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Thesis Abstract 

 
Smoke taint refers to the unpleasant smoky and ashy attributes that can characterise wines made 

from grapes exposed to bushfire smoke. As outlined in Chapter 1, there is an urgent need for strategies 

that detect smoke exposure in grapes and mitigate its effect on wine sensory profiles, especially given 

that climate change models predict more frequent bushfires in the future. Current diagnostics of smoke 

exposure in grapes involve the measurement of volatile phenols and their glycoconjugates by GC-MS 

and HPLC-MS/MS, respectively. While their presence is an essential indicator, their concentrations are 

inherently dynamic and must be contextualised with respect to their natural abundance in grapevines 

leaves and fruit, the timing, density, and duration of smoke exposure, the fuel from which smoke is 

derived, and the timing of sampling for smoke taint analysis of grapes. Critical gaps in these domains 

confound our interpretation of current diagnostics and to achieve clarity, they need to be addressed. 

Chapter 1 concludes with a statement of research aims underpinning this thesis.   

To begin, this thesis investigates the volatile phenol glycoconjugates that are most indicative 

of smoke exposure in grapes and wine across distinct wildfire seasons in California (Chapter 2). The 

complex biochemistry of current smoke taint markers prompted investigation into their accumulation 

in grapevines following smoke exposure. This thesis demonstrates a temporal gap between the depletion 

of smoke-derived volatile phenols and the subsequent appearance of glycoconjugates, as well as the 

potential use of particulate matter sensors to monitor vineyard smoke exposure (Chapter 3). In parallel, 

this thesis also responds to the challenges of high analytical demand during the peak of the 2019/2020 

bushfire season in Australia. Measuring volatile phenols and glycoconjugates is a resource-intensive 

process, and this thesis explores fluorescence spectroscopy as a rapid detection tool (Chapter 4).  

Beyond acquiring more knowledge of existing smoke taint markers and rapid methods of 

detecting them, further progress in smoke taint diagnostics may be achieved with the of alternative 

markers. Current diagnostics measure fewer than ten volatile phenols, but far more exist in smoke. In 

addition, smoke carries ozone, a known oxidant that induces a biochemical stress response in plants. 

Using an untargeted metabolomics workflow, this thesis unveils both endogenous and exogenous 

metabolites that differentiate smoke-affected grapevines at different time points, from 2 hours to 20 

days, following smoke exposure (Chapter 5).  

Fortifying the grape and wine industry against the risks of grapevine smoke exposure requires 

not only improved diagnostics, but also novel mitigation strategies. Current remediation practices 

involve reducing volatile phenols and their glycoconjugates from wine or masking their unpleasant 

smoky, ashy attributes. While essential, these approaches prolong mitigation efforts until wines are at 

or near completion. More importantly, they present risks of diminishing positive attributes in wine. 



ii 

 

Ideally, preventative strategies should be employed in the vineyard. This thesis describes the 

development, evaluation, and application of a smoke box for conducting mitigation trials with improved 

efficiency and demonstrates the potential of activated carbon fabric to protect grapes from 

contamination by smoke (Chapter 6). To conclude, this thesis reflects on the enclosed chapters and 

other possible directions for future smoke taint research (Chapter 7).      
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Literature Review 

1. Introduction 

In December 2019, over 9,000 calls were made to the South Australian Country Fire Service 

bushfire hotline, relative to the rolling average of 3,198 from the preceding decade (CFS 

Annual Report 2019-2020). The severity of the 2019/2020 bushfire season served as a global 

reminder of the inextricable links between the extreme conditions of climate change and the 

risks of more extended, intense fire seasons ahead (Jolly et al. 2015). It also amplified concern 

regarding the risk of smoke taint, which refers to the ‘smoked meat’, ‘campfire’, and 

‘medicinal’ aromas and flavours and a drying, ashy aftertaste that characterise wine made from 

grapes exposed to bushfire smoke (Parker et al. 2012). The awareness and concern regarding 

smoke taint has become ubiquitous across the grape and wine industry, a state primarily 

attributed to intense wildfires in or near major wine regions that is anticipated to increase in 

frequency and intensity due to climate change (Scholze et al. 2006). Between December 2019 

and June 2020, the Australian Wine Research Institute’s Commercial Services laboratory 

received over 4,600 grape and wine samples for smoke taint analysis, an increase from 600 

samples in a “typical” year (AWRI Annual Report 2020). It is crucial that improved strategies 

for the detection and mitigation of grapevine smoke exposure are developed, especially given 

the predictions for increased fire activity and severity in the future and the ample concern for 

at-risk growing regions (Clarke et al. 2011; Krawchuk et al. 2009). 

The occurrence of smoke taint in wine results from grapevine exposure to smoke, and 

its signature ‘smoky’, ‘ashy’ sensory profile is attributed to smoke-derived volatile phenols 

such as guaiacol, 4-methylguaiacol, o-cresol, and syringol (Parker et al. 2012). The risk of 

smoke taint following grapevine smoke exposure is driven by several factors, including the 

timing, duration, and frequency of smoke exposure (Kennison et al. 2009). Thus, this risk 

cannot be assessed by the mere presence or absence of volatile phenols in grapes. Some volatile 

phenols have a natural presence in specific grape cultivars (e.g. Shiraz), and they can be 

extracted from oak during wine aging (Pollnitz et al. 2004; Ristic et al. 2015). These 

confounding sources of volatile phenols introduce complexity to the identification of smoke-

affected grapes and wines at risk of smoke taint. Moreover, volatile phenols are predominantly 

found in grapes and wine as an array of bound glycoconjugates, rather than their free analogues 

(Hayasaka et al. 2010b; Ristic et al. 2016). Glycoconjugates are non-volatile and relatively 

stable at pH levels in wine (Ristic et al. 2017; Whitmore et al. 2021), but they can contribute 



Chapter 1 | Literature Review and Research Aims 

3 

 

to the perception of smoke taint if the bond between the sugar moiety and the volatile phenol 

is cleaved through enzymatic hydrolysis during fermentation or wine tasting (Kennison et al. 

2008; Mayr et al. 2014).  

The mechanisms that orchestrate the uptake and glycosylation of smoke-derived 

volatile phenols are not fully understood, but the apparent ‘disappearance’ of volatile phenols 

in grapes within 24 hours of smoke exposure has been attributed to glycosylation (van der Hulst 

et al. 2019). While the ‘disappearance’ of volatile phenols may be rapid, it can take up to two 

weeks for corresponding increases in glycoconjugate levels to reach a plateau (Dungey et al. 

2011). Both leaves and grapes have the capacity to absorb smoke-derived volatile phenols, and 

while volatile phenols can be translocated between these sinks, this does not remain true for 

their glycosylated equivalents (Favell et al. 2021; Culbert et al. 2021a; Jiang et al. 2021; 

Hayasaka et al. 2010a). Thus, the prevailing hypothesis regarding the presence of smoke-

derived volatile phenols and their glycoconjugates in grapes is that volatile phenols are 

absorbed by the skins of the berries and diffuse into the pulp once glycosylated (Krstic et al. 

2015).  

Glycosylation has been described as a detoxification strategy (Winterhalter and 

Skouroumounis 1997; Härtl et al. 2017), but it is not a response exclusive to grapevine 

exposure to abiotic stresses such as bushfire smoke. Research has also identified a natural 

presence of certain volatile phenol glycoconjugates in some grape varietals, independent of 

smoke exposure (Ristic et al. 2015; 2016). There is no doubt that volatile phenols in grapes 

increase following grapevine smoke exposure and contribute to the perception of smoke taint 

in wine, yet their presence in grapes and wine (independent of smoke exposure) and their 

conversion into glycoconjugates introduces complexity to establishing clear cut-off values that 

differentiate smoke-affected grapes and wine from those unaffected by smoke exposure.   

Herein, this complexity is addressed by improving the speed and resolution of detection 

methods to enable earlier decision-making and developing proactive mitigation strategies. The 

first advantage of this approach is that earlier detection will capture chemical profiles with less 

interference from downstream sources accrued during winemaking. Concentrations of volatile 

phenols and glycoconjugates in grapes are influenced by baseline levels, grapevine smoke 

exposure, or both, whereas in wine, they are also influenced by winemaking decisions (e.g. 

yeast selection, duration of skin contact, oak contact). In other words, earlier detection provides 

a less filtered snapshot of grapevine smoke exposure. This paves the way towards the 
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establishment of objective cut-off values of smoke taint indicators that decisively differentiate 

smoke-affected fruit. The second advantage of this approach is that earlier detection 

streamlines decision-making for the management of smoke-affected fruit before it is even off 

the vine. While sensory analysis of wine is the ultimate evaluation of the intensity of smoke 

taint, it cannot be performed until fermentation is complete, and if remediation is required, 

winemakers are limited to a narrower range of options and time window within which to 

achieve it. By contrast, if grapevine smoke exposure detected early, mitigation can begin in the 

vineyard and proceed throughout the winemaking process. Alternatively, if the intensity of 

grapevine smoke exposure is beyond the capacity of remediation, it may be more cost-effective 

to leave the fruit on the vine than process it into unsaleable wine. Thus, earlier detection 

provides a more candid representation of smoke exposure and the options available to mitigate 

the risk of smoke taint in finished wine.   

This thesis is devoted to evaluating and empowering the efficacy of a ‘go hard and go 

early’ approach towards the mitigation of smoke taint. To be successful, this approach requires 

not only targeted mitigation strategies, but also precise diagnostics that inform the severity of 

grapevine smoke exposure and the concomitant risk of smoke taint in grapes and wine. The 

prevailing aims of the enclosed work are towards improving the efficiency of smoke taint 

diagnostics and accelerating the development of novel mitigation strategies. These aims are 

pursued through developing an enhanced understanding of the current markers of smoke 

exposure and exploring rapid methods to detect them, investigating the potential for alternative 

markers, and evaluating vineyard-based mitigation strategies.  

 

2. Detecting smoke exposure in grapes and wine  

2.1 Quantitation of volatile phenols and their glycoconjugates in grapes and wine 

The classical diagnostic of smoke exposure in grapes and wine is the quantitation of guaiacol 

and 4-methylguaiacol, two volatile phenols with low thresholds of sensory detection and high 

abundance in smoke (Maga et al. 1998). However, some volatile phenols have a natural 

presence in grapes that vary in concentration by grape variety (Ristic et al. 2016). Some volatile 

phenols are observed in wine due to extraction from toasted oak barrels during aging (Pollnitz 

et al. 2004). As a consequence of their shared formation pathway being lignin pyrolysis, some 

volatile phenols extracted from oak, including guaiacol, 4-methylguaiacol, phenol, syringol, 

and 4-methylsyringol (Ribéreau-Gayon et al. 2006), are also found in grapevine leaves and 
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fruit following smoke exposure (Kennison et al. 2007; Noestheden et al. 2018). However, when 

the source of the volatile phenols changes from oak barrels to bushfire smoke, the ‘smoky’ and 

‘smoked meat’ attributes (Li et al. 2015) that once served to enhance wine complexity elicit 

the potential to suppress fruity attributes and transform wines to unidimensional ‘cold ash’, 

‘medicinal’, and ‘campfire’ aromas and flavours. Thus, it is not the mere presence of volatile 

phenols, but the presence of sufficient volatile phenols derived from wildfire smoke exposure, 

that assembles the foundation for smoke taint perception. 

In the early diagnostics of smoke taint, guaiacol and 4-methylguaicaol were the primary 

volatile phenols included due to their known association with smoky aromas and flavours 

(Maga et al. 1988). In a pioneering study by Kennison et al. (2007), these compounds were 

measured in wine using a stable isotope dilution assay (SIDA) method developed for gas 

chromatography-mass spectrometry (GC-MS) (Pollnitz et al. 2004; Hayasaka et al. 2010c). It 

was found that even in wines with guaiacol and 4-methylguaiacol concentrations below the 

referenced detection thresholds, smoke taint attributes could still be detected (Kennison et 

al.2007). The thresholds referenced by Kennison and colleagues were from Boidron et al. 

(1988), at 95 µg/L (for guaiacol) and 65 µg/L (for 4-methylguaiacol) in white wine. These 

thresholds were higher relative to those reported for guaiacol in later studies being 9.5 µg/L 

(Ferreira et al. 2000) and 23 µg/L (Parker et al. 2012) in red wine. Nonetheless, it was evident 

in the landmark study that, while useful indicators of grapevine smoke exposure, guaiacol and 

4-methylguaiacol were not the only smoke-derived compounds driving the perception of smoke 

taint in wine (Kennison et al. 2007).  

In a subsequent study, Kennison et al. (2008) monitored the evolution of volatile phenol 

concentrations in smoke-affected and unaffected Merlot must during fermentation. Volatile 

phenol concentrations increased throughout winemaking, a trend attributed to the acid- or 

enzyme-catalysed release (or both) of volatile phenols from the glycosylated precursors. 

Hayasaka et al. (2010b) confirmed this hypothesis through the identification of guaiacol β-D-

glucopyranoside in smoke-affected Chardonnay and Sangiovese juice, and in a follow-up 

investigation, additional guaiacol glycoconjugates in smoke-affected Cabernet Sauvignon 

grapes (Hayasaka et al. 2010a).  

The formation of volatile phenol glycoconjugates in grapes is achieved through the 

action of glucosyltransferases; however, the exact mechanism that underpins their formation 

remains unknown. Hartl et al. 2017 identified the UGT72B27 glucosyltransferase as a key 
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player due to its high gene expression in grapevines, specificity for volatile phenols, and rate 

of conversion of volatile phenols into glucosides. In a buffer environment, UGT72B27 

glucosyltransferase yielded volatile phenol glucosides with no further substitution, which 

indicates regio-specificity. Glucosides of volatile phenols are found as natural constituents of 

grapes; however, volatile phenols are predominantly found in grapes as an array of 

disaccharides (van der Hulst et al. 2019). If disaccharides contain different sugar moieties, 

multiple enzymes are required to catalyse their donation, an exception being gentiobiosides, 

which contain two glucose moieties (Winterhalter and Skourimounis 1997). Additional work 

is required to identify other glucosyltransferases that contribute to the formation of 

glycoconjugates with greater complexity and the circumstances that prompt their formation. 

Several studies have depended on the quantitation of guaiacol glycoconjugates in 

tandem with guaiacol and 4-methylguaiacol, to judge the efficacy of remediation trials (Ristic 

et al. 2011; 2013, Fudge et al. 2011; 2012a); however, a range of volatile phenols beyond 

guaiacol superseded this practice (Kelly et al. 2014; van der Hulst et al. 2019; Jiang et al. 

2021). This change is attributed to studies that showed the synergistic effect of volatile phenols 

(including guaiacol, o-cresol, p-cresol, m-cresol, phenol, syringol, 4-methylsyringol, and 

others) on smoke taint intensity (Parker et al. 2012) and their ability to be hydrolysed from 

glycoconjugates during fermentation and wine tasting (Mayr et al. 2014). Thus, while 

glycoconjugates are non-volatile and relatively stable in wine during aging (Ristic et al. 2017; 

Whitmore et al. 2021), they are nevertheless volatile phenol reservoirs. Their inclusion in 

smoke taint analysis is paramount, particularly in grapes due to the rapid depletion of volatile 

phenols following grapevine smoke exposure and the potential risk of underestimating the 

severity of smoke exposure (van der Hulst et al. 2019; Jiang et al. 2021).  

Glycoconjugates can be measured directly using high-performance liquid 

chromatography tandem mass spectrometry (HPLC-MS/MS) (Dungey et al. 2011; Hayasaka 

et al. 2013). While also depending on a SIDA-based method, the absolute detection of 

glycoconjugates is hindered by the limited availability and expense of deuterium-labeled 

glycoconjugate standards. One strategy used to overcome these financial barriers is to quantify 

and report all volatile phenol glycoconjugates as syringol gentiobioside equivalents (Hayasaka 

et al. 2013); however, as the list and diversity of conjugated volatile phenol precursors continue 

to evolve (Caffrey et al. 2019), there are quantitative limitations associated with relying on a 

single chemical representative (Noestheden et al. 2018). Another strategy is to use acid 

hydrolysis as a proxy or indirect measurement of glycoconjugate concentrations (Wilkinson et 
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al. 2011). This approach involves measuring volatile phenol concentrations pre- and post-acid 

hydrolysis, and the difference between them is interpreted as the concentration of ‘bound 

volatile phenols.’ The bound volatile phenol fraction encapsulates the volatile phenol 

glycoconjugates, in addition to any other acid-labile volatile phenol conjugates that may have 

been excluded in the targeted, SIDA-based HPLC-MS/MS method. This analysis is readily 

performed by a GC-MS and more affordable deuterium-labelled and unlabelled standards, 

which in theory, makes it a more accessible and consistent method.  

In practice, this strategy has been hindered by poor recovery of volatile phenols 

following acid hydrolysis. In a study conducted by Hayasaka et al. (2010c), volatile phenol 

concentrations were measured in grape homogenate and wine samples, after which they were 

acidified to pH 1 with sulfuric acid and heated to 100 °C for 1 hour. While 50% and 92% 

reductions in glycoconjugate concentrations were achieved in grapes and wine, respectively, 

the recovery of liberated volatile phenols was less than 10% in wine. Singh et al. 2011 modified 

this approach by including several sample preparation steps, such as sample purification by 

solid phase extraction prior to acid hydrolysis. Wilkinson et al. 2011 compared glycoconjugate 

quantitation results using the original acid hydrolysis approach (Kennison et al. 2008; 

Hayasaka et al. 2010c), the modified acid hydrolysis approach (Singh et al. 2011), and the 

HPLC-MS/MS approach (Dungey et al. 2011; Hayasaka et al. 2013). This work demonstrated 

that strong correlations existed between the acid hydrolysis approaches and the HPLC-MS/MS 

method; however, it also showed that the former were still impeded by low recovery values 

(i.e. 15-30% in grapes). Such a caveat indicates that, independent of the HPLC-MS/MS 

method, acid hydrolysis approaches may only serve as a preliminary screening tool.  

To address these limitations, Noestheden et al. (2017) developed an optimised acid 

hydrolysis procedure for measuring bound volatile phenols in grapes and wine that resulted in 

recovery rates ranging from 71-103% for several key volatile phenols. Some implemented 

changes included the use of hydrochloric acid and a 4-hour incubation period in PTFE vessels, 

instead of the conventional sulfuric acid and a 1-hour incubation period in borosilicate glass 

tubes. Despite improved rates of recovery, subsequent work implementing this method did not 

resolve the mass balance discrepancy present between volatile phenol glycoconjugates and 

volatile phenols; in fact, the results inferred the presence of additional volatile phenol 

precursors resistant to acid hydrolysis (Noestheden et al. 2018).  
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At present, volatile phenols and their glycoconjugates remain the best chemical markers 

of grapevine smoke exposure. However, the significant cost, both the time and the resources 

required for their quantitation, warrant supplementation with rapid detection methods. This 

would improve the efficiency of current diagnostics by enabling grapes and wine samples to 

be categorised into different smoke taint risk profiles (e.g. low, medium, high) and reserve 

comprehensive analysis of volatile phenols and their glycoconjugates for samples that cannot 

be readily differentiated as low- or high-risk.   

 

2.2 Approximation of grapevine smoke exposure with rapid, spectral analysis and 

chemometrics 

Rapid spectral detection tools are an emerging diagnostic for grapevine smoke exposure. While 

GC-MS and HPLC-MS are essential analytical tools, these classical techniques have several 

disadvantages that are improved with the integration of spectral techniques into qualitative and 

quantitative analytical workflows. Classical techniques require time-intensive sample 

preparation, method development, and data acquisition and analysis. Additional disadvantages 

include the high costs incurred by instruments, internal standards, consumables, and skilled 

labour. On the contrary, spectroscopic techniques require minimal sample preparation and 

acquisition time, and many instruments used in spectral techniques are less expensive and 

readily adaptable to automation. Moreover, developments in sensor technology have led to 

wider availability of spectral techniques in hand-held formats. Relative to the classical 

equivalent, these characteristics reduce the skill level needed for labour associated with spectral 

data acquisition.  

A critical difference between classical and spectral techniques is the specificity of data 

collected and the complexity of subsequent statistical analyses required to interpret the data. In 

general, classical techniques generate data that are more specific to analytes of interest and thus 

require less complex statistical analysis to extract key information. In classical techniques, the 

role of the analyst is to isolate analytes in a sample matrix, minimise interference from other 

constituents, and validate observed signals with a known standard or spectral fragmentation 

pattern. In spectral techniques, the opposite is true. The role of the analyst using a spectral 

technique is to extract portions of the holistic ‘fingerprint’ of the sample matrix that best 

correlate with the analytes of interest. As a result, a major obstacle to the implementation of 
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spectral techniques is the substantial skill level of labour required to develop and maintain data 

processing workflows that extract and model relevant information (Cozzolino 2014).  

In the grape and wine industry, ultraviolet (UV), visible (Vis), mid infrared (MIR), near 

infrared (NIR), and fluorescence spectroscopy in tandem with multivariate statistical analysis 

have been investigated to facilitate quality control workflows and routine analyses; however, 

FTIR methods are the most common (Cozzolino and Dambergs 2010). Notably, Patz et al. 

2004 demonstrated the ability of FTIR spectroscopy in combination with partial least squares 

regression to measure alcohol (% abv), fructose (g/L), glucose (g/L), total phenols (mg/L), and 

total acid (g/L) concentrations in wine, with correlation coefficients (R2) in excess of 0.9734. 

Access to this information with a highly accurate, rapid method is invaluable to quality control 

of fermenting musts and finished wine, particularly at large-scale wineries and commercial 

laboratories; however, the adaptability of FTIR spectroscopy is limited to the quantitation of 

compounds with concentrations greater than 0.2 g/L (Bauer et al. 2008).  

The limited sensitivity of FTIR spectroscopy was corroborated in a study that trialed 

the use of a hand-held NIR-Vis spectrometer to perform rapid grape quality assessment at 

receival (Porep et al. 2015). Among conventional quality assessment parameters (e.g. fructose, 

glucose, titratable acidity, pH, tartaric acid and malic acid), gluconic acid and acetic acid were 

also measured as indicators of grape rot, but their low concentrations and minimal impact on 

the spectra, led to poor prediction. This presents a challenge for the use of FTIR spectroscopy 

to detect smoke exposure in grapes and wine because volatile phenols, even summed, are at 

concentrations orders of magnitude lower than other constituents in the wine matrix such as 

sugars, acids, alcohols, polysaccharides, and phenolic compounds (Waterhouse et al. 2016). 

An early study reported a combined concentration of guaiacol and 4-methylguaiacol at 

approximately 1,800 µg/L (Kennison et al. 2007); however, this was in great excess of 

concentrations of guaiacol and 4-methylguaiacol typically reported in wines with perceivable 

smoke taint. For example, in a trial that examined the effects of grapevine defoliation on smoke 

taint intensity, the wine with elevated an ‘smoke’ aroma, ‘smoke’ flavour, and ‘ashy aftertaste’ 

contained a mere 3.3 µg/L of guaiacol and trace levels of 4-methylguaiacol (Ristic et al. 2013). 

Scrimgeour et al. 2021 investigated the feasibility of MIR spectroscopy to predict total volatile 

phenols, total volatile phenol glycoconjugates, and syringol gentiobioside concentrations in 

grapes and wine but found poor correlations between actual and predicted values in the test set.  
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Achieving adequate sensitivity in a complex matrix such as wine is also an obstacle in 

fluorescence spectroscopy. Many polyphenols in wine are natural fluorophores, including non-

flavonoids (e.g. phenolic acids, phenolic aldehydes, and stilbene-like compounds) and 

flavonoids (e.g. flavanols, flavan-3-ols, and proanthocyanidins) (Airado-Rodríguez et al. 

2011). These polyphenolic compounds contribute to wine astringency, flavour, and colour, and 

both their abundance and reflection of viticultural and winemaking practices enable them to 

discriminate region, variety, and vintage in wine (Waterhouse et al. 2016). Polyphenols present 

the largest obstacle to the discrimination of wine according to smoke-derived volatile phenols 

with fluorescence spectroscopy because they have a greater abundance and higher quantum 

yields due to their highly conjugated structure.  

Another major challenge to successful smoke taint classification with spectral 

techniques is the diversity of volatile phenol profiles and their context- and concentration-

dependent correlation to smoke taint intensity. These aspects complicate classification because 

spectral techniques rely on statistical analyses to sift through haystacks and identify needles 

that most consistently correlate with a property of interest. Unless measuring a pure standard, 

spectral data are correlative by default (Cozzolino et al. 2014). Thus, constructing a 

classification model for smoke taint is a matter of bridging two correlations, one between 

volatile phenol profiles and the sensory perception of smoke taint and the other between 

spectral data and volatile phenols in a complex matrix. The first is required to build 

representative calibration sets, and the second is required to identify the relevant spectral 

pattern.   

Some of these challenges were encountered in a study by Fudge et al. 2012b, which 

assessed the feasibility of MIR spectroscopy data, interpreted via principal component analysis 

(PCA) and linear discriminant analysis (LDA), to classify wines as ‘control’ or ‘smoke-

affected’. Wines were sourced from industry and previous experimental trials related to smoke-

taint. For the wines from experimental trials, smoke-affected wines were accurately classified 

with 100% success; however, for wines sourced from industry, the accuracy of classification 

ranged from 62 to 87%. In contrast, only one experimental trial classified control wines with 

100% accuracy, and the others ranged from 38 to 86%. In addition to smoke exposure, wines 

within each trial were characterised by additional factors such as grape varietal (Ristic et al. 

2016), oak/tannin additions, yeast strain, or skin contact time (Ristic et al. 2011), and grapevine 

defoliation (Ristic et al. 2013). It is likely that the chemical consequences of these treatments 

had greater influence on the MIR spectra than smoke exposure. This was evident from the 
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classification of red cask wine as smoke-affected, regardless of whether it had been spiked with 

30 mg/L of guaiacol, a concentration far exceeding the range observed in even the most 

severely smoke-tainted wine. The lack of evident differentiation—even between simplistic 

experimental wines made under similar conditions from grapes with comparable smoke 

exposure—indicated that the heterogeneity introduced by natural bushfire smoke and different 

winemaking practices would only complicate the classification task already inhibited by 

sensitivity.  

Grapes used to make experimental wine are exposed to smoke at a controlled intensity 

for a set period, which offers the benefit of delineated ‘smoke-affected’ or ‘control’ groups, 

but for grapes used to make commercial wine, the timing, duration, and intensity of exposure 

to natural bushfire smoke are typically unknown. As a result, Fudge and colleagues measured 

guaiacol and 4-methylguaiacol concentrations in commercially-sourced wine. They also 

performed informal sensory analysis, but neither analysis brought clarity to the delineation of 

‘smoke-affected’ and ‘unaffected’ wine. Guaiacol was ubiquitous across wines (range from 1 

to 55 µg/L) and 4-methylguaiacol was only present in half of the wine samples (ranging in 

concentration from 3 to 33 µg/L). Informal sensory analysis highlighted the influence of the 

wine matrix on the correlation between the concentration of volatile phenols and the perceived 

intensity of smoke taint attributes. For example, in wines as chemically dissimilar as a red blend 

with 51 µg/L of guaiacol and 29 µg/L of 4-methylguaiacol and a Shiraz with 6 µg/L of guaiacol 

and undetected levels of 4-methylguaiacol, the presence of an ashy aftertaste—a hallmark of 

smoke taint—was noted in both. Regardless of the chemical and sensory data, all industry 

wines used to develop the classification model were considered to be ‘smoke-affected’. The 

correct classification rate of ‘smoke-affected’ industry wine was reported as 68%, but this is 

misleading because not all wines demonstrated clear evidence of smoke taint; thus, not all 

should not have been treated as ‘smoke-affected’.  

Several changes are required to improve the correlation between chemical indicators of 

smoke exposure and spectral data. The first change is to frame the problem as a binary 

classification task to a non-binary classification or prediction task. Fudge et al. 2012b trialed 

the discrimination of wine into a ‘control’ or ‘smoke-affected’ binary classification using MIR 

spectroscopy. An alternative approach, as outlined by Scrimgeour et al. 2021, is to use a non-

binary classification approach, which aims to group samples across a gradient of ‘low’, 

‘medium’ or ‘high’ smoke exposure risk. This strategy acknowledges the diversity of smoke 

taint chemical profiles and in this work, afforded better success than the prediction of total 
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volatile phenols, total glycoconjugates, or syringol gentiobioside concentrations. This 

classification scheme would help streamline decision-making leading up to harvest or in the 

winery and offer a data-driven approach to deciding which samples require more extensive 

compositional analysis.  

Another alternative is to use a non-binary prediction approach, which aims to 

approximate volatile phenol or volatile phenol glycoconjugate concentrations. If successful, 

this approach would enable faster and more economical quantitation of key smoke taint 

indicators relative to the pace of classical GC-MS and HPLC-MS/MS techniques. While smoke 

exposure is a necessary pre-requisite for smoke taint, predicting smoke exposure and predicting 

smoke taint are distinct problems. As mentioned previously, accurate classification of smoke 

taint relies on the convergence of two correlations—one between spectral signals and chemical 

indicators of smoke exposure and another between chemical indicators of smoke exposure and 

the sensory perception of smoke taint. Converting the task from a binary classification to a non-

binary prediction focuses on the improvement of the former correlation and avoids being 

tangled by the latter correlation.  

The second change is that volatile phenol glycoconjugates need to be included in the 

chemical profile because they are a critical sink of smoke-derived volatile phenols present at 

significantly higher concentrations than volatile phenols in grapes and wine. The inclusion of 

the more abundant glycoconjugates may be easier to detect by a range of different methods. 

For example, in a study that compared guaiacol and guaiacol glycoconjugates in several 

varieties, 1978 µg/L of guaiacol glycoconjugates were observed in smoke-tainted Shiraz wine, 

relative to just 26 µg/L of guaiacol in the same wine (Ristic et al. 2016). That being said, some 

volatile phenol glycoconjugates also have a natural presence that needs to be accounted for. In 

the same study, the corresponding control wine (made from Shiraz grapes unaffected by smoke 

exposure) contained 334 µg/L of guaiacol glycoconjugates (Ristic et al. 2016). Given this 

natural abundance and their relative stability through fermentation (Caffrey et al. 2019; 

Whitmore al. 2021) and bottle aging (Ristic et al. 2017), a more detailed glycoconjugate profile 

of unaffected grapes is warranted to define the boundaries of natural variation.  

The third change is the inclusion of a greater proportion and richness of “real” samples 

from industry. In Fudge et al. 2012b, over 60% of the wines were sourced from experimental 

trials involving the application of smoke to grapevines using a model system. While of great 

value to the assessment of feasibility due to their simpler matrices, experimental wines may 
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not capture the compositional diversity in wines made from grapes exposed to “real” bushfire 

smoke, nor the winemaking practices implemented to produce them. As a result, the prediction 

performance of models calibrated with replicated experimental wines will not perform as well 

because they come from a distinct population (Cozzolino et al. 2014). Moreover, the inclusion 

of more diverse samples might reduce the risk of overfitting.  

Increased smoke taint awareness and bushfire frequency have significantly increased 

the demand for smoke taint analysis by commercial laboratories. This prompts the need for 

reduced costs and sample turnaround times associated with the quantitation of volatile phenols 

and volatile phenol glycoconjugates. Spectral techniques are an appealing solution due to their 

rapid, non-destructive nature of analysis and minimal sample preparation. While they have 

been integrated as part of routine quality control operations, only a few studies have explored 

their adaptation for smoke taint detection. Developing the capacity to rapidly screen for volatile 

phenols and their glycoconjugates in grapes and wine would enable earlier, objective decision-

making and enable the support of ongoing mitigation efforts.   

 

2.3 Detection of smoke exposure in grapevines with alternative targets 

2.3.1 Challenges associated with current targets of smoke exposure in grapevines   

The preceding discussion addressed the aim to improve the efficiency of smoke taint 

diagnostics by developing strategies that rapidly detect volatile phenols and their 

glycoconjugates. There is no doubt that volatile phenols, in free and glycosylated forms, 

increase in grapes following smoke exposure and contribute to the perception of smoke taint 

in wine. However, as discussed above, the accurate prediction of smoke taint risk requires the 

convergence of two distinct correlations, the first between grapevine smoke exposure and 

volatile phenol/glycoconjugate concentrations and the second between volatile 

phenol/glycoconjugate concentrations and wine sensory perception. Spectral techniques may 

expedite the speed at which volatile phenols and glycoconjugates are quantified, but several 

challenges must be overcome to improve the practicality of these diagnostics in grape and wine 

samples.  

The first challenge to establish is the natural presence of volatile phenols and 

glycoconjugates in grapes (Ristic et al. 2016). Based on research trials conducted in Australia, 

natural abundance of free and glycosylated volatile phenols in grapes at maturity seemingly 
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depends on variety (Ristic et al. 2015; Ristic et al. 2016). However, it is not known how these 

baseline levels change across other varieties and regions outside of Australia, nor how they 

interact with the developmental stage at which grapes are exposed to smoke and subsequently 

analysed. Many grape grower contracts contain stipulations for damage incurred by disease 

and spoilage, and as the concern for smoke exposure rises, a few are also beginning to 

implement acceptable tolerance levels for smoke marker compounds (Allied Grape Growers 

and California Association of Winegrape Growers, 2021). Comprehensive baseline data 

specific to grape varietal, region, and developmental stage are needed to ensure the accuracy 

and fairness of these tolerance levels and limit the risks of overestimating grapevine smoke 

exposure and thus, inadvertently rejecting unaffected fruit. 

The second challenge relates to the temporal dependence of the uptake and subsequent 

glycosylation of volatile phenols. It has been demonstrated that the timing of smoke exposure 

affects the degree to which grapevines absorb volatile phenols (Kennison et al. 2009, 2011) 

and subsequently glycosylate them (Jiang et al. 2021). Kennison et al. (2009, 2011) exposed 

grapevines to single, 30 minute smoke treatments using a purpose-built tent at different time 

points, both pre- and post-véraison, and compositional analysis of resulting wine found 

guaiacol concentrations were highest when made from grapes exposed to smoke at 7 days post-

véraison. In later work, Jiang et al. 2021 monitored grapevines that were continuously exposed 

to smoke from bushfires in the Hunter Valley from October 2019 to January 2020. Therein, it 

was observed that even when berries were green and hard at E-L stage 33, significant 

glycosylation of volatile phenols could occur. E-L stage 33 precedes the peak period of acute 

volatile phenol uptake as observed in work by Kennison and colleagues (2009, 2011). This 

demonstrates that prolonged smoke exposure during the early stages of grape development can 

elevate volatile phenols (and then glycoconjugates) to levels comparable to those from a single 

event of smoke exposure at peak sensitivity. The temporal dependence of the uptake of volatile 

phenols has been postulated to reflect changes in leaf or berry physiology and surface area. 

Subsequent studies have incorporated this finding regarding the temporal dependence of 

volatile phenols, as demonstrated by the execution of field trials within the prescribed 7-10 

days post-véraison (Ristic et al. 2015; 2016, Noestheden et al. 2018, van der Hulst et al. 2019). 

On the other hand, the temporal dependence of glycosylation, as well as the practices needed 

to accommodate it, are still under investigation.   

There is a delay between the uptake of volatile phenols and their subsequent 

glycosylation, and this creates a window post-smoke exposure in which the chemical profile 
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of grapes may depend on when samples are collected. Using HPLC-MS/MS methods, previous 

studies have reported minimal volatile phenol concentrations within 24 hours of smoke 

exposure and the significant accumulation and stabilisation of volatile phenol glycoconjugates 

within 2 weeks of smoke exposure (Dungey et al. 2011; van der Hulst et al. 2019). Contrarily, 

Noestheden et al. 2018 reported different accumulation patterns of bound volatile phenols 

using the combined acid hydrolysis and GC-MS method. Some bound volatile phenols were 

established very rapidly after smoke exposure and remained consistent over berry maturity, 

some steadily increased, and others were absent in grapes and only present in subsequent wines. 

Interestingly, increases in bound 4-methylguaiacol were not mirrored by a corresponding 

decrease in free 4-methylguaiacol, which suggested that there may be dynamic fractions of VP 

conjugates that become increasingly acid-labile over time. It is evident that elevated volatile 

phenol and volatile phenol glycoconjugate concentrations arise as a consequence of grapevine 

smoke exposure. However, the apparent lack of mass balance observed with free 4-

methylguaiacol concentrations indicated that glycoconjugates might not be the only bound 

forms that are needed in a comprehensive smoke taint diagnostic, particularly at the early stages 

post-smoke exposure. If berry samples are collected for analysis at the minima between the 

rapid depletion of volatile phenols and the onset of glycosylation, there is a risk of 

underestimating the severity of grapevine smoke exposure. A better understanding of the 

timeline and mechanism of glycosylation is required to mitigate this risk and standardise not 

only the timing of field trials at 7-10 days post-véraison, but also the timing of sample 

collection.    

The third challenge to consider is the dynamic nature of fermentation. Volatile phenol 

glycoconjugates are minimally affected by acid-catalysed hydrolysis at typical wine pH 3.4 

(Ristic et al. 2017; Whitmore et al. 2021); however, they appear to be affected by enzyme-

catalysed hydrolysis driven by yeast. Kennison et al. 2008 observed the steady increase of 

guaiacol and 4-methylguaiacol concentrations during fermentation, with the highest 

concentrations observed in finished wine. In contrast, Caffrey et al. 2019 indicated that volatile 

phenol glycoconjugates decreased by an average of 23% during the first half of fermentation, 

after which they were stable through to the end of fermentation. This difference between studies 

indicates that alternative volatile phenol storage forms may exist, a hypothesis supported by 

Noestheden et al. 2018, in which increased free volatile phenol levels in wine (relative to 

corresponding berries) were not accompanied by decreased bound volatile phenol levels in 

wine. Studies investigating the fate of volatile phenols and glycoconjugates over fermentation 
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have shown that enzymatic cleavage can hydrolyse volatile phenol glycoconjugates and that 

alternative storage forms likely exist, beyond conventional disaccharides. As a result, 

additional work is required to understand the fates of individual volatile phenol 

glycoconjugates during fermentation, identify whether the most indicative markers of smoke 

exposure in grapes carry over into wine, and elucidate alternative biochemical sinks.   

The final challenge to examine is the dependence of sensory perception on the wine 

matrix. Some compounds exhibit changes in sensory attributes at different concentrations 

(Waterhouse et al. 2016), and sensory perception can be modified by the presence of other 

compounds in a mixture (Rochelle et al. 2018). For smoke taint, it is likely a combination of 

both. For example, guaiacol and 4-methylguaiacol have been observed higher concentrations 

in wines matured in oak barrels without imparting any smoke taint attributes (Kennison et al. 

2007). Moreover, studies have shown that even at sub-threshold levels, smoke taint sensory 

attributes become evident (McKay et al. 2021) particularly when o-cresol, which is a volatile 

phenol not typically found in barrel-aged wines, is present with other volatile phenols (Favell 

et al. 2022; Parker et al. 2012). In conventional sensory analysis of smoke-affected wines, 

wines are screened for a discrete number of sensory attributes associated with smoke (e.g. 

‘smoky’, ‘cold ash’, ‘medicinal’, ‘ashy aftertaste’, ‘metallic’), oak (‘woody’), spoilage 

(‘earthy’, ‘moldy’, ‘barnyard’, ‘musty’), as well as overall fruit aroma/flavour intensity, basic 

taste (‘acidity’, ‘bitterness’) and mouthfeel attributes (‘drying’, ‘astringent’) (Ristic et al. 

2016). However, there is evidence that volatile phenols and glycoconjugates interact with other 

aroma compounds in wine (McKay et al. 2021) and the current list of attributes would not 

enable an examination of these interactions.  

The final quantity of volatile phenols and glycoconjugates in a wine depends on their 

natural abundance in grapes, the timing and duration of grapevine smoke exposure in the 

vineyard, and the conditions of fermentation, but the sensory implications of this quantity are 

dependent on the wine matrix. For example, in McKay et al. 2020, o-cresol was not described 

as ‘ashy’ unless it was present in wine with 2-isobutyl-3-methoxypyrazine (McKay et al. 2020). 

In another example, Ristic et al. 2011 demonstrated that the use of oak chips could lower the 

perceived intensity of smoke taint in wine, not through the removal of volatile phenols or 

glycoconjugates, but through increasing wine complexity and masking the severity of smoke 

taint. Furthermore, Favell et al. 2022 demonstrated that white wines with high levels of fruit 

could mask the intensity of smoke taint that would otherwise be predicted based on volatile 

phenol and glycoconjugate concentrations in isolation. It is evident that the perception of 
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smoke taint in wine is matrix-dependent and thus, other key aroma compounds in wine must 

be subject to chemical and sensory analysis to explore these interactions. This information will 

supplement the quantitation of volatile phenols, glycoconjugates, and sensory attributes 

associated with smoke taint.  

Overcoming these challenges will improve the prediction of smoke taint risk in wine 

following grapevine smoke exposure and enable earlier, confident decision-making, but further 

research into volatile phenols and glycoconjugates may not be the only way to improve the 

efficiency of smoke taint diagnostics. Prior to the metabolism of volatile phenols in grapevines, 

many aspects of the smoke that carries them and the fire from which they are generated can be 

detected using appropriate sensors. If placed in the vineyard, sensors could be used to monitor 

vineyard exposure to bushfire smoke in real-time, well before grapes are off the vine. This 

would expand our attention to characterising the nature of smoke exposure in the vineyard and 

how it informs the risk of smoke taint, rather than exclusively focusing on the chemical 

consequences of its presence in grapevines. Another way to improve the efficiency of smoke 

taint diagnostics is to search for alternative chemical indicators of smoke exposure. As 

stationary organisms, plants have evolved different mechanisms to respond to their 

environment, one of which is the generation and emission of volatile compounds for signalling 

and communication (Dudavera et al. 2004). While the upregulation of plant-derived 

metabolites in response to smoke exposure may not have sensory relevance to wine, these 

metabolites could nonetheless be used as biochemical evidence of smoke exposure. The 

subsequent sections will describe these alternative strategies.  

 

2.3.2 Approximation of grapevine smoke exposure with vineyard-based detection tools 

Vineyard-based detection is an emerging diagnostic for grapevine smoke exposure. In domestic 

settings, smoke presents the risk of endangering occupants and so detectors are installed to 

prompt extinguishment or evacuation; however, the risks associated with smoke exposure in a 

vineyard are more nuanced. Smoke can disperse far from its original source, and its behaviour 

and composition depends on the type and extent of the fire, fuel type/load, prevailing wind 

conditions, and topography (Bell et al. 2013). Studies have demonstrated that the timing, 

frequency, and duration of grapevine smoke exposure affect the intensity of smoke taint in 

wine (Kennison et al. 2008; 2011). However, for more refined decision-making, data that show 

the density and duration of smoke exposure in a vineyard in real-time are required.  
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The properties and characteristics of fire such as heat, light, smoke, flicker, motion, and 

chemical by-products (e.g. particulate matter, carbon monoxide, and volatile organic 

compounds (VOCs)) present an assortment of material available for detection (Allison et al. 

2016). Some conventional methods of fire detection include the use of satellite imagery, human 

observation from watchtowers, infrared (IR) sensors, visible spectrum cameras (Zhao et al. 

2018), and multispectral cameras (Akloufi et al. 2021). More specifically to smoke, the 

feasibility of simple particulate matter sensors (Kelleher et al. 2018; Holder et al. 2020) and 

red, green, and blue (RGB) image analysis (Brunori et al. 2020) have been evaluated.   

One approach to detecting vineyard smoke exposure is with a network of sensors. In 

addition to gases (e.g. NO2, CO2, SO2, and O3), smoke also carries particulate matter (PM) 

which can be detected by small, portable sensors (Radojevic 2003). Particulate matter ranges 

in size due to their relevance to human health, the diameters most often recorded are 1.0 µm, 

2.5 µm, and 10 µm, abbreviated as PM1.0, PM2.5, and PM10, respectively (Polichetti et al. 2009). 

Jiang et al. 2021 used PM10 concentrations collected over 8 weeks as a proxy of smoke 

exposure and compared them to volatile phenol and glycoconjugate concentrations in 

Chardonnay and Shiraz grapes. Two air stations, situated 25-30 km northwest of the vineyards, 

collected the PM10 data. Grapes were sampled at five time points and overall, the 

glycoconjugate levels were low at the first and second time points, after which they increased 

the most at the third time point, and plateaued through to the fifth time point. This accumulation 

pattern coincided with the PM10 data patterns from Station 1, but not Station 2. Station 1 was 

within 5 km northeast of the fire front and reported a southeast wind that would blow smoke 

toward the vineyards situated 25 km east of the fire front. On the other hand, Station 2 was 25 

km northeast of the fire front and reported a northeast wind that would blow smoke away from 

the vineyards. Anecdotal evidence, including the presence of ‘heavy haze and a strong smoky 

smell’ during the period of increasing PM10 concentrations supported the data from Station 1; 

however, this study demonstrates the disagreement that can arise from two PM sensors, even 

under a simple situation characterised by a single fire front and clustered vineyards.  

There are a few limitations with using PM sensors to detect vineyard smoke exposure. 

The first limitation is that a high density of PM sensors is required to ensure that all areas have 

sufficient cover. When incorporated as part of expensive, all-inclusive environmental sensors, 

this would be cost-prohibitive for many vineyards. However, PM sensors can also be found as 

stand-alone units at significantly lower price brackets and demonstrate comparable quality to 

units that are more expensive. One study compared the performance of PM2.5 sensors 
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earmarked for citizen scientists and federal air quality agencies and found them to be 

comparable (Holder et al. 2020).  

The second limitation is that particulate matter concentrations are only an indirect 

approximation of the volatile phenols present in smoke. They do not consider the dispersion 

and oxidation of volatile phenols in smoke over time nor the partition coefficients that govern 

the diffusion of volatile phenols to the berry surface (Krstic et al. 2015). More work is required 

to understand the correlation between PM concentrations and volatile phenol concentrations in 

grapes. Rather than use a PM sensor as an indirect approximation of volatile phenols, semi-

conductor metal-oxide sensors have been trialed for the real-time measurement of volatiles 

emitted from (Eucalyptus globulus) wood and leaves during combustion (Paczkowski et al. 

2018). This offers a more targeted measurement than particulate matter, but it would also 

require a large sensor density to be effective, and it is likely that the semi-conductor metal-

oxide sensors would be more expensive than PM sensors. Despite these limitations, the 

sensitivity and low cost of PM sensors, as well as their ability to network and provide real-time 

information, present an opportunity for monitoring the presence of smoke in vineyards. 

Another method for detecting vineyard smoke exposure is the deployment of unmanned 

aerial vehicles (UAVs), which would improve the range, resolution, and flexibility of vineyard 

smoke detection (Alkloufi et al. 2021). UAVs can be mounted with different types of sensors 

and when combined, provide a comprehensive assessment of the size and anticipated direction 

of the fire and smoke. Moreover, they are highly manoeuvrable and do not require extensive, 

premeditated deployment, both of which suit the dangerous and unpredictable nature of fire 

events. Brunori et al. 2020 tested the feasibility of an RGB camera mounted on a UAV to detect 

grapevine smoke exposure. Leaves can be damaged by the presence of gases in smoke (e.g. 

NO2, CO2, SO2, and O3) due to the formation of necrotic lesions and decline in photosynthetic 

activity (Ristic et al. 2016). Brunori and colleagues used this to build a Canopy Area Health 

Index (CAHI), which reflected the percentage of living and dead leaves relative to the total 

canopy area.  

To test the feasibility of using the CAHI as an indicator of vineyard smoke exposure, 

Brunori and colleagues enclosed vines in a purpose-built tent and exposed them to smoke on 

two occasions. The occasions were spaced one week apart, and smoke exposure lasted for 60 

minutes and 30 minutes, respectively, after which the UAV-mounted RGB camera scanned 

them immediately and then again 24 hours following smoke exposure. After generating maps 
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of damage attributed to smoke exposure, Brunori and colleagues found that significant leaf 

death occurred primarily after the second occasion of smoke exposure. This is corroborated by 

Kennison et al. 2009, in which only grapevines subject to multiple 30-minute smoke treatments 

developed necrotic lesions on their leaves. Assuming that the vineyard has no confounding 

sources of leaf necrosis, this rapid approach is useful to characterise grapevines exposed to 

bushfire smoke; however, this approach is limited because the absence of necrotic lesions does 

not preclude the occurrence of smoke exposure and thus any smoke taint risk.  

Another approach to the detection of vineyard smoke exposure is the use of hand-held 

spectroscopic devices. In Summerson et al. 2020, the berries and leaves of smoke-affected 

grapevines were scanned with a hand-held NIR spectrometer. Spectral data were used to train 

artificial neural network models to classify grapevines into groups characterised by no smoke 

exposure, a low level of smoke exposure, or high levels of smoke exposure, and the accuracy 

of the developed models exceeded 90%. These are promising results, but as mentioned above, 

several challenges confront the widespread adaptation of spectral techniques. Primarily, there 

is considerable skill required to build models that robustly differentiate properties of interest 

across highly diverse matrices, and further work is required to assess the accuracy of developed 

models with different varietals, regions, and conditions of grapevine smoke exposure (e.g. 

timing, duration, frequency, and density). Moreover, for safety reasons, the use of handheld 

spectrometers may be hindered by limited access to vineyards following smoke exposure.  

There are many challenges associated with detecting and monitoring smoke with 

sufficient resolution to characterise the degree of smoke exposure in a way that informs the 

risk of smoke taint on a vine-to-vine level. However, developing the capacity to screen for 

smoke exposure in the vineyard would enable earlier decision-making for smoke-affected 

grapes and potentially widen the range of available mitigation strategies to reduce the risk of 

developing smoke taint in subsequent wine.   

 

2.3.3 Seeking alternative markers of grapevine smoke exposure with untargeted 

metabolomics  

Volatile compounds are produced in plants for a range of reasons, such as to attract pollinators 

or seed dispersers, deter threatening herbivores, protect against abiotic stresses (e.g. ozone-

induced oxidative stress, heat stress), and warn neighboring plants of incoming stress 

(Dudavera et al. 2006). This “language” is comprised of at least 1700 volatiles (Knudsen and 
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Gershenzon 2006), and the composition and intensity of a given blend specifies not only the 

message but also the intended recipient (e.g. carnivores, herbivores, other plants) (Dudavera et 

al. 2006). The major volatiles in plants are terpenoids, fatty acid derivatives, amino acid 

derivatives, and phenylpropanoids/benzenoids (Dudavera et al. 2004). In grapes, the natural 

mechanisms that produce these volatiles are affected by vineyard practices, environmental 

conditions, grape varietal, and harvest date (Dunlevy et al. 2009).  

The mechanisms that produce volatile phenols in grapes are not well understood, but 

based on studies in other plants, it is hypothesised that they are derivatives of phenylpropanoids 

and benzenoids (Dunlevy et al. 2009). Phenylpropanoids and benzenoids are produced by the 

shikimic acid pathway through multiple, interdependent routes. The shikimic acid pathway has 

roles in plant defense (Figueiredo et al. 2008) and reproduction (Dudavera et al. 2000). It is 

evident that compounds such as benzoic acid and salicylic acid could serve as molecular 

scaffolds for volatile phenols due to their separation by a few hydroxylation and methylation 

reactions. However, these carboxylic acids also serve as scaffolds for many other phenolic 

compounds including hydroxycinnamates, phenolic acids, stilbenoids, flavonoids, and 

anthocyanins (Noestheden et al. 2018). If the shikimic acid pathway is the primary source of 

naturally occurring volatile phenols in grapes as hypothesized, it is not known what factors 

favour the production of volatile phenols over that of other phenolic compounds, nor what 

purpose volatile phenols serve in grapevines.  

