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Abstract

The focus of the present thesis is on the analysis and design of guidance, control and

navigation algorithms for unmanned aerial vehicles, specifically in the context of drone

warfare and aerospace battles.

In aerospace engagement scenarios involving autonomous agents, the synthesis of intel-

ligent actions must consider the potential strategies by the adversary. When analysing the

possible outcomes of an engagement, unpredictability of the adversary’s decisions presents

the main challenge, the design of our strategies must be robust to a very broad set of possible

counter strategies employed by the adversary. Differential game theory provides the correct

framework to analyse and design optimal strategies in these dynamic engagement scenarios.

Here the goal is the find the state-feedback Nash equilibrium, the optimal outcome of an

engagement scenario, in which all parties with knowledge of the strategies deployed, cannot

increase their payoff by altering their decision making process.

The contents of this thesis uncovers significant new results in the area of pursuit-evasion

differential games. The main contributions are, the discovery of a new geometric mechanism

to verify the Hamilton-Jacobi-Bellman equations, and uncovering new symmetries in simple-

motion pursuit-evasion games.

More specifically, the thesis primarily examines the differential game of active target de-

fence, otherwise known as the Target-Attacker-Defender pursuit-evasion game. This simple-

motion, two-team, zero-sum differential game emulates a common aerospace engagement

scenario found in defence applications. Here an explosive carrying Attacker is tasked with

neutralising a Target, and the Target in its defence launches an agent named the Defender,

from another platform in an integrated/fused air defence.

The present thesis identifies and proves the value and optimal state-feedback strategies

for both teams in this engagement scenario. This is done via the analysis of the discrete-

time turn-based variant of the differential game, also known as the upper or lower value.

Moreover, we unearth new symmetries in the differential game, named Target Symmetry

and Defender Symmetry. A symmetry is a transformation of the state of the differential

game that leaves the optimal strategies unchanged. Using the newly discovered symmetries
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we develop unified optimality principles, culminating in the Holographic Theorem for the

differential game of active target defence, and more generally, the Holographic Principle for

simple-motion differential games.

2



Acknowledgements

I would like to thank Professor Cheng-Chew Lim for providing this wonderful opportunity

to undertake a PhD in the University of Adelaide, in the exciting field of differential games;

Cheng-Chew provided valuable feedback on my manuscripts, helping to improve the clarity

of my work before submission. I also would like to thank Professor Peng Shi for introducing

me to the Systems and Control group, and his feedback given in my presentations.

Of-course I give thanks to the University of Adelaide itself for awarding me the Faculty

of Engineering Computer and Mathematical Sciences Divisional Scholarship. I give thanks

to DefendTex, who have provided me a great opportunity to collaborate with the defence

industry as part of the Counter Improved Threat Grand Challenge. Dr Kim Jijoong from

DST also gets many thanks in this regard.

Many thanks goes to Dr Bernard Evans and Hamish Pratt with whom I have had a

wonderful time collaborating with in the development of the Target and Track algorithms.

Also I would like to thank Keren Reynolds and Matthew Gervasoni from Lockheed Martin

Australia, with whom I undertook an internship during my candidature.

Finally I would like to thank my family for all their support and encouragement.

3



List of Publications

1. Mammadov, K., Lim, C., & Shi, P. (2020). State-feedback optimal strategies for the

differential game of cooperative target defence: a geometric approach. International

Journal of Control, 94 (10), 2615–2622.

2. Mammadov, K., Lim, C., & Shi, P. (2021). A state-feedback Nash equilibrium for the

general Target-Attacker-Defender differential game of degree in arbitrary dimensions.

International Journal of Control, 95 (1), 93–103.

3. Mammadov, K., Lim, C., & Shi, P. (2022). Generalising the capture the flag sce-

nario to active target defence. Australian and New Zealand Control Conference 2022,

accepted for publication.

4. Mammadov, K., Lim, C., & Shi, P. (2022). Unified optimality criteria for the Target–

Attacker–Defender pursuit-evasion game. European Journal of Control, under review.

5. Mammadov, K., Lim, C., & Shi, P. (2022). The holographic principle for the

differential game of active target defence. International Journal of Control,

doi:10.1080/00207179.2022.2111369.

4



Declaration

I certify that this work contains no material which has been accepted for the award of

any other degree or diploma in my name, in any university or other tertiary institution and,

to the best of my knowledge and belief, contains no material previously published or written

by another person, except where due reference has been made in the text. In addition, I

certify that no part of this work will, in the future, be used in a submission in my name,

for any other degree or diploma in any university or other tertiary institution without the

prior approval of the University of Adelaide and where applicable, any partner institution

responsible for the joint award of this degree.

The author acknowledges that copyright of published works contained within the thesis

resides with the copyright holder(s) of those works.

I give permission for the digital version of my thesis to be made available on the web,

via the Universitys digital research repository, the Library Search and also through web

search engines, unless permission has been granted by the University to restrict access for

a period of time.

I acknowledge the support I have received for my research through the provision of an

Australian Government Research Training Program Scholarship.

Name: Kamal Mammadov Date: 25/09/2022

Signature:

5



Chapter 1

Synopsis

The research presented in this thesis was jointly funded by the Faculty of Sciences, Engi-

neering and Technology, the University of Adelaide; and by DefendTex as part of the Next

Generation Technologies Fund (NGTF) into unmanned aerial systems (UAS).

Small, low-cost, unmanned aerial vehicles (UAV) are emerging and proliferating as a key

decisive weapon in the modern battlefield. Threat UAVs can disrupt military operations as

both a surveillance platform and by delivering explosive devices. Common counter measures

for these low-cost threats are themselves expensive, often ineffective and have the potential

for collateral damage.

In response to this emerging threat, the Defence Science and Technology Group (DSTG)

initiated the Counter Improvised Threat Grand Challenge in NGTF; for which DefendTex,

in collaboration with the University of Adelaide, were tasked with the development of a

low-cost unmanned aerial vehicle, specifically designed to counter these small enemy UAV

platforms.

Professor Cheng-Chew Lim and myself, with support from Dr Jijoong Kim from DSTG,

were assigned to the T2 Target and Track team, responsible for the design of robust decision

making, control and guidance algorithms for the drone. This unmanned aerial vehicle is

expected to be deployed as an effector, with other kinetic and electromagnetic effectors,

complemented with a suite of radar, thermal and visual sensors, in an integrated air defence

system.
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During the PhD I also undertook an internship with STELaRLab, Lockheed Martin

Australia. As such our research has benefited significantly from our collaboration with the

defence industry, as well as interdisciplinary collaboration within the university.

Nevertheless, the thesis primarily focuses on our theoretical contributions to the field

of pursuit-evasion differential games. As such, the remainder of the thesis is organised as

follows. Chapter 2 and 3 introduces the groundwork, the fundamental principles underlying

the theory of differential games; then it introduces a specific class of differential games,

named simple-motion pursuit-evasion games; and delves specifically into the past literature

studying the game of active target defence, which is the focus of the present thesis. We

present our original research findings in a thesis by publication format. As such, the next five

chapters are the five scholarly publications that resulted from the PhD. The final chapter

summarises our accomplishments.
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Chapter 2

Introduction and related work

2.1 Introduction to differential games

Driven by applications in defence, research in zero-sum differential games was first initiated

by Rufus Isaacs in the late 1950s to 60s. The book Isaacs (1965) was the first book written

in this field, followed closely by Blaquiere, Gerard, & Leitmann (1969) and Friedman (1971).

These first works in differential games were primarily driven by applications in defence, and

as such, focused on two-player zero-sum differential games.

Later, the theory of differential games was generalised to many player non zero-sum

games in the seminal work of Sethi & Thompson (1981). Followed by the publication of

books from Basar & Olsder (1982) and Dockner, Jorgensen, & Gerhard (2000) focusing on

the application of differential games in management science and economics.

In the next section of this chapter, we provide the general definition of a continuous-time

differential game.

2.2 System dynamics

In general, a differential game consists of the following components:

1. m players denoted by the set M = {1, . . . ,m}.

2. For each player j ∈M , a state variable xj ∈ Rn, and a control input uj ∈ Rpj .
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3. Control constraints uj(t) ∈ Uj for each player j ∈M .

4. A state equation

ẋ(t) = f(x(t), u(t), t), x(t0) = x0, (2.1)

governing the state x(t) = (x1(t), . . . , xm(t)) of the game given the initial state x(t0)

and the control inputs u(t) = (u1(t), . . . , um(t)). Here ẋ(t) denotes the time derivative

d
dtx(t).

5. Termination time tf defined as the first time tf ≥ t0 in which an equation of the form

Θ(x(t), t) = 0 (2.2)

holds.

6. A cumulative reward for each player j ∈M over the time horizon [t0, tf ] given by

Jj(u(·), x0, t0) =

∫ tf

t0

gj(x(t), u(t), t)dt+ Sj(x(tf ), tf ).

Here Sj is the terminal reward and gj is the instantaneous reward rate.

To complete the formulation of the differential game, we must specify the information

available to each player. This information is used to make their choice for the control

inputs uj . The most common information structure used in differential games, are called

the state-feedback information structure. Here, at every time t, each player has access to

the entire state of the differential game x(t), thus the controls uj are functions of the state,

hence the name ‘state-feedback’.

2.3 Nash equilibrium

Each player j ∈M must select a state-feedback strategy γj according to

uj(t) = γj(x(t), t), j ∈M. (2.3)
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Let Γj denote the set of all permissible state-feedback strategies γj(x(t), t) for each player

j ∈ M . A state-feedback Nash equilibrium is an m tuple γ∗ = (γ∗1 , . . . , γ
∗
m) such that for

any initial data (x(t0), t0),

Jj(γ
∗, x(t0), t0) ≥ Jj([γj , γ∗−j ], x(t0), t0), (2.4)

holds for all γj ∈ Γj , j ∈M . Here [γj , γ
∗
−j ] := (γ∗1 , . . . , γ

∗
j−1, γj , γ

∗
j+1, . . . , γ

∗
m).

A necessary condition of optimality is given by Pontryagin’s maximum principle. Let

Hj(x, u, λj , t) = gj(x, u, t) + λj(t)f(x, u, t), (2.5)

be the Hamiltonian for each player j ∈ M . If γ∗(x∗(t), t) is the state-feedback Nash equi-

librium then

γ∗j (x∗(t), t) = arg max
uj∈Uj

Hj(x
∗(t), [uj , γ∗−j ], λj , t), (2.6)

λ̇j(t) = −
(
∂

∂x
Hj +

∑

i∈M\j

∂

∂ui
Hj

∂

∂x
γ∗i

)
|x∗(t),u∗(t),t (2.7)

λj(tf ) =
∂

∂x
Sj |x∗(tf ),tf (2.8)

holds for every player j ∈ M . Nevertheless, the state-feedback Nash equilibrium (SFNE)

in most cases cannot be uniquely determined on these principles alone. On the other-hand,

one can use the necessary and sufficient condition given by the Hamilton-Jacobi-Bellman

equation (also known as the Hamilton-Jacobi-Isaacs equation), to directly obtain the SFNE.

These equations are the mathematical expression of Bellman’s principle of optimality.

An m-tuple γ∗(x(t), t) = (γ∗1 , . . . , γ
∗
m) is a SFNE at every initial point (x(t0), t0) if and

only if there exists a continuously differentiable value function Vj(x, t) for each player j ∈M

such that the Hamilton-Jacobi-Bellman (HJB) equations hold for any state x and time t

− ∂

∂t
Vj(x, t) = max

uj∈Uj

{gj(x, [uj , γ∗−j ], t) +
∂

∂x
Vj(x, t)f(x, [uj , γ

∗
−j ], t)} (2.9)

= gj(x, γ
∗, t) +

∂

∂x
Vj(x, t)f(x, γ∗, t), (2.10)
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and the boundary condition also holds

Vj(x, tf ) = Sj(x). (2.11)

In applications, the main issue regarding the use of the HJB equations to compute the

SFNE is known as the curse of dimensionality. Analysing differential games with a large n,

or p is problematic.

The next section details the specific differential games that are the focus of this thesis.

2.4 Related work

Pursuit-evasion differential game theory plays an important role in applications in aerospace

guidance and control. Various pursuit-evasion games have been studied in the literature,

here we cite Liu et al. (2013), who studied the single-pursuer multiple-evader pursuit-evasion

game, in which a fast pursuer aims to capture all evaders in minimum time and the evader

team cooperate to maximise this time. Another example is the cooperative football dif-

ferential game Garcia, Casbeer & Pachter (2021) in which an attacker aims to reach as

close as possible to the goal line before it’s intercepted by one of two defenders, and the

defenders cooperate to achieve the exact opposite goal. More closely related to the current

work, Boyell (1976) considered a 1-agent engagement scenario in which this single agent was

tasked with intercepting a target moving at a constant speed in a straight line; here it was

proved that VT
VA

sin∠xA(t)xT (t)xT (t+ ∆t) ≤ 1, where VT is the speed of the moving target,

and VA is the maximum speed of the agent, and xT (t) and xA(t) denote their positions

respectively; is necessary and sufficient for there to exist a strategy for the agent to capture

the target. The relationship that the work of Boyell (1976) had with our research, is that

it answered the question of how a slow agent could capture a fast agent if that fast agent

could not change direction.

A common assumption among the various differentials games cited here is that every

agent has simple motion. An agent g is said to have simple motion if its state at time

t can be completely specified by its position vector xg(t), and its dynamics is given by
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ẋg(t) = Vgug(t), where ug(t) is an arbitrary vector with magnitude no greater than 1,

chosen by the agent at every time t, and Vg is the maximum speed of agent g. This

assumption essentially assumes that every agent has a fixed maximum speed but infinite

acceleration/turn-rate. This accurately models engagement scenarios in which the time to

accelerate towards maximum speed is small relative to the time at the maximum speed.

The differential game that is the focus of the present thesis, is named the Target-

Attacker-Defender (TAD) pursuit-evasion game, also known as the Cooperative/Active

Target Defence differential game. This is a continuous-time, zero-sum differential game

consisting of two teams, team A and team T/D, and three agents, the Target, Attacker and

Defender modelled with simple motion. The differential game terminates at the first time

tf the Attacker collides with one of the other two agents. The Attacker’s goal is to minimise

the distance between itself and the Target at time tf , and the Target and Defender work

as a team to maximise the aforementioned distance at time tf . The TAD pursuit-evasion

game is commonly motivated by visualising the Attacker as an explosive carrying aerial

vehicle tasked with neutralising an evasive aerial Target; and the Target or another asset

in its defence launches another drone (Defender) to intercept the Attacker.

The most general setting in which this pursuit-evasion game can be studied, is under

the assumption that VT ≤ VA ≤ VD, here the Target is no faster than the Attacker, which

in turn is no faster than the Defender. Clearly, if VT were greater than VA then the Target

can easily escape capture from the Attacker, and the game may never terminate; therefore

this case is always neglected. The reason for why the case VA > VD is dismissed is more

complex. If VA > VD and VA > VT , then the Target and Defender may cooperate as a team

to delay the capture of the Target, but they cannot prevent it, that is under optimal play,

at termination time tf , xA(tf ) = xT (tf ). Since the payoff/reward function is defined as

the distance between the Target and Attacker at termination time, there is no incentive for

team T/D to do anything, therefore this case is degenerate.

To provide evidence that this is indeed the case, here we quote a paragraph from the

paper Garcia, Casbeer & Pachter (2021):

“Remark. When VA > VD (slower Defender) and point capture is required then A

always captures T irrespective of the initial conditions. The slower agent, D in this case, is

12



incapable of achieving point interception of the faster agent, A. Player A can always exploit

its speed advantage to circumvent a slowly moving point and capture T . Additionally, since

VT
VA

< 1 (T is slower than A) the T/D team is not able to indefinitely keep A away from

T or, in terms of [22], keep the state such that R > 0 and r > 0 where R is the A − T

separation and r is the A − D separation. Hence, a rendezvous strategy between T and

D always results in T being captured by A. Therefore, in this paper we focus on the case

VA = VD. The results can also be extended to the case VD > VA.”

Thus, in the case VA > VD, the Attacker always captures the Target, moreover the

state-feedback Nash equilibrium is not uniquely defined in this region.

2.5 Winning region of team T/D

The works in Garcia, Casbeer & Pachter (2019) and all other works in this topic exclusively

considered the case in which all agents move in 2-dimensional space, as the complexity of the

analysis is prohibitive in higher dimensions. In these works, the complete state of the TAD

differential game is specified by x := (xT , yT , xA, yA, xD, yD) ∈ R6, where (xT (t), yT (t)),

(xA(t), yA(t)) and (xD(t), yD(t)) denotes the position of the Target, Attacker and Defender

respectively. The dynamics f(x, χ, ψ, φ) are given by the differential equations

ẋA = cosχ, xA(0) = xA0

ẏA = sinχ, yA(0) = yA0

ẋD = cosψ, xD(0) = xD0

ẏD = sinψ, yD(0) = yD0

ẋT = α cosφ, xT (0) = xT0

ẏT = α sinφ, yT (0) = yT0

where uT,D = {φ, ψ} are the control inputs for team T/D, uA = {χ} is the control input

for team A, and x(0) is the initial state. Here 0 < α < 1; that is, the Target is slower than

the Attacker, and the Attacker and Defender have equal speed. The control constraints are

13



given by χ, φ, ψ ∈ (−π, π]. Termination time tf is defined endogenously as the first time

either (xA, yA) = (xD, yD) or (xA, yA) = (xT , yT ) holds.

Let x0 = (xT0 , yT0 , xA0 , yA0 , xD0 , yD0) denote the initial state at the starting time t0 = 0,

and xf = (xT (tf ), yT (tf ), xA(tf ), yA(tf ), xD(tf ), yD(tf )) denote the final state at the en-

dogenously defined termination time tf . Moreover let u = (uT,D,uA) denote the combina-

tion of all inputs. The payoff function is defined by

J(u(·),x0, 0) = S(xf , tf ), (2.12)

where

S(xf , tf ) =
√

(xA(tf )− xT (tf ))2 + (yA(tf )− yT (tf ))2. (2.13)

Here team A aims to minimise the payoff function, whereas team T/D cooperate

to maximise it. In addition, let DT =
√

(xD(t)− xT (t))2 + (yD(t)− yT (t))2 and

AT =
√

(xA(t)− xT (t))2 + (yA(t)− yT (t))2 denote the distance between the Defender

and Target, and the distance between the Attacker and Target respectively.

Using the two-sided Pontryagin maximum principle, it was deduced in Garcia et al.

(2019) that the state-feedback Nash equilibrium is given by the two following theorems,

since the analysis of the differential game is separated into two distinct cases.

• Case 1: DT < AT

• Case 2: DT > AT

Also the boundary case DT = AT was considered in Garcia et al. (2019), but it is not

covered in this chapter.
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Theorem 2.5.1 (Garcia et al. (2019)). For any state satisfying DT < AT the optimal

state-feedback strategies are given by

cosφ∗ =
xT − x√

(xT − x)2 + (yT − y)2

sinφ∗ =
yT − y√

(xT − x)2 + (yT − y)2

cosψ∗ =
x− xD√

(x− xD)2 + (y − yD)2

sinψ∗ =
y − yD√

(x− xD)2 + (y − yD)2

cosχ∗ =
x− xA√

(x− xA)2 + (y − yA)2

sinχ∗ =
y − yA√

(x− xA)2 + (y − yA)2
(2.14)

and the value function is given by

V (x) = α

√
1

4
((xA − xD)2 + (yA − yD)2) + (x− 1

2
(xA + xD))2 + (y − 1

2
(yA + yD))2

+
√

(xT − x)2 + (yT − y)2 (2.15)

where the coordinates (x, y) denote the point of interception of agent A and D under optimal

play; it is given by

y = mx+ n (2.16)

where m = −xA−xD
yA−yD , n = 1

2(yA + yD)− m
2 (xA + xD), and x is a real solution to the quartic

(1− α2)(m2 + 1)3x4 + (1− α2)(m2 + 1)2(k1 + 2k2)x
3

+
(

(m2 + 1)2(k3 − α2k4) + 2(1− α2)(m2 + 1)k1k2 + (m2 + 1)(k22 −
α2

4
k21)
)
x2

+
(

(m2 + 1)(2k2k3 − α2k1k4) + k1k2(k2 −
α2

2
k1)
)
x

+ k22k3 −
α2

4
k21k4 = 0 (2.17)
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and k1, k2, k3, k4 is given by

k1 = 2mn− (xA + xD +m(yA + yD))

k2 = mn− xT −myT

k3 =
1

2
(x2A + x2D + y2A + y2D) + n2 − n(yA + yD)

k4 = x2T + (yT − n)2. (2.18)

Using the same techniques, the state-feedback Nash equilibrium was also characterised

for the case DT > AT .

Theorem 2.5.2 (Garcia et al. (2019)). For any state satisfying DT > AT and V (x) > 0,

the optimal state-feedback strategies are given by

cosφ∗ =
x− xT√

(x− xT )2 + (y − yT )2

sinφ∗ =
y − yT√

(x− xT )2 + (y − yT )2

cosψ∗ =
x− xD√

(x− xD)2 + (y − yD)2

sinψ∗ =
y − yD√

(x− xD)2 + (y − yD)2

cosχ∗ =
x− xA√

(x− xA)2 + (y − yA)2

sinχ∗ =
y − yA√

(x− xA)2 + (y − yA)2
(2.19)

and the value function is given by

V (x) = α

√
1

4
((xA − xD)2 + (yA − yD)2) + (x− 1

2
(xA + xD))2 + (y − 1

2
(yA + yD))2

−
√

(xT − x)2 + (yT − y)2 (2.20)

where the coordinates (x, y) denote the point of interception of agent A and D under optimal

play; it is given by (2.16)-(2.18).

There are two main limitations from the works in Garcia et al. (2019).
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1. The differential game is only studied in 2-dimensions, since the computation of the

HJB equations quickly becomes intractable in higher dimensions.

2. The maximum speed of the Attacker is assumed to be exactly equal to the Defender

(VA = VD); whereas the most general case for which this differential game can be

studied in is where VT ≤ VA ≤ VD.

The works of Garcia, Casbeer & Pachter (2017) analysed the TAD pursuit-evasion game

to the more general setting of VA < VD. In this manuscript Pontryagin’s maximum principle

was applied to uncover a fundamental symmetry in the differential game. Under optimal

play all agents move in straight line motion. But many open problems still remained, the

derivatives of the value function were not found, and the HJB equations were not shown to

hold. Nevertheless, it was argued that the value function for the general case VT < VA < VD

can be characterised by the following optimisation criteria. Let CAD and CAT denote the

set of all points in the interior of the AD and AT based Apollonius circles respectively (see

Garcia et al. (2017) and references therein). Although without rigorous proof (which is the

reason why they were able to publish a paper for the more complicated case VA < VD,

before the work in Garcia et al. (2019), which contained a rigorous proof), it was reasoned

that the value function should obey

V (x(t)) =





max
P∈CAD

−TP +
VT
VA

AP if (xT , yT ) ∈ CAD

min
P∈CAD

TP +
VT
VA

AP if (xT , yT ) /∈ CAD

(2.21)

At this point we should take note that, both in the works of Garcia et al. (2019) and

Garcia et al. (2017), the value function and the optimal state-feedback strategies were sep-

arated into two cases. (More precisely, it was actually split into a total of three cases since

there are singularities in some formulas when the Target sits exactly on the perimeter of

the AD-based Apollonius circle. This case requires its own separate formulas to define the

optimal headings.) In our third journal paper, we introduce a new unifying paradigm given

by the Critical Escape Trajectories Theorem; which simultaneously characterises the Tar-
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get’s escape set and value function of the game in all regions, highlighting a deep underlying

geometric connection between these two concepts.

2.6 Game of kind

On the topic of the Target’s escape set, in Theorem 2.5.2, it was assumed that under optimal

play, the Target would escape capture (i.e. AT > 0 at termination time, or equivalently

V (x) > 0). The set of all states satisfying this condition is named the winning region of

team T/D; and the problem of unearthing necessary and sufficient conditions of the current

state x that yields V (x) > 0 is named the game of kind. (As opposed to the game of degree

which is the problem of finding the optimal state-feedback strategies.)

Liang et al. (2019) made a significant contribution in this regard. Let AD =
√

(xA(t)− xD(t))2 + (yA(t)− yD(t))2 etc. They proved that under optimal play, the

condition

VADT < VDAT + VTAD (2.22)

is necessary and sufficient for the Target to escape capture from the Attacker, that is, at

termination time tf ,
√

(xA(tf )− xT (tf ))2 + (yA(tf )− yT (tf ))2 > 0.

Similarly, the set of all states x which yield V (x) = 0 is named the winning region of

team A, where the Attacker captures the Target under optimal play. This occurs whenever

VADT ≥ VDAT + VTAD holds, but the optimal state-feedback strategies are not unique

in this region. Unlike in the winning region of team T/D, where the optimal strategies

are uniquely defined by Theorems 2.5.1 and 2.5.2. This is because if the Target ‘knows’

it is going to be captured anyway, there is no incentive to ‘run away’, since the objective

function was defined as S(xf , tf ) =
√

(xA(tf )− xT (tf ))2 + (yA(tf )− yT (tf ))2.

To extend the analysis of the TAD pursuit-evasion game to the winning region of team

A, it is necessary to redefine/generalise the payoff function. An appropriate generalisation

of the reward function is given by

S(xf , tf ) =
√

(xA(tf )− xT (tf ))2 + (yA(tf )− yT (tf ))2−
√

(xA(tf )− xD(tf ))2 + (yA(tf )− yD(tf ))2.

(2.23)
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This reward function has the property that it is equivalent to the reward function defined

earlier in (2.13) for any state satisfying V (x) ≥ 0, since
√

(xA(tf )− xD(tf ))2 + (yA(tf )− yD(tf ))2 =

0 in this region; But both teams still have an incentive to minimise/maximise the distance

between the Attacker and Defender at termination time. Therefore in this formulation of

the TAD pursuit-evasion game, the state-feedback optimal strategies are uniquely defined

for any initial state.

2.7 Winning region of team A

Indeed the reward function (2.23) can be seen as a generalisation of (2.13) to encompass

negative values. This was the approach taken in the works of Garcia et al. (2021), which

exclusively focused on the case in which V (x) ≤ 0. Although technically they defined the

reward function to be equal to the distance between the Target and Defender at termination

time, this is equivalent to (2.23) in the winning region of team A since the Target and

Attacker have the some position at termination time.

The results of Garcia et al. (2021) are given by the following theorem. Note that this is

different to the earlier theorems 2.5.1-2.5.2, which considered a different reward function.

Theorem 2.7.1 (Garcia et al. (2021)). For any state satisfying V (x) < 0, the optimal

state-feedback strategies are given by

cosφ∗ =
x− xT√

(x− xT )2 + (y − yT )2

sinφ∗ =
y − yT√

(x− xT )2 + (y − yT )2

cosψ∗ =
x− xD√

(x− xD)2 + (y − yD)2

sinψ∗ =
y − yD√

(x− xD)2 + (y − yD)2

cosχ∗ =
x− xA√

(x− xA)2 + (y − yA)2

sinχ∗ =
y − yA√

(x− xA)2 + (y − yA)2
(2.24)
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and the value function is given by

V (x) =
√

(x− xD)2 + (y − yD)2 − 1

α

√
(x− xT )2 + (y − yT )2 (2.25)

where the coordinates (x, y) denote the point of interception of agent A and T under optimal

play; it is a solution of the system of two equations

(
(x− xT )2 + (y − yT )2

)(
(x− xD)(y − yT )− (x− xT )(y − yD)− α2(x− xD)(y − yA)

+ α2(x− xA)(y − yD)

)2

− α
(
(x− xD)2

+ (y − yD)2
)(

(x− xA)(y − yT )− (x− xT )(y − yA)

)2

= 0 (2.26)

(x− xc)2 + (y − yc)2 = r2 (2.27)

where

xc =
1

1− α2
(xT − α2xA)

yc =
1

1− α2
(yT − α2yA)

r =
α

1− α2

√
(xT − xA)2 + (yT − yA)2.

The results of Garcia et al. (2021) suffer the same limitations. The analysis is only in 2

dimensions, and the speeds of the Attacker and Defender are assumed to be identical.

2.8 Summary of new results

The original results of our thesis are given by the following five manuscripts.

1. Mammadov, K., Lim, C., & Shi, P. (2020). State-feedback optimal strategies for the

differential game of cooperative target defence: a geometric approach. International

Journal of Control, 94 (10), 2615–2622.
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2. Mammadov, K., Lim, C., & Shi, P. (2021). A state-feedback Nash equilibrium for the

general Target-Attacker-Defender differential game of degree in arbitrary dimensions.

International Journal of Control, 95 (1), 93–103.

3. Mammadov, K., Lim, C., & Shi, P. (2022). Generalising the capture the flag sce-

nario to active target defence. Australian and New Zealand Control Conference 2022,

accepted for publication.

4. Mammadov, K., Lim, C., & Shi, P. (2022). Unified optimality criteria for the Target–

Attacker–Defender pursuit-evasion game. European Journal of Control, under review.

5. Mammadov, K., Lim, C., & Shi, P. (2022). The holographic principle for the

differential game of active target defence. International Journal of Control,

doi:10.1080/00207179.2022.2111369.

The first publication tackled with the curse of dimensionality by studying the differential

game in n–dimensional euclidean space. Here a novel geometric approach is introduced as an

alternative to the standard algebraic approach of Garcia et al. (2019), where the pursuit-

evasion game is reformulated as a discrete-time turn-based dynamic game, in which the

corresponding strategies are proved to be a Nash equilibrium. Via a recursive application

of the main results, in view of the fact that no limits were placed on the infinitesimalness

of the time increment, it is argued that the strategies also constitute a Nash equilibrium

in the original continuous time formulation. Manuscript number 1 also demonstrated the

robustness of the state-feedback Nash equilibrium, by conducting simulations of the TAD

game in the case where the Attacker uses PN guidance. Furthermore, the computation of

the SFNE was straight forward, as it involved minimising a convex function at every time

increment.

The second publication is the first paper to have rigorously examined the Target–

Attacker–Defender pursuit-evasion game in the general setting where VA < VD. Here the

TAD differential game of degree is recast in a discrete-time turn-based variant with arbitrar-

ily small time increment. In this formulation it is proven that the corresponding discretized
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optimal strategy profile constitutes a Nash equilibrium, thereby giving strong theoretical

support to the claimed Nash equilibrium for the original continuous-time formulation.

The conference paper, number 3, improved upon the work given in 2. The second paper

was the first to give a rigorous proof of the state-feedback Nash equilibrium in the general

case VA < VD; however, at a single point in the proof it made the assumption of VT = 0, as

the machinery required to prove it for the general case 0 < VT < VA < VD was not known

at the time. The conference paper completes the missing proof so that the results now hold

generally for any VT < VA < VD.

Manuscript number 4, currently under preparation for journal submission, unveils a new

unifying paradigm given by the Critical Escape Trajectories Theorem, based on the discov-

ery of a symmetry named Target Symmetry ; to express the value, the optimal strategies,

and reveal a simple analytical technique to solve for the state-feedback Nash equilibrium

of the Target-Attacker-Defender pursuit-evasion game. This new paradigm reveals a deep

underlying geometric connection between the game of kind and the game of degree; and

the methods developed in this manuscript are not a disjoint collection of techniques, unlike

Garcia et al. (2017) and Garcia et al. (2019) which have different methods for different

regions in the Target’s escape set.

Journal manuscript number 5, is the result of a successful research project to develop

a grand unifying optimality principle. Although the earlier manuscript was successful in

characterising the state-feedback Nash equilibrium for any state in the winning region of

team T/D, it only examined the game with the reward function defined by (2.13), thus it

did not allow for negative values. This manuscript studies the TAD pursuit-evasion game in

its most complete formulation, with VT < VA < VD, reward function defined by (2.23), in n–

dimensional euclidean space. Here we introduce and verify the most elegant characterisation

of the state-feedback Nash equilibrium given by a one-inch formula that holds throughout

the entire state space of the game. Whereas previous methods in the literature would

segregate the state space into four separate regions, each containing a different method

and proof, this manuscript introduces a new unifying principle given by the Holographic

Principle, which contains within it Target Symmetry as a special case. Furthermore, it’s
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conjectured that the Holographic Principle holds more broadly in a large class of simple

motion pursuit-evasion games.

