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University of Adelaide

Abstract

Developing a System for Free-Form Visual Question Answering

In the past few years, we have witnessed significant advances in the field of visual
question answering (VQA). This complex task connects the areas of computer
vision and natural language processing research to build a step towards solving
artificial intelligence (AI). A crucial feature of any AI-complete problem is the
ability to scale for real-world applications. For VQA, in particular, it implies
that a model should answer any question about any possible image. However,
it seems unlikely that any model would be able to learn all the required knowl-
edge from a single training set, so the use of external knowledge has become
a promising direction for VQA research. In this thesis, we investigate tech-
niques to exploit external information to improve the performance of visual
question answering methods. First, we explore the benefits of unsupervised im-
age pre-training for VQA. We create a dataset of simple images, where only a
small fraction is annotated with VQA questions. We experiment with two self-
supervised approaches and show that they can be used for VQA pre-training and
generalise well from little annotated data. Next, we frame VQA as a multi-task
problem and complement the traditional classification objective with an addi-
tional regression loss that aims to learn vector representations of answers. This
novel learning branch allows a model to embed prior knowledge about answer
semantics, and we show that the information captured in the relations between
answer embeddings is important for VQA. This method not only shows clear
improvements in accuracy and consistency over a range of different question
types but also unlocks the potential for novel answer prediction. Finally, we
implement a method that embeds information from external knowledge bases
into vision-and-language transformers. This method proposes to optimise an
additional objective that aligns learned word representations with the match-
ing knowledge embeddings. We evaluate the applicability of various knowledge
bases to multiple downstream tasks and show that the method brings clear
improvement on knowledge-demanding and general visual reasoning datasets.

http://www.adelaide.edu.au
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Chapter 1

Introduction

This chapter provides the background and motivation for the research tasks ad-
dressed in this thesis. We also identify research gaps and outline the objectives
and main contributions of this work.

1.1 Overview

Creating an artificial intelligence (AI) that can reproduce or even exceed human
abilities is the ultimate goal of many research efforts in the fields of machine
learning and computer science. Such a comprehensive goal can be naturally
divided into several sub-tasks typically representing basic human skills, specifi-
cally, learning, planning, information perception, reasoning, motion, etc. (Rus-
sell and Norvig, 2016). The past few years have seen remarkable advances in
computer vision (CV) and natural language processing (NLP) fields due to the
rise of deep learning. As a result, a multitude of low- and mid-level computer
intelligence tasks like image classification (Russakovsky et al., 2015), segmen-
tation (Everingham et al., 2010), object detection (T.-Y. Lin et al., 2014), sen-
timent analysis (L. Zhang et al., 2018), named entity recognition (Yadav and
Bethard, 2018), etc., can be solved with almost human-level accuracy. This
progress enabled researchers to tackle more complex multi-discipline problems
that challenge AI algorithms’ high-level understanding and reasoning skills.

One of the tasks that can be considered AI-complete (i.e. the problem that
requires human-level intelligence Yampolskiy, 2013) is visual question answering
(VQA). The task of VQA has become a benchmark to evaluate joint progress in
computer vision and natural language processing. This task, in its most general
formulation, requires deep analysis of both visual and textual information in
order to correctly answer a question, given an associated image (Figure 1.1).



2 Chapter 1. Introduction

Behind its simple formulation, VQA is an extremely complex task that offers a
testbed for a multitude of capabilities required to develop strong AI systems.

VQA task can be regarded as an evaluation benchmark for robust visual and
language understanding. To show visual understanding, a model should ex-
tract high-level information from visual input and perform reasoning over it.
The natural language question here serves as a guide for the information ex-
traction and reasoning process. For example, the question What kind of bird
is there? requires object detection and recognition, the question How many
people are playing football? tests activity recognition and counting skills, while
the question How long do these animals usually live? requires knowledge-based
reasoning in addition to typical vision tasks. Similarly, to demonstrate language
understanding abilities, a model might need to perform named entity extrac-
tion (Is this place in France or in England? ) or co-reference resolution (There
is a big box on the left. What colour is it? ). These natural language processing
tasks are not trivial themselves, and a VQA model must perform them implicitly
while solving a more complicated problem of question answering. Finally, the
information extracted from two modalities needs a proper alignment in order to
find an answer that depends on both an image and a question. Therefore, due
to its multi-modal understanding and grounding requirements, VQA can serve
as a visual Turing test (Geman et al., 2015) to assess the progress in AI.

Besides its scientific importance, VQA can be directly applied to various prac-
tical problems. A system that is able to recognise and analyse visual input
through natural language communication can have vast applications for human-
computer interaction. For example, a mobile app that answers users’ questions
about the taken photograph will immeasurably help visually impaired people to
perceive the surrounding world and increase their independence. The systems
used so far mostly relies on human volunteers who receive the questions online
and give their answers in real time (“Be My Eyes - See the world together”, n.d.;
Bigham et al., 2010; Lasecki et al., 2013). Automation of this process with a
VQA model will reduce its cost and latency while enhancing privacy (Gurari
et al., 2018). Another potential application for VQA task are social or service
robots that commonly interact with people (S. Cho et al., 2020). Such robots
will have greater appeal if users are able to communicate with them freely using
natural language rather than using pre-defined commands. Finally, VQA can
be applied in a wide range of tasks including medical diagnostics, advertising,
surveillance, and education (see Barra et al., 2021 for a survey of practical VQA
applications).
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Are they the same color? yes
How many giraffes are in the picture? 2

What is on the pole? signs
What freeway is to the left? north 487

Are there canoes in the image? yes
Are the boats in the water? no

What does the sign say? stop
Is this a highway? no

What color is the uniform? red
Is he bunting or swinging? swinging

What kind of numbers are these? roman
What time is it? 8:32

Figure 1.1. The task of VQA requires to answer the question
about the related image. Examples are taken from VQA v2

dataset (Goyal et al., 2017).
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Regardless of the exact purpose of VQA (whether scientific or application-
driven), most researchers aim to build a VQA model capable of answering any
possible question about any possible image. This implies that a model must
capture diverse textual and visual semantics, incorporate additional knowledge,
be able to work with novel visual and textual concepts there were not seen
during training, and easily scale to more data. This challenging setting, called
free-form VQA, conforms to real-world conditions and arouses the greatest in-
terest. In this thesis, we will explore current approaches in the field and propose
new methods to address existing problems in free-form VQA.

1.2 Background

The VQA task is a sub-field of a broader vision and language (V&L) research
area. This area comprises a variety of multi-discipline tasks, including image
captioning (X. Chen et al., 2015; Sharma et al., 2018; Young et al., 2014), vi-
sual reasoning (Suhr et al., 2017; Suhr et al., 2019), visual entailment (N. Xie
et al., 2019), visual dialog (Das et al., 2017; De Vries et al., 2017), vision and
language navigation (Anderson, Wu, et al., 2018), referring expression compre-
hension (Qiao et al., 2020) and text-to-image generation (Frolov et al., 2021).
All these benchmarks were designed to assess joint vision and language under-
standing and can be regarded as a step towards true AI. However, they all have
flaws that call into question their ability to solve the task. For example, tasks
that include the generation process (e.g . image captioning or visual dialog) re-
quire complex evaluation, typically involving humans, to assess the quality and
relevance of the generated text. But the presence of humans in a training loop
does not really conform with the definition of AI. In other tasks, a model needs
to choose an output among a small set of candidates (e.g . true/false labels for
visual reasoning or object regions for referring expression comprehension). As
a result, such models lack interpretability which makes it hard to measure their
reasoning capabilities. Differently, in VQA, a model chooses between a large
set of possible answers. This setting allows to compute accuracy across the
different question and answer types and measure consistency and validity of
answers. That provides an insight into the model’s behaviour while preserving
its compliance with automatic evaluation.

Regarding the problem definition, VQA has taken inspiration from the textual
question answering (QA) task (Fader et al., 2014; Rajpurkar et al., 2016; We-
ston et al., 2015). While in VQA the answer is grounded into the image, in QA



1.3. Motivation 5

the answer should be extracted from text paragraphs (Abbasiantaeb and Mom-
tazi, 2021) or knowledge bases (Fu et al., 2020), which is related to reading
comprehension and information retrieval problems. A change towards visual
context brought an additional challenge to the task because images represent
a high-dimensional and unstructured source of information that cannot be eas-
ily parsed. Furthermore, VQA needs training data with aligned images and
questions that are visually and linguistically diverse. This kind of data is not
common in the wild, as opposed to publicly available text corpora (“Wikipedia:
The free encyclopedia”, 2004) frequently used in QA, and requires complex data
collection and annotation.