Many volatiles in grapes exist as glycosidically bound forms because glycosylation 

reduces their chemical reactivity and increases their solubility in water to facilitate transport 

between organs, storage in the plant, or both (Winterhalter and Skouroumounis 1997; 

Piotrowska and Bajguz 2011). Across glycoconjugates, the direct link between the aglycone 

and the glycone unit is bridged by a β-D-glucose moiety. Glycoconjugate diversity stems from 

the range of volatiles that can be glycosylated in addition to whether and where the glucose 

moiety is further substituted with additional sugar moieties such as α-L-arabinofuranose, α-L-

rhamnose, β-D-xylopyranose, β-D-apiofuranose, or β-D-glucose (Winterhalter and 

Skouroumounis 1997; Bowles et al. 2006). Endogenous aglycones relevant to wine sensory 

research include shikimic acid metabolites, monoterpenoids, norisoprenoids, and 

sesquiterpenoids (Winterhalter and Skouroumounis 1997), but more broadly, polyphenolic 

compounds (e.g. anthocyanidins), and hormones (e.g. auxins, salicylic acid, and abscisic acid) 

are found as conjugates (Bowles et al. 2006). Exogenous aglycones include pathogenic toxins 

and pollutants. As described previously, glycoconjugates can indirectly be quantified by 
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employing GC-MS analysis pre- and post- acid hydrolysis or directly by HPLC-MS/MS. The 

prevalence of glycosylation as a storage form across endogenous and exogenous volatiles 

suggests that alternative biochemical markers of smoke exposure would be best identified 

through the pursuit of an untargeted metabolomics workflow using UHPLC-MS/MS.  

Volatile phenols served as the logical starting point of smoke taint diagnostics due to 

their sensory relevance and abundance in smoke; however, the seven to eight volatile phenols 

routinely quantified in smoke taint research (i.e. guaiacol, 4-methylguaiacol, phenol, o-cresol, 

p-cresol, m-cresol, syringol, and 4-methylsyringol) are far from being the only compounds in 

smoke. In a commercial liquid smoke product, Guillén et al. 1995 identified 67 compounds, 

35 of which were phenol derivatives and the remainder comprised of furan, and pyran 

derivatives, ketones, lactones, diketones, alkyl aryl ethers, and hydrocarbons. In addition to the 

conventional guaiacol, syringol, and phenol, several other phenol derivatives were identified 

with different substitution patterns, a known influence of odour activity (Czerny et al. 2011) 

and chemical reactivity (Waterhouse et al. 2016). In later work that examined compounds 

found in an aqueous oak extract, Guillén and Manzanos (2002) identified 215 compounds, and 

in addition to the aforementioned classes, they reported aldehydes, alcohols, esters, acids, 

pyrocatechol derivatives, lignin dimers, and carbohydrate derivatives. The array of compounds 

found in smoke is attributed to the diversity of fuel composition (Maga et al. 1992; Kelly et al. 

2014), region (Cadahia et al. 2003), and fire conditions, such as the temperature of combustion 

(Wittkowski et al. 1992), moisture content of fuel (Guillén et al. 1999), and duration of burning 

(Guillen et al. 1999). This presents a challenge for targeted, reductionist approaches, which 

evaluate one hypothesis at a time using highly customised acquisition methods. By contrast, 

metabolomics approaches examine samples from a holistic and unbiased perspective and 

deploy statistical techniques to identify the compounds that differentiate samples (Lloyd et al. 

2015).   

An untargeted metabolomics workflow was used to approach the chemical entity 

responsible for ‘pepperiness’ in wine (Parker et al. 2007). In this study, GC-MS data collected 

from grapes were subject to multivariate statistical techniques to identify areas of the spectra 

that demonstrated positive covariance with the ‘pepper’ aroma intensity of the samples. This 

led to the identification of four ions that accounted for greater than 99% of the ‘pepper’ 

variation in the grape samples, and the only compound with an abundance of all four ion was 

α-ylangene. This compound had no peppery sensory attributes and was absent in wine. 

Nonetheless, the authors emphasised its significance as a marker in grapes and drew the 
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distinction between markers and active aroma compounds. While less exciting, markers are 

also of great value to diagnostics, particularly if they are highly specific to the property of 

interest, abundant, stable, and easy to measure. 

Untargeted metabolomics approaches have also led to the elucidation of many other 

markers and active aroma compounds in grapes and wine. In Kalua and Boss (2009), the 

volatile profiles of Cabernet Sauvignon grapes were analysed from fruit set to late ripening 

using HS-SPME-GC-MS to understand the evolution of key aroma compounds. GC-MS 

chromatograms demonstrated evident differences in peak size, distribution, and number as a 

function of developmental stage, but to quantify the degree of change and the compounds 

driving it, a combined univariate and multivariate statistical approach was employed. First, 

one-way ANOVA was used as a filter to identify compounds with statistical significance 

between groups. Second, the refined compound list was analysed with stepwise linear 

discriminant analysis to elucidate common developmental patterns and identify which 

compounds abided to each one. On a basic level, this study demonstrates the convenience 

afforded by metabolomics experiments, which enable researchers to capture a diverse array of 

compounds, i.e. aldehydes, alcohols, esters, terpenes, and benzene derivatives, using a single 

acquisition method. At a more fundamental level, this study highlights the unique capability of 

metabolomics experiments to monitor trends of that diverse array of compounds in a minimally 

processed, complex sample matrix. This is achieved primarily with a targeted statistical 

analysis workflow that enables identification of the metabolites driving differences between 

samples.    

On the wine side, Rubert et al. 2014 used untargeted metabolomics to collected the 

‘fingerprints’ of 343 wines of various geographical origin, vintage, and variety to evaluate their 

potential in wine varietal authentication. Between positive and negative ionisation mode, over 

10,000 peaks were detected by UHPLC-HRMS, and when the unfiltered data from all samples 

were analysed by PCA, the primary mode of separation was by colour. As a result, the red and 

white wines were split into separate subsets, and a combination of t-tests and log-fold change 

calculations were used to select compounds that changed across (red or white) varietals and 

reduce the complexity of the dataset. In the last step, orthogonal partial least squares 

discriminant analysis (O-PLS-DA), a supervised technique, was performed with the selected 

list of compounds to develop models that differentiated between grape varietal, origin, and 

vintage, and assign tentative identities to markers responsible for those distinctions. This study 

demonstrates the effective use of data reduction strategies and supervised statistical methods 
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to extract relevant information. It also highlights a key limitation of PCA, which—due to its 

unsupervised nature—does not always partition a complex dataset in alignment with the 

variable of interest. More often, PCA is utilised to provide a preliminary overview of data 

structure and identify possible outliers (Theodoridis et al. 2011).  

The enduring, exclusive focus on volatile phenols and their glycosylated equivalents 

despite the heterogeneity of smoke composition and the biochemical sensitivity of the 

grapevine warrant a search for additional compounds that define smoke-affected grapes and 

improve the efficiency of smoke taint diagnostics. Untargeted metabolomics workflows assess 

a holistic profile of samples and use multivariate statistical analysis to extract relevant 

information. These techniques enable the quantitation of a diverse array of compounds in a 

single analysis.  

In addition to understanding how smoke-derived volatile phenols are metabolised by 

grapevines, improving the methods used to detect grapevine smoke exposure, and seeking 

alternative indicators of grapevine smoke exposure, practical strategies that mitigate the 

perceived intensity of smoke taint in wine are also required. As described in the next section, 

approaches to mitigating the perception of smoke taint in wine include those that prevent the 

uptake of smoke-derived volatile phenols by grapevines, reduce the levels of smoke-derived 

volatile phenols and glycoconjugates in wine, and mask the potency of smoke-derived volatile 

phenols and glycoconjugates in the perception of smoke-affected wine.   

 

3. Mitigation of smoke taint in grapes and wine  

3.1 Reduction strategies 

Reduction strategies aim to remove volatile phenols and glycoconjugates from wine with high 

selectivity using fining agents and filtration or limit the amount of volatile phenols and 

glycoconjugates that are extracted during fermentation. In Fudge et al. 2011, reverse osmosis 

coupled with solid phase adsorption was trialled, and it was found that while effective at 

reducing volatile phenol concentrations, the glycoconjugates remained in the wine. Reverse 

osmosis was conducted with a membrane that had a molecular weight cut-off value of 150-200 

amu. Size exclusion likely prohibited the passage of volatile phenol glycoconjugates, which 

range in mass from ~260 amu for monosaccharides (e.g. phenol glucoside) to >600 amu for 

triscaccharides (e.g. hexose-hexose-pentose-cresol) but not volatile phenols, which range from 
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94 (phenol) to 154 amu (syringol). To remove volatile phenols, the resulting permeate was 

pumped through a column lined with a polystyrene-based adsorbent resin, and this led to 

guaiacol reductions of 67% and 74% in Pinot Noir wines at pilot scale and commercial scale, 

respectively. However, there was no concomitant strategy deployed to reduce volatile phenol 

glycoconjugates from the retentate; thus, when the treated permeate was recombined with the 

untreated retentate, it was not surprising that the glycoconjugate concentrations were 

unchanged. In contrast to other filtration studies in which the targets of removal accumulate in 

the retentate or permeate, the diversity of characterising smoke-derived compounds regarding 

their size means that they will be found in both fractions. As a result, both the retentate and 

permeate require treatment prior to recombining them in order for filtration to be successful at 

the mitigation of smoke taint in wine.  

One strategy for removing glycoconjugates from the retentate is to use yeast or enzymes 

to cleave the volatile phenol glycoconjugates, followed by solid phase adsorption to remove 

the liberated volatile phenols. Ristic et al. 2011 compared the effects of eight yeast strains on 

smoke taint intensity in wine, and there were some strain-specific reductions in guaiacol 

glycoconjugate concentrations—albeit, these reductions were not always mirrored by an 

increased guaiacol concentration. In a recent study that performed another yeast selection trial, 

six strains were screened for their capacity to liberate volatile phenols from different storage 

forms, including glycoconjugates (Whitmore et al. 2021). This trial involved the fermentation 

of Pinot Noir grapes with and without smoke exposure, and to assess the effect of regio-

specificity of enzymatic hydrolysis, wines were spiked with 11 volatile phenol glycoconjugates 

at 200 µg/kg. Few significant differences in volatile phenol concentrations were observed in 

wines fermented with different yeast strains, with the exception of guaiacol and phenol. Smoke-

affected wines without fortification showed narrow ranges of phenol and guaiacol across yeast 

strains, but their levels in smoke-affected wines with fortification were not only higher, but 

also characterised by greater variation across yeast strains. This work demonstrates that the 

efficacy of yeast-catalysed hydrolysis of volatile phenol glycoconjugates may be dictated by 

aglycone. 

As an alternative to filtration and the treatment of separate fractions, the addition of 

fining agents has also been trialled as a reduction strategy. In Fudge et al. 2012a, thirteen 

fining agents were evaluated and based on their removal of volatile phenols, the most 

effective products were found to be an activated carbon and a synthetic mineral. The 

limitation of this work was that guaiacol glycoconjugates were not removed by the fining 
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agents, but this may have been a consequence of the type of activated carbon, the dose rate, 

and the matrix (Culbert et al. 2019). In a benchtop trial that screened the efficacy of several 

activated carbon products in smoke-affected juice and wine from red and white varietals, it 

was observed that some products were more effective at removing glycoconjugates than 

volatile phenols (Culbert et al. 2019). In this trial, the rates of glycoconjugate removal were 

higher in juice (relative to wine) and white varietals (relative to red varietals), and there was 

no evident interaction effect. Rates of volatile phenol removal were also higher in juice 

compared to wine. From this benchtop trial, two of the best performers were assessed on a 

larger scale in smoke-affected Chardonnay and Pinot Noir juice (Culbert et al. 2021b). The 

large-scale trial validated the affinity of activated carbon for volatile phenols and their 

glycosides with the caveat that excessive dose rates may sacrifice wine colour and desirable 

wine sensory attributes. To offset the risk of stripping desirable wine constituents in juice and 

wine severely affected by smoke exposure, it may be practical to use a lower dose rate of 

activated carbon and couple this addition with aforementioned mitigation strategies.  

In addition to strategies that remove smoke-derived volatile phenols and 

glycoconjugates from wine, minimising skin contact can also be used to reduce the proportion 

that is extracted during fermentation. In Ristic et al. 2011, smoke-affected Grenache fruit was 

divided and processed as red and rosé wines. Red wine was fermented with skin contact for 7 

days at 15 °C whereas rosé wine was cold soaked with skin contact for 3 days at 0 °C, prior to 

pressing and fermentation. The rosé wine made from smoke-affected Grenache contained a 

total of 204 µg/L guaiacol glycoconjugates whereas the red wine made from the same smoke-

affected fruit contained a total of 290 µg/L guaiacol glycoconjugates, a statistically significant 

increase attributed directly to increased skin contact.  

 

3.2 Masking strategies 

Masking strategies aim to obscure the perceived intensity of smoke taint attributes in wine with 

more positive wine sensory attributes. Trials have explored the effects of defoliation, blending, 

yeast strain, and wine additives. Kennison et al. 2007 assessed the feasibility of masking the 

intensity of smoke taint in Verdelho wine by blending smoke-affected wine with unaffected 

wine. Difference testing indicated that perceivable smoke taint could still be reliably detected 

in samples that were diluted by over 98% with unaffected base wine; albeit, the smoke-affected 

wine had unprecedented levels of volatile phenols, with over 1470 µg/L of guaiacol and 326 
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µg/L of 4-methylguaiacol. The Verdelho wine in this study exceeded the capacity of 

amelioration, but more work is warranted to explore the boundaries of blending wine that has 

noticeable smoke taint but lower levels of volatile phenols. Ristic et al. 2011 examined the 

effects of oak tannin additives on the perception of smoke-affected Shiraz wines. The intensity 

of ‘smoky’, ‘cold ash’, and ‘medicinal aroma’ was reduced by the additives, achieved through 

increased wine complexity rather than the reduction of volatile phenols or glycoconjugates. 

The perceived intensity of smoke taint can be mitigated with the use of additives in the winery, 

but the complexity of wine can also be manipulated with the implementation of vineyard 

practices. 

Defoliation increases the amount of light exposure on the berries, and this alters the 

profile of several key aroma compounds in grapes. For example, in a study that compared 

bunches with and without artificial shading, bunches with full sun exposure had higher bound 

terpenoids and bound C13-norisoprenoids (Bureau et al. 2000). Ristic et al. 2013 examined the 

effect of defoliation on volatile phenols and total guaiacol glycoconjugate concentrations in 

Chardonnay juice and wine when conducted pre- and post-smoke exposure. When defoliation 

was performed pre-smoke exposure, there were increased guaiacol glycoconjugates (in juice) 

and volatile phenols (in wine), relative to levels in juice and wine from vines that had been 

exposed to smoke but were not defoliated. When defoliation was conducted post-smoke 

exposure, no significant differences were observed in volatile phenol or glycoconjugate 

concentrations of juice or wine relative to those made from vines with smoke exposure but no 

defoliation; however, it did lead to decreases in the ‘cold ash’ aroma and ‘ashy aftertaste’ in 

wine. Comparable levels of volatile phenols and guaiacol glycoconjugates between these 

treatments support previous work by Hayasaka et al. (2010a), which demonstrated minimal 

translocation of volatile phenols glycoconjugates between leaves and berries. Thus, the reduced 

intensity of smoke taint attributes in the wine made from vines defoliated post-smoke exposure 

is likely attributed to changes in other volatiles that interact with the perception of volatile 

phenols. Defoliation following smoke exposure may have increased levels of desirable aroma 

compounds in grapes promoted by sunlight and reduced the perceived intensity of smoke taint. 

Alternatively, studies have demonstrated that the uptake and glycosylation of volatile phenols 

can also occur in leaves (Jiang et al. 2021), and in tandem with handpicking bunches, 

defoliation following smoke exposure may reduce the amount of leaves that enter fermentation 

vessels. 
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Fruit aromas and flavours can mask low levels of smoke taint intensity to some degree 

and similarly, their absence can magnify the perceived intensity of smoke taint (Ristic et al. 

2017). Subsequently, ‘overall fruit aroma’ and ‘overall fruit flavour’ are often included as 

attributes in the sensory analysis of smoke-affected wines. However, fruitiness and the 

compounds responsible for this attribute are not the only ones that interact with volatile phenols 

and smoke taint perception. McKay et al. (2021) spiked de-aromatised Shiraz wine with 

guaiacol, o-cresol, 4-ethylphenol, and 3-isobutyl-2-methoxypyrazine (IBMP) at or below the 

detection thresholds specific to each compound. Compounds were spiked individually and as 

binary mixtures. Clear distinctions were made between the sensory attributes of mixtures 

comprised of two volatile phenols and mixtures comprised of both a volatile phenol and IBMP. 

Individually, IBMP reduces the fruit intensity of wine and amplifies ‘herbaceous’, ‘bell 

pepper’, and ‘cooked vegetable aromas’. However, when IBMP was coupled with any of the 

volatile phenols, the hallmark ‘ashtray’ attribute emerged, and this attribute was not observed 

when wine was spiked with volatile phenols alone. It is possible that the wines made from 

Chardonnay vines defoliated post-smoke exposure had decreased ashy attributes due to lower 

IBMP concentrations, given the sensitivity of IBMP to sunlight and temperature (Ryona et al. 

2008; Scheiner et al. 2012). While more typical of Cabernet Sauvignon, Merlot, and Sauvignon 

Blanc, IBMP can also be found in Chardonnay (Hashizume and Samuta 1999).  

A later study examined the effect of harvest date on smoke taint intensity (Ristic et al. 

2015). When harvested at a later harvest date, Sauvignon Blanc wine had significantly reduced 

‘smoke aroma’, ‘cold ash aroma’, ‘smoky flavor’, and ‘ashy aftertaste’. The concentration of 

IBMP was not measured, nor was the intensity of ‘green’ character specifically rated, but trans-

3-hexen-1-ol and cis-3-hexen-1-ol were measured, and these C6-alcohols are likewise 

characterised by ‘grassy’ and ‘green’ sensory attributes. In smoke-affected Sauvignon Blanc 

wine, both C6-alcohols were significantly higher when they were made from grapes harvested 

at an earlier date, a trend consistent with published research (Previtali et al. 2021). Smoke-

affected Shiraz showed the same significant decrease in C6-alcohols when harvested at a later 

date, but there was no corresponding decrease in smoke taint intensity, thus further study of 

the effects of other wine odorants on smoke taint perception is warranted.  

 

3.3 Preventative strategies 
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Early prevention strategies aimed to treat grape bunches by harvesting and treating them 

immediately following smoke exposure, but later strategies have aimed to apply agrochemical 

sprays in advance of smoke exposure to limit the uptake of volatile phenols by grapevine leaves 

and fruit. The first reported incidents of smoke taint were brought to the AWRI Commercial 

Services in 2003 from growers and winemakers that were affected by bushfires in Victoria and 

New South Wales. To reduce guaiacol and 4-methylguaiacol concentrations in grapes and 

subsequent wines, several ‘vineyard-washing’ treatments were employed using water, 5% 

ethanol in water, 95% ethanol in water, and milk but no decreases were observed (AWRI 

Annual Report 2003). Washing was able to remove the ash and particulate matter from berry 

skins, but the lack of any significant change in volatile phenol concentrations was an early 

indication that volatile phenols readily adhere to berry cuticles and undergo rapid diffusion into 

the skins and pulp.  

In another trial, smoke-affected grapes were treated with gaseous ozone immediately 

following harvest, and modest reductions in free and glycosylated volatile phenols 

concentrations were observed, depending on the dose of the ozone treatment and whether 

smoke exposure was administered to mature, excised bunches or to grapevines at 7 days post-

véraison (Modesti et al. 2021). Therein, mature, excised bunches were exposed to smoke for 

30 minutes and immediately treated with ozone. Volatile phenol concentrations were reduced 

by 40 to 100%. When grapevines were exposed to smoke for 60 minutes at 7 days post-véraison 

and fruit was subsequently treated with ozone 4 weeks later (i.e., at commercial maturity), 

volatile phenol concentrations were slightly reduced by 2-3 µg/L. However, the corresponding 

wines exhibited increased fruit intensity and decreased smoke attributes by sensory analysis. 

Thus, this work demonstrates the potential for ozone as a post-harvest mitigation treatment, 

particularly if is implemented soon after smoke exposure. Both the ‘vineyard-washing’ and 

ozone trials highlight the time-sensitive nature of treating smoke-affected fruit. This serves as 

the impetus to investigate preventative strategies that can be applied in the vineyard in advance 

of smoke exposure. 

Throughout the growing season, viticulturists deploy a range of agrochemical sprays to 

protect developing berries from disease, pests, and conditions such as sunburn, splitting, and 

dehydration, and it is critical to understand how their application may affect the uptake of 

volatile phenols (as described in Culbert et al. 2021c). In the worst-case scenario, products may 

exacerbate the absorption of volatile phenols, but in the best-case scenario, products may 

decrease, delay, or prevent the uptake of volatile phenols. Understanding how agrochemical 
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sprays affect the intensity of smoke taint will enable viticulturists in fire-prone regions to 

balance risks associated with smoke taint against disease, pests, and climactic pressures.  

In one trial, kaolin was evaluated as a protective barrier to limit the uptake of smoke-

derived volatile phenols by grapevines (van der Hulst et al. 2019). Kaolin is a clay-based film 

that is used to mitigate the risk of berry sunburn, and in the published study, it was sprayed 

onto Merlot, Chardonnay, and Sauvignon Blanc fruit and foliage 24 hours before the vines 

were subjected to 1 hour of smoke exposure using purpose-built tents. Therein, the efficacy of 

kaolin as a mitigation strategy appeared to depend on the varietal, but it may have also been a 

result of variable spray coverage, smoke exposure, or a combination. Volatile phenol 

concentrations were minimal across smoke-affected fruit and as a result, quantitation of 

glycoconjugates was used to measure the efficacy of kaolin as a protective strategy. This study 

demonstrated minimal reductions in glycoconjugates measured in smoke-affected Sauvignon 

Blanc and Chardonnay grapes with or without kaolin, with the exception of a few 

glycoconjugates in the latter, which were reduced by up to 50% (van der Hulst et al. 2019). 

Contrarily, reductions were greater and more widespread in Merlot grapes, ranging from 58-

92% across most of the glycoconjugates measured. This result was in contrast to earlier trials, 

in which kaolin appeared to increase the uptake of volatile phenols by grapevines exposed to 

straw-derived smoke (Kennison et al. 2009). It also contrasts recent trials in which kaolin did 

not demonstrate any significant effect on the concentrations of volatile phenols in excised 

bunches exposed to an aqueous solution of volatile phenols (Culbert et al. 2021c). Thus, the 

result observed in van der Hulst et al. 2019 warrants further research.  

The varietal-dependent result evident in van der Hulst et al. (2019) may be attributed 

to spray coverage or variable smoke exposure. The issue of spray coverage highlights the 

potency of smoke-derived volatile phenols and will be a key limitation of any vineyard-based 

sprays i.e., it is difficult to achieve 100% coverage. This challenge was corroborated by Culbert 

et al. (2021c), in which 100% coverage was not attained for some coatings, even when excised 

bunches were fully dipped into them. If this effect was attributed to variable smoke exposure, 

it highlights a key challenge of vineyard-based mitigation trials, which is that highly 

reproducible applications of smoke are required. In van der Hulst et al. 2019, it is possible that 

the effect observed in Merlot was precluded in Chardonnay and Sauvignon Blanc grapevines 

by the comparatively low level of smoke exposure they received. It is essential that changes 

between smoke-affected vines with and without a mitigation treatment can be attributed to the 
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mitigation treatment rather than differences in smoke exposure. This is a key obstacle that 

continues to hinder the progress of vineyard mitigation trials.   

Rather than act as a barrier, films may also be used to fortify the naturally protective 

properties of the berry cuticle. As shown in Kennison et al. 2009, it was observed that the post-

harvest removal of wax blooms led to an increased uptake of guaiacol by excised grape 

bunches. A recent study by Favell et al. 2019 trialed three agrochemical sprays with high 

hydrophobicity, including a phospholipid-based biofilm and two commercial fungicides. While 

one fungicide had no effect and another had an exacerbating effect on the concentrations of 

free and bound volatile phenols in berries and cuticles, the biofilm appeared to have an 

ameliorative effect. The authors conducted a follow-up study to determine the duration of 

protection afforded by the biofilm on larger scale, and in stark contrast to their previous results, 

the authors observed the use of biofilm heightened free and bound volatile phenol 

concentrations in treated grapes (Favell et al. 2021).  

The contradictory results characterising the trials may be attributed to differences in 

experimental design. In the first trial, fourteen vines were enclosed in a single tent and exposed 

to smoke for 1 hour on two occasions that were separated by 48 hours. Seven of the fourteen 

enclosed vines were also sprayed with biofilm, and there were no apparent experimental 

replicates. The average concentration of free guaiacol measured immediately after the first and 

second applications of smoke in grapes with biofilm were 9 and 21 ng/g, respectively. These 

levels were significantly lower than free guaiacol measured in smoke-affected fruit without 

biofilm, which averaged 48 ng/g (first application of smoke) and 34 ng/g (second application 

of smoke). In the second trial, sixteen vines were enclosed in four separate tents and exposed 

to smoke for 1 hour on a single occasion. Of the four vines enclosed in each tent, one vine was 

sprayed with water (as a control) whereas the other three vines were sprayed with biofilm at 

different times prior to smoke exposure (i.e. 1, 7, and 14 days). Unlike the first trial, the second 

trial was repeated in three different vineyards. The average concentration of free guaiacol 

measured 1 hour after smoke exposure in grapes without biofilm ranged from 4 to 20 ng/g, 

depending on the vineyard.  

The second trial had lower levels of free guaiacol measured in smoke-affected grapes 

(without biofilm) than grapes in the first trial, which may reflect differences in smoke exposure 

between the two trials. This trend is supported by levels of total guaiacol in mature, smoke-

affected berries (without biofilm). In the first trial, the total guaiacol concentration was 153 
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ng/g, whereas in the second trial, total guaiacol concentrations ranged from 17 to 24 ng/g, 

depending on the vineyard. The fact that the most promising results came from the first trial, 

in which vines were exposed to a heavier application of smoke, indicates that the authors’ 

optimism may have been a product of the experimental design. In the first trial, all vines were 

enclosed in a single tent, and in the absence of experimental replication or details regarding 

whether the application of biofilm was randomised, it is not possible to discern whether the 

apparent effect of biofilm was a result of the treatment or a result of differences in smoke 

exposure. The ambiguity of these results is resolved by the design of the second trial, in which 

the consistency of trends across three vineyards indicates that the biofilm does not enhance the 

protective effect of wax blooms. 

Research Aims 

With longer, more intense fire seasons on the cards as a consequence of climate change wine 

regions around the world are at a heightened risk of exposure to bushfire smoke. It is critical 

to gain a stronger understanding of current markers and expedite their quantitation, to explore 

novel approaches and targets to detect grapevine smoke exposure, and to develop proactive 

mitigation strategies. The prevailing aims of this thesis are towards improving the efficiency 

of smoke taint diagnostics and accelerating the development of targeted mitigation strategies 

to enable earlier, confident, and objective decision-making in the vineyard and winery. To 

achieve these aims, project objectives were therefore to:   

❖ Explore varietal, regional, and temporal variation of naturally occurring volatile phenol 

glycoconjugates in grapes in California  

❖ Monitor temporal changes in volatile phenol and glycoconjugate concentrations in 

grapes following smoke exposure and their subsequent fate during winemaking  

❖ Evaluate the suitability of an environmental sensor to provide real-time monitoring of 

grapevine smoke exposure  

❖ Examine the feasibility of using fluorescence spectroscopy as a preliminary screening 

tool that approximates volatile phenol and glycoconjugates in wine  

❖ Identify novel chemical indicators of grapevine smoke exposure using an untargeted 

metabolomics approach  

❖ Design an apparatus to facilitate small-scale mitigation trials 

❖ Assess the efficacy of in-canopy misting and agrochemical sprays as vineyard 

mitigation strategies 
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Preface 

This chapter comprises research undertaken as part of an internship with E. & J. Gallo Winery 

between July and November 2019. The primary aim of the internship was to adapt an existing 

HPLC-MS/MS method for analysis of volatile phenol glycoconjugates in grapes and wine to an 

Orbitrap LC-MS configuration. This involved familiarisation of operation of an Orbitrap LC-MS, 

optimisation of sample preparation, interpretation of results generated with ThermoFisher™ 

software packages and development of workflows for streamlined data processing. The adaptation 

and optimisation of the method was not completed until late 2019. Collaboration with E. & J. Gallo 

continued following the internship, and the optimised method was utilised to analyse a wide variety 

of grape and wine samples. Data were collected by the E. & J. Gallo team and shared to achieve 

the following aims:  

• To determine which volatile phenol glycoconjugates are most indicative of smoke 

exposure in Californian Cabernet Sauvignon grapes and wine  

• To establish baseline levels of volatile phenol glycoconjugates in Californian 

Cabernet Sauvignon, Pinot noir and Chardonnay grapes grown in the Lodi/Delta 

region   

• To assess the stability of baseline levels of volatile phenol glycoconjugates in 

grapes of several varieties, grown in different Californian regions sampled over 

three to seven weeks preceding harvest 

To achieve the first aim, grape and wine samples were classified as ‘affected’ and 

‘minimally affected’ groups based on operational thresholds employed by the E. & J. Gallo team, 

after which compositional data for samples were evaluated using descriptive and inferential 

statistics. Following identification of the volatile phenol glycoconjugates that were most indicative 

of smoke exposure, the second and third aims were achieved by evaluating varietal and temporal 

variation of grapes harvested in 2020.  

A manuscript reporting the development and optimisation of an Orbitrap LC-MS method 

for quantitation of volatile phenol glycoconjugates, and its application to an investigation into the 

varietal, regional and temporal variation of naturally occurring volatile phenol glycoconjugates was 

subsequently submitted to the American Journal of Enology and Viticulture. Feedback received 

following review (and concurrent thesis examination) identified ambiguity around the thresholds 

used to classify samples as ‘affected’ vs ‘minimally affected’, and inadequate consideration for 

how different wildfire seasons might influence the chemical profiles of smoke-affected grapes, as 
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weaknesses of the original manuscript/thesis chapter. In response to this feedback, the manuscript 

has been significantly modified.   

To address the ambiguity of the thresholds, further information was requested from the E. 

& J. Gallo team. However, this information could not be disclosed at a level of detail sufficient for 

publication due to proprietary interests. Thus, these thresholds were not used in the revised 

manuscript. Instead, descriptive statistics and thresholds adapted from recently published literature 

were used to identify the key glycoconjugates present in commercial wine from vintages with low 

vs. high fire activity, and to then examine their patterns of accumulation in grapes collected in 2018 

and 2020.  

Furthermore, to provide context regarding the 2018 and 2020 wildfire seasons, open-source 

spatial data obtained from the CAL FIRE website, the California Department of Forestry and Fire 

Protection FRAP (Fire and Resource Assessment Program), and the CAL FIRE Hub, were 

evaluated. Smoke plumes were also evaluated using open-source spatial data acquired from the 

National Oceanic and Atmospheric Administration/National Environmental Satellite Data and 

Information Service. Existing technology has yet to be adapted to ascertain the location, fuel 

source, and amassed duration/density of wildfire smoke exposure in vineyards and utilise this data 

together with volatile phenol glycoconjugate profiles to evaluate the risk of smoke taint in wine. 

Thus, bridging the smoke exposure that occurred in 2018 and 2020 with the observed grape volatile 

phenol glycoconjugate profiles was limited to the use of descriptive statistics and a discussion of 

the general trends that were observed.  

Analysis of the spatial data collected from the 2020 wildfire season demonstrated a high 

probability that the grapes intended to fulfil the second and third research aims were exposed to 

low levels of wildfire smoke, and thus could not be categorically classified as ‘unaffected’. The 

potential for unprecedented levels of smoke exposure in California during 2020 to confound any 

observed differences in varietal or temporal trends was not considered at the time of original 

submission of the manuscript. This finding potentially compromises the validity of data as an 

accurate representation of baseline levels and their variation across varietals and time. Thus, only 

the differences between varietals have been included in the revised manuscript provided below, 

and analysis has been limited to the use descriptive statistics and discussion of the general trends 

that were observed, with these caveats hereby declared.  
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Introduction 

Drier growing seasons and warmer temperatures arising from climate change have intensified the duration, 

frequency, and scale of wildfires around the world (Bowman et al. 2020). In California, seven of the ten 

largest wildfires (since 1932) occurred in 2017, 2018, and 2020, as reported on the CAL FIRE website 

(www.fire.ca.gov); the 2019/2020 Australian bushfire season was also one of the most devastating on 

record (Abram et al. 2021). When fires occur, the thermal degradation of lignin in plant material produces 

volatile phenols such as guaiacol and 4-methylguaiacol (Maga et al. 1988). Volatile phenols can also be 

found in wines due to their: (i) natural presence in grapes (Ristic et al. 2016); (ii) extraction from oak 

barrels during wine maturation (Pollnitz et al. 2004); and/or (iii) contamination from grapevine exposure 

to wildfire smoke (Kennison et al. 2007). The latter instigates risk of smoke taint, in which the sensory 

profiles of wines made from smoke-exposed grapes are characterized by unpleasant ‘smoky’, ‘burnt’, 

‘drying’, ‘cold ash’, and ‘medicinal’ attributes (Kennison et al. 2007, Ristic et al. 2011, Parker et al. 2012). 

The quantitation of volatile phenols using gas chromatography-mass spectrometry (GC-MS) is 

well-established (Pollnitz et al. 2004, Hayasaka et al. 2010a), but predicting the risk of smoke taint 

occurring in wine following processing and fermentation of potentially smoke-affected grapes based on 

this metric alone has been impeded by several factors. Firstly, the diversity of natural vegetation that fuels 

wildfires alters volatile phenol profiles in smoke-exposed grapes, which adds complexity to establishing 

thresholds for smoke taint risk (Kelly et al. 2012, Noestheden et al. 2018a). In addition, the rapid uptake 

and glycosylation of volatile phenols in grapes following smoke exposure hinders accurate risk assessment 

and increases the likelihood that smoke taint will be underestimated (Szeto et al. 2020). 

This complexity arises because volatile phenols are metabolized by grapevines into a wide variety 

of non-volatile glycoconjugates including glucosides, gentiobiosides, diglycosides (with terminal pentose 

units) and rutinosides (Hayasaka et al. 2010b), with more recent work indicating the existence of 

trisaccharides (Caffrey et al. 2019). Volatile phenol glycoconjugates are quantitated by either direct 

analysis using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) 

(Hayasaka et al. 2010b, Dungey et al. 2011, Hayasaka et al. 2013) or indirect analysis involving acid 

hydrolysis of volatile phenol glycoconjugates, followed by GC-MS (Noestheden et al. 2017). In situations 

where both volatile phenol and volatile phenol glycoconjugate concentrations are very high, the latter 

serves to validate the former. However, when concentrations of volatile phenols and their glycoconjugates 

are incongruent or in the low to medium range, their interpretation remains challenging due to their natural, 

varietal-dependent abundance (Ristic et al. 2016, van der Hulst et al. 2019; Coulter et al. 2022); delayed 
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accumulation following smoke exposure (Szeto et al. 2020); ability to be hydrolyzed during fermentation 

(Kennison et. al. 2008, Caffrey et al. 2019); and highly subjective, individualized perception thresholds 

(Parker et al. 2020) due to in-mouth hydrolysis by enzymes during wine tasting (Mayr et al. 2014). 

The inclusion of both volatile phenol and volatile phenol glycoconjugate analysis has become 

standard practice for smoke taint risk assessment, despite the time- and resource-intensive process being 

burdensome during the demanding harvest and winemaking period of vintage. With longer, more intense 

fire seasons, the widespread concern regarding smoke taint requires innovative approaches to screening 

for grapevine smoke exposure (Fudge et al. 2012, Jiang et al. 2021) and ameliorating smoke taint in wine 

(Fudge et al. 2011, Modesti et al. 2021). However, it also requires a more contextualized interpretation of 

information acquired from current practice. Thus, the aims of this work were to develop a method for 

routine volatile phenol glycoconjugate analysis using high-resolution tandem mass spectrometry (HR-

MS/MS) and utilize it to determine volatile phenol glycoconjugates that are: specifically elevated due to 

smoke exposure of grapevines; indicative of smoke exposure across distinct wildfire seasons (e.g., burn 

conditions, fuel type, age of smoke, etc.); and sensitive to low levels of smoke exposure.    

 

Materials and Methods 

Reagents. LC-MS grade solvents were purchased from Sigma-Aldrich (St Louis, MO). Milli-Q 

water was sourced from a Purelab Flex 2 system (ELGA LabWater NA, Woodridge, IL). Deuterium-

labeled volatile phenol glycoconjugate standards (d3-guaicaol glucoside and d3-guaiacol gentiobioside), 

as well as their unlabeled equivalents (guaiacol glucoside and guaiacol gentiobioside), were purchased 

from Toronto Research Chemicals (Toronto, Ontario, Canada). β-Glucosidase from almonds (lyophilized, 

powder, ≥4 U/mg) was sourced from Sigma-Aldrich. 

Quantitation of volatile phenol glycoconjugates in grapes and wine by LC-HRMS analysis.  

LC-HRMS Method. A method to quantify volatile phenol glycoconjugates in grapes and wine was 

adapted to the LC-HRMS interface according to previously published SIDA methods (Dungey et al. 2011). 

Samples were analyzed with a Vanquish UHPLC system coupled to a Q Exactive Orbitrap mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA) configured with an Agilent ZORBAX RRHT 

Eclipse XDB-C18 column (2.1 mm x 100mm, 1.8µm particle size) and a heated electrospray ionization 

(H-ESI) source. Sample injection volume was 10 µL.  

Column temperature was maintained at 40 °C throughout the run. A binary gradient was used, with 

mobile phases constituted of 0.1% v/v glacial acetic acid in LC-MS grade water (solvent A) and 0.1% v/v 
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glacial acetic acid in LC-MS grade acetonitrile (solvent B). The flow rate was set to 0.400 mL/min, with 

a linear gradient that began at 5% B for 4 min, after which it was increased to 35% B (over 12 min), 

increased to 100% B (over 1 min) and held for 3 min, and lastly, decreased to 5.0% B (over 0.5 min) and 

held for 3.5 min.  

The Orbitrap was operated in negative ion mode with a capillary temperature of 350 °C and an 

auxiliary gas heater temperature of 425 °C. The sheath gas flow rate was 50 arbitrary units (au), the sweep 

gas flow was 3 au, and the auxiliary gas flow rate was 13 au. The spray voltage was set to -3 kV and the 

S-lens RF level at 55 au. Spectra were acquired from 100 to 1000 m/z in parallel reaction monitoring 

(PRM) mode at 5 ppm mass tolerance with 70,000 scan resolution, 1 microscan, 50 ms maximum injection 

time, and automatic gain control (AGC) of 1e5. Collision energy (CE) was set between 10 and 15 eV. 

Instrumental control and data acquisition were performed using XCalibur software (version 4.1.31.9) 

(Thermo Fisher Scientific). Included transitions corresponded to glucosides, gentiobiosides, 

pentosylglucosides, and rutinosides monitored in previous work (Hayasaka et al. 2013, Noestheden et al. 

2018b) (see Supplemental Table 1). 

Sample preparation. Grapes were homogenized, after which 10 g of each sample were spiked at 

250 µg/kg of d3-guaiacol glucoside and d3-guaiacol gentiobioside as ISTD and prepared for solid phase 

extraction (SPE). Homogenate samples were centrifuged for 15 min at 7500 RPM using a Beckman 

Spinchron 15 (Beckman Coulter, Indianapolis, IN), adjusted to pH 13 (with 0.5 mL 10 N NaOH) and 

processed through a 0.45 mm PTFE syringe filter (Whatman, Buckinghamshire, UK). pH adjustments 

were made to lower the isobaric interference of phenolic compounds (Noestheden et al. 2018b). To prepare 

wine samples for SPE, 5 mL aliquots were spiked with 200 µg/L of d3-guaiacol glucoside and d3-guaiacol  

gentiobioside as ISTD and adjusted to pH 13 (with 0.5 mL of 10 N NaOH).  

SPE is a time- and resource-intensive procedure and to reduce sample preparation time, automation 

was trialed with Oasis HLB 96-well SPE plates (30 mg, 30 µm; Waters, Milton, MA), hereafter referred 

to as ‘Oasis HLB plates’, prepared with a Hamilton Microlab STAR robotic liquid handler (Hamilton 

Robotics, Reno, NV). Wells were pre-conditioned with 0.5 mL of methanol followed by 0.5 mL of water, 

after which 1 mL of each sample (in triplicate) was loaded onto separate wells and rinsed with 1 mL of 

water, followed by 0.5 mL of dichloromethane. Plates were dried under vacuum and eluted with 0.5 mL 

of methanol. Eluates from the three wells corresponding to each sample were combined, transferred into 

1.5 mL micro-centrifuge tubes and evaporated to dryness under vacuum in an Eppendorf Vacufuge 
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(Eppendorf, Enfield, CT, USA) at room temperature. Lastly, samples were reconstituted in 0.4 mL of 

water and transferred into a syringeless 0.45 µm filter vial (Agilent Technologies) for LC-HRMS analysis.  

As a comparison to high-throughput Oasis HLB plates, wine samples were also prepared with 

conventional LiChrolut® EN cartridges (100 mg, 40-120 µm) configured to a 20-position manifold 

(Waters, Milton, MA). Cartridges were pre-conditioned with 2 mL of methanol followed by 2 mL of 

water, after which 5 mL of each sample were loaded onto individual cartridges and rinsed with 2 mL of 

water. Samples were air dried for 25 min and eluted with 1 mL of methanol. Eluates were dried, 

reconstituted, and transferred through filter vials for LC-HRMS analysis, as outlined above for samples 

prepared with Oasis HLB plates.  

Wine matrix effects. To investigate the impact of matrix effects on calibration linearity and signal 

intensity in wine samples, model wine and “bag-in-box” dry red wine were prepared with differing 

concentrations of ethanol. Model wine was prepared with 0 to 20% ethanol (at 5% increments) in water 

with 7 g/L of tartaric acid, adjusted to pH 3.4 (with 10 N NaOH). The dry red wine (pH 3.4) was analyzed 

without alcohol adjustment (13.5% ABV), and as its dealcoholized equivalent (0% ABV) following 

lyophilization. To remove alcohol from the dry red wine, 40 mL aliquots were poured into 120 mL plastic 

tubes (Sarstedt Pty. Ltd., Nümbrecht, Germany), weighed, and frozen overnight at -80 °C. Caps were 

replaced with a layer of tightly wrapped, perforated Parafilm, before samples were transferred into 

purpose-built flasks attached to a freeze dryer (Kinetics FTS FD-3-85A-MP Flexi Dry Microprocessor 

Freeze Dry Lyophilizer) and kept under 97 mT vacuum and -88 °C conditions until a powder was obtained. 

Samples were then reconstituted with water to their original recorded mass. 

Method validation. Method validation in grapes was conducted with frozen, mature Chardonnay 

grapes, whereas in wines validation was conducted with model wine (0% ABV) and dealcoholized dry 

red wine (0% ABV). All grape and wine samples received an addition of ISTD and an adjustment to pH 

13 (as above), except model wine samples, which were not pH adjusted due to the simplicity of their 

matrix. Model wine and grape homogenate samples were prepared with Oasis HLB plates, whereas 

dealcoholized dry red wines were prepared with both Oasis HLB and LiChrolut EN® cartridges. A series 

of standard additions of guaiacol glucoside and guaiacol gentiobioside led to eight calibration levels in 

grapes (at 0, 10, 20, 30, 50, 100, 200, and 500 µg/kg) and seven calibration levels in (model and red) wines 

(at 0, 5, 10, 25, 50, 100, and 250 µg/L). Method precision (reported as percentage residual standard 

deviation (%RSD) values) and accuracy (reported as percentage recovery values) were examined with ten 

replicate samples spiked at 30 µg/kg each of guaiacol glucoside and guaiacol gentiobioside (grapes) or 
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four replicate samples spiked at 10 and 25 µg/L each of guaiacol glucoside and guaiacol gentiobioside 

(0% ABV model wine) or 5 and 25 µg/L each of guaiacol glucoside and guaiacol gentiobioside 

(dealcoholized dry red wine).  

Samples. To identify volatile phenol glycoconjugates that were elevated specifically due to smoke 

exposure in grapevines, Cabernet Sauvignon wine samples (n=43) were sourced from commercial 

wineries across several regions and vintages in California. Samples from 2011 and 2012 were commercial 

wines with no known presence of smoke taint and were classified as ‘minimally affected’ by smoke 

exposure. Samples from 2015, 2018 and 2020 were research wines made from growing regions proximal 

to wildfires and thus, were classified as ‘affected’. This distinction was supported with historical wildfire 

data and an adapted classification scheme (Crews et al. 2022). Additional details regarding the sources of 

wine can be found in Supplemental Table 2. Wine samples were used instead of grapes due to the 

availability of wine from years with low wildfire activity. The glycoconjugates identified as being 

important in wine were then used to examine grape samples. Previous work has demonstrated that volatile 

phenol glycoconjugates are affected by yeast-catalyzed hydrolysis in primary fermentation, with lower 

levels reported in finished wine compared to levels in juice at crush; however, the average decrease across 

glycoconjugates did not exceed 25% (Caffrey et al. 2019). Previous work has also shown that this 

substantial reservoir of volatile phenol glycoconjugates in wine is stable, even after years of bottle aging 

(Ristic et al. 2017).  

The glycoconjugates deemed to be most indicative of smoke exposure in wine were subsequently 

quantified in grape samples to investigate their consistency across distinct wildfire seasons and their 

sensitivity to low levels of smoke exposure. Cabernet Sauvignon grapes (n=108 total) were sourced from 

commercial vineyards (at maturity), comprising n=61 samples in 2018 (78% from Lake County) and n=47 

samples in 2020 (74% from Napa Valley). Samples in 2018 were collected between 8/30 and 10/11, 

whereas samples in 2020 were collected between 9/22 and 10/8. Based on their total glycoconjugate 

concentrations, these grapes were classified as having had low to extreme levels of smoke exposure 

(Crews et al. 2022). Mature Chardonnay (n=52), Cabernet Sauvignon (n=40) and Pinot noir (n=20) grapes 

were also sourced from commercial vineyards in the Central Valley (n=112 total, 83% from the Lodi/Delta 

AVA) in 2020. Based on their total glycoconjugate concentrations, these grapes were classified as having 

had low to modest levels of smoke exposure (Crews et al. 2022).  

Spatial data. Fire perimeters. Fire perimeters from the 2018 and 2020 wildfire seasons in 

California were sourced from the CAL FIRE Fire and Resource Assessment Program (FRAP) Geospatial 
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Information System (GIS) database (https://frap.fire.ca.gov/mapping/gis-data). Several statewide agencies 

contribute to the database, and for a fire to be recorded, it must have burned an area of at least 10 acres 

for timber fires, 30 acres for brush fires and 300 acres for grass fires.  

Acres burned. For each wildfire season from 2008 to 2021, the total acres burned, number of 

megafires (i.e., fires with > 100,000 acres burned) and size of the largest wildfire were identified using 

the Cal Fire historical wildfire activity statistics (i.e., Redbooks) (https://www.fire.ca.gov/stats-events).  

Smoke plumes. Shapefiles of smoke plumes from the 2018 and 2020 Californian wildfire seasons 

were sourced from the Hazard Mapping System (HMS) Fire and Smoke Analysis, a product offered by 

the National Oceanic and Atmospheric Administration (NOAA)/National Environmental Satellite Data 

and Information Service (https://www.ospo.noaa.gov/Products/land/hms.html). Smoke plumes were 

identified by classifying imagery acquired by two NOAA-NASA (National Aeronautics and Space 

Administration) satellites from the Geostationary Operational Environmental Satellites (GOES) fleet, 

GOES-16 and GOES-17. Smoke plumes were generated using a sequence of satellite images collected 

over a period of 1 to 3 hours of daylight. The geographic domain of the HMS is focused on North America, 

stretching from 14.6 °N to 72 °N and from 50 °W to 170 °W.  In addition to the location and outline of 

each smoke plume, aerosol optical depth (AOD) data can be used to estimate the density of each plume, 

being light (up to 10 μg/m3), medium (10 up to 21 μg/m3) and heavy (21 up to 32 μg/m3).  

Polygons of daily smoke plumes with light, medium and heavy density were examined over 

approximately 80 days in 2018 (7/24 to 9/30) and 2020 (7/26 to 10/11). This range of dates was relevant 

to grape sampling dates within periods of significant wildfire activity. The boundaries of Lake County, 

Napa County, and Sonoma County (in 2018) and those of Napa County, Sonoma County, and the 

Lodi/Delta region (in 2020) were used as a base layer. The boundaries for Napa, Sonoma and Lake County 

were sourced from the California Open Data Portal, which is procured by the California Department of 

Technology (https://data.ca.gov/dataset/ca-geographic-boundaries). The boundary for the Lodi/Delta 

American Viticultural Area (AVA) was sourced from the American Viticultural Areas Digitizing Project 

Team (https://github.com/UCDavisLibrary/ava). The polygons of smoke plumes were visualized over 

these perimeters and given a value of 0 if they did not intersect with at least 30% of a region and a value 

of 1 if they intersected with at least 30% of a region. This visual analysis was performed for each day, 

region, and smoke density level.  

Vegetation types. A raster layer showing the spatial distribution of California Wildlife Habitat 

Relationship (WHR) classes was sourced from the CAL FIRE Hub (https://hub-calfire-

https://frap.fire.ca.gov/mapping/gis-data
https://www.fire.ca.gov/stats-events
https://www.ospo.noaa.gov/Products/land/hms.html
https://data.ca.gov/dataset/ca-geographic-boundaries
https://github.com/UCDavisLibrary/ava
https://hub-calfire-forestry.hub.arcgis.com/
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forestry.hub.arcgis.com). California WHR classes are grouped into thirteen major land cover types, being 

agriculture, barren (or other), conifer forest, conifer woodland, desert shrub, desert woodland, hardwood 

forest, hardwood woodland, herbaceous, shrub, urban, water and wetland. In this raster layer, desert shrub 

and desert woodland were combined into a single ‘desert’ class and wetland areas were not included. The 

most acreage within the fire perimeters identified by the CAL FIRE FRAP GIS database in 2018 and 2020 

was accounted for by conifer forests, hardwood forests, hardwood woodlands, herbaceous and shrub land 

cover. Zonal histograms were used to calculate the number of pixels corresponding to unique types of land 

cover within each fire perimeter. The raw raster data had a distance resolution of 50 m and to improve 

computational efficiency, the raw raster data were exported as a GeoTiff image with a larger pixel size of 

100 m x 100 m.  

Data analysis. Spatial data were analyzed and visualized in QGIS (version 3.22.8) and projected 

using the North American Datum of 1983 (NAD83) / California Albers (EPSG:3310) as a coordinate 

reference system. Chemical data were analyzed in RStudio (RStudio Inc., Boston, MA) version 4.1.1 and 

visualized using the ggplot2 package.  