To discuss the relationship between the five papers; the first manuscript studies the

TAD differential game in the case VT < VA = VD, the next two journal manuscripts and

the conference paper examines the TAD differential game for VT < VA < VD, and the final

journal manuscript studies the TAD game for the case VT < VA < VD in the winning region

of team A.
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Chapter 3

State-feedback optimal strategies

for the differential game of

cooperative target defence: A

geometric approach

3.1 Contextual statement

Our first publication examines the Target-Attacker-Defender differential game in the simple

case VT < VA = VD. The novelty here is that this is the publication that establishes

how the state-feedback Nash equilibrium can be identified and proved by transforming

the continuous-time differential game into a discrete-time turn-based game with arbitrarily

small time increment. This publication provides new techniques that drastically simplifies

the analysis of the differential game, completely bypassing the complex and cumbersome

methods in Garcia et al. (2019), and leads to an elegant proof that holds in n spatial

dimensions.
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ABSTRACT
The three agent zero-sum differential game of active defence is investigated; in this pursuit-evader game,
agent A attempts to capture agent T, and agents T and D coordinate to achieve the opposite goal. A
novel geometric approach is introduced as an alternative to the standard algebraic approach where the
pursuit-evader game is reformulated as a discrete-time turn-based dynamic game, in which the corre-
sponding strategies are proved to be a Nash equilibrium. Via a recursive application of the main results,
in view of the fact that no limits were placed on the infinitesimalness of the time increment, it is argued
that the strategies also constitute a Nash equilibrium in the original continuous time formulation. Finally
we simulate the Nash equilibrium strategies to verify its optimality and its robustness against other
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1. Introduction

Multiagent pursuit evader games present highly applicable but
theoretically challenging problems in aerospace guidance and
control. One particular class of pursuit evader games that has
been given significant scholarly attention is known as the Tar-
get–Attacker–Defender (TAD) game. This class of games were
first presented by Boyell (1976), who considered amoving naval
ship launching a torpedo in its defence against an attacking
submarine, and subsequently more applications were found by
Rusnak (2005), where a bodyguard aims to protect a poten-
tial victim from a bandit, and (Li & Cruz, 2011) where an
autonomous vehicle is deployed to defend an asset against an
attacker.

Across these applications, a common feature is that there
are two teams, Team A and Team T/D, and three agents, the
Attacker, Defender and Target. Team A, with a single agent
named the Attacker, agent A or just A, its goals are twofold.
Its first priority is to capture the Target whilst evading collision
with the Defender, if possible. If this objective is not possible, its
secondary objective to minimise the terminal distance between
the Target and its position at collision, thereby maximising the
harm inflicted on the Target if agent A is visualised as a bomb.
On the other hand, agents D and T coordinate their movements
in such a manner as to achieve the opposite goal, namely to pre-
vent the capture of Agent T, if possible, and do so in a manner
as to maximise the aforementioned terminal distance.

There are many variations in the literature of how this
three-agent engagement scenario is modelled. In Prokopov
and Shima (2013), the Attacker is unaware of the Defender
and employs a known linear one-on-one guidance law to catch
agent T. Here it is also assumed the Defender and Target start
at the same position (since it models a target aircraft launching

CONTACT Kamal Mammadov kamal.mammadov@adelaide.edu.au

a missile in its defence), and the agents dynamics are linearised
along the initial lines of sight. Shima (2011) also considered the
scenario in which both the Attacker and Defender’s strategies
were constrained to the most well-known guidance laws PN,
APN and OGL. Under those assumptions on agent A’s strat-
egy and agent D’s strategy, agent T solves a one-sided optimal
control problem.

Another variation of this problem is commonly called the
TAD game of kind, here the goal is to partition the state
space into disjoint regions which indicate the winning teams;
works on this problem include Bhattacharya, Basar, Hov-
akimyan (2016) and Zha, Chen, Peng, Gu (2017). In Liang,
Deng, Peng, Li, and Zha (2019), the whole state space is sepa-
rated into regions in which Team A wins (captures the target)
and Team T/D wins (prevents its capture), moreover in the dif-
ferent regions optimal strategies are analysed using the winning
time as the cost functional.

The focus of this paper is on the differential game formu-
lation first introduced in Garcia, Casbeer, and Pachter (2015),
where the Attacker is aware of the Defender and agents T and
D do not necessarily start at the same position, but the starting
position of agent T is assumed to be strictly closer to agent D
than to agent A. Here the Attacker and Target–Defender com-
pete in a zero-sum game tominimise andmaximise respectively
the final separation distance between agents A and T.

In this point in question, Garcia, Casbeer, and Pachter (2019)
and Garcia, Casbeer, and Pachter (2018) derived and proved
a state-feedback Nash equilibrium by demonstrating that the
strategies defined by the Nash equilibrium satisfies the Hamil-
ton–Jacobi–Bellman equations. However these results had two
main limitations, first the speed of the Target was assumed to
be strictly less than that of the Defender, and the results were
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not generalizable to dimensions greater than 2, suggesting a bet-
ter approach is needed. These limitations are addressed in the
current manuscript.

In fact all the results forenamed assume the agents move in
two-dimensional space, hence with three agents in the TAD
game, the state-space is six-dimensional to denote the coordi-
nates of every agent. The focus of this paper is to explore the
TAD game of degree in arbitrary dimensions where the agents
move in n-dimensional space. In Section 2, it is explored how
the traditional algebraic approach developed by Isaacs (1965),
where the Hamilton–Jacobi–Bellman equations are verified
using calculus and algebra suffers from an almost intractable
complexity as the dimension of the state-space increases.

The main contribution of this article is given in Section 3,
where a new geometric mechanism is developed to verify that
the conjectured Nash equilibrium satisfies the Hamilton–Jacobi
–Bellman equations; critically this new technique avoids the
complexities that arise from a large state-space and is easily
generalisable to arbitrary dimensions in pursuit-evader games.

2. TAD game of degree formulation and preliminary
analysis

The following section recasts the TAD game of degree found
in Garcia et al. (2019) in n-dimensional space. Throughout
the manuscript, the notation ab denotes the euclidean distance
between two points a, b ∈ Rn.

2.1 Problem definition of TAD game of degree

The TAD game of degree is a two player (two team) zero-
sum differential game. The complete state of the differen-
tial game is specified by x(t) = (xA(t), xD(t), xT(t)) where
xA(t) = (xA1(t), . . . , xAn(t)) ∈ Rn, xD(t)=(xD1(t), . . . , xDn(t))
∈ Rn and xT(t) = (xT1(t), . . . , xTn(t)) ∈ Rn denotes the posi-
tion of the Attacker, Defender and Target respectively. Regard-
ing the information structure of the game, both teams have
access to the current state of the system x(t) at time t. Using that
information, TeamAmust choose an instantaneous heading for
agent A, and Team T/D for the headings of agents D and T. The
controls of agents A, D and T are given by

uA(t),uD(t),uT(t) ∈ unit(n − 1)−sphere. (1)

The dynamics ẋ(t) = f (x(t),uA(t),uD(t),uT(t)) from time t0
to tf is given by

(ẋA(t), ẋD(t), ẋT(t)) = (uA(t),uD(t),αuT(t)), x(t0) = x0,
(2)

where 0 ≤ α ≤ 1. That is, the speed of the Attacker and
Defender is equal andnormalised to 1, and theTarget is no faster
than the Attacker. Here it is assumed the initial state x0 satisfies

xT(t0)xD(t0) < xT(t0)xA(t0), (3)

and the termination time tf is defined endogenously as the first
time tf satisfying the following termination condition

xA(tf ) = xD(tf ). (4)

Over the time horizon [t0, tf ], each team receives the following
payoff

J(uA(t),uD(t),uT(t), x0) = �(xf ), (5)

where

�(xf ) = xT(tf )xA(tf ). (6)

The objective of TeamA is tominimise J(uA(t),uD(t),uT(t), x0),
whereas the objective of Team T/D is to maximise it. This
differential game is later referred to in the article as Game 2.1.

2.2 Optimal state feedback strategies

In this section, the optimal state-feedback strategies are dis-
played, but first some preliminary notation is introduced.

The value functional V : Rn × Rn × Rn × [t0, tf ], which
should indicate the payoff-to-go at every state, is defined below

V(x(t)) = xT(t)I(x(t))+ αxA(t)I(x(t)), (7)

where the predicted interception point I(x(t)) is given by

I(x(t)) = argmin
I

xT(t)I + αxA(t)I (8a)

s.t. I ∈ χ (8b)

andwhere the (n − 1)-dimensional planeχ is themidway plane
between the Attacker and Defender1

χ = {p ∈ Rn | pxA(t) = pxD(t)}. (9)

The following conjecture is a generalisation of the Nash equilib-
rium proved in Garcia et al. (2019) from 2D space to arbitrary
dimensions.

Conjecture 2.1: Astate-feedbackNash equilibriumofGame2.1
is given by

u∗
A(t) = Â, (10a)

u∗
D(t) = D̂, (10b)

u∗
T(t) = −T̂, (10c)

where

(Â, D̂, T̂) =
(

I(x(t))− xA(t)
‖I(x(t))− xA(t)‖ ,

I(x(t))− xD(t)
‖I(x(t))− xD(t)‖ ,

I(x(t))− xT(t)
‖I(x(t))− xT(t)‖

)
. (11)

At termination time, I(x(tf )) = xA(tf ), hence V(x(tf )) =
xT(tf )xA(tf ) = �(xf ), that is the boundary condition is sat-
isfied. Therefore provided that the value functional is con-
tinuously differentiable, it is sufficient to prove that the Nash
equilibrium strategies defined by (10) satisfies the Hamil-
ton–Jacobi–Bellman equations provided below from t0 to tf .
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u∗
A(t) = arg min

uA(t)

∂V
∂x

· f (x(t),uA(t),u∗
D(t),u

∗
T(t)) (12a)

s.t. ∀t uA(t) ∈ unit (n − 1)−sphere (12b)

(u∗
D(t),u

∗
T(t)) = arg max

(uD(t),uT(t))

∂V
∂x

· f (x(t),u∗
A(t),uD(t),uT(t)) (13a)

s.t. ∀t uD(t),uT(t) ∈ unit (n − 1)−sphere (13b)

∂V
∂x

· f (x(t),u∗
A(t),u

∗
D(t),u

∗
T(t)) = 0. (14)

The approach taken in the works of Garcia et al. (2019) used a
similar expression to (7) to analytically calculate the gradient of
the value function and used that result to verify the above equa-
tions. However that approach, even in 2D led to excruciatingly
long calculations, since the Jacobian of the interception point
had to be computed, which measures the change in I(x(t)) with
respect to the change in the state x(t). In the case of arbitrary
dimensions that approach is no longer feasible. The next section
details the introduction of a new geometric method of verifying
the HJB equations, by adopting the discrete-time variant of the
TAD game of degree.

3. Discrete-time turn-based approximation

3.1 Problem formulation of sequential game

Consider the following sequential game. The game starts at
any time t from any initial state x(t) = (xA(t), xD(t), xT(t))
satisfying xT(t)xD(t) < xT(t)xA(t).

Team A with complete information of the full state x(t)
moves first, it chooses a heading for agentA tomove in a straight
line from xA(t) to xA(t +�t) of length �t, where xA(t +�t)
depends on its choice of direction.

In response, the T/D team with complete information of the
full state x(t) and the path of agent A xA(t) → xA(t +�t); it
chooses headings for agents T and D to move in straight lines
xT(t) → xT(t +�t) and xD(t) → xD(t +�t) of lengths α�t
and�t respectively, where xT(t +�t) and xD(t +�t) depend
on its choice of direction for agent T and D respectively.

The payoff received by the A team and T/D team is
V(x(t +�t)), where for the A team the payoff is a cost to min-
imise, and for the T/D team the payoff is a reward to maximise.

Here

• V(x(t)) is the value function defined in Equation (7),
• I(x(t)) is the predicted interception point defined in

Equation (8),
• χ is the midway plane defined in Equation (9),
• Â, D̂ and T̂ are defined in (11),
• xA(t), xD(t), xT(t) ∈ Rn for all t ∈ R,
• ab denotes the euclidean distance between two points

a, b ∈ Rn,
• 0 ≤ α ≤ 1.

This sequential game is later referred to in the article as
Game 3.1.

3.2 Nash equilibrium

The following lemmas are utilised to prove that regarding
the strategies (10), its corresponding discrete-time turn-based
duplicate constitutes a Nash equilibrium in Game 3.1, provided
that the time increment�t is sufficiently small.2

The following notation is used throughout this section. Let I1
and χ1 or just χ denote the interception point and the midway
plane at time t respectively, and I2 and χ2 denote the intercep-
tion point and the midway plane at time t +�t respectively.

In the analysis below, the γ strategy is defined as the fol-
lowing T/D team game plan; agent T moves away from the
interception point I(x(t)) and agent D mirrors the movement
of agent A in such a manner as to ensure the midway plane χ
remains unchanged.3

The first two lemmas establish the non-decreasing property
of the value function.

Lemma 3.1: For any A team strategy ζ , provided the response γ
of the T/D team, V(x(t +�t)) ≥ V(x(t)).

Proof: Proof by contradiction. There exists some A strategy η
such that V(x(t +�t)) < V(x(t)) provided the response γ of
the T/D team. Expressing this statement mathematically

V(x(t +�t)) < V(x(t))

xT(t +�t)I2 + αxA(t +�t)I2, < xT(t)I1 + αxA(t)I1,

where I1 = I(x(t)), I2 = I(x(t +�t)); and due to T/D strategy
γ , the plane χ remains unchanged, hence I1, I2 ∈ χ .4 Adding
both sides of the above inequality by α�t, and using the fact
that xT(t +�t)I1 = xT(t)I1 + α�t:

xT(t +�t)I2 + αxA(t +�t)I2 + α�t

< xT(t)I1 + αxA(t)I1 + α�t

xT(t +�t)I2 + α(xA(t +�t)I2 +�t)

< xT(t +�t)I1 + αxA(t)I1,

and since A moves with speed 1 in some direction,
xA(t)xA(t +�t) = �t, hence

xT(t +�t)I2 + α(xA(t)xA(t +�t)+ xA(t +�t)I2)

< xT(t +�t)I1 + αxA(t)I1. (15)

Since the addition of α�t only introduced a term that is con-
stant, the point I1 on the plane χ is also an optimal point
whichminimises xT(t +�t)I1 + αxA(t)I1 under the constraint
I1 ∈ χ .

This establishes that formula (15) is false, on the grounds
that I1 is an optimal solution that minimises α times the dis-
tance from xA(t) to a point in χ plus the distance from that
point inχ to xT(t +�t), but formula (15) proposes that it found
a strictly better solution with the path xA(t) → xA(t +�t) →
I2 → xT(t +�t), where I2 ∈ χ .

Thus for any A team strategy, provided the response γ of the
T/D team, V(x(t +�t)) ≥ V(x(t)). �

Lemma 3.2: For any A team strategy ζ , provided a best response
of the T/D team, V(x(t +�t)) ≥ V(x(t)).
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Proof: The γ strategy may or may not be the best response of
the T/D team to a strategy from A. Hence the value function
V(x(t +�t)) given a best response of the T/D team is greater
than or equal to the value function obtained given the T/D team
strategy γ . Invoking Lemma 3.1, the later payoff is no less than
V(x(t)).

Consequently, for any A team strategy, provided a best
response of the T/D team, V(x(t +�t)) ≥ V(x(t)). �

The next set of results rely on the following bounds on the
size of the time increment

�t ≤ xA(t)I(x(t)) (16)

�t ≤ 1
2
(
xT(t)xA(t)− xT(t)xD(t)

)
. (17)

The immediate implication of bound (17) is specified below.

Lemma 3.3: If �t ≤ 1
2 (xT(t)xA(t)− xT(t)xD(t)) then

xT(t)xD(t +�t) ≤ xT(t)xA(t +�t).

Proof: The distance xT(t)xA(t +�t) is at a minimum if agent
A moves towards agent T, hence the lower bound

xT(t)xA(t +�t) ≥ xT(t)xA(t)−�t (18)

holds. Similarly, the distance xT(t)xD(t +�t) is at a maximum
if agent D moves away from agent T, thus

xT(t)xD(t +�t) ≤ xT(t)xD(t)+�t. (19)

Manipulating equation (18),

xT(t)xA(t +�t)− xT(t)xA(t) ≥ −�t

− xT(t)xA(t +�t)+ xT(t)xA(t) ≤ �t

− xT(t)xA(t +�t)+ xT(t)xA(t) ≤ 1
2
xT(t)xA(t)

− 1
2
xT(t)xD(t) substituting (17)

− xT(t)xA(t +�t) ≤ −1
2
xT(t)xA(t)− 1

2
xT(t)xD(t)

xT(t)xA(t +�t) ≥ 1
2
(xT(t)xA(t)+ xT(t)xD(t)). (20)

Similarly, manipulating formula (19),

xT(t)xD(t +�t)− xT(t)xD(t) ≤ �t

xT(t)xD(t +�t)− xT(t)xD(t) ≤ 1
2
xT(t)xA(t)

− 1
2
xT(t)xD(t) applying (17)

xT(t)xD(t +�t) ≤ 1
2
(xT(t)xA(t)+ xT(t)xD(t)). (21)

Therefore combining formulas (20) and (21), it follows that
xT(t)xD(t +�t) ≤ xT(t)xA(t +�t). �

The next two lemmas establish the non-increasing property
of the value function.

Lemma 3.4: If �t ≤ xA(t)I(x(t)) and �t ≤ 1
2 (xT(t)xA(t)−

xT(t)xD(t)), then for any T/D team strategy κ in response to A
moving towards the interception point,V(x(t +�t)) ≤ V(x(t)).

Proof: Invoking Lemma 3.3, xT(t)xD(t +�t)
≤ xT(t)xA(t +�t), in other words xT(t) remains in the
Defender’s side of the midway plane at time t +�t.

Moreover, since �t ≤ xA(t)I1 and A is moving in a straight
line with speed 1 towards the point I1 on χ1, I1xD(t +�t) ≥
I1xA(t +�t), hence I1 remains on the Attacker’s side of the
midway plane at time t +�t.

It therefore follows that there exists some point on the line
connecting xT(t) to I1 that is in the plane χ2. Let � denote such
a point.

Utilising the triangle inequality, it is true that

xA(t +�t)� ≤ �I1 + xA(t +�t)I1

αxA(t +�t)� ≤ α�I1 + αxA(t +�t)I1 since α ≥ 0

αxA(t +�t)� ≤ �I1 + αxA(t +�t)I1 since α ≤ 1.

Adding both sides of the above inequality by xT(t)� + α�t:

xT(t)� + α�t + αxA(t +�t)�

≤ xT(t)� + �I1 + α(xA(t +�t)I1 +�t).

Since Amoves in a straight line towards I1 with speed 1 and (16)
holds, xA(t)I1 = xA(t +�t)I1 +�t. Moreover, since xT(t)� +
�I1 = xT(t)I1, applying to the inequality above:

xT(t)� + α�t + αxA(t +�t)� ≤ xT(t)I1 + αxA(t)I1

xT(t)� + α�t + αxA(t +�t)� ≤ V(x(t)). (22)

Using the triangle inequality xT(t +�t)� ≤ xT(t)�
+ xT(t)xT(t +�t), and since T moves with speed
α, xT(t)xT(t +�t) = α�t, thus xT(t +�t)� ≤ xT(t)� +
α�t. It follows that the left-hand side of the inequality (22) can
be bounded below:

xT(t +�t)� + αxA(t +�t)�

≤ xT(t)� + α�t + αxA(t +�t)�.

As a result, the following lower bound on V(x(t)) holds:

xT(t +�t)� + αxA(t +�t)� ≤ V(x(t)).

Hence it is sufficient to verify that

V(x(t +�t)) ≤ xT(t +�t)� + αxA(t +�t)�. (23)

To confirm this, recall the definition of V(x(t +�t))

V(x(t +�t)) = xT(t +�t)I2 + αxA(t +�t)I2.

� may or may not be the optimal point in χ2 that minimises
xT(t +�t)I2 + αxA(t +�t)I2, hence

V(x(t +�t)) ≤ xT(t +�t)� + αxA(t +�t)�,

which completes the proof. �
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Lemma 3.5: If �t ≤ xA(t)I(x(t)) and �t ≤ 1
2 (xT(t)xA(t)−

xT(t)xD(t)), then for any T/D team strategy κ in response to an
optimal A strategy, V(x(t +�t)) ≤ V(x(t)).

Proof: Follows from Lemma 3.4, since the upper bound
V(x(t +�t)) ≤ V(x(t)) on V(x(t +�t)) holds given a poten-
tially sub-optimal strategy from A, the upper bound also holds
for an optimal A strategy. �

The final lemma confirms that the value function remains
unchanged in any Nash equilibrium.

Lemma 3.6: If �t ≤ xA(t)I(x(t)) and �t ≤ 1
2 (xT(t)xA(t)−

xT(t)xD(t)), then in any Nash equilibrium of Game 3.1,
V(x(t +�t)) = V(x(t)).

Proof: As a result of Lemmas 3.2 and 3.5; given an optimal A
strategy, the value function is bounded above
V(x(t +�t)) ≤ V(x(t)), and given a best response from the
T/D team, the value function is bounded belowV(x(t +�t)) ≥
V(x(t)), hence Lemma 3.6 holds. �

The main result of the paper is given below.

Theorem 3.7: In the sequential game 3.1, at any starting state
x(t) and time t satisfying xT(t)xD(t) < xT(t)xA(t), if

�t ≤ xA(t)I(x(t)) (24)

and

�t ≤ 1
2
(
xT(t)xA(t)− xT(t)xD(t)

)
, (25)

then the trajectory

xA(t +�t) = xA(t)+�tÂ (26a)

xD(t +�t) = xD(t)+�tD̂ (26b)

xT(t +�t) = xT(t)− α�tT̂ (26c)

is a Nash equilibrium with payoff

V(x(t +�t)) = V(x(t)). (27)

Proof: Since the initial state satisfies xT(t)xD(t) < xT(t)xA(t),
Â, D̂ and T̂ are well defined.

Due to the lower bound given in Lemma 3.2, the best pay-
off the A team can possibly achieve provided a best response
from the T/D team is V(x(t)). In Lemma 3.4, it was estab-
lished that the A strategy to move towards the interception
point (26a) guarantees no more than that number regardless
of the response of the T/D team, hence that is an optimal
A strategy, and provided a best response of the T/D team,
V(x(t +�t)) = V(x(t)).

Furthermore in Lemma 3.1, it was demonstrated that the
response γ from the T/D team achieves V(x(t +�t)) ≥
V(x(t)) regardless of the strategy from A, hence is a best
response of the T/D team to A moving toward the interception
point. The T/D team response (26b)–(26c) is the γ strategy in
this case. Therefore (26) is a Nash equilibrium trajectory.

Moreover, Lemma 3.6 confirmed that the value func-
tion remains unchanged in any Nash equilibrium, hence
Theorem 3.7 holds. �

3.3 Recursive application of Theorem 3.7 in game 2.1

This subsection makes evident the practicality of the results in
the previous section with regard to the original formulation 2.1
and provides a preliminary outline of a proof of Conjecture 2.1
in arbitrary dimensions.

Recall that Theorem 3.7 established that at every state x(t)
and time t satisfying xT(t)xD(t) < xT(t)xA(t), the Nash equi-
librium (26) defines optimal strategies of the A team and T/D
team tominimise andmaximise the value function respectively;
moreover, the value function remains unchanged under this
optimal trajectory.

For �t sufficiently small, formula (24) holds, consequently
the Nash equilibrium strategies (26) preserves the condition
xT(t +�t)xD(t +�t) < xT(t +�t)xA(t +�t) in the next
time step, unless the game terminated at time t +�t.

Therefore Theorem 3.7 can be applied recursively from
any initial state x0 and time t0 satisfying xT(t0)xD(t0) <
xT(t0)xA(t0) to terminal state xf and time tf , where the time
increment �t at each time step must be sufficiently small to
adhere to (24) and (25).

Since constraints (24) and (25) provide no limits to the
infinitesimalness of�t; as�t approaches zero, the foresight the
T/D team possess vanishes, and hence the Hamilton–Jacobi–
Bellman equations (12), (13) and (14) hold from time t0 to tf .

Despite the fact that the basic argument above falls short of
the standard of proof needed to establish Conjecture 2.1, it is
possible that future research would prove its sufficiency using
arguments along those lines.

4. 3D simulation of Nash equilibrium strategies

In the final section, the Nash equilibrium strategies are
implemented in 3D on MATLAB 2019a and are compared
against the baseline guidance algorithm Proportional Naviga-
tion, or PN for short. All the simulations described below
use the time increment �t = 0.1, and the game is termi-
nated at the first time condition (24) or condition (25)
is violated. The results of the simulations are displayed in
Table 1. The MATLAB codes used in this section are avail-
able at: https://www.dropbox.com/s/djjnmco621w0uqa/TAD.
zip?dl= 0.

4.1 Battle scenario

In the simulated battle scenario, the starting positions of the
three agents are:

(xA(0), xD(0), xT(0)) =
⎛
⎝
⎡
⎣1040
50

⎤
⎦ ,

⎡
⎣ 8

−35
0

⎤
⎦ ,

⎡
⎣−50

−2
0

⎤
⎦
⎞
⎠ (28)

and the speed of the Target is set to α = 0.2 m/s.

4.1.1 Nash equilibrium trajectory
Figure 1 in Table 1 plots the trajectories of the Attacker (blue),
Defender (red) and Target (black) from starting time to termi-
nation time, when all three agents play their Nash equilibrium
strategies (26), and Figure 2 plots the value function V(x(t))
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Table 1. Trajectory and value function plots of Game 2.1 with T/D team using Nash equilibrium strategies versus different A team strategies and different Target speeds.

Trajectory plot Value function plot

Target speed α = 0.2 and Attacker using
Nash equilibrium strategy.

Target speed α = 0.2 and Attacker using
Proportional Navigation.
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Target speed α = 0 and Attacker using
Nash equilibrium strategy.

Target speed α = 0 and Attacker using
Proportional Navigation.
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across time along that trajectory. The results show that the dis-
tance between the Target and Attacker at termination time is
33.91 m.

4.1.2 Attacker using PN
In the next simulation, we examine the performance of the T/D
team strategy (26b)–(26c) against an Attacker using the most
common guidance law, Proportional Navigation.5 Figure 3 plots
the trajectories of the Attacker (blue), Defender (red) and Target
(black) from starting time to termination time in this scenario,
and Figure 4 plots the value function V(x(t)) across time along
that trajectory. In this case, the distance between the Target and
Attacker at termination time is 37.96 m, which is larger than the
previous terminal distance.

4.1.3 Stationary target
The above two simulations are repeated in the case of a station-
ary Target, that is α = 0; the results are displayed in Table 1. Just
as before, we observe a rise in the terminal distance between the
Target and Attacker from 18.92 to 22.97 metres as the Attacker
switches from their Nash equilibrium strategy to PN guidance.
This demonstrates that the T/D team defence strategy given by
the Nash equilibrium (26) is robust against missiles using PN
guidance laws, and from the point of view of the Attacker, these
simulations also provide evidence to validate the advantages of
the guidance law given by (26a) in comparison to PN navigation
in the TAD game of degree.

5. Conclusion

A new geometric method of verifying the Hamilton–Jacobi–
Bellman equations was developed. This approach at first formu-
lates a discrete-time turn-based variant of the differential game,
then proves that the conjectured optimal strategies constitute a
Nash equilibrium at each time step; finally in view of the fact
that no limits were placed on the infinitesimalness of the time
increment, those results are applied recursively in the original
continuous-time formulation from starting time to termination
time to verify the HJB equations.

This new approach was utilised in the TAD game of degree
to generalise the results of Garcia et al. (2019) from 2D to arbi-
trary dimensions. In Section 4, the T/D team Nash equilibrium
strategies were simulated against threats using various guidance
laws, the results verified its optimality and robustness against
missiles using PN guidance, authenticating its applicability in
defence applications.

Future research directions could involve generalising the
TAD game of degree scenario to include obstacles, and apply-
ing the new approach to other pursuit-evader games such as
the fast-pursuer multiple-evader scenario found in Liu, Zhou,
Tomlin, and Hedrick (2013).

Notes

1. In the degenerate case where xA(t) = xD(t), the following definition
applies χ = {xA(t)}.

2. The initial condition xT(t)xD(t) < xT(t)xA(t) is an implicit assump-
tion used throughout Section 3.2.

3. In the degenerate case where xA(t +�t) ∈ χ1, the following definition
of the γ strategy applies xD(t +�t) = xA(t +�t), hence χ2 =
{xA(t +�t)}.

4. In the degenerate case where xA(t +�t) ∈ χ1, χ2 = {xA(t +�t)}
hence I2 = xA(t +�t) ∈ χ1, therefore the statement I1, I2 ∈ χ still
holds.

5. In the implementation of PN, the initial velocity vector was set to point
directly towards the Target.
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Chapter 4

A state-feedback Nash equilibrium

for the general

Target-Attacker-Defender

differential game of degree in

arbitrary dimensions

4.1 Contextual statement

Our next publication is the first manuscript to rigorously examine the differential game

of active target defence in the fast defender case VA < VD. The complexity herein lies in

establishing that a fast defender can contain the attacker within the confines of the AD-

based Apollonius circle. The perimeter of the Attacker-Defender based Apollonius circles

defines the set of all points in space in which the Attacker and Defender are equally separated

by time-to-reach. This paper identifies and proves the state-feedback optimal strategies for

any VA < VD.

34
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ABSTRACT
In thismanuscriptwe formulate the general Target–Attacker–Defender differential gameof degree in both
its continuous-time and discrete-time turn-based variants in n-dimensional euclidean space. In this three-
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1. Introduction

In aerospace guidance and control, multi-agent pursuit evader
differential games are often used to model maritime and
aerospace engagement scenarios for defence applications. The
focus of this manuscript is on one particular class of pur-
suit evader games, namely the three-agent Target–Attacker–
Defender (TAD) differential game. This class of pursuit evader
games were motivated by Li and Cruz (2011), who considered
an autonomous vehicle tasked with defending a valuable asset
against an attacker; and by Rusnak (2005) where a bodyguard’s
mission is to protect a potential victim against a bandit; and by
Boyell (1976) in which a naval ship on the move encounters an
attacking submarine, and must launch a torpedo in its defence.

More precisely, the Target–Attacker–Defender differential
game is described as follows. There are three agents, named the
Attacker or agent A, the Defender or agent D, and the Target or
agent T; and two teams, team A and team T/D; where team A
controls themovement of agentA and teamT/D coordinates the
movement of agents T and D. The primary goal of team A is to
capture the Target whilst evading collision with the Defender,
and the primary goal of team T/D is to achieve the opposite
goal, namely for the Defender to intercept the Attacker before
it reaches agent T.

Using the winning time as the cost functional, this formu-
lates the TAD differential game of kind. Works on this problem
include Bhattacharya et al. (2016) and Zha et al. (2017). The
most comprehensive analysis of this game was made by Liang
et al. (2019), in which the whole state space was separated into
the winning regions, namely into regions in which team A wins
(capture the target), and where teamT/Dwins (prevents its cap-
ture). Moreover in each region optimal strategies were derived
in which the winning teamminimised the termination time and
the losing team worked to maximise it.

CONTACT Kamal Mammadov kamal.mammadov@adelaide.edu.au

In cases where the Target–Attacker–Defender differential
game is motivated from an aerospace engagement scenario for
a defence application, normally the Attacker models a guided
bomb being used in an attempt to destroy agent T. Clearly in this
case it is not necessary for agent A to capture agent T, but only
to get close enough to be within its blast radius. This engage-
ment scenario is normally modelled as a zero-sum differential
game in which the objective of team A is to minimise the dis-
tance between the Target and agent A at its time of collision, and
team T/D coordinate their movements in such a manner as to
achieve the opposite goal. This is named the TAD differential
game of degree and the focus of the current manuscript.

Other variations of the engagement scenario are consid-
ered in Prokopov and Shima (2013), Shima (2011) and Shafer-
man and Shima (2010). Here it is assumed the Target and
Defender start at the same position (since it models a target
aircraft launching a missile in its defence), and the Attacker
employs a known linear one-on-one guidance law to capture
agent. Shima (2011) also considered the scenario in which both
the Attacker and Defender’s strategies were constrained to the
most well-know guidance laws PN, APN andOGL. Under those
assumptions on agent A’s strategy and agent D’s strategy, agent
T solves a one-sided optimal control problem.

The present paper is specifically focused on the formula-
tion of the TAD differential game of degree presented in Garcia
et al. (2019). Here each agent moves in 2-dimensional euclidean
space (has an x and y position), and it is assumed that the
speeds of agents A and D are equal, and the speed of the Target
is no greater than the speed of agent A. In this work a state-
feedback Nash equilibrium was derived and proved by demon-
strating that the strategy profile defined by theNash equilibrium
satisfies the Hamilton-Jacobi-Bellman equations. In the work
of Mammadov et al. (2020), the aforementioned results were

© 2020 Informa UK Limited, trading as Taylor & Francis Group
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extended to the more general setting where each agent moves
in n-dimensional space.

In the present manuscript, we consider themost general case
of the Target–Attacker–Defender differential game, inwhich the
speeds of the three agents are not equal. More specifically where
the speed of the Target is less than the speed of the Attacker
which in turn is less than the speed of the Defender. Note that
the cases inwhich the order of this inequality is switched, it leads
to degeneracies were only one team wins, hence this is the most
general non-degenerate formulation.

This general settingwas first considered inGarcia et al. (2017)
and in an earlier conference version, in R2. Here a two-person
extension of Pontryagin’s maximum principle was used to prove
that provided the co-state variables are non-zero, under optimal
play the trajectories of all the agents are straight lines. Then,
under the constraint that every agent must move in a straight
line for all time (cannot move in curved paths), the optimal
headings of every agent was proved. This constraint however is
limiting since there are examples of state-feedbackNash equilib-
ria, such as (14), in which the optimal state-feedback strategies
are not necessarily held constant for all time, but rather only
held constant when all teams play their optimal strategies (thus
satisfying the implication of the maximum principle). In the
present manuscript, the aforementioned constraint is dispensed
with and the results hold in Rn. The main contribution of this
paper is to establish a state-feedback Nash equilibrium of the
TAD differential game of the degree in this most general setting
in arbitrary dimensions.