Different from most QA and V&L tasks, VQA is usually treated as a classi-
fication problem. A common way to tackle VQA includes a model that has
image and question encoders, a feature fusion module and a classifier. The ar-
chitectures used for feature extraction range from simple Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) models that have been
used originally (Antol et al., 2015; M. Ren et al., 2015; B. Zhou et al., 2015),
to transformer encoders that have received broad attention recently (L. H. Li
et al., 2019; X. Li et al., 2020; Tan and Bansal, 2019). The purpose of the fu-
sion module is to combine two distinct representations into a joint multi-modal
embedding which is then passed through the classifier. Finally, the classifier
outputs probability scores for all possible answers in the training set and that
with the highest score is returned as the predicted answer. Most of the existing
VQA methods intrinsically build upon this core frame, although various ad-
vanced techniques have been proposed to improve feature extraction and fusion
(we will discuss different architecture choices in Section 2.1).

1.3 Motivation

The VQA community has grown dramatically in the last few years. To track the
progress made in the field, several challenges12 are hosted every year to measure
the current state-of-the-art performance on popular datasets (Goyal et al., 2017;
Hudson and Manning, 2019a). Although recently proposed methods (W. Li et
al., 2020; X. Li et al., 2020; Z. Wang et al., 2021) achieved nearly human per-
formance on these benchmarks, the question of whether they actually reached
human-like visual understanding remains open. Several studies (Agrawal et al.,
2018; K. Kafle and Kanan, 2017a) have revealed major shortcomings of current

1VQA Challenge https://visualqa.org/challenge.html
2GQA Challenge https://cs.stanford.edu/people/dorarad/gqa/challenge.html

https://visualqa.org/challenge.html
https://cs.stanford.edu/people/dorarad/gqa/challenge.html
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methods and datasets mostly associated with bias, inadequate evaluation and
lack of generalisation (K. Kafle et al., 2019). In this thesis, we will address
the following problems that, we believe, impede the development of deep visual
understanding:

1. Need for external knowledge.

Although the questions in VQA are designed to query images, the vi-
sual information solely may not be sufficient to derive the answer. When
humans perceive the visual world, there is a whole lot of commonsense
and prior factual knowledge that we unconsciously link to everything we
see. For example, to answer Is this pizza vegetarian?, one should not
only identify the pizza’s ingredients but also know about the nutritional
preferences of vegetarians. Typical VQA models can only learn the in-
formation present in the training data, but no single dataset can ever
cover the whole world knowledge. For that reason, a line of work (Marino
et al., 2021; P. Wang et al., 2017a; Q. Wu et al., 2016; Z. Zhu et al.,
2020) has investigated the use of external knowledge sources to boost
VQA performance. However, current methods show relatively low accu-
racy on knowledge-demanding tasks (Marino et al., 2019; P. Wang et al.,
2017b), which indicates the need for better ways to incorporate external
knowledge.

2. Dependency on annotated data.

The performance of deep learning models scales with the amount of train-
ing data (Kaplan et al., 2020; Sun et al., 2017). In VQA, the collection
of clean annotated data is an expensive and time-consuming process, so
the scope of available data may not be enough to train the model in an
end-to-end manner. To facilitate the task, multiple studies (Anderson,
He, et al., 2018; Jabri et al., 2016; Teney, Anderson, et al., 2017) pro-
posed to transfer knowledge from the models (K. He et al., 2016; S. Ren
et al., 2015) that were pre-trained on common visual tasks like image
classification or object detection. However, such an approach limits the
performance on VQA samples if they contain novel concepts not present in
pre-training data or if they come from a completely different domain. We
believe that unsupervised pre-training can be a solution for visual feature
learning when labelled VQA data is scarce.
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3. Limitation of classification approach.

In order to reduce the computation and evaluation costs of the task, VQA
is commonly treated as a classification problem. However, this simplifi-
cation leads to the loss of valuable information contained in the answer’s
words. When answers are treated as abstract class labels, a model han-
dles them equally without considering their semantics. For example, if
the ground truth answer to the question What is the colour of the men’s
shirt? is light blue, then the answer blue should be penalised less than the
answer orange. Furthermore, synonymical and paraphrased answers can
be often regarded as equivalent, but current models consider all answers
that are not present in the annotation as incorrect.

4. Inability to generalise to novel answers.

Another adverse consequence of the classification approach is the restric-
tion of an answer set. In the real-world setting, a VQA model must be
applied to open unlimited domains which, among other things, implies
an ability to generalise to novel answers. Current methods, on the op-
posite, select a subset of the most common answers in the training data
and run classification over it. It means that a new classifier must be
trained every time we need to incorporate new answers. Given the scope
of possible answers in the real, constantly expanding world, this approach
seems impractical. This issue motivated researchers to design zero-shot
VQA (Teney and van den Hengel, 2016) – a setting where test samples
contain new concepts, including novel answers never seen during training.
Despite the crucial importance of the zero-shot setting, little progress has
been made in this direction.

Motivated by these shortcomings, we aim to explore current methods and de-
velop new techniques to address the issues outlined above. The main goal of
this thesis is to investigate how additional information can help to learn bet-
ter representations of images (Chapter 3), answers (Chapter 4) and questions
(Chapter 5), to make the task applicable to real-world conditions.

1.4 Contributions

The main contributions of this thesis are summarised as follows:
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Chapter 3. We explore the applicability of unsupervised image feature pre-
training for visual question answering. We experiment with two self-
supervised approaches, namely, energy-based modelling and contrastive
learning. In our setting, the data mostly consists of unlabelled images
with a small fraction of VQA-annotated samples. We show that both
methods, pre-trained on unlabelled images, can be efficiently fine-tuned
on little VQA data and generalise to novel test instances never seen during
fine-tuning. Moreover, contrastive learning method shows performance
superior to the fully-supervised method that was pre-trained on a consid-
erably larger ImageNet dataset (Russakovsky et al., 2015).

Chapter 4. We present a novel mechanism to embed prior answer knowledge
in a model for visual question answering. We formulate VQA as a multi-
task problem, where the model is trained not only with the classification
objective but also learns to perform a regression in a vector space that
represents answer semantics. We perform an extensive analysis of the
model and various ablations. We demonstrate clear advantages on the
GQA dataset (Hudson and Manning, 2019a) and show improvements in
consistency and accuracy over a range of question types. An extensive
study of learned representations reveals that important semantic infor-
mation is captured in the relations between embeddings in the answer
space. Experiments with novel answers, unseen during training, indicate
the method’s potential for open-set prediction.

Chapter 5. We implement a method that injects external information from
knowledge bases (KBs) into a vision-and-language transformer. This tech-
nique is model-agnostic and can expand the applicability of any vision-
and-language transformer with minimal architectural modifications and
computational overhead. We empirically study the relevance of various
KBs to multiple tasks and benchmarks. An extensive evaluation on four
downstream tasks shows clear improvement on knowledge-demanding and
general visual reasoning datasets. We perform probing experiments and
show that the injection of additional knowledge regularises the space of
embeddings, which improves the representation of lexical, semantic, and
relational knowledge that is lacking in typical V&L models.

1.5 Thesis Outline

The rest of the thesis is organised as follows:
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• In Chapter 2, we review the relevant literature in the visual question
answering research field. We include an overview of the task’s history and
a summary of the most popular methods, datasets and evaluation metrics.

• In Chapter 3, we explore energy-based and contrastive learning for image
feature pre-training and its applicability to VQA task.

• In Chapter 4, we introduce a method to embed prior semantic information
about answers into VQA models and propose a technique to train VQA
as a multi-task problem.

• In Chapter 5, we describe a method to embed information from external
knowledge bases into vision-and-language transformer models.

• In Chapter 6, we summarise the contributions of the thesis, discuss the
current limitations and outline promising directions for future research.
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Chapter 2

Literature Review

The task of visual question answering has attracted considerable attention from
natural language processing and computer vision research communities. Despite
the noticeable advances made in recent years, the VQA task remains unsolved.
In this chapter, we review the publications in the visual question answering
field. We start with early works that first proposed the task and described sim-
ple baseline methods. We then describe more advanced techniques introduced
to improve performance and address common shortcomings of visual question
answering models. Finally, we survey the commonly used datasets and metrics
designed for VQA evaluation.

