaningful action to be taken. The focus on usefulness provided an avenue
of promise as it acknowledged several key factors:
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• Not every problem has sufficient data to be treated as a big-data problem;

• There are limits to automation, particularly in domains of human action, and a focus
on the human interface requires comprehensibility, actionability and justifiability;

• Black-box approaches may be powerful, but the role of risk and accountability in
action require greater insight.

These insights reveal a significant new realm of opportunity. From a corporate gover-
nance perspective, there is tension between an appetite and drive to engage with metrics,
data science, and artificial intelligence, and the risk of poor implementation and false
promise. The relatively recent focus on reflexive quantification (Muller (2019)), captured
by the adage “If You Can’t Measure It, You Can’t Manage It” has resulted in a rapid
expansion of data capture and analysis projects (Berenson (2016)). Instead, quantifying
human performance has been shown to often produce inverse results in education, medi-
cal care, businesses and government (Muller (2019)), and leading to greater interest in
alternative pathways and more rigour in analysing the strategic implementation of data
science projects.

The approach taken in this research provides a framework that is potentially more
acceptable to corporate governance expectations, focusing on stakeholder need, strategic
objectives, available data and useful modelling.

6.3 Future research

Artificial intelligence continues to play an increasingly large role in all parts of society, and
its prevalence in the future is the subject of much debate.

The question of what humans will be doing in this future is not a new one. John
Maynard Keynes postulated that productivity gains would mean that his grandchildren
would only need to work 15 hours a week (Keynes (1931)), but rather than productivity
replacing human effort, the nature of work has instead evolved, sometimes with questionable
value (Graeber (2013)).

The rise of big data has also created a false assumption that every problem can be
solved with more data and computation, leading to an over-metrification across a range of
domains (Muller (2019)).

This heuristic, when taken to its limit, appears as a modern variant of Laplace’s
Demon (Laplace (1951))(Van Strien (2014)). According to Laplace, if an entity, or demon,
knows the exact location and momentum of every atom in the universe, their past and
future values for any given time can be calculated using classical mechanics (Marquis de
Laplace (1902)). There have been a range of refutations of this over time (Sommer (2013))
(Ulanowicz (2012)), but even though modern big data ambitions cannot be considered
interchangeable with computing the future states of the universe, recent arguments are
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focused on the compounding complexity when there are multiple entities attempting to
compute big data systems (Wolpert (2008)) (Rukavicka (2014)). This reminds us of our
focus on human domains of action, where agents are entities that are acting on limited
input data in complex environments, rather than mechanical, deterministic participants.

This leaves us with an intersection of human domains of action that have insufficient
data sets for big data analysis, which from our broad analysis, can be seen to be found in
diverse areas of life and work. The usefulness characteristics provide us with a new set of
tools for approaching these challenging domains, showing promise not just in our domains
of interest, but many other domains that would benefit from this angle of approach.

Usefulness characteristics might be a new framework in modern data science (Cousse-
ment & Benoit (2021)), however, we are again reminded of the quote from Korzybski that
this has long been a challenge for modelling.

A map is not the territory it represents, but, if correct, it has a similar structure
to the territory, which accounts for its usefulness. (Korzybski (1933))

Digital computation may have increased exponentially during this time, but the insight
of this statement endures as we navigate an increasingly technological future.
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