 

Results and Discussion 

Solid phase extraction (SPE) is a common sample preparation technique employed prior to analysis 

that serves to purify and concentrate analytes of interest; however, the increased prevalence of samples 

submitted to commercial laboratories for smoke taint analysis—and the time-sensitive decisions resting 

on the results—would benefit from faster sample processing times than can be achieved with vacuum 

extraction manifolds. Standard practice analyzes volatile phenol glycoconjugates following sample 

extraction with C18 cartridges and/or filtration through a 0.45 µm filter (Hayasaka et al. 2010a); however, 

a recent study demonstrated improved recovery of glycoconjugates with the inclusion of an alkaline wash 

step (0.1 N NaOH, pH 13) to limit interference presented by polyphenolic flavonoids and their 

corresponding glycoconjugates (Noestheden et al. 2018b). The inclusion of this step requires the 

replacement of the C18 sorbent, which would not retain the volatile phenol glycoconjugates under such 

an extreme pH, with a polymeric equivalent (Noestheden et al. 2018b). Oasis HLB 96-well plates were 

selected in the present study because they offer the dual benefits of being stable under extremely high pH 

conditions and adaptable to automation, and their performance was compared to LiChrolut® EN, a highly 

selective, choice product in conventional SPE workflows. The sorbents of both Oasis HLB and LiChrolut 

cartridges are lined with copolymer substrates.  

https://hub-calfire-forestry.hub.arcgis.com/
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Red wine and model wine samples were spiked with guaiacol glucoside and guaiacol gentiobioside 

(0 to 250 µg/L) and d3-guaiacol glucoside and d3-guaiacol gentiobioside as ISTD (200 µg/L) and analyzed 

by LC-HRMS in PRM mode. Model wine was prepared with 0% ABV and red wine was dealcoholized 

to assess cartridge performance in the absence of competing matrix effects. As shown in Supplemental 

Table 3, standard curves demonstrated high linearity over the calibration range, having high coefficient 

of determination (R2) values across both SPE cartridges and wine matrices (R2 range = 0.9995 to 0.9999). 

Precision values in dealcoholized red wine for guaiacol gentiobioside (at spiking levels 5 and 25 µg/L) 

were 7% and 4%, respectively (LiChrolut® EN) and 3% and 2%, respectively (Oasis HLB plates). 

Precision values in dealcoholized red wine for guaiacol glucoside (at spiking levels 5 and 25 µg/L) were 

2% and 1%, respectively (LiChrolut® EN) and 2% and 4%, respectively (Oasis HLB). Accuracy levels 

for both compounds (at spiking levels 5 and 25 µg/L) were between 94 to 104% (LiChrolut® EN) and 91 

to 101% (Oasis HLB plates).  

Due to the time-intensive process of dealcoholization, its impact on calibration linearity and peak 

area intensity were quantified in model wines (containing 0, 5, 10, 15, and 20% ABV) dry red wine (0 and 

13.5% ABV) prepared with Oasis HLB plates. In model wine, peak areas corresponding to guaiacol 

glucoside and guaiacol gentiobioside decreased with increasing %ABV, indicating that as matrix polarity 

decreased, fewer glycoconjugates partitioned to the SPE sorbent; however, as expected, this change was 

mirrored by the internal standards, thus conserving the analyte/ISTD ratio (data not shown). Calibration 

linearity of guaiacol gentiobioside quantitation in model wine was high, with R2 values ≥0.9992 across 

the range of model wine. On the contrary, calibration linearity of guaiacol glucoside quantitation in model 

wine demonstrated higher sensitivity to matrix effects, with R2 values decreasing from 0.9994 in 0% ABV 

to 0.9942 and 0.9988 in 15% ABV and 20% ABV matrices (Supplemental Table 4).  

A comparison of red wine without alcohol adjustment (13.5% ABV) and its dealcoholized 

equivalent demonstrated a very similar trend, with lower absolute guaiacol glucoside and guaiacol 

gentiobioside peak areas in the presence of alcohol, albeit this was accounted for with an ISTD. Regardless 

of dealcoholization of the dry red wine, high calibration linearity was maintained for both guaiacol 

glucoside and guaiacol gentiobioside, with R2 values from 0.9994 to 0.9998. This work highlights the 

impact of %ABV on the absolute peak area of volatile phenol glycoconjugates. While an ISTD can account 

for these differences, the absence of deuterated standards corresponding to the full suite of volatile phenol 

glycoconjugates elevated by grapevine smoke exposure prompted incorporation of a dealcoholization step 
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into the sample preparation procedure. Reducing the time to achieve dealcoholization will be the subject 

of a future study.  

Following method validation in wines, which demonstrated the comparable performance of Oasis 

HLB plates and LiChrolut EN cartridges, validation in grapes was carried out using Oasis HLB plates 

only. White grape homogenate was spiked with guaiacol glucoside and guaiacol gentiobioside (0 to 500 

µg/kg) and d3-guaiacol glucoside and d3-guaiacol gentiobioside (250 µg/kg) as ISTD. Guaiacol glucoside 

and guaiacol gentiobioside, respectively, demonstrated high linearity (R2 values = 0.9994 and 0.9995), 

with good precision (6% and 4% RSD) and accuracy (108% and 118% at 30 µg/kg spike level). Further 

details regarding method validation in wine and grape matrices can be found in Supplemental Table 3.   

Previous studies have shown the effects of timing, duration, and density of smoke exposure on the 

abundance of volatile phenols and their glycoconjugates in grapes and wine (Kennison et al. 2009, 2011, 

Szeto et al. 2020). Yet the potential effects of these factors on the compositional profile of volatile phenol 

glycoconjugates in grapes have yet to be explored in great depth (Jiang et al. 2021). The Australian Wine 

Research Institute’s (AWRI) Commercial Services laboratory currently measures six volatile phenol 

glycoconjugates (in tandem with free volatile phenols) to inform smoke taint analysis; being cresol 

rutinoside, guaiacol rutinoside, 4-methylguaiacol rutinoside, phenol rutinoside, syringol gentiobioside, 

and 4-methylsyringol gentiobioside. These glycoconjugates are a subset selected from over twenty volatile 

phenol glycoconjugates that have been reported in the literature (Hayasaka et al. 2013; Noestheden et al. 

2018b; Caffrey et al. 2019; van der Hulst et al. 2019). Few studies have assessed whether this subset of 

glycoconjugates is relevant to grapevines exposed to wildfire smoke in regions outside of Australia 

(Noestheden et al. 2018a; Crews et al. 2022); thus, Cabernet Sauvignon wines made from grapes affected 

by a range of smoke exposure in California were examined.  

There are several methods to classify samples affected by different levels of smoke exposure. They 

are not grounded in wine sensory studies and remain coarse indications of smoke exposure only. While it 

is known that in general, a higher intensity of smoke exposure in grapevines increases the risk that smoke 

taint will be perceived in subsequent wine, this relationship is not linear (Kennison et al. 2009; Parker et 

al. 2012; Szeto et al. 2020). The first option is to use varietal-specific baseline levels established in grape 

and wine samples collected from over several regions and vintages in Australia (Coulter et al. 2022). This 

system provides a conservative classification which attests the presence or absence of smoke exposure. It 

is critical for decisions involving samples with lower levels of smoke exposure but for samples with 
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glycoconjugates at levels above baselines, an alternative option involves use of ‘total’ volatile phenol 

glycoconjugate values.  

Total volatile phenol glycoconjugate values correspond to the sum of the six glycoconjugates 

included in the smoke taint analysis performed by AWRI Commercial Services. In a recent study, samples 

were classified into seven levels of smoke exposure based on quantitation of total volatile phenol 

glycoconjugates, comprising: baseline (less than 6 ppb total), light (6 to 30 ppb total), modest (31 to 100 

ppb total), significant (101 to 200 ppb total), elevated (201 to 300 ppb total), substantial (301 to 400 ppb 

total), and severe (greater than 400 ppb total) (Crews et al. 2022). In the present study, wines were 

classified as ‘minimally affected’ and ‘affected’ based on the severity of relevant wildfire seasons and this 

latter classification scheme. 

In each wildfire season, total acres burned was used to approximate the prevalence of wildfires 

and associated risk that wines were made from smoke-affected grapes. For wildfire seasons with a 

comparable number of total acres burned, the specific location and duration of wildfires relative to the 

appellation of wine samples were examined in greater detail. Between 2011 and 2021, the second lowest 

value for total acres burned (228,559 acres) occurred in 2011, whereas the areas burned in 2018 and 2020 

were amongst the top five wildfire seasons, with 1.9 and 4.3 million total acres burned, respectively (CAL 

FIRE Redbooks). With such contrasting values in the range of total acres burned over the last twenty 

years, wines from 2011 and 2020 were considered ‘minimally affected’ and ‘affected’, respectively.  

The 2012 and 2015 wildfire seasons had comparable number of total acres burned, being 829,224 

and 880,899, respectively (CAL FIRE Redbooks). However, closer examination indicated that the 2012 

commercial wines (primarily from Napa Valley, Sonoma County, and Central Coast) and the 2015 

research wines (from Lake County) were likely made from grapes with different amounts of smoke 

exposure. The CAL FIRE Redbooks considers fires to be ‘large’ if the total area burned exceeds 300 acres. 

During 2012, most large fires that occurred across California burned less than 5,000 acres each and were 

contained in under four days (CAL FIRE Redbook 2012); Napa Valley and Sonoma reported a combined 

359 total acres burned, while on the Central Coast, Monterey and San Luis Obispo counties each recorded 

less than 3,000 total acres burned (CAL FIRE Redbook 2012). On the other hand, Lake County alone 

recorded 171,849 total acres burned in 2015, due in part to the Rocky Fire (which burned 69,438 acres) 

and the Jerusalem Fire (which burned 25,1118 acres), and it took around two weeks to contain each of 

these fires (CAL FIRE Redbook 2015). Wine from 2012 was therefore classified as ‘minimally affected’, 

whereas wine from 2015 was classified as ‘affected’.  
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Table 1. Range and mean values of total volatile phenol glycoconjugate concentrations (μg/L) in 

minimally affected wines (from 2011 and 2012) and affected wines (from 2015, 2018 and 2020). Total 

volatile phenol glycoconjugates refer to the total concentrations of of cresol, phenol, guaiacol and 4-

methylguaiacol rutinoside and syringol and 4-methylsyringol gentiobioside.  

 

 

 

 

 

 

 

 

 

The total volatile phenol glycoconjugate levels measured in wines supported the distinction 

between samples from 2011 and 2012 vintages, and those from 2015, 2018 and 2020 vintages (Table 1). 

Wine from 2011 and 2012 had a mean total volatile phenol glycoconjugate value of 23 μg/L, with 17 

samples containing less than 30 μg/L and 7 containing less than or equal to 60 μg/L total volatile phenol 

glycoconjugates. This suggested that wine from 2011 and 2012 were made from grapes with low (6 to 30 

μg/L total volatile phenol glycoconjugates) to modest (31 to 100 μg/L total volatile phenol 

glycoconjugates) amounts of smoke exposure. Cresol, phenol and guaiacol rutinoside were the most 

abundant glycoconjugates observed in wine from 2011 and 2012, with mean values 8, 5 and 5 μg/L. For 

wines from 2015, 2018 and 2020, total volatile phenol glycoconjugate levels confirmed they were likely 

made from grapes with significant (101 to 200 ppb total) to severe (greater than 400 ppb total) levels of 

smoke exposure; total volatile phenol glycoconjugate concentrations ranged from 155 to 871 μg/L (with 

a mean value of 501 μg/L). Cresol rutinoside, syringol gentiobioside, and phenol rutinoside were the most 

abundant volatile phenol glycoconjugates measured in affected wines, with mean values of 162, 123 and 

108 μg/L, respectively. Interestingly, guaiacol rutinoside had a mean value of only 40 μg/L in the affected 

wine. Relative to the affected wines from the 2020 vintage, the most notable difference in affected wines 

from 2015 and 2018 was the lower levels of guaiacol rutinoside (which were less than 10 μg/L). The 

affected wine from 2020 had a mean guaiacol rutinoside concentration of 44 μg/L. 

Classification Vintage N Minimum Maximum Mean 

Minimally affected 
2011 5 3 15 9 

2012 19 12 60 27 

Affected 

2015 1 - - 396 

2018 1 - - 240 

2020 17 155 871 522 
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To identify additional markers that could differentiate minimally affected and affected wines, 

principal component analysis (PCA) was performed on the concentrations of all 24 volatile phenol 

glycoconjugates (Figure 1). The first two components captured 78.9% of total variance, with 64.8% 

explained by PC 1. Samples with the lowest and highest total volatile phenol glycoconjugates were 

positioned on opposite ends of PC 1, which indicates that separation along this axis is strongly influenced 

by differences in smoke exposure. However, many glycoconjugates contributed to variance captured by 

PC 1, including: phenol, guaiacol and cresol pentosylglucosides; phenol, syringol, 4-methylguaiacol and 

guaiacol glucosides; and phenol gentiobioside. As an unsupervised data reduction strategy, it is uncertain 

whether these additional glycoconjugates are relevant to differentiating samples with different levels of 

smoke exposure. 

 

Figure 1. PCA scores plot of volatile phenol glycoconjugate concentrations measured in wines from 

vintages with low (2011, 2012) and high (2015, 2018, 2020) wildfire activity.  

 

 

As a consequence, glycoconjugate levels were compared between minimally affected and affected 

wines (Figure 2). The most indicative markers were identified as those with low concentrations in 

minimally affected wines and elevated concentrations in affected wines. To compare groups, absolute and 

relative differences in means were referenced. Among the six established markers of smoke taint, 4-

methylsyringol gentiobioside had the lowest mean concentration in affected wine, being 20 μg/L, and 

guaiacol rutinoside had the lowest relative difference between affected and minimally affected groups, 

being 8.4. Using these numbers as a reference, glycoconjugates were not further examined if they had a 
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mean concentration less than 20 μg/L in the affected group, a relative difference between groups of less 

than eight, or both.   

 

Figure 2. Bar chart of mean volatile phenol glycoconjugate concentrations (μg/L) in minimally affected 

wines (from 2011, 2012) (white bars) and affected wines (from 2015, 2018 and 2020) (grey bars). The 

mean concentrations of established markers of smoke taint in affected wine are shaded in black (i.e., cresol 

rutinoside, guaiacol rutinoside, 4-methylguaiacol rutinoside, phenol rutinoside, syringol gentiobioside, 4-

methylsyringol gentiobioside). Values are reported as guaiacol gentiobioside equivalents (for rutinosides, 

gentiobiosides and pentosylglucosides) and guaiacol glucoside equivalents (for glucosides). Error bars 

represent standard error of the mean. Minimally affected values are plotted as negative for visualization 

purposes only—all concentration values are positive. Cr = cresol; Gu = guaiacol; MGu = 4-

methylguaiacol; MSy = 4-methylsyringol; Ph = phenol, and Sy = Syringol; GB = gentiobioside; PG = 

pentosylglucoside; R = rutinoside; G = glucoside.  

 

 

 

Several volatile phenol glycoconjugates had mean concentrations less than 10 μg/L in affected 

wine, including: cresol, phenol, guaiacol and 4-methylguaiacol gentiobiosides, 4-methylsyringol 

pentosylglucoside and 4-methylsyringol rutinoside. The remaining glycoconjugates had elevated mean 

concentrations in minimally affected wines, ranging from 16 μg/L (4-methylsyringol glucoside), to 

between 25 and 50 μg/L (guaiacol glucoside, and pentosylglucosides of guaiacol, 4-methylguaiacol, 

phenol and syringol) and in excess of 90 μg/L (syringol glucoside, cresol glucoside and syringol 
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rutinoside). Elevated means of volatile phenol glycoconjugates in minimally affected wines reduced the 

relative difference to means in affected wines to less than eight. For example, while 4-methylguaiacol 

glucoside had a mean concentration of 4 μg/L in minimally affected wines, it was only elevated to a mean 

concentration of 25 μg/L in affected wines; thus, the relative difference between means was less than 

eight.  

Each of the established markers of smoke taint exceeded these criteria, i.e., cresol, phenol, guaiacol 

and 4-methylguaiacol rutinosides, and syringol and 4-methylsyringol gentiobiosides. Additional 

glycoconjugates that met these criteria included cresol pentosylglucoside and phenol glucoside. The 

potential for pentosylglucosides to be included as additional markers of smoke taint has been supported 

by several other studies (Caffrey et al. 2019; van der Hulst et al. 2019; Szeto et al. 2020; Crews et al. 

2022). On the other hand, there has been little evidence for the use of phenol glucoside as an additional 

marker of smoke taint. Previous studies conducted in Australia have shown levels of phenol glucoside 

lower than 5 μg/kg in smoke-affected grape and juice samples (Culbert et al. 2021; Jiang et al. 2021); thus, 

the potential for phenol glucoside to be used as a marker of smoke taint may be specific to California. The 

markers identified as being most important to wine were considered to also be representative of smoke 

exposure in Cabernet Sauvignon grapes grown in vineyards in Californian wine regions. This is supported 

by studies showing that a large proportion of volatile phenol glycoconjugates in smoke-affected grapes 

are stable through fermentation (Caffrey et al. 2019) and in finished wine, even after several years of bottle 

aging (Ristic et al. 2017). Thus, the occurrence of these markers was examined further for grapes collected 

from distinct wildfire seasons.  

Previous studies have suggested that the combustion of different fuel sources may lead to 

differences in exogenous volatile phenol loads (Kelly et al. 2012; Noestheden et al. 2018b); however, the 

extension of this effect to the profile of volatile phenol glycoconjugates in grapes has not been thoroughly 

evaluated. The results presented above indicate that phenol glucoside may be an example of a regiospecific 

marker of smoke taint. Herein, mature grapes were sampled from 2018 and 2020, two of the largest 

wildfire seasons in the modern history of California (since 1932), with 1.9 million and 4.3 million total 

acres burned in these years, respectively (CAL FIRE Redbooks).  
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Figure 3. Perimeters of major California wildfires near key winegrowing regions in 2018 (A) and 2020 

(B) and the most abundant vegetation types found within the perimeter of each fire (C). Key regions 

include Sonoma County (SON), Lake County (LAK), Napa County (NAP) and the Lodi AVA 

(LODI/DELTA).  
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In 2018, grapes were primarily collected from Lake County, and as shown in Figure 3, the wildfire 

closest to vineyards in Lake County was the Mendocino Complex. The complex formed through the 

convergence of the Ranch and River Fires. This was the largest wildfire of 2018, and from its 7/27 start 

date, it spread 459,123 acres over Colusa, Glenn, Lake, and Mendocino County and burned 38% of the 

total area in Lake County before it was contained two months later, on 9/27. The area burned by the Ranch 

Fire (410,203 acres) comprised 36% conifer forest, 29% shrub, and 16% hardwood forest land cover, 

while the smaller River Fire (48,920 acres) was fueled by 71% shrub and 11% hardwood woodland land 

cover (Figure 3).  

In 2020, grapes were primarily sourced from Napa County, and several megafires burned in 

proximity to this region, including the August Complex, LNU Lighting Complex and the SCU Lightning 

Complex (Figure 3). All three complexes began within a day of each other on either 8/16 or 8/17. The 

LNU and SCU Lightning Complex were contained on 9/22 and 9/15 respectively, while the August 

Complex was not contained until a month later, on 10/15. The closest wildfire to vineyards in Napa County 

was the LNU Lightning Complex, which spread 363,220 acres and burned 41% of the total area in Napa 

County and 2% of the total area in Lake County. The August Complex burned 1,032,648 acres and affected 

5% of the total area in Lake County. Although the perimeter of the August Complex did not intersect with 

that of Napa County, the probability of smoke exposure from this fire affecting vineyards in Napa County 

cannot be discounted, given its unprecedented magnitude. Similar reasoning justified the inclusion of 

details regarding the SCU Complex, a megafire south of Napa County that burned 396,624 acres and 

burned key regions in the Central Valley, such as San Joaquin and Stanislaus County. The land cover 

defining each of the megafires was distinct, with predominant fuel types in each megafire being conifer 

forest (August Complex), hardwood woodland (SCU Lightning Complex) and shrub (LNU Complex) 

(Figure 3).  

In addition to differences in the scale and fuel load characterizing the 2018 and 2020 wildfire 

seasons, satellite imagery suggests that there were also differences in the duration and density of smoke 

exposure. In 2018, there was a steep, four-week accumulation of days with light, medium and heavy smoke 

exposure in Lake County that spanned from late July until the end of August (Figure 4), after which 

medium and heavy smoke exposure plateaued. Smoke with lighter density continued to linger until the 

end of September. 
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Figure 4. Line graphs depicting the cumulative number of days (y-axis) on which smoke plumes covered 

at least 30% of a key winegrowing area on a given day (x-axis), over 80 days from early ripening to harvest 

in 2018 (A) and 2020 (B). Plume density varies from light (- - -), medium (-- -- --) and heavy (—).  

 

 

The observed plateau of medium and heavy smoke plumes may reflect the containment of the Ranch Fire 

on 8/17 (CAL FIRE Redbook 2018). In contrast, a gradual accumulation of light, medium, and heavy 

smoke exposure occurred in 2020, and persisted from the middle of August, when the three megafires 

ignited, until the end of the wildfire season. The rate at which days of heavier smoke exposure accumulated 

showed a slight reduction from mid-September, which coincided with the suppression and containment 

(on 9/22) of the LNU Complex. Nevertheless, the cumulative number of days during which smoke plumes 

(across density levels) were observed, continued to rise. From the perspectives of scale, fuel load and burn 

conditions, it is evident that 2018 and 2020 were two distinct wildfire seasons.  

As shown in Figure 5, the distribution of total volatile phenol glycoconjugates measured in 

(mature) grape samples harvested in 2018 was narrow, with 78% of samples classified as having 

‘significant’ (101 to 200 ppb total volatile phenol glycoconjugates) or ‘elevated’ (201 to 300 ppb total 

volatile phenol glycoconjugates) categories of smoke exposure. Only five samples were found to have less 

A 

B 
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than 100 μg/L of total volatile phenol glycoconjugates and a single sample had an excess of 300 μg/L of 

total volatile phenol glycoconjugates. Grape samples harvested in 2020 were seemingly exposed to a much 

wider distribution of smoke, with 35% classified as having had ‘modest’ smoke exposure (31 to 100 ppb 

total volatile phenol glycoconjugates), 12.5% as ‘significant’ (101 to 200 ppb total volatile phenol 

glycoconjugates), 15% as ‘elevated’ (201 to 300 ppb total glycoconjugates), 10% as ‘substantial’ (301 to 

400 ppb total volatile phenol glycoconjugates) and 20% as ‘severe’ (greater than 400 ppb total volatile 

phenol glycoconjugates).  

 

Figure 5. Bar graph showing the number of grape samples exposed to different levels of smoke during 

2018 and 2020, as indicated by total glycoconjugates concentrations; i.e., the sum of cresol rutinoside, 

phenol rutinoside, guaiacol rutinoside, 4-methylguaiacol rutinoside, syringol gentiobioside and 4-

methylsyringol gentiobioside concentrations, reported as guaiacol gentiobioside equivalents. Categories 

refer to light (6 to 30 ppb), modest (31 to 100 ppb), significant (101 to 200 ppb), elevated (201 to 300 

ppb), substantial (301 to 400 ppb) and severe (greater than 400 ppb) smoke exposure (Crews et al. 2022). 

 

 

It was unexpected that grapes with modest smoke exposure would be account for a higher 

proportion of samples collected in 2020 than in 2018. In 2020, wildfires were more prevalent (Figure 3) 

and sampled regions were affected by a higher number of days with smoke exposure, across levels of 
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smoke density (Figure 4). This may reflect sampling that did not capture the topographical (e.g., aspect, 

elevation) and environmental factors (e.g., wind speed, wind direction, humidity) that affect the dispersion 

of smoke exposure. However, it may also be explained by differences in the timing of sampling and the 

nature of smoke exposure (i.e., acute or chronic). In addition to the duration and density of smoke 

exposure, volatile phenol glycoconjugates are also affected by the timing of smoke exposure (Kennison 

et al. 2011) and the relative date(s) of sampling (Szeto et al. 2020; Jiang et al. 2021).  

Samples from 2018 were primarily collected in Lake County from late August to mid-October, a 

period following the observed plateau in the cumulative number of days with medium and heavy density 

plumes of smoke. The type of acute smoke exposure that affected grapes in 2018 has been modelled in 

conventional field trials, in which grapevines are enclosed in purpose-built tents and exposed to a singular 

dose of straw-derived smoke for one hour (Kennison et al. 2009). Field trials have shown that while the 

uptake of smoke-derived volatile phenols is immediate, there is a delay in the subsequent accumulation of 

volatile phenol glycoconjugates, which can take several weeks (Dungey et al. 2011; van der Hulst 2019; 

Szeto et al. 2020). The period of sample collection in 2018 granted sufficient time for glycoconjugates to 

accumulate. By contrast, samples from 2020 were primarily collected in Napa County, over a period 

defined by persistent smoke exposure. No studies have modelled this type of chronic smoke exposure; 

thus, it is not known how it may influence the rate of glycosylation or abundance of volatile phenol 

glycoconjugates in affected grapes.   

In the current study, the eight volatile phenol glycoconjugates measured as key smoke taint 

markers (cresol, guaiacol, 4-methylguaiacol and phenol rutinosides; syringol and 4-methylsyringol 

gentiobiosides; cresol pentosylglucoside and phenol glucoside) all demonstrated positive correlations with 

the intensity of smoke exposure, measured as total grape glycoconjugates; albeit maximum levels varied 

from approximately 40 μg/L of 4-methylguaiacol rutinoside and guaiacol rutinoside, to more than 90 μg/L 

for cresol rutinoside, phenol rutinoside and syringol gentiobioside (Figure 6). 
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Figure 6. Trendlines showing correlations between total volatile phenol glycoconjugates (μg/kg) (x-axis) 

and concentrations of individual volatile phenol glycoconjugates identified as being most indicative of 

smoke exposure (μg/kg) (y-axis). Closed circles (  ) fitted with a solid line (—) describe samples from 

2018. Open circles (  ) fitted with a dashed line (- - -) describe samples from 2020. Total glycoconjugates 

refer to the sum of cresol rutinoside, phenol rutinoside, guaiacol rutinoside, 4-methylguaiacol rutinoside, 

syringol gentiobioside and 4-methylsyringol gentiobioside. All values reported as guaiacol gentiobioside 

equivalents. Cr = cresol; Gu = guaiacol; MGu = 4-methylguaiacol; MSy = 4-methylsyringol; Ph = phenol, 

and Sy = Syringol; GB = gentiobioside; PG = pentosylglucoside; R = rutinoside; G = glucoside.  

 



Chapter 2 | Markers of Smoke Taint in California 

56 

 

The observed trendlines suggest that cresol rutinoside, phenol rutinoside and syringol gentiobioside 

consistently accounted for high proportions of the total glycoconjugates measured, irrespective of 

vintages; whereas 4-methylsyringol gentiobioside consistently accounted for a lower share, with a 

maximum concentration of 60 μg/L, even in grapes subjected to severe smoke exposure (i.e., where total 

volatile phenol glycoconjugates were greater than 400 ppb) (Figure 6).  

Differences were observed between vintages for cresol pentosylglucoside and 4-methylguaiacol 

rutinoside concentrations, with greater accumulation of these glycoconjugates evident in 2018. The 

opposite effect was observed for phenol glucoside and guaiacol rutinoside, with these glycoconjugates 

contributing a higher proportion of total glycoconjugates in 2020, than 2018. These differences might be 

attributable to the burn conditions or the types of vegetation that fueled the wildfires that burned during 

each vintage. The flattest curve corresponded to guaiacol rutinoside in 2018, with concentrations that 

ranged from 1 to 22 μg/L across grape samples with significant (101 to 200 ppb total glycoconjugates) 

and elevated (201 to 300 ppb total glycoconjugates) levels of smoke exposure.  

The unpredictable nature of wildfires makes it challenging to acquire information needed to inform 

decision-making in vineyards potentially affected by smoke exposure. The best markers of smoke 

exposure are volatile phenol glycoconjugates that demonstrate strong correlations to total grape 

glycoconjugates, independent of burn conditions or fuel type; herein identified as cresol rutinoside, phenol 

rutinoside, syringol gentiobioside and 4-methylsyringol gentiobioside. However, it does not necessarily 

follow that glycoconjugates that demonstrate variation between vintages or that occur at lower 

concentrations ought to be removed from smoke taint diagnostics. Prior to their removal, further research 

is necessary to understand to what extent different profiles of volatile phenol glycoconjugates contribute 

to the sensory perception of smoke taint in wine.  

In addition to being consistently indicative of smoke exposure across vintages, it is also critical for 

key markers to be sensitive to low levels of smoke exposure. As shown in Table 2, total volatile phenol 

glycoconjugate levels indicate that Cabernet Sauvignon, Pinot noir and Chardonnay grapes from the 

Lodi/Delta AVA were affected by low levels of smoke exposure, being light (6 to 30 ppb total 

glycoconjugates) in Cabernet Sauvignon and Chardonnay, and modest (31 to 100 ppb total 

glycoconjugates) in Pinot noir. This assessment is supported by a recent study, in which 21, 15, and 9 

μg/kg corresponded to the 99th percentile of total glycoconjugate values in non-smoke-exposed Cabernet 

Sauvignon, Pinot noir and Chardonnay grapes (Coulter et al. 2022). 

 



Chapter 2 | Markers of Smoke Taint in California 

57 

 

Table 2. Concentration of key volatile phenol glycoconjugates (μg/kg) in Cabernet Sauvignon (n=40), 

Chardonnay (n=52), and Pinot noir (n=20) grapes collected at maturity in 2020 from the Lodi/Delta 

regions of California.  

 

 

Cresol rutinoside and phenol rutinoside were present at the highest levels, regardless of variety, 

ranging from 7 to 13 µg/kg in the red varieties and 3 to 4 µg/kg in Chardonnay (Table 2). This may 

indicate that cresol rutinoside and phenol rutinoside are the glycoconjugates most sensitive to small 

amounts of smoke exposure. The levels of the remaining glycoconjugates were less than 2 µg/kg in 

Chardonnay and less than 9 µg/kg in Cabernet Sauvignon and Pinot noir. Concentrations of additional 

glycoconjugates are reported in Supplemental Table 5. Decisions regarding harvest and processing of 

grapes affected by low levels of smoke exposure are challenging without robust baselines. It is critical to 

continue expanding knowledge of naturally occurring volatile phenol glycoconjugate concentrations 

across a range of varieties and regions to create a comprehensive, accessible resource for growers and 

wineries to use to make informed decisions regarding price adjustments and/or rejection criteria that fairly 

and accurately reflect vineyard smoke exposure.   

The lower levels of smoke exposure observed in grapes collected during 2020 were unexpected, 

given the unprecedented scale of wildfire activity. In fact, the Lodi/Delta AVA and Napa County appeared 

to experience comparable levels of smoke exposure (Figure 4). Nonetheless, as previously described, the 

samples from the Lodi/Delta AVA were characterized by light (6 to 30 ppb total) to modest (31 to 100 

ppb total glycoconjugates) smoke exposure, whereas fruit from Napa County were affected by light (6 to 

30 ppb total glycoconjugates) to severe (greater than 400 ppb total glycoconjugates) smoke exposure. It 

is worth noting that the polygons generated for each smoke plume are two-dimensional, static 

representations of three-dimensional, dynamic phenomena, and they may not accurately depict the density 

and/or duration of smoke exposure at ground level. This limitation could be overcome through the use of 

sensors that monitor particulate matter (PM). Recent studies have employed PM sensors to monitor the 

temporal changes in the density and location of smoke plumes (Jiang et al. 2021; Wilkinson et al. 2021). 

Varietal CrR GuR MGuR MSyGB PhR SyGB Total  

Cabernet Sauvignon 11 1 1 0.7 10 5 29 

Chardonnay 4 0.3 1 0.4 3 0.4 9 

Pinot noir 13 2 4 0.9 7 8 35 
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The combined use of satellite imagery, particulate matter sensors, and GIS software could lead to 

customized sampling protocols for affected vineyards and significantly enhance our ability to 

contextualize wildfire events and the risk of smoke taint.  
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Supplemental Data 

 

Supplemental Table 1. List of exact masses corresponding to volatile phenol glycoconjugates 

featured in the PRM inclusion list.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volatile phenol glycoconjugate  Abbreviation Precursor (m/z) 

cresol glucoside CrG 329.12364 

cresol gentiobioside CrGB 491.17646 

cresol pentose glucoside CrPG 461.16590 

cresol rutinoside CrR 475.18155 

guaiacol glucoside GuG 345.11855 

d3-guaiacol glucoside d3-GuG 348.11855 

guaiacol gentiobioside GuGB 507.17138 

d3-guaiacol gentiobioside d3-GuGB 510.17138 

guaiacol pentose glucoside GuPG 477.16081 

guaiacol rutinoside GuR 491.17646 

4-methylguaicol glucoside MGuG 359.13420 

4-methylguaiacol gentiobioside MGuGB 521.18703 

4-methylguaiacol pentose glucoside MGuPG 491.17646 

4-methylguaiacol rutinoside MGuR 505.19211 

4-methylsyringol glucoside MSyG 389.14477 

4-methylsyringol gentiobioside MSyGB 551.19759 

4-methylsyringol pentose glucoside MSyPG 521.18703 

4-methylsyringol rutinoside MSyR 535.20268 

phenol glucoside PhG 315.10799 

phenol gentiobioside PhGB 477.16136 

phenol pentose glucoside PhPG 447.15025 

phenol rutinoside PhR 461.16590 

syringol glucoside SyG 375.12912 

syringol gentiobioside SyGB 537.18194 

syringol pentose glucoside SyPG 507.17138 

syringol rutinoside SyR 521.18703 
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Supplemental Table 2. Source, vintage and regional details of Cabernet Sauvignon wines 

collected to determine the volatile phenol glycoconjugates most indicative of smoke exposure 

in wine.  

 

 

Total Vintage Region Smoke-affected 

3 2012 California - 

2 2012 Central Coast - 

17 2020 Central Coast 14 

1 2012 Lodi - 

5 2011 Napa Valley - 

3 2012 Napa Valley - 

2 2012 North Coast - 

3 2012 Paso Robles - 

1 2015 Snows Lake 1 

1 2018 Snows Lake 1 

5 2012 Sonoma - 
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Supplemental Table 3. Figures of merit for the quantitation of guaiacol glucoside (GuG) and guaiacol gentiobioside (GuGB) in dealcoholized 

model wine, red wine and white grape matrices via LC-HRMS. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SPE cartridge Lichrolut EN Oasis HLB 

Matrix Compound Expected (ppb) R2 RSD (%) Recovery (%) R2 RSD (%) Recovery (%) 

Dealcoholized 

model wine 

GuGB 
10 

0.9999 
5 96 

0.9999 
7 95 

25 3 88 2 104 

GuG 
10 

0.9995 
4 101 

0.9997 
7 102 

25 3 99 5 100 

Dealcoholized  

red wine 

GuGB 
5 

0.9999 
7 97 

0.9995 
3 101 

25 4 94 2 97 

GuG 
5 

0.9996 
2 98 

0.9996 
2 99 

25 1 104 4 91 

White grapes 
GuGB 30 - - - 0.9995 4 118 

GuG 30 - - - 0.9994 6 108 
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Supplemental Table 4. Effects of alcohol by volume (%ABV) on the linearity of calibration (R2) and RSD (%) of guaiacol gentiobioside (GuGB) 

and guaiacol glucoside (GuG) in model and red wine matrices at different concentrations, as determined by LC-HRMS.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 % RSD  

Concentration (µg/kg) 5 10 25 50 100 250 R2 

Matrix GuGB GuG GuGB GuG GuGB GuG GuGB GuG GuGB GuG GuGB GuG GuGB GuG 

0% ABV model wine 107 96 96 82 103 98 103 109 98 100 101 99 0.9998 0.9994 

5% ABV model wine 80 91 96 96 105 106 96 104 102 97 100 101 0.9997 0.9995 

10% ABV model wine 100 36 100 71 103 101 103 111 94 106 100 98 0.9992 0.9978 

15% ABV model wine 96 52 87 62 94 92 103 104 103 113 100 97 0.9997 0.9942 

20% ABV model wine 103 55 106 84 100 96 98 105 94 106 100 99 0.9993 0.9988 

0% ABV red wine 93 -97 85 -10 103 53 98 78 100 89 100 91 0.9998 0.9994 

14% ABV red wine 129 362 100 167 102 139 94 127 101 117 101 109 0.9996 0.9996 
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Supplemental Table 5. Concentration of additional volatile phenol glycoconjugates (µg/kg) in mature, Cabernet Sauvignon (n=40), Chardonnay 

(n=52), and Pinot noir (n=20) grapes from the 2020 Lodi/Delta AVA vintage affected by light to modest levels of smoke exposure.   

 

 

 

 

 

 

 

 

 

 

 

Values are mean concentrations reported as guaiacol gentiobioside equivalents (for volatile phenol rutinosides, gentiobiosides, and pentose 

glucosides) and guaiacol glucoside equivalents (for volatile phenol glucosides). Key smoke taint indicators are highlighted in bold. Cr = cresol; 

Gu = guaiacol; MGu = 4-methylguaiacol; MSy = 4-methylsyringol, Ph = phenol, and Sy = syringol; GB = gentiobioside, PG = pentose 

glucoside; R = rutinoside; G = glucoside.  

 

 

 

 

Grape Varietal GuG GuGB GuPG MGuG MGuGB MGuPG CrG CrGB CrPG 

Cabernet Sauvignon 31 0.3 12 50 0.1 14 369 0.3 5 

Chardonnay 12 0.1 16 19 0.2 23 205 0.1 3 

Pinot noir 48 0.7 18 45 0.2 35 443 0.4 5 

Grape Varietal PhG PhGB PhPG SyG SyPG SyR MSyG MSyPG MSyR 

Cabernet Sauvignon 22 0.2 0.2 498 44 85 31 0.2 0.3 

Chardonnay 10 0 0 191 51 68 93 0.1 0.1 

Pinot noir 26 0.4 0 462 41 123 227 0.1 2 
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Abstract: Wine made from grapes exposed to bushfire smoke can exhibit unpleasant smoky, ashy
characters, which have been attributed to the presence of smoke-derived volatile phenols, in free
or glycosylated forms. Here we report the uptake and glycosylation of volatile phenols by grapes
following exposure of Cabernet Sauvignon vines to smoke, and their fate during winemaking.
A significant delay was observed in the conversion of volatile phenols to their corresponding
glycoconjugates, which suggests sequestration, the presence of intermediates within the glycosylation
pathway and/or other volatile phenol storage forms. This finding has implications for industry in
terms of detecting smoke-affected grapes following vineyard smoke exposure. The potential for
an in-canopy sprinkler system to mitigate the uptake of smoke-derived volatile phenols by grapes,
by spraying grapevines with water during smoke exposure, was also evaluated. While “misting”
appeared to partially mitigate the uptake of volatile phenols by grapes during grapevine exposure to
smoke, it did not readily influence the concentration of volatile phenols or the sensory perception of
smoke taint in wine. Commercial sensors were used to monitor the concentration of smoke particulate
matter (PM) during grapevine exposure to low and high density smoke. Similar PM profiles were
observed, irrespective of smoke density, such that PM concentrations did not reflect the extent of
smoke exposure by grapes or risk of taint in wine. The sensors could nevertheless be used to monitor
the presence of smoke in vineyards during bushfires, and hence, the need for compositional analysis
of grapes to quantify smoke taint marker compounds.

Keywords: acid hydrolysis; cresols; guaiacol; particulate matter; rate-all-that-apply; sensors; smoke
taint; syringol; volatile phenol glycosides; wine

1. Introduction

“Smoke taint” describes unpleasant smoky, medicinal and ashy characters that can arise in wine
following grapevine exposure to bushfire smoke [1,2]. The intensity of smoke taint depends on the timing
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and duration of smoke exposure [3,4], grape variety [5], fruit maturity at harvest [6] and winemaking
practices (e.g., skin contact time during fermentation) [7,8]. The presence of smoke taint can be
determined in wine by sensory analysis and/or by measuring the concentrations of smoke-derived volatile
phenols, including guaiacol, 4-methylguaiacol, o-, m- and p-cresol, syringol and 4-methylsyringol [5,9–11];
but in grapes, volatile phenols accumulate in glycoconjugate forms (i.e., as mono-, di- and even
trisaccharides [12–17]), complicating their detection. Analytical methods have been developed to
measure volatile phenol glycoconjugates, either directly by liquid chromatography-tandem mass
spectrometry [11,18], or indirectly, by quantifying the volatile phenols released following acid or
enzyme hydrolysis [19–21]. However, to date, few studies have monitored temporal changes in grape
volatile phenol glycoconjugates following grapevine exposure to smoke or the fate of volatile phenol
glycoconjugates during winemaking.

Dungey and coworkers reported the accumulation of guaiacol glycoconjugates in smoke-affected
Merlot and Viognier grapes, and while glycoconjugates were detected 3–5 days post-smoke exposure,
significant increases were observed in grapes sampled 12 or more days after smoke exposure, leading
the authors to conclude that glycosylation occurred over 10 to 14 days [18]. In a more recent study,
van der Hulst and colleagues found low levels of volatile phenols (≤4 µg/L) in grapes sampled one
day after grapevine exposure to smoke, but the concentrations of key volatile phenol glycoconjugates
increased significantly between 1 and 7 days post-smoke exposure [16]. Unfortunately, neither of these
studies measured grape volatile phenols immediately after smoke exposure, nor did they involve
winemaking, so questions remain regarding the uptake of smoke-derived volatile phenols by grapes
and how glycoconjugate profiles change as grapes are processed into wine. This study sought to
address these knowledge gaps by measuring grape volatile phenols, in free and glycosylated forms,
following grapevine exposure to low and high density smoke, and then in corresponding wines.
The study also included preliminary evaluations of: (i) in-canopy misting as a strategy for mitigating
the uptake of volatile phenols during grapevine smoke exposure; and (ii) a commercial sensor for
monitoring vineyard exposure to smoke during a bushfire.

A recent study used in-canopy sprinklers to mitigate the effects of heat stress in Cabernet Sauvignon
berries during ripening, by spraying water within the bunch zone (for 20 s/10 min when air temperature
exceeded 38 ◦C) to cool the vine microclimate by 3–5 ◦C [22]. Attempts to “wash” grapevines/fruit
following exposure to smoke (using water, 5% aqueous ethanol or milk) did not reduce the guaiacol
concentration of grapes or juice [23,24], which might reflect rapid diffusion of smoke-derived volatile
phenols into berries. The in-canopy sprinkler system could instead be used to “wash” grape bunches
during smoke exposure, i.e., to potentially mitigate the uptake of smoke-derived volatile compounds
through the removal of smoke particles in a manner similar to the way in which rain cleanses the
atmosphere by capturing aerosols [25]. This study therefore included an investigation into the impact
of in-canopy misting during grapevine exposure to smoke on the concentration of smoke taint marker
compounds in grapes and wine, and the perception of smoke taint in wine. Additionally, commercial
sensors were deployed during field trials to measure the concentration of particulate matter, in order
to determine their suitability for monitoring smoke from bushfires, with different densities of smoke
achieved by burning different amounts of fuel.

2. Results and Discussion

The composition of grapes from control and smoke-exposed grapevines were determined just
prior to smoke exposure (i.e., at t = 0, being approximately 7 days post-veraison); then, at 1 h, 1 day and
1 week post-smoke exposure (hereafter t = 1, t = 2 and t = 3, respectively), and again at harvest/maturity
(hereafter t = 4, being 4 weeks post-smoke exposure). The composition and sensory profiles of control
and smoke-affected wines were also determined. This enabled investigation of: (i) the uptake and
in vivo glycosylation of smoke-derived volatile phenols by grapes; and (ii) the subsequent fate of
volatile phenols (and their glycoconjugates) during winemaking.
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2.1. Uptake and Glycosylation of Smoke-Derived Volatile Phenols by Grapes

Prior to smoke exposure (i.e., at t = 0), grape juice volatile phenol concentrations were ≤3.6 µg/L,
with the exception of syringol which ranged from 6.2 to 12 µg/L (Table 1). Elevated volatile phenol
levels were detected in juice from grapes sampled 1 h after exposure to smoke (i.e., at t = 1), irrespective
of smoke density, albeit only phenol and cresol concentrations of grapes exposed to low density smoke
(“LS”) were significantly different (P = 0.034 and 0.033, respectively) from their corresponding control
grapes (i.e., “C” at t = 1). Guaiacol and syringol were detected at the highest concentrations, being 108
and 126 µg/L in juice from grapes exposed to high density smoke (“HS”) respectively, followed by
cresols, phenol, 4-methylguaiacol and 4-methylsyringol, which were detected at 83, 55, 20 and 17 µg/L
respectively (Table 1). Within 24 h of smoke exposure, the elevated volatile phenol levels observed in
LS and HS grapes had decreased by as much as 75%, such that syringol, 4-methylguaiacol, phenol and
4-methylsyringol levels were not significantly different from those detected in control grapes (Table 1).
Guaiacol and cresol concentrations similarly decreased, but remained significantly higher in HS grapes
(than in control grapes) until one and four weeks after smoke exposure (i.e., until t = 3 and t = 4),
respectively (Table 1).

These results demonstrate the rapid uptake of volatile phenols from smoke by grapes during
grapevine exposure to smoke, and as reported in previous studies [12–18], their subsequent
in vivo glycosylation. However, while some volatile phenol glycoconjugates (measured as syringol
glucose-glucoside equivalents) were observed at significantly elevated concentrations in HS grapes 24 h
after smoke exposure (i.e., at t = 2), namely, syringol glucose glucoside (gentiobioside), cresol glucoside
and cresol rutinoside (Table S1), accumulation of other volatile phenol glycoconjugates seemingly
occurred one to four weeks after smoke exposure (i.e., between t = 3 and t = 4) (Table S1). By harvest
(i.e., at t = 4), the concentrations of guaiacol pentose glucoside, phenol pentose glucoside, cresol pentose
glucoside and syringol glucose glucoside in HS grapes were 803, 576, 988 and 535 µg/kg respectively
(Table S1); meanwhile, pentose glucosides of 4-methylguaiacol and syringol, 4-methylsyringol glucose
glucoside, and rutinosides of 4-methylguaiacol, phenol and cresols ranged from 98 to 258 µg/kg
(Table S2). Other volatile phenol glycoconjugates, including glucosides, were detected at ≤50 µg/kg.

The glycoconjugate profiles observed for LS and HS grapes were similar to those reported in
previous studies involving the application of smoke to grapevines of different varieties [11,13,16],
in that pentose glucosides of guaiacol, 4-methylguaiacol, cresol, phenol and syringol, and glucose
glucosides (gentiobiosides) of syringol and 4-methylsyringol were most abundant in smoke-exposed
grapes (at harvest). In the latter study, van der Hulst and colleagues reported a similar (albeit shorter)
delay in the accumulation of volatile phenol glycoconjugates. Volatile phenols were detected at ≤4 µg/L
in grapes sampled 1 d after grapevine exposure to smoke, but the concentrations of several volatile
phenol glycoconjugates increased significantly between one and seven days post-smoke exposure,
especially in Merlot vines; glycoconjugate levels then remained relatively constant until harvest [16].

The apparent delay between the “disappearance” of volatile phenols and “appearance” of
their glycoconjugates might be explained by sequestration of volatile phenols in plant cell walls or
vacuoles, the presence of “intermediates” within the glycosylation pathway and/or other volatile
phenol metabolites, as suggested by Noestheden and colleagues [24]. Nevertheless, this delay has
important implications for the wine industry, since it suggests that analysis of volatile phenols and/or
their glycoconjugates in grapes sampled between one and seven days after smoke exposure (and
possibly longer in some grape varieties), might underestimate the levels that are subsequently detected
in mature grapes and/or wine, i.e., there is potential for the level of smoke taint to be underestimated.
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Table 1. Concentrations of volatile phenols in juice (µg/L) and volatile phenol glycosides in homogenate (µg/kg) from control and smoke-exposed grapes sampled from
pre-smoke exposure (t = 0) to maturity (t = 4), and in corresponding wines (µg/L); different densities of smoke were achieved by burning different amounts of fuel.

Treatment/
Timepoint Guaiacol 4-Methyl

Guaiacol Phenol Cresols Syringol 4-Methyl
Syringol

Guaiacol
Glycosides

4-Methyl
Guaiacol

Glycosides

Phenol
Glycosides

Cresol
Glycosides

Syringol
Glycosides

4-Methyl
Syringol

Glycosides

C

t = 0 1.9 b 3.6 1.5 2.6 12 b 2.5 3.9 b 1.5 b 3.1 b 12 b 4.1 b nd
t = 1 9.5 a 4.1 2.6 5.1 21 a 3.0 5.5 b 2.1 b 3.8 b 16 b 5.9 b 1.1 b
t = 2 2.4 b 3.6 1.6 2.7 8.4 b 2.0 8.4 b 3.0 b 4.7 b 26 b 14 b 2.2 b
t = 3 1.9 b 3.6 1.6 2.4 7.9 b 1.8 13 b 4.6 b 8.0 b 31 b 30 ab 3.6 b
t = 4 2.2 b 3.6 1.6 2.4 13 b 1.8 44 a 22 a 45 a 83 a 44 a 13 a

P 0.033 ns ns ns 0.017 ns 0.002 <0.001 <0.001 <0.001 0.037 0.011

LS

t = 0 1.7 b 3.5 b 1.4 c 2.5 c 6.2 c 2.0 b 3.5 b 1.1 b 3.6 b 9.0 c 3.1 d nd
t = 1 12 a 4.1 a 6.9 a 12 a 25 a 2.9 a 6.4 b 2.1 b 5.3 b 20 bc 12 cd 1.5 b
t = 2 2.8 b 3.6 b 4.7 b 4.9 b 6.0 c 1.9 b 14 b 4.8 b 16 b 46 b 27 bc 3.6 b
t = 3 2.6 b 3.6 b 5.1 ab 4.8 b 13 b 1.8 b 16 b 6.3 b 26 b 47 b 42 b 4.4 b
t = 4 3.1 b 3.6 b 6.3 ab 5.0 b 11 bc 1.8 b 73 a 38 a 121 a 154 a 77 a 18 a

P <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

HS

t = 0 1.8 c 3.5 b 1.8 b 2.7 b 7.8 b 1.9 b 3.2 b 1.4 b 3.3 b 10 b 3.5 c nd
t = 1 108 a 20 a 55 a 83 a 126 a 17 a 45 b 14 b 22 b 98 b 71 c 11 b
t = 2 25 b 5.1 b 12 b 23 b 24 b 2.7 b 158 b 51 b 69 b 263 b 310 bc 48 b
t = 3 12 c 4.6 b 17 b 18 b 12 b 1.9 b 229 b 70 b 144 b 316 b 526 ab 69 b
t = 4 10 c 4.2 b 21 b 13 b 12 b 1.8 b 894 a 297 a 745 a 1118 a 843 a 248 a

P <0.001 <0.001 0.012 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001

P 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
LSD 1 15.6 3.7 14.2 15.0 24.6 3.3 182.0 52.6 112.6 61.1 172.8 36.0

C wine 1.7 b nd – nd 1.7 b nd 19 b 4.2 b 6.2 b 7.5 b 30 b 1.4 b
LS wine 4.3 b nd – 5.9 b 2.7 b nd 30 b 7.7 b 17 b 15 b 53 b 2.3 b
HS wine 29 a 4.0 – 28 a 4.7 a nd 283 a 68 a 112 a 115 a 501 a 30 a

P <0.001 – – <0.001 0.011 – 0.002 0.001 <0.001 <0.001 0.002 <0.001

C = control (no smoke exposure); LS = low density smoke exposure; HS = high density smoke exposure. Values are means of three replicates (n = 3); nd = not detected. Different letters
(within columns) indicate statistical significance (P = 0.05, one way ANOVA) amongst: (i) time points (i.e., immediately prior to smoke exposure (t = 0); 1 h after smoke exposure (t = 1);
1 day after smoke exposure (t = 2); 7 days after smoke exposure (t = 3); and 4 weeks after smoke exposure (t = 4) being maturity) for grape data; and (ii) wines; ns = not significant. 1 P and
LSD values for two-way ANOVA of grape data, by treatment and time. Phenol was not measured in wines.
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Several previous studies employed enzyme, acid and/or base hydrolysis of grape homogenate,
juice or wine to facilitate quantification of glycoconjugate forms of volatile phenols [1,15,19–21,24,26].
Noestheden and colleagues optimized a method for measuring glycosidically-bound volatile phenols
in smoke-exposed grapes using acid-mediated hydrolysis [15], key recommendations being the use
of Strata X solid phase extraction (SPE) cartridges for isolation of glycoconjugates and PTFE tubes
for acid digestion (instead of borosilicate glass vials, which seem to interfere with the assay yielding
low recoveries for some volatile phenols). In the current study, a similar method was applied to
HS grapes (at each time point) to further investigate the accumulation of volatile phenols in bound
forms (Figure 1). The acid hydrolysate from HS grapes sampled at t = 0 contained low levels of
volatile phenols (i.e., 0–25 µg/L; Figure 1). Acid hydrolysis of smoke-affected grape samples liberated
≤13 µg/L of 4-methylguaiacol and 4-methylsyringol, irrespective of sampling time, but released 50–90,
70–100 and 120–260 µg/L of guaiacol, cresols and syringol, respectively (Figure 1). These results were
consistent with: 4-methylguaiacol and 4-methylsyringol being the least abundant volatile phenols in
HS grapes, especially in free form at t = 1 (Table 1) and in glycosylated forms at t = 4 (Table 1 and
Table S1); and guaiacol, cresols and syringol being the most abundant volatile phenols, in both free
and glycosylated forms (Table 1 and Table S1).