The remainder of the article is organised as follows. In
Section 1.1, the notation used throughout the manuscript is
introduced, and an algebraic inequality used in the subsequent
sections is presented. In Section 2 the mathematical formula-
tion of the TAD differential game of degree is given, and a Nash
equilibrium of the game is proposed. In Section 3, the TAD dif-
ferential game of degree is recast in a discrete-time turn based
variant with arbitrarily small time increment. In this formu-
lation it is proven that the corresponding discretised optimal
strategy profile constitutes a Nash equilibrium, thereby giving
strong theoretical support to the claimed Nash equilibrium for
the original continuous-time formulation.

1.1 Preliminaries

The notation used throughout the manuscript is listed as fol-
lows. Given any u, v,w ∈ Rn

• R+ = {x ∈ R | x > 0} denotes the set of all positive real
numbers,

• R+
0 = {x ∈ R | x ≥ 0} denotes the set of all non-negative real

numbers,
• u · v denotes the dot product,
• ||u|| = √

u · u,
• −→uv = v − u,
• uv = ||−→uv|| denotes the euclidean distance between u and v,
• ∠uvw denotes the angle between vectors −→vu and −→vw,
• u̇(t) denotes the time derivative d

dtu(t).

Next we provide an inequality which is used in the subse-
quent sections.

Proposition 1: For all θ ∈ R,φ ∈ R, δ ∈ R+
0

√
cos2 θ + δ sin2 θ

√
cos2 φ + δ sin2 φ ≥ | cos θ || cosφ|

+ δ| sin θ || sinφ|. (1)

Proof: For any θ and φ in R,

(| cos θ || sinφ| − | sin θ || cosφ|)2 ≥ 0,

expanding the left-hand side:

cos2 θ sin2 φ + sin2 θ cos2 φ

− 2| sin θ || cos θ || sinφ|| cosφ| ≥ 0,

which remains true if it is multiplied by any δ ∈ R+
0

δ cos2 θ sin2 φ + δ sin2 θ cos2 φ

≥ 2δ| sin θ || cos θ || sinφ|| cosφ|.

Adding both sides by cos2 θ cos2 φ + δ2 sin2 θ sin2 φ,

cos2 θ cos2 φ + δ cos2 θ sin2 φ + δ sin2 θ cos2 φ

+ δ2 sin2 θ sin2 φ

≥ cos2 θ cos2 φ + 2δ| sin θ || cos θ || sinφ|| cosφ|
+ δ2 sin2 θ sin2 φ,

factorising both sides we obtain:

(cos2 θ + δ sin2 θ)(cos2 φ + δ sin2 φ)

≥ (| cos θ || cosφ| + δ| sin θ || sinφ|)2.

Since both sides of the above inequality are non-negative, and
the square root function is monotonically increasing in the
interval [0,∞), taking the square root maintains the order of
the inequality, thus

√
cos2 θ + δ sin2 θ

√
cos2 φ + δ sin2 φ

≥ | cos θ || cosφ| + δ| sin θ || sinφ|. �

2. TAD game of degree formulation and preliminary
analysis

2.1 Problem definition of TAD game of degree

The TAD game of degree is a two player (two team) zero-
sum differential game. The complete state of the differential
game is specified by x(t) = (xA(t), xD(t), xT(t)) where xA(t) =
(xA1(t), . . . , xAn(t)) ∈ Rn, xD(t) = (xD1(t), . . . , xDn(t)) ∈ Rn

and xT(t) = (xT1(t), . . . , xTn(t)) ∈ Rn denotes the position of
the Attacker, Defender and Target respectively. Regarding the
information structure of the game, both teams have access to the
current state of the system x(t) at time t. Using that information,
team Amust choose an instantaneous heading for agent A, and
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team T/D for the headings of agents D and T. The controls of
agents A, D and T are given by

uA(t),uD(t),uT(t) ∈ unit (n − 1)−sphere, (2)

where a unit (n − 1)-sphere is the set of all points in Rn

that are a unit distance from the origin. The dynamics ẋ(t) =
f (x(t),uA(t),uD(t),uT(t)) from time t0 to tf is given by

(ẋA(t), ẋD(t), ẋT(t)) = (VAuA(t),VDuD(t),VTuT(t)),

x(t0) = x0, (3)

where VA,VD,VT ∈ R+
0 denotes the speed of the Attacker,

Defender and Target respectively. The termination time tf is
defined endogenously as the first time tf satisfying at least one
of the termination conditions (4) or (5).

xA(tf ) = xD(tf ), (4)

xA(tf ) = xT(tf ). (5)

Over the time horizon [t0, tf ], each team receives the following
payoff

J(uA(·),uD(·),uT(·), x0) = �(xf ) (6)

where

�(xf ) = xT(tf )xA(tf ). (7)

The objective of teamA is tominimise J(uA(·),uD(·),uT(·), x0),
whereas the objective of team T/D is to maximise it. We also
make the following three assumptions. The speed of the agents
satisfies the inequality

VT < VA < VD (8)

and the initial state x0 satisfies

xT(t0)xA(t0)
VA

>
xT(t0)xD(t0)

VD
, (9)

and

xA(t0) �= xD(t0). (10)

This differential game is later referred to in the article as
Game 2.1. Due to the constraint (9) on the initial state of the
game, and the relative speeds (8), under optimal play agent
A will always fail to capture agent T, hence the termination
condition (5) is discarded in the proceeding analysis.

2.2 Optimal state-feedback strategies

In the present subsection, the optimal state-feedback strategies
are displayed, but first some preliminary notation is introduced.

The value functional V : Rn × Rn × Rn × [t0, tf ], which
should indicate the payoff-to-go at every state, is defined below

V(x(t)) = xT(t)I(x(t))+ VT

VA
xA(t)I(x(t)), (11)

where the predicted interception point I(x(t)) is the unique
solution to

I(x(t)) = argmin
I

xT(t)I + VT

VA
xA(t)I (12a)

s.t. I ∈ χ(x(t)) (12b)

and where the (n − 1)-dimensional boundary χ(x(t)) is the
containment boundary defined by

χ(x(t)) =
{
p ∈ Rn | pxA(t)

VA
= pxD(t)

VD

}
. (13)

The containment boundary is an Apollonius circle, that is a set
of all points whose distances from two fixed points are in a con-
stant ratio. The containment boundary given by (13) at time t
is the Appollonius circle in which the two fixed points are the
current positions of agents A and D, and the distance to their
respective positions are in the constant ratio VA : VD.

Note that in several instances in this manuscript, we denote
χ as shorthand for χ(x(t)) when it is clear we are referring to
the containment boundary at the current state.

The optimal state-feedback strategies for both teams are
given by Proposition 2.

Proposition 2: A state-feedback Nash equilibrium of Game 2.1
is given by

u∗
A(t) = I(x(t))− xA(t)

‖I(x(t))− xA(t)‖ , (14a)

u∗
D(t) = I(x(t))− xD(t)

‖I(x(t))− xD(t)‖ , (14b)

u∗
T(t) = −

(
I(x(t))− xT(t)

‖I(x(t))− xT(t)‖
)
. (14c)

To prove Proposition 2, we would have to verify that the
strategy profile given by Equation (14) satisfies the Hamilton-
Jacobi-Bellman equations provided below from time t0 to tf .

u∗
A(t) = arg min

uA(t)

∂V
∂x

· f (x(t),uA(t),u∗
D(t),u

∗
T(t)) (15a)

s.t. uA(t) ∈ unit (n − 1)−sphere (15b)

(u∗
D(t),u

∗
T(t)) = arg max

(uD(t),uT(t))

∂V
∂x

· f (x(t),u∗
A(t),

uD(t),uT(t)) (16a)

s.t. uD(t),uT(t) ∈ unit (n − 1)−sphere (16b)
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∂V
∂x

· f (x(t),u∗
A(t),u

∗
D(t),u

∗
T(t)) = 0. (17)

The approach taken in the works of Garcia et al. (2019) used
a similar expression to (11) to analytically calculate the gradi-
ent of the value function, and used that result to verify Equa-
tions (15)–(17). However that approach, even in the simpler
case where VA = VD led to excruciatingly long calculations,
since the Jacobian of the interception point had to be computed,
whichmeasures the change in I(x(t))with respect to the change
in the state x(t).

The approach taken in this manuscript is to instead reformu-
late Game 2.1 as a discrete-time turn-based game. The advan-
tage of a discrete-time formulation is that in the time interval t to
t +�t, the paths of all the agents are constrained to be straight
lines; and the advantage of a turn-based formulation, specifi-
cally where team A moves first followed by team T/D, is that
agent D can ensure that agent A remains within the confines of
the containment boundary χ , regardless of team A’s strategy.

In the next section we define the Run and Contain strat-
egy for team T/D and the Interception Attack strategy for team
A; these are the discrete-time turn-based equivalents of the
strategies defined in (14), and show that they constitute a Nash
equilibrium at every discrete-time interval t to t +�t. Since
the time increment �t can be set arbitrarily small, this pro-
vides strong theoretical support for the optimality of (14) in the
continuous-time formulation.

3. Discrete-time turn-based variant

3.1 Problem formulation of sequential game

Consider the following sequential game. The game starts at any
time t from any initial state x(t) = (xA(t), xD(t), xT(t)).

Team A with complete information of the full state x(t)
moves first, it chooses a heading for agentA tomove in a straight
line from xA(t) to xA(t +�t) of length VA�t.

In response, team T/D with complete information of the full
state x(t) and path of agent A xA(t) → xA(t +�t); it chooses
headings for agents T and D to move in straight lines of lengths
VT�t and VD�t respectively.

The payoff received by the A team and T/D team is V(x(t +
�t)), where for the A team the payoff is a cost to minimise, and
for the T/D team the payoff is a reward to maximise.

Below we list the notation used:

• V(x(t)) is the value function defined in (11),
• I(x(t)) is the predicted interception point defined in (12),
• χ is the containment boundary defined in (13),
• xA(t), xD(t), xT(t) ∈ Rn denotes the position of the three

agents for all t ∈ R,
• VA,VD,VT ∈ R+

0 denotes the speed of the Attacker,
Defender and Target respectively,

• �t ∈ R+ is the time increment of the game.

In addition, we make the following three assumptions in this
game

VT < VA < VD, (18)

�t ≤ 1
VA + VD

xA(t)xD(t), (19)

�t ≤ 1
2

(
xT(t)xA(t)

VA
− xT(t)xD(t)

VD

)
, (20)

as well as the following two assumptions on the state x(t)

xT(t)xD(t)
VD

<
xT(t)xA(t)

VA
, (21)

xA(t) �= xD(t). (22)

This sequential game is later referred to in the article as
Game 3.1.

3.2 Nash equilibrium

Below we define the Run and Contain strategy for the T/D team
and the Interception Attack strategy for teamA. It is proved that
these strategies constitute a Nash equilibrium in Game 3.1.

Definition1 (Containment Strategy): TheContainment strat-
egy for agent D; a function of the current state x(t) and path of
agent A xA(t) → xA(t +�t) is defined as follows. Whichever
direction agentAmoves in, extend the line xA(t) → xA(t +�t)
until it intercepts a point on the containment boundaryχ , agent
Dmoves in a straight line towards that point on the containment
boundary.

Note that the Containment strategy is well defined since (19)
holds, hence agent A remains inside the boundary χ at time
t +�t.

Definition 2 (Run and Contain Strategy): The Run and Con-
tain strategy for the T/D team is defined as follows. Agent D
plays the Containment strategy defined in Definition 1 and
agent T moves in a straight line away from the predicted inter-
ception point I(x(t)).

Definition 3 (Interception Attack Strategy): The Intercep-
tion Attack strategy for team A is defined as follows. Agent A
moves in a straight line towards the predicted interception point
I(x(t)).

Figures 1 and 2 display theRun andContain strategy for team
T/D and the Interception Attack strategy for team A respec-
tively. The first result proves that the Containment strategy for
agent D does indeed contain agent A within the confines of the
boundary χ ; that is, the time it takes for agent D to reach any
point on the boundary χ is less than or equal to the time it takes
for agent A to reach that point.

Theorem 3.1: In Game 3.1, if agent D plays the Containment
strategy, then for any point P ∈ χ , xD(t+�t)P

VD
≤ xA(t+�t)P

VA
.

Proof: Let the function proj(v) = v·−−−−−−→
xA(t)xD(t)−−−−−−→

xA(t)xD(t)·−−−−−−→
xA(t)xD(t)

−−−−−−→
xA(t)xD(t)

denote the vector projection of any vector v ∈ Rn onto
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Figure 1. Example of Run and Contain strategy for team T/D

Figure 2. Interception Attack strategy for team A

−−−−−−→
xA(t)xD(t). Since (22) holds, the following four vectors in Rn

are well defined.

A = xA(t)+ proj(
−−−−−−−−−−→
xA(t)xA(t +�t)), (23)

D = xD(t)+ proj(
−−−−−−−−−−→
xD(t)xD(t +�t)), (24)

M1 = xA(t)+ proj(
−−−→
xA(t)P), (25)

M2 = M1 + −−−−−−−−→
AxA(t +�t). (26)

Here vectors A, D and M1 are the projections of xA(t +�t),
xD(t +�t) and P respectively onto the 1-d plane defined by
containing the line from xA(t) to xD(t). Figure 3 plots an exam-
ple of this geometry in 2d.

The first preliminary result is given below

−−−−−−−−→
AxA(t +�t) = −−−−−−−−→

DxD(t +�t). (27)

Formula (27) follows trivially from the following geometric
argument. In the case where �t was set equal to the time
required for xA(t +�t) = xD(t +�t) (such a �t exists since
VA < VD and agent D plays the Containment strategy), A = D
and hence

−−−−−−−−→
AxA(t +�t) = −−−−−−−−→

DxD(t +�t).
For any other time increment �t, since both agents move

in a straight line with constant speed,
−−−−−−−−→
AxA(t +�t) and−−−−−−−−→

DxD(t +�t) point in the same direction for all �t; moreover
the sizes of

−−−−−−−−→
AxA(t +�t) and

−−−−−−−−→
DxD(t +�t) increase linearly
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Figure 3. Diagram in 2d of the vectors defined in Theorem 3.1

with respect to time, and since the sizes are equal for one non-
zero �t, it is also true for all �t. Hence (27) holds for all
�t.

It follows from (27) that the line from xA(t +�t) to xD(t +
�t) is parallel to the line from xA(t) to xD(t). We can deduce
from this the following properties:

M1M2 = xA(t +�t)A = xD(t +�t)D, (28)

AM1 = xA(t +�t)M2, (29)

DM1 = xD(t +�t)M2. (30)

Let T denote the time required for agents A and D to reach
point P from their initial positions xA(t), xD(t) respectively.
Next we note all the right-angle triangles formed by the geome-
try.

xA(t)A
2 + xA(t +�t)A2 = V2

A�t2, (31)

xD(t)D
2 + xD(t +�t)D2 = V2

D�t2, (32)

xA(t)M1
2 + M1P

2 = V2
AT

2, (33)

xD(t)M1
2 + M1P

2 = V2
DT

2, (34)

xA(t +�t)M2
2 + M2P

2 = xA(t +�t)P2, (35)

xD(t +�t)M2
2 + M2P

2 = xD(t +�t)P2. (36)

Note that the algebraic proofs of formulas (28)–(36) are given
in the Appendix, where the formulas are deduced from Equa-
tions (23)–(27).

Applying the triangle inequality, we have that xD(t)M1 ≤
xD(t)D + DM1. In the case where xD(t)M1 < xD(t)D + DM1,
agent D is no further to point P than agent A at time t +�t,
and since agent D is at least as fast as agent A, Theorem 3.1 is
trivially satisfied. The remainder of the proof is concerned with
the case

xD(t)M1 = xD(t)D + DM1. (37)

Utilising the above properties, the following two results, which
are essential to the proof, are derived.

M2P
2 − M1M2

2 − M1P
2 − 2xD(t)D xD(t)M1

= xD(t +�t)P2 − V2
DT

2 − V2
D�t2, (38)

M2P
2 − M1M2

2 − M1P
2 − 2xA(t)A xA(t)M1

≤ xA(t +�t)P2 − V2
AT

2 − V2
A�t2. (39)

To derive (38), first we verify that −2xD(t)D xD(t)M1 =
xD(t +�t)M2

2 − xD(t)M1
2 − xD(t)D

2.

− 2xD(t)D xD(t)M1

= −2xD(t)D xD(t)M1 + xD(t)M1
2 + xD(t)D

2

− xD(t)M1
2 − xD(t)D

2

= (xD(t)M1 − xD(t)D)2 − xD(t)M1
2 − xD(t)D

2

= DM1
2 − xD(t)M1

2 − xD(t)D
2 applying (37)

= xD(t +�t)M2
2 − xD(t)M1

2 − xD(t)D
2.

substituting (30)

Therefore formula (38) is derived as follows:

M2P
2 − M1M2

2 − M1P
2 − 2xD(t)D xD(t)M1

= M2P
2 − M1M2

2 − M1P
2 + xD(t +�t)M2

2

− xD(t)M1
2 − xD(t)D

2

= xD(t +�t)P2 − M1M2
2 − M1P

2

− xD(t)M1
2 − xD(t)D

2 applying (36)
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= xD(t +�t)P2 − V2
DT

2 − M1M2
2

− xD(t)D
2 applying (34)

= xD(t +�t)P2 − V2
DT

2 − xD(t +�t)D2

− xD(t)D
2 substituting (28)

= xD(t +�t)P2 − V2
DT

2 − V2
D�t2. applying (32)

To derive formula (39), the following inequality is proved

− 2xA(t)A xA(t)M1

≤ xA(t +�t)M2
2 − xA(t)A

2 − xA(t)M1
2. (40)

Applying the triangle inequality twice, we have that xA(t)M1 ≤
AM1 + xA(t)A and xA(t)A ≤ AM1 + xA(t)M1, consequently

AM1 ≥ ∣∣xA(t)M1 − xA(t)A
∣∣ holds,

thus AM1
2 ≥ (xA(t)M1 − xA(t)A)2. (41)

Using (41) we deduce (40) as follows:

− 2xA(t)A xA(t)M1

= −2xA(t)A xA(t)M1 + xA(t)M1
2 + xA(t)A

2

− xA(t)M1
2 − xA(t)A

2

= (xA(t)M1 − xA(t)A)2 − xA(t)M1
2 − xA(t)A

2

≤ AM1
2 − xA(t)M1

2 − xA(t)A
2 applying(41)

≤ xA(t +�t)M2
2 − xA(t)M1

2 − xA(t)A
2.

substituting (29)

Thus by applying (40), inequality (39) is proven as follows:

M2P
2 − M1M2

2 − M1P
2 − 2xA(t)A xA(t)M1

≤ M2P
2 − M1M2

2 − M1P
2 + xA(t +�t)M2

2

− xA(t)M1
2 − xA(t)A

2

≤ xA(t +�t)P2 − M1M2
2 − M1P

2 − xA(t)M1
2

− xA(t)A
2applying (35)

≤ xA(t +�t)P2 − V2
AT

2 − M1M2
2

− xA(t)A
2 applying (33)

≤ xA(t +�t)P2 − V2
AT

2 − xA(t +�t)A2

− xA(t)A
2 substituting (28)

≤ xA(t +�t)P2 − V2
AT

2 − V2
A�t2. applying (31)

With formulas (38) and (39) verified, the proof of
Theorem 3.1 can commence. The starting point of the proof is
the inequality given by Proposition 1.

Invoking Proposition 1; If δ ≥ 0 then the inequality

√
cos2 θ + δ sin2 θ

√
cos2 φ + δ sin2 φ

≥ | cos θ || cosφ| + δ| sin θ || sinφ| (42)

holds for all θ ,φ ∈ R.
Let θ = ∠AxA(t)xA(t +�t) and φ = ∠M1xA(t)P. Since the

points xA(t), A and xA(t +�t) form a right-angle triangle:

xA(t)A = VA�t| cos θ |, (43)

xA(t +�t)A = M1M2 = VA�t| sin θ |. (44)

Also xA(t),M1 and P form a right-angle triangle:

xA(t)M1 = VAT| cosφ|, (45)

M1P = VAT| sinφ|. (46)

We can deduce xD(t)D using Pythagoras’ theorem:

xD(t)D =
√
V2
D�t2 − xD(t +�t)D2

=
√
V2
D�t2 − M1M2

2 substituting (28)

=
√
V2
D�t2 − V2

A�t2 sin2 θ substituting (44)

= VD�t

√
1 − V2

A
V2
D
sin2 θ . (47)

Similarly it can be deduced that

xD(t)M1 = VDT

√
1 − V2

A
V2
D
sin2 φ. (48)

Let δ = 1 − V2
A

V2
D
. Since 0 < VA

VD
< 1, we have δ ≥ 0, hence

we may utilise Proposition 1 for this choice of θ ,φ, δ.
Re-expressing (42) with δ = 1 − V2

A
V2
D
we obtain

√
1 − V2

A
V2
D
sin2 θ

√
1 − V2

A
V2
D
sin2 φ

≥ | cos θ || cosφ| +
(
1 − V2

A
V2
D

)
| sin θ || sinφ|.

Let ψ = ∠M2M1P. The above inequality also holds if we mul-
tiply the term | sin θ || sinφ| with cosψ , since this adjustment
does not increase the right-hand side of the inequality:

√
1 − V2

A
V2
D
sin2 θ

√
1 − V2

A
V2
D
sin2 φ

≥ | cos θ || cosφ| +
(
1 − V2

A
V2
D

)
| sin θ || sinφ| cosψ .
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Substituting formulas (43)–(48) into the inequality above, and
then multiplying both sides by 2�tT, we have:

2
V2
D
xD(t)D xD(t)M1 ≥ 2

V2
A
xA(t)A xA(t)M1

+ 2

(
1
V2
A

− 1
V2
D

)
M1M2 M1P cosψ .

Applying the law of cosines M2P
2 = M1M2

2 + M1P
2 −

2M1M2 M1P cosψ :

2
V2
D
xD(t)D xD(t)M1 ≥ 2

V2
A
xA(t)A xA(t)M1 +

(
1
V2
A

− 1
V2
D

)

× (M1M2
2 + M1P

2 − M2P
2
).

Re-arranging the above inequality we obtain

1
V2
A

(
M2P

2 − M1M2
2 − M1P

2 − 2xA(t)A xA(t)M1

)

≥ 1
V2
D

(
M2P

2 − M1M2
2 − M1P

2 − 2xD(t)D xD(t)M1

)
.

(49)

Substituting Equation (38) into the right-hand side:

1
V2
A

(
M2P

2 − M1M2
2 − M1P

2 − 2xA(t)A xA(t)M1

)

≥ 1
V2
D

(
xD(t +�t)P2 − V2

DT
2 − V2

D�t2
)
.

Applying inequality (39), it is also true that

1
V2
A

(
xA(t +�t)P2 − V2

AT
2 − V2

A�t2
)

≥ 1
V2
A

(
M2P

2 − M1M2
2 − M1P

2 − 2xA(t)A xA(t)M1

)
,

and hence

1
V2
A

(
xA(t +�t)P2 − V2

AT
2 − V2

A�t2
)

≥ 1
V2
D

(
xD(t +�t)P2 − V2

DT
2 − V2

D�t2
)
.

Thus

xA(t +�t)P2

V2
A

≥ xD(t +�t)P2

V2
D

,

or xA(t+�t)P
VA

≥ xD(t+�t)P
VD

; which completes the proof. �

Using Theorem 3.1, we now prove that the Run and Con-
tain strategy ensures the value function defined in (11) is non-
decreasing. The result we have however assumes that the Target
does not move, hence a capture the flag scenario. It remains an
open problem to generalise the theoremgiven below to arbitrary
VT satisfying (18).

Theorem 3.2: In Game 3.1, if VT = 0 and team T/D play the
Run and Contain strategy, then V(x(t +�t)) ≥ V(x(t)).

Proof: Proof by contradiction. Assume team T/D play the Run
andContain strategy andV(x(t +�t)) < V(x(t)). This implies
there exists I2 ∈ χ(x(t +�t)) such that

xT(t +�t)I2 + VT

VA
xA(t +�t)I2

< xT(t)I(x(t))+ VT

VA
xA(t)I(x(t)),

and since VT = 0

xT(t)I2 < xT(t)I(x(t)). (50)

Since agent D plays the Containment strategy, we can invoke
Theorem 3.1. On the line connecting I2 to xT(t), it must pass
through a point in χ(x(t)) since xT(t) lies outside the boundary
χ(x(t)) due to (21) and I2 is inside the boundary χ(x(t)) due to
Theorem 3.1; denote such a point as I1. Thus

xT(t)I1 ≤ xT(t)I2. (51)

Since I1 ∈ χ(x(t)) and I(x(t)) = argminI∈χ(x(t)) xT(t)I, we
also have that

xT(t)I(x(t)) ≤ xT(t)I1. (52)

Combining (50), (51) and (52) we have

xT(t)I(x(t)) < xT(t)I(x(t)),

which is false. Hence in Game 3.1, it cannot be the case that
V(x(t +�t)) < V(x(t)) if team T/D play the Run and Contain
strategy and VT = 0. �

The next set of results rely on the implications of bounds (19)
and (20), and are given below.

Lemma 3.3: If�t ≤ 1
VA+VD

xA(t)xD(t) then�t ≤ xA(t)I(x(t))
VA

.

Proof: The (n − 1)-dimensional boundary χ is the surface in
which if agents A and D moved in a straight line towards a
point on that surface, both agents would reach that point at the
same time. Obviously the point in χ in which agents A and D
would reach in the shortest time is the point at which the agents
would move straight towards each other, and this shortest time
is 1

VA+VD
xA(t)xD(t). On the other-hand, xA(t)I(x(t))

VA
is the time

it takes for agent A to reach some other point in χ , and hence
xA(t)I(x(t))

VA
≥ 1

VA+VD
xA(t)xD(t). �

Lemma 3.4: If�t≤ 1
2 (

xT(t)xA(t)
VA

− xT(t)xD(t)
VD

) then xT(t)xD(t+�t)
VD

≤ xT(t)xA(t+�t)
VA

.
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Proof: The distance xT(t)xA(t +�t) is at a minimum if agent
A moves towards agent T, hence the lower bound

xT(t)xA(t +�t) ≥ xT(t)xA(t)− VA�t (53)

holds. Similarly, the distance xT(t)xD(t +�t) is at a maximum
if agent D moves away from agent T, thus

xT(t)xD(t +�t) ≤ xT(t)xD(t)+ VD�t. (54)

Manipulating Equation (53),

xT(t)xA(t +�t)− xT(t)xA(t) ≥ −VA�t

− xT(t)xA(t +�t)
VA

+ xT(t)xA(t)
VA

≤ �t

− xT(t)xA(t +�t)
VA

+ xT(t)xA(t)
VA

≤ xT(t)xA(t)
2VA

− xT(t)xD(t)
2VD

substituting (20)

− xT(t)xA(t +�t)
VA

≤ −xT(t)xA(t)
2VA

− xT(t)xD(t)
2VD

− xT(t)xA(t +�t)
VA

≥ 1
2

(
xT(t)xA(t)

VA
+ xT(t)xD(t))

VD

)
. (55)

Similarly, manipulating formula (54),

xT(t)xD(t +�t)
VD

− xT(t)xD(t)
VD

≤ �t

xT(t)xD(t +�t)
VD

− xT(t)xD(t)
VD

≤ xT(t)xA(t)
2VA

− xT(t)xD(t)
2VD

applying (20)

xT(t)xD(t +�t)
VD

≤ 1
2

(
xT(t)xA(t)

VA
+ xT(t)xD(t))

VD

)
. (56)

Therefore combining formulas (55) and (56), it follows that
xT(t)xD(t+�t)

VD
≤ xT(t)xA(t+�t)

VA
. �

The next theorem establishes the non-increasing property of
the value function.

Theorem 3.5: In Game 3.1, if team A plays the Interception
Attack strategy, then V(x(t +�t)) ≤ V(x(t)).

Proof: In Game 3.1, since it is assumed the time increment�t
satisfies (19) and (20), we may invoke Lemmas 3.3 and 3.4.

Team A plays the Interception Attack strategy, meaning
that agent A moves in a straight line with speed VA towards
I(x(t)). Moreover from Lemma 3.3, �t ≤ xA(t)I(x(t))

VA
, hence

I(x(t)) remains within the Attacker’s side of the containment
boundary χ(x(t +�t)) at time t +�t.

Invoking Lemma 3.4, xT(t)xD(t+�t)
VD

≤ xT(t)xA(t+�t)
VA

, in other
words xT(t) remains in the Defender’s side of the containment
boundary χ(x(t +�t)) at time t +�t.

It therefore follows that there exists some point on the line
connecting xT(t) to I(x(t)) that is inχ(x(t +�t)). Let
 denote
such a point.

Utilising the triangle inequality, it is true that

xA(t +�t)
 ≤ 
I(x(t))+ xA(t +�t)I(x(t))
VT

VA
xA(t +�t)
 ≤ VT

VA

I(x(t))+ VT

VA
xA(t +�t)I(x(t))

since
VT

VA
≥ 0

VT

VA
xA(t +�t)
 ≤ 
I(x(t))+ VT

VA
xA(t +�t)I(x(t)).

since
VT

VA
≤ 1

Adding both sides of the above inequality by xT(t)
 + VT�t:

xT(t)
 + VT�t + VT

VA
xA(t +�t)
 ≤ xT(t)
 + 
I(x(t))

+ VT

VA
(xA(t +�t)I(x(t))+ VA�t).

Since agent Amoves in a straight line towards I(x(t))with speed
VA and (19) holds, xA(t)I(x(t)) = xA(t +�t)I(x(t))+ VA�t.
Moreover, since xT(t)
 + 
I(x(t)) = xT(t)I(x(t)), applying to
the inequality above:

xT(t)
 + VT�t + VT

VA
xA(t +�t)
 ≤ xT(t)I(x(t))

+ VT

VA
xA(t)I(x(t))

xT(t)
 + VT�t + VT

VA
xA(t +�t)
 ≤ V(x(t)). (57)

Using the triangle inequality xT(t +�t)
 ≤ xT(t)

+ xT(t)xT(t +�t), and since agent T moves with speed
VT , xT(t)xT(t +�t) = VT�t, thus xT(t +�t)
 ≤ xT(t)
 +
VT�t. It follows that the left-hand side of the inequality (57)
can be bounded below:

xT(t +�t)
 + VT

VA
xA(t +�t)
 ≤ xT(t)


+ VT�t + VT

VA
xA(t +�t)
.

As a result, the following lower bound on V(x(t)) holds:

xT(t +�t)
 + VT

VA
xA(t +�t)
 ≤ V(x(t)).

Hence it is sufficient to verify that

V(x(t +�t)) ≤ xT(t +�t)
 + VT

VA
xA(t +�t)
, (58)
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where 
 ∈ χ(x(t +�t)). To confirm this, recall the definition
of V(x(t +�t))

V(x(t +�t)) = xT(t +�t)I(x(t +�t))

+ VT

VA
xA(t +�t)I(x(t +�t)),

where

I(x(t +�t)) = argmin
I

xT(t +�t)I + VT

VA
xA(t +�t)I,

s.t. I ∈ χ(x(t +�t)).


 may or may not be the optimal point in χ(x(t +�t)) that
minimises xT(t +�t)I + VT

VA
xA(t +�t)I, but I(x(t +�t)) is,

hence

V(x(t +�t)) ≤ xT(t +�t)
 + VT

VA
xA(t +�t)
 ≤ V(x(t)),

which completes the proof. �

Consolidating all the propositions, lemmas and theorems
proved earlier in the paper, we now present the main result of
this manuscript.

Theorem 3.6: In Game 3.1, if VT = 0 then the strategy pro-
file of team A playing the Interception Attack strategy and team
T/D playing the Run and Contain strategy constitutes a Nash
equilibrium,with corresponding payoffV(x(t +�t)) = V(x(t)).

Proof: From Theorem 3.5, we know that if team A plays
the Interception Attack strategy, the value function is non-
increasing, that is

V(x(t +�t)) ≤ V(x(t)).

On the other-hand, since VT = 0, we may invoke Theorem 3.2
to deduce that if team T/D play the Run and Contain strategy,
the value function is non-decreasing

V(x(t +�t)) ≥ V(x(t)).

It follows from Theorems 3.2 and 3.5 that the payoff from this
strategy profile is V(x(t +�t)) = V(x(t)).

The goal of team T/D is to maximise the value function, and
given that team A is playing the Interception Attack strategy,
team T/D cannot theoretically obtain a value function higher
than its current state, hence team T/D has nothing to gain by
changing only their own strategy.

The objective of team A is to minimise the value function,
and with team T/D playing the Run and Contain strategy, the
value function is non-decreasing, hence team A cannot benefit
by changing its strategywhile teamT/Dkeeps theirs unchanged.
Thus this strategy profile is a Nash equilibrium. �

4. Conclusion

In summary, Theorem 3.6 establishes the optimal strategies for
teams A and T/D in the discrete-time turn-based variant of the

Target–Attacker–Defender (TAD) differential game of degree.
This in turn provides strong theoretical support to the claims
made in Proposition 3 regarding the Nash equilibrium strategy
profile of the original continuous-time formulation.