2.1 Common Approaches

The general idea of image understanding through language had emerged long
before the first VQA methods were proposed. Barnard et al., (2003) argued
that visual and textual information complement each other and resolve the
ambiguity inherent in separate images and text. They have studied methods
that link words and images to perform image regions annotation. This task,
where a model needs to describe visual content (Farhadi et al., 2010; Karpathy
and Fei-Fei, 2015; Kulkarni et al., 2013; Socher et al., 2014), can be regarded
as one of the first attempts to approach visual understanding. Similarly, the
VQA task is designed to connect vision and language through questions that
test visual reasoning.

2.1.1 Baseline Models

The first known attempt to solve visual question answering was made by Mali-
nowski and Fritz, (2014). They proposed to use semantic image segmentation
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and semantic question parsing in a Bayesian algorithm that models spatial rela-
tionships between image objects. K. Tu et al., (2014) described a framework for
answering template-based user queries about videos based on a joint video and
text processing. Geman et al., (2015) presented a query engine that proposes
questions about the given image. However, these methods were rather restricted
by the range of possible questions and were trained on relatively small datasets
which cannot be regarded as a solution for true visual understanding due to
their limited abilities. The fundamental study that stimulated researchers to
attend to VQA was the work of Antol et al., (2015) as they were the first who
thoroughly formulated and described the VQA task. The authors introduced a
free-form VQA setting together with an extensive dataset and a baseline model
intended for establishing the foundation for the VQA problem.

The recent progress made in the field of deep learning has led to the majority
of existing VQA approaches using deep neural networks in attempts to solve
the problem. The common pipeline of a VQA algorithm consists of four parts:
(1) image feature extraction, (2) question feature extraction, (3) feature com-
bination, and (4) classification over the range of possible answers (Figure 2.1).
Although such algorithms can use different strategies to extract and fuse fea-
tures, they can be categorised as joint embedding methods as all of them exploit
the same idea - to project visual and textual data in one joint space.

What kind of food is this?

Image Feature
Extraction

Text Feature
Extraction

Feature
Combination

vegetables
fruit
meat
dairy
berries

C
L
A
S
S
I
F
I
E
R

Figure 2.1. A common pipeline of baseline VQA models.

For image feature extraction a pre-trained Convolutional Neural Network (CNN)
(e.g . ResNet K. He et al., 2016, VGGNet Simonyan and Zisserman, 2015) is usu-
ally used. It allows researchers to skip low-level image processing and exploit the
resources of CNN pre-trained on large datasets. For question features extrac-
tion the common approach (Antol et al., 2015; Malinowski et al., 2015; M. Ren
et al., 2015) is to use a Recurrent Neural Network (RNN) with Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or Gated Recurrent Unit
(GRU) (K. Cho et al., 2014) cells. Other methods (K. Kafle and Kanan, 2016;
B. Zhou et al., 2015) apply simpler strategies, like bag-of-words or skip-thought
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vectors (R. Kiros et al., 2015) to get question embeddings. Similar to the idea
of pre-trained image features, some methods make use of pre-trained word em-
beddings like Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) to get initial word representations.

Apart from various feature extraction processes, models can differ in the way
they combine image and question vectors. The simplest forms of fusion are
concatenation (B. Zhou et al., 2015), element-wise multiplication (Antol et al.,
2015) or addition (Gao et al., 2015). Saito et al., (2017) described the idea
of joining element-wise multiplication and addition in order to take advantage
of both visual and textual information. A more complex approach consists
in combining features by an outer product which can hypothetically increase
an expressive capacity of a resultant vector. Fukui et al., (2016) proposed
Multimodal Compact Bilinear (MCB) pooling - a method that approximates
the outer product of multimodal features by projecting it to a lower-dimensional
space. To decrease computational complexity of MCB pooling, J.-H. Kim et
al., (2016) introduced a lower-rank bilinear pooling. This method, despite its
reduced complexity, can achieve results comparable to MCB.

2.1.2 Attention-based Models

In spite of its effectiveness, the simple joint embedding approach has consider-
able limitations. For example, CNN extracts global image features that describe
an image as a whole, although questions usually relate to the information con-
tained only in certain parts of an image. Focusing on local regions instead can
help to filter the noise and produce more relevant answers. Inspired by the
success in other vision tasks (Ba et al., 2014; Tang et al., 2014; K. Xu et al.,
2015), VQA models incorporated attention mechanisms (Figure 2.2), where the
features representing unimportant parts of the input data are multiplied by
lower weights (soft attention) or completely ignored (hard attention).

The simplest way to implement visual attention is to apply a uniform spatial
grid to divide an image into separate blocks and compute the relevance of each
block to the question asked. It is usually done by using the output of one of the
last layers in CNN and multiplying it by computed attention weights. K. Chen
et al., (2015) introduced a CNN model that generates question-guided attention
maps to localise informative image regions. Y. Zhu et al., (2016) added spatial
attention to LSTM model. Z. Yang et al., (2016) proposed Stacked Attention
Network that consists of several attention layers able to perform progressive
inference to iteratively locate the most relevant areas of an image. A similar
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What musical instrument
is on the left?

CNN

RNN Attention
Prediction

Attention Weights

Grid Features

Weighted Features

Figure 2.2. Visualisation of a simple question-guided visual
attention.

model introduced by H. Xu and Saenko, (2016) uses a memory component to
memorise region representations and perform multi-hop inference. In contrast
to the major line of works, Malinowski et al., (2018) used hard attention that
discards all irrelevant image patches. Some models incorporate additional high-
level information to guide visual attention. For instance, D. Yu et al., (2017)
trained a separate concept detector that extracts semantic concepts from images
and uses them for learning semantic visual attention. Besides commonly used
question features, Shi et al., (2018) utilised information about the question’s
type (i.e. whether it requires detecting objects and their attributes, performing
counting, scene or action recognition, etc.).

The methods described above divide images into uniform equally-sized visual
blocks which can restrict their ability to perform proper localisation. One may
argue that the use of uniform spatial grids does not conform with the way hu-
mans attend to different parts of an image, as it is more natural for humans to
break an image into a set of regions corresponding to individual objects. In (Shih
et al., 2016) and (Ilievski et al., 2016) authors used automatically selected image
regions located by Edge Boxes method (Zitnick and Dollár, 2014). Anderson,
He, et al., (2018) introduced a new bottom-up and top-down attention mecha-
nism that uses Faster R-CNN (S. Ren et al., 2015) to detect objects and extract
region features and then uses question-driven attention to obtain weighted task-
specific features. Similarly, P. Huang et al., (2019) exploited Faster R-CNN de-
tections together with predicted object labels to perform multi-grained visual
attention. However, a recent work of H. Jiang et al., (2020) has proven that
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the grid-based approach can achieve the same accuracy as the region-based one
while significantly reducing the running time. This experiment shows that the
semantic information carried by the visual features (i.e. the data that CNN was
pre-trained on) is more important than the form of the regions used.

In addition to visual attention, some VQA models include a question attention
component. Given that questions can contain redundant or noisy information,
the ability to focus on the most relevant words is crucial for VQA algorithms.
The Hierarchical Co-Attention model proposed by Lu et al., (2016) empha-
sises the importance of combined visual and textual attention by using both
question-guided visual attention and image-guided question attention. Besides,
the model hierarchically encodes questions and performs co-attention at three
levels: word level, phrase level and question level, and then co-attention features
are combined into the final representation. A similar idea was described in (Nam
et al., 2017) where authors used a memory component to store attention results
and recursively update them from both image and question information simulta-
neously. While in most methods the question or image is considered as a whole
when used to compute attention weights, a line of work (J.-H. Kim et al., 2018;
Nguyen and Okatani, 2018) introduced dense co-attention, where each word
attends to each image region and vice versa. In (Z. Yu et al., 2017) question
attention is computed without image features at all, while the visual attention
still relies on question representations. Similarly, C. Yang et al., (2019) pro-
posed to first use self-attention to identify the most important question words
and then use them for image attention. Z. Yu et al., (2019) implemented a deep
co-attention architecture by combining self- and guided attention. Another line
of research that extensively uses self-attention is based on transformer architec-
ture (Vaswani et al., 2017) and will be discussed in Section 2.1.5.