Molecules 2020, 25, x 5 of 17 

 

Several previous studies employed enzyme, acid and/or base hydrolysis of grape homogenate, 
juice or wine to facilitate quantification of glycoconjugate forms of volatile phenols [1,15,19–21,24,26]. 
Noestheden and colleagues optimized a method for measuring glycosidically-bound volatile phenols 
in smoke-exposed grapes using acid-mediated hydrolysis [15], key recommendations being the use 
of Strata X solid phase extraction (SPE) cartridges for isolation of glycoconjugates and PTFE tubes for 
acid digestion (instead of borosilicate glass vials, which seem to interfere with the assay yielding low 
recoveries for some volatile phenols). In the current study, a similar method was applied to HS grapes 
(at each time point) to further investigate the accumulation of volatile phenols in bound forms (Figure 
1). The acid hydrolysate from HS grapes sampled at t = 0 contained low levels of volatile phenols (i.e., 
0–25 µg/L; Figure 1). Acid hydrolysis of smoke-affected grape samples liberated ≤13 µg/L of 4-
methylguaiacol and 4-methylsyringol, irrespective of sampling time, but released 50–90, 70–100 and 
120–260 µg/L of guaiacol, cresols and syringol, respectively (Figure 1). These results were consistent 
with: 4-methylguaiacol and 4-methylsyringol being the least abundant volatile phenols in HS grapes, 
especially in free form at t = 1 (Table 1) and in glycosylated forms at t = 4 (Tables 1 and S1); and 
guaiacol, cresols and syringol being the most abundant volatile phenols, in both free and glycosylated 
forms (Tables 1 and S1).  

 

Figure 1. Volatile phenol concentrations in acid hydrolysates derived from HS grapes sampled at 
different time points, i.e., immediately prior to smoke exposure (t = 0); 1 h after smoke exposure (t = 
1); 1 day after smoke exposure (t = 2); 7 days after smoke exposure (t = 3); and 4 weeks after smoke 
exposure (t = 4) being maturity. Values are means of two replicates (n = 2) ± standard errors. Different 
letters indicate statistical significance (P = 0.05, one-way ANOVA); ns = not significant; nd = not 
detected. 

The elevated concentrations of guaiacol, cresols and syringol in the t = 1 hydrolysate (compared 
with the t = 0 hydrolysate) suggest these compounds were being metabolized within the berry during 
and/or immediately after smoke exposure. The significant increase in guaiacol and syringol 
concentrations observed for hydrolysates between t = 1 and t = 2 might reflect conversion of free forms 
of these volatile phenols into bound forms. However, the glycoconjugate levels at t = 2 do not account 
for the quantities of guaiacol and syringol observed in t = 2 hydrolysate, suggesting the presence of 
intermediates (or other metabolites) of these volatile phenols. The guaiacol and syringol levels in t = 
3 and t = 4 hydrolysates were not significantly different from those in either t = 1 or t = 2 hydrolysates; 
surprisingly, there was also no statistical significance amongst cresol concentrations in acid 
hydrolysates, at any time point (Figure 1). These results are particularly interesting given that by t = 
4, substantial quantities of guaiacol, cresol and syringol glycoconjugates had accumulated in HS 
grapes (Tables 1 and S1) and high performance liquid chromatography-tandem mass spectrometry 

c c

b

b

b
a

a

ns

a

ns

ab

b

ab

ab

a

ab

0

50

100

150

200

250

300

350

guaiacol 4-methylguaiacol cresols syringol 4-methylsyringol

Co
nc

en
tr

at
io

n 
(µ

g/
L)

t = 0 t = 1 t = 2 t = 3 t = 4

nd

Figure 1. Volatile phenol concentrations in acid hydrolysates derived from HS grapes sampled at
different time points, i.e., immediately prior to smoke exposure (t = 0); 1 h after smoke exposure (t = 1);
1 day after smoke exposure (t = 2); 7 days after smoke exposure (t = 3); and 4 weeks after smoke exposure
(t = 4) being maturity. Values are means of two replicates (n = 2) ± standard errors. Different letters
indicate statistical significance (P = 0.05, one-way ANOVA); ns = not significant; nd = not detected.

The elevated concentrations of guaiacol, cresols and syringol in the t = 1 hydrolysate (compared
with the t = 0 hydrolysate) suggest these compounds were being metabolized within the berry
during and/or immediately after smoke exposure. The significant increase in guaiacol and syringol
concentrations observed for hydrolysates between t = 1 and t = 2 might reflect conversion of free
forms of these volatile phenols into bound forms. However, the glycoconjugate levels at t = 2 do
not account for the quantities of guaiacol and syringol observed in t = 2 hydrolysate, suggesting the
presence of intermediates (or other metabolites) of these volatile phenols. The guaiacol and syringol
levels in t = 3 and t = 4 hydrolysates were not significantly different from those in either t = 1 or t = 2
hydrolysates; surprisingly, there was also no statistical significance amongst cresol concentrations in
acid hydrolysates, at any time point (Figure 1). These results are particularly interesting given that by
t = 4, substantial quantities of guaiacol, cresol and syringol glycoconjugates had accumulated in HS
grapes (Table 1 and Table S1) and high performance liquid chromatography-tandem mass spectrometry
(HPLC–MS/MS) analysis of hydrolysates confirmed there were no volatile phenol glycoconjugates
remaining after acid hydrolysis (data not shown). Based on the concentrations of guaiacol and cresol
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pentose glucosides and syringol glucose glucoside found in mature HS grapes (i.e., the most abundant
glycoconjugates for each of these volatile phenols), complete hydrolysis would be expected to yield
guaiacol, cresol and syringol concentrations of at least 238, 265 and 172 µg/L, respectively; i.e., mass
balance could not be achieved. Whereas Noestheden and colleagues reported quantitative recovery of
free volatile phenols following acid hydrolysis of their corresponding glucosides [21], similar results
were not obtained in the current study, for the glycoconjugates measured.

The acid hydrolysis experiments performed as part of the current study are considered preliminary
only. More detailed studies could not be pursued because very limited quantities of samples remained
after completion of other analyses, but will instead be undertaken as part of ongoing smoke taint
research. Nevertheless, these findings further support the existence of other intermediates and/or
storage forms of volatile phenols. They also demonstrate the potential for acid hydrolysis to be used
to further investigate the uptake and accumulation of smoke-derived volatile phenols by grapes,
and to detect smoke taint in grapes, especially when direct analysis of volatile phenols and/or their
glycoconjugates might not account for the presence of all forms of volatile phenols (e.g., in the days
immediately after smoke exposure).

2.2. Comparison of Smoke Taint Markers in Grapes vs. Wine

The chemical analyses performed in the current study enabled comparisons to be made between
the compositions of control and smoke-exposed grapes, and their corresponding wines, to determine
the fate of volatile phenols (both free and glycosylated forms) during winemaking.

Prior to smoke exposure, the background (“natural”) levels of volatile phenols present in LS and
HS grapes were≤7.8 µg/L (Table 1), with syringol being the most abundant volatile phenol. After smoke
exposure (i.e., at t = 1), guaiacol and syringol were the most abundant volatile phenols (in both LS
and HS grapes), followed by cresols, phenol, 4-methylguaiacol and 4-methylsyringol. However, by
maturity, there were no significant differences in the syringol or 4-methylsyringol levels of C, LS and
HS grapes (Table 1). Elevated levels of guaiacol, phenol and cresols in HS grapes (and of phenol and
cresols in LS grapes, but to a lesser extent) provided the only evidence of smoke exposure at maturity
(i.e., at t = 4). As outlined above, this was because volatile phenols were predominantly present in
conjugate forms. In LS and HS wines, guaiacol was the most abundant volatile phenol, albeit combined,
cresols were present at similar levels (Table 1); syringol, 4-methylguaiacol and 4-methylsyringol
concentrations were ≤5 µg/L (and phenol was not measured in wines). These results show good
agreement with compositional analyses of Cabernet Sauvignon grapes and/or wines reported in several
previous studies on smoke taint [5,20,26].

Several studies have shown that a significant pool of volatile phenol glycoconjugates remains
in wine after fermentation [5–7,17,19,20,27,28]. However, to date, the changes in glycoconjugate
concentrations during fermentation have not been extensively studied. In this study, the relative
abundance of volatile phenol glycoconjugates observed in control and smoke-exposed grapes at
maturity (Table 1 and Table S1) were not preserved during fermentation (Table 1 and Table S2).
The most abundant glycoconjugates, cresol, guaiacol and phenol pentose glucosides and syringol
glucose glucosides, were detected in control grapes at 73, 38, 35 and 23 µg/kg, and in HS grapes at 988,
803, 576 and 535 µg/kg, respectively (Table S1). In contrast, guaiacol pentose glucoside and syringol
glucose glucoside were present in control wines at 15 and 24 ug/L, while all other glycoconjugates were
≤6.3 µg/L (Table S2). Elevated levels of guaiacol pentose glucoside and syringol glucose glucoside
(234 and 413 µg/L) remained in HS wines after fermentation, but the most abundant glycoconjugates
of phenol and cresol were then rutinosides, at 59 and 102 µg/L, respectively (Table S2). The metabolic
fates of cresol and phenol pentose glucosides are unclear, given the low cresol and cresol glucoside
concentrations in HS wine do not support significant hydrolysis (unless cresols are further metabolized),
and phenol was not measured in any of the wines.

To date, Caffrey and colleagues have published the only other study that measures changes in
volatile phenol glycoconjugates during winemaking [17]. Of the 31 glycoconjugates measured (a mix
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of mono-, di- and trisaccharides), 20 decreased in concentration, five increased in concentration and
six were not significantly different in concentration, from juice after pressing to wine after bottling;
the largest changes in glycoconjugate concentrations were observed during the first half of primary
fermentation, when glycosidase activities of Saccharomyces yeast were highest. However, it is difficult
to make direct comparisons with the current study, given few glycoconjugates of guaiacol or syringol
were detected, and the scope of the project was limited to analysis of glycoconjugates (i.e., no volatile
phenol or sensory data were reported for finished wine) [17]. As smoke taint research has progressed
over the past ~15 years, the suite of volatile phenols used as smoke taint markers has evolved, with new
methods for direct and indirect measurement of free and bound volatile phenols being developed.
Differences in both the volatile phenols measured and the methods used to measure them (in free and/or
bound forms) complicate comparisons amongst the scientific literature on this topic. This is likely to
continue in the short–medium term, as analytical methods for smoke taint are refined, particularly if
new marker compounds and/or alternate storage forms of marker compounds are identified.

2.3. Influences of in-Canopy Misting and Smoke Density on the Degree of Smoke Taint in Grapes and Wine

As expected, few compositional differences were observed between control grapes with and
without in-canopy misting (i.e., “CM” and “C” grapes), irrespective of sampling time (Table 2,
Tables S1 and S3). While there were no significant differences in the volatile phenol concentrations of
smoke-exposed grapes with and without misting (i.e., “HSM” and “HS” grapes) at maturity (i.e., at t = 4,
Table 2), HSM grapes sampled 1 h after smoke exposure (i.e., at t = 1) comprised significantly lower
volatile phenol levels than HS grapes (Table S3). Furthermore, at t = 4, the concentrations of several
volatile phenol glycoconjugates were significantly lower in HSM grapes (than HS grapes), including
pentose glucosides of guaiacol, 4-methylguaiacol, phenol and syringol (Table S1). These findings
suggest in-canopy misting partially mitigated the uptake of volatile phenols by grapes during grapevine
smoke exposure.

Table 2. Concentrations of volatile phenols in juice (µg/L) from control and smoke-exposed grapes at
maturity (t = 4), and in corresponding wines (µg/L), with and without in-canopy misting; different
densities of smoke were achieved by burning different amounts of fuel.

Volatile Phenols C CM LS HS HSM P

juice

guaiacol 2.2 ± 0.1 b 2.4 ± 0.1 b 3.1 ± 0.1 b 10 ± 1.2 a 7.6 ± 1.9 a <0.001
4-methylguaiacol 3.6 ± 0.1 b 3.5 ± 0.1 b 3.6 ± 0.1 b 4.2 ± 0.1 a 4.0 ± 0.2 a 0.003

phenol 1.6 ± 0.3 b 1.9 ± 0.2 b 6.3 ± 0.9 b 21 ± 4.1 a 17 ± 2.9 a <0.001
cresols 2.4 ± 0.1 b 2.7 ± 0.1 b 5.0 ± 0.7 b 13 ± 2.1 a 12 ± 1.5 a <0.001

syringol 13 ± 0.6 12 ± 1.1 11 ± 0.7 12 ± 0.9 13 ± 0.7 ns
4-methylsyringol 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.9 ± 0.1 ns

wine

guaiacol 1.7 ± 1.0 b 1.0 ± 0.7 b 4.3 ± 0.1 b 29 ± 0.3 a 23 ± 4.9 a <0.001
4-methylguaiacol nd nd nd 4.0 ± 0.1 a 3.0 ± 0.6 b <0.001

o-cresol nd nd 2.7 ± 0.1 b 11 ± 0.3 a 11 ± 1.7 a <0.001
m-cresol nd nd 1.9 ± 0.1 b 10 ± 0.1 a 10 ± 1.9 a <0.001
p-cresol nd nd 1.3 ± 0.1 b 6.7 ± 0.3 a 5.0 ± 1.2 a <0.001
syringol 1.7 ± 1.0 b 2.0 ± 0.1 b 2.7 ± 0.1 b 4.7 ± 0.3 a 4.7 ± 0.7 a <0.001

4-methylsyringol nd nd nd nd nd –

C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure; HS = high density
smoke exposure; HSM = high density smoke exposure with misting. Values are means of three replicates (n = 3) ±
standard errors. Different letters (within rows) indicate statistical significance (P = 0.05, one-way ANOVA); ns =
not significant.

Excluding 4-methylsyringol, which was not detected in any of the wines, the concentrations of
volatile phenols were significantly higher in HS and HSM wines than in C and CM wines (Table 2).
However, the only significant difference observed amongst the volatile phenol levels of HS and HSM
wines was for 4-methylguaiacol, being 4 vs. 3 µg/L, respectively. With the exception of guaiacol glucose
glucoside, the concentrations of volatile phenol glycoconjugates were again found to be significantly
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lower in HSM wines compared to HS wines (Table S2). This provides further evidence that in-canopy
misting partially mitigated the uptake of volatile phenols during grapevine smoke exposure, but as
discussed below, did not affect the sensory perception of smoke taint in HSM wines.

The difference in smoke density achieved during LS and HS treatments significantly influenced
the compositions of grapes and wines. LS grape juice contained far lower levels of volatile phenols
than HS grape juice at t = 1, and in some cases at t = 2 and t = 3 also (Table 1), as well as lower volatile
phenol glycoconjugate levels, especially at t = 4 (Table 1 and Table S1). However, as indicated above,
only the phenol and cresol concentrations of LS grapes were significantly different from control grapes
at t = 1 (Table 1). One-way ANOVA confirmed significant (albeit relatively small) differences in the
glycoconjugate content of LS and C grapes (Table S1), specifically: guaiacol rutinoside (P = 0.015),
4-methylguaiacol rutinoside (P = 0.019), phenol pentose glucoside (P = 0.025), phenol rutinoside
(P = 0.009) and cresol rutinoside (P = 0.004). HS wines contained significantly higher levels of volatile
phenols and volatile phenol glycoconjugates than LS wines (Table 1 and Table S2), whereas the presence
of low levels of cresols (1–3 µg/L) in LS wines differentiated them from control wines (Table 2). One-way
ANOVA also confirmed the concentration of 13 of the 17 glycoconjugates reported in Table S2 were
significantly higher in LS wines than in control wines, including: guaiacol pentose glucoside (P = 0.047),
phenol rutinoside (P = 0.007), cresol rutinoside (P = 0.005), syringol glucose glucoside (P = 0.032) and
syringol pentose glucoside (P = 0.017). Collectively, these results provide compositional evidence of
low level smoke taint in LS wine, in agreement with sensory analysis results (Figure 2).

Molecules 2020, 25, x 8 of 17 

 

glucose glucoside, the concentrations of volatile phenol glycoconjugates were again found to be 
significantly lower in HSM wines compared to HS wines (Table S2). This provides further evidence 
that in-canopy misting partially mitigated the uptake of volatile phenols during grapevine smoke 
exposure, but as discussed below, did not affect the sensory perception of smoke taint in HSM wines. 

The difference in smoke density achieved during LS and HS treatments significantly influenced 
the compositions of grapes and wines. LS grape juice contained far lower levels of volatile phenols 
than HS grape juice at t = 1, and in some cases at t = 2 and t = 3 also (Table 1), as well as lower volatile 
phenol glycoconjugate levels, especially at t = 4 (Tables 1 and S1). However, as indicated above, only 
the phenol and cresol concentrations of LS grapes were significantly different from control grapes at 
t = 1 (Table 1). One-way ANOVA confirmed significant (albeit relatively small) differences in the 
glycoconjugate content of LS and C grapes (Table S1), specifically: guaiacol rutinoside (P = 0.015), 4-
methylguaiacol rutinoside (P = 0.019), phenol pentose glucoside (P = 0.025), phenol rutinoside (P = 
0.009) and cresol rutinoside (P = 0.004). HS wines contained significantly higher levels of volatile 
phenols and volatile phenol glycoconjugates than LS wines (Tables 1 and S2), whereas the presence 
of low levels of cresols (1–3 µg/L) in LS wines differentiated them from control wines (Table 2). One-
way ANOVA also confirmed the concentration of 13 of the 17 glycoconjugates reported in Table S2 
were significantly higher in LS wines than in control wines, including: guaiacol pentose glucoside (P 
= 0.047), phenol rutinoside (P = 0.007), cresol rutinoside (P = 0.005), syringol glucose glucoside (P = 
0.032) and syringol pentose glucoside (P = 0.017). Collectively, these results provide compositional 
evidence of low level smoke taint in LS wine, in agreement with sensory analysis results (Figure 2). 

 

Figure 2. Sensory profiles of control and smoke-affected wines; A = aroma; F = flavor; AT = aftertaste. 
C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure; HS = 
high density smoke exposure; HSM = high density smoke exposure with misting. Values are mean 
intensity ratings of one wine per treatment, presented to 50 judges; ratings for each attribute were 
statistically significant (P = 0.05, one-way ANOVA). 

The sensory profiles of wines made from control (C and CM) and LS grapes were quite similar 
and comprised the most intense fruit aromas and flavors, and least intense smoke-related attributes 

0
1
2
3
4
5
6
7
fruit A

smoke A

cold ash A

burnt rubber A

medicinal A

fruity F

smoky F

medicinal F

ashy AT

woody AT

metallic

drying

C CM LS HS HSM

Figure 2. Sensory profiles of control and smoke-affected wines; A = aroma; F = flavor; AT = aftertaste.
C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure;
HS = high density smoke exposure; HSM = high density smoke exposure with misting. Values are
mean intensity ratings of one wine per treatment, presented to 50 judges; ratings for each attribute
were statistically significant (P = 0.05, one-way ANOVA).

The sensory profiles of wines made from control (C and CM) and LS grapes were quite similar
and comprised the most intense fruit aromas and flavors, and least intense smoke-related attributes
(Figure 2). Few significant differences were perceived amongst these wines. The intensity of smoke
aroma in the LS wine was slightly higher than in the control wine (Figure 2, Table S4), and provided
the only sensory evidence of smoke taint, but was not significantly different from the CM wine and
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was considerably lower than for HS and HSM wines. The CM wine was also found to exhibit increased
hotness (Table S4), due to the higher alcohol content of this wine (Table S5). In contrast to C, CM and
LS wines, the sensory profiles of HS and HSM wines were dominated by smoke-related aromas and
flavors, an ashy aftertaste and drying finish, which significantly diminished fruit intensity (Figure 2,
Table S4); i.e., these wines were noticeably tainted by smoke, in agreement with wine volatile phenol
data (Table 2). The only significant sensory difference observed between HS and HSM wines was the
perception of hotness (Table S4), which was rated lower in HS wine compared to HSM wine, reflecting
the lower alcohol content of HS wine (Table S5). As such, despite appearing to partially mitigate the
uptake of smoke-derived volatile phenols by grapes, misting did not significantly influence the sensory
perception of smoke taint in wine. Further research is needed to determine whether or not optimization
of other factors, such as water droplet size and/or flow rate, might improve the efficacy of misting.

2.4. Concentration of Particulate Matter During Grapevine Exposure to Smoke

Particulate matter (PM) concentrations were measured during field trials to monitor smoke
emission and exposure (Figure 3), using two commercial sensors: one positioned amongst control
vines and one within the smoke tent. In the two days prior to field trials, PM1.0, PM2.5 and PM10

levels were ≤6.2, 13.6 and 89.7 µg/m3 respectively (data not shown). During field trials, PM levels
detected by sensors positioned amongst control vines were typically <100 µg/m3 (e.g., Figure 3a,b),
reflecting occasional, but minimal smoke drift. In contrast, elevated PM levels were detected by sensors
positioned inside the smoke tent, for the duration of smoke treatments (Figure 3c–f). PM levels increased
as soon as fuel was combusted to produce smoke, with PM10 > PM2.5 > PM1.0, in agreement with
particle size distributions previously reported for smoke from domestic wood fires [29]. As expected,
PM levels then decreased when smoke production stopped. The occasional PM signals (especially
PM10) that were observed either before or after smoke treatments (e.g., as seen in Figure 3b,e,f) can be
attributed to the movement of either smoke tents or sensors. During HS treatments (with or without
misting), PM2.5 and PM10 levels approximated 1000 and 2000–2500 µg/m3, respectively (Figure 3c–e),
but considerable signal variation was observed, which likely reflects a combination of the recurring
combustion of fuel, detector saturation and the algorithm behind data acquisition. Detector saturation
has been reported in previous smoke taint research [24], and in the current study, one of the sensors
stopped acquiring PM data when its detector became fouled during the second HSM treatment
(Figure 3e). Interestingly, the PM2.5 and PM10 levels detected during the LS treatment (Figure 3f) were
similar to those from the HS and HSM treatments (Figure 3c–e); the increased fluctuation observed in
the PM10 signal again reflects the recurring combustion of fuel (and smaller amounts of fuel compared
with that combusted during HS and HSM treatments). These results suggest the levels of PM generated
during LS treatments were still at (for PM2.5), or near (for PM10), the detector saturation levels, such that
the sensors did not differentiate low and high smoke treatments as readily as was expected given
the obvious visual differences in smoke density. The density of smoke applied to grapevines during
HS and HSM treatments was likely far higher than would occur in vineyards during most bushfires,
and where similar levels of smoke exposure do occur, the resulting taint should be easy to detect, either
by chemical or sensory analysis. In contrast, the density of smoke applied to LS grapevines was readily
detected by the environmental sensors, despite yielding wine in which the presence of smoke taint was
difficult to detect by chemical or sensory analysis. The sensors could therefore be used to monitor the
presence of smoke in vineyards during bushfires, and where vineyard exposure to smoke is detected,
the need for grape compositional analysis to determine the presence of volatile phenols (and/or their
glycoconjugates) as markers of smoke taint, based on both the duration and density of smoke exposure.

The environmental sensors also recorded temperature and relative humidity during the field
trials (data not shown). Temperatures within the smoke tents increased by ~10 ◦C (relative to ambient
temperature) during smoke treatments. Relative humidity differed more between the two days during
which field trials were undertaken (i.e., from ~25–30% to ~40–55%) than between treatments, with the
exception of the HSM treatment, during which the relative humidity in the smoke tent increased from
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25–30% to 40%, due to the in-canopy misting. However, the differences observed in microclimate
conditions were not expected to have significant or lasting effects on grapevine physiology, especially
relative to the known effects of smoke on grapevine physiology [5].
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Figure 3. Particulate matter (PM1.0, PM2.5 and PM10) concentrations measured during field trials. The x
axes reflect time, with shading indicating the 1 h window of each smoke treatment: (a–d) show PM data
recorded during the high density smoke exposure (HS) treatments, with sensors positioned amongst
the control vines and within the smoke tent, respectively (sensor positions were swapped between
the two duplicate HS treatments); (e,f) show PM data recorded during the duplicate high smoke with
misting (HSM) and low smoke (LS) treatments, respectively (with sensors again positioned within the
smoke tent).

3. Materials and Methods

3.1. Chemicals

Chemicals (analytical grade) were purchased from Sigma Aldrich (Castle Hill, NSW, Australia).
Solvents (HPLC grade) were sourced from Sigma Aldrich or Merck (Darmstadt, Germany).
Deuterium-labelled internal standards (d3-guaiacol, d4-guaiacol, d3-4-methylguaiacol, d7-o-cresol,
d3-syringol, d3-syringol gentiobioside) were synthesized in house, as previously reported [11,13,18,30].

3.2. Field Trials

Field trials involved the application of smoke (with or without in-canopy misting) to Cabernet
Sauvignon grapevines (Vitis vinifera) growing in two adjacent rows of a vineyard located at the
University of Adelaide’s Waite Campus in Urrbrae, South Australia (34◦58′ S, 138◦38′ E). Grapevines
were planted (in 1998) in north-south aligned rows on their own roots (at 2.0 and 3.3 m vine and
row spacings, respectively), trained to a bilateral cordon-vertical shoot positioned trellis system,
hand-pruned to a two-node spur system and drip-irrigated twice weekly from fruit set to pre-harvest.
Treatments comprised: (i) a control (C), i.e., no smoke exposure; (ii) a low smoke treatment (LS),
i.e., exposure to low density smoke; (iii) a high smoke treatment (HS), i.e., exposure to high density
smoke; (iv) a control with misting (CM), i.e., in-canopy misting but no smoke exposure; and (v) a high
smoke treatment with misting (HSM), i.e., exposure to high density smoke with in-canopy misting.

Smoke treatments involved grapevines being exposed to smoke for 1 h (at approximately 7 d
post-veraison), using purpose-built smoke tents (6.0 × 2.5 × 2.0 m) and experimental conditions similar
to those described previously [3–5]; except that barley straw was combusted in two commercial fire
box smokers, positioned at each end of the smoke tent. Low and high density smoke treatments
were achieved by burning approximately 1.5 and 5 kg of barley straw respectively, with fuel added
at regular intervals (i.e., every ~10 min) to ensure smoke production throughout the duration of
treatment. Control and smoke-exposed vines were separated by at least one buffer vine. In-canopy
misting treatments involved the continuous application of fine (65 µm) water droplets to the bunch
zone of six adjacent vines, using a purpose-built sprinkler system (comprising two CoolNet Pro “tee”
configuration sprinklers (Netafim Australia, Adelaide, SA, Australia) per vine, suspended 30 cm above
the cordon, each delivering water at a rate of 11 L/h) supplied with mains water pumped from a 1000 L
plastic tank, as described previously [22].
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Whereas smoke treatments were applied to panels of vines in triplicate in previous trials [5,6,16,27],
fire bans imposed by the state government (due to increased fire danger ratings associated with hot,
dry and/or windy weather conditions) limited the number of smoke treatments that could be applied
in the current study. Field trials were also constrained by where the in-canopy sprinkler systems were
installed. As such, each treatment was applied to six adjacent grapevines, as depicted in Figure 4.
LS, HS and HSM treatments comprised duplicate applications of smoke to three adjacent vines at a
time, with the in-canopy sprinkler system turned on 5 min before the first HSM treatment was applied,
and off 15 min after the second HSM treatment was completed, such that CM and HSM grapevines
were misted for approximately 2.5 h in total. Three vine replicates per treatment were subsequently
selected for berry sampling and winemaking (with vine replicates becoming wine replicates, for each
treatment). With the exception of CM, three adjacent vines were chosen as vine replicates; for LS,
HS and HSM, vine replicates were from the same smoke application. In the case of CM, the selection of
non-adjacent vine replicates accounted for missing sprinklers.

Molecules 2020, 25, x 12 of 17 

 

30 cm above the cordon, each delivering water at a rate of 11 L/h) supplied with mains water pumped 
from a 1000 L plastic tank, as described previously [22].  

Whereas smoke treatments were applied to panels of vines in triplicate in previous trials 
[5,6,16,27], fire bans imposed by the state government (due to increased fire danger ratings associated 
with hot, dry and/or windy weather conditions) limited the number of smoke treatments that could 
be applied in the current study. Field trials were also constrained by where the in-canopy sprinkler 
systems were installed. As such, each treatment was applied to six adjacent grapevines, as depicted 
in Figure 4. LS, HS and HSM treatments comprised duplicate applications of smoke to three adjacent 
vines at a time, with the in-canopy sprinkler system turned on 5 min before the first HSM treatment 
was applied, and off 15 min after the second HSM treatment was completed, such that CM and HSM 
grapevines were misted for approximately 2.5 h in total. Three vine replicates per treatment were 
subsequently selected for berry sampling and winemaking (with vine replicates becoming wine 
replicates, for each treatment). With the exception of CM, three adjacent vines were chosen as vine 
replicates; for LS, HS and HSM, vine replicates were from the same smoke application. In the case of 
CM, the selection of non-adjacent vine replicates accounted for missing sprinklers.  

 

Figure 4. Schematic diagram of treatments (C = control (no smoke exposure); CM = control with 
misting; LS = low density smoke exposure; HS = high density smoke exposure; HSM = high density 
smoke exposure with misting), showing the positioning of smoke tents, in-canopy sprinklers ( ), vine 
replicates (*) and buffer vines (×), within the two adjacent rows of Cabernet Sauvignon vines. 

Two portable environmental sensors (R9 series, Attentis Pty. Ltd., Cheltenham, Vic., Australia) 
were used to monitor temperature, relative humidity, and the concentration of particulate matter 
(PM1.0, PM2.5 and PM10) during field trials. One sensor was positioned inside the smoke tent during 
each smoke treatment, while the other sensor was positioned mid-row, amongst control (C and CM) 
vines. Environmental data were captured continuously (typically at 1–2 min intervals) and uploaded 
to the manufacturer’s network via an internal Wi-Fi connection. Data were subsequently exported 
from the network as Excel files. 

Samples (50 berries, from each of the three vine replicates per treatment, chosen randomly 
according to a previously published sampling protocol [31]) were collected at five time points: (i) 
immediately prior to smoke exposure (t = 0); (ii) 1 h after smoke exposure (t = 1); (iii) 1 day after smoke 
exposure, (t = 2); (iv) 7 days after smoke exposure, (t = 3); and (v) 4 weeks after smoke exposure (t = 
4) at maturity. Samples were homogenized (T18 Ultra Turrax, IKA, Staufen, Germany) and frozen at 
–4 °C until quantitation of volatile phenols and volatile phenol glycoconjugates (approximately 1 
month after sampling). The remaining control and smoke-exposed fruit were harvested (4 weeks after 
smoke exposure) for winemaking, with the vine replicates from each treatment becoming wine 
replicates. Grapes were intended to be harvested when TSS levels were approximately 24 °Brix, with 
maturity sampling performed on samples (50 berries) collected from buffer vines. However, analysis 
of juice following harvest and crushing of grapes indicated significant variation in maturity amongst 
vine replicates, with average TSS levels ranging from 19.6 to 22.3 °Brix (Table S6). Viticultural data 
were collected to evaluate variation in vine physiology and while significant differences were not 
observed for TSS, bunch number, yield, shoot number or pruning weight between treatments (Table 
S6), this was attributed to the large relative standard errors (i.e., 10–25.9%) associated with one or 
more treatments, for each measurement. Vine variation likely explains the different TSS levels 
observed amongst juice samples, and therefore the differences in wine alcohol content, which were 
perceived by the sensory panel (Figure 2, Table S4). Nevertheless, the differences in the intensity of 

Figure 4. Schematic diagram of treatments (C = control (no smoke exposure); CM = control with
misting; LS = low density smoke exposure; HS = high density smoke exposure; HSM = high density
smoke exposure with misting), showing the positioning of smoke tents, in-canopy sprinklers (

Molecules 2020, 25, x 12 of 17 

 

30 cm above the cordon, each delivering water at a rate of 11 L/h) supplied with mains water pumped 
from a 1000 L plastic tank, as described previously [22].  

Whereas smoke treatments were applied to panels of vines in triplicate in previous trials 
[5,6,16,27], fire bans imposed by the state government (due to increased fire danger ratings associated 
with hot, dry and/or windy weather conditions) limited the number of smoke treatments that could 
be applied in the current study. Field trials were also constrained by where the in-canopy sprinkler 
systems were installed. As such, each treatment was applied to six adjacent grapevines, as depicted 
in Figure 4. LS, HS and HSM treatments comprised duplicate applications of smoke to three adjacent 
vines at a time, with the in-canopy sprinkler system turned on 5 min before the first HSM treatment 
was applied, and off 15 min after the second HSM treatment was completed, such that CM and HSM 
grapevines were misted for approximately 2.5 h in total. Three vine replicates per treatment were 
subsequently selected for berry sampling and winemaking (with vine replicates becoming wine 
replicates, for each treatment). With the exception of CM, three adjacent vines were chosen as vine 
replicates; for LS, HS and HSM, vine replicates were from the same smoke application. In the case of 
CM, the selection of non-adjacent vine replicates accounted for missing sprinklers.  

 

Figure 4. Schematic diagram of treatments (C = control (no smoke exposure); CM = control with 
misting; LS = low density smoke exposure; HS = high density smoke exposure; HSM = high density 
smoke exposure with misting), showing the positioning of smoke tents, in-canopy sprinklers ( ), vine 
replicates (*) and buffer vines (×), within the two adjacent rows of Cabernet Sauvignon vines. 

Two portable environmental sensors (R9 series, Attentis Pty. Ltd., Cheltenham, Vic., Australia) 
were used to monitor temperature, relative humidity, and the concentration of particulate matter 
(PM1.0, PM2.5 and PM10) during field trials. One sensor was positioned inside the smoke tent during 
each smoke treatment, while the other sensor was positioned mid-row, amongst control (C and CM) 
vines. Environmental data were captured continuously (typically at 1–2 min intervals) and uploaded 
to the manufacturer’s network via an internal Wi-Fi connection. Data were subsequently exported 
from the network as Excel files. 

Samples (50 berries, from each of the three vine replicates per treatment, chosen randomly 
according to a previously published sampling protocol [31]) were collected at five time points: (i) 
immediately prior to smoke exposure (t = 0); (ii) 1 h after smoke exposure (t = 1); (iii) 1 day after smoke 
exposure, (t = 2); (iv) 7 days after smoke exposure, (t = 3); and (v) 4 weeks after smoke exposure (t = 
4) at maturity. Samples were homogenized (T18 Ultra Turrax, IKA, Staufen, Germany) and frozen at 
–4 °C until quantitation of volatile phenols and volatile phenol glycoconjugates (approximately 1 
month after sampling). The remaining control and smoke-exposed fruit were harvested (4 weeks after 
smoke exposure) for winemaking, with the vine replicates from each treatment becoming wine 
replicates. Grapes were intended to be harvested when TSS levels were approximately 24 °Brix, with 
maturity sampling performed on samples (50 berries) collected from buffer vines. However, analysis 
of juice following harvest and crushing of grapes indicated significant variation in maturity amongst 
vine replicates, with average TSS levels ranging from 19.6 to 22.3 °Brix (Table S6). Viticultural data 
were collected to evaluate variation in vine physiology and while significant differences were not 
observed for TSS, bunch number, yield, shoot number or pruning weight between treatments (Table 
S6), this was attributed to the large relative standard errors (i.e., 10–25.9%) associated with one or 
more treatments, for each measurement. Vine variation likely explains the different TSS levels 
observed amongst juice samples, and therefore the differences in wine alcohol content, which were 
perceived by the sensory panel (Figure 2, Table S4). Nevertheless, the differences in the intensity of 

),
vine replicates (*) and buffer vines (×), within the two adjacent rows of Cabernet Sauvignon vines.

Two portable environmental sensors (R9 series, Attentis Pty. Ltd., Cheltenham, Vic., Australia)
were used to monitor temperature, relative humidity, and the concentration of particulate matter
(PM1.0, PM2.5 and PM10) during field trials. One sensor was positioned inside the smoke tent during
each smoke treatment, while the other sensor was positioned mid-row, amongst control (C and CM)
vines. Environmental data were captured continuously (typically at 1–2 min intervals) and uploaded
to the manufacturer’s network via an internal Wi-Fi connection. Data were subsequently exported
from the network as Excel files.

Samples (50 berries, from each of the three vine replicates per treatment, chosen randomly
according to a previously published sampling protocol [31]) were collected at five time points:
(i) immediately prior to smoke exposure (t = 0); (ii) 1 h after smoke exposure (t = 1); (iii) 1 day after
smoke exposure, (t = 2); (iv) 7 days after smoke exposure, (t = 3); and (v) 4 weeks after smoke exposure
(t = 4) at maturity. Samples were homogenized (T18 Ultra Turrax, IKA, Staufen, Germany) and frozen
at –4 ◦C until quantitation of volatile phenols and volatile phenol glycoconjugates (approximately
1 month after sampling). The remaining control and smoke-exposed fruit were harvested (4 weeks
after smoke exposure) for winemaking, with the vine replicates from each treatment becoming wine
replicates. Grapes were intended to be harvested when TSS levels were approximately 24 ◦Brix,
with maturity sampling performed on samples (50 berries) collected from buffer vines. However,
analysis of juice following harvest and crushing of grapes indicated significant variation in maturity
amongst vine replicates, with average TSS levels ranging from 19.6 to 22.3 ◦Brix (Table S6). Viticultural
data were collected to evaluate variation in vine physiology and while significant differences were
not observed for TSS, bunch number, yield, shoot number or pruning weight between treatments
(Table S6), this was attributed to the large relative standard errors (i.e., 10–25.9%) associated with
one or more treatments, for each measurement. Vine variation likely explains the different TSS levels
observed amongst juice samples, and therefore the differences in wine alcohol content, which were
perceived by the sensory panel (Figure 2, Table S4). Nevertheless, the differences in the intensity of
hotness between wines were not considered to have significantly affected the panel’s perception of
smoke taint. Other significant differences in basic wine composition (i.e., titratable acidity (TA) and
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color; Table S5) did not significantly affect the panel’s rating of acidity (Table S4) or were addressed by
presenting wines to panelists monadically.

3.3. Preparation of Acid Hydrolysates

Juices from HS grape homogenate samples (two replicates from each time point) were subjected to
strong acid hydrolysis, using methodology similar to that reported by Noestheden and colleagues [15].
Briefly, aliquots of homogenate (10 g) were centrifuged for 30 min at 3500× g (Universal 320R centrifuge,
Andreas Hettich GmBH and Co. KG, Tuttlingen, Germany), and 2 mL of the resulting juice was purified
by solid phase extraction (using Strata X 33 µm polymeric reversed phase cartridges, 200 mg/3 mL;
Phenomenex, Lane Cove, NSW, Australia). Samples were eluted with 40% acetonitrile in water (2 mL),
dried (under nitrogen at 35 ◦C), reconstituted in 2 mL water and acidified to pH ~1 (via dropwise
addition of 1 M hydrochloric acid), before being heated at 100 ◦C for 4 h in 8 mL PTFE tubes (SPI Supplies,
West Chester, PA, USA). Hydrolysates were subsequently cooled to ambient temperature, pH adjusted
back to wine pH (i.e., pH 3.0–3.5, via dropwise addition of 1 M aqueous sodium hydroxide) and frozen
prior to chemical analysis.

3.4. Winemaking

Bunches (5 kg per replicate, per treatment, chosen randomly) were crushed and de-stemmed,
with the addition of 50 mg/L sulfur dioxide (added as an 8% solution of potassium metabisulphite).
Tartaric acid was added to adjust the pH of must to 3.5, prior to inoculation with 150 mg/L of PDM
yeast (Maurivin, AB Biotek, Sydney, NSW, Australia) and the addition of diammonium phosphate
(100 mg/L). Musts were fermented on skins at ambient temperature (25–27 ◦C), with the cap plunged
twice daily. When wines approached dryness (2 g/L residual sugar), they were pressed and held at
25 ◦C until completion of fermentation (i.e., until residual sugars approached 0 g/L), after which they
were racked from gross lees and cold stabilized (at 0 ◦C for 4 weeks). No wines underwent malolactic
fermentation. Wine pH and free SO2 were adjusted to 3.5 and 30 mg/L respectively, before bottling
(in 375 mL glass bottles, with screw cap closures). Bottles were stored at 15 ◦C for two months prior to
sensory analysis. Prior to bottling, wines were sampled for chemical analysis.

3.5. Chemical Analysis of Grapes, Wine and Acid Hydrolysates

Residual sugars were measured enzymatically (using a glucose/fructose enzymatic test kit from
Vintessential Laboratories Pty. Ltd., Dromana, Vic., Australia) using a Chemwell 2910 automated
analyzer (Awareness Technology Inc., Palm City, FL, USA). pH and titratable acidity (TA, expressed as
g/L tartaric acid) were measured using a Mettler Toledo T50 autotitrator coupled to a Mettler Toledo
InMotion Flex autosampler (Port Melbourne, Vic., Australia). Ethanol content (% alcohol by volume,
abv) was measured with an alcolyzer (Anton Paar, Graz, Austria). Wine color density, wine hue and
total phenolics were determined by the modified Somers color assay [32] using an Infinite® 200 PRO
spectrophotometer (Tecan, Männedorf, Switzerland).

3.5.1. Determination of Volatile Phenols

The concentrations of volatile phenols (guaiacol, 4-methylguaiacol, phenol, o-, m- and p-cresol,
syringol and 4-methylsyringol) were measured in grape juice and wine samples, using stable isotope
dilution analysis (SIDA) methods described previously [13,18,30], with the method developed for
analysis of wine also used for acid hydrolysates. These publications describe the preparation of
isotopically labelled standards (d4-guaiacol and d3-syringol for analysis of grape juice performed
at the University of Adelaide and d3-guaiacol, d3-4-methylguaiacol, d7-o-cresol and d3-syringol for
analysis of wine and acid hydrolysates, performed by the Australian Wine Research Institute’s (AWRI)
Commercial Services Laboratory, Adelaide, Australia), and method validation and instrumental
operating conditions. All measurements were performed using an Agilent 6890 gas chromatograph
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coupled to a 5973 mass spectrometer (Agilent Technologies, Forest Hill, Vic., Australia). The limit of
quantitation for volatile phenols was 1–2 µg/L.

3.5.2. Determination of Volatile Phenol Glycosides

The concentrations of volatile phenol glycosides were measured in grape (homogenate), wine and
acid hydrolysate samples, as syringol glucose glucoside (gentiobioside) equivalents, using liquid
chromatography-tandem mass spectrometry (HPLC–MS/MS) according to previously published SIDA
methods [11,13]; the method developed for analysis of wine was also used for acid hydrolysates.
Glycoconjugate analyses were performed on an Agilent 1200 high performance liquid chromatograph
(HPLC) equipped with a 1290 binary pump, coupled to an AB SCIEX Triple QuadTM 4500 tandem mass
spectrometer, with a Turbo VTM ion source (Framingham, MA, USA). Data acquisition and processing
were performed using Analyst software (version 1.7 AB SCIEX). The preparation of the isotopically
labelled internal standard (d3-syringol gentiobioside), method validation and instrumental operating
conditions were as previously reported [11,13]. The limit of quantitation for volatile phenol glycosides
was 1 µg/kg (as syringol glucose glucoside equivalents).

3.6. Sensory Analysis of Wine

The replicate wines from each treatment were assessed by a group of sensory experts from the
University of Adelaide (for evidence of faults or obvious differences between replicates), before replicates
were blended. The sensory profiles of wines (as one wine per treatment) were then determined using the
rate-all-that-apply (RATA) method [33] and a panel comprising staff and students from the University
of Adelaide and AWRI, and regular wine consumers (n = 50, 12 male and 38 female, aged between
20 and 74 years). Prior to wine evaluation, panelists completed a brief induction, during which
they were familiarized with both the RATA procedure and a list of attributes and their definitions
(Table S7), which were adapted from previous studies [5,26]. RATA assessments were conducted in
sensory booths at 22–23 ◦C under sodium lights, with wine aliquots (30 mL) presented monadically,
in a randomized order, in covered, 3-digit coded 215 mL stemmed International Organization for
Standardization wine glasses. Panelists rated the intensity of each sensory attribute using line scales
(where 0 = “not perceived”, 1 = “extremely low” and 9 = “extremely high”). Panelists rinsed thoroughly
with pectin solution (1 g/L) and rested for at least 1 min between samples, with water and plain crackers
provided as palate cleansers. Data were acquired with Red Jade software (Redwood Shores, CA, USA).

3.7. Data Analysis

Chemical data were analyzed by one and two-way analysis of variance (ANOVA) using GenStat
(19th Edition, VSN International Limited, Herts, UK). Sensory data were analyzed using SenPAQ
(version 5.01, Qi Statistics, Reading, UK) and XLSTAT (version 2018.1.1, Addinsoft, New York, NY,
USA). Mean comparisons were performed by Fisher’s least significant difference (LSD) multiple
comparison test at P < 0.05.

Supplementary Materials: The following are available online: Table S1: Concentrations (µg/kg) of volatile phenol
glycoconjugates in control and smoke-exposed grapes sampled from pre-smoke exposure (t = 0) to maturity (t = 4).
Table S2: Concentrations (µg/L) of volatile phenol glycoconjugates in wines made from control and smoke-exposed
grapes. Table S3: Concentrations (µg/L) of volatile phenols in juice from control and smoke-exposed grapes
sampled from pre-smoke exposure (t = 0) to maturity (t = 4). Table S4: Mean intensity ratings for sensory attributes
of control and smoke-affected wines. Table S5: Basic composition of control and smoke-affected wines. Table S6:
Viticultural measurements for control and smoke-affected grapevines. Table S7: Aroma and palate attributes used
in sensory analysis of wines.
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C.S. and K.W.; writing—review and editing, R.R., D.C., C.P., V.P., J.C., W.J., M.H. and J.T.; supervision, V.P., M.H.
and K.W.; funding acquisition, V.P., M.H. and K.W. All authors have read and agreed to the published version of
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Table S1. Concentrations (µg/kg) of volatile phenol glycoconjugates in control and smoke-exposed grapes sampled from pre-smoke exposure (t = 0) to maturity (t = 4). 