A future research direction could involve generalising
Theorem 3.2 to arbitrary speeds of the Target VT satisfying (8),
since it was only proved in the special case VT = 0.
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Appendix 1. Containment theorem formula
derivations
Here we provide some algebraic derivations that were omitted in
Theorem 3.1. In Game 3.1, Equations (23)–(27) are utilised to derive
formulas (28)–(36).
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First the derivation of formulas (28) to (30) are given. Directly
from (27), we have that xA(t +�t)A = xD(t +�t)D, thus

M1M2 = ||−−−→
M1M2||

= ||M2 − M1||
= ||M1 + −−−−−−−−→

AxA(t +�t)− M1||
= ||−−−−−−−−→

AxA(t +�t)||
= xA(t +�t)A.

xA(t +�t)M2 = ||−−−−−−−−−→
xA(t +�t)M2||

= ||M2 − xA(t +�t)||
= ||M1 + −−−−−−−−→

AxA(t +�t)− xA(t +�t)||
= ||M1 + xA(t +�t)− A − xA(t +�t)||
= ||M1 − A||
= ||−−→AM1||

= AM1.xD(t +�t)M2 = ||−−−−−−−−−→
xD(t +�t)M2||

= ||M2 − xD(t +�t)||
= ||M1 + −−−−−−−−→

AxA(t +�t)− xD(t +�t)||
= ||M1 + −−−−−−−−→

DxD(t +�t)− xD(t +�t)||
= ||M1 + xD(t +�t)− D − xD(t +�t)||
= ||M1 − D||
= ||−−→DM1||
= DM1.

To verify formulas (31)–(36), it is sufficient to show that in each case,
the two legs of the triangle are orthogonal, and hence the Pythagorean
theorem is applicable. Since the derivations are similar, only the validation
of (32), (34) and (36) are displayed.

−−−−→
xD(t)D · −−−−−−−−→

DxD(t +�t)

= (
D − xD(t)

) · (xD(t +�t)− D
)

= (
xD(t)+ proj(

−−−−−−−−−−−→
xD(t)xD(t +�t))− xD(t)

) · (xD(t +�t)− xD(t)

− proj(
−−−−−−−−−−−→
xD(t)xD(t +�t))

)
= proj(

−−−−−−−−−−−→
xD(t)xD(t +�t)) · (−−−−−−−−−−−→

xD(t)xD(t +�t)

− proj(
−−−−−−−−−−−→
xD(t)xD(t +�t))

)
= 0.

−−−−−→
xD(t)M1 · −−→

M1P = (
M1 − xD(t)

) · (P − M1
)

= (
xA(t)+ proj(

−−−→
xA(t)P)− xD(t)

)
· (P − xA(t)− proj(

−−−→
xA(t)P)

)
= (

proj(
−−−→
xA(t)P)− −−−−−−→

xA(t)xD(t)
) · (−−−→

xA(t)P − proj(
−−−→
xA(t)P)

)
= 0.

To verify that
−−−−−−−−−→
xD(t +�t)M2 and

−−→
M2P are orthogonal, first we deduce

simplified expressions for these terms:
−−−−−−−−−→
xD(t +�t)M2 = M2 − xD(t +�t)

= M1 + −−−−−−−−→
AxA(t +�t)− xD(t +�t)

= xA(t)+ proj(
−−−→
xA(t)P)+ −−−−−−−−→

AxA(t +�t)− xD(t +�t)

= xA(t)+ proj(
−−−→
xA(t)P)+ −−−−−−−−→

DxD(t +�t)− xD(t +�t)

= xA(t)+ proj(
−−−→
xA(t)P)− xD(t)− proj(

−−−−−−−−−−−→
xD(t)xD(t +�t)).

Based on the definition of the projection function, we have that
proj(

−−−→
xA(t)P)− proj(

−−−−−−−−−−−→
xD(t)xD(t +�t)) = proj(

−−−−−−−−→
xD(t +�t)P)+ xD(t)

− xA(t), hence
−−−−−−−−−→
xD(t +�t)M2 = proj(

−−−−−−−−→
xD(t +�t)P).

The find an expression for
−−→
M2P:

−−→
M2P = P − M2

= P − M1 − −−−−−−−−→
AxA(t +�t)

= P − xA(t)− proj(
−−−→
xA(t)P)− −−−−−−−−→

AxA(t +�t)

= P − xA(t)− proj(
−−−→
xA(t)P)− xA(t +�t)+ xA(t)

+ proj(
−−−−−−−−−−→
xA(t)xA(t +�t))

= P − xA(t +�t)− proj(
−−−→
xA(t)P)+ proj(

−−−−−−−−−−→
xA(t)xA(t +�t))

= −−−−−−−−→
xA(t +�t)P − proj(

−−−−−−−−→
xA(t +�t)P).

It can be shown that proj(
−−−−−−−−→
xD(t +�t)P) · (−−−−−−−−→

xA(t +�t)P
− proj(

−−−−−−−−→
xA(t +�t)P)) = 0, thus

−−−−−−−−−→
xD(t +�t)M2 · −−→

M2P = 0.



Chapter 5

Generalising the capture the flag

scenario to active target defence

5.1 Contextual statement

A conference paper accepted for publication at ANZCC 2022, is an improvement upon

the earlier publication titled ‘A state-feedback Nash equilibrium for the general TargetAt-

tackerDefender differential game of degree in arbitrary dimensions’. The earlier publica-

tion successfully identified and proved the state-feedback optimal strategies in the gen-

eral case VA < VD, and most of the proof held for any VT < VA < VD, but there con-

tained a component within the proof that made the restrictive assumption of VT = 0.

This assumption corresponds with the much simpler capture-the-flag differential game.

The final manuscript uncovered the machinery required to complete the proof for any

0 ≤ VT < VA < VD.
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Generalising the capture the flag scenario to active
target defence

Kamal Mammadov, Cheng-Chew Lim and Peng Shi

Abstract—This manuscript examines the TAD differential
game. Here there are three drones, the Drone A, Drone T
and Drone D, all obeying simple-motion. This game doesn’t
terminate at some predefined time tf , rather tf is the first
time in which Drone A collides with either of the other two
drones. The objective of Drone A is to minimise the distance
between itself and Drone T at termination time; Drone T and
D on the other-hand work together as a team to maximise the
aforementioned distance. The present manuscript expands upon
the analysis previously given in the work of [1], here we study the
game in the general case where VT < VA < VD (denoting the speeds
of Drone T, Drone A and Drone D respectively), and the drones
move in n-dimensional space. The previous work identified and
rigorously proved the SFNE. Most of the proofs given in that
work held for any VT < VA < VD, however the proof of the non-
decreasing property of the value function made the restrictive
assumption of VT = 0, as the machinery required to prove it for the
general case VT ≥ 0 was not known at the time. VT = 0 corresponds
with the capture the flag scenario since Drone T cannot move.
The present manuscript brings to light new symmetries in the
value function, which are used to complete the missing proof so
that the results now hold generally for any VT < VA < VD.

Index Terms—Differential games, target defence, capture the
flag, state-feedback Nash equilibrium.

I. INTRODUCTION

The theory of differential games was first explored in-depth
by Rufus Isaacs in the late 1950’s to 60’s, the book [2],
followed by [3] and [4] primarily explored the theoretical un-
derpinnings of two-player zero-sum differential games, driven
by real-world applications in defence.

In two-player zero-sum differential games, the problem of
the existence of a state-feedback Nash equilibrium (SFNE) was
explored in [5]. Here two discrete-time turn-based counterparts
of a continuous-time differential game was proposed; one in
which the player whose objective is to maximise the reward
function moves first, followed by the player that aims to
minimise the reward function; the other turn-based counterpart
was the exact opposite. Clearly in the first variant, the player
whose goal is to minimise, obtains an advantage in comparison
to the original continuous-time formulation, thus the value of
this dynamic game is named the lower value; similarly the
value of the other turn-based game is named the upper value.
As the time increment of these two discrete-time turn-based
variants approach zero, we should expect the upper value and
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lower value to converge to a single number (if a SFNE exists),
and that number is the value of the original differential game.
The task of finding general conditions of a differential game in
which the upper and lower values always converge is named
the convergence problem [6].

The present manuscript is focused on the study of simple-
motion, two-team, zero-sum pursuit-evasion games. A simple-
motion game is a differential game in which the complete state
is given by the position of N agents xi(t), each governed by
ẋi(t) = Viui(t), where ui(t) is a unit vector controlled by agent i.
An example of one such differential game is given in the works
of [7], here a single fast pursuer was tasked with capturing a
team of evaders in minimum time, and the team of evaders
aspired to maximise the capture time.

The current manuscript examines a simple-motion pursuit-
evasion game known as the active target defence, or Target-
Attacker-Defender, differential game [8]. This differential
game emulates a common aerospace engagement scenario in
defence applications, in which an explosive carrying drone
(Drone A) aims to destroy Drone T by getting as near as
possible to it. Drone T has in its defence Drone D which can
neutralise Drone A upon impact. A complete mathematical
description of this differential can be found in Section II.

Two questions naturally arise when examining this engage-
ment scenario. Firstly, under what conditions can Drone T
escape capture. This problem is know as the game of kind,
and the most succinct result on this issue is given by [9];
They have shown that under optimal play, Drone T escapes
point capture from Drone A if and only if

VAxT (t)xD(t) < VDxA(t)xT (t) + VTxA(t)xD(t).

The game of degree on the other-hand is the problem of
identifying and proving the SFNE. In the case where the speed
of Drone A and D are equal, [10] identified the SFNE, and
rigoursly validated the result by demonstrating they obey the
Hamilton-Jacobi-Bellman equations. The more complex case
where the speed of Drone D is faster than Drone A was
explored in [11], here the Nash equilibrium strategies were
identified but a rigours proof remained elusive.

The work of [1] on the other-hand built upon the earlier
work of [12], here we analyse the discrete-time turn-based
variant of this differential game. Theses works wrote proofs
that the identified optimal strategies constitute a Nash equi-
librium, with novel geometric methods. Specifically, the work
of [1] was the first to rigoursly establish the Nash equilibrium



in the fast Defender case VA < VD. However, although most of
the proof written held generally for any VT < VA < VD, a critical
piece of the proof put the additional assumption of VT = 0, that
is, Drone T must be stationary. This corresponds with a capture
the flag scenario, a much simpler game than the game of active
target defence. The present manuscript completes the work of
[1], by providing that missing piece.

Thus with this paper, we rigoursly prove the SFNE of the
TAD differential game for any VT < VA < VD, for any position
of Drone T outside the AD-based Apollonius circle, which is a
sufficient (but not necessary) condition for Drone T to escape
capture.

II. TAD PURSUIT-EVASION GAME FORMULATION

A. Preliminaries

Throughout the manuscript the following notation is used.
Given any u,v,w ∈ Rn

• R+ = {x ∈ R | x > 0}
• R+

0 = {x ∈ R | x ≥ 0}
• u · v is the dot product
• ||u|| =

√
u · u,

• −→uv = v − u,
• uv = ||−→uv||
• ∠uvw denotes the angle between vectors −→vu and −→vw; that

is −→vu · −→vw = vu vw cos∠uvw, where 0 ≤ ∠uvw ≤ π.
• u̇(t) is the time derivative d

dt
u(t).

Furthermore, we list the acronyms used:
• SFNE - State-feedback Nash equilibrium
• SFOS - State-feedback optimal strategies
• ADAC - AD-based Apollonius circle
• HJI - Hamilton-Jacobi-Isaacs
• TAD - Target-Attacker-Defender
• NE - Nash equilibrium

B. Problem definition

In TAD game consists of two sides. The A side, also known
as Drone A; and the T/D side, consisting of two drones, Drone
T and Drone D. Every drone obeys simple-motion, thus the
state of the differential game can be completely characterised
by x(t) = (xT (t),xA(t),xD(t)), and the dynamics are governed by
the differential equations

(ẋT (t), ẋA(t), ẋD(t)) = (VTuT (t), VAuA(t), VDuD(t)). (1)

Here subscript A, D and T denotes Drone A, D and T respec-
tively. The game is analysed most generally in n-dimensional
space thus xT (t),xA(t),xD(t) ∈ Rn. At every time t, the A side
selects a control input for Drone A satisfying (2); similarly the
T/D side selects headings for Drone T and Drone D obeying
(2).

∥uT (t)∥, ∥uA(t)∥, ∥uD(t)∥ = 1. (2)

The starting time t0 and starting state x(t0) = x0 obeys

xT (t0)xA(t0)

VA
>

xT (t0)xD(t0)

VD
, (3a)

xA(t0) ̸= xD(t0). (3b)

This condition ensures Drone T escapes capture under optimal
play. The final time tf on the other-hand is not a predefined
number, rather it’s the first time satisfying either (4) or (5).

xA(tf )= xD(tf ), (4)
xA(tf )= xT (tf ). (5)

In the time interval
[
t0, tf

]
, the sides are awarded the payoff

Φ(xf ) given by
Φ(xf ) = xT (tf )xA(tf ). (6)

The A side aims to minimise Φ(xf ), whereas the T/D side aims
to maximise Φ(xf ). The speed of the drones are related by

VT < VA < VD. (7)

In the article we refer to this differential game as Game II-B.

C. Nash equilibrium strategies

Here in this subsection, the SFOS are displayed. The value
function is given by

V (x(t)) = xT (t)I(x(t)) +
VT
VA

xA(t)I(x(t)) (8)

where the I vector I(x(t)) is the unique solution to

I(x(t)) = argmin
I

xT (t)I+
VT
VA

xA(t)I (9a)

s.t. I ∈ CAD(x(t)) (9b)

and CAD(x(t)) is the ADAC, defined by

CAD(x(t)) = {p ∈ Rn | pxA(t)
VA

=
pxD(t)

VD
}. (10)

Let CAD be shorthand for CAD(x(t)) when it’s obvious it refers
to CAD(x(t)).

The SFNE of Game II-B is given by Proposition 1.
Proposition 1. The SFOS of Game II-B are given by

u∗
A(t)=

I(x(t))− xA(t)

∥I(x(t))− xA(t)∥
, (11a)

u∗
D(t)=

I(x(t))− xD(t)

∥I(x(t))− xD(t)∥
, (11b)

u∗
T (t)= −

( I(x(t))− xT (t)

∥I(x(t))− xT (t)∥
)
. (11c)

To establish Proposition 1, we must show that (11) satisfies
the HJI formulas given below from t0 to tf .

u∗
A(t) = argmin

uA(t)

∂V

∂x
· f(x(t),uA(t),u∗

D(t),u
∗
T (t))

s.t. ∥uA(t)∥ = 1 (12)

(u∗
D(t),u

∗
T (t)) = arg max

(uD(t),uT (t))

∂V

∂x
· f(x(t),u∗

A(t),uD(t),uT (t))

s.t. ∥uD(t)∥, ∥uT (t)∥ = 1 (13)

∂V

∂x
· f(x(t),u∗

A(t),u
∗
D(t),u

∗
T (t)) = 0 (14)

The works of [10] used the expression (8) to analytically
derive the gradient of the value function, and with that verified
the HJI formulas (12)-(14) hold. The limitation in their analy-
sis however is that they assumed the much simpler case where
VA = VD, and each agent moves in 2-dimensional space (n = 2).



Their method involved the calculation of the Jacobian of the I
vector, which measures the change in I(x(t)) with respect to the
change in the state x(t); this becomes prohibitively complex
in the more general formulation given in II-B.

III. DISCRETIZED VARIANT

A. Formulation of discretized game

Here we define a discrete-time turn-based variant of Game
II-B. The game starts at any time t and any state x(t) satisfying
(3).

Side A moves first, using the information of the current state
x(t), it picks a direction for Drone A to move in a straight line
from xA(t) to xA(t+∆t), with speed VA.

After observing the movement of Drone A, the T/D side,
informed of the current state x(t) and Drone A’s next position
xA(t+∆t), it picks directions for Drone T and D to move in
straight lines xT (t) to xT (t+∆t), and xD(t) to xD(t+∆t) with
speeds VT and VD respectively.

The goal of the A side is to minimise the value function at
the next time increment, that is to minimise V (x(t+∆t)). On
the other-hand the T/D side aims to maximise it.

As before we assume the speed of the agents satisfy (7). In
addition, we assume the time increment ∆t of the sequential
game is sufficiently small such that

∆t ≤ 1

VA + VD
xA(t)xD(t), (15)

∆t ≤ 1

2

(xT (t)xA(t)
VA

− xT (t)xD(t)

VD

)
, (16)

hold. This discrete-time turn-based game is referred to in the
manuscript as Game III-A.

B. The Nash equilibrium

Underneath we define the SFOS for Game III-A.

Definition 1 (I Vector Tactic). A strategy for the A side defined
by Drone A moving straight towards I(x(t)).

Definition 2 (Confinement Tactic). A strategy for Drone D,
defined by Drone D moving straight towards some point on
the Apollonius circle CAD; that point on the circle being the
same point Drone A travelled to.

Definition 3 (Gallop and Confine Tactic). A strategy for the
T/D side, defined by Drone D playing the Confinement tactic,
and Drone T moving straight away from I(x(t)).

Next we show that the Confinement strategy for Drone D
ensures that CAD(x(t+∆t)) is completely encapsulated within
CAD(x(t)).

Theorem III.1. In Game III-A, if Drone D plays the
Confinement Tactic, then for any point P ∈ CAD(x(t)),
xD(t+∆t)P

VD
≤ xA(t+∆t)P

VA
.

Proof. Let proj(v) = v · −−−−−−−→xA(t)xD(t)
−−−−−−−→
xA(t)xD(t) ·

−−−−−−−→
xA(t)xD(t)

−−−−−−−→
xA(t)xD(t) denote the vector

projection of v ∈ Rn onto −−−−−−−→
xA(t)xD(t). Since (3) holds, the

following four vectors in Rn are well defined.

A= xA(t) + proj(
−−−−−−−−−−−−→
xA(t)xA(t+∆t)), (17)

D= xD(t) + proj(
−−−−−−−−−−−−→
xD(t)xD(t+∆t)), (18)

M1= xA(t) + proj(
−−−−→
xA(t)P), (19)

M2= M1 +
−−−−−−−−−→
AxA(t+∆t). (20)

The vectors A, D and M1 denote the projections of xA(t+∆t),
xD(t+∆t) and P respectively onto the 1-d plane defined by
containing the line from xA(t) to xD(t).

With some geometric reasoning, it is trivial to show that

−−−−−−−−−→
AxA(t+∆t) =

−−−−−−−−−→
DxD(t+∆t). (21)

holds. Moreover, from (21) it follows that the lines xA(t+∆t)

to xD(t+∆t), and xA(t) to xD(t) are parallel. From this we
deduce the following properties:

M1M2 = xA(t+∆t)A = xD(t+∆t)D, (22)
AM1 = xA(t+∆t)M2, (23)
DM1 = xD(t+∆t)M2. (24)

Define T as the time required for drones A and D to reach
point P from their initial positions xA(t), xD(t). Listing all the
right-angle triangles formed by the geometry we get:

xA(t)A
2
+ xA(t+∆t)A

2
= V 2

A∆t
2, (25)

xD(t)D
2
+ xD(t+∆t)D

2
= V 2

D∆t
2, (26)

xA(t)M1
2
+M1P

2
= V 2

AT
2, (27)

xD(t)M1
2
+M1P

2
= V 2

DT
2, (28)

xA(t+∆t)M2
2
+M2P

2
= xA(t+∆t)P

2
, (29)

xD(t+∆t)M2
2
+M2P

2
= xD(t+∆t)P

2
. (30)

From the triangle inequality, we have that
xD(t)M1 ≤ xD(t)D+DM1 holds. Theorem III.1 is trivially
satisfied for the case where xD(t)M1 < xD(t)D+DM1, since
Drone D is no further to point P than Drone A at time t+∆t,
and Drone A is no faster than Drone D. The remainder of the
proof is concerned with the case

xD(t)M1 = xD(t)D+DM1. (31)

The following two results are derived with the above prop-
erties:

M2P
2−M1M2

2 −M1P
2 − 2xD(t)D xD(t)M1

= xD(t+∆t)P
2 − V 2

DT
2 − V 2

D∆t
2, (32)

M2P
2−M1M2

2 −M1P
2 − 2xA(t)A xA(t)M1

≤ xA(t+∆t)P
2 − V 2

AT
2 − V 2

A∆t
2. (33)



We derive (32) by first verifying that
−2xD(t)D xD(t)M1 = xD(t+∆t)M2

2 − xD(t)M1
2 − xD(t)D

2.

−2xD(t)D xD(t)M1

=−2xD(t)D xD(t)M1 + xD(t)M1
2
+ xD(t)D

2−xD(t)M1
2−xD(t)D

2

= (xD(t)M1 − xD(t)D)2 − xD(t)M1
2 − xD(t)D

2

= DM1
2 − xD(t)M1

2 − xD(t)D
2

applying (31)

= xD(t+∆t)M2
2 − xD(t)M1

2 − xD(t)D
2
. substituting (24)

Thus formula (32) can be derived with:

M2P
2 −M1M2

2 −M1P
2 − 2xD(t)D xD(t)M1

= M2P
2 −M1M2

2 −M1P
2
+ xD(t+∆t)M2

2 − xD(t)M1
2−xD(t)D

2

= xD(t+∆t)P
2 −M1M2

2 −M1P
2 − xD(t)M1

2 − xD(t)D
2

apply (30)

= xD(t+∆t)P
2 − V 2

DT
2 −M1M2

2 − xD(t)D
2

apply (28)

= xD(t+∆t)P
2 − V 2

DT
2 − xD(t+∆t)D

2 − xD(t)D
2

apply (22)

= xD(t+∆t)P
2 − V 2

DT
2 − V 2

D∆t
2. apply (26)

To demonstrate formula (33) holds, first the inequality (34) is
verified.

−2xA(t)A xA(t)M1 ≤ xA(t+∆t)M2
2 − xA(t)A

2 − xA(t)M1
2
. (34)

From the triangle inequality we have xA(t)M1 ≤ AM1 + xA(t)A

and xA(t)A ≤ AM1 + xA(t)M1, consequently

AM1 ≥
∣∣xA(t)M1 − xA(t)A

∣∣ holds,

thus AM1
2≥ (xA(t)M1 − xA(t)A)2. (35)

Applying (35) we derive (34) as follows:

−2xA(t)A xA(t)M1

= −2xA(t)A xA(t)M1 + xA(t)M1
2
+ xA(t)A

2−xA(t)M1
2 − xA(t)A

2

= (xA(t)M1 − xA(t)A)2 − xA(t)M1
2 − xA(t)A

2

≤ AM1
2 − xA(t)M1

2 − xA(t)A
2

applying (35)

≤ xA(t+∆t)M2
2 − xA(t)M1

2 − xA(t)A
2
. substituting (23)

Hence by using (34), inequality (33) is proven as follows:

M2P
2 −M1M2

2 −M1P
2 − 2xA(t)A xA(t)M1

≤ M2P
2 −M1M2

2 −M1P
2
+ xA(t+∆t)M2

2 − xA(t)M1
2−xA(t)A

2

≤ xA(t+∆t)P
2 −M1M2

2 −M1P
2 − xA(t)M1

2 − xA(t)A
2

apply (29)

≤ xA(t+∆t)P
2 − V 2

AT
2 −M1M2

2 − xA(t)A
2

apply (27)

≤ xA(t+∆t)P
2 − V 2

AT
2 − xA(t+∆t)A

2 − xA(t)A
2

apply (22)

≤ xA(t+∆t)P
2 − V 2

AT
2 − V 2

A∆t
2. apply (25)

Using the results (32) and (33), the proof of Theorem III.1
can now commence. The starting point of the proof is the
inequality:
√
cos2 θ + δ sin2 θ

√
cos2 ϕ+ δ sin2 ϕ ≥ | cos θ|| cosϕ|+ δ| sin θ|| sinϕ|,

(36)

which holds for all δ ≥ 0, δ, θ, ϕ ∈ R. Let θ = ∠AxA(t)xA(t+∆t)

and ϕ = ∠M1xA(t)P. Since xA(t), A and xA(t+∆t) form a right
angle triangle:

xA(t)A= VA∆t| cos θ|, (37)
xA(t+∆t)A= M1M2 = VA∆t| sin θ|. (38)

Moreover xA(t), M1 and P form a right angle triangle:

xA(t)M1= VAT | cosϕ|, (39)
M1P= VAT | sinϕ|. (40)

Thus we deduce xD(t)D using Pythagoras’ theorem:

xD(t)D=

√
V 2
D∆t

2 − xD(t+∆t)D
2

=

√
V 2
D∆t

2 −M1M2
2

substituting (22)

=
√
V 2
D∆t

2 − V 2
A∆t

2 sin2 θ substituting (38)

= VD∆t

√
1− V 2

A

V 2
D

sin2 θ. (41)

Similarly it can be shown that

xD(t)M1 = VDT

√
1− V 2

A

V 2
D

sin2 ϕ. (42)

Let δ = 1−V 2
A

V 2
D

. Since 0 <
VA
VD
< 1, we have δ ≥ 0, hence we may

apply inequality (36) for this choice of θ, ϕ, δ. Re-expressing
(36) with δ = 1−V 2

A

V 2
D

gives:
√

1− V 2
A

V 2
D

sin2 θ

√
1− V 2

A

V 2
D

sin2 ϕ

≥ | cos θ|| cosϕ|+ (1− V 2
A

V 2
D

)| sin θ|| sinϕ|.

Let ψ = ∠M2M1P. Multiplying the term | sin θ|| sinϕ| with cosψ

on the right-hand side, is an adjustment that preserves the
inequality. Thus:

√
1− V 2

A

V 2
D

sin2 θ

√
1− V 2

A

V 2
D

sin2 ϕ

≥ | cos θ|| cosϕ|+ (1− V 2
A

V 2
D

)| sin θ|| sinϕ| cosψ.

Applying formulas (37)-(42) into the inequality gives us:
2

V 2
D

xD(t)D xD(t)M1 ≥ 2

V 2
A

xA(t)A xA(t)M1

+2(
1

V 2
A

− 1

V 2
D

)M1M2 M1P cosψ.

From law of cosines M2P
2
= M1M2

2
+M1P

2 − 2M1M2 M1P cosψ

holds, hence:
2

V 2
D

xD(t)D xD(t)M1 ≥ 2

V 2
A

xA(t)A xA(t)M1

+(
1

V 2
A

− 1

V 2
D

)(M1M2
2
+M1P

2 −M2P
2
).

Re-arranging the inequality gives us
1

V 2
A

(
M2P

2 −M1M2
2 −M1P

2 − 2xA(t)A xA(t)M1

)

≥ 1

V 2
D

(
M2P

2 −M1M2
2 −M1P

2 − 2xD(t)D xD(t)M1

)
.



Applying (32) on the right-hand side:
1

V 2
A

(
M2P

2 −M1M2
2 −M1P

2 − 2xA(t)A xA(t)M1

)

≥ 1

V 2
D

(
xD(t+∆t)P

2 − V 2
DT

2 − V 2
D∆t

2
)
.

Substituting inequality (33), it follows that
1

V 2
A

(
xA(t+∆t)P

2 − V 2
AT

2 − V 2
A∆t

2
)

≥ 1

V 2
A

(
M2P

2 −M1M2
2 −M1P

2 − 2xA(t)A xA(t)M1

)
,

and hence
1

V 2
A

(
xA(t+∆t)P

2 − V 2
AT

2 − V 2
A∆t

2
)

≥ 1

V 2
D

(
xD(t+∆t)P

2 − V 2
DT

2 − V 2
D∆t

2
)
.

Thus
xA(t+∆t)P

2

V 2
A

≥ xD(t+∆t)P
2

V 2
D

,

or xA(t+∆t)P
VA

≥ xD(t+∆t)P
VD

; which completes the proof.

The next theorem utilises the results from Theorem III.1 to
prove that the value function (8) is non-decreasing. The result
here differs from the earlier publication [1] which assumed
the capture the flag scenario where VT = 0. The results given
below hold generally for any VT < VA < VD.

Theorem III.2. In Game III-A, if the T/D side plays the
Gallop and Confine Tactic, then V (x(t+∆t)) ≥ V (x(t)).

Proof. Recall the definition of the value function

V (x(t)) =min
I

xT (t)I+
VT
VA

xA(t)I

s.t. I ∈ CAD(x(t))

and the corresponding optimal I is denoted as I(x(t)). We may
add the term VT∆t to the expression:

V (x(t)) + VT∆t= min
I∈CAD(x(t))

xT (t)I+
VT
VA

xA(t)I+ VT∆t,

= xT (t)I(x(t)) +
VT
VA

xA(t)I(x(t)) + VT∆t.

Since Drone T moves in a straight line away from I(x(t)) with
speed VT , xT (t+∆t)I(x(t)) = xT (t)I(x(t)) + VT∆t, thus

V (x(t)) + VT∆t = xT (t+∆t)I(x(t)) +
VT
VA

xA(t)I(x(t)). (43)

At this point we have to establish the relationship between
I(x(t)) and I(x(t+∆t)). Recall the definition of I(x(t)), we may
interpret (9) as the problem of finding the path for a particle to
travel from xT (t) to xA(t) in minimum time, where inside the
circle CAD(x(t)) the particle moves at speed VA

VT
, and outside the

circle the particle moves with speed 1. Clearly the optimal path
for the particle would be to travel in some straight line from
xT (t) towards the point I(x(t)) on the perimeter of CAD(x(t)),
and then to travel in a straight line towards xA(t).

Since Drone T moved in a straight line away from I(x(t)),
clearly the optimal point I(x(t)) would not change, thus

I(x(t)) = arg min
I∈CAD(x(t))

xT (t+∆t)I+
VT
VA

xA(t)I. (44)

Consequently we may deduce from formulas (43) and (44)
that

V (x(t)) + VT∆t = min
I∈CAD(x(t))

xT (t+∆t)I+
VT
VA

xA(t)I. (45)

Using the same interpretation of the optimisation problem
(45), clearly if the optimisation variable I was not only free to
choose any point on the perimeter of CAD(x(t)), but also any
point in the interior of that circle, this would not change the
optimal point I(x(t)), since the optimal point will always be
on the perimeter, seeing as that the particle travels faster in
the circle than outside the circle (since VA

VT
> 1).

Moreover, the implication of Theorem III.1 is that the set
of all points in the interior of CAD(x(t+∆t)) is a subset of all
the points in the interior of CAD(x(t)). Hence it follows that

V (x(t)) + VT∆t ≤ min
I∈CAD(x(t+∆t))

xT (t+∆t)I+
VT
VA

xA(t)I. (46)

Finally, all that remains is to establish the relationship
between V (x(t+∆t)) = min

I∈CAD(x(t+∆t))
xT (t+∆t)I+

VT
VA

xA(t+∆t)I,
and the right-hand side of inequality (46). Once again using
our interpretation, V (x(t+∆t)) is the minimum time it would
take a particle to traverse from xT (t+∆t) to xA(t+∆t). If
instead the particle must traverse from xT (t+∆t) to xA(t), this
would at worst take VT

VA
xA(t)xA(t+∆t) units of time longer. Thus

min
I∈CAD(x(t+∆t))

xT (t+∆t)I+
VT
VA

xA(t)I

≤ V (x(t+∆t)) +
VT
VA

xA(t)xA(t+∆t). (47)

Moreover due to the speed of Drone A, xA(t)xA(t+∆t) = VA∆t,
therefore combining (46) and (47) we obtain

V (x(t)) ≤ V (x(t+∆t))

as desired.

It was proven in the earlier publication of [1], that provided
the A side plays the I Vector Tactic, the payoff is guaranteed to
be no higher than V (x(t)). Moreover this result was proven to
hold generally for any VT < VA < VD, thus we refer the reader
to the original publication for the proof of the next theorem.

Theorem III.3. In Game III-A, if the A side plays the I Vector
Tactic, then V (x(t+∆t)) ≤ V (x(t)).

Now that Theorems III.2 and III.3 hold for any VT < VA < VD,
we can proceed to prove that the discretized analogue of
(11) is a NE. Moreover, since the time increment ∆t can be
infinitesimally small, the next theorem also proves that (11) is
a SFNE of the continuous-time differential game II-B.

Theorem III.4. The I Vector Tactic for the A side, with
the Gallop and Confine Tactic for the T/D side, is a Nash
equilibrium with payoff V (x(t+∆t)) = V (x(t)).

Proof. Invoking Theorem III.3, if the A side plays the I Vector
Tactic, the payoff V (x(t+∆t)) is bounded above by

V (x(t+∆t)) ≤ V (x(t)).
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Fig. 1: The SFNE. The green, blue and red dots denote the
starting positions of Drone T, A and D respectively, and the
black circle denotes the ADAC at t0.

Moreover Theorem III.2 established that if the T/D side plays
the Gallop and Confine Tactic, the payoff V (x(t+∆t)) is
bounded below by

V (x(t+∆t)) ≥ V (x(t)).

Thus this yields a payoff equal to: V (x(t+∆t)) = V (x(t)).
The T/D side aims to maximise the value function

V (x(t+∆t)), but provided the A side plays the I Vector
Tactic, the T/D side cannot obtain a payoff larger than the
current value V (x(t)). Similarly, the A side tries to minimise
V (x(t+∆t)), but with the T/D side playing the Gallop and
Confine Tactic, cannot obtain a payoff smaller than V (x(t)).
Thus this constitutes a NE.