2.1.3 Compositional Models

Although the most common approach in VQA is to use a single neural network
to perform all the manipulations over the input data, the effectiveness of this
strategy is quite limited for certain types of questions. A simple unified algo-
rithm is likely to lack the reasoning power needed to cover the diversity of all
possible image-question pairs. For example, a question like “How many horses
are there?” requires object detection and counting, while questions like “What
is next to the door?” involve analysis of spatial relationships and object recog-
nition. Conversely, questions “What colour is the dog?” and “What colour is the
cat?” share the same semantic structure and require similar steps of reasoning,
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although they may refer to quite different images. So a number of works in
VQA have investigated how the simple learning from separate image-question
examples can be replaced with more complex strategies to better capture the
compositional nature of questions and images.

What color is the sphere to the right of the brown cylinder?

filter
<color>

filter
<shape> locate relate filter

<shape> locate query
<color>

brown cylinder right sphere

red

Figure 2.3. An example of a compositional approach where
the question is parsed into tasks required for answer prediction.

To exploit the compositionality of the VQA task, Andreas et al., (2016b) pro-
posed an architecture called Neural Module Networks. The main feature of the
framework is the use of a semantic parser that divides questions into parts re-
garded as separate sub-tasks required for the reasoning process. Each sub-task
determines the specified neural module that implements an associated action,
such as attend, classify, measure, etc. The resulting model is composed of the
selected neural modules and the general model structure, thus, is different for
each question. In this way, the described framework carries out the concept
of compositional models constructed from several parts in order to adapt and
generalise to different tasks (see Figure 2.3). This technique is contrasted to the
approach when a single universal network is used for all questions and is proven
to show better performance on highly compositional questions. In a follow-up
work (Andreas et al., 2016a) the authors suggested learning the model struc-
ture for each question instead of using manually-specified modules, that is the
model is now able to dynamically choose the best architecture. Furthermore,
R. Hu et al., (2017) refused to use an external semantic parser and attempted
to learn the best network layout directly from the question. Johnson, Hariha-
ran, van der Maaten, Hoffman, et al., (2017) developed a model that includes
the program generator – an LSTM network that transforms a question into a
functional program – and the execution engine that applies this program to an
image. Yi et al., (2018) has extended this approach and included a scene parser
to exploit the structural information of the image.

Another compositional model based on Recurrent Answering Units (RAUs) was
presented by Noh and Han, (2016). The authors also argue the necessity to
decompose the learning process into sub-tasks and emphasise that the range and
the order of operations required for answering questions vary significantly for
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different instances. For solving this issue, the authors proposed a novel recurrent
network architecture composed of successive RAUs– blocks that are capable of
solving the whole task by themselves. By using the number of consecutive
RAUs a model can perform progressive reasoning and implicitly solve different
sub-problems. In contrast to the previously described methods, this model does
not exploit any language parsers and does not specify different problem-solving
modules, but instead it relies on the successive model structure and its ability
to perform progressive reasoning and refinement by itself.

Recent studies have been focused on combining the classical end-to-end ap-
proach with explicit compositional reasoning. Hudson and Manning, (2018)
proposed a new recurrent network consisting of Memory, Attention and Com-
position (MAC) cells. This recurrent network decomposes a question into a
series of reasoning operations which are further applied to an image, and then
stores all intermediate results in memory states. The model thus learns the
required reasoning chains directly from the input data without relying on pre-
defined neural modules. An extension of the MAC model, called the Neural
State Machine (Hudson and Manning, 2019b), performs the reasoning over vi-
sual scene graphs instead of the raw image input, which improves its compo-
sitionality and generalisation skills compared to MAC. Despite the complete
success on synthetic compositional VQA tasks (e.g . achieving almost 100% ac-
curacy on CLEVR Johnson, Hariharan, van der Maaten, Fei-Fei, et al., 2017),
such modular methods do not generalise well to real-world VQA datasets in-
dicating a need for general multi-purpose methods that can generalise across
these domains (Shrestha et al., 2019).

2.1.4 Models with External Knowledge

The ultimate goal of the VQA research is to implement an algorithm able to
answer any possible question about any image. However, current VQA models
are restricted by the scope of available training data and limited pre-defined
answer sets. Typical VQA datasets, although comprising millions of image-
question instances, cover a rather small fraction of existing knowledge. Firstly,
the data collection for VQA often involves human annotators making this pro-
cess quite expensive and time-consuming. Next, our knowledge about the world
keeps growing so the datasets need to be updated constantly. Therefore, the
models trained on these limited datasets lack the ability to generalise and can-
not be freely applied in real-world conditions. This shortcoming has motivated
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researchers to search for alternative sources of information that can benefit the
training of VQA models.

One of the data resources suitable for VQA is image web search. It is an unlim-
ited source of raw visual information which is easy to collect but prone to noise,
so the methods utilising data from the web must include some pre-processing
and filtering techniques. Teney and van den Hengel, (2016) used an image
search engine to retrieve images for each word in questions and answers. The
images were then used during test time to obtain feature representations for
unknown words never seen during training which allowed to apply this method
to zero-shot VQA. Zheng et al., (2020) made use of images collected from the
web together with their tags to generate additional training examples and com-
pensate for insufficient coverage of the used dataset. Another possible source of
external knowledge for VQA is Wikipedia. For example, Q. Wu et al., (2016)
used image attributes to query DBpedia (Auer et al., 2007) – an ontology of
Wikipedia data – and get related text passages that were used along with the
question. Similarly, Marino et al., (2019) used multiple combinations of ques-
tion words and image objects as queries to Wikipedia search API to retrieve
the relevant article and find the answer in it.

Unlike the raw unstructured data described above, knowledge bases (KBs) offer
an alternative with curated and categorised information. Commonly used KBs,
like Freebase (Bollacker et al., 2008), YAGO (Mahdisoltani et al., 2014), Con-
ceptNet (Speer et al., 2017), Wikidata (Vrandečić and Krötzsch, 2014), etc.,
contain general knowledge about the world in a structured computer-readable
format. This format is typically represented by facts, or triplets, describing
different concepts and relationships between them. For example, the knowledge
that “dogs can be used to guide blind people” is stored in the KB as a triplet
(‘dog’, ‘is capable of ’, ‘guide the blind’ ). The use of such structured knowl-
edge not only expands the range of answerable questions but also allows to
perform explicit reasoning. When the model picks up the most relevant facts
and uses them for answer prediction, one can use these facts to observe and
explain the reasoning. This approach then opens up the direction towards more
interpretable and robust VQA methods.

In an attempt to perform explicit reasoning P. Wang et al., (2017a) developed
a model that can justify the answer choice by providing explanations. The
model detects visual concepts (objects, scenes and attributes) and maps them
to the related entities in a KB. The question is then processed to a query that
selects desired facts from these entities. The selected facts not only help to
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derive the answer but also expose the reasoning process. In their further work
P. Wang et al., (2017b) used predicted question categories to improve query
mapping. It helped to filter out excessive knowledge and select only question-
relevant facts. Narasimhan and Schwing, (2018) eliminated the querying step
and instead learned a mapping model which helped to avoid synonyms and
word disambiguation challenges that inhere in exact query mapping. While
early methods mostly relied on external data, recent works (Gardères et al.,
2020; Marino et al., 2021) have shown the benefit of combining explicit knowl-
edge retrieved from KBs with the information implicitly learned through vision
and/or language pre-training. This approach takes advantage of both a large
amount of uni- and multi-modal training data and pre-processed structured
knowledge information.

Differently from the methods described above, where the source of extra in-
formation lies outside of the training data, several works proposed to extract
additional information directly from images. Singh et al., (2019) introduced the
task of TextVQA, which requires a model to read the text present in images.
Concurrently, Biten et al., (2019) introduced the ST-VQA dataset, which also
requires a model to exploit textual cues for question answering. The methods
that attempt to solve TextVQA usually incorporate an optical character recog-
nition component (OCR) and use predicted OCR tokens as additional input (R.
Hu et al., 2020; Mishra et al., 2019; Q. Zhu et al., 2020). Although these meth-
ods stand out from typical knowledge-based VQA methods, they help bridging
the gap between current VQA solutions and real-world applications.

2.1.5 Transformer-based Models

Over the last few years, transformer-based models have dominated the VQA
field. Transformer, proposed by Vaswani et al., (2017), is an encoder-decoder
architecture that, unlike recurrent networks, relies solely on self-attention to
perform sequence-to-sequence translation. Inspired by the efficiency of trans-
formers, Devlin et al., (2019) introduced BERT – a transformer encoder pre-
trained in a self-supervised way. The training of BERT consists of two phases:
pre-training on large unsupervised textual data and fine-tuning on labelled task-
specific datasets. This two-step approach allows to share the same architecture
for massive language pre-training and transfer learning across different down-
stream tasks. BERT achieved state-of-the-art results on a multitude of natural
language processing tasks and has become one of the most commonly used
language representations models. Motivated by the success of BERT, recent
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VQA models adapted the pre-training strategy and transformer architecture to
embrace two modalities: visual and textual.