Treatment/ 

Timepoint 
GuG GuGG GuPG GuR 4MGuG 4MGuPG 4MGuR PhG PhGG PhPG PhR CrG CrGG CrPG CrR SyG SyGG SyPG MSyGG MSyPG 

C 

t = 0 nd nd 3.7 b nd nd tr tr nd nd 2.5 b tr nd tr 9.2 b 2.0 tr 2.7 tr tr nd 

t = 1 tr nd 5.0 b nd nd 1.2 b tr tr nd 3.0 b tr 1.1 tr 12 b 2.7 1.1 b 3.7 1.1 b 1.0 b nd 

t = 2 tr tr 7.3 b nd nd 1.7 b 1.3 b nd nd 3.7 b tr 1.0 tr 19 b 4.9 1.6 b 11 2.0 b 2.1 b nd 

t = 3 tr tr 11 b tr nd 2.3 b 2.2 b nd tr 6.3 b 1.3 b tr tr 23 b 7.0 1.5 b 24 3.9 b 3.3 b tr 

t = 4 1.8 1.9 38 a 2.2 a 1.8 10 a 10 a 1.6 1.0 35 a 7.3 a nd 3.0 73 a 6.3 4.8 a 23 16 a 10 a 2.8 

P – – <0.003 – – <0.001 <0.001 – – <0.001 <0.001 ns – <0.001 ns 0.003 ns 0.003 0.026 – 

CM 

t = 0 nd nd 3.1 b nd nd tr 1.0 b tr nd 2.6 b tr nd tr 8.7 d 2.1 tr 2.3 tr tr nd 

t = 1 nd nd 2.7 b nd nd tr tr nd nd 1.6 b tr nd tr 8.4 d 1.8 tr 2.5 tr tr nd 

t = 2 nd nd 3.7 b nd nd tr tr nd nd 3.5 b tr nd tr 12 c 2.3 tr 3.6 1.2 b tr nd 

t = 3 nd nd 3.7 b tr nd tr tr nd nd 3.9 b tr nd tr 14 b 2.4 tr 4.4 1.3 b tr nd 

t = 4 1.9 0.7 17 a 1.2 1.6 6.9 7.8 a 1.4 nd 20 a 4.4 nd 2.9 43 a 3.3 2.7 6.7 6.8 a 2.7 1.7 

P – – <0.001 – – – <0.001 – – <0.001 – – – <0.001 ns – ns <0.001 – – 

LS 

t = 0 nd nd 3.4 b nd nd tr tr tr nd 2.8 b tr nd tr 6.7 b 1.7 d tr 2.3 c tr tr nd 

t = 1 1.5 c nd 4.0 b nd nd 1.0 b 1.0 b tr nd 4.0 b 1.0 b 3.0 b nd 13 b 3.2 d 1.3 c 9.0 c 1.4 b 1.5 b nd 

t = 2 3.0 a tr 9.2 b nd nd 2.5 b 2.3 b 0.6 b tr 13 b 2.3 b 10 a tr 27 b 9.2 c 3.2 b 21 b 3.4 b 3.2 b tr 

t = 3 1.2 c tr 13 b 1.5 b nd 3.0 b 3.3 b 0.5 b tr 21 b 4.3 b 0.6 c tr 33 b 12.6 b 1.4 c 35 a 5.3 b 4.0 b tr 

t = 4 2.3 b 3.6 63 a 4.3 a 2.3 16 a 20 a 3.0 a 1.3 94 a 23 a nd 2.2 136 a 15.0 a 6.5 a 43 a 27 a 14.5 a 3.7 

P <0.001 – <0.001 <0.001 – <0.001 <0.001 ns – <0.001 <0.001 <0.001 – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – 

HS 

t = 0 nd nd 3.1 b nd nd tr tr tr nd 2.6 b tr nd tr 7.8 b 1.8 c tr 2.3 c tr tr nd 

t = 1 24 1.1 b 19 b 1.0 c nd 9.2 b 4.5 b 1.0 b tr 18 b 3.0 b 51 ab tr 36 b 11 c 23 b 44 c 3.6 b 11 b nd 

t = 2 35 5.7 b 115 b 2.7 c nd 36 b 15 b 2.6 b 2.4 b 55 b 9.8 b 70 a 1.0 b 137 b 56 b 43 ab 248 b 19 b 44 b 4.2 b 

t = 3 23 10 b 185 b 11 b nd 46 b 25 b 2.2 b 5.4 b 115 b 21 b 9.4 c 1.2 b 217 b 89 ab 22 b 455 a 49 b 62 b 7.1 b 

t = 4 20 45 a 803 a 25 a 8.4 171 a 118 a 14 a 20 a 576 a 135 a 27 bc 5.5 a 988 a 98 a 50 a 535 a 258 a 220 a 27 a 

P ns <0.001 <0.001 <0.001 – 0.002 <0.001 0.006 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.005 0.002 <0.001 <0.001 <0.001 

HSM 

t = 0 nd nd 3.4 c nd nd tr tr nd nd 2.5 d tr nd tr 9.6 c 2.3 c tr 2.3 d tr tr nd 

t = 1 9.0 b tr 7.5 c tr nd 4.5 c 2.3 d 1.6 c tr 8.7 cd 1.3 b 27 b tr 22 c 5.9 c 6.6 c 18 d 2.0 d 4.0 c tr 

t = 2 15 a 3.7 b 55 bc 1.9 c nd 18 b 9.6 c 1.2 c 1.3 b 38 c 6.8 b 43 a tr 96 bc 42 b 19 b 129 c 11 c 21 bc 2.4 b 

t = 3 15 a 6.2 b 87 b 8.1 b nd 22 b 16 b 4.3 b 2.7 b 86 b 17 b 8.5 bc tr 147 b 71 a 11 c 238 b 26 b 30 b 3.8 b 

t = 4 9.0 b 30 a 421 a 17 a 5.4 83 a 66 a 8.8 a 11 a 351 a 97 a 17 bc 4.2 673 a 69 a 32 a 325 a 136 a 115 a 16 a 

P <0.001 <0.001 <0.001 <0.001 – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

P1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.007 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

LSD1 7.2 16 307 5.0 2.4 68 27 6.5 6.6 173 34 6.6 1.2 303 20 14 172 80 62 5.9 

C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure; HS = high density smoke exposure; HSM = high density smoke exposure with misting. Values are 

means of three replicates (n = 3) measured as syringol glucose-glucoside equivalents; nd = not detected; tr = trace (i.e. 0.5–1 µg/kg). Different letters (within columns, by treatment) indicate statistical 

significance (P = 0.05, one way ANOVA) amongst time points, i.e.: immediately prior to smoke exposure (t = 0); 1 hour after smoke exposure (t = 1); 1 day after smoke exposure (t = 2); 7 days after 

smoke exposure (t = 3); and 4 weeks after smoke exposure (t = 4) being maturity; ns = not significant. Gu = guaiacol; Cr = cresol; Ph = phenol; Sy = syringol; 4MG = 4-methylguaiacol; MSy = 4-

methylsyringol; G = glucoside; GG = glucose-glucoside; PG = pentose-glucoside; R = rutinoside. 1 P and LSD values for one way ANOVA of data by treatment at maturity (t = 4). 
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Table S2. Concentrations (µg/L) of volatile phenol glycoconjugates in wines made from control and smoke-exposed grapes. 

Treatment GuG GuGG GuPG GuR 4MGuPG 4MGuR PhG PhGG PhPG PhR CrPG CrR SyG SyGG SyPG MSyGG MSyPG 

C tr tr 15 c 3.3 c 2.3 c 2.0 c 1.8 c tr 1.1 c 3.1 c 1.1 c 6.3 c tr 24 c 4.8 c tr tr 

CM nd tr 6.1 c 1.2 c 1.5 c tr 1.0 c nd tr 1.7 c tr 3.2 c tr 11 c 1.8 c tr tr 

LS 1.0 c tr 21 c 6.6 c 3.3 c 4.4 c 3.9 c tr 2.6 c 9.8 c 1.5 c 14 c 1.4 c 43 c 8.8 c 1.5 c tr 

HS 9.4 a 2.1 234 a 37 a 37 a 31 a 31 a 4.7 a 17 a 59 a 14 a 102 a 11 a 413 a 77 a 23 a 6.6 a 

HSM 6.2 b 1.6 126 b 28 b 19 b 21 b 21 b 3.0 b 10 b 43 b 10 b 78 b 7.4 b 272 b 47 b 12 b 4.1 b 

P <0.001 ns <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure ; HS = high density smoke exposure; HSM = high density smoke exposure with 

misting. Values are means of three replicates (n = 3) measured as syringol glucose-glucoside equivalents; nd = not detected; tr = trace (i.e. 0.5–1 µg/L). Different letters (within 

columns) indicate statistical significance (P = 0.05, one way ANOVA); ns = not significant. Gu = guaiacol; Cr = cresol; Ph = phenol; Sy = syringol; 4MG = 4-methylguaiacol; MSy 

= 4-methylsyringol; G = glucoside; GG = glucose-glucoside; PG = pentose-glucoside; R = rutinoside. 4-Methylguaicol glucoside (4MGuG), cresol glucoside (CrG) and cresol 

glucose glucoside (CrGG) were not detected in any wine. 
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Table S3. Concentrations (µg/L) of volatile phenols in juice from control and  

smoke-exposed grapes sampled from pre-smoke exposure (t = 0) to maturity (t = 4). 

Treatment/ 

Timepoint 
Guaiacol 

4-Methyl

Guaiacol
Phenol Cresols Syringol 

4-Methyl

Syringol

C 

t = 0 1.9 b 3.6 1.5 2.6 12 b 2.5 

t = 1 9.5 a 4.1 2.6 5.1 21 a 3.0 

t = 2 2.4 b 3.6 1.6 2.7 8.4 b 2.0 

t = 3 1.9 b 3.6 1.6 2.4 7.9 b 1.8 

t = 4 2.2 b 3.6 1.6 2.4 13 b 1.8 

P 0.033 ns ns ns 0.017 ns 

CM 

t = 0 1.7 b 3.5 1.5 b 3.2 8.6 2.0 

t = 1 2.6 a 3.5 1.5 b 2.8 8.0 1.9 

t = 2 1.9 b 3.5 3.4 a 2.8 21 1.9 

t = 3 1.9 b 3.5 1.8 b 2.8 8.8 1.8 

t = 4 2.4 a 3.5 1.9 b 2.7 12 1.8 

P <0.001 ns 0.006 ns ns ns 

LS 

t = 0 1.7 b 3.5 b 1.4 b 2.5 c 6.2 c 2.0 b 

t = 1 12 a 4.1 a 6.9 a 12 a 25 a 2.9 a 

t = 2 2.8 b 3.6 b 4.7 a 4.9 b 6.0 c 1.9 b 

t = 3 2.6 b 3.6 b 5.1 a 4.8 b 13 b 1.8 b 

t = 4 3.1 b 3.6 b 6.3 a 5.0 b 11 bc 1.8 b 

P <0.001 <0.001 0.001 <0.001 <0.001 <0.001 

HS 

t = 0 1.8 c 3.5 b 1.8 c 2.7 c 7.8 b 1.9 b 

t = 1 108 a 20 a 55 a 83 a 126 a 17 a 

t = 2 25 b 5.1 b 12 b 23 b 24 b 2.7 b 

t = 3 12 c 4.6 b 17 b 18 b 12 b 1.9 b 

t = 4 10 c 4.2 b 21 b 13 b 12 b 1.8 b 

P <0.001 <0.001 0.012 <0.001 <0.001 <0.001 

HSM 

t = 0 1.7 d 3.5 b 1.8 c 2.5 c 8.0 d 1.9 b 

t = 1 76 a 14 a 40 a 59 a 59 a 8.6 a 

t = 2 17 b 4.7 b 11 b 21 b 21 b 2.2 b 

t = 3 7.4 c 4.1 b 12 b 13 b 15 c 2.0 b 

t = 4 7.6 c 4.0 b 17 b 12 b 13 c 1.9 b 

P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

P1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

LSD1 12.1 2.8 11.4 12.2 19.9 2.5 

C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure; HS = high 

density smoke exposure; HSM = high density smoke exposure with misting. Values are means of three replicates 

(n = 3). Different letters (within columns, by treatment) indicate statistical significance (P = 0.05, one way 

ANOVA) amongst time points, i.e.: immediately prior to smoke exposure (t = 0); 1 hour after smoke exposure 

(t = 1); 1 day after smoke exposure (t = 2); 7 days after smoke exposure (t = 3); and 4 weeks after smoke exposure 

(t = 4) being maturity; ns = not significant. 1 P and LSD values for two way ANOVA of data by treatment and 

time. 
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Table S4. Mean intensity ratings for sensory attributes of control and smoke-affected wines. 

Attribute C CM LS HS HSM P 

fruit aroma 4.7 a 4.7 a 4.0 a 2.2 b 2.4 b <0.0001 

smoke aroma 1.8 c 2.1 bc 2.7 b 6.7 a 6.6 a <0.0001 

cold ash aroma 1.4 b 1.9 b 2.4 b 5.4 a 5.7 a <0.0001 

earthy aroma 2.6 2.5 2.9 3.1 2.9 ns 

medicinal aroma 2.4 b 2.3 b 2.5 b 4.2 a 4.0 a 0.0001 

burnt rubber aroma 1.3 b 1.2 b 1.4 b 4.0 a 3.7 a <0.0001 

fruit flavor 4.8 a 4.9 a 4.5 a 2.5 b 2.8 b <0.0001 

smoky flavor 1.7 b 1.9 b 2.2 b 6.3 a 6.1 a <0.0001 

medicinal flavor 1.8 b 1.6 b 1.7 b 3.6 a 3.8 a <0.0001 

ashy aftertaste 1.5 b 2.0 b 1.9 b 5.8 a 6.1 a <0.0001 

woody aftertaste 2.5 b 2.7 b 2.5 b 3.3 a 3.5 a 0.0025 

metallic 2.1 b 2.1 b 2.0 b 3.5 a 3.4 a 0.0003 

acidity 5.0 5.4 4.9 5.3 5.2 ns 

hotness 3.3 bc 4.2 a 3.7 b 3.1 c 3.7 b 0.0002 

bitterness 2.3 b 2.1 b 2.3 b 3.4 a 3.4 a 0.0004 

drying 4.5 b 4.4 b 4.2 b 5.5 a 5.6 a 0.0025 

C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure; HS = high 

density smoke exposure; HSM = high density smoke exposure with misting. Values are means for one wine per 

treatment presented to 50 judges. Different letters (within rows) indicate statistical significance (P = 0.05, one 

way ANOVA); ns = not significant.  
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Table S5. Basic composition of control and smoke-affected wines. 

Measurement C CM LS HS HSM P 

pH 3.7 3.7 3.7 3.6 3.6 ns 

TA (g/L) 6.6 b 7.1 a 7.1 a 6.4 b 7.0 a <0.001 

alcohol (% abv) 11.5 12.9 11.9 10.6 12.5 ns 

wine color density 6.7 bc 7.9 a 7.4 ab 6.5 c 8.2 a 0.005 

wine color hue 0.89 a 0.82 b 0.83 b 0.87 a 0.82 b 0.002 

total phenolics 137.7 137.0 137.2 138.1 141.0 ns 

C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure; HS = high 

density smoke exposure; HSM = high density smoke exposure with misting. Values are means of three wine 

replicates. Different letters (within rows) indicate statistical significance (P = 0.05, one way ANOVA); ns = not 

significant. 
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Table S6. Viticultural measurements for control and smoke-affected grapevines. 

Measurement C CM LS HS HSM P 

TSS (° Brix) 20.8 ± 1.7% 22.3 ± 3.7% 19.6 ± 17.1% 19.6 ± 1.6% 21.7 ± 1.2% ns 

bunch number 67.3 ± 18.2% 58.0 ± 8.8% 59.0 ± 14.5% 71.7 ± 12.9% 56.3 ± 6.8% ns 

yield (kg) 6.7 ± 22.8% 5.4 ± 14.5% 5.4 ± 9.1% 6.9 ± 20.4% 4.7 ± 4.0% ns 

shoot number 45.3 ± 9.9% 42.3 ± 21.6% 42.3 ± 5.2% 51.0 ± 14.5% 37.3 ± 6.3% ns 

pruning weight (kg) 2.6 ± 9.4% 2.7 ± 25.9% 1.9 ± 1.9% 2.1 ± 17.8% 1.6 ± 5.9% ns 

C = control (no smoke exposure); CM = control with misting; LS = low density smoke exposure; HS = high 

density smoke exposure; HSM = high density smoke exposure with misting. Values are means of three replicates 

± relative standard error. No statistical significance observed amongst treatments (P = 0.05, one way ANOVA); 

ns = not significant. 
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Table S7. Aroma and palate attributes used in sensory analysis of wines. 

Attributes Definition 

Aroma  

fruit intensity of the overall fruit aroma 

smoke perception of any type of smoke aroma, including smoked meat/bacon, toasty, charry, cigar-box, estery 

cold ash burnt aroma associate with ashes, including ashtray, tarry, campfire 

earthy any aroma associated with musty, dusty, wet-wood, barnyard, mushroom-like, dank, moldy, stagnant, stale 

medicinal aromatic characteristic of Band-Aids, disinfectant-like, including cleaning products, solvents, chemicals 

burnt rubber perception of burnt rubber-like aromas 

Palate  

fruit intensity of the overall fruit flavor 

smoky perception of smoke flavor, including bacon and smoked meat 

ashy aftertaste length of taste associated with residue of ashtray perceived in the mouth after expectorating, including coal ash, ashtray, tarry, acrid, campfire 

woody aftertaste length of taste associated with woody residue, includes wood, oak, pencil shavings 

metallic the ‘tinny’ flavor associated with metals 

acidity intensity of sour/acid taste 

hotness intensity of warmth/heat due to ethanol 

bitterness intensity of bitter taste, bitter aftertaste 

drying intensity of drying, puckering mouthfeel 
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Abstract 

When bushfires occur in proximity to vineyards, there is a risk that generated smoke will leave 

behind not only chemical traces of its presence in grapevines, but also the potential for the 

forthcoming wine to be characterised by an undesirable smoky, burnt and ashy sensory profile 

known as smoke taint. Smoke exposure in grapevines is determined via measuring volatile 

phenols (including guaiacol, 4-methylguaiacol, o-cresol and syringol) with gas 

chromatography mass spectrometry and their glycosylated equivalents with high-performance 

liquid chromatography tandem mass spectrometry. These methods are resource-intensive and 

require highly trained personnel to perform. A bottleneck has resulted from a big demand for 

smoke taint analysis and a small number of accredited laboratories offering the service. This 

pressure is intensified by the need for quick sample turnover to drive time-sensitive decisions 

made by growers and winemakers who are affected by vineyard smoke exposure, especially 

during the compressed period of vintage. The confluence of these factors urges the 

development of techniques to rapidly detect smoke exposure in grapes and wine.    

In this work, a diverse array of experimental, research and commercial wine samples 

(n=158) was analysed by fluorescence spectroscopy using the absorbance-transmittance 

excitation emission matrix (A-TEEM) technique. Extreme gradient boosting (XGB) algorithms 

and partial least squares (PLS) methods aimed to classify wine samples with low, medium and 

high risk of smoke exposure and predict concentrations of volatile phenols and 

glycoconjugates; however, limited success was achieved. Initial models built with 

experimental wines were promising, the XGB regression models predicting volatile phenols 

with R2 levels ranging from 0.78to 0.96. But in models built with commercial wines, 

performance was neither high nor reproducible. For example, in XGB and PLS regression 

models, the R2 coefficient ranged from <0.02 to 0.86, depending on how the same data were 

divided into calibration and validation sets. On a similar note, the XGB discriminant analysis 

methods classified samples as low, medium and high risk with 33%, 22% and 50% accuracy, 

respectively. While the technique was unsuccessful, these findings prompted a discussion of 

the key challenges associated with using spectral detection methods to predict levels of smoke 

exposure in grape and wine matrices. 
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1. Introduction  

Smoke taint refers to the presence of smoky, burnt, and medicinal aromas and flavours, 

and an ashy, drying aftertaste, that define wine made from grapes exposed to bushfire smoke 

(Kennison et al. 2007). Smoke taint analysis has become a year-round challenge for the global 

wine industry, due to prolonged droughts and increased temperatures associated attributed to 

climate change, and the consequent increases in the duration and intensity of fire seasons 

(Clarke et al. 2011; Dowdy 2018). To assess smoke taint, current practice involves measuring 

volatile phenols (e.g. guaiacol, 4-methylguaiacol, syringol, and o-cresol) by gas 

chromatography-mass spectrometry (GC-MS) (Hayasaka et al. 2010c), and their glycosylated 

equivalents by high-performance liquid chromatography-tandem mass spectrometry (HPLC-

MS/MS) (Dungey et al. 2011; Haysaka et al. 2013). The necessity of these specialised, 

expensive resources has conditioned industry for dependence on a small subset of fee-for-

service providers and increased demand for smoke taint analysis following fire events saw 

significant bottlenecks occur, resulting in lengthy delays in data becoming available to inform 

decision-making.  

The resolution of this bottleneck has been approached in different ways. In Szeto et al. 

2021, particulate matter sensors were used to monitor grapevine smoke exposure. This 

approach aims to reduce the number of samples submitted for analysis that are minimally 

affected by smoke exposure. In Noestheden et al. 2017, a method was developed to measure 

both volatile phenols and volatile phenol glycoconjugates via GC-MS. This aims to streamline 

data collection by eliminating the need to develop a separate analytical method for the 

glycoconjugates, which are conventionally measured with an HPLC-MS/MS. It also enables 

more commercial laboratories to offer the full suite of smoke taint diagnostics at a reduced 

cost. In Fudge et al. 2012, mid-infrared (MIR) spectroscopy with multivariate chemometrics 

was evaluated as a rapid method for classifying smoke-affected wine. By differentiating wines 

as ‘smoke-affected’ or ‘unaffected’, this type of approach aims to prioritise comprehensive 

quantitation of volatile phenols and glycoconjugates for smoke-affected samples only, thereby 

streamlining decisions regarding unaffected samples. As a complement to these ongoing 

approaches, herein we evaluate the ability of fluorescence spectroscopy to be used as a rapid 

screening tool to identify wines with low-, medium-, and high-risk of smoke taint, based on 

volatile phenol and glycoconjugate levels. This type of approach aims to build on work by 

Fudge et al. 2012 and reduce the incidence of minimally affected samples submitted for 

conventional smoke taint analysis. 
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Fluorescence spectroscopy involves the light-induced excitation of electrons and the 

subsequent detection of emitted light as the excited electrons of certain molecules return to the 

ground state. The ability to fluoresce and the wavelength at which it occurs are specific to 

conjugated compounds, and in wine, this includes phenolic acids, anthocyanins, stilbenes, and 

flavan-3-ols (Airado-Rodríguez et al. 2009). The excitation-emission matrix (EEM) generated 

is essentially a fingerprint of optically active components in a sample, and the exclusivity of 

this physical property limits background interference and improves sensitivity (Coelho et al. 

2015). Volatile phenols are less abundant than other naturally occurring phenolic compounds 

in wine, and their emission will have lower quantum yields than polyphenolic compounds with 

more extensive 𝜋- 𝜋 conjugation (e.g. anthocyanins). As a result, the impact of volatile phenols 

on the EEM fingerprint is expected to be minimal. To assess the feasibility of fluorescence 

spectroscopy to differentiate smoke-affected wine, chemometrics is required to extract the 

relevant information.  

In previous work that aimed to classify wines as ‘smoke-affected’ or ‘unaffected’, MIR 

spectral data was analysed by linear discriminant analysis (LDA) of scores from principal 

component analysis (PCA); however classification accuracy was hindered by varietal 

differences and oak treatment (Fudge et al. 2012), which seemingly impacted wine 

composition to a greater degree than fruit exposure to smoke. LDA aims to identify the linear 

combination of predictors that maximises between-group variance relative to the within-group 

variance of different groups (Kuhn and Johnson 2013). For LDA, the predictors must be 

independent and exceed the number of samples, the opposite of spectral data sets, which 

encapsulate a large range of wavelengths characterised by high degrees of collinearity. As 

demonstrated therein, one strategy is to reduce data dimensionality with PCA and perform 

LDA using the principal component scores (James et al. 2021); however, there are several 

limitations associated with this approach.  

PCA generates linear combinations of predictors in the absence of any information 

about the class structure, modeling objective, or scale of responses (Kuhn and Johnson 2013). 

Thus, it is unlikely that PCA scores will enable LDA to find the optimal discriminant function 

relevant to the desired classification—particularly when the variable of interest is neither 

isolated (via sample preparation or a targeted acquisition method) nor the primary source of 

variation between samples. In wine, some competing sources of variation include grape 

varietal, oak maturation, region of origin (terroir), production technique, and age. Another 

strategy to reduce data dimensionality is the use of partial least squares (PLS), which aims to 
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generate linear combinations of predictors that reduce data dimensionality with respect to a 

response (e.g. class membership, concentration) (Kuhn and Johnson 2013).    

LDA seeks to divide classes using linear decision boundaries, and its classification 

performance will be sub-optimal if the true nature of the decision boundary is non-linear (James 

et al. 2021). As an alternative, decision trees split the predictor space into non-overlapping 

regions based on a set of rules (Boehmke and Greenwell, 2020). The structure and performance 

of single decision trees are highly variable and as a result, it is common to use an ensemble 

method (e.g. boosting, bagging, random forests) that combines many simple trees into one 

predictive model with improved robustness and accuracy (James et al. 2021). In boosting, 

simple trees are sequentially grown, fitted to the residuals of the previous iteration, and added 

to the model, after which classification or regression can be conducted (Boehmke and 

Greenwell, 2020). In particular, extreme gradient boosting (XGB) has garnered attention across 

disciplines due to its speed, high accuracy, and improvements over other machine learning 

techniques, such as mitigating the risk of overfitting and enhancing model generalizability 

(Goodin et al. 2021; Ranaweera et al. 2021; Chen and Guestrin 2016).   

To resolve the bottleneck in smoke taint diagnostics, it would be of great benefit to 

develop a preliminary screening tool that identifies low- and high-risk samples, to streamline 

time-sensitive winemaking decisions. This would reserve extensive commercial analysis for 

medium-risk samples. We hypothesise that nonlinear regression models, coupled with a 

supervised data reduction technique, can be developed to predict volatile phenol and volatile 

phenol glycoconjugate concentrations in wine using fluorescence spectroscopy. We also 

explore the feasibility of using fluorescence data to classify wines made from grapes with low-

, medium-, and high-risk levels of smoke taint.  

 

2. Materials and Methods 

2.1 Chemicals  

Ethanol (LC-grade) and 37% hydrochloric acid (HCl, analytical grade) were sourced from 

Merck (Castle Hill, NSW, Australia) and water was purified through a Milli-Q purification 

system (Millipore, North Ryde, NSW, Australia).  
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2.2 Wine samples 

Wines (n=158) were collected, consisting of commercial wines (n=121, 1000 L+ scale), 

research wines (n=10, ~200 L scale), and experimental wines (n=27, ~5 L scale). Experimental 

wines were sourced from two trials focused on the mitigation of smoke taint. Both trials 

involved the application of straw-derived smoke to Cabernet Sauvignon grapevines for 1 hour 

under conditions described previously (Kennison et al. 2007). For the mitigation of smoke 

taint, Trial 1 evaluated the efficacy of post-harvest ozonation of grapes, whereas Trial 2 

evaluated in-canopy misting (Szeto et al. 2020; Modesti et al. 2021). These wines were 

produced at the University of Adelaide in a benchtop fermentation facility. Research wines 

were made from grapes exposed to smoke in the Adelaide Hills over the 2019/2020 bushfire 

season. These wines were produced at the University of Adelaide winery.  

Commercial wines were collected from several sources. The majority of commercial 

wine (n=102) was collected from several wineries located in growing regions impacted by the 

2019/2020 bushfire season around Australia (e.g. Adelaide Hills and Barossa Valley (SA), 

Hunter Valley (NSW), and Rutherglen (VIC)). These wines were submitted to the Australian 

Wine Research Institute Commercial Services laboratory for smoke taint analysis and were 

donated to this study. Another set of commercial wine (n=9) was sourced from wineries in the 

Okanagan Valley, British Columbia. These wines were collected from a study that compared 

the reproducibility of volatile phenol quantitation across several commercial and research 

laboratories (Favell et al. 2022). The third set of commercial wine (n=10) was collected from 

wineries in Port Macquarie, NSW.  

 

2.3 Sample preparation and A-TEEM data collection.  

Wine samples were prepared using methods similar to those outlined previously (Ranaweera 

et al. 2021). Briefly, wine samples (1 mL) were centrifuged in 1.5 mL micro-centrifuge tubes 

for 10 min. at 9300 × g. Samples were then diluted (150-fold) with 50% aqueous ethanol that 

had been adjusted to pH 2 with 1.0 M hydrochloric acid and vacuum-filtered through a 0.45 

µm PTFE filter (Rowe Scientific). Samples were sonicated for 10 min. and transferred to a 

Hellma high performance fluorescence cuvette (Hellma GmbH & Co. KG, Mullheim, 

Germany) for spectral analysis.  



Chapter 4 | Evaluating fluorescence spectroscopy 

104 

 

A-TEEM data were recorded for each sample using a Horiba Scientific Aqualog® 

spectrometer (version 4.2, Quark Photonics, Adelaide, SA, Australia) operating with Origin 

software (version 8.6, OriginLab Corporation, Massachusetts, USA). All wines were scanned 

in duplicate, with the exception of experimental wines, which were scanned in triplicate. After 

2 min. stirring, samples were analysed under medium gain with a 0.2 s integration time for 

excitation wavelengths from 240-750 nm (5 nm increments) and emission wavelengths from 

242-824 nm (4.66 nm increments). All EEMs were normalised according to the water Raman 

scattering unit factor and corrected for Rayleigh masking and inner filter effects (IFEs) prior 

to multivariate statistical analyses in Solo software (ver. 8.8.1, Eigenvector Research Inc., 

Manson, WA, USA). EEM data were transformed from a three-way to a two-way data set using 

the transform unfold multiway tool in Solo software prior to statistical analysis.   

 

2.4 Chemical analysis of wines.  

Volatile phenols were analysed in wines via stable isotope dilution analysis (SIDA) using gas 

chromatography-mass spectrometry (GC-MS), according to methods published previously 

(Pollnitz et al. 2004; Hayasaka et al. 2010). Volatile phenol glycoconjugates were analysed in 

wines via a SIDA-based high performance liquid chromatography-tandem mass spectrometry 

(HPLC-MS/MS) method, as outlined elsewhere (Dungey et al. 2011; Hayasaka et al. 2013). 

All research and commercial wines were analysed by the AWRI Commercial Services 

laboratory. For experimental wines, volatile phenols were analysed at the University of 

Adelaide and volatile phenol glycoconjugates were measured at the AWRI. In a recent study, 

volatile phenols in wine samples were analysed by several commercial laboratories conducting 

smoke taint analysis, and the results indicated a high level of consistency across labs for this 

method. Thus, the effect of institution on the levels of volatile phenols reported in the wines 

herein was considered negligible.   

 

2.5 Data analysis   

Samples were split into Subset A, Subset B, and Subset C (Figure 1) in order of increasing 

complexity, which refers to the diversity of variables that drive potential differences between 

the spectra of each sample. In Subset A, all wines were of the same varietal and made with 

identical winemaking techniques; thus, any differences between them reflected experimental 
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treatments or smoke exposure. On the contrary, Subset B and Subset C were considered more 

complex because they included wines of different varietals that were sourced from several 

regions. But most importantly, all wines in Subset B and Subset C were commercial wines 

made from grapes exposed to real bushfire smoke. Subset C was considered more complex 

than Subset B due to its inclusion of wines from outside of Australia. Collinearity between 

variables was explored within each subset, using Pearson’s correlation analysis. Regression 

models were developed to assess the feasibility of spectral data to predict the concentrations of 

key indicators of smoke taint in each subset.  

For Subset A wine, extreme gradient boosting regression (XGBR) models were used to 

predict volatile phenol concentrations. Boosting parameters including tree depth, learning rate, 

and the number of rounds, were optimised, whereas regularisation parameters (i.e. alpha, 

lambda, and gamma) were held constant. Boosting works by converting weak learners into 

strong ones by building them in succession, each one learning from the mistakes of the previous 

tree. Tree depth must match the complexity of the dataset because if trees are too deep or too 

shallow, it increases the risks of overfitting or underfitting, respectively. The number of rounds 

refers to the number of grow-and-boost cycles, and the learning rate dictates the speed at which 

the cycles occur.  

 

Figure 1. Partition of wine into subsets (in order of increased complexity) used to develop 

extreme gradient boosting regression (XBGR) and partial least squares regression (PLSR) 

models that assess the feasibility of fluorescence spectroscopy as a rapid tool to predict volatile 

phenol and glycoconjugate concentrations in wine 
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Raw spectra from Subset A wine were compressed with partial least squares (20 latent 

variables) and pre-processed with different combinations of decluttering methods, centring 

(class centroid, multiway, median, mean), and scaling (Poisson or Pareto) (Supplemental 

Table 1). Compression can be performed with principal component analysis or partial least 

squares, and this technique reduces data dimensionality to improve model robustness and 

computational efficiency. Mean centring provides each variable with an average value of zero 

to emphasise differences between samples rather than their similarities (van den Berg et al. 

2006). Scaling divides all values with a constant factor to grant each variable a more equitable 

chance of influencing the model, regardless of its absolute intensity (van den Berg et al. 2006). 

Decluttering methods such as general least squares weighting, external parameter 

orthogonalisation, or external mixture model filtering operate on the premise that samples with 

similar y-block data (e.g. concentration) should have similar spectra. Depending on the 

algorithm, clutter is either weighted to reduce its impact on the model (as in generalised least 

squares weighting) or removed from spectra (as in external parameter orthogonalisation and 

extended mixture model filtering), and the degree of decluttering must be balanced by the risk 

of removing variance related to the signal of interest (Eigenvector Research, 2021).  

The pre-processing strategies for each regression model were determined with a 

combined visual inspection and trial-and-error approach (Engel et al. 2013). The effects of pre-

processed spectra were first visualised alongside the raw spectra, and a pre-processing step was 

chosen if it appeared to improve the normality of signal distribution, reduce noise, or both. 

Once a strategy was chosen, calibration models were built and cross-validation was performed. 

The success of a strategy was evaluated with root mean square error values during the cross-

validation stage.  

Cross-validation of the XGBR model was performed with k-fold cross validation was 

performed using Venetian blinds (10 splits, blind thickness = 1). In k-fold cross-validation, the 

data are divided into k subsets, and the model is calibrated with k-1 subsets, after which it is 

validated with the subset not involved in model building. This process is reiterated until all 

subsets have been held out (Kuhn and Johnson 2013). Leave-one-out-cross-validation is a 

special case of k-fold cross-validation that operates by calibrating the model with all but a 

single sample and using the excluded sample as the validation set. Leave-one-out-cross-

validation runs until each sample has been excluded once, and it has been used in previous 

work (Fudge et al. 2012). However, we selected k-fold cross-validation over leave-one-out-

cross-validation because the former is more suitable to a dataset with over 50 samples 
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(Hawkins 2004). Moreover, both methods generate comparable assessments of model 

performance and k-fold cross-validation conducts the assessment with greater computational 

efficiency (Kuhn and Johnson 2013). 

Prediction accuracy of the XGBR model was assessed using a test set, comprised of 

one replicate of each experimental wine. These samples were held out from the calibration and 

cross-validation stages of modelling. Accuracy was evaluated with the root mean square error 

and the correlation coefficient values. These parameters, in addition to the bias of the model, 

were used to assess overfitting. Bias refers to the difference between true and predicted values. 

Over-fit models closely approximate the relationship between the predictors and the outcomes 

of the samples used to train them, and they are unable to generalise beyond these samples 

because their performance is unstable beyond the recognition pattern developed during model 

training (Kuhn and Johnson 2013). Over-fit models are characterised by poor prediction 

accuracy and very low bias. 

For Subset B wine, an extreme gradient boosting regression (XGBR) model was used 

to predict volatile phenol and glycoconjugate concentrations. This model was defined by a 

learning rate of 0.5, a maximum depth of 3, and 300 rounds. Raw spectra compressed with PLS 

(25 latent variables) and pre-processed with EMM filtering and mean centring. Model 

performance was assessed using k-fold cross validation with Venetian blinds (10 splits, blind 

thickness = 1) and evaluated with RMSE and R2 values at the cross-validation stage, rather 

than a single test set. The choice of a representative test set for the (Subset B) XGBR models 

was complicated by the contrasting diversity (from a regional and varietal perspective) and 

uniformity (from a volatile phenol/glycoconjugate perspective) that defined the samples. Many 

wines were defined by low concentrations of volatile phenols (0-10 µg/L) and low 

glycoconjugates (0-30 µg/kg) (Figure 2), and if split, it would not be reasonable to expect a 

model primarily trained with minimally affected wines to extrapolate to heavily smoke-affected 

wines. As a result, the Subset B model was evaluated with a resampling technique, k-fold cross-

validation.  
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Figure 2. Chord diagrams depicting the diversity of volatile phenol (“VP”) and glycoconjugate 

(“Glyc”) profiles that constitute the wines within each subset. The nodes correspond to volatile 

phenol and glycoconjugate concentrations categorised into low, medium (“Med”) and high 

ranges. The thickness of the bands in each diagram demonstrate the frequency of the pairings 

within each group of wine. 

 

  

  

 

Subset C wines were modelled together with some Subset A wine (i.e. Trial 2) and 

Subset B wine, comprising of 146 wines. For this group of wines, an XGBR model and a PLSR 

model were used to predict guaiacol concentrations. The XGBR model (eta = 0.1, max depth 

= 6, number of rounds = 300) was constructed with raw spectra compressed with PLS (5 latent 

variables) and pre-processed with mean centring and Pareto scaling. The PLSR model was built 

as a conventional linear comparison, with 5 latent variables. The tuning parameters and pre-

processing steps for the XGBR and PLSR models were held constant across the various 

iterations of each model. These models were built to evaluate the performance of XGBR 

relative to PLSR and the effect of different data splits and cross-validation strategies on critical 

indicators of model performance. Models were limited to guaiacol to prioritise the depth of our 

assessment over its breadth.     

Range Total volatile 

phenols (µg/L) 

Total volatile phenol 

glycoconjugates (µg/kg) 

Low <10 <30 

Medium 10-30 30-100 

High >30 >100 
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  To assess how much model performance depended on how data were split, three splits 

were examined. In the first way, the data were not split into calibration and validation sets and 

all samples were included in model calibration and evaluated with k-fold cross-validation. 

These models were evaluated with the RMSE and R2 values from the cross-validations stage. 

In the second way, samples were manually split into 232 calibration and 60 validation samples, 

and in the third way, samples were manually split into 228 calibration and 64 validation 

samples. These models were evaluated with the RMSE and R2 values of the test set. 

 

Figure 3. Chord diagrams depicting the diversity of volatile phenol and glycoconjugate profiles 

that constitute the validation wines used to assess the performance of (Subset C) XGBR and 

PLSR models. The nodes correspond to volatile phenol and glycoconjugate concentrations 

categorised into low, medium (“Med”) and high ranges. The thickness of the bands in each 

diagram demonstrate the frequency of the pairings within each validation set. 

  

 

 

 

 

Volatile phenol and glycoconjugate profiles (Figure 2) were used as the central metrics to 

decide which samples were included in each test set. The first test set was built to mirror the 

composition of the calibration set. This first set was defined by an equal distribution of samples 

across volatile phenol and glycoconjugate concentration ranges, and constituted of 8, 12, and 

10 wines with high, medium, and low volatile phenol concentrations, respectively (Figure 3). 

 

Range 
Total volatile 

phenols (µg/L) 

Total volatile phenol 

glycoconjugates (µg/kg) 

Low 0-10 0-30 

Medium 10-30 30-100 

High 30+ 100+ 
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The second test set was defined by wines with high volatile phenols and glycoconjugates, 

including 18, 8, and 6 wines with high, medium, and low volatile phenol concentrations, 

respectively. 

An extreme gradient boosting discriminant analysis (XGBDA) model was also built to 

predict the classification of wines into low-, medium-, and high-risk groups based on ranges 

established previously (Scrimgeour et al. 2021). Wine samples were categorised based on total 

volatile phenol glycoconjugate concentrations, in which the range of <30 µg/L was low-risk, 

30-100 µg/L was medium-risk, and >100 µg/L was high-risk. The XGBDA model was defined 

by a learning rate of 0.1, 500 rounds, and a tree depth of 3. Raw spectral data were compressed 

with PLS (5 latent variables) and pre-processed with mean centring and Pareto scaling. The 

XGBDA model was built and evaluated by dividing data into the same 228 calibration and 64 

validation split (as above). This split led to 76, 70, and 82 samples classified as low-, medium-

, and high-risk, respectively in the calibration set and 14 (low-risk), 18 (medium-risk), and 32 

(high-risk) samples in the validation set.     

 

3. Results 

Regression models were built to assess the feasibility of fluorescence spectroscopy as a tool to 

predict volatile phenol and glycoconjugate concentrations in a diverse array of experimental, 

research, and commercial wines. Subset A comprised the experimental wines, all of which were 

Cabernet Sauvignon wines that differed primarily as a function of grapevine smoke exposure. 

Subset A wines were characterised by samples with either high total volatile phenols and high 

total glycoconjugates or with low total volatile phenols and low total glycoconjugates (Figure 

2). Thus, it was not surprising that volatile phenol and glycoconjugate concentrations in Subset 

A wines demonstrated high collinearity. The 25th percentile of Pearson correlation scores was 

0.85, indicating that only 25% of correlations fell below this score. This represents a strong 

positive relationship between variables. The correlation plot in Figure 4 demonstrates that 

compounds were highly correlated within and between volatile phenols and glycoconjugates. 

The only exception to this trend was 4-methylsyringol, which did not correlate well with any 

other compounds due to its trace levels (<1 µg/L) across wines, even in those wines made from 

heavily smoke-affected grapes.  
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Figure 4. Collinearity between volatile phenols and glycoconjugates in (a) Subset A, (b) Subset 

B, and (c) Subset C wine, as demonstrated by correlation diagrams and Pearson’s coefficient 

values. Pearson’s correlation coefficient values were computed with volatile phenol and 

glycoconjugate concentrations in Subset A (n=27), Subset B (n=102) and Subset C wines 

(n=29). Data are presented as percentiles, in which the nth percentile corresponds to the value 

at which n percent of values are below it. 

 

 

 

 

 

Subset B comprised the commercial wines from Australia, and they were more diverse 

than the Subset A wines with respect to wine varietal and region, as well as their levels of 

smoke taint. Subset B wines had volatile phenol and glycoconjugate profiles that tended to be 

skewed toward the low to middle ranges (Figure 2). A large share of the Subset B wine (n=52 

out of 102) was characterised by low total volatile phenols (0-10 µg/L), half of which were 

further defined by low total volatile phenol glycoconjugates (0-30 µg/kg). Volatile phenol and 

glycoconjugate concentrations in Subset B wines did not show as much collinearity as observed 

in those in Subset A wines. In Subset B, the 75th percentile of Pearson correlation scores was 

0.61, indicating that the vast majority of scores fell below r=0.61, a moderate positive 

relationship between variables. This can be attributed to the poor correlations between volatile 

phenols and glycoconjugates (Figure 4). The highest correlation between a volatile phenol and 

glycoconjugate was r=0.50 (guaiacol and guaiacol rutinoside), but the average coefficient was 

0.22 ± 0.02 (SEM).  

Subset 25th Percentile 50th Percentile 75th Percentile 100th Percentile 

A 0.85 0.90 0.93 0.99 

B 0.18 0.37 0.61 0.88 

C 0.11 0.24 0.62 0.94 

(b) (c) (a) 
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Subset C comprised the commercial and research wines, and they were characterised 

by medium (10-30 µg/L) and high (>30 µg/L) volatile phenol concentrations (Figure 2). 

Volatile phenol and glycoconjugate concentrations in Subset C wines demonstrated high 

collinearity among volatile phenols, with the exception of syringol and 4-methylsyringol, 

which did not correlate well with any other compounds. The glycoconjugates also 

demonstrated high collinearity, with the exception of MSyGB, which correlated well with 

volatile phenols rather than other glycoconjugates. The highest coefficients achieved between 

volatile phenols and glycoconjugates ranged from r=0.57 to r=0.81), which corresponded to 

MSyGB and guaiacol, 4-methylguaiacol, o-cresol, m-cresol, and p-cresol.   

The Subset A and Subset B XGBR models were built to explore the feasibility of 

fluorescence spectroscopy as a tool to predict volatile phenol and volatile phenol 

glycoconjugate concentrations in increasingly complex wine matrices. As a preliminary step, 

the excitation-emission matrices of Subset A wine were averaged as a function of smoke 

exposure and plotted. As expected, minimal differences were observed in the fluorescence 

spectra (Figure 5), and the primary activity, at 280 nm (excitation) and 315 nm (emission) can 

be attributed to flavan-3-ols such as catechin and epicatechin (Airado-Rodríguez et al. 2009; 

Ranaweera et al. 2021). This justifies the need for multivariate analysis to extract the data from 

the spectra relevant to smoke-derived volatile phenols and glycoconjugates.  

 

Figure 5 Averaged excitation-emission matrix (EEM) fingerprints corresponding to experimental 

wines affected (a) and unaffected (b) by smoke exposure. The axes correspond to excitation (x-axis) 

and emission (y-axis) wavelengths (nm).    
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The Subset A XGBR models were built to predict volatile phenol concentrations in 

experimental wines, and they were assessed by the RMSE and R2 generated from an 

independent test set. The calibration and cross-validation stages demonstrated promising 

results, with high R2 values, low RMSE, and low model bias (Table 1). At the prediction stage, 

R2 values demonstrated a slight decrease from nearly R2=1 to R2 = 0.86, but order-of-

magnitude increases were observed in RMSE and bias values.  

A similar pattern was observed with the Subset B XGBR model, which was built to 

predict volatile phenols and glycoconjugates in a set of commercial wines. The Subset B XGBR 

model was assessed by the R2 and RMSE values generated from k-fold cross-validation. At the 

calibration stage, R2 =1, which indicates a perfect correlation between the spectral data and 

chemical concentrations. The RMSE values ranged from 5.8E-4 to 9.6E-4 and the model bias 

was even lower, in the range of 10-6 to 10-8. At the cross-validation stage, correlation 

coefficients remained high, ranging from R2 = 0.9634 to R2 = 0.9997, yet the RMSE and model 

bias also demonstrated order-of-magnitude increases (Table 2). 

Table 1. Results of extreme gradient boosting regression (XGBR) models built to predict 

volatile phenol concentrations in Subset A wines1. Model performance measures included R2 

(coefficient of correlation), RMSE (root mean square error), and bias (difference between 

actual and observed values) at the calibration (Cal), cross-validation (CV) and prediction (P) 

stages of development. Refer to Supplementary Table 1 for pre-processing options and 

XGBR tuning parameters used for each model. 

 

 R2 RMSE Bias 

Compound Cal CV P Cal CV P Cal CV P 

guaiacol 1 1 0.78 1.8E-4 2.2E-4 6.24 -1.6E-7 1.7E-5 0.81 

4-methylguaiacol 1 0.92 0.94 1.9E-7 5.8E-1 0.54 8.1E-8 2.9E-2 0.22 

o-cresol 1 1 0.87 4.4E-3 4.3E-2 1.57 -4.1E-7 4.8E-3 -0.45 

p-cresol 1 1 0.88 1.6E-4 2.0E-4 1.03 -2.3E-7 -1.3E-5 0.70 

m-cresol 1 1 0.96 1.8E-4 2.8E-4 0.98 -4.0E-7 -8.3E-5 0.13 

syringol 1 0.93 0.86 1.4E-3 5.0E-1 0.69 7.7E-8 6.9E-2 -0.34 
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Table 2. Results of an extreme gradient boosting regression (XGBR) model1 built to predict 

volatile phenols and glycoconjugate concentrations in Subset B wines2. Model performance 

measures included R2 (coefficient of correlation), RMSE (root mean square error), and bias 

(difference between actual and observed values) at the model calibration (Cal) and cross-

validation (CV) stages of development.  

  

 

 

 

 

 

 

 

 

 

 

The Subset C XGBR and PLSR models were built to predict guaiacol concentrations 

across a diverse set of commercial, experimental, and research wines. These models were first 

evaluated using k-fold cross-validation and no data spilt, after which they were evaluated with 

independent test sets derived from different data splits (Table 3). When the models were 

evaluated with k-fold cross-validation, the XGBR model (R2=0.95) performed better than the 

PLSR model (R2=0.84) with respect to R2 values, but RMSE was 3.79 for both models. When 

the models were evaluated with independent test sets, the predictive accuracy of the XGBR 

and PLSR models depended on how the data were split.  

 

 

 

 R2 RMSE Bias 

Compound Cal CV Cal CV Cal CV 

guaiacol 1 0.996 7.2E-4 0.68 -1.2E-7 -0.15 

4-methylguaiacol 1 0.998 5.9E-4 0.12 -3.5E-7 -0.02 

o-cresol 1 0.990 6.1E-4 0.11 1.5E-7 -0.02 

p-cresol 1 0.963 6.3E-4 0.33 -1.9E-8 -0.11 

m-cresol 1 0.991 6.2E-4 0.15 -6.4E-8 -0.04 

syringol 1 0.993 9.6E-4 1.95 -1.3E-6 0.18 

4-methylsyringol 1 1.000 6.2E-4 0.15 6.1E-8 0.01 

CrR 1 0.980 5.8E-4 1.48 1.3E-8 -0.42 

GuR 1 0.989 7.0E-4 1.27 -2.9E-8 -0.34 

MGuR 1 0.983 6.9E-4 1.55 -3.1E-7 -0.46 

MSyGB 1 0.996 7.0E-4 0.78 -3.6E-7 -0.16 

PhR 1 0.991 6.6E-4 0.86 -1.6E-7 -0.23 

SyGB 1 0.9848 6.84E-4 9.03 5.4E-8 -0.75 
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Using the first data split, the XGBR model demonstrated higher R2 values and lower 

RMSE values than the PLSR model during the calibration and cross-validation stages. 

However, these promising results were negated by the prediction stage, at which both models 

deteriorated, with R2 values <0.1 and high RMSE values of 16.07 and 18.43 for XGBR and 

PLSR, respectively. Using the second data split, high, comparable R2 of prediction values were 

achieved for both models, with XGBR at R2 = 0.86 and PLSR at R2 = 0.85. RMSE of prediction 

values were at 4.84 and 5.42 for XGBR and PLSR, respectively. These values were 

significantly different to those observed with the previous (232/60) split. 

 

Table 3. Comparison of results from extreme gradient boosting regression (XGBR) and partial 

least squares regression (PLSR) models for predicting guaiacol concentration in a diverse array 

of wines (n=146), using different data splits (Split 0 = no split, Split 1 = 232 calibration/60 

validation, Split 2 = 228 calibration/64 validation). The wines included in each model were 

derived from Subset C (n=29), Subset B (n=102) and Subset A (n=15). Model performance 

measures include R2 (coefficient of correlation), RMSE (root mean square error), and bias 

(difference between actual and observed values) at the model calibration (Cal), cross-validation 

(CV), and prediction (P) stages of development. All models were compressed with PLS (5 

latent variables) and pre-processed with mean centring and Pareto scaling.  

 

 

 

 

 

 

 

 

 

 

  R2 RMSE Bias 

Split Type Cal CV P Cal CV P Cal CV P 

0 XGBR 1 0.95 - 0.017 3.79 - 2.5E-5 -0.06 - 

1 XGBR  1 0.84 1.2E-7 0.009 7.65 16.07 -4.1E-6 -0.42 3.05 

2 XGBR 1 0.98 0.86 0.002 2.17 4.84 1.7E-6 0.01 1.78 

0 PLSR 0.87 0.84 - 5.10 3.79 - -5.3E-15 0.15 - 

1 PLSR  0.66 0.55 0.02 11.09 12.91 18.43 0.00 0.04 3.45 

2 PLSR 0.89 0.87 0.85 4.87 5.39 5.42 3.6E-15 0.06 0.31 
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Table 4. Confusion matrices for Subset C XGBDA model built to predict whether a wine has 

high, medium, or low risk of smoke taint, based on total glycoconjugate concentrations, using 

the prediction rule=most probable. Low <30 µg/L, medium = 30-100 µg/L, and high = >100 

µg/L of total glycoconjugates, evaluated at the (a) cross-validation and (b) prediction stages.  

 

 

The Subset C XGBDA model was built to predict the classification of wines into high-

, medium-, or low-risk groups, based on their total volatile phenol glycoconjugate 

concentrations. The XGBDA model was evaluated using an independent test set, with the data 

split into 228 calibration and 64 validation samples. Like previous regression models, the 

results at the cross-validation stage were promising, as shown by high classification accuracy, 

which ranged from 85% to 91% across classes (Table 4). At the cross-validation stage of the 

Subset C XGBDA model, both false negatives and false positives were present, but the rate of 

the former was higher than the latter. False negatives were identified for 9-15% of samples, 

whereas false positives were identified for 6-8% (Supplemental Table 2). Weaknesses in the 

model evident at the cross-validation stage were exacerbated when the model was evaluated 

with the test set, in which classification accuracy fell to 50% (high-risk), 22% (medium-risk), 

or 33% (low-risk) (Table 4). Overlap was anticipated between neighbouring classes, as 

reflected by 67% of medium-risk samples being misclassified as high-risk and 25% of high-

risk samples being misclassified as medium-risk. However, there were also high-risk wines 

that were misclassified as low-risk wines and vice versa.  

 

4. Discussion  

Non-linear regression models were developed to predict volatile phenols and glycoconjugates 

in wine using fluorescence spectroscopy and classify wines made from grapes with high, 

medium, and low levels of smoke exposure. For regression, the preliminary Subset A and 

Subset B XGBR models showed encouraging results, in contrast to the final Subset C XGBR 

 Predicted   

Actual High Medium Low Total Correct 

High 75 2 5 82 91% 

Medium 3 58 7 68 85% 

Low 5 3 66 74 89% 

 Predicted   

Actual High Medium Low Total Correct 

High 12 6 6 24 50% 

Medium 12 4 2 18 22% 

Low 6 2 4 12 33% 

(b)  Prediction stage (a) Cross-validation stage 
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model, the performance of which depended strongly on how it was evaluated. For 

classification, the Subset C XGBDA model demonstrated promising results at the cross-

validation stage, but performance declined when evaluated with an independent test set. These 

results highlight the challenges associated with extracting variation in the spectral data relevant 

to smoke exposure and balancing the trade-offs between model accuracy and generalizability.    