IV. SIMULATION OF THE SFNE

Consider the following numerical example of a TAD game,
where the initial state and relative speeds are given by

x(t0) = (

[
−20
20

]
,

[
7
14

]
,

[
1
−6

]
), (VT , VA, VD) = (1.3, 1.6, 2.1) (48)

Figure 1 plots a simulation of the SFNE in scenario (48). Here
V (x(t0)) = V (x(tf )) = 22.36

V. IN SUMMARY

The present manuscript successfully generalised the results
of [1]. Here we expanded the analysis from the capture the flag

scenario VT = 0, to the general three agent engagement scenario
where VT < VA < VD. To this end, new novel mechanisms were
found to prove Theorem III.2, uncovering symmetries that
would later be used in the developments in [13].
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Chapter 6

Unified optimality criteria for the

Target-Attacker-Defender

pursuit-evasion game

6.1 Contextual statement

This manuscript, under review in the European Journal of Control, discovers a surprising

symmetry in the differential game of active target defence. We name this in the manuscript

as Target Symmetry. A symmetry refers to a mapping/transformation of a state/object that

preserves some quantity or property. In the context of this differential game, a symmetry

refers to a transformation of the state that preserves the optimal headings of all agents.

The symmetry uncovered in this manuscript is that if we where to change the position

of the Target to be anywhere in-front of its optimal heading, the optimal headings of all

three agents remain unchanged. This symmetry is utilised to characterise the state-feedback

Nash equilibrium everywhere in the Target’s escape set, unifying what was previously several

disjoint methods.
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Unified optimality criteria for the
Target-Attacker-Defender pursuit-evasion game

Kamal Mammadov, Cheng-Chew Lim and Peng Shi

Abstract

Here we study the TAD pursuit-evasion game. The game consists of two teams, team A (Attacker), and team T/D (Target and
Defender). Team A, also known as the Attacker, or agent A, aims to minimise the separation between itself and the Target at time
tf ; and team T/D, consisting of agents T and D work to maximise the separation distance. Time tf is defined as first time agent
A achieves point capture of either of the other two agents. Previous works in the literature identified three distinct optimality
criteria to characterise the state-feedback Nash equilibrium of the TAD differential game of degree, depending upon the starting
position of the Target relative to the AD-based Apollonius circle. The main contribution of the present manuscript is to introduce
a new unifying paradigm given by the Critical Escape Trajectories Theorem; which simultaneously characterises the Target’s
escape set and the value function of the game in all regions, highlighting a deep underlying geometric connection between the
TAD differential game of kind and the TAD differential game of degree. Leveraging previous results in the literature, the Critical
Escape Trajectories Theorem is proved to be equivalent; and is utilised to develop an efficient algorithm for the computation of
the state-feedback Nash equilibrium strategies.

Index Terms

Differential game theory, dynamic game theory, optimal state-feedback strategies, state-feedback Nash equilibrium, pursuit-
evasion games.

I. INTRODUCTION

Pursuit-evasion differential game theory plays an important role in applications in aerospace guidance and control. Various
pursuit-evasion games have been studied in the literature, here we cite [1], who studied the single-pursuer multiple-evader
pursuit-evasion game, in which a fast pursuer aims to capture all evaders in minimum time and the evader team cooperate
to maximise this time. Another example is the cooperative football differential game in which an attacker aims to reach as
close as possible to the goal line before it’s intercepted by one of two defenders, and the defenders cooperate to achieve
the exact opposite goal. More closely related to the current work, [2] considered a 1-agent engagement scenario in which
this single agent was tasked with intercepting a target moving at a constant speed in a straight line; Here it was proved that
VT

VA
sin∠xA(t)xT (t)xT (t+ ∆t) ≤ 1, where VT is the speed of the moving target, and VA is the maximum speed of the agent,

and xT (t) and xA(t) denote their positions respectively; is necessary and sufficient for there to exist a strategy for the agent
to capture the target.

The focus of the present manuscript is the pursuit-evasion game most commonly named the Target-Attacker-Defender (TAD),
or the Cooperative/Active Target Defence differential game. This is a continuous-time, zero-sum differential game consisting
of two teams, team A and team T/D, and three agents, the Target, Attacker and Defender modelled with simple motion. The
differential game terminates at the first time tf the Attacker collides with one of the other two agents. The Attacker’s goal is
to minimise the distance between itself and the Target at time tf , and the Target and Defender work as a team to maximise
the aforementioned distance at time tf . The TAD pursuit-evasion game is commonly motivated by visualising the Attacker
as an explosive carrying aerial vehicle tasked with neutralising an evasive aerial Target; and the Target or another asset in its
defence launches another drone (Defender) to intercept the Attacker.

The most general setting in which this pursuit-evasion game can be studied is under the assumption that VT ≤ VA ≤ VD,
here the Target is no faster than the Attacker, which in turn is no faster than the Defender. Clearly, if VT were greater than VA
then the Target can easily escape capture from the Attacker, and the game may never terminate; therefore this case is always
neglected. The reason for why the case VA > VD is dismissed is more complex. If VA > VD and VA > VT , then the Target
and Defender may cooperate as a team to delay the capture of the Target, but they cannot prevent it, that is under optimal
play, at termination time tf , xA(tf ) = xT (tf ). Since the payoff/reward function is defined as the distance between the Target
and Attacker at termination time, there is no incentive for team T/D to do anything, therefore this case is degenerate.

A closely related, but different problem to the one considered in the present manuscript, is given in the work of [3]. Here
the reward function was not defined as the distance between the Attacker and Target at termination time; rather it was defined
as the distance between the Attacker and Defender at termination time. Here the Attacker seeks to maximise the distance, and
the Target and Defender cooperative to minimise it. In this work the state-feedback Nash equilibrium was derived and the
Attacker’s winning region was determined.

K. Mammadov, C. Lim and P. Shi are with the School of Electrical and Electronic Engineering, University of Adelaide, Australia. e-mail: ka-
mal.mammadov@adelaide.edu.au
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More directly related to the present manuscript, in the field of study of the TAD pursuit-evasion game, [4] made a significant
contribution. They proved that under optimal play, the condition

VAxT (t)xD(t) < VDxA(t)xT (t) + VTxA(t)xD(t) (1)

is necessary and sufficient for the Target to escape capture from the Attacker, that is, at termination time tf , xA(tf )xT (tf ) > 0.
Here the over-line notation denotes the euclidean distance between any two points.

Another prominent work on this topic includes [5]. In this manuscript three separate optimality principles were proposed
to solve for the value of this game, depending upon the position of the Target. The value V (x(t)) as a function of the state
of the game x(t), denotes the expected payoff xA(tf )xT (tf ) under the state-feedback Nash equilibrium (SFNE). In the case
where the Target is located strictly inside the AD-based Apollonius circle, the following maximisation problem characterises
the SFNE

V (x(t)) = max
p∈CAD

−xT (t)p +
VT
VA

xA(t)p, (2)

whereas in the case where the Target is located strictly outside the AD-based Apollonius circle, the value is given by

V (x(t)) = min
p∈CAD

xT (t)p +
VT
VA

xA(t)p. (3)

Here CAD denotes the set of all points located on the circumference of the AD-based Apollonius circle. The third optimality
principle identified in [5] defines the SFNE in the case where the Target is located on the boundary of the AD-based Apollonius
circle. The description of the third optimality principle is lengthy, so we refer the reader to [5] for details.

In the case where the maximisation in (2) yields a negative number, we say that the Target cannot escape capture, i.e.
V (x(t)) = 0. Thus the combination of all three optimality principles fully characterises the SFNE of the TAD pursuit-evasion
game.

It was proven in [6], that in two dimensions, in the case VA = VD, the value function is continuous and continuously
differentiable over the Target’s escape set, and that it satisfies the Hamilton-Jacobi-Isaacs equation everywhere in this set.
Although the value function was not defined by (2)-(3), but rather by applying the two-sided Pontryagin’s maximum principle
(see [7] and [8]) to synthesise the state feedback strategies; in the process the value function is obtained. Just as in [5], the
techniques used in [6] are split into the cases xT (t)xA(t) > xT (t)xD(t) and xT (t)xA(t) < xT (t)xD(t); and involve heavy
calculus.

Nonetheless the validity of these three separate optimality principles are quite well established. In [5], quite convincing
arguments were given, and in the works of [9] and [10], direct rigours proofs of formula (3) were given, based on the theory
of upper and lower values (see [11] and [12]); first in the case VA = VD, then in the general case VA < VD. These proofs are
also valid in arbitrary dimensions.

Using Pontryagin’s maximum principle, in the work of [5], it was proven that in the Target’s escape set, under optimal play,
the headings of the Attacker, the Target, and the Defender are constant. Therefore under optimal play every agent moves in
straight lines with constant speed from the start until termination. However the SFNE cannot be uniquely determined from
this principle alone, because there still remains too many degrees of freedom (i.e. which direction does each agent move in).
In [5], it was argued that formulas (2)-(3) provide the correct angles for which each agent must move in.

The present manuscript brings to light a fundamental symmetry previously unacknowledged in the literature. We name it
Target Symmetry; Target Symmetry elucidates the property that in the Target’s escape set, between any time increment t to
t+ ∆t, if the Attacker and Defender for whatever reason decided not to move, and the Target moved in its optimal heading,
then the optimal headings of all three agents at time t+ ∆t are the same as they were before at time t.

Target Symmetry is best illustrated in Figure 4 in Section III. Here the blue and red dots indicate the position of the Attacker
and Defender, respectively. To highlight Target Symmetry, the position of the Target is not given. Rather, it is considered
‘variable’ in this diagram. The region inside the blue curve is named the Non-escape Region, if the Target’s position were
anywhere inside here then V = 0; outside this region V > 0. Emanating from the boundary of the Non-escape Region are
rays. If the Target were located at the initial point of one of these rays, then the ray reveals the optimal path for the Target,
and the intersection between the ray and the red circle pinpoints the location were all three agents would move towards until
collision.

Thus the value of the TAD pursuit-evasion game can be given by

V (x(t)) = xT (t)Ec(x(t)) (4)

where Ec(x(t)) denotes the initial point of the ray containing xT (t). Formula (4) is valid everywhere in the Target’s escape
set, thereby unifying (2)-(3). The contribution of the present manuscript is to introduce and prove a new unifying paradigm,
based on Target Symmetry, to express the value, the optimal strategies, and reveal a simple analytical technique to solve
for the state-feedback Nash equilibrium of the Target-Attacker-Defender pursuit-evasion game. This paradigm reveals a deep
underlying geometric connection between the game of kind and the game of degree, and the techniques used here are much
simpler than the ones developed in [6] using the two-sided Pontryagin’s maximum principle. The methods developed in the
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present manuscript are not a disjoint collection of techniques, unlike [5] and [6] which have different methods for different
regions in the Target’s escape set.

The remainder of the paper is organised as follows. Section 2 lists the notation and terminology used throughout the
manuscript, provides the mathematical definition of the TAD pursuit-evasion game, and presents some preliminary results on
the game of kind. Section 3 contains three subsections. The opening of Section 3 chronicles the unified optimality principle
given by the Critical Escape Trajectories Theorem, the next subsection reviews the disjointed optimality principles already well
established in the literature, the final subsection proves the Critical Escape Trajectories Theorem by verifying its equivalence
to the aforementioned disjointed optimality principles in each of their separate regions. Based on this new unified paradigm,
Section 4 describes explicitly the mathematical formulas used to calculate the state-feedback optimal strategies and value of
the TAD pursuit-evasion game.

II. PRELIMINARIES

A. Notation and terminology

The notation used throughout the manuscript is listed as follows. Given any u,v,w ∈ Rn

• R+ = {x ∈ R | x > 0} denotes the set of all positive real numbers.
• R+

0 = {x ∈ R | x ≥ 0} denotes the set of all non-negative real numbers.
• u · v denotes the dot product.
• ||u|| = √u · u.
• −→uv = v − u.
• uv = ||−→uv|| denotes the euclidean distance between u and v.
• ∠uvw denotes the angle between vectors −→vu and −→vw; that is −→vu · −→vw = vu vw cos∠uvw, where 0 ≤ ∠uvw ≤ π.
• u̇(t) denotes the time derivative d

dtu(t).
• Re(z) and Im(z) denote the real part and complex part, respectively, of any complex number z.
• z∗ denotes the complex conjugate of z.

Team A, and agent A both refer to the Attacker. Agent T and agent D denotes the Target and Defender, respectively, and team
T/D denotes the team comprising of those two agents. SFNE is the abbreviation for state-feedback Nash equilibrium.

B. Problem formulation

This section provides a rigorous mathematical formulation of the TAD game. The TAD pursuit-evasion game is a zero-
sum differential game consisting of team A, and team T/D. The state of the differential game is specified by x(t) =
(xA(t),xD(t),xT (t)), where xA(t),xD(t),xT (t) ∈ Rn for any integer n ≥ 2, specifies the location of agents A, D and
T respectively. Provided an initial state x0, the dynamics from starting time t0 to final time tf is given by

(ẋA(t), ẋD(t), ẋT (t)) = (VAuA(t), VDuD(t), VTuT (t)), x(t0) = x0 (5)

where VA, VD, VT ∈ R+
0 ; uD(t),uT (t) are the control inputs of team T/D, and uA(t) is the control input of team A. At every

time t, both teams make choices for their control inputs with knowledge of the current state x(t) of the game. The control
vectors are constrained to be no larger than unit vectors:

‖uA(t)‖, ‖uD(t)‖, ‖uT (t)‖ ≤ 1 (6)

The final time tf is the earliest time obeying either (7) or (8)

xA(tf ) = xD(tf ), (7)
xA(tf ) = xT (tf ). (8)

In that time horizon
[
t0, tf

]
, the reward function is given by

J(uA(·),uD(·),uT (·),x0) = xT (tf )xA(tf ). (9)

Team A selects control laws to minimise J , and team T/D selects control inputs to maximise J . Let α = VT

VA
, γ = VD

VA
. We

assume the relative speeds of the agents satisfy
VT < VA < VD. (10)

Denote cAD and rAD as the centre and radius of the AD-based Apollonius circle

cAD =
V 2
D

V 2
D − V 2

A

xA(t) +
V 2
A

V 2
A − V 2

D

xD(t), (11a)

rAD =
VAVD
|V 2
A − V 2

D|
xA(t)xD(t). (11b)
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Fig. 1: Distances xA(t)xD(t), xA(t)xT (t) and angle ψ define the state of the game.

The interior of this circle represents the set of all points in Rn the Attacker can reach before the Defender. Similarly, let
cAT (p) and rAT (p) denote the centre and radius of the AT-based Apollonius circle, as a function of the position p of the
Target

cAT (p) =
V 2
T

V 2
T − V 2

A

xA(t) +
V 2
A

V 2
A − V 2

T

p, (12a)

rAT (p) =
VAVT
|V 2
A − V 2

T |
xA(t)p. (12b)

Thus the centre and radius of the AT-based Apollonius circle is given by cAT (xT (t)) and rAT (xT (t)), respectively. To illustrate
Target Symmetry, it is best to depict the position of the Target as ‘variable’. Throughout the manuscript the following numerical
example:

xA(t) =

[
2
12

]
, xD(t) =

[
2
−4

]
, (VT , VA, VD) = (0.5, 1, 1.2), (13)

is used frequently to display diagrams of key concepts.1

C. Game of kind

The Target-Attacker-Defender differential game of kind is the puzzle of unearthing necessary and sufficient conditions under
which the value of the TAD differential game is equal to zero; in other words to find the Target’s escape set. [5] determined a
formula for the critical speed ratio αc so that the Target can escape capture if and only if VT

VA
> αc. [4] completely characterised

the solution to the game of kind with the simple linear formula (1).
However for the purposes of illustrating the unified optimality criteria given in the subsequent section, it is more useful to

characterise the Target’s escape region as a function of the starting position of the Target. To that end formulas (14) and (15)
parameterises the escape region as a function of two quantities xA(t)p and ∠pxA(t)xD(t), where p is the arbitrary position
of the Target.

Definition II.1 (Non-escape Region). The Non-escape Region N (x(t)) is the set of all points p in Rn satisfying (14). On the
limit VA = VD the Non-escape Region is rather defined by (15).

xA(t)p ≤ xA(t)xD(t)

1− γ2
(

cosψ + αγ −
√

(cosψ + αγ)2 − (1− α2)(1− γ2)

)
(14)

xA(t)p ≤ xA(t)xD(t)

2

1− α2

cosψ + α
(15)

1Note that the position of the Target is not specified as these diagrams consider its position to be variable.
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where ψ = ∠pxA(t)xD(t).

In actuality, the value of the game can be parameterised in a coordinate-independent manner by the distances xA(t)xD(t),
xA(t)xT (t) and angle ψ, as shown in Figure 1. Assuming that the differential game is well posed, meaning that under optimal
play the Target is captured by the Attacker if and only if the AT-based Apollonius circle is completely encapsulated within
the AD-based Apollonius circle, we may prove the following.

Lemma II.2. Under optimal play the Target escapes capture if and only if xT (t) /∈ N (x(t)).

Proof. The proof is split into the two cases VA < VD and VA = VD.
If VT < VA < VD and supposing the differential game is well posed, the threshold between the Target’s escape set and the

Target’s non-escape set is given by
cADcAT (p) + rAT (p) = rAD. (16)

Here the set of points p ∈ Rn satisfying (16) define the boundary of the Non-escape Region. Using the property that
cAD − xA =

V 2
A

V 2
A−V 2

D

−−−→xAxD and cAT (p)− xA =
V 2
A

V 2
A−V 2

T

−−→xAp, we may express cADcAT (p) as a function of ψ as follows:

cADcAT (p)
2

=
(
cAD − cAT (p)

)
·
(
cAD − cAT (p)

)

=
(
cAD − xA − cAT (p) + xA

)
·
(
cAD − xA − cAT (p) + xA

)

=
( V 2

A

V 2
A − V 2

D

−−−→xAxD −
V 2
A

V 2
A − V 2

T

−−→xAp
)
·
( V 2

A

V 2
A − V 2

D

−−−→xAxD −
V 2
A

V 2
A − V 2

T

−−→xAp
)

=
( V 2

A

V 2
A − V 2

D

)2
xAxD

2 − 2
( V 2

A

V 2
A − V 2

D

)( V 2
A

V 2
A − V 2

T

)
xAxD xAp cosψ +

( V 2
A

V 2
A − V 2

T

)2
xAp

2.

Re-arranging (16) we obtain
cADcAT (p)

2 − (rAD − rAT (p))2 = 0 (17)

where

(rAD−rAT (p))2 =
( VAVD
V 2
D − V 2

A

xAxD −
VAVT
V 2
A − V 2

T

xAp
)2

=
( VAVD
V 2
D − V 2

A

)2
xAxD

2 − 2
( VAVD
V 2
D − V 2

A

)( VAVT
V 2
A − V 2

T

)
xAxD xAp +

( VAVT
V 2
A − V 2

T

)2
xAp

2

=
V 2
D

V 2
A

( V 2
A

V 2
A − V 2

D

)2
xAxD

2 + 2
VTVD
V 2
A

( V 2
A

V 2
A − V 2

D

)( V 2
A

V 2
A − V 2

T

)
xAxD xAp +

V 2
T

V 2
A

( V 2
A

V 2
A − V 2

T

)2
xAp

2.

Substituting the expressions derived for cADcAT (p)
2

and (rAD − rAT (p))2 into (17) we obtain

( V 2
A

V 2
A − V 2

D

)2
xAxD

2
(V 2

A − V 2
D

V 2
A

)
−2
( V 2

A

V 2
A − V 2

D

)( V 2
A

V 2
A − V 2

T

)
xAxD xAp

(
cosψ +

VTVD
V 2
A

)
+
( V 2

A

V 2
A − V 2

T

)2
xAp

2
(V 2

A − V 2
T

V 2
A

)
= 0,

which simplifies to

V 2
A

V 2
A − V 2

D

xAxD
2 − 2

( V 2
A

V 2
A − V 2

D

)( V 2
A

V 2
A − V 2

T

)
xAxD xAp

(
cosψ +

VTVD
V 2
A

)
+

V 2
A

V 2
A − V 2

T

xAp
2 = 0,

and further simplifies to

xAp
2 − 2

(cosψ + VT

VA

VD

VA

1− (VD

VA
)2

)
xAxD xAp +

(1− (VT

VA
)2

1− (VD

VA
)2

)
xAxD

2 = 0.

This is a quadratic equation for xAp. Since
1−( VT

VA
)2

1−(VD
VA

)2
< 0, the only non-negative solution for xAp is given by

xAp = xAxD

(
cosψ + VT

VA

VD

VA

1− (VD

VA
)2

+

√√√√(cosψ + VT

VA

VD

VA

1− (VD

VA
)2

)2
−

1− (VT

VA
)2

1− (VD

VA
)2

)
. (18)

Equation (18) determines the boundary of the Non-escape Region; cases where the distance between the Target and Attacker
is less than the right-hand side is where the Target cannot escape and vice-versa. With α = VT

VA
and γ = VD

VA
, this is also

equivalent to

xA(t)p =
xA(t)xD(t)

1− γ2
(

cosψ + αγ −
√

(cosψ + αγ)2 − (1− α2)(1− γ2)

)
.
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This completes the proof for the case VT < VA < VD. In the case where VT = VA < VD, clearly the Target can escape
capture by simply moving away from the Attacker, thus xA(t)p = 0. Indeed if we substitute α = 1 into (14), this gives us 0.
Thus the formula also holds more generally in VT ≤ VA < VD.

In the case where VT < VA = VD and supposing the differential game is well posed, the threshold between the Target’s
escape set and the Target’s non-escape set is given by

xAcAT (p) cosψ + rAT (p) =
1

2
xAxD. (19)

Here the set of points p ∈ Rn satisfying (19) define the boundary of the Non-escape Region. We may express xAcAT (p) as
a function of ψ as follows:

xAcAT (p) =
√(

cAT (p)− xA
)
·
(
cAT (p)− xA)

)

=

√
( V 2

A

V 2
A − V 2

T

−−→xAp
)
·
( V 2

A

V 2
A − V 2

T

−−→xAp
)

=
( V 2

A

V 2
A − V 2

T

)
xAp.

Thus the threshold (19) is given by

( V 2
A

V 2
A − V 2

T

)
xAp cosψ +

VAVT
V 2
A − V 2

T

xAp =
1

2
xAxD,

solving for xAp we obtain

xAp =
xAxD

2

1− (VT

VA
)2

cosψ + VT

VA

.

Which is equivalent to the expression given in (15) with α = VT

VA
. This completes the proof for the case VT < VA = VD. In

the case where VT = VA, so long as xT (t) 6= xA(t), the Target can escape capture by simply moving in a straight line away
from the Attacker with speed VT ; thus in this case xA(t)p = 0. Plugging the value VT = VA into (15), we obtain the same
value of zero, thus (15) holds more generally in VT ≤ VA = VD.

Later in the manuscript, Lemma II.2 will be proved as a simple corollary of the Critical Escape Trajectories Theorem,
without having to assume the differential game is well posed.

Figure 2 displays the AD-based Apollonius circle in red and the boundary of the Non-escape Region N (x(t)) in blue for
the example given by (13). The blue teardrop shape is defined by inequality (14) holding with equality; and the blue and red
dots represent the position of the Attacker and Defender respectively. Under optimal play, if the Target’s starting position is
anywhere inside the blue teardrop shape shown in Figure 2, then the Target will be captured by the Attacker; otherwise the
Target escapes capture.

In Figure 2, the interior of the AD-based Apollonius circle defines all the points in which if the Attacker and Defender
where to move in straight lines at there respective maximum speeds towards that point, the Attacker would reach there first;
and vice-versa. Note however the Target can still escape if it were located between the red and blue curves; this is because
the Target’s speed VT = 0.5 > 0 in example (13).

Figure 3 displays the AD-based Apollonius circle in red and the boundary of the Non-escape Region N (x(t)) in green
for the example given by (13), but instead of VA = 1, we have VA = 1.2 = VD. In this case the green curve is defined by
inequality (15) holding with equality; and the AD-based Apollonius circle on the limit VA = VD is just a plane defining the
halfway point between the Attacker and Defender.

The next lemma shows that formula (15) can be derived as a special case of formula (14) using L’hôpital’s rule.

Lemma II.3.

lim
γ→1

xA(t)xD(t)

1− γ2
(

cosψ + αγ−
√

(cosψ + αγ)2 − (1− α2)(1− γ2)

)

=
xA(t)xD(t)

2

1− α2

cosψ + α
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Fig. 2: Blue Non-escape Region and red AD-based Apollonius circle.

Proof. Note that at γ = 1, formula (14) yields 0
0 . To resolve this case we apply L’hôpital’s rule:

lim
γ→1

xA(t)xD(t)

1− γ2
(

cosψ + αγ −
√

(cosψ + αγ)2 − (1− α2)(1− γ2)

)

=
xA(t)xD(t)

−2γ

(
α− 1

2

2α(cosψ + αγ) + 2γ(1− α2)√
(cosψ + αγ)2 − (1− α2)(1− γ2)

)∣∣∣∣∣
γ=1

=
xA(t)xD(t)

−2

(
α− α cosψ + α2 + 1− α2

√
(cosψ + α)2 − 0

)

=
xA(t)xD(t)

2

(−α(cosψ + α)

cosψ + α
+
α cosψ + 1

cosψ + α

)

=
xA(t)xD(t)

2

1− α2

cosψ + α
.
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Fig. 3: Green Non-escape Region and red AD-based Apollonius circle if VA = VD.

For the remainder of the manuscript we define the function l(ψ) given by

l(ψ) =





xA(t)xD(t)

2

1− α2

cosψ + α
if VT < VA = VD

xA(t)xD(t)

1− γ2
(

cosψ + αγ −
√

(cosψ + αγ)2 − (1− α2)(1− γ2)

)
else VT < VA < VD

(20)

to parameterise the boundary of the Non-escape Region. In the next section we state the unified optimality criteria, and prove
its equivalence to the three disjointed optimality principles identified in the literature.

III. UNIFIED OPTIMALITY CRITERIA

The unified optimality criteria completely characterises the state-feedback Nash equilibrium of the Target-Attacker-Defender
pursuit evasion game; furthermore, it provides necessary and sufficient conditions under which the Target cannot escape capture
from the Attacker under optimal play; thereby simultaneously solving the differential game of degree and kind.

To construct the unified optimality criteria, the definition of a Critical Escape Trajectory must be provided. Below the
terminology boundary of the Non-Escape Region refers to the Non-Escape Region defined in Definition II.1 but where the
inequalities hold with equality.

Definition III.1 (Critical Escape Trajectory). A Critical Escape Trajectory ζ(Ec), defined for any point Ec on the boundary
of the Non-escape Region, is the following ray

ζ(Ec) =
{
p ∈ Rn

∣∣p = Ec + δ
(
Ic(Ec)−Ec

)
for some δ ≥ 0

}
(21)

where Ic(Ec) is the corresponding Critical Collision Point defined by (22). On the limit VA = VD the Critical Collision Point
is rather defined by (23).

Ic(Ec) = cAT (Ec) + rAT (Ec)
cAT (Ec)− cAD
‖cAT (Ec)− cAD‖

, (22)

Ic(Ec) = cAT (Ec) + rAT (Ec)
xD(t)− xA(t)

‖xD(t)− xA(t)‖ . (23)

Consider again the numerical example of (13). Figure 4 depicts roughly eighty examples of Critical Escape Trajectories as
dashed lines, superimposed upon Figure 2. The meaning behind a Critical Escape Trajectory is as follows. If the Target were
located on the boundary of the Non-escape Region, there exists a unique path for the Target to follow to escape capture; this
path defines the ray ζ for that point on the boundary. Hence the name Critical Escape Trajectory, Escape since the Target does
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Fig. 4: Blue Non-escape Region, red AD-based Apollonius circle and dashed lines depict Critical Escape Trajectories.

escape, but Critical since the Target escapes capture by only an infinitesimal distance. The Critical Collision Point Ic(Ec) is
the point on the AD-based Apollonius circle in which all three agents collide if the Target’s starting position is Ec.

Similarly for the case VA = VD, Figure 5 depicts roughly fifty examples of Critical Escape Trajectories as dashed lines,
superimposed upon Figure 3. The initial point of each ray on the boundary of the Non-escape Region is a Critical Escape
Point Ec, and the intersection of the ray with the red curve is the corresponding Critical Collision Point Ic(Ec).

Before proceeding with the unified optimality criteria, we present a lemma remarking the connection between formulas (22)
and (23).

Lemma III.2.

lim
γ→1+

cAT (Ec) + rAT (Ec)
cAT (Ec)− cAD
‖cAT (Ec)− cAD‖

= cAT (Ec) + rAT (Ec)
xD(t)− xA(t)

‖xD(t)− xA(t)‖ .

Proof. Substituting formulas (11) and (12) for the AD and AT based Apollonius circles respectively we obtain

cAT (Ec)− cAD =
V 2
T

V 2
T − V 2

A

xA −
V 2
A

V 2
T − V 2

A

Ec −
V 2
D

V 2
D − V 2

A

xA −
V 2
A

V 2
A − V 2

D

xD.

We may parameterise Ec in terms of an angle ψ = ∠EcxA(t)xD(t) and a unit vector n̂ as follows:

Ec = xA(t) + l(ψ) cosψ
xD(t)− xA(t)

‖xD(t)− xA(t)‖ + l(ψ) sinψ n̂,
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Fig. 5: Green Non-escape Region, red AD-based Apollonius circle and dashed lines depict Critical Escape Trajectories if
VA = VD.

where n̂ · (xD(t)− xA(t)) = 0. This gives us:

cAT (Ec)− cAD

=
V 2
A

V 2
D − V 2

A

(xD − xA) +
V 2
A

V 2
A − V 2

T

(
l(ψ) cosψ

xD − xA
xAxD

+ l(ψ) sinψ n̂
)

=
( xAxD
γ2 − 1

+
l(ψ) cosψ

1− α2

)xD − xA
xAxD

+
l(ψ) sinψ

1− α2
n̂. (24)

Clearly as γ → 1+, xAxD

γ2−1 →∞; thus cAT (Ec)−cAD

‖cAT (Ec)−cAD‖ →
xD(t)−xA(t)
‖xD(t)−xA(t)‖ .

The unified optimality criteria is given by the following theorem, which specifies the state-feedback Nash equilibrium of
the Target-Attacker-Defender pursuit-evasion game.

Theorem III.3 (Critical Escape Trajectories Theorem (SFNE)). If xT (t) ∈ ζ(Ec), then the state-feedback Nash equilibrium
is given by the Attacker and Defender moving towards the Critical Collision Point Ic(Ec), and the Target moving along the
ray ζ(Ec) outwardly.2

It holds that any point outside the Non-escape Region N (x(t)) is an element of a unique Critical Escape Trajectory ζ(Ec).
Thus for any position of the Target xT (t) /∈ N (x(t)), the Critical Escape Trajectories Theorem can be applied to uniquely
determine the state-feedback Nash equilibrium.

The Critical Escape Trajectories Theorem may also be equivalently expressed as a statement on the value of the differential
game.

Theorem III.4 (Critical Escape Trajectories Theorem (Value)). If xT (t) ∈ ζ(Ec), then the value function is given by V (x(t)) =
xT (t)Ec.

Using this expression of the unified optimality criteria we provide a simple proof of Lemma II.2.

Corollary III.5. Under optimal play the Target escapes capture if and only if xT (t) /∈ N (x(t)).

Proof. At the boundary of the Non-escape Region N (x(t)), xT (t) ∈ ζ(Ec) if and only if Ec = xT (t). Thus applying Theorem
III.4, we have that for all positions of the Target on the boundary of N (x(t)), V (x(t)) = 0 holds.

The value function V (x(t)) cannot be greater than zero in the interior of the Non-escape Region since it would be
disadvantageous for the Target to start closer to the Attacker.

2In Theorem III.3 all three agents must move at there respective maximum speeds.
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On the other-hand V (x(t)) > 0 for all xT (t) /∈ N (x(t)) since V (x(t)) = xT (t)Ec and Ec ∈ N (x(t)).

Combining Theorems III.3, III.4 and III.5, we express the unified optimality criteria in full with the following theorem.

Theorem III.6 (Critical Escape Trajectories Theorem). If xT (t) ∈ N (x(t)), then V (x(t)) = 0. Otherwise the value function
is given by

V (x(t)) = xT (t)Ec(x(t)), (25)

and the state-feedback Nash equilibrium is given by

uT (t) =
xT (t)−Ec(x(t))

‖xT (t)−Ec(x(t))‖ , (26a)

uA(t) =
Ic
(
Ec(x(t))

)
− xA(t)

‖Ic
(
Ec(x(t))

)
− xA(t)‖ , (26b)

uD(t) =
Ic
(
Ec(x(t))

)
− xD(t)

‖Ic
(
Ec(x(t))

)
− xD(t)‖ , (26c)

where Ec(·) denotes a function mapping any state of the differential game x(t) to a unique Critical Escape Point Ec on the
boundary of the Non-escape Region satisfying xT (t) ∈ ζ(Ec).

Theorem III.6 provides a unified framework for the analysis of the differential game of degree and the differential game of
kind; previously thought to have been separate problems. This theme is further expanded upon in Section IV, where concepts
introduced here are expressed concretely.