Self-Attention Encoder

[CLS] how many [MASK] on the court [SEP]

(a) Single-stream model.

Cross-Modal Encoder

[CLS] how many [MASK] on the court [SEP]

Self-Attention Encoder Self-Attention Encoder

(b) Two-stream model.

Figure 2.4. Common architectures for two types of
transformer-based models.

Transformer-based VQA models can be divided into two architecture categories:
single-stream and two-stream. In single-stream models (Figure 2.4a), such as
VL-BERT (Su et al., 2019), VLP (L. Zhou et al., 2020), Unicoder-VL (G. Li
et al., 2020), VisualBERT (L. H. Li et al., 2019), UNITER (Y.-C. Chen et al.,
2020), InterBERT (J. Lin et al., 2020), etc., both image and text features are
processed by a single transformer. This approach allows learning unified vision-
language representations through the early fusion of two modalities. On the
contrary, two-stream models (Figure 2.4b), like LXMERT (Tan and Bansal,
2019), ViLBERT (Lu et al., 2019), ERNIE-ViL (F. Yu et al., 2021), etc., push
back the inter-modal fusion into the deeper layers of the model. In these models,
visual and textual inputs are passed into two separate encoders succeeded by
one cross-modal encoder. Despite the clear differences in design, the choice
between the two architectures is not obvious. Although single- and two-stream
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models encode deeper interactions between modalities in different layers (Cao
et al., 2020), their overall performance is comparable (Bugliarello et al., 2021).

One of the features that distinguish transformer-based models is the way they
process input data. For language input, most models follow the procedures
adopted in BERT. First, the text is tokenised into sub-words and framed by
special tokens [CLS] and [SEP ] indicating segment boundaries. Then the to-
kens are passed through three embedding layers encoding token, segment and
position information. The resulting embedding is then the sum of these layers’
outputs. Some models (Y.-C. Chen et al., 2020; Tan and Bansal, 2019) omit
segment embedding since the whole input belongs to one segment only. Others
add extra layers like visual feature embedding in (Su et al., 2019). From the im-
age side, a common practice is to utilise region features extracted with an object
detector like Faster R-CNN (S. Ren et al., 2015) together with the bounding
box coordinates (i.e. position features). Although the use of an object detector
allows the model to enjoy the benefits of pre-training, the semantic coverage of
extracted features is narrowed to the object categories used during the training.
To address this issue recent works (Z. Huang et al., 2021; Z. Huang et al., 2020;
W. Kim et al., 2021) proposed to exclude object detection and instead learn
visual features directly from images.

The pre-training phase common to all transformer-based models mostly differs
in the choice of data and objective functions. A standard pick for pre-training
data is vision-and-language examples coming from image captioning (X. Chen
et al., 2015; Sharma et al., 2018), VQA (Goyal et al., 2017; Hudson and Man-
ning, 2019a) and alt-text (Jia et al., 2021) datasets. The current trend is to
aggregate several pre-training datasets to expand data coverage, however, it has
been shown (Singh et al., 2020) that the origin of the data (i.e. whether it comes
from the same domain as the downstream task) can outweigh its size. During
pre-training, multiple objectives are optimised simultaneously to facilitate the
proper fusion of two modalities. These objectives can be divided into (1) uni–
modal tasks, like masked language modelling (Y.-C. Chen et al., 2020; Lu et al.,
2019; Tan and Bansal, 2019), masked object modelling (Y.-C. Chen et al., 2020;
Tan and Bansal, 2019), and (2) multi-modal tasks, like image-text matching (Lu
et al., 2019; Tan and Bansal, 2019), visual question answering (Tan and Bansal,
2019) and contrastive loss (W. Li et al., 2020; X. Li et al., 2020). However, Z.
Wang et al., (2021) have demonstrated recently that even with the single lan-
guage modelling objective the model can learn powerful joint representations
and achieve state-of-the-art results.
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2.2 Evaluation

2.2.1 Datasets

As with any learning task, the choice of training data is one of the key aspects
that boosts the performance of VQA models. Generally, a sample from a VQA
dataset is composed of an image and a related question-answer pair (see exam-
ples in Figure 2.5). The common sources for VQA datasets are large bases of
real images like MS-COCO (T.-Y. Lin et al., 2014) and YFCC100M (Thomee
et al., 2016), manually created clipart (Antol et al., 2015), and rendered im-
ages (Andreas et al., 2016b; Johnson, Hariharan, van der Maaten, Fei-Fei, et
al., 2017). Question-answer pairs are usually collected either manually through
crowd-sourcing (Antol et al., 2015; Marino et al., 2019) or automatically (Hud-
son and Manning, 2019a; Johnson, Hariharan, van der Maaten, Fei-Fei, et al.,
2017) (for example, generated from image captions or scene graphs). The gener-
ation of answers, in turn, is typically organised in two settings: multiple-choice
and open-ended. In the former, each question is provided with a set of possible
answers where only one of them is correct. In the latter, on the contrary, each
question is labelled with the correct answer(s) only.

One of the first benchmarks released for VQA is DAQUAR dataset (Malinowski
and Fritz, 2014). It is a relatively small dataset with low-quality images of
indoor scenes and questions narrowly focused on colours, numbers and objects.
DAQUAR was the first VQA dataset that has attracted considerable attention
from the research community, but due to its small size and limited coverage, it
is insufficient for a thorough evaluation of modern VQA models. A significantly
larger COCO-QA dataset (M. Ren et al., 2015) includes real-world images from
MS-COCO and questions automatically generated from captions. Although this
dataset attempted to increase the scope of VQA data, an automated annotation
significantly restricted the variety of questions.

The seminal dataset that enabled the large-scale research in VQA and remains
one of the most popular benchmarks in the field is VQA dataset (Antol et al.,
2015). It consists of two sets: natural images collected from MS-COCO (VQA-
real) and abstract cartoon images (VQA-abstract). Generally, each image in the
dataset has three related questions and ten answers per question collected from
different annotators. The annotators were encouraged to provide the questions
with varied types, difficulty and levels of knowledge required. Despite the well-
defined procedures for careful and diverse data annotation, the analysis of the
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How many tables are there in the image?
Answer: 4

(a) DAQUAR

What is this?
Answer: dollar

(b) VizWiz

Is the man skateboarding on a boardwalk?

Answer (left image): yes
Answer (right image): no

(c) VQA v2

What thing in this photo can protect a
head from impact?
Fact: helmets can prevent head injuries
Answer: helmet

(d) FVQA

Who is in the left?
Answer: John Roberts

(e) KVQA

What part of this animal is sold illegally?
Answer: tusk

(f) OK-VQA

How many large things are either purple
cylinders or cyan metal objects?
Answer: 1

(g) CLEVR

Are there both bikes and cars in this
scene?
Answer: no

(h) GQA

Figure 2.5. Examples from eight VQA datasets.
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data clearly reveals the presence of bias. For instance, the model can achieve
almost 50% of accuracy by looking at the questions only (K. Kafle and Kanan,
2016), revealing the lack of visual grounding in image-question pairs. Moreover,
it is possible to reach high performance just by answering “yes” to all binary
questions (P. Zhang et al., 2016) which indicates a strong labelling bias. An
updated version of the dataset, called VQA v2 (Goyal et al., 2017), was intro-
duced in order to reduce these biases. Each question in this dataset is connected
with two images that lead to two different answers. It addressed the issue of
visual grounding deficiency, but the problem with the imbalanced distribution
of question and answer types remained unsolved. For that reason, VQA-CP
dataset (Agrawal et al., 2018) was proposed. It was created by re-organising
training and validation sets of VQA v2.0 such that distributions of answers for
each question type are different in training and test splits. A noticeable decline
in performance between original VQA v2 and VQA-CP splits for all the models
reported proves that they are prone to memorising the superficial correlations
in the data and can not generalise well.