Different levels of collinearity were observed in each subset of wine, with Subset A 

demonstrating the highest levels (Figure 4). Volatile phenols and glycoconjugates were present 

in Subset A wine in an ‘all-or-nothing’ fashion due to the experimental conditions used to 

produce them. The Cabernet Sauvignon grapes used to make the Subset A wines were sourced 

from neighbouring vines, defined by a low natural abundance of volatile phenols and 

glycoconjugates, and exposed to an intense, hour-long dose of smoke from a consistent fuel 

source at ~7 days post-véraison (Modesti et al. 2021; Szeto et al. 2020). Subsequent wines 

were then bottled without any oak maturation.  

On the other hand, the grapes used to make Subset B and Subset C wine were sourced 

from different vineyards, comprising unknown natural levels of volatile phenols and 

glycoconjugates (prior to smoke exposure), and exposed to unknown levels of bushfire smoke 

(as a function of smoke density and duration of exposure). Moreover, red wine from Subset B 

and Subset C may have received oak treatment during fermentation or aging; however, 

maturation details were not specified. Previous work has also shown that aside from grapevine 

smoke exposure, some volatile phenols can also be present in grapes as natural metabolites (at 

different levels depending on variety) and in wines following extraction from oak barrels 

during aging (Pollnitz et al. 2004; Ristic et al. 2015).  

The exact mechanisms underpinning the formation of volatile phenols in grapevines are 

not known, but the current hypothesis is that they are produced as artefacts of the shikimic acid 

pathway (Dunlevy et al. 2009; as described in Noestheden et al. 2018). When volatile phenols 

accumulate in grapes and wine under these circumstances (independent of smoke exposure), 

the biochemical drive to glycosylate them may be reduced, relative to when grapevines are 

imbued with volatile phenols during high levels of dense smoke exposure. It is well established 

that when plants are exposed to an abiotic stress, glycosylation is stimulated as a detoxification 

response (Dudavera et al. 2004); albeit only a few studies have examined the specific effects 

of smoke exposure on grapevines at the transcriptomic (van der Hulst 2018) and physiological 

levels (Bell et al. 2013; Ristic et al. 2016). The experimental conditions used to produce the 



Chapter 4 | Evaluating fluorescence spectroscopy 

118 

 

smoke-affected Subset A wine might have limited the confounding sources of volatile phenols 

and better preserved the link between smoke-derived volatile phenols and the glycosylation 

response connected with it, whereas in Subset B and Subset C wine, this relationship may have 

been influenced by other confounding sources of volatile phenols. 

The higher levels of collinearity between volatile phenols and glycoconjugates in 

Subset A wine may also have been influenced by the timing, high density, and acute nature of 

smoke exposure that characterised experimental conditions. If grapevines are exposed to smoke 

towards maturity and immediately processed, there may not be sufficient time for the 

accumulation of glycoconjugates, which can take 2 weeks or longer prior to stabilisation (van 

der Hulst et al. 2019; Szeto et al. 2020). Further examination of the temporal dependence of 

key smoke taint markers is required to optimise the timing of diagnostic assessments relative 

to vineyard smoke exposure.   

The results from the Subset A XGBR models demonstrated the potential for 

fluorescence spectroscopy to be used to predict volatile phenol concentrations with some 

accuracy (Table 1); however, the high degree of similarity between the training set used to 

build the model and the test set used to validate it, suggest that the results may be 

overoptimistic. Subset A comprised 9 Cabernet Sauvignon wines sourced from grapes in the 

same vineyard row, fermented (in triplicate) under minimalistic conditions (i.e. no oak or 

malolactic fermentation), and scanned in triplicate. The ensuing Subset A XGBR models were 

built with 81 EEMs. The three scans corresponding to each wine were not separated across 

training and test sets, but this minor precaution did not compensate for the considerable 

similarity between wines nor the subsequent inadequacy of the test set as an indication of model 

performance. An alternative approach would have been to average the values corresponding to 

replicate scans before performing data splits (Logan et al. 2020); however, if this approach had 

been used, then sample number would have become a limiting factor to model building. While 

training and test samples must be from the same population, it is critical that the test set presents 

a sufficient challenge to the calibrated model. The unchallenging nature of the test set may 

have generated overoptimistic R2 and RMSE values (Table 1).  

The results of the Subset B XGBR models were also promising for the prediction of 

volatile phenols and glycoconjugates (Table 2); however, differences in model bias and RMSE 

values between the calibration and cross-validation stages suggest that these results may have 

been attributed to overfitting. Over-fit models closely approximate the relationship between 
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the predictors and the outcomes of the samples used to train them, but they are unable to 

generalise beyond these samples because their performance is unstable beyond the recognition 

pattern developed during the training phase (Kuhn and Johnson 2013). Overfitting is quantified 

with bias, which reflects the differences between true values and values predicted by the model. 

When a model is over-fit, model bias is extremely low. At the calibration stage, the Subset B 

XGBR models had extremely low bias levels in ranges from 10-6 to 10-8.  

Overfitting was likely attributed to retaining 25 latent variables from the compression 

of the spectral data with partial least squares. Rather than fit a model to raw data, compression 

is used as a tool to reduce data dimensionality and improve model robustness and 

computational efficiency. If a greater number of latent variables (or components) is retained, 

data with greater complexity will be generated. In a conventional regression technique such as 

PLSR, the number of latent variables is the principle tuning parameter. The number of latent 

variables that should be included in a model is based on the proportion of variance that is 

accounted for by each cumulative component, relative to RMSE values during cross-validation. 

The evident criteria used to choose the number of latent variables in a PLSR setting is in stark 

contrast to performing the same task in an XGBR setting. 

In XGBR, each latent variable is given a variable importance score that describes its 

significance to the constructed ensemble of trees. This significance is quantified as the gain, 

and it reflects how much the model residuals were reduced due to the inclusion of that latent 

variable. The reduction is calculated across all of the trees in the ensemble. As the number of 

latent variables increases, the maximum significance attributed to the most important variable 

decreases, but unlike PLSR, the variable that contributes the most gain is not necessarily the 

first latent variable, nor is it consistent across XGBR models built with a different number of 

variables. The algorithms that optimise the complexity of XGBR models in Solo consider the 

learning rate, number of iterations, tree depth, and XGBR regularisation parameters; however, 

the algorithms do not consider the complexity of the incoming data used to train the trees. Short 

of an exhaustive manual evaluation, it was not clear how to find the optimal number of latent 

variables to retain in an XGBR model with respect to the complexities defining the XGBR 

model and the compressed spectral data used to train it. Herein, the optimal number of latent 

variables chosen for the Subset A and Subset B models was selected using R2 and RMSE values 

at the cross-validation stage, but these metrics provide minimal insight on the degree of model 

generalizability. As such, it is possible that the optimal combination of PLS components and 

XGBR tuning parameters was not obtained.  
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For the Subset C wines, the predictive performance of XGBR and PLSR models were 

compared. The principle of parsimony prompts the selection of models that feature only what 

is necessary. If a relationship can be adequately captured with a linear model (e.g. PLSR), this 

principle obliges us to choose it over a more complex nonlinear model (e.g. XGBR), which can 

be too flexible, include irrelevant variation, or both (Hawkins 2004). The results of the Subset 

C XGBR and PLSR models demonstrated that performance was driven primarily by how the 

data were split and evaluated rather than the complexity of the multivariate approach.  

When no split was performed and the model was evaluated with k-fold cross-validation, 

R2 values of 0.95 and 0.84 were achieved for the Subset C XGBR and PLSR models, 

respectively (Table 3). Considering our aim to develop fluorescence spectroscopy as a 

screening tool, these values would be acceptable. When the data were evaluated using 

independent splits of the data, the first split (232 calibration/60 validation) suggested a weak 

relationship between spectral data and guaiacol concentrations (R2 = 1.2E-7 (XGBR), R2=0.02 

(PLSR)), whereas the second split (228 calibration/64 validation) indicated the opposite 

(R2=0.85 (PLSR), R2=0.86 (XGBR)). The performance of a model can vary substantially when 

assessed by an independent data set due to its dependence on what samples constitute the set 

(Kuhn and Johnson 2013; Lia et al. 2018). However, the overt differences observed herein as 

a function of data split (Table 3) suggest that the Subset C models did not adequately capture 

the relationship between guaiacol and fluorescence spectral data.   

The work conducted in the present study cannot reconcile the inconsistent results 

observed in the Subset C XGBR and PLSR models, but it is likely a consequence of the larger 

influence of other fluorophores within the spectra. This obstacle has been encountered in 

previous work which trialled the use of MIR spectra to classify smoke-affected wine (Fudge et 

al. 2012). Therein, the classification accuracy of an LDA model built with MIR data was 

compromised when evaluating wines sourced from a trial that featured seven varietals. This 

was not a surprising result because the PCA scores used to train the model reflected varietal-

driven differences. In the present work, we used PLS as a data reduction strategy, but this 

measure may not have been sufficient to overcome the minimal impact that the volatile phenols 

and glycoconjugates had on the fluorescence data (Figure 5).   

The diversity associated with region and grape variety was acknowledged, but it was 

perceived as a challenge that could be overcome with a non-linear method coupled to a 

supervised data reduction method. In fact, regional and varietal diversity was viewed as a 
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means of improving the robustness of the developed models, but the primary fluorophores in 

wine are also sensitive to grape varietal and region, to the extent that they can be used for 

authentication (Airado-Rodríguez et al. 2011; Versari et al. 2014; Ranaweera et al. 2021). 

Moreover, other fluorophores in wine have higher quantum yields, concentrations, and 

variability across wine samples relative to volatile phenols and glycoconjugates. Despite 

awareness of this challenge a priori, this work did not address it with a proof-of-concept 

spiking study.  

A proof-of-concept spiking study would involve spiking volatile phenols and 

glycoconjugates into increasingly complex wine matrices to enable the identification of regions 

associated with volatile phenols and glycoconjugates in the fluorescence spectra. This proof-

of-concept spiking study would offer guidance regarding the efficacy of data reduction 

techniques and pre-processing strategies on the preservation of those regions in the increasingly 

complex matrices. Introducing varietal and regional variation into models would be performed 

only after demonstrating that the quantitation of volatile phenols and glycoconjugates with 

spectral data could be performed with high linearity and reproducibility in model wine and 

cask wine. The absence of a proof-of-concept spiking study is a limitation of the present study, 

and will be addressed in future work.  

For the Subset C XGBDA models, wines were divided into low-, medium-, and high-

risk categories based on total volatile phenol glycoconjugate concentrations rather than total 

volatile phenol concentrations. These criteria were adopted from a previous study involving 

the classification of smoke-affected wines based on MIR data (Scrimgeour et al. 2021). 

Therein, accuracy of the model was higher when predicting classification based on total 

glycoconjugate concentrations than when they were categorised by total volatile phenols, albeit 

the highest accuracy was 69%, which was achieved for the prediction of low-risk wines. 

Volatile phenols have a natural abundance in grapevines that is varietal dependent and a 

significant abundance in oak, some of which can be extracted into wine during fermentation, 

aging, or both (Pollnitz et al. 2004; Ristic et al. 2016). While glycoconjugates also have a 

natural abundance in grapevines, there is greater confidence that elevated levels can be 

attributed to smoke exposure (Ristic et al. 2016). Thus, total glycoconjugates were used as a 

basis to classify wines into low-risk (<30 µg/L), medium-risk (30-100 µg/L) and high-risk 

(>100 µg/L) categories.  
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Given the variable results from the Subset C regression models, strong performance 

from the Subset C XGBDA model was not anticipated. The data split used to train and evaluate 

the model (228 calibration/64 validation) corresponded to the split (Split #2) that yielded 

optimistic Subset C XGBR and PLSR results (Table 3). While results from the Subset C 

XGBDA model were promising at the cross-validation stage, with accuracy levels >84% across 

classes, performance declined when the model was evaluated with an independent test set, as 

indicated by accuracy levels at 50% or lower (Table 4). The model had the lowest prediction 

accuracy for medium-risk wines, at 22%. The difficulty of accurately classifying medium-risk 

wines is corroborated by Scrimgeour et al. 2021, but in contrast to the present study, medium-

risk wines were more likely to be misclassified as low-risk wines. In the context of smoke taint 

diagnostics, there are costs associated with both false positives and false negatives, but the 

relative cost of a false negative (e.g. misclassifying a high-/medium-risk sample as a low-risk 

sample) is greater than the cost of a false positive (e.g. misclassifying a low-risk sample for a 

high-/medium-risk sample). As suggested in Scrimgeour et al. 2021, using a two-class model 

(i.e. high-risk and low-risk) and adjusting the cut-off criteria may improve model accuracy and 

provides a basis for future work. 

 

5. Conclusion  

There is an urgent need to develop rapid screening methods to facilitate time-sensitive decision-

making in regards to smoke-affected grapes and wine. This work investigated the hypothesis 

that nonlinear models of fluorescence data could be used to: i) predict smoke-derived volatile 

phenols and glycoconjugates in wine and ii) classify smoke-affected wines into low-risk, 

medium-risk, and high-risk groups when coupled with a supervised data reduction technique. 

A diverse array of experimental, research, and commercial wines were collected and split into 

different subsets, for which various models were built. XGBR models built for Subset A and 

Subset B XGBR wines demonstrated promising results that fluorescence spectroscopy could 

be used to predict volatile phenols and glycoconjugates in wine. This was in contrast to the 

Subset C XGBR and PLSR models, which had variable performance that was strongly 

dependent on the samples used to train and evaluate them. Subset C XGBDA model 

demonstrated potential at the calibration and cross-validation stages, but its performance was 

not as strong at the prediction stage.    
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Based on the present results, the null hypothesis, which is that there are no differences in 

fluorescence spectra between wines with low, medium, and high levels of volatile phenols and 

glycoconjugates, cannot be rejected. Additional work is required to discern whether these 

results reflect the pre-processing or modelling strategies used to extract relevant information 

from the spectral data or the methods utilised to evaluate the performance of each model. It 

may also be that the effect of the volatile phenols and glycoconjugates on the fluorescence 

spectra is so minor relative to other more intense and variable fluorophores in wine, that no 

amount of pre-processing could isolate the relevant information without additional sample 

preparation prior to when samples are screened with fluorescence spectroscopy. This work 

highlights many of the challenges associated with this task and recommends that future studies 

perform a proof-of-concept spiking study prior to further investigation.  
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Supplemental Table 1. Pre-processing options and extreme gradient boosting regression 

(XGBR) model tuning parameters selected to predict volatile phenol concentrations in Subset 

A wines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Spectral data XGBR tuning parameters 

Volatile phenol PLS compression 

(Latent variables) 

Pre-processing eta max 

depth 

number of  

rounds 

guaiacol 17 GLS weighting (α = 1e-07) 

Median centre 

0.5 5 100 

4-methylguaiacol 20 GLS weighting (α = 0.02) 

Poisson scaling 

0.5 2 300 

o-cresol 6 EMM filter (full rank) 

Class centroid centring 

Pareto scaling 

0.5 2 300 

p-cresol 2 EMM filter (full rank) 

Multiway centre 

0.3 5 50 

m-cresol 4 GLS weighting (alpha = 0.02) 

Multiway centre 

Pareto scaling 

0.5 4 100 

syringol 4 EPO/EMM Filter (20 PCs) 

Median centre 

Pareto scaling 

0.05 4 500 
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Supplemental Table 2. Performance metrics of Subset C XGBDA model built to predict 

whether a wine has high, medium, and low risk of smoke taint, based on total glycoconjugate 

concentrations, using the prediction rule=most probable. Low <30 µg/L, medium = 30-100 

µg/L, and high = >100 µg/L of total glycoconjugates, evaluated at the (a) cross-validation and 

(b) prediction stages. TPR = True positive rate, FPR = false positive rate, TNR = true negative 

rate, FNR = false negative rate, N = number of samples belonging to each class, Err = 

Misclassification error, P = precision, and F1 = F1 score. The calculations behind each value 

are shown below the tables.  

(a) Cross-validation stage  

Class TPR (sensitivity) FPR TNR (specificity) FNR N Err P F1 

High 0.91463 0.05634 0.94366 0.08537 82 0.6696 0.90361 0.90909 

Medium 0.85294 0.03205 0.96795 0.14706 68 0.06696 0.92063 0.88550 

Low 0.89189 0.08000 0.92000 0.10811 74 0.08929 0.84615 0.86842 

 

(b) Prediction stage 

Class TPR (sensitivity) FPR TNR (specificity) FNR N Err P F1 

High 0.50000 0.60000 0.40000 0.50000 24 0.55556 0.40000 0.44444 

Medium 0.2222 0.2222 0.7778 0.7778 18 0.40741 0.33333 0.266667 

Low 0.3333 0.19048 0.80592 0.6667 12 0.29630 0.33333 0.33333 
 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑃𝑅) =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑃𝑅) =  
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
 

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑁𝑅) =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑁𝑅) =  
𝐹𝑁

(𝐹𝑁 + 𝑇𝑃)
 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (𝐸𝑟𝑟) =  
(𝐹𝑃 + 𝐹𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 (𝐹1) =  
(2 × 𝑇𝑃)

(2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
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Abstract 

 

When bushfires occur in proximity to vineyards, there is a risk that grapevines may be exposed 

to smoke, which can negatively affect fruit, and therefore wine. When evaluating the severity 

of smoke exposure, volatile phenols (and their glycosides) are quantified as chemical markers 

of smoke taint. This is due to the abundance of volatile phenols in wood smoke and their known 

contribution to the smoky, burnt and medicinal sensory characters associated with smoke-

tainted wine. While critical to smoke taint diagnostics, few studies have leveraged the chemical 

complexity of smoke or its physiological effects on grapevines as the bases for identification 

of additional markers of smoke exposure in affected grapes.  

In this study, Merlot vines were exposed to smoke for 1 hour at approximately 7-10 days 

post-véraison. Grape samples were collected before and after smoke exposure (i.e. at t=0 days, 

t=2 hours, t=24 hours, t=6 days, and t=20 days), and analysed with liquid chromatography 

Fourier transform high-resolution mass spectrometry (LC-FT-HRMS). The metabolic profiles 

of control and smoke-affected grapes were then compared using an untargeted metabolomics 

approach. Nine and twenty-one compounds readily differentiated control and smoke-affected 

grapes sampled from 2 hours to 20 days post-smoke exposure, in negative and positive ion 

modes, respectively. Tentative identifications suggested the presence of novel volatile phenol 

glycoconjugate moieties and stress-related metabolites. These findings support the expansion 

of smoke taint diagnostics beyond existing volatile phenol markers and demonstrate a need for 

further investigations into the impact of grapevine smoke exposure from the perspectives of 

abiotic stress and plant defence mechanisms.  
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1. Introduction 

 

When bushfires occur in proximity to vineyards, there is a risk that grapes will be exposed to 

and tainted by the resulting smoke. If grapes are exposed to sufficient smoke, the ensuing wine 

can exhibit ‘smoky’, ‘medicinal’, and ‘cold ash’ aromas and flavours and elicit a drying, ashy 

aftertaste, an array of sensory characteristics otherwise known as ‘smoke taint’ (Kennison et 

al. 2007). Smoke taint is chemically assessed via the quantitation of volatile phenols—such as 

guaiacol, 4-methylguaiacol, o-cresol, and syringol—in both free and bound, (i.e., glycosylated) 

forms (Hayasaka et al. 2010a; Dungey et al. 2011). Volatile phenols are degradation products 

of lignin pyrolysis, and they impart characteristic ‘smoky’, ‘woody’, ‘burnt’ sensory properties 

with relatively low sensory detection thresholds (Maga et al. 1992). While their contributions 

to the sensory perception of smoke taint have been well established, the perceived intensity of 

smoke taint in wine remains a challenge to predict if based on the concentrations of volatile 

phenols and volatile phenol glycoconjugates in grapes (Parker et al. 2012). Several strategies 

could be undertaken to improve the diagnostics of grapevine smoke exposure and smoke taint 

in grapes and wine.   

The first strategy is to consider that smoke taint intensity may not be a phenomenon 

exclusively attributable to a small number of volatile phenols and their glycosylated 

derivatives, given the chemical complexity of smoke. When wood burns, the composition of 

the smoke depends on species and origin, moisture content, and the temperature and duration 

of combustion (Cadahía et al. 2003; Guillén et al. 1999). The critical role of combustion 

temperature was demonstrated in a study that monitored volatile emissions derived from 

pyrolysis of ferulic acid at temperatures ranging from 50 to 500 °C (Wittkowski et al. 1992). 

Ferulic acid is a precursor to guaiacol (Maga et al. 1992) and a highly abundant structural 

component in plant cell walls (Wallace and Fry 1994). While guaiacol and its derivatives 

dominated emissions from pyrolysis at 230 to 260 °C, they became intermediates in the 

formation of pyrocatechol and dialkylphenols once the pyrolysis temperature range reached 

360 to 410 °C. Wotton et al. (2012) established that prescribed burns achieve a maximum 

temperature of 1100 °C at the flame base, with temperature decreasing exponentially to ~300 

°C at the flame tips. The temperatures generated in a bushfire encapsulate both phases of ferulic 

acid thermal degradation and thus, the distinct degradation products associated with them. 

There are a myriad of other phenol derivatives generated by lignin pyrolysis under the diverse 

range of conditions unique to each bushfire (Guillén and Manzanos 2002). To date, no studies 
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have screened grapes for alternative smoke-derived volatiles despite the array of other 

compounds in smoke.     

The second strategy is to consider that grapevines are not passive recipients of volatile 

phenols during smoke exposure. In addition to the uptake of volatile phenols and other products 

of lignin degradation, primary pollutants derived from wildfires include nitrogen oxides, 

volatile organic compounds (e.g. methanol, acetaldehyde, acetone, and benzene), and 

polycyclic aromatic hydrocarbons (e.g. acenaphthene, acenaphthylene, fluorine, and 

phenanthrene) (Wentworth et al. 2018). Moreover, primary pollutants can be transformed into 

secondary pollutants, such as when volatile organic compounds react with nitrogen oxides in 

the presence of sunlight to form ozone (Lindaas et al. 2017). The uptake and degradation of 

ozone in plant cells produces reactive oxygen species, which in turn, initiate plant defensive 

mechanisms, including the synthesis of hormones, metabolites from the phenylpropanoid 

pathway, products from the ascorbate/glutathione cycle, and polyamines (Ludwikow and 

Sadowski 2008). Ozone has been used in the grape and wine industry for sanitation, 

preservation, and aroma enhancement (Segade et al. 2017; Pazarlar et al. 2017), and in the 

context of smoke taint, it has recently demonstrated potential as a mitigation agent when 

applied to smoke-affected grapes post-harvest (Modesti et al. 2021). Ozone is a powerful 

oxidant and little work has explored the feasibility of using grapevine secondary metabolites 

related to defence to detect smoke exposure in grapes.  

Taken together, we hypothesised that endogenous or exogenous compounds may 

accrue in grapes over time, enabling them to be distinguished from grapes unaffected by smoke. 

We chose to focus on non-volatile metabolites due to the rapid uptake and metabolism of 

volatile phenols in grapes following smoke exposure (van der Hulst et al. 2019; Szeto et al. 

2020; Jiang et al. 2021) and the tendency for grapes to store small, lipophilic volatile 

compounds as glycoconjugates (Winterhalter and Skouroumounis 1997). To test this, we 

analysed the composition of Merlot grapes over a three-week period following smoke exposure 

(approximately 7-10 days post-véraison until commercial maturity) using an untargeted 

metabolomics workflow that employed ultrahigh-performance liquid chromatography coupled 

with Orbitrap mass spectrometry.  
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2. Materials and Methods 

 

2.1 Chemicals, Reagents, and Reference Compounds.  

The following chemicals were purchased from Sigma-Aldrich (Castle Hill, NSW, Australia): 

2-methoxy-4-methylphenol (4-methylguaiacol), o-cresol, p-cresol, m-cresol, phenol, 2,6-

dimethoxyphenol (syringol) and 4-methyl-2,6-dimethoxyphenol (4-methylsyringol). Guaiacol 

was purchased from Scharlau (Port Adelaide, SA, Australia). Formic acid for LC-MS analyses 

was purchased from Rowe Scientific (Lonsdale, SA, Australia). The internal standards d4-

guaiacol and d3-syringol gentiobioside were synthesised in-house, using methods described 

previously (Pinchbeck, 2011; Hayasaka et al. 2013), while d3-syringol was purchased from 

C/D/N Isotopes (Pointe-Claire, Quebec, Canada). Solvents were purchased from Sigma-

Aldrich (Castle Hill, NSW, Australia) classified as hyper-grade for LC-MS (LiChrosolv®) and 

included: ethanol, methanol, acetonitrile, ethyl acetate, and chloroform. GC-grade pentane was 

also purchased from Sigma-Aldrich.  

 

2.2 Field trials 

Field trials involved the application of smoke to Merlot grapevines growing in a single row 

within a vineyard located at the University of Adelaide’s Waite campus in Urrbrae, South 

Australia (34°57'59.2"S 138°37'59.0"E). Vines were planted in north-south aligned rows (in 

1998) and grown on their own roots, trained to a bilateral cordon, vertical shoot positioned 

trellis system, hand-pruned to a two-node spur system, and drip irrigated. 

Smoke was administered to vines for 1 hour at approximately 7-10 days post-véraison 

using a purpose-built tent described elsewhere (Kennison et al. 2009). Control grapevines were 

not exposed to any smoke. The application of smoke was conducted in duplicate, with three 

vines contained within each experimental replicate. For each replicate smoke treatment, 2.4 kg 

of barley straw was combusted in fireboxes positioned at opposing ends of the smoke tent. The 

fuel allocated to each firebox (1.2 kg) was added in 10 min increments over the course of the 

trial to ensure that grapevines were exposed to smoke throughout the hour-long treatment. 

Smoke entered the tent via an aluminum tube connected to the exhaust of each firebox. To 

prevent control vines from being contaminated by smoke, at least nine buffer vines separated 

them from the smoke-exposed vines. To prevent smoke-exposed vines in the first treatment 

from being exposed to smoke from the second smoke treatment, six buffer vines separated the 

two replicates of smoke-exposed vines.  
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Fifty berries were collected from each vine within each smoke replicate, using an 

established sampling procedure (Sala et al. 2004). Samples were collected at the following time 

points (relative to smoke exposure): immediately prior to smoke exposure, 2 and 24 hours post-

smoke exposure, and then 3, 6, 8, 10, 13, 15, 17, and 20 days post-smoke exposure, where 20 

days corresponded to commercial maturity (i.e. total soluble solids (TSS) of 25 °Brix). These 

time points were selected to build on previous work that highlighted the delay between the 

depletion of smoke-derived volatile phenols and the subsequent accumulation of their 

glycoconjugates (Szeto et al. 2020). Herein, a similar timeframe was used to confirm previous 

trends and enable an untargeted approach to offer insight on additional markers that may also 

reflect the immediate- and long-term effects of grapevine smoke exposure.    

Following collection, berries were homogenised (T18 Ultra Turrax, IKA, Safen, 

Germany and frozen at -4 °C in 120 mL polypropylene tubes (Sarstedt, Nümbrecht, Germany) 

until needed for chemical analyses. Samples were prepared for analysis of volatile phenols and 

volatile phenol glycoconjugates, approximately two months after harvest. Samples were then 

refrozen (at -4 °C) until needed for the untargeted metabolomics study, which commenced 

approximately nine months after harvest.   

 

2.3 GC-MS analysis of grape homogenate 

Volatile phenols (guaiacol, 4-methylguaiacol, phenol, o-, m-, and p-cresol, syringol, and 4-

methylsyringol) were measured in grape homogenate samples using SIDA-based methods 

established in previous studies (Pollnitz et al. 2004; Hayasaka et al. 2010a). The internal 

standards used for quantitation were d3-syringol and d4-guaiacol. Analysis was conducted with 

an Agilent 6890 gas chromatograph coupled to a 5973 mass spectrometer (Agilent 

Technologies, Forest Hill, Vic., Australia). With sample preparation, method validation, and 

instrumental parameters as previously reported (Hayasaka et al. 2010a). Data acquisition was 

conducted with ChemStation and data processing was carried out using MassHunter 

Quantitative Analysis software. 

 

2.4 HPLC-MS/MS analysis of grape homogenate 

Volatile phenol glycoconjugates were measured in grape homogenate using high-performance 

liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The internal standard was 

d3-syringol gentiobioside, and all measured glycosides were quantified as syringol 

gentiobioside equivalents. Analysis was conducted with an Agilent 1200 HPLC equipped with 

a 1290 binary pump, coupled to an AB SCIEX Triple QuadTM 4500 tandem mass spectrometer 
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with a Turbo VTM ion source (Framingham, MA, USA). Sample preparation, method 

validation, internal standard preparation, and instrumental parameters were performed as 

previously reported (Hayasaka et al. 2013). Both data acquisition and processing were 

conducted using Analyst software (version 1.7, AB SCIEX).  

 

2.5 Sample preparation for untargeted LC-FT-HRMS analysis 

Liquid chromatography Fourier transform high-resolution mass spectrometry (LC-FT-HRMS) 

was used for the untargeted metabolomics study. A total of 60 frozen homogenate samples 

were prepared in four, randomly selected batches of 12-15 samples. Aliquots of grape 

homogenate (2 g) were weighed into 10 mL centrifuge tubes and extracted with 1 mL of MilliQ 

water, 2 mL of methanol, and 2 mL of chloroform. Samples were then spiked with 20 µL of 

d3-syringol gentiobioside (20 µg/mL) as internal standard, to achieve a concentration of 200 

µg/kg. Next, they were vortexed for 1 min, shaken gently on a rotary tube mixer (Rate 

Instruments Pty Ltd, Boronia, VIC, Australia) for 15 min (at 25 °C and 25 RPM) and 

centrifuged for 25 min at 4 °C and a relative centrifugal force of 3270 × g using an Allegra X-

12R Centrifuge (Beckman-Coulter, Lane Cove, NSW, Australia).  

Supernatant from each sample (4 mL) was collected and transferred into borosilicate 

culture tubes. Extraction was repeated on the residual grape homogenate, using 1 mL of water 

and 2 mL of methanol, after which extracts were vortexed, shaken, and centrifuged under 

conditions described above for the first extraction. Supernatant (3 mL) from the second 

extraction was combined with the 4 mL collected from the first extraction. The samples were 

dried overnight (i.e., at least 15 h at 30 °C under a flow of 3.5 L/min of N2) using a TurboVap 

(Biotage, Rydalmere, NSW, Australia).  

Once dry, extracts were reconstituted in 1 mL of mobile phase, comprising 75% solvent 

A (0.1% formic acid, 0.5% methanol in Milli-Q water) and 25% solvent B (0.1% formic acid, 

2% Milli-Q water, 40% acetonitrile in methanol). Samples were vortexed, transferred into 1.5 

mL Eppendorf tubes, and centrifuged for 15 min at 4 °C and a relative centrifugal force of 

23,907 × g with a Universal 32R centrifuge (Hettich, Thebarton, SA, Australia). Lastly, 

samples were transferred into 2 mL amber vials for chemical analysis. For quality control and 

compound identification purposes, a pooled biological quality control (PBQC) sample was 

prepared by combining 20 µL of each reconstituted sample into a single vial. To assess any 

background contamination accrued from the solvents, reagents, or materials used, solvent 

blanks (comprised of solvent A) were also prepared and analysed in duplicate. Procedural 
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blanks were prepared following the same protocol as described for samples, but in the absence 

of grape homogenate material.  

 

2.6 LC-FT-HRMS method.  

Metabolites were separated with a Kinetex PFP LC column (150 mm x 2.1 mm; 2.7 µm, 

Phenomenex) held at 30 °C with a binary gradient, consisting of 0.1% formic acid and 0.5% 

methanol in Milli-Q water (solvent A) and 0.1% formic acid, 2% Milli-Q water, and 40% 

acetonitrile in methanol (solvent B). All solvents were gradient grade for liquid 

chromatography from Supelco (Bellefonte, PA, USA). The flow rate was 0.40 mL/min and the 

gradient progressed with linear increases from 0 to 1% B over 6.25 min, to 7.5 %B over 13.75 

min, to 60% B over 10 min and to 90% B over 3 min. The gradient was held at 90% B held for 

5 min, after which the column was washed and re-equilibrated. The injection volume was 1 µL 

for samples acquired in MS1 mode and 3 µL for samples acquired in MS/MS mode.   

Mass spectral data were collected using an Thermo Fisher Orbitrap-IDX Tribrid mass 

spectrometer fitted with a heated electrospray ionisation source and a Vanquish™ Horizon 

uHPLC system via electrospray ionisation using the following conditions: sweep gas 1 

(arbitrary units, au), sheath gas 25 au, auxiliary gas 7 au, vaporiser temperature 300 °C, and 

ion transfer tube temperature 275 °C. The RF lens value was 35%. Data were collected in 

positive and negative ion mode with spray voltages of 3500 V and 3400 V, respectively. 

MS1 data were collected with a 60,000 scan resolution, 1 microscan, 110 ms maximum 

injection time and automatic gain control (AGC) of 600,000 over a mass range of 100-2000 

m/z. Data-dependent MS2 scans were collected with a 15,000 scan resolution, 1 microscan, 22 

ms maximum injection time, AGC of 75,000, isolation window of 1.5 m/z, and dynamic 

exclusion of 2.5 s. The collision energies of high-energy collisional dissociation (HCD) were 

stepped from 20, 35, and 50%. 

Prior to the acquisition of sample data, a solvent blank (i.e. solvent A) was run to 

prepare the column, followed by a procedural blank (run in duplicate). The latter was used to 

perform blank subtraction in the data processing step. MS2 data of the PBQC sample was then 

collected (in triplicate) for identification purposes. Lastly, MS1 data were acquired via five 

replicate injections of the PBQC sample to equilibrate the column. Following the study setup, 

the PBQC sample was injected once every seven samples to enable correction for potential 

batch effects via QC-based normalization.  
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2.7 LC-FT-HRMS method validation  

To determine the reproducibility of the sample preparation method, seven replicates of a single 

grape homogenate sample (a control sample from t=15 days) were prepared (as described 

above). To assess the reproducibility of the instrumental analysis, 100 µL of the final extract 

from the seven replicates were pooled to create a PBQC sample. Five replicate injections of 

the PBQC sample were conducted, from which MS1 data were collected. The coefficient of 

variance was calculated across the replicate grape homogenate samples and across three out of 

five replicate injections of the PBQC sample to assess the reproducibility of the sample 

preparation method and instrument, respectively.  

 

2.8 Data processing 

Raw data files were processed through the “Untargeted Metabolomics with Statistics Detect 

Unknowns with ID using Online Databases and mzLogic” workflow available in Compound 

Discoverer (version 3.1, Thermo-Fisher Scientific Australia Pty. Ltd., Scoresby, VIC, 

Australia). As shown in Supplemental Figure 1, the workflow aligned retention times, 

detected extracted ion chromatogram traces from MS1 scans, and grouped compounds across 

all files if they shared molecular weight and retention time. After grouping the compounds, 

QC-based area correction was performed and background compounds were identified. 

Simultaneously, unknown compounds were tentatively identified by name, chemical formula, 

and/or structure through searching ChemSpider, mzCloud, mzVault, and mass lists developed 

in-house. Search results from mass lists and ChemSpider libraries were ranked by mzLogic, 

which analysed MSn fragmentation patterns and used them to calculate a similarity score to 

potential structures of each compound. A detailed overview of specific settings utilised in each 

node of the workflow can be found in Supplemental Table 1.  

When raw files were imported into Compound Discoverer, they were assigned a 

classification and (if appropriate) a group. Classifications dictate how samples are processed 

through the workflow, and groups outline how samples are evaluated with statistical analysis. 

Two Compound Discoverer studies were conducted using the previously described processing 

workflow, and samples were classified as ‘Blank’, ‘Identification only’, ‘Quality control’, or 

‘Sample’, depending on the sample and purpose of the study. The ‘Blank’ classification was 

assigned to procedural blank samples. Any compounds identified in these samples were 

assumed traces of the solvents/materials used during sample preparation and labelled as 

background compounds by the workflow. The ‘Identification only’ classification was reserved 

for the PBQC sample when it was collected in MS/MS mode. This information enabled the 
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annotation of candidate compounds. The ‘Quality control’ classification was assigned to the 

PBQC sample when it was collected in MS1 mode. With the ‘Quality control’ classification, 

the MS1 data from PBQC sample was used to minimise batch effects by fitting a cubic spline 

regression model to the area of each compound across the replication injections of the PBQC 

sample with respect to time (Dunn et al. 2011). Alternatively, when given a ‘Sample’ 

classification, the MS1 data from the PBQC sample was adapted to assessing method 

reproducibility. By convention, the ‘Sample’ classification was applied to experimental 

samples that were collected to evaluate the effects of variables under study, i.e. factors. Factors 

split the data into groups, and ratios between pairs of groups designated the comparisons for 

subsequent statistical analysis.  

The first study was conducted to validate the reproducibility of the method and 

instrument. Files corresponding to the seven replicates of a grape homogenate sample and the 

five replicate injections of the PBQC sample (collected in MS1 mode) were classified as 

‘Samples’. The second study was performed to assess the effects of smoke exposure and time 

on the metabolic profiles of grape homogenate samples. In this study, the procedural blank was 

classified as ‘Blank’, the PBQC sample was collected in both MS1 (i.e. as ‘Quality control’) 

and MS/MS modes (i.e. as ‘Identification only’), and the experimental samples were classified 

as ‘Samples’. 

In the first study, samples were processed through the workflow without study factors, 

but in the second study, the experimental samples were sorted by two study factors, ‘Treatment’ 

and ‘Time’. Experimental samples that shared both factors constituted a group. The 

‘Treatment’ factor had two categorical levels, corresponding to the samples collected from 

smoke-affected vines (labelled as ‘S’ i.e. smoke) and the samples collected from vines without 

smoke exposure (labelled as ‘C’ i.e. control). The ‘Time’ factor had five numerical levels, 

corresponding to the samples collected at each time point (t=0 days, t=2 hours, t=24 hours, t=6 

days, t=20 days). Thus, ten groups were created, being: C/S (0 days), C/S (2 hours), C/S (24 

hours), C/S (6 days), and C/S (20 days). To indicate which groups to compare in statistical 

analyses, five ratios were set up to compare the effects of treatment at each time point. In 

addition, eight ratios were created to explore the effects of time within each treatment by 

comparing each group C/S (t=2 hours, 24 hours, 6 days, or 20 days) to its respective C/S (t=0 

days) group. For each ratio, the Log2 fold change, area ratio, and one-way ANOVA were 

calculated. To adjust for multiple comparisons, p-values were corrected for the false discovery 

rate using the Benjamini-Hochberg algorithm.  
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Resultant compound tables were filtered to reduce the incidence of compounds defined 

by low-quality peaks (e.g. high baselines, non-Gaussian distributions, low signal to noise ratios, 

etc.). In the first study, compounds were removed from the table if identified in the procedural 

blank (i.e. ‘Background is false’), characterised by a peak area less than 20 million in the PBQC 

sample (i.e. ‘Area ≥ 20 million in file PBQC’), or lacking a proposed chemical formula (i.e. 

‘Formula is not blank’). This set of filters was followed by a manual inspection of peak quality, 

and the resulting compound table was used to assess reproducibility. In the second study, 

compounds were filtered from the table if they were present in procedural blank samples (i.e. 

‘Background is false’). Compounds also needed to demonstrate statistical significance in at 

least one ratio (i.e. ‘Adjusted p-value ≤0.05 in any ratio’), and detectable MS/MS data (i.e. 

‘MS2 is not equal to ‘no MS2’’). Finally, compounds were required to meet the criteria for 

QC-based normalisation (i.e. ‘Normalised area has any value in any file’, ‘Number of usable 

quality control samples = 14’).  

In this study, the maximum number of usable quality control samples corresponded to 

the number of PBQC sample injections performed during the sequence, being 14 in each 

ionisation mode. QC-based normalisation occurs for a particular compound only if certain 

conditions are met. First, the gap between PBQC sample injections must not exceed 15 

experimental samples. In this study, an injection of the PBQC sample was scheduled to occur 

once following every seven experimental samples. A gap exceeding 15 experimental samples 

would indicate a problem with injection, a compromised PBQC sample, or both. Second, 

compounds must be detected in at least 50% of PBQC sample injections. Third, the peak areas 

of compounds across PBQC injections are required to have a residual standard deviation value 

at or below 30%. The ‘Normalised area has any value in any file’ filter selected compounds 

that met these three criteria. The ‘Number of usable quality control samples = 14’ is a more 

restrictive extension and further limited selection to compounds that were detected in 100% of 

PBQC sample injections. The resultant list of compounds was manually inspected for peak 

quality and exported for further analysis.   

 

2.9 Data analysis.  

The workflow used to explore and analyse the data is shown in Figure 1. Normalised peak 

areas were exported from Compound Discoverer and uploaded to RStudio and the data were 

initially explored with principal component analysis (PCA) using the FactoMineR (version 2.4) 

and ggplot2 (version 3.3.5) packages in RStudio (version 4.0.3). Data were centred and scaled 

prior to plotting. 
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Figure 1. Data processing workflow for control and smoke-affected Merlot grapes collected 

over five time points, analysed by uHPLC-Orbitrap IDX MS in positive and negative ionisation 

modes. Following the application of a filter, the resultant number of compounds in negative 

and positive ionisation modes are shown. The degree of separation achieved following the 

application of key filters are visualized in PCA plots.    

  

It was anticipated that compounds driven by temporal change (e.g. sugars, anthocyanins) would 

be the predominant influence on the overall variation in the metabolic profile (rather than 

smoke exposure). In part, this expectation was driven by the high abundance of sugars, 

anthocyanins, and other aroma compounds relative to smoke-derived metabolites (e.g. volatile 

phenols and their glycoconjugates), as well as the timing of sample collection (i.e. three weeks 

following véraison) and magnitude of biochemical changes associated with this period (Kalua 

and Boss 2009). To account for this, several statistical techniques were explored in 

MetaboAnalyst (version 5.0, www.metaboanalyst.ca).  

 Normalised peak areas were pre-processed with Pareto scaling and a cube root 

transformation to achieve a normal distribution. Data were analysed using a combination of 

univariate and multivariate analyses. As a supervised alternative to PCA, orthogonal partial 

least squares discriminant analysis (OPLS-DA) was performed. To evaluate model quality and 

predictive ability, R2Y and Q2 metrics were used. To test the significance of the classification, 
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samples were permuted 1000 times. Critical compounds from the OPLS-DA model were 

identified as those with variable importance on projection scores ≥1.5. 

 The multivariate strategy was complemented with independent t-tests and volcano 

plots. The t-tests were corrected for the false discovery rate, and critical compounds were 

identified as those with an adjusted p-value <0.05. Volcano plots identify compounds with high 

relative differences between groups (as a log 2-fold-change) and quantify the statistical 

significance of that difference (as log10 p-value of the fold change). Critical compounds were 

identified as those with a log 2-fold change >2| or <-2 and a p-value <0.05. For the analyses 

conducted in MetaboAnalyst, all time points within each treatment were pooled and treated as 

members of the ‘control’ or ‘smoke’ group (with the exception of t=0 hours hours); thus, any 

compounds identified through this workflow are not specific to a point in time.   

 The compounds identified through the MetaboAnalyst workflow were uploaded into 

RStudio. Mean concentrations and relative mean differences between control and smoke 

groups (at t=2 hours, t=1 day, t=6 days, and t=20 days) were calculated. Compounds were 

further filtered according to whether they had relative mean differences between smoke-

exposed and control groups higher than a factor of 1.3. Compound trends were visualised using 

box-and-whisker plots drawn with the ggplot2 package. The final list of compounds selected 

for annotation were those with evident elevation in the smoke-exposed group. This degree of 

separation in the data achieved with this list was also visualised with PCA.  

 Tentative identifications were carried out through a manual search of the m/z Cloud 

Library, ChemSpider, PubChem, METLIN, and PlantCyc for putative compounds by mass, 

structure, and formula. Fragment Ion Search (FISh) scores were calculated in Compound 

Discoverer software. FISh scores reflect the degree to which a proposed structure can account 

for the fragmentation pattern of an unknown peak. Manual review of MS2 spectra was also 

conducted using a combination of Compound Discoverer and Freestyle (version 3.4, Thermo-

Fisher Scientific Australia Pty. Ltd., Scoresby, VIC, Australia).    

 

3. Results and discussion 

Six Merlot grapevines were exposed to straw-derived smoke for 1 hour at 7-10 days post-

véraison. Following this event, the six smoke-affected vines and six corresponding control 

vines (without smoke exposure) were sampled at several time points over three weeks. Volatile 

phenols and volatile phenol glycoconjugate concentrations were analysed in both control and 

smoke-affected grapes at t=0 hours (immediately before smoke exposure) and then at t=2 

hours, 24 hours, 6 days, and 20 days post-smoke exposure. Volatile phenol glycoconjugates 
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were also measured in grapes collected at t=13 days. As expected, there were no statistically 

significant differences in either volatile phenol or glycoconjugate concentrations between 

control and smoke-affected grapes prior to smoke exposure (i.e., t=0 hours). Control grapes 

contained volatile phenol concentrations below established limits of detection across all time 

points. Smoke-affected grapes had significantly elevated volatile phenols only at t=2 hours 

post-smoke exposure, having 17, 20, 5, and 61 µg/L for guaiacol, phenol, o-cresol, and 

syringol, respectively (p<0.05, Mann-Whitney U-Test). At all other time points, the volatile 

phenol concentrations of smoke-affected fruit were also below their limits of detection 

(Supplemental Table 2).   

Contrarily, the majority of volatile phenol glycoconjugate concentrations were 

significantly elevated in smoke-affected grapes relative to control grapes (p<0.05, Mann-

Whitney U-Test), at every time point except t=0 hours. The accumulation patterns of the most 

abundant glycoconjugates followed a similar trend, in which concentrations rapidly increased 

within the first 24 hours and remained relatively stable thereafter (Figure 2). 

 

Figure 2. Trends in volatile phenol glycoconjugates in Merlot grape homogenate (µg/kg) 

from control and smoke-exposed grapes sampled from pre-smoke exposure (t=0 hours) to 

commercial maturity (t=20 days), fitted using the smoothed conditional means plotting 

method. Each point represents a single observation from each treatment (at t=0 hours, 2 

hours, 24 hours, and 6, 13, and 20 days). Cr = cresol, Gu = guaiacol, Ph = phenol, Sy = 

syringol, PG = pentose glucoside, R = rutinoside, and GB = gentiobioside.  

 

The most abundant glycoconjugates in smoke-affected fruit were cresol pentose glucoside, 

phenol pentose glucoside, and syringol gentiobioside, at 140, 160, and 150 µg/kg respectively 



Chapter 5 | Beyond volatile phenols 

147 

 

at t=20 days (harvest) (Supplemental Table 3). In control fruit, the most abundant 

glycoconjugates were similarly recorded at t=20 days and corresponded to the pentose 

glucosides of phenol, cresol, and guaiacol, at 22, 20, and 6 µg/kg respectively. The remaining 

glycoconjugates were at levels ≤ 3 µg/kg. These results indicated that grapes were exposed to 

levels of smoke sufficient to induce known compositional effects (i.e. increased levels of 

volatile phenols and their glycoconjugates), a pre-requisite to searching for additional markers 

of smoke exposure.    

Prior to analyzing homogenate samples via LC-FT-HRMS, the reproducibility of the 

methods used for homogenate preparation and data acquisition with the Orbitrap-IDX were 

determined via the analysis of a grape homogenate sample (prepared seven times) and several 

injections of the PBQC sample, respectively. Reproducibility was assessed by calculating the 

coefficient of variation across the normalised peak areas of compounds identified by the 

Compound Discoverer workflow. After filtering criteria were applied in Compound 

Discoverer, 135 compounds remained in the table and the coefficient of variation was 

calculated across replicate homogenate samples and injections of the PBQC sample. When the 

coefficient of variation was calculated across the replicate grape samples, the value of the 95th 

percentile was 18.58%, and when it was calculated across the third, fourth, and fifth replicate 

injections of the master mix, the value of 95th percentile was 17.06%. These low values 

indicated sufficiently low variation in the samples associated with their method of preparation.  

Once satisfied with the quality of control and smoke-affected samples and the validity 

of the LC-FT-HRMS method, experimental samples were analysed and data were processed 

through the workflow. The resultant compound tables were explored with PCA (Figure 3). 

This PCA included 565 and 867 compounds in negative and positive ion modes, respectively. 

Across positive and negative ion modes, ~59% of total variation was accounted for by PC1 and 

PC2, of which the first PC accounted for ~56%. As expected, PCA primarily separated samples 

according to grape maturity rather than smoke exposure. Samples that were collected within 

24 hours of each other (i.e., at t=0 hours, t=2 hours, and t=24 hours) were positioned on the 

right side of the plot, whereas samples collected 6 days and 20 days following the first time 

point were positioned further left. There was some separation achieved along PC2 that reflected 

differences in smoke exposure, with most control samples positioned in the upper quadrants. 

Supervised data analysis techniques were used to take the directionality of change into account 

and focus on compounds that were significantly elevated in smoke-affected grapes relative to 

control grapes.      
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Figure 3. Principal components analysis of normalised peak areas of compounds measured in 

Merlot grapes with and without smoke exposure in negative and positive ionisation mode. Each 

plot is inclusive of all samples at every time point. Colours correspond to different time points 

(t=0 hours, 2 hours, 24 hours, 6 days, and 20 days), and the open or filled status of each data 

point represent control and smoke-affected treatments, respectively. 

 

                 Negative Ion Mode                             Positive Ion Mode  

 

 

 

 

 

 

 

  

Following exploration of the data using PCA, histograms were plotted, and data from both 

positive and negative ion modes were skewed (Figure 4). A right skew indicates that the mean 

peak area is strongly influenced by a minority of compounds with significantly higher peak 

areas. In the positive and negative ion data, most compounds have a peak area <2.5 million; 

however, there were some samples with peak areas of >10 million. Absolute peak area does 

not necessarily indicate that compounds are relevant to the hypothesis. Thus, Pareto scaling 

was used to reduce the influence on the distribution that was wielded by compounds with high 

peak areas by dividing the peak area of each compound by the square root of its standard 

deviation across samples (van den Berg et al. 2006) (Figure 4). Following Pareto scaling, the 

skew was corrected with a cube root transformation (Figure 4). A normal distribution is 

required to obtain valid results from hypothesis testing and while log and power 

transformations were explored (data not shown), the cube root transformation resulted in the 

best distribution.  
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Figure 4. Histograms depicting the distribution of the raw feature data (a) prior to pre-

processing and then with (b) Pareto scaling and (c) Pareto scaling with a cube root 

transformation. Different colours represent data collected in positive and negative ionisation 

mode.  

 

 

 

 

 

 

 

 

 

 

 Once data were pre-processed, a combination of t-tests, volcano plots, and 

supervised OPLS-DA were used to examine the compounds that differentiated control and 

smoke-affected grapes over time. Rather than examine differences between the smoke-

affected and control grapes at each time point, samples were pooled and analysed together, 

with the exception of samples collected at t=0 hours. The number of compounds identified by 

each method are shown in Figure 5.  