The Critical Escape Trajectories Theorem brings to light a fundamental symmetry previously unacknowledged. In [5],
applying Pontryagin’s maximum principle gave the following result.

Theorem III.7 ([5]). The optimal headings of the Attacker, the Target, and the Defender are constant under optimal play.

However the state-feedback Nash equilibrium cannot be deduced from Pontryagin’s maximum principle, as it gives too many
degrees of freedom. The Critical Escape Trajectories Theorem imposes an additional symmetry.

Theorem III.8 (Target symmetry). The optimal headings of the Attacker, the Target, and the Defender are constant under
optimal play of the Target with Attacker and Defender frozen.

In other-words, if the Attacker’s and Defender’s position were static, the Target moving in its optimal heading would not
change the optimal headings of any of the three agents. Theorem III.8 posits considerable structure to any state-feedback Nash
equilibrium, so much so that the state-feedback Nash equilibrium can be uniquely determined.

Proof. Theorem III.8 follows as a simple corollary of Theorem III.3. If the Target were to move in its optimal heading, that
is to move along the ray ζ(Ec) outwardly, the Target will still remain within the same ray. Thus the optimal heading of the
Target remains unchanged, and the optimal headings of the Attacker and Defender Ic(Ec) also remain unchanged.

In the next section we summarise the three disjointed optimality principles currently known in the literature. Then in Section
III-B a proof is given to validate their equivalence. Target symmetry is the main concept used to prove the equivalence.

A. Three separate optimality criterion

In the literature, it is known that the state-feedback Nash equilibrium can be characterised by some point I on the surface
of the AD-based Apollonius circle, which denotes the collision point between the Attacker and Defender under optimal play.

However, the criteria which determines the optimal interception point I is split into three cases; target located in the interior,
boundary or exterior of the AD-based Apollonius circle. Let

CAD =
{
p ∈ Rn

∣∣ ‖cAD − p‖ = rAD
}

(27)

denote the set of all points on the circumference of the AD-based Apollonius circle.

Theorem III.9 ([5]). If max
p∈CAD

−xT (t)p +
VT
VA

xA(t)p ≤ 0, then V (x(t)) = 0. Otherwise the value function is given by

V (x(t)) =





max
p∈CAD

−xT (t)p +
VT
VA

xA(t)p if ‖cAD − xT (t)‖ < rAD

VT
VA

xA(t)xT (t) if ‖cAD − xT (t)‖ = rAD

min
p∈CAD

xT (t)p +
VT
VA

xA(t)p if ‖cAD − xT (t)‖ > rAD

(28)
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and the state-feedback Nash equilibrium is given by

uT (t) =





I(x(t))− xT (t)

‖I(x(t))− xT (t)‖ if ‖cAD − xT (t)‖ < rAD

xT (t)− I(x(t))

‖xT (t)− I(x(t))‖ if ‖cAD − xT (t)‖ > rAD

(29a)

uA(t) =
I(x(t))− xA(t)

‖I(x(t))− xA(t)‖ , (29b)

uD(t) =
I(x(t))− xD(t)

‖I(x(t))− xD(t)‖ , (29c)

where the optimal interception point I(x(t)) is given by

I(x(t)) =





arg max
p∈CAD

−xT (t)p +
VT
VA

xA(t)p if ‖cAD − xT (t)‖ < rAD

xT (t) if ‖cAD − xT (t)‖ = rAD

arg min
p∈CAD

xT (t)p +
VT
VA

xA(t)p if ‖cAD − xT (t)‖ > rAD

(30)

In all cases, the Attacker and Defender move in straight lines towards the optimal interception point I(x(t)), but the criteria
to calculate I(x(t)) differs. On the other-hand, the Critical Escape Trajectories Theorem is valid in all three cases; thereby
unifying these disjointed principles into a single framework. The next section proves the equivalence between Theorem III.9
and the Critical Escape Trajectories Theorem.

Clearly Theorem III.6 is a much more elegant and compact representation of the value and state-feedback Nash equilibrium
of the pursuit-evasion game than Theorem III.9. Furthermore we have opted to omit the case for ‖cAD − xT (t)‖ = rAD in
(29a); this has quite a complicated derivation in [5] and would greatly increase the complexity of the statement of Theorem
III.9 if it were included.

B. Equivalence proof

Using Target symmetry, the state-feedback Nash equilibrium can be uniquely determined by the optimal headings on the
boundary separating the regions V (x(t)) = 0 and V (x(t)) > 0. The equivalence proof utilises this fact.

In the proof we assume the disjointed optimality principles hold true. Using them three lemmas are established; in combination
they verify that the state-feedback Nash equilibrium provided by the disjointed optimality principles (29) are equivalent to
(26).

Lemma III.10. max
p∈CAD

−xT (t)p +
VT
VA

xA(t)p ≤ 0 if and only if xT (t) ∈ N (x(t)).

Proof. Under the disjointed optimality principles, the value function equals zero if and only if

max
p∈CAD

−xTp +
VT
VA

xAp ≤ 0,

which is equivalent to

max
p∈CAD

− 1

VT
xTp +

1

VA
xAp ≤ 0.

The above maximisation problem can be interpreted as the problem of finding a point on the surface of the AD-based Apollonius
circle such that if both the Target and Attacker where to move in a straight line at their respective maximum speeds towards
that point, the time difference between the Target arriving at that point versus the Attacker arriving at that point is maximised.

Under this interpretation, the maximum is less than or equal to zero if and only if the AT-based Apollonius circle is completely
encapsulated within the AD-based Apollonius circle. Recall from Section II that this was the definition of the Non-escape
Region N (x(t)). Thus V (x(t)) = 0 if and only if xT (t) ∈ N (x(t)).

Lemma III.11. If max
p∈CAD

−xT (t)p +
VT
VA

xA(t)p = 0 then I(x(t)) = Ic
(
Ec(x(t))

)
.

That is, on the boundary separating the regions V (x(t)) = 0 and V (x(t)) > 0 the optimal headings given by Theorem III.9
are the same as the optimal headings given by Theorem III.6.
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Proof. Earlier in Lemma III.10 it was deduced that the AT-based Apollonius circle is completely encapsulated within the
AD-based Apollonius circle if and only if

max
p∈CAD

−xT (t)p +
VT
VA

xA(t)p ≤ 0.

If the above inequality holds with equality this implies the following properties:
(L1) The Target is located at some point on the boundary of the Non-escape Region.
(L2) As a result of (L1) and VT < VA, the Target is located in the interior of the AD-based Apollonius.
(L3) The surface of the AT-based Apollonius circle intersects the surface of the AD-based Apollonius circle at some unique

point denoted Q.
Due to property (L2), the state-feedback Nash equilibrium provided by Theorem III.9 is given by all agents moving towards
the point

I(x(t)) = arg max
p∈CAD

−xT (t)p +
VT
VA

xA(t)p;

Moreover I(x(t)) = Q, that is the above maximisation problem yields the unique point at which the surface of the AT-based
Apollonius circle and AD-based Apollonius circle intersect (this follows trivially from the interpretation of the maximisation
problem stated earlier in Lemma III.10). Thus it suffices to show that Q = Ic

(
Ec(x(t))

)
.

Due to property (L1), we have that xT (t) ∈ ζ(xT (t)) and thus Ec(x(t)) = xT (t). Recalling the definition of the Critical
Collision Point:

Ic(Ec) =





cAT (Ec) + rAT
xD(t)−xA(t)
‖xD(t)−xA(t)‖ if VA = VD

cAT (Ec) + rAT
cAT (Ec)−cAD

‖cAT (Ec)−cAD‖ else VT < VA < VD

Observing the above definition, clearly Ic(xT (t)) = Q. Thus I(x(t)) = Q = Ic
(
Ec(x(t))

)
where Ec(x(t)) = xT (t).

Lemma III.12. The state-feedback Nash equilibrium provided by Theorem III.9 obeys Target Symmetry.

Proof. Here Target Symmetry is defined by Theorem III.8. The optimal headings are determined by the optimal interception
point I(x(t)), which is a function of the state x(t). Thus to prove Target Symmetry it must be shown that I(x(t)) remains
constant if the Attacker and Defender are frozen and the Target moves in its optimal heading. But the formula for I(x(t)) is
split into the three cases ‖cAD − xT (t)‖ < rAD, ‖cAD − xT (t)‖ = rAD and ‖cAD − xT (t)‖ > rAD. It is obvious that there
cannot be a discontinuous change in the optimal headings as the Target crosses the threshold ‖cAD−xT (t)‖ = rAD, thus this
case is omitted. In the remaining two cases, the following propositions prove that I(x(t)) is unchanged as the Target moves
in its optimal heading.

Since the centre and radius of the AD-based Apollonius circle changes dynamically with time, for this subsection we adopt
the notation cAD(x(t)) to denote the centre of the AD-based Apollonius circle at time t, and CAD(x(t)) to denote the surface
of the circle at time t (given by (11) and (27), respectively).
Proposition 1. For any state x(t0) satisfying ‖cAD(x(t0))− xT (t0)‖ < rAD(x(t0)), if

xT (tf ) = xT (t0) + β
(
I(x(t0))− xT (t0)

)
for some 0 ≤ β < 1

xA(tf ) = xA(t0)

xD(tf ) = xD(t0)

then
I(x(tf )) = I(x(t0)).

Proof. First note that since β < 1 we have that ‖cAD(x(tf )) − xT (tf )‖ < rAD(x(tf )). Thus the optimal interception point
at time tf is given by

I(x(tf )) = arg max
p∈CAD(x(tf ))

−xT (tf )p +
VT
VA

xA(tf )p,

whereas at time t0 it is given by

I(x(t0)) = arg max
p∈CAD(x(t0))

−xT (t0)p +
VT
VA

xA(t0)p.

Since xA(tf ) = xA(t0) and xD(tf ) = xD(t0) we have that CAD(x(tf )) = CAD(x(t0)). Thus it would suffice to show

arg max
p∈CAD(x(t0))

−xT (tf )p +
VT
VA

xA(t0)p = arg max
p∈CAD(x(t0))

−xT (t0)p +
VT
VA

xA(t0)p.
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To that end, recall the interpretation of the maximisation problem given earlier in Lemma III.10. The argument of the maximum
is the point on the surface of the AD-based Apollonius circle in which the time difference between the Target arriving versus
the Attacker arriving is maximised. Since the Attacker did not change its position, the time it takes for the Attacker to reach
any point on the AD-based Apollonius circle remains the same. The Target moved towards but did not yet arrive at the optimal
point I(x(t0)). Thus the time it takes for the Target to reach I(x(t0)) from its new position xT (tf ) has decreased, and has
decreased more for I(x(t0)) than any other point on the AD-based Apollonius circle. Thus I(x(t0)) remains as the optimal
point at time tf , and hence I(x(t0)) = I(x(tf )).

Proposition 2. For any state x(t0) satisfying ‖cAD(x(t0))− xT (t0)‖ > rAD(x(t0)), if

xT (tf ) = xT (t0) + β
(
xT (t0)− I(x(t0))

)
for some β ≥ 0

xA(tf ) = xA(t0)

xD(tf ) = xD(t0)

then
I(x(tf )) = I(x(t0)).

Proof. In the case ‖cAD(x(t0))− xT (t0)‖ > rAD(x(t0)) the optimal interception point is given by

I(x(t0)) = arg min
p∈CAD(x(t0))

xT (t0)p +
VT
VA

xA(t0)p,

whereas at time tf it is given by

I(x(tf )) = arg min
p∈CAD(x(tf ))

xT (tf )p +
VT
VA

xA(tf )p.

Since xA(tf ) = xA(t0) and xD(tf ) = xD(t0) we have that CAD(x(tf )) = CAD(x(t0)). Thus it would suffice to show

arg min
p∈CAD(x(t0))

xT (tf )p +
VT
VA

xA(t0)p = arg min
p∈CAD(x(t0))

xT (t0)p +
VT
VA

xA(t0)p.

We may interpret the expression xT (t0)p + VT

VA
xA(t0)p as the time it takes a particle to traverse from point xT (t0) to point

xA(t0), where the particle moves with speed 1 whilst it is outside the AD-based Apollonius circle CAD, but once it is inside
the circle the particle may move at the faster speed of VA

VT
.

Thus minp∈CAD
xT (t0)p + VT

VA
xA(t0)p is the minimum time it takes for the particle to go from xT (t0) to xA(t0), and

arg minp∈CAD
xT (t0)p + VT

VA
xA(t0)p denotes the corresponding unique optimal path xT (t0)→ I(x(t0))→ xA(t0).

This geometric interpretation implies that if the particle were located anywhere on the closed line segment whose endpoints
are xT (t0) and I(x(t0)), the optimal interception point would not change. That is, for all s ∈ [0, 1]

I(x(t0)) = arg min
p∈CAD

(
I(x(t0)) + s

(
xT (t0)− I(x(t0))

))
p +

VT
VA

xA(t0)p, (31)

holds. Formula (31) follows from the fact that if the particle were to move on the optimal path from its initial position xT (t0)
towards I(x(t0)), the optimal interception point would not change; or otherwise it would have found a path to reach xA(t0)
in less time, which is a contradiction.

But since formula (31) holds for any xT (t0) outside the AD-based Apollonius circle, we can deduce that more generally,
for all s ∈ [0,∞)

I(x(t0)) = arg min
p∈CAD

(
I(x(t0)) + s

(
xT (t0)− I(x(t0))

))
p +

VT
VA

xA(t0)p. (32)

Thus for s = 1 + β formula (32) establishes that I(x(tf )) = I(x(t0)).

Due to Propositions 1 and 2 Theorem III.9 obeys Target Symmetry.

The value and state-feedback Nash equilibrium provided in the Critical Escape Trajectories Theorem is parameterised by a
function Ec(x(t)) mapping any state to a point on the boundary of the Non-escape Region satisfying xT (t) ∈ ζ(Ec(x(t))).
The next section details explicitly a method for computing such a function.
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IV. IMPLEMENTATION

The theorem given below provides the fundamental equations that govern the Critical Escape Point Ec(x(t)); to be used to
compute the state-feedback Nash equilibrium provided by Theorem III.6.

Theorem IV.1 (Critical Escape Point). For any xT (t) /∈ N (x(t)), the Critical Escape Point Ec(x(t)) is given by

Ec(x(t)) = xA(t) + l(ψ) cosψ
xD(t)− xA(t)

‖xD(t)− xA(t)‖ + l(ψ) sinψ n̂(x(t)), (33)

where

n(x(t)) = xT (t)− xA(t)−
(
xT (t)− xA(t)

)
·
(
xD(t)− xA(t)

)
(
xD(t)− xA(t)

)
·
(
xD(t)− xA(t)

)(xD(t)− xA(t)
)
, (34)

and n̂(x(t)) = n(x(t))
‖n(x(t))‖ if n(x(t)) 6= 0, otherwise n̂(x(t)) = 0. ψ ∈ [0, π] is a solution to the sixth-order polynomial
(
αγH2

x − i Im(κx)Hx

)
e6iψ +

(
(α2 + γ2 − 1)H2

x + Re(κx)Hx + Im(κx)2
)
e5iψ

+
(
αγH2

x + 2αγHxH
∗
x − i Im(κx)H∗x + 2iRe(κx) Im(κx)

)
e4iψ

+
(

2(α2 + γ2 − 1)HxH
∗
x + 2 Re(κx) Re(Hx)− Re(κx)2 − 2 Im(κx)2

)
e3iψ

+
(
αγH2

x + 2αγHxH
∗
x − i Im(κx)H∗x + 2iRe(κx) Im(κx)

)∗
e2iψ

+
(

(α2 + γ2 − 1)H2
x + Re(κx)Hx + Im(κx)2

)∗
eiψ +

(
αγH2

x − i Im(κx)Hx

)∗
= 0. (35)

At the limit VA = VD, ψ ∈ [0, π] is instead given by the fourth-order polynomial

αTxT
e4iψ + 2(ηx + α2TxT

)e3iψ + 6αRe(TxT
)e2iψ + 2(ηx + α2TxT

)∗eiψ + αT ∗xT
= 0. (36)

Here

TxT
= rejxT

+ i projxT
, (37)

ηx = rejxT
+ i

1− α2

2
xAxD, (38)

Hx = TxT
− i xAxD

1− γ2 , (39)

κx = 2rejxT
− iαγ xAxD

1− γ2 , (40)

where projxT
and rejxT

are given by

projxT
=
(
xT (t)− xA(t)

)
· xD(t)− xA(t)

‖xD(t)− xA(t)‖ , (41)

rejxT
= ‖n(x(t))‖. (42)

Proof. Recall from Theorem III.6 that Ec(x(t)) need only be defined for all states x(t) satisfying xT (t) /∈ N (x(t)), since
(25)-(26) are only defined for xT (t) /∈ N (x(t)). The function Ec(x(t)) must satisfy the following two properties:

Ec(x(t)) ∈ ∂N (x(t)), (43)

xT (t) ∈ ζ
(
Ec(x(t))

)
. (44)

Formula (43) specifies that Ec(x(t)) must lie somewhere on the boundary of N (x(t)), and (44) specifies that the Target must
be located on the ray ζ

(
Ec(x(t))

)
. The set of all points Ec(x(t)) in Rn satisfying (43) can be parameterised by an angle

ψ(x(t)) and a unit vector n̂(x(t)) as follows: (here Ec, ψ and n̂ are all functions of the state, but the notation is dropped
occasionally for brevity)

Ec = xA(t) + l(ψ) cosψ
xD(t)− xA(t)

‖xD(t)− xA(t)‖ + l(ψ) sinψ n̂, (45)

where n̂ · (xD(t) − xA(t)) = 0 and l(ψ) was defined earlier by (20). Clearly for Ec(x(t)) in formula (45) to satisfy the
additional constraint (44), we must have

n(x(t)) = xT (t)− xA(t)−
(
xT (t)− xA(t)

)
·
(
xD(t)− xA(t)

)
(
xD(t)− xA(t)

)
·
(
xD(t)− xA(t)

)(xD(t)− xA(t)
)
, (46)
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where n̂(x(t)) = n(x(t))
‖n(x(t))‖ . In the case n(x(t)) = 0 then clearly sinψ = 0, thus we may define n̂(x(t)) = 0 in that degenerate

case. Formula (46) ensures that Ec(x(t)) lies somewhere on the 2-dimensional plane containing xT (t), xA(t), xD(t).
All that remains is to determine the angle ψ(x(t)) in formula (45) that satisfies constraint (44). To this end, let the Target’s

position be parameterised by

xT (t) = xA(t) + projxT

xD(t)− xA(t)

‖xD(t)− xA(t)‖ + rejxT
n̂(x(t)), (47)

where projxT
and rejxT

can be computed with

projxT
=
(
xT (t)− xA(t)

)
· xD(t)− xA(t)

‖xD(t)− xA(t)‖ ,

rejxT
= ‖n(x(t))‖.

Recall the definition of a Critical Escape Trajectory:

ζ(Ec) =
{
p ∈ Rn

∣∣p = Ec + δ
(
Ic(Ec)−Ec

)
for some δ ≥ 0

}
,

we must have xT (t) ∈ ζ
(
Ec(x(t))

)
, or

xT (t)−Ec(x(t)) = δ

(
Ic
(
Ec(x(t))

)
−Ec(x(t))

)
for some δ ≥ 0. (48)

Applying (45) and (47), the left-hand side of (48) is given by

xT (t)−Ec(x(t)) =
(
projxT

− l(ψ) cosψ
) xD(t)− xA(t)

‖xD(t)− xA(t)‖ +
(
rejxT

− l(ψ) sinψ
)
n̂(x(t)). (49)

To determine the right-hand side of (48), Ic
(
Ec(x(t))

)
− Ec(x(t)) must be parameterised in terms of xD(t)−xA(t)

‖xD(t)−xA(t)‖ and
n̂(x(t)). Applying formulas (22)-(23):

Ic
(
Ec(x(t))

)
= cAT

(
Ec(x(t))

)
+ rAT

(
Ec(x(t))

)





xD(t)− xA(t)

‖xD(t)− xA(t)‖ if VA = VD

cAT
(
Ec(x(t))

)
− cAD

‖cAT
(
Ec(x(t))

)
− cAD‖

else VT < VA < VD

Here cAT
(
Ec(x(t))

)
, rAT

(
Ec(x(t))

)
and cAD are given by:

cAT
(
Ec(x(t))

)
=

V 2
T

V 2
T − V 2

A

xA(t) +
V 2
A

V 2
A − V 2

T

Ec(x(t)),

=
−α2

1− α2
xA(t) +

1

1− α2
Ec(x(t)).

cAD =
V 2
D

V 2
D − V 2

A

xA(t) +
V 2
A

V 2
A − V 2

D

xD(t),

=
−γ2

1− γ2xA(t) +
1

1− γ2xD(t).

rAT
(
Ec(x(t))

)
=

VAVT
|V 2
A − V 2

T |
xAEc(x(t)),

=
α

1− α2
l(ψ).

To break Ic
(
Ec(x(t))

)
−Ec(x(t)) into its constituent parts in xD(t)−xA(t)

‖xD(t)−xA(t)‖ and n̂(x(t)), two intermediate formulas are first
derived:

cAT
(
Ec(x(t))

)
−Ec(x(t)) =

−α2

1− α2
xA(t) +

1

1− α2
Ec(x(t))−Ec(x(t)),

=
−α2

1− α2
xA(t) +

α2

1− α2
Ec(x(t)),

=
α2

1− α2

(
Ec(x(t))− xA(t)

)
,

=
α2

1− α2

(
l(ψ) cosψ

xD(t)− xA(t)

‖xD(t)− xA(t)‖ + l(ψ) sinψ n̂
)
. (50)
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cAT
(
Ec(x(t))

)
− cAD =

−α2

1− α2
xA(t) +

1

1− α2
Ec(x(t)) +

γ2

1− γ2xA(t)− 1

1− γ2xD(t),

=
1

1− α2

(
Ec(x(t))− xA(t)

)
+

1

1− γ2 (xA(t)− xD(t)),

=
1

1− α2

(
Ec(x(t))− xA(t)

)
− xAxD

1− γ2
xD(t)− xA(t)

‖xD(t)− xA(t)‖ ,

=

(
l(ψ) cosψ

1− α2
− xAxD

1− γ2
)

xD(t)− xA(t)

‖xD(t)− xA(t)‖ +
l(ψ) sinψ

1− α2
n̂,

= − xAxD
1− γ2

((
1− cosψ

1− α2

(1− γ2)l(ψ)

xAxD

)
xD(t)− xA(t)

‖xD(t)− xA(t)‖

− sinψ

1− α2

(1− γ2)l(ψ)

xAxD
n̂

)
,

= − xAxD
(1− α2)(1− γ2)

((
1− α2 + g(ψ) cosψ

)
xD(t)− xA(t)

‖xD(t)− xA(t)‖ + g(ψ) sinψ n̂

)
,

where g(ψ) = − (1−γ2)l(ψ)
xAxD

= − cosψ − αγ +
√

(cosψ + αγ)2 − (1− α2)(1− γ2). Thus

cAT
(
Ec(x(t))

)
− cAD

‖cAT
(
Ec(x(t))

)
− cAD‖

=

(
1− α2 + g(ψ) cosψ

)
xD(t)−xA(t)
‖xD(t)−xA(t)‖ + g(ψ) sinψ n̂

√
g(ψ)2 + 2(1− α2)g(ψ) cosψ + (1− α2)2

.

The formula above can be simplified further. It can easily be derived that g(ψ)2 = −2(cosψ + αγ)g(ψ)− (1− α2)(1− γ2).
Hence

√
g(ψ)2 + 2(1− α2)g(ψ) cosψ + (1− α2)2

=
√
g(ψ)2 + (1− α2)

(
− g(ψ)2 − 2αγg(ψ)− (1− α2)(1− γ2)

)
+ (1− α2)2

=
√
α2g(ψ)2 − 2αγ(1− α2)g(ψ) + γ2(1− α2)2

=

√(
− αg(ψ) + γ(1− α2)

)2
.

The maximum value of g(ψ) occurs at ψ = π, and g(π) = 1− αγ + γ − α; thus −αg(ψ) + γ(1− α2) > 0. Hence we obtain

cAT
(
Ec(x(t))

)
− cAD

‖cAT
(
Ec(x(t))

)
− cAD‖

=

(
1− α2 + g(ψ) cosψ

)
xD(t)−xA(t)
‖xD(t)−xA(t)‖ + g(ψ) sinψ n̂

−αg(ψ) + γ(1− α2)
. (51)

From this point onwards we consider exclusively the simpler case for VA = VD, the more general case VT < VA < VD will
be returned to later. The right-hand side of (48) is given by

Ic
(
Ec(x(t))

)
−Ec(x(t))

= cAT
(
Ec(x(t))

)
−Ec(x(t)) + rAT

(
Ec(x(t))

) xD(t)− xA(t)

‖xD(t)− xA(t)‖ ,

=
α2

1− α2

(
l(ψ) cosψ

xD(t)− xA(t)

‖xD(t)− xA(t)‖ + l(ψ) sinψ n̂

)
+

α

1− α2
l(ψ)

xD(t)− xA(t)

‖xD(t)− xA(t)‖ ,

=
α

1− α2
l(ψ)

(
(1 + α cosψ)

xD(t)− xA(t)

‖xD(t)− xA(t)‖ + α sinψ n̂

)
. (52)

Thus using formulas (49) and (52), (48) holds iff for some δ ≥ 0

projxT
− l(ψ) cosψ = δ(1 + α cosψ), and

rejxT
− l(ψ) sinψ = δα sinψ.

Hence ψ(x(t)) can be deduced from

projxT
− l(ψ) cosψ

1 + α cosψ
=
rejxT

− l(ψ) sinψ

α sinψ
.

Re-arranging the above equation and substituting l(ψ) = xAxD

2
1−α2

cosψ+α we obtain

(1− α2)xAxD
2

sinψ = (cosψ + α)
(
rejxT

(1 + α cosψ)− α projxT
sinψ

)
,



18

substituting the complex exponential formulas for sine and cosine:

(1− α2)xAxD
4i

(eiψ − e−iψ) =
1

4
(eiψ + e−iψ + 2α)

(
rejxT

(2 + α(eiψ + e−iψ)) + αi projxT
(eiψ − e−iψ)

)
,

multiplying both sides by e2iψ:

(1− α2)ixAxD(eiψ − e3iψ) = (e2iψ + 1 + 2αeiψ)
(
rejxT

(2eiψ + α(e2iψ + 1)) + αi projxT
(e2iψ − 1)

)
,

thus we obtain the fourth order polynomial governing ψ(x(t)):

α

(
rejxT

+ i projxT

)
e4iψ +

(
2 rejxT

+ 2α2(rejxT
+ i projxT

) + (1− α2)ixAxD

)
e3iψ

+

(
α(rejxT

− i projxT
) + 4α rejxT

+ α(rejxT
+ i projxT

)

)
e2iψ

+

(
2α2(rejxT

− i projxT
) + 2 rejxT

− (1− α2)ixAxD

)
eiψ + α(rejxT

− i projxT
) = 0.

Let TxT
= rejxT

+ i projxT
and let ηx = rejxT

+ i 1−α2

2 xAxD. This gives the more succinct polynomial

αTxT
e4iψ + 2(ηx + α2TxT

)e3iψ + 6αRe(TxT
)e2iψ + 2(ηx + α2TxT

)∗eiψ + αT ∗xT
= 0.

Thus the proof for the simpler case VA = VD is complete. Note that since e−iψ = eiψ
∗, the roots of the above fourth-order

polynomial can also be expressed as the zeros of the real part of the second-order polynomial

Re
(
αTxT

e2iψ + 2(ηx + α2TxT
)eiψ + 3αTxT

)
= 0.

Moving on to the general case VT < VA < VD the calculations become quite tedious, hence not all lines are shown. The
right-hand side of (48) is given by

Ic
(
Ec(x(t))

)
−Ec(x(t))

= cAT
(
Ec(x(t))

)
−Ec(x(t)) + rAT

(
Ec(x(t))

) cAT
(
Ec(x(t))

)
− cAD

‖cAT
(
Ec(x(t))

)
− cAD‖

,

=
α2

1− α2

(
l(ψ) cosψ

xD(t)− xA(t)

‖xD(t)− xA(t)‖ + l(ψ) sinψ n̂

)
+

α

1− α2
l(ψ)

cAT
(
Ec(x(t))

)
− cAD

‖cAT
(
Ec(x(t))

)
− cAD‖

,

=
αl(ψ)

1− α2

(
α cosψ

xD(t)− xA(t)

‖xD(t)− xA(t)‖ + α sinψ n̂ +
cAT

(
Ec(x(t))

)
− cAD

‖cAT
(
Ec(x(t))

)
− cAD‖

)
,

=
αl(ψ)

−αg(ψ) + γ(1− α2)

((
1 + (g(ψ) + αγ) cosψ

) xD(t)− xA(t)

‖xD(t)− xA(t)‖ + (g(ψ) + αγ) sinψ n̂

)
,

where cAT (Ec(x(t)))−cAD

‖cAT (Ec(x(t)))−cAD‖ is given by formula (51). Thus (48) holds if and only if for some δ ≥ 0

projxT
− l(ψ) cosψ = δ

(
1 + (g(ψ) + αγ) cosψ

)
, and

rejxT
− l(ψ) sinψ = δ

(
(g(ψ) + αγ) sinψ

)
.

Hence ψ(x(t)) can be deduced from

projxT
− l(ψ) cosψ

1 + (g(ψ) + αγ) cosψ
=
rejxT

− l(ψ) sinψ

(g(ψ) + αγ) sinψ
.

Let Q =
√

(cosψ + αγ)2 − (1− α2)(1− γ2). It follows that g(ψ) = Q− (cosψ+αγ) and l(ψ) = −xAxD

1−γ2

(
Q−cosψ−αγ

)
.

Hence
projxT

+ xAxD

1−γ2

(
Q− cosψ − αγ

)
cosψ

1 + (Q− cosψ) cosψ
=
rejxT

+ xAxD

1−γ2

(
Q− cosψ − αγ

)
sinψ

(Q− cosψ) sinψ
.

Solving for Q we obtain
(

(projxT
− xAxD

1− γ2 ) sinψ − rejxT
cosψ

)
Q =

(
(projxT

− xAxD
1− γ2 ) sinψ − rejxT

cosψ
)

cosψ

+ rejxT
− xAxD

1− γ2αγ sinψ,
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and thus by taking the square on both sides we get
(

(projxT
− xAxD

1− γ2 ) sinψ − rejxT
cosψ

)2
(2αγ cosψ − 1 + α2 + γ2) =

2 cosψ
(
rejxT

− xAxD
1− γ2αγ sinψ

)(
(projxT

− xAxD
1− γ2 ) sinψ − rejxT

cosψ
)

+
(
rejxT

− xAxD
1− γ2αγ sinψ

)2
.

Let TxT
= rejxT

+ i projxT
, Hx = TxT

− ixAxD

1−γ2 and κx = 2rejxT
− iαγ xAxD

1−γ2 . After substituting the complex exponential
definition of sine and cosine we obtain the sixth-order polynomial

(
αγH2

x − i Im(κx)Hx

)
e6iψ +

(
(α2 + γ2 − 1)H2

x + Re(κx)Hx + Im(κx)2
)
e5iψ

+
(
αγH2

x + 2αγHxH
∗
x − i Im(κx)H∗x + 2iRe(κx) Im(κx)

)
e4iψ

+
(

2(α2 + γ2 − 1)HxH
∗
x + 2 Re(κx) Re(Hx)− Re(κx)2 − 2 Im(κx)2

)
e3iψ

+
(
αγH2

x + 2αγHxH
∗
x − i Im(κx)H∗x + 2iRe(κx) Im(κx)

)∗
e2iψ

+
(

(α2 + γ2 − 1)H2
x + Re(κx)Hx + Im(κx)2

)∗
eiψ +

(
αγH2

x − i Im(κx)Hx

)∗
= 0.

The roots of the above sixth-order polynomial may be expressed as the zeros of the real part of the third-order polynomial

Re

((
αγH2

x − i Im(κx)Hx

)
e3iψ +

(
(α2 + γ2 − 1)H2

x + Re(κx)Hx + Im(κx)2
)
e2iψ

+
(
αγH2

x + 2αγHxH
∗
x − i Im(κx)H∗x + 2iRe(κx) Im(κx)

)
eiψ

+ (α2 + γ2 − 1)HxH
∗
x + Re(κx) Re(Hx)− 1

2
Re(κx)2 − Im(κx)2

)
= 0.

V. CONCLUSION

The present manuscript uncovered a fundamental symmetry in the TAD pursuit-evasion differential game, we named it
Target Symmetry. This is the property that if the Target were to move in its optimal heading, but the Attacker and Defender
remained at there current location, the optimal headings of all agents will remain unchanged. In the manuscript we also gave a
solution to the game of kind as a function of the position of the Target; the Target can escape if and only if xT (t) /∈ N (x(t)).
From these two results, we uniquely identified the state-feedback Nash equilibrium, given by Theorem III.6, to be completely
determined by the optimal headings at the boundary of N (x(t)). This is to say that the boundary of N (x(t)) encodes all of
the information of the pursuit-evasion game, including the entire escape set and the entire state-feedback Nash equilibrium; in
much the same way as the event horizon of a black hole.