One of the crucial features of VQA data is the size since small datasets are usu-
ally inadequate to reflect the difficulty of the VQA task. Visual Genome QA
dataset (Krishna et al., 2017), for example, includes over 1.7 million question-
answer samples and is one of the largest in the field. It comprises questions
divided into seven categories according to their first words: what, where, when,
who, why, how and which. The main features of the dataset are high answer
diversity (more than 200,000 unique answers), absence of binary questions and
strong visual grounding. Moreover, each image is accompanied by the scene
graphs and region descriptions that can be used for additional supervision or
data augmentation. A newer GQA dataset (Hudson and Manning, 2019a),
based on Visual Genome, includes 22 million questions requiring different rea-
soning skills. The main focus of this dataset is the strong visual grounding,
spatial understanding and multi-hop inference. It is the first known attempt to
build a large-scale dataset for compositional reasoning over real-world images,
while all previous compositional datasets (e.g . SHAPES Andreas et al., 2016b
and CLEVR Johnson, Hariharan, van der Maaten, Fei-Fei, et al., 2017) only
include synthetic images of geometric objects.

Another line of works has been aimed at creating smaller but more challeng-
ing datasets that test models’ ability to reason beyond the training data. In
zero-shot VQA dataset (Teney and van den Hengel, 2016) the test set con-
tains words never seen during training which helps to measure how the model
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generalises to novel concepts. FVQA (P. Wang et al., 2017b) dataset con-
sists of questions requiring basic commonsense or factual knowledge. It also
provides additional supporting facts collected from different knowledge sources
to enable explicit reasoning. Similarly, in OK-VQA dataset (Marino et al.,
2019) most of the questions depend on external knowledge although it is not
restricted by any specific knowledge base and can be retrieved from any source.
The largest knowledge-based dataset, KVQA (Shah et al., 2019), includes more
than 180,000 questions but focuses only on facts about famous people obtained
from Wikipedia. Overall, knowledge-demanding datasets are still one of the
most difficult settings in VQA, so even current state-of-the-art models achieve
relatively low performance (Marino et al., 2021; Z. Zhu et al., 2020).

While all the described datasets were designed for the research purpose pri-
marily, VizWiz dataset (Gurari et al., 2018) is the first one designed with an
applied goal in mind. The data for VizWiz was collected by blind people for
the purpose of assisting visually impaired people in their everyday life. The
most distinguishing feature of this dataset is that the data comes from a nat-
ural setting where images are taken with mobile phone cameras and questions
are recorded in a spoken language. Such natural data collection process results
in lower quality samples due to blur, bad lighting conditions, cropping, etc.,
but at the same time induces the task to conform with real-world conditions.
Therefore, VizWiz is one of the most challenging datasets that reveals the need
for making current VQA models more suitable for practical applications.

2.2.2 Metrics

The evaluation of VQA approaches is a complex task itself. To determine
whether the predicted answer is correct, one must take multiple aspects into
consideration. Such language properties as synonyms, homonyms, paraphrasing
and grammar make the evaluation of natural language sentences nontrivial due
to the ambiguity. From this angle, the multiple-choice setting is the easiest for
evaluation since simple accuracy can be calculated. The predicted answer is
deemed correct if it exactly matches the ground truth label. The total accuracy
is then calculated as the ratio of correct predictions to all predictions. With the
open-ended setting, evaluation is not that straightforward because generated
answers are not limited to any set. In practice, however, open-ended tasks are
often treated as multiple-choice ones where the set of candidate answers for
each question is equal to the set of all possible answers in the dataset. Such
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simplification allows for faster evaluation but reduces its quality and impedes
thorough analysis.

Several metrics have been proposed to deal with ambiguity. Malinowski and
Fritz, (2014) suggested using WUPS (Z. Wu and Palmer, 1994) metric to match
the answers based on their semantic similarity. With that, the answer gets a
high score if it is semantically or lexically close to the ground truth even though
it is not an exact match. However, this metric also assigns high scores to
semantically similar but quite different answers like red, blue and white, or even
antonymous answers like left and right, yes and no. Moreover, WUPS can not
be directly used for multiple-word answers which makes this metric inapplicable
to modern VQA datasets. The authors of GQA dataset (Hudson and Manning,
2019a) proposed a set of new metrics to assess models’ consistency and validity.
These metrics can not replace the original accuracy metric but provide a deeper
insight into models’ behaviour – whether the model chooses reasonable answers
or not. The main drawback of the proposed metrics is the need for collecting
additional labels to mark plausible and valid answers which may not be feasible
for large datasets with human annotators.

The most popular VQA metric is the modified accuracy proposed by Antol et
al., (2015) for VQA v2 dataset. Each question in this dataset has ten ground-
truth answers from different annotators, and the answer gets the full score if at
least three annotators provided it. The accuracy is then calculated as

accuracy = min
(n
3
, 1
)
, (2.1)

where n is the number of people who provided the same answer as the model.
Although this metric helps to diminish the ambiguity problem, it is intrinsically
dependent on the quality of annotations. The presence of noise in labels and low
inter-human agreement can lead to the model achieving a high score for common
but false answers and, on the contrary, getting a low score for accurate but rare
answers. Despite its disadvantages, this metric has been widely adopted by
other datasets and remains the dominant measure of performance for VQA.

2.3 Summary

In this chapter, we reviewed current literature in the VQA field that covers
proposed methods, datasets and evaluation techniques. The first VQA meth-
ods used simple architectures that combine separate image and question fea-
ture encoders, a feature fusion module and a classifier. They, however, could
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not properly encode the fine-grained image information required for accurate
question answering. For that reason, various attention mechanisms have been
adopted to help models learn relevant local image features. While the majority
of papers aim to boost VQA performance in general, a line of work focuses on
solving specific tasks, including answering compositional questions and ques-
tions requiring external knowledge. Finally, in recent years, the whole VQA
research area has been dominated by transformer-based architectures that have
achieved tremendous success in computer vision and NLP tasks and have been
successfully extended to the multi-modal VQA problem. Despite the variety of
existing methods, current state-of-the-art accuracy on complex, compositional
and knowledge-demanding benchmarks is far from human performance, which
signifies the need for further advances in the VQA field.

The choice of architecture for a VQA model usually depends on the complexity
of the task to be solved. In Chapter 3 we explore the potential of unsupervised
pre-training with energy-based and contrastive learning. Current energy-based
models can not be trained with modern deep learning components (Du, Li,
Tenenbaum, et al., 2020). Therefore, we adopt a simple CNN-LSTM baseline
architecture and create a dataset of plain images that can be efficiently learned
with such architecture. In Chapter 4 we use a more advanced attention-based
model (Y. Jiang et al., 2018) that was state of the art at the time of this work.
Our main goal is to investigate how the use of answer semantics can boost
VQA performance, so we choose a popular GQA dataset (Hudson and Manning,
2019a) with a wide range of metrics for the model’s evaluation. In Chapter 5
we tackle a complex task of knowledge-demanding VQA, hence a more powerful
transformer-based model (Tan and Bansal, 2019) is used as a backbone. We
test our method on four knowledge-based and general visual reasoning datasets
(Marino et al., 2019; Suhr et al., 2019; P. Wang et al., 2017b; N. Xie et al.,
2019) to show the benefits of commonsense and factual knowledge embedding.
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Chapter 3

Exploring Self-Supervised
Pre-Training for Visual Question
Answering

In this chapter, we explore unsupervised image feature pre-training for the visual
question answering task. The availability of clean and diverse labelled data has
always been one of the major driving forces in VQA research. However, the
human annotation of multi-modal vision and language data is an expensive
process that can become a bottleneck for VQA development. In this study,
we adopt energy-based and contrastive learning – two popular unsupervised
approaches – for image feature pre-training. We show that both methods can
learn efficient image representations from unlabelled images and benefit the
VQA task when the amount of annotated data is limited.

3.1 Introduction

The presence of large-scale diverse datasets has become one of the major driving
forces of deep learning research in recent years. Datasets such as ImageNet (J.
Deng et al., 2009) and Microsoft COCO (T.-Y. Lin et al., 2014) have signifi-
cantly advanced computer vision and contributed to the development of widely-
used image classification (Dosovitskiy et al., 2020; K. He et al., 2016; Simonyan
and Zisserman, 2015; Szegedy et al., 2016; S. Xie et al., 2017) and object detec-
tion (K. He et al., 2017; Redmon et al., 2016; S. Ren et al., 2015) methods. In
Natural Language Processing (NLP) research, datasets like WordNet (Miller,
1998), BookCorpus (Y. Zhu et al., 2015), WebText (Radford et al., 2019) and
SQuAD (Rajpurkar et al., 2016) have facilitated the development of various
NLP sub-fields. The task of visual question answering (VQA), which combines
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computer vision and NLP, consists of two distinct modalities and requires a
large amount of aligned visual and textual training data. That complicates the
collection of diverse data and thus impedes the progress of VQA.