 The t-tests identified 116 and 191 compounds as statistically significant in the 

negative and positive ion modes respectively. This is a much higher number of significant 

compounds than the 23 and 70 compounds that were identified when samples were explored 

at each time point using one-way ANOVA. ANOVA and t-tests operate by comparing the 

variation between groups relative to the variation within groups. For the ANOVA, 

comparisons were conducted at each time point, whereas for the t-tests, comparisons were 

conducted across time points. The pooled data included samples collected from over the 

duration of 3 weeks, and from the PCA analysis, it was clear that the effect of time had a 

greater contribution to the overall compositional variance than that of smoke exposure. 

Nonetheless, the use of Pareto scaling and cube root transformation enabled greater 

differences to be captured between the two groups that were likely obscured by the range of 

peak areas observed across compounds and the skewed distribution.  
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Figure 5. Venn diagrams showing the number of potential markers that may be used to detect 

smoke exposure in grapes, extracted from compound lists using t-tests, volcano plots, and 

OPLS-DA. Different colours represent data collected in and negative and positive ionisation 

modes.  

 

 

 

 

 

 

 

 

 

Hypothesis testing is critical to quantify the probability that identified differences 

between groups are due to the intended treatment rather than chance, but statistical significance 

is not always sufficient to demonstrate real-world relevance to the biological impact of smoke 

exposure on grapevines. Thus, volcano plots were also generated to identify compounds that 

not only demonstrated statistical significance (p<0.05) but also exhibited a log 2-fold change 

>2 or <-2. In negative ion mode, only 10 compounds met these criteria, whereas 20 compounds 

met these criteria in positive ion mode. The majority of the compounds identified in the volcano 

plot (70% in negative ion mode and 75% in positive ion mode) had also shown statistical 

significance at multiple time points when the data was analysed by one-way ANOVA at each 

time point. This indicates that the low number of compounds identified by the volcano plot can 

be attributed to the restrictive log 2-fold criteria. 

Univariate analyses offer a snapshot of each feature in isolation, but to examine how 

groups of compounds might interact in a matrix, multivariate analyses was required. Partial 

least squares (PLS) is a data reduction technique that seeks linear combinations of raw predictor 

data that capture the maximum amount of variation with respect to a response variable (Kuhn 

and Johnson 2013). If the response variable is continuous, then PLS regression is performed to 

predict the value of a variable, whereas if the response variable is categorical, then partial least 

discriminant analysis is performed to predict a class assignment. Although PLS models are 

built with respect to the variation related to the response variable, the variance in the predictor 

data that is unrelated to the response variable is still included in the model when it is built. On 
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the other hand, orthogonal partial least squares discriminant analysis (OPLS-DA) separates the 

variation from the raw predictor data that is unrelated to the response variable prior to data 

modeling, a step which enhances the interpretability and robustness of PLS models (Trygg and 

Wold 2002).  

OPLS-DA was performed to extract differences in grapes that were specifically related 

to smoke exposure rather than other variables, such as maturation. The percentage of predictor 

variance explained by the model (R2Y value) was 98% for both ionisation modes. The 

predictive performance of the model estimated by cross-validation, given by Q2 values, was 

0.903 and 0.959 for negative and positive ion modes, respectively. The percentage of predictor 

variance and the performance of the models were significantly different to randomly permuted 

models (p<0.001), the values of which were calculated over 1000 permutations. These values 

indicate the robustness of the OPLS-DA model. To identify the most important features, 

variable importance in projection (VIP) scores were used as a filter. VIP scores are often used 

for features selection because they reflect how much a variable influences a given PLS 

component and the share of the total variance that is accounted for by that component 

(Thévenot et al. 2015).  

In negative and positive ion modes respectively, 62 and 100 compounds analysed by 

OPLS-DA had a VIP threshold greater than 1.5. All of the compounds with a VIP score >1.5 

in OPLS-DA were also found using t-tests, volcano plots, or both. In fact, 9 compounds in 

negative ion mode and 19 compounds in positive ion mode were deemed as important 

distinctions between the control and smoke-affected grapes by all three methods. While all of 

the compounds with high VIP scores in the OPLS-DA model also demonstrated statistical 

significance when analysed via t-test, the reverse was not true. In both ionisation modes, ~46% 

of total compounds had only showed significance when analysed using t-tests. As mentioned 

previously, t-tests are an important first step to revealing compounds that are significantly 

different between groups, but OPLS-DA takes this further through the removal of variance in 

the data that is unrelated to smoke exposure and the calculation of latent variables that 

characterise how entire groups of compounds change between control and smoke-affected 

grapes across time. Across the three methods of analysis, 116 compounds in negative ion mode 

and 191 compounds in positive ion mode were revealed as tentative markers of smoke 

exposure.   

In the next phase of data analysis, relative differences in peak area each compound were 

calculated between the mean values for control and smoke-affected grapes to identify 

compounds that were elevated due to smoke exposure by a factor of at least 1.3. This is distinct 
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to the volcano plots, which not only had more restrictive change criteria, but also included 

compounds regardless of the directionality of the change. The relative differences were 

calculated by dividing the smoke-affected mean values by the control mean values to focus on 

compounds that increased due to grapevine smoke exposure. These criteria resulted in 12 (for 

negative ion mode) and 23 (for positive ion mode) compounds that were associated with smoke 

exposure of grapes. As an alternative, the relative differences at each time point could have 

been calculated, but it was important to focus on markers that persist in grapes over time. 

Previous work has highlighted the rapid depletion of volatile phenols in grapes after smoke 

exposure (Szeto et al. 2020; Jiang et al. 2021), and the time-sensitive nature of acquiring a 

representative sample that accurately reflects the degree of grapevine smoke exposure. While 

it would be interesting to identify compounds that accumulate within a few hours of smoke 

exposure, identification of markers with higher diagnostic potential were prioritised. Following 

a bushfire event, vineyard access can be limited due to safety restrictions, and it is critical to 

ensure that markers are stable in grapes to enable accurate quantitation, independent of when 

samples can be collected for analysis.   

Box-and-whisker plots were created to examine the distribution of each variable within 

the distinct populations. The centre line demarcates the median and the edges of the box 

correspond to the 25th and 75th percentiles. The interquartile range is the difference between 

the two percentiles and this value is used to generate the whiskers. The value obtained by 

multiplying the interquartile range by 1.5 is added to the highest observation and subtracted 

from the lowest to generate the upper and lower whiskers, respectively. Observations that lie 

outside the range of the whiskers are plotted as outliers. Compound identities were coded with 

an arbitrary number preceded with the prefix ‘V’ for ‘variable’. Based on the box plots made 

with the negative ion mode data, compounds V_42 and V_44 were removed due to the degree 

of overlap between the control and smoke-affected populations (Supplemental Figure 2). 

While compound V_513 demonstrated an 8-fold difference between smoke-affected and 

control groups, its box-and-whisker plot shows that this difference was driven by several 

outlying points. After compound V_513 was removed, 9 final candidates in negative ion mode 

remained for annotation. Based on the box plots made with the positive ion mode data, 

compound V_650 was removed due to a high level of overlap between compounds and 

compound V_781 was removed due to the influence of outliers (Supplemental Figure 3). 

Once these compounds were removed, 21 final candidates in positive ion mode remained for 

annotation.  
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When these final subsets of compounds were analysed by PCA, a remarkable 75.1% 

and 72.7% of total variance was accounted for by PC1 in negative and positive ion modes, 

respectively (Figure 6). In both PCA scores plots, all control samples were tightly clustered 

across time and the smoke-affected samples fanned out by time point. These plots demonstrate 

that the selected compounds distinguished smoke-affected grapes from control grapes and that 

the distinction between the two populations grew over time. This is the reverse of the trend 

suggested by earlier PCAs, in which the differences between populations decreased over time. 

Using search-by-formula or search-by-mass functions in several databases, candidate 

compounds were tentatively identified based on FISh scores computed in Compound 

Discoverer. FISh scores reflect the fraction of MS2 data that can be explained by the 

fragmentation of a proposed structure. Compounds were also assessed for their feasibility as 

grapevine metabolites based on a search of the literature. Details regarding the RT, chemical 

formula, molecular weight, and key MS2 ions  pertaining to each compound in the final list can 

be found in Supplemental Table 4 (negative ionisation mode) and Supplemental Table 5 

(positive ionisation mode).    

 

Figure 6. Principal components analysis of normalised peak areas of compounds measured in 

Merlot grapes with and without smoke exposure in negative and positive ionisation mode 

following OPLS-DA, volcano plots, and t-tests analysis. Each plot is inclusive of all samples 

at every time point. Colours correspond to different time points and the open or filled status 

of each data point represent control and smoke-affected treatments, respectively. 
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Several compounds were tentatively identified as endogenous plant metabolites in 

plants that were thought to be upregulated in berries in response to smoke exposure. This 

supports the hypothesis that grapevines may activate the phenylpropanoid pathway as a defense 

mechanism against smoke exposure. Compound 2 (negative ion mode, V_86) was tentatively 

identified as 4-hydroxy-3-methoxyphenyl-β-D-glucopyranoside (tachioside) based on a 

search-by-mass in the m/z Cloud online database. As shown in Figure 7, there were no 

matching fragments detected in the MS/MS data; tachioside is nonetheless labelled as a 

tentative candidate because of the proximity of its exact mass to that of Compound 2, as well 

as its known existence in plants. In Spreng and Hofmann (2014), tachioside was identified as 

a key antioxidant in a pilsner-type beer. Tachioside has also been found as a natural substance 

in other plants, including the bark of birch trees (Betula pendula) (Šmite, et al. 1995) and the 

leaves of a Balinese long pepper (Piper retrofractum) (Luyen et al. 2014). To our knowledge, 

tachioside has not been identified as a naturally occurring compound in Vitis vinifera.  

 

Figure 7. Structure and MS/MS spectra of Compound 2, tentatively identified as tachioside. 

The complete structure of the proposed compound is drawn in black. Ions with m/z values 

matching a theoretical fragment ion are highlighted and their structures are drawn in orange.    

 

Compound 3 (negative ion mode, V_90) was putatively identified as arbutin, based on 

a search-by-formula in the PlantCyc database. MS/MS spectra demonstrated evidence of the 

deprotonated hydroquinone (m/z 109) (see Figure 8).  In the cosmetics industry, arbutin serves 

as a key ingredient in skin whitening products due to its ability to inhibit tyrosinase, the enzyme 

that catalyses the synthesis of melanin (Ortiz-Ruiz et al. 2015). In fruit, arbutin is a naturally 
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occurring antioxidant in pears and lingonberries (Cui et al. 2015; Liu et al. 2014). While arbutin 

has not been reported in grapes, arbutin synthase (therein referred to as hydroquinone 

glucosyltransferase) has demonstrated high upregulation in smoke-affected grapevines (van 

der Hulst 2018). As expected, this enzyme demonstrates the highest specificity for 

hydroquinones; however it is capable of glycosylating other phenolic substrates (Hefner et al. 

2002).  

In theory, the upregulation of arbutin synthase could act as a defence mechanism in 

response to smoke exposure in two ways. First, the enzyme might glycosylate smoke-derived 

volatile phenols; second, the enzyme could produce arbutin, a compound with antioxidant 

properties that could defend the plant against damage incurred by reactive oxygen species. 

Compound 3 might also have been furaneol 4-glucoside, which generated the same FISh score 

of 40 (see Supplemental Figure 4).  

 

Figure 8. Structure and MS/MS spectra of Compound 3, tentatively identified as arbutin. The 

complete structure of the proposed compound is drawn in black. Ions with m/z values matching 

a theoretical fragment ion are highlighted and their structures are drawn in orange.   

 

Compound 4 (negative ion mode, V_98) was annotated as caryoptosidic acid based on 

a search-by-formula in PubChem. Caryoptosidic acid (m/z 392) was predominantly detected as 

the formic acid adduct ion [M-FA-H]- (m/z 437) (Supplemental Table 4); however, in the 

MS/MS spectra, the deprotonated acid [M-H]- was the most prevalent fragment (see Figure 9). 

Other fragments, including m/z 161, m/z 113, and m/z 101, were characteristic of a glucoside 

(Noestheden et al. 2018).  



Chapter 5 | Beyond volatile phenols 

156 

 

Caryoptosidic acid belongs to a class of monoterpenoids called iridoids, which are 

known for their antioxidant properties (as reported in Heffels et al. 2017). While 

monoterpenoids, norisoprenoids, and sequiterpenoids are known contributors to grape and 

wine aroma (Winterhalter and Skouroumounis 1997), iridoids have yet to be reported. 

However, work by van der Hulst (2018) has demonstrated that grapevine smoke exposure 

elevates the activity of 7-deoxyloganetic acid glucosyltransferase, a key enzyme in the 

biosynthesis of secologanin, an iridoid in periwinkle (Asada et al. 2013). The upregulation of 

7-deoxyloganetic acid glucosyltransferase may facilitate the production of iridoids to defend 

the plant against the reactive oxygen species present in smoke.  

 

Figure 9. Structure and MS/MS spectra of Compound 4, tentatively identified as caryoptosidic 

acid. The complete structure of the proposed compound is drawn in black. Ions with m/z values 

matching a theoretical fragment ion are highlighted and their structures are drawn in orange.   

 

 

Compound 19 (positive ion mode, V_285) was tentatively annotated as lusitanicoside, 

based on a search-by-formula in m/z Cloud. This compound was detected primarily as a 

protonated [M+H]+ ion (m/z 463) (Supplemental Table 5). The MS/MS spectra showed 

various fragments associated with the phenylpropene group attached to the central glucose ring 

(see Figure 10). This compound is also known as chavicol β-D-glucoside, and its free form, 

chavicol, has been found in numerous fruits including apples, wild musk, and melon (as 



Chapter 5 | Beyond volatile phenols 

157 

 

reported in Atkinson 2018). Chavicol is a naturally occurring phenylpropanoid and may reflect 

upregulated plant defence in response to smoke exposure.   

Tentative assignments of an array of novel volatile phenol glycoconjugates were also 

made, supporting the hypothesis that other smoke-derived compounds are present and might 

further distinguish smoke-affected grapes. Compound 6 (negative ion mode, V_137) was 

tentatively identified as 2-(3,4-dihydroxyphenyl)ethyl 6-O-β-D-glucopyranoside via a search-

by-structure in ChemSpider. This compound was detected as an [M-FA-H]- adduct (m/z 523) 

(Supplemental Table 4) and it is an isomer of syringol gentiobioside (C20H30O13). As shown 

in Figure 11, MS/MS spectra supported the presence of a gentiobioside moiety, characterized 

by m/z 323, as reported previously (Hayasaka et al. 2010b).  

 

Figure 10. Structure and MS/MS spectra of Compound 19, tentatively identified as 

lusitanicoside. The complete structure of the proposed compound is drawn in black. Ions with 

m/z values matching a theoretical fragment ion are highlighted and their structures are drawn 

in orange.   

 

Compound 13 (positive ion mode, V_214) is likely a rutinoside. Characterised by an 

m/z ratio of 496 (Supplemental Table 5), its size surpassed that of 4-methylguaiacol rutinoside 

(m/z 446), the largest rutinoside currently included in commercial analysis of smoke-affected 

grape and wine. To assess the similarity of the observed MS/MS spectra and that of a rutinoside, 

4-methylsyringol rutinoside (m/z 476) was used as a theoretical template (see Figure 12). 4-

methylsyringol was used as the aglycone in place of 4-methylguaiacol because it was supported 

by m/z 155. Several fragments were associated with the fragmentation of a rutinoside, including 

m/z 163, 145, and 85 (Noestheden et al. 2018). 
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Figure 11. Structure and MS/MS spectra of Compound 6, tentatively identified as 

lusitanicoside. The complete structure of the proposed compound is drawn in black. Ions with 

m/z values matching a theoretical fragment ion are highlighted and their structures are drawn 

in orange.   

 

Figure 12. Structure and MS/MS spectra of Compound 13, tentatively identified as a novel 

rutinoside. The complete structure of the proposed compound is drawn in black. Ions with m/z 

values matching a theoretical fragment ion are highlighted and their structures are drawn in 

orange.   
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Compound 8 (negative ion mode, V_150) was detected as an [M-H]- ion (m/z 448) and 

tentatively identified as 3,4-dimethoxyphenyl 6-O-pentopyranosylhexopyranoside 

(Supplemental Table 4). MS/MS spectra showed a large m/z 293 fragment, which has been 

attributed to diglycosides with terminal pentose units in previous literature (Hayasaka et al. 

2010b) (see Figure 13). The sugar moiety is a unique combination comprised of a 

pentopyranose (or arabinopyranose) with a hexose moiety. Previous research has demonstrated 

the natural presence of disaccharides in grapes comprising glucose with xylopyranose 

(primverosides), rhamnose (rutinosides), and glucose (gentiobiosides) (Noestheden et al. 2018, 

Hayasaka et al. 2010b); however, the combination of hexose and pentopyranose has not 

previously been reported. The aglycone 3,4-dimethoxyphenol has been observed as a 

constituent of liquid smoke (Guillén et al. 1995), but it is not a volatile phenol that is currently 

measured in the analysis of smoke-affected grapes and wine. In addition to the selected 

annotation, other possible included benzyl β-primeveroside and benzyl O-[arabinofuranosyl-

(1→6)-glucoside] (see Supplemental Figure 5).  

 

Figure 13. MS/MS spectra of Compound 8, tentatively identified as 3,4-dimethoxyphenol-6-

O-pentopyranosylhexopyranoside. The complete structure of the proposed compound is drawn 

in black. Ions with m/z values matching a theoretical fragment ion are highlighted and their 

structures are drawn in orange.   

 

Compound 17 (positive ion mode, V_230) is likely a volatile phenol based on a search-

by-formula in ChemSpider, detected as an [M+H]+ adduct (m/z 155) (Supplemental Table 5). 

In addition to syringol, many other volatile phenols with the same chemical formula were 
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found, including vanillyl alcohol, 3,5-dimethoxyphenol, 2,4-dimethoxyphenol, and 3,4-

dihydroxyphenyl ethanol (see Supplementary Figure 6). As demonstrated by Figure 14, 

MS/MS spectra supported the loss of the first and second methoxy (i.e. –OCH3) groups (m/z 

123 and 95, respectively). It was surprising to find a free volatile phenol, not only because 

sampled were analysed by liquid chromatography, but also due to the time at which the 

compound eluted from the reverse phase column, being 21.145 min. Thus, it is likely that the 

putative phenol moiety is a part of a larger molecule. 

 

Figure 14. MS/MS spectra of Compound 17, tentatively identified as syringol. The complete 

structure of the proposed compound is drawn in black. Ions with m/z values matching a 

theoretical fragment ion are highlighted and their structures are drawn in orange.   

 

In smoke taint diagnostics, the differentiation of grapes and wine affected by smoke 

exposure is typically conducted by chemical and sensory analysis. The former has been 

restricted to volatile phenols and their glycoconjugate as markers of smoke taint, but the 

complex composition of smoke and the biochemically responsive nature of the grapevine 

during an abiotic stress event such as smoke exposure prompted us to hypothesise that 

additional chemical indicators may be present in grapes that could further distinguish smoke-

affected grapes. Using a combination of univariate and multivariate approaches and selective 

filtering criteria, we were able to reveal compounds that can differentiate control and smoke-

affected grapes in the weeks following grapevine smoke exposure. Additional work is required 

to isolate and confirm the identity of the compounds generated through the present workflow.  
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Supplementary Table 1. List of all settings pertaining to each node of the modified 

“Untargeted Metabolomics with Statistics Detect Unknowns with ID using Online Databases 

and mzLogic” workflow in Compound Discoverer.  

 

Node Settings 

Select Spectra General settings 

• Precursor Selection:  Use MS(n - 1) Precursor 

• Use Isotope Pattern in Precursor Re-evaluation:  True 

• Provide Profile Spectra:  Automatic 

• Store Chromatograms:  False 

Spectrum Properties Filter 

• Lower RT Limit:  0 

• Upper RT Limit:  0 

• First Scan:  0 

• Last Scan:  0 

• Ignore Specified Scans:  (not specified) 

• Lowest Charge State:  0 

• Highest Charge State:  0s 

• Min. Precursor Mass:  0 Da 

• Max. Precursor Mass:  5000 Da 

• Total Intensity Threshold:  0 

• Minimum Peak Count:  1 

Scan Event Filters 

• Mass Analyzer: (not specified) 

• MS Order:  Any 

• Activation Type: (not specified) 

• Min. Collision Energy:  0 

• Max. Collision Energy:  1000 

• Scan Type:  Any 

• Polarity Mode: (not specified) 

Peak Filters 

• S/N Threshold (FT-only):  1.5 

Replacements for Unrecognized Properties 

• Unrecognized Charge Replacements:  1 

• Unrecognized Mass Analyzer Replacements:  ITMS 

• Unrecognized MS Order Replacements:  MS2 

• Unrecognized Activation Type Replacements:  CID 

• Unrecognized Polarity Replacements:  + 

• Unrecognized MS Resolution@200 Replacements:  60000 

• Unrecognized MSn Resolution@200 Replacements:  30000 

Align Retention 

Times 

General Settings 

• Alignment Model:  Adaptive curve 

• Alignment Fallback:  Use Linear Model 

• Maximum Shift [min]:  2 

• Shift Reference File:  True 

• Mass Tolerance:  5 ppm 

Remove Outlier:  True 

Detect Compounds General Settings 

• Mass Tolerance [ppm]:  5 ppm 

• Intensity Tolerance [%]:  30 
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• S/N Threshold:  3 

• Min. Peak Intensity:  100000 

• Ions: [2M+H]+1; [M+ACN+H]+1; [M+H]+1; [M+H+MeOH]+1; 

[M+H-H2O]+1 

• Base Ions:  [M+H]+1; [M-H]-1 

• Min. Element Counts:  C H 

• Max. Element Counts:  C90 H190 N5 O40 S5 

Peak Detection 

• Filter Peaks:  True 

• Max. Peak Width [min]:  0.5 

• Remove Singlets:  True 

• Min. # Scans per Peak:  5 

• Min. # Isotopes:  1 

Group Compounds Compound Consolidation 

• Mass Tolerance:  5 ppm 

• RT Tolerance [min]:  0.2 

Fragment Data Selection 

• Preferred Ions:  [M+H]+1 

Fill Gaps General Settings 

• Mass Tolerance:  5 ppm 

• S/N Threshold:  1. 

• Use Real Peak Detection:  True 

Normalize Areas QC-based Area Correction 

• Regression Model:  Cubic Spline 

• Min. QC Coverage [%]:  50 

• Max. QC Area RSD [%]:  30 

• Max. # Files Between QC Files:  15 

Area Normalization 

• Normalization Type:  [None] 

• Exclude Blanks:  True 

Scaling Factor 

• Study Factor Name:  (not specified) 

Mark Background 

Compounds 

General Settings 

• Max. Sample/Blank:  10 

• Max. Blank/Sample:  0 

• Hide Background:  True 

Assign Compound 

Annotations 

General Settings 

• Mass Tolerance:  5 ppm 

Data Sources 

• Data Source #1:  MassList Search 

• Data Source #2:  Predicted Compositions 

• Data Source #3:  mzCloud Search 

• Data Source #4:  mzVault Search 

• Data Source #5:  Metabolika Search 

• Data Source #6:  ChemSpider Search 

• Data Source #7:  (not specified) 

Scoring Rules 

• Use mzLogic:  True 

• Use Spectral Distance:  True 

• SFit Threshold:  20 

• SFit Range:  20 

Search mzCloud General Settings 
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• Compound Classes:  All 

• Precursor Mass Tolerance:  10 ppm\ 

• FT Fragment Mass Tolerance:  10 ppm 

• IT Fragment Mass Tolerance:  0.4 Da 

• Library:  Autoprocessed; Reference 

• Post Processing:  Recalibrated 

• Max. # Results:  10 

• Annotate Matching Fragments:  True 

DIA Search 

• Use DIA Scans for Search:  False 

• Max. Isolation Width [Da]:  500 

• Match Activation Type:  False 

• Match Activation Energy:  Any 

• Activation Energy Tolerance:  10 

• Apply Intensity Threshold:  False 

• Match Factor Threshold:  20 

Search mzVault Search Settings 

• mzVault Library:  RP_Phenolics.db; StdMix1.db; StdMix2.db 

• Max. # Results:  10 

• Match Factor Threshold:  50 

• Search Algorithm:  HighChem HighRes 

• Match Analyzer Type:  True 

• IT Fragment Mass Tolerance:  0.4 Da 

• FT Fragment Mass Tolerance:  10 ppm 

• Use Retention Time:  False 

• Precursor Mass Tolerance:  10 ppm 

• Apply Intensity Threshold:  True 

• Match Ionization Method:  True 

• Ion Activation Energy Tolerance:  20 

• Match Ion Activation Energy:  Match with Tolerance 

• Match Ion Activation Type:  True 

• Compound Classes:  All 

• Remove Precursor Ion:  True 

• RT Tolerance [min]: 2 

Predict Compositions Prediction Settings 

• Mass Tolerance:  5 ppm 

• Min. Element Counts:  C H 

• Max. Element Counts:  C90 H190 N5 O40 S5 

• Min. RDBE:  0 

• Max. RDBE:  40 

• Min. H/C:  0. 

• Max. H/C:  4 

• Max. # Candidates:  10 

• Max. # Internal Candidates:  200 

Pattern Matching 

• Intensity Tolerance [%]:  30 

• Intensity Threshold [%]:  0.1 

• S/N Threshold:  3 

• Min. Spectral Fit [%]:  3 

• Min. Pattern Cov. [%]:  9 

• Use Dynamic Recalibration:  True 
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Fragments Matching 

• Use Fragments Matching:  True 

• Mass Tolerance:  5 ppm 

• S/N Threshold:  3 

Search  

Mass Lists 

Search Settings 

• Mass Lists:  Arita Lab 6549 Flavonoid Structure 

Database.masslist; Smoke taint.massList; 

20210203_smoke_taint_positive_ion_mode_V3.massList 

• Mass Tolerance:  5 ppm 

• Use Retention Time:  True 

• RT Tolerance [min]:  2 

Search ChemSpider Search Settings 

• Databases: Food and Agriculture Organization of the United 

Nations; Nature Chemistry; PubMed; Royal Society of Chemistry; 

Springer Nature; Toronto Research Chemicals; UsefulChem 

• Search Mode:  By Formula or Mass 

• Mass Tolerance:  5 ppm 

• Max. # of results per compound:  50 

• Max. # of Predicted Compositions to be searched per Compound:  

5 

• Result Order (for Max. # of results per compound):  Order By 

Reference Count (DESC) 

Predicted Composition Annotation 

• Check All Predicted Compositions:  False 

Map to Metabolika 

Pathways 

Search Settings 

• Metabolika Pathways:  Cellulose and hemicellulose degradation 

(cellulolosome); Meta cleavage pathway of aromatic compounds; 

Reactive oxygen species degradation; Sucrose biosynthesis I (from 

photosynthesis); Superpathway of anthocyanin biosynthesis (from 

cyanidin and cyanidin 3-O-glucoside); Superpathway of 

anthocyanin biosynthesis (from delphinidin 3-O-glucoside); 

Superpathway of anthocyanin biosynthesis (from pelargonidin 3-

O-glucoside); Superpathway of carotenoid biosynthesis  

• Search Mode:  By Formula or Mass 

By Mass Search Settings 

• Mass Tolerance:  5 ppm 

By Formula Search Settings 

• Max. # of Predicted Compositions to be searched per Compound:  

3 

Display Setting 

• Max. # Pathways in 'Pathways' column:  20 

Apply mzLogic Search Settings 

• FT Fragment Mass Tolerance:  10 ppm 

• IT Fragment Mass Tolerance:  0.4 Da 

• Max. # Compounds: 0 

• Max. # mzCloud Similarity Results to consider per Compound:   

• Match Factor Threshold:  60 
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Supplemental Table 2. Concentrations of volatile phenols in Merlot grape juice from control 

and smoke-exposed grapes sampled from pre-smoke exposure (t=0 hours) to commercial 

maturity (t=20 days). Values represent means with standard errors from six biological 

replicates. Bold numbers indicate a statistically significant difference between control and 

smoke-affected grapes at each time point (Mann-Whitney U Test, p<0.05). Blank values 

indicate that volatile phenols were either not detected or below their LOQ. 

 

 

 

 

 

 

 

 

 

Treatment Time point guaiacol 4-methylguaiacol phenol o-cresol p-cresol m-cresol syringol 4-methylsyringol 

Control 

0 hours - - - - - - - - 

2 hours - - - - - - - - 

24 hours - - - - - - - - 

6 days - - - - - - - - 

20 days - - - - - - - - 

Smoke 

0 hours - - - - - - - - 

2 hours 17 ± 2 - 20 ± 2  5 ± 0.6 - - 61 ± 5 - 

24 hours - - - - - - - - 

6 days - - - - - - - - 

20 days - - - - - - - - 
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Supplemental Table 3. Concentrations of volatile phenol glycoconjugates in Merlot grape homogenate (µg/kg) from control and smoke-exposed 

grapes sampled from pre-smoke exposure (t=0 hours hours) to commercial maturity (t=20 days). Values represent means and standard error of the 

mean (as syringol gentiobioside equivalents) from up to six biological replicates. Bold numbers indicate a statistically significant difference 

between control and smoke-affected grapes at each time point (Mann-Whitney U Test, p<0.05). Blank values indicate that glycoconjugates were 

either not detected or below their LOQ. Gu = guaiacol, 4MGu = 4-methylguaiacol, Ph = phenol, G = glucoside, GB = gentiobioside, PG = pentose 

glucoside, and R = rutinoside.  

Time point Treatment GuG GuGB GuPG GuR 4MGuG 4MGuPG 4MGuR PhG PhGB PhPG PhR 

0 hours 
Control - - 4.1 ± 0.3 - - 2.4 ± 0.2 1.1 ± 0.1 - - 21 ± 2 - 

Smoke - - 3.4 ± 0.3 - - 2.0 ± 0.1 1.0 ± 0.1 - - 17 ± 1 - 

2 hours 
Control - - 3.4 ± 0.1 - - 2.2 ± 0.1 1.0 ± 0.1 - - 15 ± 1 - 

Smoke 4.6 ± 0.7 4.7 ± 0.3 14 ± 0.8 1.4 ± 0.1 1.6 ± 0.1 5.5 ± 0.3 2.9 ± 0.2 1.5 ± 0.5 - 23 ± 2 1.1 ± 0.1 

24 hours 
Control - - 3.6 ± 0.2 - - 2.3 ± 0.1 1.1 ± 0.1 - - 17 ± 1 - 

Smoke 5.1 ± 0.6 12 ± 0.6 37 ± 2 3.2 ± 0.0 1.5 ± 0.1 11 ± 0.5 6.2 ± 0.5 2.4 ± 0.9 - 55 ± 3 4.3 ± 0.1 

6 days 
Control - - 4.6 ± 0.3 - - 2.5 ± 0.1 1.4 ± 0.1 - - 18 ± 1 - 

Smoke 3.3 ± 0.4 21 ± 2 71 ± 6 8.0 ± 0.6 - 16 ± 2 11 ± 1 11 ± 3 1.4 ± 0.2 114 ± 13 13 ± 1 

13 days 
Control - - 5.1 ± 0.3 - - 2.6 ± 0.1 1.9 ± 0.2 - - 19 ± 1 - 

Smoke 1.9 ± 0.1 28 ± 3 86 ± 5 11 ± 0.4 - 17 ± 2 12 ± 1 4.0 ± 0.5 1.7 ± 0.2 147 ± 16 19 ± 2 

20 days 
Control - - 5.6 ± 0.3 - - 2.7 ± 0.1 2.2 ± 0.1 - - 22 ± 1 - 

Smoke 1.7 ± 0.1 36 ± 5 88 ± 6 12 ± 0.5 - 17 ± 2 12 ± 1 5.6 ± 1 1.8 ± 0.2 160 ± 21 21 ± 3 

 

Table continues onto next page.  
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Supplemental Table 3 (continued). Concentrations of volatile phenol glycoconjugates in Merlot grape homogenate (µg/kg) from control and 

smoke-exposed grapes sampled from pre-smoke exposure (t=0 hours hours) to commercial maturity (t=20 days). Values represent means and 

standard error of the mean (as syringol gentiobioside equivalents) from up to six biological replicates. Bold numbers indicate a statistically 

significant difference between control and smoke-affected grapes at each time point (Mann-Whitney U Test, p<0.05). Blank values indicate that 

glycoconjugates were either not detected or below their LOQ. Cr = cresol, Sy = syringol, 4MSy = 4-methylsyringol, G = glucoside, GB = 

gentiobioside, PG = pentose glucoside, and R = rutinoside. 

 

 

 

 

 

 

Time point Treatment CrG CrGB CrPG CrR SyG SyGB SyPG 4MSyGB 4MSyPG 

0 hours 
Control - 1.0 ± 0.1 18 ± 0.9 1.4 ± 0.1 1.5 ± 0.5 2.1 ± 0.2 1.3 ± 0.1 - 1.4 ± 0.1 

Smoke - - 15 ± 1 1.2 ± 0.1 0.9 ± 0.2 1.8 ± 0.2 1.2 ± 0.1 - 1.2 ± 0.1 

2 hours 
Control - 1.3 ± 0.1 16 ± 0.9 1.2 ± 0.1 1.0 ± 0.1 2.1 ± 0.1 1.2 ± 0.0 - 1.2 ± 0.1 

Smoke 31 ± 3 - 32 ± 2 4.4 ± 0.4 4.0 ± 0.2 18 ± 0.8 1.9 ± 0.1 1.9 ± 0.1 1.3 ± 0.1 

24 hours 
Control - 1.1 ± 0.0 17 ± 0.8 1.2 ± 0.1 - 2.2 ± 0.1 1.2 ± 0.0 - 1.2 ± 0.1 

Smoke 41 ± 4 1.0 ± 0.1 74 ± 5 16 ± 1 6.9 ± 0.7 57 ± 4 5.1 ± 0.2 5.0 ± 0.4 2.2 ± 0.2 

6 days 
Control - 1.6 ± 0.1 18 ± 0.7 1.7 ± 0.1 1.4 ± 0.2 2.6 ± 0.2 1.4 ± 0.1 - 1.1 ± 0.1 

Smoke 12 ± 2 1.3 ± 0.1 127 ± 16 36 ± 5 4.5 ± 0.5 120 ± 14 9.7 ± 1 8.2 ± 0.9 2.7 ± 0.3 

13 days 
Control - 1.6 ± 0.1 19 ± 1 1.9 ± 0.1 1.4 ± 0.3 2.8 ± 0.1 1.5 ± 0.1 - - 

Smoke 4.9 ± 0.7 1.4 ± 0.1 145 ± 21 39 ± 6 2.8 ± 0.3 135 ± 18 11 ± 1 7.9 ± 1 2.7 ± 0.3 

20 days 
Control - 1.9 ± 0.1 20 ± 0.8 2.4 ± 0.2 1.8 ± 0.3 3.3 ± 0.1 1.7 ± 0.1 - 1.0 ± 0.0 

Smoke 3.7 ± 0.3 1.6 ± 0.1 140 ± 16 44 ± 6 1.8 ± 0.2 150 ± 18 12 ± 1 8.6 ± 0.6 2.6 ± 0.2 
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Supplemental Table 4. Tentatively identified compounds in negative ion mode that differentiate control and smoke-affected Merlot grapes. Name, 

chemical formula, exact mass, adduct, Fragment Ion Search (FISh scores), and MS2 product ions are shown where available. Formulas were 

generated in Compound Discoverer and possible solutions were limited to the following elements: C, H, N, O, P, and S. Exact masses were 

calculated from the most abundant isotopes of the elements comprising each compound. FISh scores were computed in Compound Discoverer, 

based on how much a proposed structure could account for the fragmentation pattern in an unknown peak. Product ions in boldface type were the 

most abundant in the selected spectra.  

 

 

 

Compound 

ID 

Name Formula RT 

(min) 

Exact mass Adduct m/z FISh 

Score 

MS2 Product ions 

1 (V_65)  C13H20O10 4.358 336.105516 [M-H] 335.09824 - 222.06807, 154.99892, 144.92371, 

98.46259, 85.79871 

2 (V_86) 4-hydroxy-3-methoxyphenyl-β-D-

glucopyranoside (Tachioside) 

C13H18O8 7.111 302.099496 [M-H] 301.09222 0 222.05687, 185.62344, 177.78032, 

173.43906, 161.65952, 136.99142, 

121.02953, 115.34635, 104.79520 

3 (V_90) arbutin C12H16O7 8.639 272.088846 [M-H] 271.08157 40 218.1270, 145.82069,  

135.03035, 116.98318, 109.02933, 

82.55019, 80.23140, 72.99312 

4 (V_98) caryoptosidic acid C16H24O11 10.063 392.13186 [M+FA-

H] 

437.12848 72 401.00848, 391.12686, 313.21622, 

259.08264, 256.71252, 161.04562, 

134.13846, 113.0242, 101.0245 

5 (V_115)  - 14.158 - [M-H] 433.13617 - 324.81854, 293.08890, 174.83430, 

128.97581, 116.38879 

6 (V_137) 2-(3,4-dihydroxyphenyl)ethyl 6-O- 

β-D-glucopyranoside 

C20H30O13 19.659 478.16864 [M+FA-

H] 

523.16644 100 416.21399, 406.63690, 323.09952, 

121.92798, 101.69623, 81.42110 

7 (V_141)  C30H40O14S 20.446 656.21376 [M-H] 655.20654 - 637.05676, 455.14655, 235.34605, 

118.68836, 83.70055 

8 (V_150) 3,4-dimethoxyphenyl 6-O-

pentopyranosylhexopyranoside 

C19H28O12 22.160 448.15715 [M-H] 447.14966 50 426.74881, 401.14819, 293.08875,  

173.46011, 166.43546, 89.02431 
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Supplemental Table 5. Tentatively identified compounds in positive ion mode that differentiate control and smoke-affected Merlot grapes. Name, 

chemical formula, exact mass, adduct, Fragment Ion Search (FISh scores), and MS2 product ions are shown where available. Formulas were 

generated in Compound Discoverer and possible solutions were limited to the following elements: C, H, N, O, P, and S. Exact masses were 

calculated from the most abundant isotopes of the elements comprising each compound. FISh scores were computed in Compound Discoverer, 

based on how much a proposed structure could account for the fragmentation pattern in an unknown peak. Product ions in boldface type were the 

most abundant in the selected spectra.  

Compound ID Name Formula RT (min) Mass A m/z FISh Score MS/MS Product ions 

1 (V_23)  C22H17NO6 2.883 391.10586 [M+H] 392.11319 - 389.84644, 252.72415, 234.93306, 161.76767, 149.58134, 121.50095, 

101.17762, 67.73016 

2 (V_54)  C14H29NO8 4.223 339.18960 [M+H] 340.19684 - 324.47116, 209.60641, 140.301212, 88.25010, 70.23579, 65.89900 

3 (V_58)  C13H17N5O4 4.337 307.12704 [M+H] 308.13431 - 308.17093, 214.73059, 211.97791, 201.01224, 131.26486, 111.04372, 83.04934 

4 (V_59)  C14H25NO8 4.338 335.15835 [M+H] 336.16556 - 241.47081, 202.05797, 138.06606, 132.49782 

5 (V_60)  C13H20O7 4.338 312.08243 [M+H] 313.08975 - 313.09018, 244.40137, 210.18295, 200.03398, 113.70119, 118.25055, 89.34587, 

83.54485 

6 (V_87)  C13H27NO7 5.195 309.17904 [M+H] 310.18634 - 179.09314, 103.50321, 75.67420, 59.23890 

7 V_95)  C18H31NO12 6.746 453.18512 [M+H] 454.19238 - 440.53296, 269.80685, 257.11310, 172.03996, 150.94844, 138.52840, 

113.05936 

8 (V_96)  C20H35NO12 6.748 481.21648 [M+H] 482.22375 - 344.09787, 330.16290, 232.44911, 145.04950, 113.05947, 104.49859, 88.64746 

9 (V_122)  C18H31NO11 10.045 437.19023 [M+H] 438.19748 - 325.08737, 296.16986, 286.44464, 274.92377, 84.69194, 69.90922 

10 (V_123)  C17H23N5O7 10.046 409.15903 [M+H] 410.16641 - 395.84903, 281.81772, 213.07617, 197.54613, 133.04909, 123.04343, 

115.03847, 97.0287, 81.03310 

11 (V_164)  C18H23N5O6 14.138 405.16392 [M+H] 406.17136 - 412.22498, 280.30133, 197.03401, 194.69070, 166.27464, 145.0495, 143.04051, 

133.04991, 66.28886 

12 (V_213)  C22H37NO13 19.650 523.22709 [M+H] 524.23438 - 524.233358, 349.43805, 331.60492, 248.24800, 235.56512, 233.75864, 

163.67529, 126.81951, 85.13928 

13 (V_214) rutinoside - 19.659 495.19580 - 496.20309 67 248.55984, 163.05998, 155.06989, 145.04941, 123.04414, 85.02861, 90.32681 

14 (V_220)  C29H38O15 20.454 627.23771 [M+H] 628.24536 - 461.40399, 358.328.7712, 163.06082, 155.06990, 127.0384, 115.95625, 

87.91180 

15 (V_226)  C19H25N5O7 20.785 435.17443 [M+H] 436.18176 - 202.05746, 133.04985, 127.03884, 97.02799 

16 (V_229)  C16H27NO8 21.131 361.17391 [M+H] 362.18121 - 323.46265, 168.33810, 133.18292, 115.71628, 104.78747 

17 (V_230) syringol C8H10O3 21.145 154.06284 [M+H] 155.07011 36 202.05739, 175.12941, 123.04371, 113.96336, 105.04426, 95.04879, 93.22483, 

72.93705 

18 (V_284)  C15H18O4 23.020 262.12048 [M+H] 263.12772 - 221.43633, 199.11153, 189.93918, 171.11774, 153.05406, 156.09245, 

141.98993, 57.60071 

19 (V_285) lusitanicoside C21H30O10 23.021 442.18434 [M+H] 443.19165 33 347.71872, 281.13956, 263.12805, 245.10710, 199.11168, 173.45222, 

171.11697, 161.09558, 153.05423, 127.03888 

20 (V_479)  C14H22O3 25.090 238.15701 [M+H] 239.16426 - 206.24719, 129.77292, 109.10078, 97.87645 

21 (V_481)  C20H32O8 25.100 400.21009 [M+H] 401.21741 - 376.76575, 277.54495, 239.16483, 153.09033, 108.05788, 68.94369 
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Supplemental Figure 1. Modified data processing workflow, based on the “Untargeted 

Metabolomics with Statistics Detect Unknowns with ID using Online Databases and mzLogic” 

template in Compound Discoverer.  
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Supplemental Figure 2. Box-and-whisker plots demonstrating mean differences in pre-processed peak 

areas differentiating features detected in control and smoke-affected Merlot grapes when analysed using 

negative ionisation mode.   
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Supplemental Figure 3. Box-and-whisker plots demonstrating mean differences in pre-processed peak 

areas differentiating features detected in control and smoke-affected Merlot grapes when analysed using 

positive ionisation mode.  
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Supplemental Figure 3 (continued). Box-and-whisker plots demonstrating mean differences in pre-

processed peak areas differentiating features detected in control and smoke-affected Merlot grapes 

when analysed using positive ionisation mode. 
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Supplemental Figure 4. MS/MS spectra for Compound 3, tentatively identified as 4-furaneol 

glucoside. The complete structure of the proposed compound is drawn in black. Ions with m/z 

values matching a theoretical fragment ion are highlighted and their structures are drawn in 

orange.   
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Supplemental Figure 5. MS/MS spectra for Compound 6, tentatively identified as (a) benzyl-

O-[arabinofuranosyl-1->6] glucoside and (b) benzyl primeveroside. The complete structures of 

the proposed compounds are drawn in black. Ions with m/z values matching a theoretical 

fragment ion are highlighted and their structures are drawn in orange.   

 

(a) benzyl-O-[arabinofuranosyl-1->6] glucoside  

 

(b) benzyl-β-primeveroside  
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Supplemental Figure 6. MS/MS spectra of Compound 17, tentatively identified as (a) 

vanillyl alcohol, (b) 3,4-dihydroxyphenyl ethanol, (c) 2,4-dimethoxyphenol, and (d) 3,5-

dimethoxyphenol. The complete structure of the proposed compound is drawn in black. Ions 

with m/z values matching a theoretical fragment ion are highlighted and their structures are 

drawn in orange.   
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(c) 2,4-dimethoxyphenol  

 

(d) 3,5-dimethoxyphenol  
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Abstract: When bushfires occur near wine regions, grapevine exposure to smoke can taint grapes due
to the uptake of smoke-derived volatile compounds that can subsequently impart unpleasant smoky,
medicinal, burnt rubber and ashy characters to wine. Whereas early research sought to understand
the effects of smoke on grapevine physiology, and grape and wine chemistry, research efforts have
shifted towards the strategic imperative for effective mitigation strategies. This study evaluated the
extent to which excised grape bunches could be reproducibly tainted during smoke exposure in a
purpose-built ‘smoke box’. The volatile phenol composition of grapes exposed to smoke for 30 min
was similar to that of smoke-affected grapes from field trials involving grapevine exposure to smoke.
Some variation was observed between replicate smoke treatments, but implementing appropriate
controls and experimental replication enabled the smoke box to be used to successfully evaluate
the efficacy of several agrochemical sprays and protective coverings as methods for mitigating the
smoke exposure of grapes. Whereas the agrochemical sprays did not provide effective protection
from smoke, enclosing grape bunches in activated carbon fabric prevented the uptake of up to
98% of the smoke-derived volatile phenols observed in smoke-affected grapes. As such, the study
demonstrated not only a convenient, efficient approach to smoke taint research that overcomes
the constraints associated with vineyard-based field trials, but also a promising new strategy for
preventing smoke taint.

Keywords: activated carbon fabric; anti-transpirant; bushfires; grapes; guaiacol; kaolin; volatile
phenols; volatile phenol glycoconjugates; wine

1. Introduction

Grape growers and winemakers are keenly aware of the impacts of climate change on
grape production [1] and have already begun adapting viticultural practices in response to
warmer and drier growing conditions, for example, through the use of heat- and drought-
tolerant cultivars and rootstocks [2], in-canopy sprinkler systems to mitigate heat stress [3],
manipulation of crop load and water status to slow ripening [4] and delayed pruning to
counter vintage compression [5]. Wine regions around the world are also being challenged
by wildfires (or bushfires) which are occurring with increased frequency and severity [6].
Vineyard exposure to smoke can taint grapes due to the absorption of smoke-derived
volatile compounds, including volatile phenols [7–9], which can impart smoky, medicinal,
burnt rubber and ashy characters to wine [8,10,11]. In the last 5 years, fires have affected
one or more vintages in prominent wine regions in Australia, Canada, Chile, New Zealand,
South Africa and the USA [12,13], and revenue losses arising from ‘smoke taint’ are thought
to be in the hundreds of millions of dollars [14,15]. Strategies that mitigate or ameliorate
the effects of vineyard smoke exposure are therefore needed.

Early research found that smoke-derived volatile phenols could be removed from wine
either by the direct addition of activated carbon [16] or solid phase adsorption following
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nanofiltration [17], and these methods are still being used by industry to ameliorate smoke-
tainted wine. However, ideally, preventative strategies should mitigate smoke taint in the
vineyard. To date, few mitigation studies have been performed on grapes or grapevines.
Washing grapes (during or after smoke exposure) does not prevent the uptake of smoke-
derived volatile phenols by grapes or the perception of smoke attributes in wine [18,19],
nor does partial defoliation of grapevines [20]. Several recent studies have evaluated the
application of agrochemicals such as kaolin, biofilm, anti-transpirants and activated carbon
to grapes or vines as protective sprays [21–24]. In some instances, promising results were
obtained, although the efficacy of the treatment depended on spray coverage [21,22], but
some treatments seemed to exacerbate the adsorption of smoke volatiles [22,24]. As such,
an effective vineyard-based strategy for preventing smoke taint is yet to be found.

A key challenge associated with field trials evaluating the mitigation of smoke taint is
the logistics of achieving reproducible experimental treatments with appropriate controls,
both grapevines/grapes which are not exposed to smoke (i.e., negative controls) and
grapevines/grapes which are exposed to smoke but without the mitigation treatment(s)
(i.e., positive controls). The need for reproducible smoke treatments precludes mitigation
trials involving grapevine exposure to wildfire/bushfire smoke, because the occurrence of
fires cannot be predicted, the density and duration of smoke exposure is often unknown
(and is likely to be highly variable, even within a single vineyard) and there are usually
no appropriate controls. Model systems have therefore been developed to overcome
these limitations. In the vineyard, purpose-built smoke tents (ranging from ~18 to 60 m3)
facilitate grapevine exposure to smoke [8,10,18,19,25,26]. This approach enables smoke and
mitigation treatments to be applied at different phenological stages during the growing
season [25,26], and the intensity of the taint can be influenced according to the duration of
smoke exposure [10] and the density of the smoke (i.e., the mass of fuel that is burned) [18].
Several of these studies have attempted to monitor/qualify smoke density using air quality
monitors or particulate matter sensors [18,19,25], but the density of smoke achieved in the
smoke tents resulted in detector saturation [18,19].

More recently, model systems involving the exposure of excised grape bunches to
either smoke (in smoke tents) [23,27] or gaseous volatile phenols (in closed systems, ranging
from 6 to 156 L) [24,27] have been used. Surprisingly, the glycosylation of volatile phenols
observed in grapes following grapevine exposure to smoke or guaiacol [8,18–21,28,29] was
also found to occur in excised bunches [23,24,27], even in table grapes purchased from retail
stores [23,24]. These approaches can therefore be used to generate grapes with elevated
concentrations of volatile phenols, in both free and bound (glycosylated) forms. The use of
smoke tents and excised bunches provides access to smoke-affected grapes in quantities that
allow for winemaking (and therefore chemical and sensory analyses of wine), but smoke
treatments need to be applied at or near commercial maturity, because grapes are non-
climacteric (i.e., they do not continue to ripen post-harvest). Excised bunches can instead
be exposed to different concentrations and/or combinations of gaseous volatile phenols
at different phenological stages to simulate smoke exposure (e.g., to study the kinetics of
absorption), but the scale of this approach is less suitable for winemaking and sensory
analysis (because a 156 L glass tank can only accommodate so many excised bunches).

Collectively, the model systems described above have enabled researchers to undertake
controlled and replicated smoke taint experiments with fewer logistical challenges such as
seasonal or environmental constraints and/or restrictions related to safety, the occurrence
of fires, and vineyard access [23]. Researchers can simulate smoke exposure to screen
prospective mitigation strategies before pursuing more time- and resource-intensive field
trials with the most promising strategies. Nevertheless, the extent to which model systems
can replicate smoke treatments, and therefore mitigation trials, needs to be validated. This
study describes the evaluation of a ‘smoke box’ designed specifically as a model system for
exposing grapes to smoke with improved efficiency, flexibility and convenience (relative
to field trials involving the use of smoke tents). Importantly, the study sought to evaluate
how reproducibly excised bunches could be tainted by smoke, not only between replicate
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smoke treatments but also within smoke treatments (i.e., taking the potential for spatial
variation in the density of smoke into account). The smoke box was subsequently used to
compare the efficacy of several agrochemical sprays and protective coverings as methods
for mitigating the uptake of smoke-derived volatile phenols by grapes, i.e., the risk of
smoke taint.