For eloquence the state-feedback Nash equilibrium provided in Section III was presented more abstractly as a function of
Ec(x(t)). In the last section we applied all the equations previously listed in Sections II and III to parameterise Ec(x(t)) as a
solution to a sixth-order polynomial, providing an efficient method for the computation of the SFNE given by Theorem III.6.

Future works on this topic can prove that the Critical Escape Trajectories Theorem satisfies the Hamilton-Jacobi-Isaacs
equation everywhere in the Target’s escape set.
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Chapter 7

The holographic principle for the

differential game of active target

defence

7.1 Contextual statement

This manuscript extends the analysis of the differential game of active target defence to

incorporate negative values. This is where if under optimal play the Target is captured by

the Attacker, the Target and Defender work to minimise the separation between themselves

at termination (see Section 2.7). It turns out that Target Symmetry does not hold outside

the Target’s escape set, rather a different symmetry named Defender Symmetry takes shape

in this region. Defender Symmetry reveals that mapping the position of the Defender any-

where in-front of its optimal heading preserves the optimal headings of all agents. Analysing

what these two symmetries have in-common, we conjecture the holographic principle for

simple-motion pursuit-evasion games; and prove an application of it to the differential game

of active target defence with the holographic theorem.
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The holographic principle for the differential game of active target defence

Kamal Mammadov , Cheng-Chew Lim and Peng Shi

School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, Australia

ABSTRACT
We examine the Target–Attacker–Defender (TAD) pursuit-evasion game. This is a two team, zero-sum
differential game consisting of the aforementioned three agents obeying simple motion. The game ter-
minates at the first time tf when the Attacker achieves point capture of either the Target or Defender. The
Attacker chases the Target in such a manner as to minimise the distance between itself and the Target,
minus the distance between itself and the Defender at termination time; and the Target and Defender
work as a team to achieve the exact opposite goal. This paper introduces and verifies the most elegant
characterisation of the state-feedback Nash equilibrium. Whereas previous methods in the literature seg-
regated the state space into at least three separate regions, we introduce a new unifying paradigm given
by the Holographic Principle, and conjecture that this principle is more broadly applicable to a large class
of simple motion pursuit-evasion games.
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1. Introduction

In aerospace engagement scenarios involving autonomous
agents, the synthesis of intelligent actions must consider the
potential strategies by the adversary. When analysing the pos-
sible outcomes of an engagement, unpredictability of the adver-
saries decisions presents the main challenge, the design of our
strategies must be robust to a very broad set of possible counter
strategies employed by the adversary. Differential game theory
provides the framework to analyse and design optimal strategies
for every team in these dynamic engagement scenarios. Here
the goal is to find the state-feedback Nash equilibrium, the opti-
mal outcome of the engagement scenario in which all parties
with knowledge of the strategies deployed cannot increase their
payoff by altering their decision-making process. Foundational
works on the general theory of differential games are given in
Basar andOlsder (1998) and Lewin (1994). The topic of pursuit-
evasion differential games is a subcategory of this general theory
focusing on applications of differential game theory to common
aerospace engagement scenarios.

More specifically, the topic that is the focus of the present
manuscript is named simple-motion pursuit-evasion games.
This is a subcategory of pursuit-evasion differential games in
which every agent has simple motion. An agent g is said to
have simple motion if its state at time t can be completely spec-
ified by its position vector xg(t), and its dynamics is given by
ẋg(t) = Vgug(t), where ug(t) is an arbitrary vector with magni-
tude no greater than 1, chosen by the agent at every time t, and
Vg is the maximum speed of agent g. This assumption essen-
tially assumes that every agent has a fixed maximum speed but
infinite acceleration/turn rate.

CONTACT Kamal Mammadov kamal.mammadov@adelaide.edu.au, uni.mammadov@gmail.com

Simple-motion pursuit-evasion games are of particular inter-
est in the literature to study aerospace engagements, because
it gives a sufficiently accurate approximation to the dynam-
ics of any platform in an engagement so long as the time
taken to accelerate to maximum speed is small relative to the
time the platform is at its maximum speed. Moreover, the
assumption of simple motion more often then not leads to
simple calculations for the state-feedback Nash equilibrium
(SFNE), since the headings of all agents are constant under
optimal play and the optimal trajectories are straight lines.
Although this property of the SFNE is not true for every
simple-motion game, but in the cases in which it is true, the
point captures in the SFNE lie on the Apollonius circles deter-
mined by their instantaneous positions and their speed ratios
(Isaacs, 1965).

One of the most famous examples of a simple-motion
pursuit-evasion game is the 1-Pursuer 2-Evader differential
game in Breakwell andHagedorn (1979). This paper considered
the problem of point capture of two successive evaders of iden-
tical speed in minimum total time. It turns out that, in some
cases, the nearer evader is captured first at a specific position
on her Apollonius circle, while the second evader runs directly
away from that position. That position is that point on the Apol-
lonius circle which maximises the sum of the distances from
pursuer and second evader. This geometric solution, however,
is valid only if the second evader remains further from the pur-
suer than does the first evader at all times prior to capture of
the first pursuer. Otherwise, it turns out that the solution must
be modified to include a phase involving curved motions by
all three players, during which the pursuer remains equidistant

© 2022 Informa UK Limited, trading as Taylor & Francis Group
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from both evaders, and during which the pursuer can change
her mind at any time as to which evader she will capture
first.

More specifically relevant to the current manuscript, the
work of Garcia et al. (2019), among many others, considered
the Target–Attacker–Defender pursuit-evasion game. Although
there are variations in the literature, what is common among
them is that there are three agents, the Target, Attacker and
Defender, each satisfying simple motion with maximum speeds
VT, VA and VD respectively. The termination time tf is defined
endogenously as the first time the Attacker collides with either
of the other two agents. The most widely examined variant, and
the variant considered in the current manuscript, is where the
objective function is defined by

J(x(tf )) = xA(tf )xT(tf )− xA(tf )xD(tf ),

where the over-line notation denotes the euclidean distance
between two agents in Rn. Team A, consisting of a single agent,
the Attacker, aims to minimise J(x(tf )), whilst team T/D, con-
sisting of two agents, the Target and Defender, cooperate to
maximise J(x(tf )). Under optimal play, the set of all initial states
that results in the outcome J(x(tf )) > 0, is named the winning
region of team T/D, similarly all starting states which result in
J(x(tf )) < 0 under optimal play, is named the winning region of
team A. The task of unearthing necessary and sufficient condi-
tions under which J(x(tf )) = 0 is named the TAD game of kind.
The most elegant result answering this question is provided in
the work of Liang et al. (2019), who proved that under optimal
play, J(x(tf )) = 0 if and only if

VAxT(t)xD(t) = VDxA(t)xT(t)+ VTxA(t)xD(t). (1)

The TAD game of degree is the challenge of providing amethod
to find the state-feedback Nash equilibrium. To this end, a
prominent work on this question includes Garcia et al. (2017).
This manuscript considered the winning region of team T/D,
here separate optimality principles were proposed to solve for
the value of this game, depending upon the position of the
Target. The value V(x(t)) as a function of the state of the
game x(t) = (xA(t), xD(t), xT(t)), denotes the expected pay-
off J(x(tf )) under the state-feedback Nash equilibrium (SFNE).
In the case where the Target is located inside the AD-based
Apollonius circle, the maximisation

V(x(t)) = max
p∈CAD

−xT(t)p + VT

VA
xA(t)p, (2)

yields the SFNE, whereas in the case where the Target is located
outside the AD-based Apollonius circle, the value is given by

V(x(t)) = min
p∈CAD

xT(t)p + VT

VA
xA(t)p. (3)

Here CAD denotes the perimeter of the AD-based Apollonius
circle. In the case where the maximisation in (2) yields a neg-
ative number, we say that the Target cannot escape capture, i.e.
V(x(t)) = 0. Thus the combination of (2)–(3) characterises the
SFNE of the TAD pursuit-evasion game for V(x(t)) ≥ 0.

It was proven in Garcia et al. (2019) that in two dimen-
sions, in the case VA = VD, the value function is contin-
uous and continuously differentiable in the winning region

of team T/D, and that it satisfies the Hamilton–Jacobi–Isaacs
equation everywhere in this set. Although the value function
was not defined by (2)–(3), but rather by applying the two-sided
Pontryagin’s maximum principle (see Basar & Olsder, 1998;
Lewin, 1994) to synthesise the state feedback strategies; in
the process the value function is obtained. Just as in Garcia
et al. (2017), the techniques used in Garcia et al. (2019) are
split into the cases xT(t)xA(t) > xT(t)xD(t) and xT(t)xA(t) <
xT(t)xD(t); and involve heavy calculus.

Later, the work of Garcia et al. (2021) studied the winning
region of team A. The main conclusion from this manuscript 1
is that the value can be found using

V(x(t)) = max
p∈CAT

−xD(t)p + VD

VT
xT(t)p. (4)

Thus taken in combination, the optimality principles (2), (3)
and (4) provide a complete characterisation of the value of the
TAD pursuit-evasion game.

Using Pontryagin’s maximum principle, in the work of Gar-
cia et al. (2017, 2018), it was proven that under optimal play,
the headings of the Attacker, the Target and the Defender are
constant. Therefore under optimal play every agent moves in
straight lines with constant speed from the start until termi-
nation. However the SFNE cannot be uniquely determined
from this principle alone, because there still remains too many
degrees of freedom (i.e. which direction does each agent move
in). In Garcia et al. (2017), it was argued that formulas (2)–(3)
provide the correct angles for which each agent must move in.
Theworks ofMammadov et al. (2020, 2021) provided a rigorous
proof of (3) using the theory of upper and lower values, and gen-
eralised the results toRn. Finally the work of Garcia et al. (2021)
provided a proof for (4), in the case VA = VD.

A major unification of the previous works was accomplished
in the paper (Mammadov et al., 2022). This paper discovered
a fundamental symmetry named Target Symmetry, eliciting an
invariance in the state-feedback Nash equilibrium. This was
used to develop a unified optimality principle given by

V(x(t)) = xT(t)ET(x(t)), (5)

which is valid in the entire winning region of team T/D, that
is, it unifies (2) and (3). However, Target Symmetry does not
hold in the winning region of team A, which is why the work
of Mammadov et al. (2022) only studied the winning region of
team T/D.

Thus, to further the goal of unification, it was found by the
present authors that a different symmetry holds in the winning
region of team A, that is named Defender Symmetry. It can be
expressed by

V(x(t)) = −xD(t)ED(x(t)). (6)

Moreover, after an investigation into the similarities and differ-
ences between Target and Defender Symmetry, it was discov-
ered that they could be unified by a much grander optimality
principle we named the Holographic Principle, the main focus
of this manuscript. The Holographic Principle holds in both the
winning region of team T/D and the winning region of team A.
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It unifies all the previous aforementioned optimality principles
with

V(x(t)) = xT(t)ET(x(t))− xD(t)ED(x(t)). (7)
Moreover, we conjecture that the Holographic Principle holds
not just for the TAD pursuit-evasion differential game, but
a wide variety of simple-motion pursuit-evasion differential
games. Although not in all simple-motion games, since the
present authors are already aware of two counter examples in
Breakwell and Hagedorn (1979) and Liang et al. (2019). Nor-
mally the Holographic Principle does not hold whenever in the
SFNE the agents do not move in straight lines.

Thus the three main contributions of the present manuscript
are: the first manuscript to study the TAD pursuit-evasion game
in the winning region of team A in the more general set-
tingVT < VA < VD (the previous publications only considered
VA = VD), the development of a grand unified optimality prin-
ciple with (7) and more broadly a conjecture that the methods
developed in this manuscript can be applied to other simple-
motion pursuit-evasion games.

The remainder of the manuscript is organised as follows.
Section 2 first introduces the notation and terminology used
throughout the manuscript, and provides a complete mathe-
matical definition of the TAD pursuit-evasion game; finally it
also provides some preliminary results on the game of kind that
are used in subsequent sections. Section 3 provides a general
description of the Holographic Principle and details its appli-
cation to the TAD pursuit-evasion game. Note , however, that
the general description is obtuse at the present time since the
exact mathematical formulation would require a general direct
proof; the current manuscript only verifies that it holds for the
TAD game. Finally Section 4 mathematically proves the sym-
metry breaking of the Holographic Principle into the disjointed
formulas of (2), (3) and (4).

2. Preliminaries

2.1 Notation and terminology

The notation used throughout the manuscript is listed as fol-
lows. Given any u, v,w ∈ Rn

• R+ = {x ∈ R | x > 0} denotes the set of all positive real
numbers.

• R+
0 = {x ∈ R | x ≥ 0} denotes the set of all non-negative real

numbers.
• u · v denotes the dot product.
• ‖u‖ = √

u · u.
• −→uv = v − u.
• uv = ‖−→uv‖ denotes the euclidean distance between u and v.
• ∠uvw denotes the angle between vectors −→vu and −→vw; that is−→vu · −→vw = vuvw cos∠uvw, where 0 ≤ ∠uvw ≤ π .
• proju(v) = v·u

u·uu denotes the vector projection of any vector
v onto u.

• u̇(t) denotes the time derivative d
dtu(t).

Team A and agent A both refer to the Attacker. Agent T and
agent D denote the Target and Defender respectively, and team
T/D denotes the team comprising of those two agents. SFNE is
the abbreviation for state-feedback Nash equilibrium.

2.2 Problem formulation

In this section, we present the problem formulation of the Tar-
get–Attacker–Defender (TAD) pursuit-evasion game. This is a
continuous-time, zero-sum differential game consisting of two
teams, team A and team T/D. Team A consists of a single agent,
agent A (also named the Attacker), and team T/D comprises
of two agents, agent T and agent D (also named the Target
and Defender respectively). The complete state of the TAD
pursuit-evasion game is given by x(t) = (xA(t), xD(t), xT(t))
denoting the position of the Attacker, Defender and Target
respectively. Here xA(t), xD(t), xT(t) ∈ Rn for any integer n ≥
2. The dynamics ẋ(t) from time t0 to tf is given by

(ẋA(t), ẋD(t), ẋT(t)) = (VAuA(t),VDuD(t),VTuT(t)),

x(t0) = x0 (8)

where VA,VD,VT ∈ R+
0 denotes the maximum speed of the

Attacker, Defender and Target respectively. Both teams have
access to the information of the current state x(t) at time t. Using
that information, team A must choose an instantaneous head-
ing for agent A; and team T/D must choose headings for agents
D and T.2 The controls of agents A, D and T must satisfy

‖uA(t)‖, ‖uD(t)‖, ‖uT(t)‖ ≤ 1 (9)

for all time t. The termination time tf is defined endogenously
as the first time tf satisfying at least one of the termination
conditions (10) or (11)

xA(tf ) = xD(tf ), (10)

xA(tf ) = xT(tf ). (11)

Over the time horizon [t0, tf ], each team receives the following
payoff:

J(uA(·),uD(·),uT(·), x0) = xA(tf )xT(tf )− xA(tf )xD(tf ). (12)

The goal of team A is to minimise J(uA(·),uD(·),uT(·), x0),
whereas the aim of team T/D is to maximise it. The maximum
speed of the agents satisfies the inequality

VT < VA < VD. (13)

We denote uA(t), uD(t) and uT(t) as any permissible con-
trol input at time t (any input satisfying (9)), whereas we use
the notation uA(x(t)),uD(x(t)),uT(x(t)) to denote the state-
feedback optimal strategies, at state x(t). Moreover, let α = VT

VA

and γ = VD
VA

denote the speed of the Target and Defender rela-
tive to the speed of theAttacker. Throughout themanuscript, we
reference the following circles. Let cAD and rAD denote the cen-
tre and radius of the AD-based Apollonius circle, as a function
of the state x(t)

cAD(x(t)) = V2
D

V2
D − V2

A
xA(t)+ V2

A
V2
A − V2

D
xD(t), (14a)

rAD(x(t)) = VAVD

|V2
A − V2

D|xA(t)xD(t). (14b)
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Similarly, let cAT and rAT denote the centre and radius of the
AT-based Apollonius circle

cAT(x(t)) = V2
T

V2
T − V2

A
xA(t)+ V2

A
V2
A − V2

T
xT(t), (15a)

rAT(x(t)) = VAVT

|V2
A − V2

T|xA(t)xT(t). (15b)

Moreover, letCAD andCAT denote the set of all points on the
surface of the AD andAT-based Apollonius circles, respectively.
It is defined by

CAD(x(t)) = {p ∈ Rn | ‖cAD(x(t))− p‖ = rAD(x(t))}, (16)

CAT (x(t)) = {p ∈ Rn | ‖cAT(x(t))− p‖ = rAT(x(t))}. (17)

The interior of the AD-based ( Attacker–Defender) Apollonius
circle represents all the points in Rn the Attacker can reach
before the Defender, whereas the points outside the circle the
Defender would reach first. Similarly the interior of the AT-
based Apollonius circle is the set of all points the Target can
reach before the Attacker.

The central goal of studying differential games is to charac-
terise the state-feedbackNash equilibrium (SFNE). That is, what
are the optimal state-feedback strategies uA(x(t)),uD(x(t)),
uT(x(t)), and what is the value function V(x(t)) = J(uA(x(t)),
uD(x(t)),uT(x(t)), x0). The main contribution of the present
manuscript is to conjecture a holographic principle for some
large class of simple motion pursuit-evasion games. The holo-
graphic principle reveals that in the case of the TAD pursuit-
evasion game, it would suffice to find the optimal strategies in
the special case that the starting state x0 satisfies V(x0) = 0.

To that end, the next subsection characterises the set of
all starting states x0 satisfying V(x0) = 0, and the optimal
strategies uA(x0),uD(x0),uT(x0) in this special case. Section 3
reveals how any arbitrary state x(t) = (xA(t), xD(t), xT(t)) can
be mapped into the alternative state (xA(t),ED,ET) satisfying
V(xA(t),ED,ET) = 0; and how this mapping can be used to
deduce the SFNE for any state x(t).

2.3 Game of kind

In pursuit-evasion differential games, the gameof kindnormally
refers to the puzzle of unearthing necessary and sufficient con-
ditions under which the value function is equal to zero. For the
TAD pursuit-evasion game considered in this manuscript, this
occurs whenever under optimal play, the state at termination
time satisfies

xA(tf ) = xD(tf ) = xT(tf ). (18)

In the prominent work of Liang et al. (2019), it was determined
that condition (18) eventualises under optimal play if and only if

VAxT(t)xD(t) = VDxA(t)xT(t)+ VTxA(t)xD(t). (19)

In the work of Mammadov et al. (2022), it was deduced that
formula (19) is equivalent to

xA(t)xT(t)
xA(t)xD(t)

= 1
1 − γ 2 (cosψ + αγ

−
√
(cosψ + αγ )2 − (1 − α2)(1 − γ 2)), (20)

where ψ = ∠xT(t)xA(t)xD(t). Formulae (19) and (20) can be
derived by determining the set of all states x(t) satisfying

cAD(x(t))cAT(x(t))+ rAT(x(t)) = rAD(x(t)); (21)

That is, the Target cannot escape capture from the Attacker
if and only if the AT-based Apollonius circle is completely
encapsulated within the AD-based Apollonius circle. Formu-
las (19), (20) and (21) are all equivalent. Consolidating the
results listed, the following Lemma summarises the conclusion.

Lemma2.1: The following are equivalent conditions for any state
x(t) of the differential game defined in Section 2.2.

(1) V(x(t)) ≥ 0,
(2) VAxT(t)xD(t) ≤ VDxA(t)xT(t)+ VTxA(t)xD(t),
(3) xA(t)xT(t)

xA(t)xD(t)
≥ 1

1−γ 2 (cosψ + αγ −√
(cosψ + αγ )2 − (1 − α2)(1 − γ 2)),

(4) cAD(x(t))cAT(x(t))+ rAT(x(t)) ≥ rAD(x(t)).

And conditions (1), (2), (3) and (4) all remain equivalent when
replacing the inequalities with equalities.

2.4 Necessary conditions for optimality in simplemotion
games

The results of (19)–(21) determine the set of all states x0 satis-
fying V(x0) = 0. The question remains, how can we deduce the
optimal strategies uA(x(t)),uD(x(t)),uT(x(t)). To this end, we
cite the following well-known result.

Theorem2.2 (Isaacs): The optimal headings of all agents remain
constant under optimal play, not including termination.

This essentially carriers the meaning that every agent moves
in straight lines at maximum speed; the exemption occurs at
times in which the termination conditions are triggered, such
as (10) and (11) in the TAD pursuit-evasion game. The mean-
ing here will become more clear as more examples are given in
Section 4.

Theorem 2.2 is attributed to the works of Isaacs (1965). It
holds for a large class of simple motion pursuit-evasion games
and has been proven explicitly to hold in the TAD pursuit-
evasion game, in the work of Garcia et al. (2017). However it
should be noted that Theorem 2.2 does not hold for all sim-
ple motion pursuit-evasion games. For example, in the work
of Liang et al. (2019), there are cases in which agents move in
curved paths in the state-feedback Nash equilibrium.

In general, the state-feedback Nash equilibrium cannot be
deduced from this optimality principle, as it gives too many
degrees of freedom (that is, we know that every agentmustmove
in straight lines under optimal play, but which direction are
they going). Thus we name it a necessary condition of optimal-
ity. Nevertheless there is one special case for which the optimal
headings uA,uD,uT can be uniquely derived fromTheorem 2.2,
that is the case in which V(x0) = 0.



INTERNATIONAL JOURNAL OF CONTROL 5

Recall the earlier result (21). Under optimal play, the state at
termination time satisfies xA(tf ) = xD(tf ) = xT(tf ) if and only
if the AT-based Apollonius circle is completely in the interior of
the AD-based Apollonius circle, except for the unique point in
which they intersect. Denote this unique point Ic, throughout
the manuscript it is known as the Critical Collision Point, and it
is given by the formula

Ic(x(t)) = cAT(x(t))+ rAT(x(t))
cAT(x(t))− cAD(x(t))

‖cAT(x(t))− cAD(x(t))‖ .
(22)

Thus in the case where (19) holds, due to the following three
reasons:

(1) Under optimal play every agent collides at a single point.
(2) The Critical Collision Point Ic is the only point that exists

in which if every agent was tomove at their respectivemax-
imum speeds towards, they would all arrive at the same
time.

(3) Invoking Theorem 2.2, under optimal play every agent
moves in straight lines at their respectivemaximum speeds.

It follows that the optimal strategies are given by the follow-
ing Lemma.

Lemma 2.3: For any state x(t) satisfying V(x(t)) = 0, the opti-
mal strategies are given by

uA(x(t)) = Ic(x(t))− xA(t)
‖Ic(x(t))− xA(t)‖ , (23a)

uD(x(t)) = Ic(x(t))− xD(t)
‖Ic(x(t))− xD(t)‖ , (23b)

uT(x(t)) = Ic(x(t))− xD(t)
‖Ic(x(t))− xD(t)‖ , (23c)

where the Critical Collision Point Ic(x(t)) is given by for-
mula (22).

Be that as it may, Lemma 2.3 only reveals the optimal state-
feedback strategies uA(x(t)),uD(x(t)),uT(x(t)) in the special
case where the state x(t) satisfies (19). The main issue here is
that Theorem 2.2 does not provide enough constraints on the
set of all possible optimal strategies to uniquely determine the
state-feedback Nash equilibrium. In the next section, we intro-
duce with the holographic principle a new method to uniquely
determine everywhere the optimal state-feedback strategies.

3. The holographic principle

3.1 General statement of the holographic principle

The holographic principle reveals a fundamental symmetry in
simple motion pursuit-evasion games previously unacknowl-
edged. A symmetry, also known as an invariance, is a trans-
formation or mapping of a certain type which preserves some
quantity or property. For example, consider a polynomial
equation with only real coefficients; if r1 is a root, then the com-
plex conjugate of r1 is also a root. Thus complex conjugation is
a symmetry of the roots of a polynomial with real coefficients.

In the topic of pursuit-evasion games, a symmetry or
invariance of the state-feedback Nash equilibrium refers to
a transformation F of the state which preserves the opti-
mal headings of all agents. Thus for the TAD pursuit-evasion
game this means that the optimal headings obey uA(x(t)) =
uA(F(x(t))),uD(x(t)) = uD(F(x(t))),uT(x(t)) = uT
(F(x(t))). Theorem 2.2 specifies one such transformation F .
The holographic principle elicits another transformation F
which has this property. It can be expressed by the following
conjecture.

Conjecture 3.1 (Holographic Principle): For some large class
of simple-motion pursuit-evasion games, under optimal play of
a single agent with all other agents frozen in-place, the optimal
strategies remain constant, so long as this single agent is not the
next agent to terminate.

The conjecture is purposefully obtuse where it states ‘For
some large class of simple-motion pursuit-evasion games’,
because as of writing it yet remains unclear just how broadly
it applies to simple motion pursuit-evasion games. The present
manuscript proves that Conjecture 3.1 holds for the TAD
pursuit-evasion game described in Section 2.2, and it has been
verified to hold for the 1-Pursuer 2-Evader game in certain
cases. There already has been identified a differential game
where all agents obey simple motion, but nonetheless does not
comply with 3.1, for example in Liang et al. (2019), where a
fast moving Attacker must capture a Target in minimum time.
Thus it remains an open problem to classify an exact criteria
determining the ‘large class’ of games satisfying Conjecture 3.1.

To describe with more detail the consequences and impli-
cations of the Holographic Principle, it is best to illustrate
with an example. The sentence ‘Under optimal play of a single
agent with all other agents frozen in-place, the optimal strate-
gies remain constant’; describes a crucial symmetry that the
state-feedback optimal strategies must satisfy in simple motion
games. Let x(t) = (x1(t), . . . , xN(t)) denote the state at time t of
any simple motion pursuit-evasion game containing N agents,
where xi(t) denotes the position of the ith agent at time t; and let
u1(x(t)), . . . ,uN(x(t)) denote the state-feedback optimal strate-
gies, that is under optimal play ẋi(t) = ui(x(t)) for i = 1, . . . ,N.
For any agent j not the next agent to terminate; if from time t
to t +�t, the agents move according to ẋj(t) = uj(x(t)), and
ẋi(t) = 0 for all i �= j, then ui(x(t +�t)) = ui(x(t)) for all i =
1, . . . ,N.3

Linking Conjecture 3.1 directly to the pursuit-evasion game
specified in Section 2.2. If V(x(t)) > 0, under optimal play
the Attacker collides with the Defender at termination time tf ,
hence termination condition (10) is triggered. Therefore in this
case we say that both agent A and agent D are next to termi-
nate, whereas the Target does not terminate since termination
condition (11) is not triggered. As a consequence, the Holo-
graphic Principle can only be applied to the Target in the case
V(x(t)) > 0. On the other hand, if V(x(t)) < 0, under opti-
mal play the Attacker collides with the Target at termination
time, thus termination condition (11) is triggered. As a result,
in this case agent A and agent T are next to terminate, whereas
the Defender does not terminate. Consequently Conjecture 3.1
may only be applied to the Defender when V(x(t)) < 0. We
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describe this splitting, the division of methods and procedures
for calculating the state-feedback Nash equilibrium, despite all
these methods originating from a single unified principle, as
symmetry breaking.

The Holographic Principle provides significant constraints
that the state-feedback Nash equilibrium must obey, so much
so that taken together with Theorem 2.2, can be used to
uniquely deduce the SFNE. Thus the Holographic Principle,
with Theorem 2.2, constitutes a set of necessary and sufficient
conditions for optimality. The remainder of Section 3 is organ-
ised as follows. Section 3.2 applies Conjecture 3.1 to uniquely
deduce the state-feedback Nash equilibrium for the differential
game of active target defence, Section 3.3 provides explicitly the
equations used to calculate the value and state-feedback optimal
strategies, and finally Section 3.4 gives a numerical example.

3.2 Holographic principle for TAD pursuit-evasion game

In this section, we apply Conjecture 3.1 to uniquely deduce the
state-feedback Nash equilibrium of the TAD pursuit-evasion
game defined in Section 2.2. The Holographic Principle under-
goes symmetry breaking at the threshold V(x(t)) = 0, which is
given by the following two theorems.

Theorem 3.2 (Target Symmetry): If V(x(t)) > 0 , under opti-
mal play of the Target with the Attacker and Defender frozen
in-place, the optimal strategies remain constant.

Theorem 3.3 (Defender Symmetry): If V(x(t)) < 0 , under
optimal play of the Defender with the Attacker and Target frozen
in-place, the optimal strategies remain constant.

In other words, in the case V > 0, if the Attacker’s and
Defender’s position were static, the Target moving in its opti-
mal heading would not change the optimal headings of any
of the three agents. Whereas in the case V < 0, if the Target
and Defender were frozen in place, the Defender moving in its
optimal heading would not change the optimal strategies.

Target Symmetry and Defender Symmetry can be used
to uniquely determine the state-feedback Nash equilibrium
for all x(t) as follows. We already know what the opti-
mal strategies are for the special case V(x(t)) = 0, this was
easily derived using Theorem 2.2. The central hypothesis
of the Holographic Principle is that there exists a map-
ping between any state x(t) = (xA(t), xD(t), xT(t)) to another
state x∂ (t) = (xA(t),ED,ET) satisfying V(x∂ (t)) = 0, such that
uA(x∂ (t)) = uA(x(t)), uD(x∂ (t)) = uD(x(t)) and uT(x∂ (t)) =
uT(x(t)). Note that obviously the value at x(t) is not the same
as the value at x∂ (t), but the optimal strategies are the same
between these two states, thus can be used to deduce the SFNE.
To that end, we define the following rays.

Definition 3.4: ATarget Ray ζT(x(t)), defined for any state x(t)
satisfying V(x(t)) = 0, is described by

ζT(x(t)) = {p ∈ Rn | p = xT(t)+ δ(Ic(x(t))− xT(t))

for some δ > 0}. (24)

Similarly, a Defender Ray ζD(x(t)), defined for any state x(t)
satisfying V(x(t)) = 0, is described by

ζD(x(t)) = {p ∈ Rn | p = xD(t)− δ(Ic(x(t))− xD(t))

for some δ > 0}. (25)

Here Ic(x(t)) is the corresponding Critical Collision Point
defined by (22), and recall that V(x(t)) = 0 if and only if for-
mula (19) holds. We also need to define the functions ET(x(t))
and ED(x(t)).

Definition 3.5: If V(x(t)) > 0, then the function ET(·) is
defined by mapping any state of the differential game x(t) to the
unique point ET satisfying

V(xA(t), xD(t),ET) = 0 (26)

and

xT(t) ∈ ζT(xA(t), xD(t),ET). (27)

Otherwise if V(x(t)) ≤ 0, then ET(x(t)) = xT(t).

Definition 3.6: If V(x(t)) < 0 then the function ED(·) is
defined by mapping any state of the differential game x(t) to a
point ED satisfying

V(xA(t),ED, xT(t)) = 0, (28)

and

xD(t) ∈ ζD(xA(t),ED, xT(t)). (29)

In the instances in which a solution ED to (28) and (29) is
not unique, pick the solution for ED that minimises xD(t)ED.
Otherwise in the case V(x(t)) ≥ 0 then ED(x(t)) = xD(t).

Here Lemma 2.1 should be used to determine given any state,
whether the value is less than, equal to, or greater than zero.
The substitute state x∂ (t) = (xA(t),ED(x(t)),ET(x(t))) obeys
V(x∂ (t)) = 0, thus Lemma 2.3 can be used to determine the
optimal strategies for x∂ (t). The Holographic Principle states
that the optimal strategies at x(t) are the same for x∂ (t).

Using the terminology defined above, the state-feedback
Nash equilibrium of the TAD pursuit-evasion game can be fully
characterised by the following theorem.

Theorem 3.7 (Holographic Theorem for TAD differential
game): The value of the pursuit-evasion game defined in
Section 2.2 is given by

V(x(t)) = xT(t)ET(x(t))− xD(t)ED(x(t)), (30)

and the optimal state-feedback strategies are given by

uA(x(t)) = uA(x∂ (t)), (31a)

uD(x(t)) = uD(x∂ (t)), (31b)

uT(x(t)) = uT(x∂ (t)), (31c)

where x∂ (t) = (xA(t),ED(x(t)),ET(x(t))) is the substitute state
satisfying V(x∂ (t)) = 0. Thus the optimal controls uA(x∂ (t)),
uD(x∂ (t)), uT(x∂ (t)) can be determined from Lemma 2.3.
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The proof of Theorem 3.7 is given in Section 4. The proof
leverages previous results in the literature which characterised
the SFNE using formulas (43)–(44); the proof of Theorem 4.1
verifies that Theorem 3.7 provides an equivalent characterisa-
tion of the SFNE.