The generation of natural language annotations in the form of questions and an-
swers typically requires the involvement of human annotators and establishing
accurate labelling procedures. Besides being an expensive and time-consuming
operation, human annotation introduces biases and noise into data (K. Kafle
and Kanan, 2017b; K. Kafle et al., 2019) which harms VQA training and evalu-
ation. To speed up the process and reduce human error, several works (Hudson
and Manning, 2019a; Johnson, Hariharan, van der Maaten, Fei-Fei, et al., 2017;
M. Ren et al., 2015) have proposed the use of template-based question gener-
ation from image scene graphs or captions. Although this setting allows for
controlled and compositional question generation, it essentially contradicts the
definition of VQA which implies that the question is formulated freely with
natural language. Given all the challenges of VQA data acquisition, researchers
are now widely using transfer learning and pre-training to exploit the data from
VQA-related domains.

Most VQA methods make use of pre-trained image models (Anderson, He, et al.,
2018; K. He et al., 2016) and language features (Mikolov et al., 2013; Pennington
et al., 2014) to ease the complexity of VQA training. As these features were
trained separately on distinct computer vision and NLP tasks, they may be
less suitable for combined vision and language tasks. Therefore, recent studies
(Y.-C. Chen et al., 2020; L. H. Li et al., 2019; X. Li et al., 2020; Tan and Bansal,
2019) have explored joint pre-training with a large amount of aligned vision and
language data. With this massive pre-training, the model is expected to learn
general vision and language representations, and then it needs much less task-
specific data to be fine-tuned for a downstream task. However, this setting still
requires human annotations such as image captions or object labels and finding
suitable pre-training data may become a bottleneck for VQA research. That
motivates our search for unsupervised pre-training strategies.

A popular direction in unsupervised machine learning research is generative
models (Goodfellow et al., 2014; Kingma and Welling, 2013). Although they
are mostly used for purely generative tasks, recent advances with Energy-Based
Models (EBMs) (Du and Mordatch, 2019; Grathwohl et al., 2019; Zhao et al.,
2020) have shown that generative methods can benefit discriminative down-
stream tasks with improved calibration, robustness and out-of-distribution de-
tection. In this work, we explore the applicability of EBMs to unsupervised
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image feature pre-training for VQA. We compare them with contrastive learn-
ing – another popular unsupervised method. We show that both these methods
can learn efficient image representations from unlabelled data. Moreover, both
models can be further fine-tuned with as little as 72 annotated VQA samples
and still show a strong ability to generalise to unseen data.

3.2 Related Work

3.2.1 Energy-Based Models

Energy-Based Models have been used extensively for data modelling across dif-
ferent research fields (see LeCun et al., 2006 for a comprehensive review) due
to their simple and nonrestrictive formulation. Despite these advantages, the
complexity of EBMs training has prevented them from gaining much attention
from the deep learning community. However, recent studies (Du and Mordatch,
2019; Nijkamp et al., 2020; Nijkamp et al., 2019) have investigated training
techniques that enable the application of EBMs to high-dimensional data and
improved the training stability. That allowed one to apply energy-based ap-
proaches in different fields of deep learning, including image generation (Arbel
et al., 2020; Du, Li, and Mordatch, 2020; Du and Mordatch, 2019; Han et al.,
2019; Xiao et al., 2020; J. Xie et al., 2018), graph generation (Suhail et al.,
2021), image classification (Grathwohl et al., 2019), regression (F. Gustafsson
et al., 2020; F. K. Gustafsson et al., 2020), continual learning (S. Li et al., 2020)
and natural language processing (Y. Deng et al., 2019; T. He et al., 2021; L. Tu
et al., 2020). In this study, we explore the benefits of energy-based training for
visual question answering.

3.2.2 Contrastive Learning

Traditional supervised learning methods have dominated the field of computer
vision since the rise of deep learning. However, their vital need for a large
amount of annotated data has urged researchers to seek alternative approaches
that do not require an expensive labelling process. Contrastive learning, a self-
supervised discriminative approach, provides such an alternative where the data
itself is a source of supervision and the model is trained to differentiate simi-
lar samples from dissimilar ones. Early attempts to apply contrastive methods
to computer vision tasks (Bachman et al., 2019; K. He et al., 2020; Henaff,
2020; Oord et al., 2018; Tian et al., 2020; Z. Wu et al., 2018; Zhuang et al.,
2019) showed promising results but could not compete with their supervised
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counterparts. More recent methods, like SimCLR (T. Chen et al., 2020) and
SwAV (Caron et al., 2020), introduced novel data augmentations and archi-
tectural modifications that helped to significantly reduce the gap and achieve
results comparable to supervised methods. In this work, we apply contrastive
learning to the visual question answering task. Another VQA method that in-
corporates contrastive loss was proposed by Whitehead et al., (2021), where
the model is trained on image-question pairs in a self-supervised manner. In
contrast, in this work we utilise images without any additional annotations.

3.3 Methodology

In this work, we experiment with two techniques that enable self-supervised
training, namely energy-based models and contrastive learning. We use a self-
supervised strategy to pre-train a Convolutional Neural Network (CNN) on
unlabelled images. These pre-trained weights are then used to initialise the
image feature extractor of the VQA model, which is further fine-tuned on a
small set of labelled data (i.e. image, question and answer triplets). With
this setting, we aim to investigate how pre-training can improve the model’s
generalisation ability when the annotated data is limited.

3.3.1 Energy-Based Learning

CNN

Contrastive Divergence

CNN
Sampling

Figure 3.1. An illustration of energy-based model training.

Energy-Based Model is a statistical model that relies on energy function to cap-
ture dependencies between variables. The energy function maps each configu-
ration of variables to a scalar energy value, such that correct values of variables
have lower energy (and hence higher probability). With this formulation, the
probability density for an input x ∈ RD can be represented as

pθ(x) =
exp (−Eθ(x))

Z(θ)
, (3.1)
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where Eθ(x) : RD → R is the energy function, Z(θ) =
∫
exp (−Eθ(x)) dx

is the partition function and θ is the model’s parameters. In this work, we
parameterise the energy function with a CNN that takes image as an input and
returns a scalar.

In practice, the partition function Z(θ) is usually intractable to compute, which
means that the standard maximum likelihood approach can not be applied
directly to train the model. However, we can instead use the gradient-based
optimisation approach, since the derivative of the log-likelihood of a data sample
x does not require the partition function to be calculated:

∂ log pθ(x)

∂θ
= Epθ(x′)

[
∂Eθ(x

′)

∂θ

]
− ∂Eθ(x)

∂θ
, (3.2)

where x′ is sampled from the model distribution. Sampling x′ from pθ is not a
trivial task, but recent works (Du and Mordatch, 2019; Nijkamp et al., 2019)
have proposed to use Markov Chain Monte Carlo (MCMC) sampling based on
Langevin dynamics (Welling and Teh, 2011) that iterates

x′k = x′k−1 −
λ

2

∂Eθ(x
′
k−1)

∂x′k−1
+ ωk , k = 0, 1, ..., K , (3.3)

where k numerates steps, λ is the step size, ωk ∼ N (0, λ), and x0 is typically
initialised with uniform random noise. This procedure defines a distribution qθ
and, as shown in (Welling and Teh, 2011), if K →∞ and λ→ 0 then qθ → pθ.
In practice, the sampling runs for the finite number of steps and we differentiate
only through the last step to reduce the computational cost, as done in (Du,
Li, Tenenbaum, et al., 2020). The model is then trained with contrastive diver-
gence (Hinton, 2002) objective that aims to minimise the energy of the training
data and, on the contrary, maximise the energy of the generated samples (see
Figure 3.1 for the illustration of model’s training).

3.3.2 Contrastive Learning

Contrastive learning is another self-supervised technique whose core idea is to
learn data representations such that similar samples are grouped together and
dissimilar ones are pushed apart. In the absence of ground-truth annotations,
all samples in a dataset are considered to belong to different classes, while
several augmentations (also called views) of one sample constitute one class.
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CNN

CNN

MLP

MLP

Figure 3.2. An illustration of contrastive learning.

Typically, the key components of contrastive learning include (1) data aug-
mentation, (2) encoding, and (3) contrastive loss that maximises the similarity
between encodings of one class and minimises inter-class similarity (Figure 3.2).