2. Results and Discussion
2.1. Evaluation of the Purpose-Built Smoke Box (Repeatability Trial)

To evaluate the reproducibility of smoke treatments (both the spatial variation in
smoke density during individual treatments and the variation among three replicate smoke
treatments), mature bunches of Semillon grapes were suspended in the smoke box depicted
in Figure 1 (and described in more detail in Section 3.1) in a 3 × 3 array (i.e., evenly spaced
both horizontally (left, centre and right) and vertically (top, middle and bottom)) and
exposed to smoke. Preliminary experiments confirmed that the smoke density in the box
depended on the mass of fuel burned and the duration of smoke exposure (data not shown).
Smoke treatments were therefore standardized in the current study by combusting set
quantities of fuel (100 g of barley straw) and removing grape bunches from the smoke box
after a set time (30 min).
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Figure 1. Schematic of the purpose-built smoke box. 

Whereas the volatile phenols measured as markers of smoke taint (i.e., guaiacol, 4-
methylguaiacol, phenol, cresols, syringol and 4-methylsyringol) were not detected in the 
control (unsmoked) grapes, they were found at elevated concentrations in grapes follow-
ing smoke exposure. The heat maps shown in Figure 2 visualize the variation in guaiacol 
concentration, both by bunch position and by replicate smoke treatment. Bunches posi-

Figure 1. Schematic of the purpose-built smoke box.

Whereas the volatile phenols measured as markers of smoke taint (i.e., guaiacol,
4-methylguaiacol, phenol, cresols, syringol and 4-methylsyringol) were not detected in
the control (unsmoked) grapes, they were found at elevated concentrations in grapes
following smoke exposure. The heat maps shown in Figure 2 visualize the variation in
guaiacol concentration, both by bunch position and by replicate smoke treatment. Bunches
positioned in the top left and bottom right of the box tended to have higher guaiacol
concentrations, whereas bunches at the bottom left of the box had the lowest guaiacol
concentrations. This likely reflects the initial anticlockwise trajectory of smoke as it entered
the box, after which the smoke dispersed to fill the box; nevertheless, the ~1 min required
to achieve complete obscuration may account for the observed spatial variation in volatile
phenol concentrations (Figure 2). Similar results were observed for the other smoke-derived
volatile phenols that were measured (Figure S1).
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Figure 2. Heat maps depicting spatial variation in the guaiacol concentration of grapes exposed to
smoke post-harvest, using the purpose-built smoke box, in replicate smoke treatments and as an
average across the three smoke treatments.

Guaiacol, phenol, o-cresol, m-cresol and syringol were the most abundant grape
volatile phenols (Table 1), at 90–187, 121–220, 38–66, 30–53 and 18–71 µg/L, respectively,
in agreement with previous research [18]. When volatile phenol concentrations were com-
pared as means of each replicate smoke treatment (i.e., irrespective of bunch position),
statistically significant differences in the composition of smoke-exposed grapes were appar-
ent. Volatile phenols were significantly higher in grapes from the third smoke treatment,
while significant differences in phenol, o-cresol, syringol and 4-methylsyringol were also
observed between the first two smoke treatments (Table 1). This demonstrates the difficulty
of exactly replicating smoke treatments. The variation observed in grape volatile phenols
reflected the variation in smoke density attributable to a combination of incomplete com-
bustion of fuel and the inevitable loss of some smoke from the smoker (which did not
fully seal to give a closed system) and, to a lesser extent, from the fitting connecting the
smoker and the exhaust ducting. It was slightly cooler (22–24 ◦C) during the first two
smoke treatments, with a slight breeze that may have contributed to some loss of smoke,
whereas during the third treatment, it was slightly warmer (25 ◦C) but still (i.e., there was
no wind). During windy conditions, greater smoke loss might occur, potentially resulting
in greater variation in smoke density between smoke replicates.

Table 1. Concentration of volatile phenols (µg/L) in juice from control grapes and grapes exposed to
smoke (or smoke residue).

Treatment Guaiacol 4-Methyl
Guaiacol Phenol o-Cresol m-Cresol p-Cresol Syringol 4-Methyl

Syringol

Control nd nd na nd nd nd nd nd
Smoke 1 105 ± 5 b 17 ± 0.8 b 121 ± 7 c 38 ± 2 c 30 ± 2 b 6 ± 0.5 b 50 ± 2 b 7 ± 0.2 b
Smoke 2 90 ± 8 bc 14 ± 1.4 b 176 ± 15 ab 52 ± 5 b 36 ± 3 b 8 ± 1 b 18 ± 2 c 2 ± 0.1 c
Smoke 3 187 ± 9 a 31 ± 1.6 a 220 ± 10 a 66 ± 3 a 53 ± 3 a 13 ± 1 a 71 ± 3 a 9 ± 0.3 a

Smoke Residue 55 ± 2 c 7 ± 0.7 c 149 ± 18 bc 46 ± 1 bc 28 ± 2 b 8 ± 3 b 15 ± 2 c 2 ± 0.1 c

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Values are means of three replicates (n = 3) ± standard error for control and residual smoke samples or and nine
replicates (n = 9) ± standard error for replicate smoke samples. nd = not detected; na = not available. Different
letters (within columns) indicate statistical significance (p = 0.05, one-way ANOVA).

When grape volatile phenol concentrations were instead compared according to the
position of the excised bunches during the smoke treatment (i.e., as the means of each
bunch position across replicate smoke treatments), differences in the composition of smoke-
exposed grapes were again apparent (e.g., guaiacol concentrations ranged from 100 to
154 µg/L). However, differences were not statistically significant, due to the variation
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between replicate smoke treatments (Table S1). This variation has also been encountered
with field trials involving the application of smoke to grapevines using smoke tents, and
can result in elevated standard deviation/error values for smoke taint marker concentra-
tions [18]. Nevertheless, the use of the smoke box reduces the likelihood that insufficient
smoke will be applied to achieve detectable levels of smoke taint. Mitigation trials need to
account for the possibility of variation between replicate smoke treatments; i.e., by ensuring
experimental treatments are adequately controlled and replicated across smoke treatments.
Where mitigation strategies are effective, changes in volatile phenol concentrations will
easily exceed any variation observed between replicate smoke treatments, but where the
variation is such that the mitigating effect is difficult to ascertain, it likely suggests that the
strategy is not capable of providing meaningful protection from smoke exposure.

Upon completion of the replicate smoke treatments, three excised bunches of Semillon
grapes were suspended in the box for 48 h to evaluate the potential for grapes to absorb
volatile phenols from the smoke residue that remained. Elevated concentrations of volatile
phenols were detected following exposure to smoke residue (Table 1), with guaiacol, phenol,
o-cresol, m-cresol and syringol again being the most abundant at 55, 149, 46, 28 and 15 µg/L,
respectively, which were ~40–90% of the average concentrations observed for grapes
exposed to smoke in the box (i.e., concentrations averaged across both bunch position and
smoke treatment). While residual smoke was not expected to meaningfully contribute
to the uptake of volatile phenols by grapes during the 30 min smoke treatments used in
the current study (i.e., due to carryover), the results highlight the need for/importance of
adequately cleaning/airing the box between experimental trials.

Previous research has demonstrated the glycosylation of volatile phenols in fruit and/or
leaves following grapevine exposure to either smoke or volatile phenols [8,18–21,28,29], and
likely occurs (through the action of glucosyltransferase enzymes) to mitigate the risk of
cellular damage [30]. More recent studies have shown that glycosylation also occurs
following post-harvest exposure of grapes to smoke or volatile phenols, i.e., in excised
bunches [23,24,27], including in table grapes [23,24]. Similar results were obtained in the
current study. Control grapes comprised ≤ 7 µg/kg of the volatile phenol glycoconjugates
that were measured, but substantial quantities of several glycoconjugates accumulated in
the week after the grapes were exposed to smoke in the box (Table 2); in particular, the
pentose-glucosides of guaiacol, phenol and cresols were quantitated (as syringol glucose-
glucoside (gentiobioside) equivalents) at 242, 216 and 213 µg/kg, respectively. Again,
this was in agreement with the results from previous research [18,21,27]; however, some
important differences were observed in the volatile phenol glycoside profiles reported in
these studies.

Table 2. Concentration of volatile phenol glycoconjugates (µg/kg) in control grapes and grapes
exposed to smoke post-harvest, using the purpose-built smoke box, analysed 7 days after smoke
exposure.

Treatment GuPG GuR 4MGPG 4MGR PhPG PhR CrPG CrR SyrGG 4MSGG

Control 2.4 ± 0.1 b nd nd nd 3.7 ± 0.1 b nd 7.1 ± 0.5 b 1.4 ± 0.1 b 1.0 ± 0.1 b nd
Smoke 242 ± 27 a 110 ± 10 22 ± 3 27 ± 3 216 ± 31 a 89 ± 11 213 ± 25 a 114 ± 10 a 55 ± 7 a 9 ± 1

p <0.001 - - - 0.003 - <0.001 <0.001 0.001 -

Values are means of three replicates (n = 3) ± standard error, measured as syringol glucose-glucoside equivalents,
for control grapes or nine replicates (n = 9) ± standard error for smoke-affected grapes. nd = not detected.
Different letters (within columns) indicate statistical significance (p = 0.05, one-way ANOVA). Gu, guaiacol;
4MG, 4-methylguaiacol; Ph, phenol; Cr, cresol; Syr, syringol; 4MS, 4-methylsyringol; PG, pentose-glucoside; GG,
glucose-glucoside; R, rutinoside.

Table S2 presents a cross-study comparison of volatile phenol glycoconjugate concen-
trations observed in grapes following exposure to either smoke or gaseous volatile phenols
under different experimental conditions. One of these studies monitored the accumulation
of volatile phenol glycoconjugates in smoke-affected Cabernet Sauvignon grapes [18] and
reported glycoconjugate concentrations (i.e., 89–217 µg/kg) 1 week after smoke exposure
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that were comparable to those observed in excised Semillon bunches in the current study;
the notable exceptions being rutinosides of guaiacol and phenol, which were <30 µg/kg in
the Cabernet Sauvignon grapes. These results were also in agreement with an earlier study
that monitored glycoconjugate accumulation in smoke-affected Merlot grapes [21] and
reported rutinosides of guaiacol and phenol at 22 and 26 µg/kg, respectively, relative to the
aforementioned volatile phenol pentose glucosides, which were present at 113–300 µg/kg.
In contrast, cresol rutinoside concentrations were surprisingly consistent across these three
studies, at 114, 89 and 113 µg/kg for Semillon, Cabernet Sauvignon [18], and Merlot [21]
grapes, respectively. This suggests that the enzymes responsible for transforming volatile
phenols into rutinosides are not inhibited by bunch excision, although glycosylation might
be influenced by substrate substitution patterns. This is an important consideration, given
that gentiobiosides and rutinosides represent the key glycoconjugates monitored by some
commercial laboratories for screening grapes (and wine) for smoke taint, based on their
strong association with smoke taint’s sensory attributes [11]. The abundance of pentose
glucosides following smoke exposure of excised bunches may influence the perceived
efficacy of mitigation trials and/or the intensity of smoke-related sensory attributes in
wines, and warrants further investigation.

Another notable difference in the glycoconjugate profiles was that of syringol gentio-
bioside concentrations. In previous studies involving the application of smoke to Caber-
net Sauvignon and Merlot grapevines, syringol glucose glucosides (gentiobiosides) were
amongst the most abundant glycoconjugates observed in grapes (7 days after smoke expo-
sure and at harvest). However, in the current study, and in studies involving the exposure
of excised bunches to gaseous phenols [24,27], the concentrations of both syringol and
its glucose glucoside (gentiobioside) were comparatively lower than those observed in
grapes harvested from smoke-exposed grapevines [18,21]. It is not clear if this reflects the
use of excised bunches or other experimental conditions, e.g., fruit maturity at the time of
exposure, grape variety or the relative volatility of different phenols.

Although the application of smoke to grapevines or grape bunches presents inherent
logistical challenges, a major benefit compared with the exposure of grape bunches to
gaseous volatile phenols [24,27] as an alternate model system is that smoke-exposed grapes
can be taken through to a winemaking outcome for sensory analysis; however, in the case
of excised bunches, smoke exposure would need to occur at or near maturity. The use of
gaseous volatile phenols offers the benefit of regulating the quantity of volatile phenols
being applied to grapes, which may afford opportunities to investigate the kinetics of
uptake and/or biochemical metabolism of volatile phenols (e.g., to resolve knowledge gaps
relating to volatile phenol/glycoconjugate mass balance) [18]. Each of the model systems
described above afford different advantages and disadvantages, and the most suitable
option will depend on the research aim(s) to be investigated (e.g., Figure S2). The smoke
box serves as a compromise between the use of smoke and the convenience inherent to its
smaller scale.

2.2. Application of the Purpose-Built Smoke Box (Mitigation Trial)

The second aim of this study was to demonstrate the potential for the smoke box to be
used to evaluate novel strategies for mitigating the risk of smoke taint in grapes.

In a preliminary field trial involving the application of smoke to Semillon grapevines
(using smoke tents), the extent to which an activated carbon (AC) fabric could protect
grapes from exposure to smoke was evaluated. Immediately prior to smoke exposure, a
number of grape bunches were individually enclosed in bags made from the AC fabric and,
for comparative purposes, adjacent grape bunches were similarly enclosed in plastic and
paper bags (Figure S3). Following smoke exposure, grape volatile phenol concentrations
were compared in the control, smoke-affected and bagged/smoke-affected bunches.

Control grapes did not contain detectable levels of volatile phenols, but smoke ex-
posure resulted in grapes with guaiacol, syringol, o- and m-cresol and 4-methylguaiacol
concentrations of 21, 16, 8.7, 7.0 and 4.3 µg/kg, respectively (Table 3). In contrast, grapes
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that were enclosed in plastic or paper bags contained significantly lower volatile phenol
concentrations. Guaiacol levels were approximately 50% lower, while other volatile phenol
concentrations were ~48–88% lower. Food packaging (including plastic and paper bags)
are known to be permeable to small molecules, including aroma volatiles, to different
degrees [31]. It is therefore not surprising that in the current study, smoke-derived volatile
phenols were detected in grape bunches enclosed in plastic and paper bags. Previous
studies that sought to investigate the uptake and glycosylation of exogenous oak volatile
compounds by grapevine leaves and fruit reported similar results [28,32], e.g., the presence
of the analytes of interest in grapes that were enclosed in plastic bags (as protective barriers)
prior to foliar applications of oak extracts or oak volatiles, due to their permeation through
the packaging [31]. The AC fabric seemingly provided superior protection, resulting in
grapes that contained just 1.3 µg/L of guaiacol and no other detectable smoke-derived
volatile phenols (Table 3). These results suggested that the AC fabric adsorbed the vast ma-
jority of volatile smoke compounds, preventing their permeation and thus, contamination
of the enclosed grapes.

Table 3. Concentrations of volatile phenols (µg/kg) in control grapes, smoke-exposed grapes, and
grapes enclosed in paper, plastic or activated carbon fabric bags (as protective coverings) during
grapevine exposure to smoke.

Treatment Guaiacol 4-Methyl
Guaiacol o-Cresol m-Cresol p-Cresol Syringol 4-Methyl

Syringol

Control nd nd nd nd nd nd nd
Smoke 21 ± 2.9 a 4.3 ± 0.9 a 8.7 ± 0.9 a 7.0 ± 1.2 a nd 16 ± 1.7 a nd

Paper Bag + Smoke 10 ± 1.0 b 1.5 ± 0.5 b 4.5 ± 0.5 b 3.0 ± 0.1 b nd 2.0 ± 0.1 b nd
Plastic Bag + Smoke 11 ± 3.3 b 1.7 ± 0.9 b 3.0 ± 1.0 b 2.0 ± 0.6 b nd 5.3 ± 1.5 b nd

AC Fabric Bag + Smoke 1.3 ± 0.7 c nd nd nd nd nd nd

p <0.001 0.004 <0.001 <0.001 - <0.001 -

Values are means of three replicates (n = 3) ± standard error. nd = not detected. Different letters (within columns)
indicate statistical significance (p = 0.05, one-way ANOVA).

The smoke box was subsequently used to further validate the potential of the AC
fabric to mitigate the uptake of smoke-derived volatile phenols by grapes, alongside
two agrochemical sprays, an anti-transpirant and kaolin (a clay-based barrier coating,
typically used to protect grapes from sun damage [21]). Paper bags were again included for
comparison, but not plastic bags, given their propensity for condensation, which promotes
microbial spoilage. The same experimental conditions used in the repeatability trial (i.e.,
100 g of straw as fuel and 30 min exposure of excised bunches to smoke) were again
used in the mitigation trial, ensuring dense smoke treatments and thus testing the efficacy
of each mitigation strategy. To overcome potential variation in smoke density between
treatments (as occurred in the repeatability trial), each mitigation treatment was undertaken
in triplicate, both within and between three replicate smoke treatments (i.e., n = 9 in total).

Smoke exposure again resulted in Semillon grape bunches with significantly elevated
volatile phenol concentrations: i.e., 231 µg/L of guaiacol, 354 µg/L of phenol, 103 µg/L
of o-cresol and 78 µg/L of syringol (Table 4). Volatile phenol concentrations were several
times higher than those observed in the preliminary field trial (Table 3) because the smoke
box enabled applications of smoke that were much denser than achieved in the field using
the smoke tent. Some variation was again observed between replicate smoke treatments,
with the second replicate resulting in significantly higher grape volatile phenol concentra-
tions than the first and third smoke replicates; for example, guaiacol concentrations were
291 µg/L, compared with 186 and 215 µg/L, respectively (data not shown). However, this
variation was accounted for by replicating mitigation treatments across replicate smoke
treatments, with treatment replicates (excluding the control) positioned randomly within
the box during each smoke replicate.

a1755923
Typewritten Text
Chapter 6 | Thinking Inside the Box

a1755923
Typewritten Text
191



Molecules 2022, 27, 1667 8 of 13

Table 4. Concentrations of volatile phenols (µg/L) in juice from control grapes, smoke-exposed
grapes, and grapes treated with anti-transpirant or kaolin (as protective sprays) or enclosed in paper
or activated carbon (AC) fabric bags (as protective coverings) during smoke exposure.

Treatment Guaiacol 4-Methyl
Guaiacol Phenol o-Cresol m-Cresol p-Cresol Syringol 4-Methyl

Syringol

Control nd nd na nd nd nd nd nd
Smoke 231 ± 16 ab 39 ± 3 ab 354 ± 15 a 103 ± 5 ab 81 ± 4 a 10 ± 1 a 78 ± 10 ab 7.3 ± 1 ab

Anti-transpirant 239 ± 24 a 42 ± 4 a 406 ± 26 a 119 ± 9 a 92 ± 7 a 13 ± 3 a 88 ± 13 a 9.0 ± 2 a
Kaolin 183 ± 19 b 29 ± 4 b 286 ± 27 b 81 ± 8 b 64 ± 7 b 13 ± 0.8 a 58 ± 9 b 5.6 ± 1 b

Paper Bag + Smoke 75 ± 9 c 10 ± 1 c 81 ± 9 c 29 ± 3 c 15 ± 2 c 3.9 ± 0.1 b nd 1.5 ± 0.0 c
AC Fabric Bag + Smoke 4.5 ± 1 d 2.0 ± 0.1 d 7 ± 2 d 2 ± 0.4 d 2 ± 0.3 c nd nd 1.4 ± 0.0 c

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Values are means of three replicates (n = 3). nd, not detected; na, not available. Different letters (within columns)
indicate statistical significance (p = 0.05, one-way ANOVA).

Of the four mitigation strategies that were evaluated, the AC fabric was by far the
most effective: enclosing grape bunches in activated carbon fabric prevented the uptake of
up to 98% of the smoke-derived volatile phenols that were observed in the smoke-affected
grapes (Table 4). Indeed, the volatile phenol levels in grapes enclosed in AC fabric were
only 1–7 µg/L. Activated carbon fabrics are used as adsorbents in various industries [33],
and activated carbon is routinely used as a fining agent in the wine industry, including
for remediating smoke tainted wine [16]. However, this is the first study to demonstrate
the capacity of AC fabric to mitigate the risk of smoke taint. The application of bags to
individual grape bunches is neither practical nor financially viable, so further research and
development is needed, but these results demonstrate proof-of-concept.

The paper bags again afforded the excised bunches reasonable protection from smoke
exposure, and, with the exception of p-cresol (which was present at very low levels even
in smoke-affected grapes), enclosing bunches in paper bags prevented the uptake of ~68
to 81% of each volatile phenol and, seemingly, 100% of syringol (Table 4). The apparent
selectivity of protection from different volatile phenols might reflect the molecular size
and/or the paper bag’s porosity and surface chemistry [31]. The interior of the paper
bag was coated with a wax layer to inhibit moisture loss, and it is possible that following
diffusion through the paper layer, syringol and 4-methylsyringol were retained by the
hydrophobic wax, such that they did not permeate into the bag and the grapes within.

Of the two agrochemicals applied to bunches prior to smoke exposure, neither pro-
vided meaningful protection. Significantly lower levels of phenol and m-cresol were
detected in kaolin pre-treated grapes compared with smoke-affected grapes, while the anti-
transpirant treatment typically yielded the highest grape volatile phenol concentrations,
suggesting this mitigation strategy may actually have facilitated the uptake of smoke-
derived volatile phenols by grapes. This is reasonable, given that the active ingredient in
the anti-transpirant is a carboxylated hydrophilic polymer, which may well have affinity
for smoke-derived volatile compounds.

Importantly, these results were in agreement with findings from recent studies that
evaluated various agrochemicals as protective sprays for the mitigation of smoke taint [21–24].
Foliar applications of kaolin prior to smoke exposure achieved an 80% reduction in gua-
iacol glycoconjugates in Merlot grapes at harvest (relative to the corresponding smoke-
affected Merlot grapes), but only 40% reductions were achieved when kaolin was applied
to Chardonnay grapes and no significant differences were observed following kaolin ap-
plications to Sauvignon Blanc grapes [21]. The same anti-transpirant was evaluated as a
smoke taint mitigation treatment in a recently published trial [24], albeit under different
experimental conditions. In that study, there was no significant difference in the com-
position (i.e., free or bound volatile phenol concentrations) of Muscat Gordo or Shiraz
grapes exposed to gaseous volatile phenols, with or without prior treatment with the anti-
transpirant. However, it was observed that the application of other hydrophobic products
(e.g., Biopest® Paraffinic Oil, Victoria Fruit Drying Oil, and Parka Plus) significantly in-
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creased the concentration of volatile phenols (and their glycoconjugates) in both varieties, a
finding consistent with earlier studies that evaluated the influence of lipid-based fungicides
on the uptake of volatile phenols [22,23]. Promising results were initially obtained through
the application of a synthetic grape cuticle [22], but the outcome could not be replicated
in a subsequent growing season. These results reflect the challenge in achieving effective
spray coverage, but also suggest that some viticultural practices, e.g., the use of fungicides
to manage disease pressure in cooler, wetter areas or anti-transpirants to mitigate water
stress in hotter, drier areas, might exacerbate the risk of smoke taint in the event of a nearby
bushfire/wildfire.

In conclusion, the results presented herein demonstrate the potential for the smoke box
to be used as a rapid, convenient approach to smoke taint mitigation research, overcoming
the logistical constraints associated with vineyard-based field trials, as well as a very
promising strategy for preventing smoke taint, i.e., activated carbon fabric.

3. Materials and Methods
3.1. Purpose-Built Smoke Box

A purpose-built smoke box (0.8 m× 0.8 m× 1.5 m, 0.96 m3, Figure 1) comprising a steel
frame fitted with glass panes (as walls) and aluminium sheeting (as the ceiling and floor),
and sealed with silicone rubber was constructed by the University of Adelaide’s School of
Physical Sciences mechanical workshop. One wall was lined with a self-adhesive weather
strip and mounted as a door, fitted with four metal latches, while the floor was angled
downwards to a centrally positioned drain to facilitate cleaning. The smoke box was also
fitted with swivel plate castors to allow it to be easily moved. Flexible aluminium exhaust
ducting (125 mm × 3 m) was mounted in the left rear corner of the box, running from the
floor and out via the ceiling for connection to a commercial fire box smoker (CharGriller,
www.chargrilleraustralia.com.au (accessed on 21 February 2022)). This enabled fuel to be
combusted in the smoker and the resulting smoke to be carried into the smoke box.

3.2. Field Trial

A preliminary field trial involving the exposure of Semillon grapevines to smoke
(for 1 h, approximately 2 days before maturity when TSS was ~21 ◦Brix) was conducted
in a vineyard at the University of Adelaide’s Waite Campus in Urrbrae, South Australia
(34◦58′ S, 138◦38′ E). Three adjacent vines were enclosed in a purpose-built smoke tent
(2.0 m × 6.0 m × 2.5 m) and barley straw (~2 kg) combusted portionwise (i.e., over the
hour) in two commercial smokers (as described previously [18]) to maintain smoke pro-
duction. Prior to the smoke treatment, grape bunches (one per vine, per treatment) were
enclosed in plastic, paper or activated carbon (AC) felt bags (approximately 25 cm × 20 cm
each). The plastic and paper bags were purchased from a supermarket, while the AC felt
bags were made in-house from a commercial AC fibre felt (Nature Technologies, Hangzhou,
China). The bagged bunches were harvested immediately after smoke exposure, together
with the smoke-exposed bunches (one per vine) and control bunches (three from a Semil-
lon vine that had not been exposed to smoke). Grapes were separated from the rachis
and homogenized with a T18 Ultra Turrax (IKA, Saufen, Germany). The resulting grape
homogenate was frozen at −4 ◦C until needed for volatile phenol analysis.

3.3. Box Trials
3.3.1. Repeatability Trial

A trial involving the exposure of excised bunches of grapes to smoke using the purpose-
built smoke box was performed in triplicate to test both the repeatability of the smoke
treatments and the extent to which the position of grape bunches within the smoke box
influenced their level of taint. Grape bunches (30 in total) were harvested (at maturity, when
TSS was ~22–23 ◦Brix) from (control) Semillon grapevines from the field trial described
in Section 3.2. Three replicated smoke treatments were performed, each involving the
exposure of 9 grape bunches to smoke (for 30 min), with the bunches positioned in the
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smoke box in a 3 × 3 array: top left, top centre, top right, middle left, middle centre, middle
right, bottom left, bottom centre and bottom right. Barley straw (~100 g per treatment)
was combusted in the fire box (as above) and the duration of smoke exposure commenced
when smoke was first observed in the box (i.e., exiting the exhaust duct). Grape samples
(50 berries per bunch per trial, chosen randomly) were collected immediately after smoke
exposure and homogenized (as above), and the resulting grape homogenate was frozen at
−4 ◦C until needed for volatile phenol analysis. After sampling, the 9 bunches remaining
from the third replicate box trial were stored in darkness at 21 ◦C for 1 week. Grape
samples (50 berries per bunch, chosen randomly) were again collected, homogenized and
frozen at −4 ◦C until needed for volatile phenol glycoconjugate analysis. Volatile phenol
glycoconjugate concentrations were also quantified in the control grape homogenate (i.e.,
homogenate derived from control grapes from the field trial described in Section 3.2). Upon
completion of the smoke treatments, the three remaining grape bunches were suspended
in the box for 48 h to evaluate the potential uptake of volatile phenols from residual smoke.
Grapes were again sampled and homogenized for chemical analysis, as above.

3.3.2. Mitigation Trial

A separate trial involving the exposure of excised bunches of grapes to smoke using
the purpose-built smoke box was performed (also in triplicate) to evaluate the efficacy
of four strategies for mitigating the compositional effects of smoke on grapes: the use of
powdered kaolin (a clay-based sunscreen, trade name Surround, sourced from AgNova
Technologies; Box Hill, VIC, Australia) and an anti-transpirant (trade name Envy®, sourced
from AgroBest Nutritional Systems; Nerang, QLD, Australia) as protective sprays, and the
use of paper and AC felt bags (as described in Section 3.2) as protective coverings. Grape
bunches (45 in total) were again harvested from (control) Semillon grapevines from the field
trial described in Section 3.2 (at maturity when TSS was ~22–23 ◦Brix). Kaolin (prepared
as a 50 g/L aqueous solution) and Envy (prepared as a 50 mL/L aqueous solution) were
applied liberally to the grape bunches (using hand-held pump-action spray bottles) 24 h
prior to harvest and smoke exposure. Three replicated smoke treatments were performed
(as described in Section 3.3.1), each involving the exposure of 15 grape bunches (i.e., three
replicates per treatment, including a smoke-only treatment) to smoke (for 30 min), with the
bunches randomly positioned in the smoke box in a 5 × 3 array, positioned at the same
height, in the centre of the box. Grape samples (50 berries per bunch per treatment per
replicate, chosen randomly) were again collected immediately after smoke exposure and
homogenized (as above), and the resulting grape homogenate was frozen at −4 ◦C until
needed for volatile phenol analysis.

3.4. Chemical Analysis

The concentrations of smoke-derived volatile phenols (guaiacol; 4-methylguaiacol;
phenol; o-, m- and p-cresol; syringol and 4-methylsyringol) were measured in grape juice or
homogenate using an Agilent 6890 gas chromatograph coupled to a 5973 mass selective de-
tector (Agilent Technologies, Forest Hill, VIC, Australia) according to previously published
stable isotope dilution analysis (SIDA) methods [29,34], using d4-guaiacol (synthesized
in-house, as described previously [35]) and d3-syringol (CDN Isotopes, Pointe-Claire, QC,
Canada) as internal standards. Data acquisition and processing were performed using
ChemStation (version B.04.03, Agilent Technologies) and MassHunter software. Field trial
samples were analysed by the Australian Wine Research Institute’s (AWRI) Commercial Ser-
vices Laboratory (Adelaide, SA, Australia). Volatile phenol glycoconjugate concentrations
(measured as syringol gentiobioside equivalents) were also measured in grape homogenate
using an Agilent 1200 high-performance liquid chromatograph equipped with a 1290 binary
pump coupled to an AB SCIEX Triple QuadTM 4500 tandem mass spectrometer, with a
Turbo VTM ion source (Framingham, MA, USA), and previously published SIDA meth-
ods [29]; d3-syringol gentiobioside (Toronto Research Chemicals, Toronto, ON, Canada)
was used as the internal standard. Data acquisition and processing were performed using
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Analyst software (version 1.7 AB SCIEX). The limits of quantitation for volatile phenols
and volatile phenol glycoconjugates were 1–2 and 1 µg/L, respectively.

3.5. Data Analysis and Visualization

Compositional data were analysed by one-way analysis of variance using R statistical
software (version 4.0.3, Cambridge, MA, USA), with mean comparisons performed by
Tukey’s honest significant difference test at a significance level of α < 0.05. Heatmaps were
generated using the “Complex Heatmap” package in R.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1:
Heat maps depicting spatial variation in the (a) phenol, (b) o-cresol, (c) m-cresol, and (d) syringol
concentrations of grapes exposed to smoke post-harvest using the purpose-built smoke box, by
replicate smoke treatments and as an average across the three smoke treatments. Figure S2: Pho-
tograph showing Semillon grape bunches enclosed in plastic, paper and activated carbon fabric
bags prior to treatments involving grapevine exposure to smoke. Figure S3: Comparison of natural,
experimental and model smoke exposure as tools to pursue different smoke taint research aims,
and their relative advantages and limitations. Table S1: Concentrations of volatile phenols (µg/L)
in grapes exposed to smoke post-harvest, according to the spatial position of bunches within the
smoke box. Table S2: Cross-study comparison of volatile phenol glycoconjugate concentrations
(µg/kg) measured in grapes following exposure to smoke or gaseous volatile phenols, under different
experimental conditions.
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Table S1. Concentrations of volatile phenols (µg/L) in grapes exposed to smoke post-harvest, according to spatial position of bunches 
within the smoke box.   

Vertical Horizontal Guaiacol 4-Methyl 
Guaiacol Phenol o-Cresol m-Cresol p-Cresol Syringol 4-Methyl 

Syringol 
Top Left 145 ± 36 25 ± 7 199 ± 48 61 ± 15 46 ± 11 12 ± 3 51 ± 13 6 ± 2 
Top Center 122 ± 22 20 ± 4  170 ± 19 49 ± 5 39 ± 4 11 ± 1 47 ± 15 6 ± 2 
Top Right 123 ± 22 22 ± 4 173 ± 20 54 ± 6 40 ± 5 9 ± 2 45 ± 10  6 ± 1 

Middle Left 119 ± 30 20 ± 6 156 ± 28 49 ± 10 37 ± 7 8 ± 3 45 ± 16 6 ± 2 
Middle Center 137 ± 42 22 ± 7 183 ± 43 56 ± 12 43 ± 10 8 ± 2 49 ± 17 6 ± 2 
Middle Right 122 ± 15 20 ± 3 178 ± 13  52 ± 2 39 ± 2 9 ± 3 45 ± 14 6 ± 2 
Bottom Left 100 ± 33 17 ± 6 130 ± 30 39 ± 9 30 ± 8 8 ± 2 41 ± 17 6 ± 2 
Bottom Center 122 ± 37 20 ± 6 152 ± 30 47 ± 9 36 ± 8 6 ± 1  45 ± 17 6 ± 2 
Bottom Right 154 ± 37 25 ± 6 218 ± 37 64 ± 10 50 ± 8 11 ± 4 55 ± 17 7 ± 2 

p 0.976 0.981 0.724 0.750 0.773 0.801 0.999 1.000 
Values are means of three replicates (n = 3) ± standard error. No statistical significance was detected as a 
function of bunch position during smoke treatment (p = 0.05, one way ANOVA).  
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Table S2. Cross-study comparison of volatile phenol glycoconjugate concentrations (µg/kg) measured in grapes following exposure to smoke or gaseous volatile phenols, under different 
experimental conditions.    

Variety 
Model  
System 

Timing and Duration  
of Smoke Exposure 

Sampling 
Time 

Sample 
Density 

GuR CrR SyGG MSyGB CrPG GuPG References 

Semillon smoke box 0.5 h, post-harvest 7 d post-smoke 9 bunches/0.96 m3 110 ± 10 114 ± 10 55 ± 7 9 ± 1 213 ± 25 242 ± 27 
current 
study 

Viognier smoke tent 1 h, 1 week pre-harvest 7 d post-smoke 3 vines/30 m3 tr 3 ± 0.3 39 ± 9 8 ± 2 21 ± 3 40 ± 2 [27] 
Viognier smoke tent 1 h, post-harvest 7 d post-smoke 3 vines/30 m3 tr 3 ± 0.3 40 ± 8 9 ± 1 23 ± 0.5 43 ± 2 [27] 
Cabernet Sauvignon smoke tent 1 h, 1 week pre-harvest 7 d post-smoke 3 vines/30 m3 tr 3 ± 0.5 12 ± 4 2 ± 0.5 3 ± 0.4 3 ± 0.4 [27] 
Cabernet Sauvignon smoke tent 1 h, post-harvest 7 d post-smoke 3 vines/30 m3 tr 3 ± 0.5 9 ± 2 1 ± 0.3 3 ± 0.2 3 ± 0.3 [27] 

Viognier gaseous phenols 60 h, post-harvest immediate 3 bunches/0.16 m3 25 ± 4 205 ± 36 45 ± 5 17 ± 3 2114 ± 135 1111 ± 104 [27] 
Cabernet Sauvignon gaseous phenols 60 h, post-harvest immediate 3 bunches/0.16 m3 90 ± 14 571 ± 74 102 ± 17 26 ± 5 1196 ± 223 482 ± 122 [27] 
Muscat Gordo1 gaseous phenols 60 h, post-harvest immediate 3 bunches/0.16 m3 10 ± 4 67 ± 23 88 ± 37 - 299 ± 91 197 ± 54 [24] 
Shiraz gaseous phenols 60 h, post-harvest immediate 3 bunches/0.16 m3 24 ± 6 218 ± 51 6 ± 0.5 - 197 ± 19 105 ± 6 [24] 

Cabernet Sauvignon smoke tent 1 h, 7-10 days post-veraison 7 d post-smoke 3 vines/30 m3 11 ± 2 89 ± 12 455 ± 86 62 ± 10 217 ± 34 185 ± 33 [18] 
Merlot smoke tent 1 h, 14 days post-veraison 7 d post-smoke 3 vines/30 m3 22 ± 12 113 ± 64 176 ± 96 - 300 ± 156 283 ± 189 [21] 

Data are reported as means ± standard error values; tr = trace (i.e., 0.5–1 µg/kg).  
Gu = guaiacol; Cr = cresol; Sy = syringol; MSy = 4-methylsyringol; PG = pentose-glucoside; GG = glucose-glucoside (gentiobioside); R = rutinoside. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure S1. Heat maps depicting spatial variation in (a) phenol, (b) o-cresol, (c) m-cresol, and (d) syringol 
concentrations of grapes exposed to smoke post-harvest, using the purpose-built smoke box, by replicate smoke 
treatments and as an average across the three smoke treatments.  

Chapter 6 | Thinking Inside the Box

a1755923
Typewritten Text
201



 Molecules 2022, 27, 1667 5 of 6 

 

Figure S2. Comparison of natural, experimental and model smoke exposure as tools to pursue different smoke taint research aims, and their relative advantages and limitations. 
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Figure S3. Photograph showing Semillon grape bunches enclosed in plastic, paper and activated carbon fabric 
bags prior to treatments involving grapevine exposure to smoke. 
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Conclusions 

Global warming modelling indicates more frequent and intense bushfires are likely in the 

future. The confronting reality of these trends was manifested during the 2019/2020 bushfire 

season in Australia, and it strengthened the imperative for the development of innovative 

strategies to mitigate the effects of grapevine smoke exposure. Conventional mitigation trials 

investigate to what extent a proposed strategy can reduce the presence of smoke-derived 

volatile phenols (and their glycoconjugates) in grapes and wine, or mask their sensory 

perception in wine. In addition to developing effective mitigation treatments, it is just as crucial 

to ensure that rapid diagnostics are available detect smoke taint, thereby informing 

management/remediation strategies. Current chemical diagnostics of grapevine smoke 

exposure involve the measurement of volatile phenols and their glycoconjugates in grapes and 

wine by conventional GC-MS and HPLC-MS/MS, respectively; however, interpretation of 

results depends on contextual factors that require further elucidation. The research described 

in this thesis responds to the urgent need for smoke taint mitigation with a ‘go hard, go early’ 

approach, which includes: 

i) Developing vineyard-based detection and mitigation strategies  

ii) Investigating the contextual factors that influence volatile phenol (and their 

glycoconjugate levels) in grapes (both naturally occurring and smoke-derived) 

iii) Assessing rapid methods for detecting smoke taint in grapes and wine  

iv) Identifying novel chemical indicators of smoke exposure in grapes  

 

7.1 Detection and mitigation of smoke taint in the vineyard 

Field trials offer the certainty of knowing which grapevines are exposed to smoke because its 

administration can be controlled and replicated. Contrarily, in “real” bushfire scenarios, the 

consistency, intensity, and frequency at which vineyards are exposed to smoke is highly 

variable. This limits the ability to pinpoint smoke-affected areas of the vineyard and collect 

representative samples for the analysis of volatile phenols and glycoconjugates. Chapter 3 

explored the potential for environmental sensors to be used to detect and monitor real-time 

smoke exposure based on particulate matter concentrations. Different densities of smoke 

exposure were achieved by burning different fuel loads (i.e., high and low fuel mass), and as 

expected, grapes contained significantly less volatile phenols (and glycoconjugates) if they 
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were exposed to low density smoke, relative to high density smoke. However, the observed 

difference in smoke density was not paralleled by particulate matter concentration; the levels 

of particulate matter detected in each scenario were sufficient to saturate the sensor. Saturation 

in the experimental trials was likely attributed to the high density of smoke in purpose-built 

tents, relative to levels present in a vineyard from a real bushfire. This is supported by a recent 

study demonstrating that the same particulate matter sensors could be used to successfully 

monitor smoke derived from stubble burns (Wilkinson et al. 2021).  

Ideally, a vineyard-based method that detects smoke exposure would enable 

implementation of a mitigation strategy. For the first time, Chapter 3 explored the efficacy of 

using a real-time preventative strategy in which bunches were exposed to smoke and 

simultaneously sprayed with mist using in-canopy sprinklers. While this strategy did not show 

strong potential, the trial highlighted several challenges of conducting smoke taint mitigation 

trials in the field. Relative to smoke from “real” bushfire scenarios, the level of grapevine 

smoke exposure is more consistent, but prevailing weather conditions can make it challenging 

to maintain consistency across replicate smoke treatments. Moreover, the opportunity to 

conduct smoke taint trials is limited to the growing season, and in some cases, the scale at 

which treatments can be applied.   

These limitations were addressed in Chapter 6 by building a smoke box, which enabled 

small-scale mitigation trials to occur with greater efficiency and convenience. Smoke exposure 

within the box had some variation, which could largely be overcome by appropriate replication 

of experiments, i.e., the inclusion of experimental treatments across replicate smoke treatments 

with adequate randomisation of bunches. To achieve this in field trials, randomised block 

designs and significantly more labour would be required. In a subsequent box mitigation trial, 

activated carbon fabric was identified as a promising candidate for mitigation. Activated carbon 

has shown great efficacy as a fining for removal of volatile phenols (and their glycoconjugates) 

from juice and wine (Fudge et al. 2012a; Culbert et al. 2021b), but this is the first study 

demonstrating its ability to directly shield grapes from smoke-derived volatile phenols in the 

vineyard. In its current form, the activated fabric would not be practical to implement at a large 

scale, but these preliminary results serve as a proof-of-concept and justify future research and 

development.  
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7.2 Contextual factors that influence volatile phenols and glycoconjugates  

Levels of volatile phenols (in free and glycosylated forms) in grapes are influenced by several 

factors. As shown in Chapter 3, volatile phenols are rapidly metabolised in grapes within 24 

hours of smoke exposure, but there can be a delay in their accumulation as glycoconjugates. 

Thus, observing low levels of volatile phenols in grapes is not sufficient to rule out high levels 

of smoke exposure, a critical finding that has since been validated in other studies (Jiang et 

al.2021). These findings further instil the limitations of relying on guaiacol and 4-

methylguaiacol alone. Many commercial laboratories offering smoke taint diagnostics have 

expanded the suit of volatile phenols measured in their analysis, but there remains a persistent 

myth that smoke taint risk can be sufficiently predicted without consideration of their 

glycoconjugates, and this needs to be addressed through educational workshops and seminars. 

In addition to a delay in the accumulation of glycoconjugates, there was also a 

discrepancy between expected levels (based on volatile phenol concentrations measured 1 hour 

post-smoke exposure) and the significantly elevated glycoconjugate levels observed at harvest. 

These findings suggest that measuring volatile phenol glycoconjugates at maturity would 

provide the most accurate assessment of any smoke taint. However, from an industry 

perspective, prolonging analysis until the apex of the season equates to compressed decision-

making and minimal time to implement mitigation strategies. Further work is required to 

understand the cause of this delay and determine the earliest point at which an accurate 

assessment of smoke exposure can be made to optimise and standardise the timing of sample 

collection for analysis.  

The concentrations of volatile phenols and their glycoconjugates in grapes may also be 

influenced by regional fuel types, burn conditions unique to each bushfire (Kelly et al. 2012; 

Noestheden et al. 2018), and for some varieties, natural abundance (Ristic et al. 2016). 

Chapter 2 explores the profiles of volatile phenol glycoconjugates in grapes and wine affected 

by wildfire smoke in California and compares results to data from analyses currently used for 

smoke taint diagnostics in Australia. It was demonstrated that key markers in California were 

consistent with those in Australia using a method developed for an uHPLC-Orbitrap MS. The 

same six volatile phenol glycoconjugates (plus phenol glucoside and cresol pentosylglucoside) 

were identified as being the most indicative of smoke exposure in wine. Further examination 

of grapes affected by smoke from distinct wildfire seasons highlighted the need to develop 

infrastructure that will enable better characterisation of the density, duration, timing, and fuel 
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source of smoke exposure in real wildfire events. It is apparent from experimental trials that 

these factors matter, thus, it is necessary to integrate them into real world diagnostics of smoke 

taint.  

 

7.3 Rapid methods to detect smoke exposure in grapes and wine  

The quantitation of volatile phenols and glycoconjugates is a time- and resource-intensive 

procedure, and when operating under the constraints of harvest, it is critical to acquire results 

on a timely basis. Chapter 4 evaluated fluorescence spectroscopy as a rapid method of 

classifying wine into categories of low-, medium-, and high-risk of smoke taint, based on their 

volatile phenol and glycoconjugate concentrations. These smoke taint markers could be 

detected in less complex wines derived from experimental trials, but as the sample set was 

expanded to include a greater diversity of commercial wines (sourced from different varietals 

and regions), prediction accuracy declined.  

In most classification studies, the true class of every sample is known, and the objective 

is to acquire a representative training set to develop a model that predicts the classes of test 

samples that were held out from the calibration and cross-validation stages of model building. 

However, aside from wine samples with very low or very high levels of volatile phenols and 

their glycoconjugates across the board, the true class of potentially smoke-affected wine 

samples is not obvious. This limits confidence in the representativeness of training sets and 

complicates assessments of model performance. In the presented study, there were several wine 

samples with very high levels of volatile phenols but low levels of volatile phenol 

glycoconjugates (and vice versa) but it is not possible to interpret the significance of these 

levels in the absence of known baselines in equivalent wines.  

 

7.4 Novel chemical indicators of smoke exposure in grapes  

Smoke taint diagnostics have evolved from measuring guaiacol and 4-methylguaiacol alone to 

a broader suite of volatile phenols and their glycoconjugates, and as outlined in Chapters 2-4 

there is considerable work ahead to understand their accumulation in smoke-affected grapes, 

establish representative baselines, and develop faster methods of detection. Chapter 5 moved 

beyond volatile phenols and their glycoconjugates to deploy an untargeted metabolomics 

approach to the discovery of additional chemical indicators of smoke exposure. Along with 
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many other volatile compounds (Guillén et al. 1995), smoke also contains ozone, a known 

oxidant that may induce stress responses in plants, one of which is the production of 

antioxidants that can scavenge highly reactive free radicals.  

Tentative identifications were made for several compounds that were significantly 

elevated in smoke-affected Merlot grapes relative to control grapes. While the MS2 data 

suggested that some elevated compounds may have been exogenously derived volatile phenol 

glycoconjugates, others appeared to be endogenous metabolites, potentially released as part of 

a stress response. Chapter 3 outlines the temporal dependence of detecting diagnosis of smoke 

exposure in grapes based on volatile phenol and glycoconjugate concentrations. A key 

advantage of the compounds in Chapter 5 is that they were able to differentiate control and 

smoke-affected grapes just 2 hours after smoke exposure, and this discrimination persisted 

through to commercial maturity some 20 days later. Identification of these compounds using 

authentic standards may facilitate development of new analytical methods that complement 

existing smoke taint diagnostics. A limitation of measuring stress-related metabolites as 

markers is that smoke may not be the only source of stress that leads to their production. 

Moreover, their production may vary depending on the underlying health of the vine.   

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7 | Conclusions and Future Directions 

210 

 

Future Directions 

The intense wildfire seasons experienced in the last few years saw prominent wine regions in 

Australia, California, British Columbia in blanketed smoke, and the impacts of smoke taint on 

wine quality have therefore been brought to the forefront of research supporting the grape and 

wine industry. This thesis presents significant progress in understanding the impact of smoke, 

and in developing proactive mitigation strategies and diagnostics of smoke exposure in grapes 

and wine. Nevertheless, several research questions are still to be resolved.  

 

7.5 Incorporating baseline levels into grower contracts  

The severity of risk associated with vineyard smoke exposure and the prevalence of bushfires 

during the last decade have led to conflicts over the quality of grapes and wine in regions 

affected by smoke exposure. Few grower contracts include accurate tolerance levels for volatile 

phenols and their glycoconjugates (if any), which is partially attributed to knowledge gaps 

regarding the natural abundance of volatile phenols and their glycoconjugates in grapes. This 

underscores the importance of future work that establishes baseline marker concentrations for 

additional regions and varietals, which will serve as the foundation of fair and accurate 

benchmarks for naturally occurring levels of smoke taint markers in grapes and wine.  

 

7.6 Analysis of volatile phenols and their glycoconjugates 

Following unprecedented bushfires in 2020, commercial laboratories specific to the grape and 

wine industry sought to meet the increased demand for smoke taint diagnostics; however, the 

list of target compounds being measured varied considerably across laboratories. The most 

comprehensive analyses measure free guaiacol, 4-methylguaiacol, o-cresol, p-cresol, m-cresol, 

syringol, and 4-methylsyringol, as well as various volatile phenol glycoconjugates (e.g., 

guaiacol, 4-methylguaiacol, phenol, and cresol rutinosides as well as syringol and 4-

methylsyringol gentiobioside). Interestingly, very few commercial labs measure phenol, 

despite results from Chapter 6 suggesting phenol is the most abundant volatile phenol 

observed in smoke-affected grapes. This finding may be attributed to the use of barley straw 

as a fuel source in field experiments, but its abundance warrants further assessment of its 

contribution to the sensory profiles of smoke tainted wines. There were also several 
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commercial laboratories who took advantage of the demand for smoke taint diagnostics and 

started to offer analyses that comprised only quantitation of guaiacol and 4-methylguaiacol. 

While guaiacol and 4-methylguaiacol are a piece of the puzzle, it is well established that 

reliance on these compounds can present a significant risk of underestimating smoke exposure 

when considered in isolation. Increasing demand for smoke taint analysis needs to be addressed 

via a combination of rapid methods of detection, such as highlighted in Chapter 4, and 

increasing the capacity of commercial laboratories that offer comparable services and 

interpretation of results that reflect the current smoke taint literature.   

 

7.7 Additional markers in leaves  

In addition to volatile phenols (in free and glycosylated forms), work from Chapter 5 indicates 

that additional markers present in Merlot grapes could be used to identify smoke exposure. 

While some markers appeared to be novel, exogenous volatile phenol glycoconjugates, others 

were tentatively identified as endogenous, stress-related metabolites. To build on these 

findings, the developed metabolomics workflow could be used to identify additional markers 

of smoke exposure in grapevine leaves. Relative to grapes, leaves are more abundant, have a 

greater surface area, and are present on the vine earlier in the season. As such, they might offer 

a more appropriate substrate for detection and quantitation of grapevine smoke exposure. 

 

7.8 Mitigation of smoke taint in wine  

Previous mitigation research has focused on the removal of volatile phenols and their 

glycoconjugates from wine, suppressing their contribution to wine sensory profiles, or both. 

As described in Chapter 3 and Chapter 6, there are several advantages to vineyard-based 

mitigation strategies. However, the unpredictable nature of smoke exposure and the safety 

concerns of working in the vineyard during a bushfire event require preventative strategies that 

have enduring effects no matter the prevailing weather conditions. This would enable their 

application early in the growing season, in case of a bushfire event. That being said, it is 

unlikely that any singular strategy will be able to eliminate the risk of smoke taint. Rather than 

viewing vineyard-based mitigation strategies as ‘silver bullets’, they should be viewed as part 

of a workflow that—in tandem with other remediation practices in the winery—can be used to 

mitigate the risk of smoke taint in wine.  
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7.9 Summary 

It is fair to say that our collective understanding of the chemical and sensory impacts of 

grapevine smoke exposure have increased significantly over the last few decades. Nonetheless, 

smoke taint remains a major challenge in the grape and wine industry. This project evaluated 

and empowered the efficacy of a ‘go hard and go early’ approach towards the mitigation of 

smoke taint by improving the efficiency of current diagnostics and accelerating the 

development of remediation strategies. As we continue to expand our knowledge of the 

chemical and biochemical responses of grapevines to smoke exposure, we increase the 

likelihood that effective solutions for the detection and mitigation of smoke taint in grapes and 

wine will be found.  
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