3.3 Application of the Holographic Theorem

The Holographic Theorem completely characterises the state-
feedback Nash equilibrium of the TAD pursuit-evasion game,
by transforming any state x(t) into the substitute state x∂ (t) =
(xA(t),ED(x(t)),ET(x(t))) satisfyingV(x∂ (t)) = 0. This section
outlines explicitly the mathematical formulas used to calculate
ED(x(t)) and ET(x(t)). To that end, let

φ = ∠xT(t)xA(t)xD(t), (32)

denote the angle between vectors xT(t)− xA(t) and xD(t)−
xA(t), and let the function g(ψ) be defined by

g(ψ) = 1
1 − γ 2 (cosψ + αγ

−
√
(cosψ + αγ )2 − (1 − α2)(1 − γ 2)). (33)

Theorem 3.8: The substitute state x∂ (t) = (xA(t),ED(x(t)),
ET(x(t))) can be computed in the case V(x(t)) < 0 with

ED(x(t)) = xA(t)+ xA(t)xT(t)
g(ψ(x(t)))

cosψ(x(t)) n̂1(x(t))

+ xA(t)xT(t)
g(ψ(x(t)))

sinψ(x(t))n̂2(x(t)), (34)

where

n̂1(x(t)) = xT(t)− xA(t)
‖xT(t)− xA(t)‖ ,

n̂2(x(t)) = xD(t)− xA(t)− projn̂1(x(t))(xD(t)− xA(t))
xD(t)− xA(t)− projn̂1(x(t))(xD(t)− xA(t))

,

and where ψ(x(t)) ∈ [0,π] is a solution to

(αγ − 1 − α2

g(ψ)
) sinψ

(
xA(t)xD(t) cosφ − xA(t)xT(t)

g(ψ)
cosψ

)

= (1 + (αγ − 1 − α2

g(ψ)
) cosψ)

×
(
xA(t)xD(t) sinφ − xA(t)xT(t)

g(ψ)
sinψ

)
. (35)

In the instances in which there are multiple solutions ψ between
0 and π to formula (35), pick the angle ψ generating ED(x(t))
which yields the smallest value for xD(t)ED(x(t)).

In the case V(x(t)) > 0, the substitute state can be computed
from

ET(x(t)) = xA(t)+ xA(t)xD(t)g(ψ(x(t))) cosψ(x(t))n̂3(x(t))

+ xA(t)xD(t)g(ψ(x(t))) sinψ(x(t))n̂4(x(t)),
(36)

where

n̂3(x(t)) = xD(t)− xA(t)
‖xD(t)− xA(t)‖ ,

n̂4(x(t)) = xT(t)− xA(t)− projn̂3(x(t))(xT(t)− xA(t))
xT(t)− xA(t)− projn̂3(x(t))(xT(t)− xA(t))

,

and in this case ψ(x(t)) ∈ [0,π] is the unique solution to

(αγ − (1 − γ 2)g(ψ)) sinψ(xA(t)xT(t) cosφ

− xA(t)xD(t)g(ψ) cosψ)

= (1 + (αγ − (1 − γ 2)g(ψ)) cosψ)(xA(t)xT(t) sinφ

− xA(t)xD(t)g(ψ) sinψ). (37)

Proof: Let x = (xA, xD, xT) denote any state of the differential
game defined in Section 2.2. The proof for the case V(x) >
0 has already been given in the earlier work of Mammadov
et al. (2022), thus the proof for this case is omitted. In the case
the state x is in the regionV(x) < 0, we must find the substitute
state x∂ = (xA,ED, xT) satisfying (28) and (29), that is

V(x∂ ) = 0,

and

xD = ED − δ(Ic(x∂ )− ED), for some δ > 0.

Recall from Lemma 2.1 that a state x∂ = (xA,ED, xT) obeys
V(x∂ ) = 0 if and only if

xAxT
xAED

= g(ψ), where

g(ψ) = 1
1 − γ 2 (cosψ + αγ

−
√
(cosψ + αγ )2 − (1 − α2)(1 − γ 2)),

and where ψ = ∠xTxAED. As a result, clearly we can parame-
terise the set of all possible points ED satisfying (28) and (29) by

ED = xA + xAxT
g(ψ)

cosψ n̂1 + xAxT
g(ψ)

sinψ n̂2, (38)

where

n̂1 = xT − xA
‖xT − xA‖ ,

n̂2 = xD − xA − projn̂1(xD − xA)
xD − xA − projn̂1(xD − xA)

.

Here ψ is the as of yet unknown parameter we must compute.
In comparison, the position of the Defender can be expressed as

xD = xA + xAxD cosφn̂1 + xAxD sinφn̂2,

where φ = ∠xTxAxD. Thus the difference xD − ED is

xD − ED = (xAxD cosφ − xAxT
g(ψ)

cosψ)n̂1
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+ (xAxD sinφ − xAxT
g(ψ)

sinψ)n̂2. (39)

On the other-hand, to obtain the difference Ic(x∂ )− ED, we first
must parameterise Ic(x∂ ) with respect to n̂1, n̂2 and ψ . To that
end, the Critical Collision Point can be expressed as

Ic(x∂ ) = cAT(x∂ )+ rAT(x∂ ) cos ρn̂1 + rAT(x∂ ) sin ρn̂2, (40)

for some angle ρ. Note that since in this case the sub-
stitute state only changes the position of the Defender, we
have that cAT(x∂ ) = cAT(x) and rAT(x∂ ) = rAT(x), hence the
only unknown in the above expression for Ic(x∂ ) is ρ. We
can find ρ by expressing it in terms of another angle θ =
∠cAT(x∂ )cAD(x∂ )ED. After two simple steps it can be shown
that these angles are related by

ρ = ψ − θ .

Moreover, via geometry it can easily be shown that the angle θ
can be found with

(rAD(x∂ )− rAT(x∂ )) sin θ = (xAxT + xTcAT(x∂ )) sinψ ,

(rAD(x∂ )− rAT(x∂ )) cos θ = (xAxT + xTcAT(x∂ )) cosψ

+ xAcAD(x∂ ).

Combining the above results the Critical Collision Point can be
explicitly calculated as follows:

Ic(x∂ ) = cAT(x∂ )+ rAT(x∂ ) cos ρn̂1 + rAT(x∂ ) sin ρn̂2
= xA + (xAxT + xTcAT)n̂1 + rAT(cos ρn̂1 + sin ρn̂2)

= xA + rAT
((

1
α

+ cos ρ
)
n̂1 + sin ρn̂2

)

= xA + rAT
((

1
α

+ cosψ cos θ + sinψ sin θ
)
n̂1

+ (sinψ cos θ − cosψ sin θ) n̂2
)

= xA + rAT
rAD − rAT

((
rAD − rAT

α

+ cosψ
(
rAT
α

cosψ + rAD
γ

)

+ sinψ
( rAT
α

sinψ
))

n̂1

+
(
sinψ

(
rAT
α

cosψ + rAD
γ

)

− cosψ
( rAT
α

sinψ
))

n̂2
)

= xA + r2AT
α(rAD − rAT)((

rAD − rAT
rAT

+ cos2 ψ + αrAD
γ rAT

cosψ + sin2 ψ
)
n̂1

+
(
sinψ cosψ + αrAD

γ rAT
sinψ − cosψ sinψ

)
n̂2
)

= xA + r2AT
α(rAD − rAT)

×
((

rAD
rAT

+ αrAD
γ rAT

cosψ
)
n̂1 + αrAD

γ rAT
sinψ n̂2

)

= xA + rATrAD
γ (rAD − rAT)

((γ
α

+ cosψ
)
n̂1 + sinψ n̂2

)
.

Here rAT = α
1−α2 xAxT and rAD = γ

γ 2−1
xAxT
g(ψ) . Consequently, the

difference Ic(x∂ )− ED is given by

Ic(x∂ )− ED = rATrAD
γ (rAD − rAT)

((γ
α

+ cosψ
)
n̂1 + sinψ n̂2

)

− xAxT
g(ψ)

(
cosψ n̂1 + sinψ n̂2

)

= rATrAD
γ (rAD − rAT)

((γ
α

+ cosψ
)
n̂1 + sinψ n̂2

)

− (γ 2 − 1)rAD
γ

(
cosψ n̂1 + sinψ n̂2

)

= rATrAD
γ (rAD − rAT)

((γ
α

+ cosψ
)
n̂1 + sinψ n̂2

− (γ
2 − 1)(rAD − rAT)

rAT
(cosψ n̂1 + sinψ n̂2)

)
.

Here rAT
rAD−rAT = α(γ 2−1)g(ψ)

γ (1−α2)−α(γ 2−1)g(ψ) . Since themaximumvalue

of g(ψ) occurs at ψ = π , and since g(π) = 1
γ 2−1 (1 − αγ +

γ − α), we have that rAD − rAT > 0. As a result, the difference
δ(Ic(x∂ )− ED), weighted by some positive scalar δ is given by

δ(Ic(x∂ )− ED) = α(γ 2 − 1)g(ψ)

×
((γ
α

+ cosψ
)
n̂1 + sinψ n̂2

)

− (γ 2 − 1)(γ (1 − α2)− α(γ 2 − 1)g(ψ))

× (cosψ n̂1 + sinψ n̂2)

= γ (γ 2 − 1)g(ψ)n̂1 + (γ (1 − α2)− γ 3(1 − α2)

+ αγ 2(γ 2 − 1)g(ψ))(cosψ n̂1 + sinψ n̂2)

= γ (γ 2 − 1)g(ψ)n̂1 + (γ (1 − α2)(1 − γ 2)

+ αγ 2(γ 2 − 1)g(ψ))(cosψ n̂1 + sinψ n̂2)

= g(ψ)n̂1 + (α2 − 1 + αγ g(ψ))(cosψ n̂1 + sinψ n̂2)

= (g(ψ)+ (αγ g(ψ)− 1 + α2) cosψ)n̂1

+ (αγ g(ψ)− 1 + α2) sinψ n̂2. (41)

Note that in the above calculation for (41), the terms are not nec-
essarily equal, but proportional, since δ is an arbitrary positive
scalar. Thus combining the results (39) and (41), for any state
x = (xA, xD, xT) in the region V(x) < 0, constraints (28)–(29)
hold if and only if ED is given by (38) and ψ satisfies

(αγ g(ψ)− 1 + α2) sinψ
(
xAxD cosφ − xAxT

g(ψ)
cosψ

)

= (g(ψ)+ (αγ g(ψ)− 1 + α2) cosψ)
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×
(
xAxD sinφ − xAxT

g(ψ)
sinψ

)
.

�

3.4 Numerical example

Consider the numerical example:

xA(t) =
⎡
⎣10
2

⎤
⎦ , xD(t) =

⎡
⎣ 0

−3
1

⎤
⎦ , xT(t) =

⎡
⎣−5

1
1

⎤
⎦ ,

(VT,VA,VD) = (0.8, 1.2, 1.7) (42)

To find the SFNE, first we must determine whether or
not the Target escapes capture under optimal play; that
is, we must determine which of V(x(t)) > 0, V(x(t)) = 0,
V(x(t)) < 0 is true. Recall Lemma 2.1, V(x(t)) > 0 if and only
if VAxT(t)xD(t) < VDxA(t)xT(t)+ VTxA(t)xD(t). Computing
the distance between the Target and Defender multiplied by VA
we get 7.6837, whereas the right-hand side computes to 13.1328,
thus we now know that V(x(t)) > 0.

The next step is to compute φ = ∠xT(t)xA(t)xD(t), which
can be computed using Matlab’s acos function with the com-
mand acos( (xT(t)−xA(t))·(xD(t)−xA(t))

‖xT(t)−xA(t)‖‖xD(t)−xA(t)‖ ), giving us φ = 1.3739
Applying Theorem 3.8, the angle ψ is the unique solution to

(0.9444 + 1.0069g(ψ)) sinψ(1.2060 − 3.3166g(ψ) cosψ)

= (1 + (0.9444 + 1.0069g(ψ)) cosψ)

× (6.0453 − 3.3166g(ψ) sinψ),

where g(ψ) = −0.9931(cosψ + 0.9444 −√
(cosψ + 0.9444)2 + 0.5594). Using a non-linear equation

solver, we get that the solution is ψ = 2.0085. Thus ET(x(t)) is
given by

ET(x(t)) =
⎡
⎣10
2

⎤
⎦− 0.5455n̂3(x(t))+ 1.1655n̂4(x(t)),

where the vectors n̂3(x(t)) and n̂3(x(t)) can be found from the
formulas just above (37), hence:

n̂3(x(t)) =
⎡
⎣−0.3015

−0.9045
−0.3015

⎤
⎦ , n̂4(x(t)) =

⎡
⎣−0.9324

0.3459
−0.1053

⎤
⎦ ,

and ET(x(t)) =
⎡
⎣0.07780.8965
2.0418

⎤
⎦ .

Thus we conclude that the substitute state is given by

x∂ (t) = (xA(t),ED(x(t)),ET(x(t)))

=
⎛
⎝
⎡
⎣10
2

⎤
⎦ ,

⎡
⎣ 0

−3
1

⎤
⎦ ,

⎡
⎣0.07780.8965
2.0418

⎤
⎦
⎞
⎠ .

At the substitute state, the Critical Collision Point is given
by Ic(x∂ (t)) =

[−1.9724
0.9383
1.6212

]
from (22). Thus using Lemma 2.3

we deduce that the optimal headings at the substitute state is
given by

uA(x∂ (t)) =
⎡
⎣−0.9466

0.2988
−0.1207

⎤
⎦ , uD(x∂ (t)) =

⎡
⎣−0.4434

0.8854
0.1396

⎤
⎦ ,

uT(x∂ (t)) =
⎡
⎣−0.9794

0.0200
−0.2009

⎤
⎦ ,

and since the transformation x(t) 	→ x∂ (t) preserves the opti-
mal headings, we deduce that thematrices above also denote the
optimal headings for uA(x(t)), uD(x(t)) and uT(x(t)) respec-
tively. Finally the value at state x(t) is given by V(x(t)) =
xT(t)ET(x(t))− xD(t)ED(x(t)) = 5.1846.

4. Symmetry breaking

4.1 Symmetry breaking theorem

Beyond the symmetry breaking described earlier where the
Holographic Principle separates into Target Symmetry in the
case whereV > 0, and Defender Symmetry in the case where V
< 0. Target Symmetry and Defender Symmetry itself undergo
further symmetry breaking when the value function is charac-
terised not by the pointsET(x(t)) andED(x(t)), but rather by the
Optimal Collision Point I(x(t)) defined as the point at which the
Attacker collides under optimal play; that is I(x(t)) = xA(tf ) in
the SFNE.

More specifically, Target Symmetry divides into two distinct
optimality principles given by Case A and Case B; andDefender
Symmetry devolves into another optimality principle in Case C.
These cases are defined as follows.

Case A: V(x(t)) ≥ 0 and ‖cAD(x(t))− xT(t)‖ ≤
rAD(x(t)).
Case B: V(x(t)) ≥ 0 and ‖cAD(x(t))− xT(t)‖ ≥
rAD(x(t)).
Case C: V(x(t)) ≤ 0.

The following theorem reveals that Theorem 3.7 provides a
ground-breaking unification of the methods used in the ear-
lier works of Mammadov et al. (2020, 2021, 2022), Garcia
et al. (2017, 2019, 2021) and others.

Theorem 4.1 (Symmetry Breaking): Formula (30) is
equivalent to

V(x(t)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−xT(t)I(x(t))+ VT

VA
xA(t)I(x(t)) Case A

xT(t)I(x(t))+ VT

VA
xA(t)I(x(t)) Case B

−xD(t)I(x(t))+ VD

VT
xT(t)I(x(t)) Case C

(43)
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where I(x(t)) is the Optimal Collision Point defined by

I(x(t)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arg max
I∈CAD(x(t))

−xT(t)I + VT

VA
xA(t)I Case A

arg min
I∈CAD(x(t))

xT(t)I + VT

VA
xA(t)I Case B

arg max
I∈CAT (x(t))

−xD(t)I + VD

VT
xT(t)I Case C

(44)
Here CAD(x(t)) and CAT (x(t)) denotes the set of all points on
the surface of the AD andAT-based Apollonius circles respectively,
defined by (16) and (17).

Proof: We shall first prove formula (30) is equivalent to for-
mula (43) in Case A and B. In the case V(x(t)) ≥ 0, we have
ED(x(t)) = xD(t). Thus formula (30) simplifies to

V(x(t)) = xT(t)ET(x(t)),

and the substitute state is given by x∂ (t) = (xA(t), xD(t),ET
(x(t))). The Critical Collision Point Ic(x∂ (t)) is at the inter-
section between the Target Ray ζT(x∂ (t)) and the AD-based
Apollonius circle CAD(x∂ (t)). Thus characterising the above
formula in terms of Ic(x∂ (t)) yields:

xT(t)ET(x(t))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−xT(t)Ic(x∂ (t))
+ET(x(t))Ic(x∂ (t))

if ‖cAD(x∂ (t))− xT(t)‖
≤ rAD(x∂ (t))

xT(t)Ic(x∂ (t))
+ET(x(t))Ic(x∂ (t))

if ‖cAD(x∂ (t))− xT(t)‖
≥ rAD(x∂ (t))

Weknow that for any state y = (yA, yD, yT) satisfyingV(y) = 0,

VAVDyTIc(y) = VDVTyAIc(y) = VAVTyDIc(y), (45)

holds, where Ic(·) is the Critical Collision Point defined in (22).
This is due to Lemma 2.1 and Theorem 2.2; since under opti-
mal all agents arrive at Ic(y) at the same time, we have �t =
1
VT

yTIc(y) = 1
VA

yAIc(y) = 1
VD

yDIc(y), where �t is the time
taken for either of the three agents to travel from their initial
position to Ic(y). Thus (45) holds.

Since the substitute state x∂ (t) satisfies V(x∂ (t)) = 0, apply-
ing (45) we have that

ET(x(t))Ic(x∂ (t)) = VT

VA
xA(t)Ic(x∂ (t)). (46)

Moreover, since the AD-based Apollonius circle only depends
upon the position of the Attacker and Defender, we have
that cAD(x∂ (t)) = cAD(x(t)), rAD(x∂ (t)) = rAD(x(t)) and CAD
(x∂ (t)) = CAD(x(t)). Thus the value function is given by

V(x(t)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−xT(t)Ic(x∂ (t))

+VT

VA
xA(t)Ic(x∂ (t))

if ‖cAD(x(t))− xT(t)‖
≤ rAD(x(t))

xT(t)Ic(x∂ (t))

+VT

VA
xA(t)Ic(x∂ (t))

if ‖cAD(x(t))− xT(t)‖
≥ rAD(x(t))

(47)
for all states V(x(t)) ≥ 0. Therefore, to prove that (47) is equiv-
alent to (43) in Cases A and B, we must verify that the Optimal

Collision Point I(x(t)) defined by (44) is equivalent to Ic(x∂ (t)).
First let us consider Case A. Here I(x(t)) is given by

I(x(t)) = arg max
I∈CAD(x(t))

−xT(t)I + VT

VA
xA(t)I

= arg max
I∈CAD(x(t))

− 1
VT

xT(t)I + 1
VA

xA(t)I. (48)

Formula (48)may be interpreted as finding the point on theAD-
based Apollonius circle such that the time difference between
the Target reaching that point versus the Attacker reaching that
point ismaximised, so that the Target can reach that pointmuch
sooner than the Attacker.

Consider the special case where V(x(t)) = 0. In this case, it
is obvious that I(x(t)) = Ic(x∂ (t)), because the maximum time
difference is zero since V(x(t)) = 0, and Ic(x∂ (t)) is the only
point that achieves that time difference.

Moreover, due to the interpretation provided above, for-
mula (48) obeys Target Symmetry. Seeing as if the Target was to
move in its optimal heading defined by (48), then the remain-
ing time to reach that point is minimised more than any other
point on the AD-based Apollonius circle, and thus the opti-
mal heading defined by (48) remains unchanged in the next
time increment. Consequently, I(x(t)) = Ic(x∂ (t)) for all states
in Case A.

Next we consider Case B. Here we have

I(x(t)) = arg min
I∈CAD(x(t))

xT(t)I + VT

VA
xA(t)I

= arg min
I∈CAD(x(t))

1
VT

xT(t)I + 1
VA

xA(t)I. (49)

We may interpret the formula above as the problem of find-
ing the optimal path to go from point xT(t) to point xA(t) in
minimum time, where whilst on the outside of the AD-based
Apollonius circle we traverse at the speed VT, whereas on the
inside of theAD-basedApollonius circle we traverse at the faster
speed of VA.

Obviously in the special case where ‖cAD(x(t))− xT(t)‖ =
rAD(x(t)), I(x(t)) = xT(t) in both formulas (48) and (49). Since
we already proved that I(x(t)) = Ic(x∂ (t)) for formula (48),
this implies that Ic(x∂ (t)) = xT(t). Thus in this special case,
Ic(x∂ (t)) = I(x(t)) = xT(t).

Moreover, due to the interpretation given to formula (49),
I(x(t)) defined in (49) obeys Target Symmetry; seeing as though
if the Target was to move in the optimal path from xT(t) to
xA(t), the optimal path would not change midway. Geometri-
cally, this also implies the reverse result, that heading in the exact
opposite direction to the optimal path would not change it. As
a consequence, I(x(t)) = Ic(x∂ (t)) for all states V(x(t)) ≥ 0.

Finally we consider Case C, in which V(x(t)) ≤ 0. Here
ET(x(t)) = xT(t), thus formula (30) simplifies to

V(x(t)) = −xD(t)ED(x(t)),

and the substitute state is given by x∂ (t) = (xA(t),ED(x(t)),
xT(t)). The Critical Collision Point Ic(x∂ (t)) is at the intersec-
tion between theDefender Ray ζD(x∂ (t)) (if the parameter δwas
extended to negative values in formula (25)) and the AT-based
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Apollonius circle CAT (x∂ (t)). Thus characterising the above
formula in terms of Ic(x∂ (t)) yields

xD(t)ED(x(t)) = xD(t)Ic(x∂ (t))− ED(x(t))Ic(x∂ (t)).

Moreover, since the substitute state x∂ (t) satisfiesV(x∂ (t)) = 0,
applying (45) we have that ED(x(t))Ic(x∂ (t)) = VD

VT

xT(t)Ic(x∂ (t)). Thus the value function for all statesV(x(t)) ≤ 0
is given by

V(x(t)) = −xD(t)Ic(x∂ (t))+ VD

VT
xT(t)Ic(x∂ (t)).

Thus to establish that this formula for the value function is
equivalent to (43), all that remains is to show that

I(x(t)) = arg max
I∈CAT (x(t))

−xD(t)I + VD

VT
xT(t)I,

= arg max
I∈CAT (x(t))

− 1
VD

xD(t)I + 1
VT

xT(t)I. (50)

is equivalent to Ic(x∂ (t)). Formula (50) may be interpreted as
an optimisation problem in which the goal is to find the point
on the AT-based Apollonius circle that minimises the time dif-
ference between the Target reaching there and the Defender
reaching there.

Clearly in the special case V(x(t)) = 0, Ic(x∂ (t)) = I(x(t))
since theminimum time difference is zero and that unique point
is given by Ic(x∂ (t)).Moreover due to the above interpretation of
formula (50), it obeys Defender Symmetry. Therefore I(x(t)) =
Ic(x∂ (t)) for all x(t). This completes the proof that the formula
for the value function given by (30) is equivalent (43) in each of
the respective cases. �

Clearly seeing as (30) unifies three different equations into
a single one-inch formula, the Holographic Theorem provides
a far more elegant characterisation of the state-feedback Nash
equilibrium than prior works. The next section reviews the lit-
erature and provides some intuitive arguments for the validity
of formulas (43)–(44).

4.2 Corroborationwith past results

With Theorem 4.1 proven, the Holographic Theorem follows as
a simple corollary from the next proposition, which is a well-
established result from past publications.

Proposition 1: The value function defined in Theorem 4.1 cor-
rectly characterises the state-feedback Nash equilibrium of the
TAD pursuit-evasion game defined in Section 2.2.

The proof that the value function defined in Theorem 4.1
characterises the state-feedback Nash equilibrium of the TAD
pursuit-evasion game defined in Section 2.2, is dispersed in
numerous past publications. This is due to the fact that most
papers published on this topic do not cover the problem in
full. For example, the papers Mammadov et al. (2020) and
Garcia et al. (2019) study the TAD pursuit-evasion game for
the case V(x(t)) > 0 and VA = VD; the papers Mammadov
et al. (2021, 2022) and Garcia et al. (2017) examines the case

for V(x(t)) > 0 and VA < VD, and finally Garcia et al. (2021)
examines the case in which V(x(t)) < 0 and VA = VD.

The present manuscript considers the TAD pursuit-evasion
game in its entirety, in the most general setting where VT <
VA < VD and the value can be positive or negative. The only
case that we do not cover is for VA = VD, since it induces addi-
tional nuances that get in the way of the main concepts and
could be thought to be included anyhow by simply making the
speedVD infinitesimally larger thanVA. Nevertheless, since the
proof of Theorem 1, in all its technical details, is already pro-
vided in past publications, we donot repeat it in thismanuscript.
Here we provide a more intuitive argument for its validity.

The results of Theorem 1 can be primarily attributed to
Pontryagin’s maximum principle. In Garcia et al. (2017), as a
simple application of themaximumprinciple, it was proven that
under optimal play all agents move in straight line trajectories
at their respective maximum speeds. This immediately implies
that if the Attacker and Defender collide under optimal play,
that is if V > 0, this collision must occur on the surface of the
AD-based Apollonius circle. Recall that the perimeter of the
AD-based Apollonius defines the set of all points the Attacker
and Defender are equidistant to with respect to time, that is,
the set of all points p ∈ Rn satisfying pxD(t)

VD
= pxA(t)

VA
. By the

same logic, in the case where the Attacker and Target collide
under optimal play, that is V < 0, the collision must occur on
the surface of the AT-based Apollonius circle. What remains is
to determine at which point on the respective Apollonius circles
does the Attacker collide, we denote this point I(x(t)).

In Case B, where the Target starts outside the AD-based
Apollonius circle, clearly under optimal play the Target would
move directly away from I(x(t)), thus the Attacker must choose
the optimal Iminimising xT(t0)I + VT(tf − t0), where t0 is the
starting time and tf is the termination time under optimal play.
Since the time elapsed is given by tf − t0 = 1

VA
xA(t0)I, this gives

us the optimisation problem given in (43) and (44) for Case B.
Rigorously, this result was proven in the works in Mammadov
et al. (2020) for VA = VD and later in the works of Mammadov
et al. (2021) for VA > VD.

In Case A, where V ≥ 0 but the Target starts inside the
AD-based Apollonius circle, we may deduce the SFNE based
on the fact that under optimal play, the differential game
would at some intermediate time tI transition from Case A
into Case B, since the Target escapes capture. Based on the
previous result from Case B, the value at this intermedi-
ate time tI is given by V(x(tI)) = minI∈CAD(x(tI)) xT(tI)I +
VT
VA

xA(tI)I = VT
VA

xA(tI)xT(tI), where xT(tI) ∈ CAD(x(t0)). This
is proportional to the time difference between the Tar-
get reaching the point on CAD(x(t0)) versus the Attacker
reaching that point. Thus under optimal play the Tar-
get must select a heading in which the time difference
between the Target intersecting the AD-based Apollonius cir-
cle versus the Attacker is maximised, therefore the value
is given by V(x(t0)) = VT

VA
xA(tI)xT(tI) = VT

VA
(−VA(tI − t0)+

xA(t0)xT(tI)) = −xT(t0)xT(tI)+ VT
VA

xA(t0)xT(tI) =
maxI∈CAD(x(t0))−xT(t0)I + VT

VA
xA(t0)I. Similar argumentswere

made in Garcia et al. (2017).
Finally in Case C, the Target and Attacker collide at

some point on the surface of the AT-based Apollonius circle
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under optimal, and the Defender starts at some point out-
side the AT-based Apollonius circle. Clearly, the optimal strat-
egy is for the Defender to head straight towards the col-
lision point between the Target and Attacker, and the Tar-
get to select a collision point on the AT-based Apollonius
circle that minimises the distance between the Target and
Defender at termination time (or maximise the negative of
that distance). This is given by V(x(t0)) = −xT(tf )xD(tf ) =
−(xT(tf )xD(t0)− VD(tf − t0)) = −xT(tf )xD(t0)+ VD

VT

xT(t0)xT(tf ) = maxI∈CAT (x(t0))−xD(t0)I + VD
VT

xT(t0)I. These
properties held in the work of Garcia et al. (2021) in 2-
dimensions in the case for VA = VD.

5. Conclusion

In summary, the current manuscript examined the TAD
pursuit-evasion differential game in the most general setting
where VT < VA < VD, and in both the winning region of team
A and team T/D. The state-feedback Nash equilibrium can
be characterised in the most elegant and unified manner with
the Holographic Theorem, by transforming any state of the
differential game x(t) into the substitute state x∂ (t) satisfying
V(x∂ (t)) = 0.

The Holographic Principle undergoes symmetry breaking at
V(x(t)) = 0, it devolves into Target Symmetry for allV(x(t)) >
0 and Defender Symmetry for all V(x(t)) < 0. Further symme-
try breaking occurs when it is desired to express the SFNE as a
function of the optimal collision point of the Attacker, xA(tf ).
This would explain the diverse and disjointed results obtained
in previous publications.

Obtaining a general direct proof of theHolographic Principle
would be the most fruitful and also the most challenging task.
Future works may also explore its applications to other pursuit-
evasion differential games.

Notes

1. The results from Garcia et al. (2021) were given differently, but are
deemed to be equivalent to (4).

2. In other words, the current position of all agents is known to both
teams; that is, the controls uA,uD,uT are functions of the current state
x(t).

3. So long as agent j remains as not the next agent to terminate at time
t +�t.
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Chapter 8

Conclusion

The present thesis introduced the theory of differential games; and wrote a dedicated chap-

ter on the past literature studying the differential game of active target defence. In this

chapter several open problems were identified; firstly the proofs of the state-feedback Nash

equilibrium only held in 2 spatial dimensions as the Hamilton-Jacobi-Bellman equations are

difficult to compute in higher dimensions. Moreover, a rigorous proof of the SFNE in the

general case VA < VD was still missing, only the simpler case VA = VD so far had been

solved. The first two International Journal of Control publications, and the ANZCC 2022

conference paper, resolved these outstanding problems; via introducing novel geometric

methods on the discrete-time turn-based variant of the differential game.

The next two journal manuscripts introduced unifying optimality principles based on

Target Symmetry for any state with positive value, and Defender Symmetry for any state

with negative value. Generally, a symmetry refers to a transformation that leaves some

quantity or property unchanged. For example, an equilateral triangle that is rotated by

120 degrees keeps the shape unchanged, despite changing the location of each corner. In

the case of Target and Defender Symmetry for the pursuit-evasion game of active target

defence, a symmetry refers to a transformation of the state that does not change the optimal

headings of any of the three agents. These symmetries that are discovered in the final

two journal manuscripts are very surprising, as they are not an implication of Pontryagin’s

maximum principle (the maximum principle only implies that the SFNE should be straight-

line motion).
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differential game of cooperative target defence: a geometric approach. International

Journal of Control, 94 (10), 2615–2622.

3. Mammadov, K., Lim, C., & Shi, P. (2021). A state-feedback Nash equilibrium for the

general Target-Attacker-Defender differential game of degree in arbitrary dimensions.

International Journal of Control, 95 (1), 93–103.

4. Mammadov, K., Lim, C., & Shi, P. (2022). Generalising the capture the flag sce-

nario to active target defence. Australian and New Zealand Control Conference 2022,

accepted for publication.

5. Mammadov, K., Lim, C., & Shi, P. (2022). Unified optimality criteria for the Target–

Attacker–Defender pursuit-evasion game. European Journal of Control, under review.

6. Mammadov, K., Lim, C., & Shi, P. (2022). The holographic principle for the

differential game of active target defence. International Journal of Control,

doi:10.1080/00207179.2022.2111369.

Although my first publication ‘Pole placement parameterisation for full-state feedback with

minimal dimensionality and range’ was on the unrelated topic of pole placement in linear

control theory, hence not included in the thesis.

Moreover, during my candidature I have given the following local presentations:

1. Autonomous navigation of UAV, guidance and control. CIT GC Critical Design Re-

view - The University of Adelaide, May 15th 2019.

2. Pole Placement Parameterisation. Systems and Control Group - The University of

Adelaide, June 12th 2019.
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3. Analysis of optimal state-feedback strategies for pursuit-evader differential games us-

ing novel geometric methods. Systems and Control Group - The University of Ade-

laide, March 4th 2020.

4. Unified optimality criteria for the target-attacker-defender pursuit-evader game. EEE

School Seminar - The University of Adelaide, October 23rd 2020.

5. Grand unified optimality principle in simple motion pursuit evader differential games.

Systems and Control Group - The University of Adelaide, July 7th 2021.

6. Goku & krillin vs frieza. 3MT Competition - The University of Adelaide, July 16th

2021.

There exists several avenues for further research in the differential game of active target

defence, and also more broadly in simple-motion pursuit-evasion differential games.

Firstly, one could verify that the results of manuscript number 6 obeys the Hamilton-

Jacobi-Isaacs equation. Another avenue for research is to apply the conjecture in manuscript

number 6 to the 1-Pursuer, 2-Evader differential game Liu et al. (2013). Also, we could

examine the TAD differential game in the case where the Defender and Attacker have a

positive capture radius Liang et al. (2019), rather than point capture as considered in

this thesis. Another interesting direction is to study the case in which all three agents

have acceleration constraints. And the must fruitful, but also the most difficult avenue for

further research, is to construct a general proof of the Holographic Principle for some large

class of simple-motion pursuit-evasion differential games.

With that summary of achievements and accomplishments, that concludes the thesis.
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