In the first step, an input image x is transformed with two sets of augmenta-
tions to get two correlated views x̃i and x̃j. These views are passed through
an encoding function f(·), which is typically a CNN, and obtained encodings
are mapped into a common space with the projection head g(·), commonly
implemented as a Multilayer Perceptron (MLP):

hi = f(x̃i) ,

hj = f(x̃j) ,

zi = g(hi) ,

zj = g(hj) .

(3.4)

The final representations zi and zj are called a positive pair, while the combi-
nations of views from different images constitute negative pairs. The model’s
objective is then to maximise the similarity of the positive pair while minimis-
ing it for all other negative pairs. A common choice for this objective is the
normalised temperature-scaled cross-entropy loss with the cosine similarity:

sim(zi, zj) =
z>i zj
‖zi‖‖zj‖

, (3.5)

l(i, j) = − log
exp(sim(zi, zj)/τ∑

k,k 6=i exp(sim(zi, zk)/τ)
, (3.6)

where τ is a temperature parameter and k iterates over all negative samples,
which are usually sampled from the the same batch. The final loss is calculated
as the sum of losses for all positive pairs in a batch.
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3.3.3 Fine-Tuning

During the pre-training stage, an image feature encoder f I is trained with ei-
ther energy-based or contrastive learning strategy. For the fine-tuning step, we
combine the pre-trained image encoder with a question encoder fQ which is
a Long Short-Term Memory (LSTM) network initialised with random weights.
These encoders process image xI and question xQ inputs to get visual v ∈ RDI

and textual q ∈ RDQ representations respectively:

v = f I(xI) ,

q = fQ(xQ) .
(3.7)

Later, feature encodings v and q are concatenated into a single vector p = [v, q],
p ∈ RDI+DQ . The fused vector is passed through a classifier to obtain answer
scores y = fCLS(p), with y ∈ RA where A is the size of a set of candidate
answers. The model is then trained to minimise cross-entropy loss:

softmax(yi) =
exp(yi)∑A
j=1 exp(yj)

, (3.8)

LCE = −
A∑
i=1

âi · log(softmax(yi)) , (3.9)

where â ∈ {0, 1}A denotes the one-hot (multi-hot) vector of the ground-truth
answer(s), and i indexes vector elements.

3.4 Experiments

3.4.1 Dataset

Figure 3.3. Example images from our dataset: simple objects
with different shape-colour combinations (24 in total).
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EBM that we use in our experiments includes a computationally expensive
MCMC sampling process that impedes scaling to large image datasets. As a
result, recent EBM approaches (Du, Li, and Mordatch, 2020; Grathwohl et al.,
2019) have focused on datasets with small-size images of simple objects (e.g .
MNIST L. Deng, 2012, CIFAR Krizhevsky, Hinton, et al., 2009 or CelebA Z.
Liu et al., 2015). Current datasets designed for VQA (see Section 2.2.1) consist
of large-scale images, typically with multiple objects presented, what makes
them unusable for EBM training. Therefore, we generated our own dataset to
run experiments in a suitable and well-controlled setting.

Following the procedure similar to the one described in (Atzmon et al., 2020), we
generated a small dataset of easy objects. All images were rendered with Blender
(Community, 2018) software using CLEVR framework (Johnson, Hariharan,
van der Maaten, Fei-Fei, et al., 2017). Each image of size 64x64 contains one
object (sphere, cube or cylinder) with rubber or metallic material of one of the
eight possible colours: red, purple, yellow, blue, green, cyan, grey or brown
(Figure 3.3). For each image, we generated a related question based on the
templates provided in CLEVR. Questions are designed to query the object’s
shape, for example, There is a blue object in the image; what is it? with words
sphere, cube and cylinder being possible answers.

We generated 2000 samples per each object-colour combination where the ob-
ject’s size, material, position and lightning are chosen randomly. We further
divided the whole dataset into several splits used for pre-training, fine-tuning,
validation and test phases. Since we aim to investigate how the model can gener-
alise to unseen data when the labelled data is limited, we split the data in a way
similar to the CLEVR-CoGenT (Johnson, Hariharan, van der Maaten, Fei-Fei,
et al., 2017) dataset creation. Specifically, we defined three data types accord-
ing to possible object-colour combinations (see Table 3.1 for the description of
types). Thus, our pre-training split contains data of type A, the fine-tuning
split has data of type B, the validation split includes both B and C types, and
the test split has only type C data. Table 3.2 contains the details for each split
in our dataset.

3.4.2 Experimental Setting

Recent studies (Du, Li, Tenenbaum, et al., 2020; Du and Mordatch, 2019) have
shown that the use of complex deep learning components can cause instability
when training EBMs. Therefore, we selected a simple CNN-RNN architecture
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Type Object Colours

A
cylinder any
cube any
sphere any

B
cube grey, blue, brown, yellow
sphere red, green, purple, cyan

C
cube red, green, purple, cyan
sphere grey, blue, brown, yellow

Table 3.1. The list of available object-colour combinations for
each data type.

Split Data Type Images Questions

Pre-training A 12,000 n/a
Fine-tuning B 3,600 3,600
Validation B+C 800 800
Test C 3,600 3,600

Table 3.2. A summary of the data splits.

for our VQA model – a common baseline for the task as discussed in Sec-
tion 2.1.1. We adopted the modified ResNet (K. He et al., 2016) architecture
from Du, Li, Tenenbaum, et al., (2020) and combined it with LSTM network.
Note that the same core ResNet architecture is used in all pre-training and
fine-tuning experiments to enable transfer learning. We only modify the last
few layers for each pre-training task as will be discussed later.

For EBM pre-training, a CNN model is followed by a linear layer that maps
visual feature vectors into scalar energy values. To facilitate the training we
incorporated several changes proposed by Du, Li, Tenenbaum, et al., (2020).
Concretely, we use a replay buffer to store previously generated samples that
are randomly chosen to re-initialise the sampling chain (Equation 3.3) instead
of the uniform noise. We also apply random data augmentations (e.g . cropping,
horizontal flipping, blurring and colour distortion) to images sampled from the
buffer as it was proved to improve the diversity and mixing of sampling chains.
Finally, we included additional losses that further improve contrastive diver-
gence training (we refer the reader to the source paper Du, Li, Tenenbaum,
et al., 2020 for details).



38 Chapter 3. Exploring Self-Supervised Pre-Training for VQA

Validation Test

Total Cube Sphere

ResNet 99.43 ± 0.33 99.14 ± 0.20 98.35 ± 0.33 99.92 ± 0.09

Baseline 56.96 ± 6.08 12.78 ± 9.75 0.04 ± 0.06 25.52 ± 19.57

EBM 93.67 ± 3.18 86.74 ± 8.34 96.57 ± 1.99 76.91 ± 14.75

SimCLR? 99.75 ± 0.33 99.26 ± 0.29 98.87 ± 0.27 99.65 ± 0.32

Table 3.3. Results for validation and test splits. We report
the average accuracy (%) ± one standard deviation over three
random seeds. SimCLR?model reaches highest accuracy on both

validation and test sets.

For contrastive learning, we experiment with the popular SimCLR (T. Chen
et al., 2020) model. SimCLR is a simple framework that uses ResNet-50 to ex-
tract visual representations, and a projection head to map them into a common
space where contrastive loss is applied. We changed the CNN architecture as
discussed above, but used the same projection head on top of it. This projec-
tion head is a MLP with one hidden layer and ReLU activation function. We
denote this model as ‘SimCLR?’ in our experiments to emphasise the modified
architecture. We also show results for our baseline CNN-LSTM model that was
not pre-trained for any task but instead initialised with random weights (noted
‘Baseline’). Finally, as a point of comparison, we include the results of ResNet-
18 model pre-trained on ImageNet (J. Deng et al., 2009) for the classification
task (noted ‘ResNet’). That allows us to compare with the traditional super-
vised transfer learning approach commonly used for small labelled datasets.

3.4.3 Quantitative Results

The accuracy results for validation and test splits are shown in Table 3.3 (see
Appendix A for additional results). SimCLR? model achieves the highest ac-
curacy on both splits. A minor difference between validation and test results
(99.75% → 99.26%) indicates the model’s ability to generalise to unseen data.
EBM also shows decent generalisation performance (86.74% on the test set),
but it comes with a high variance across different runs (standard deviation of
8.34 for the test set). It means that the model is more sensitive to random
training parameters and produces less consistent results. SimCLR? model, on
the opposite, shows stable performance for all runs (standard deviation of 0.29).
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(a) (b)

Figure 3.4. Test accuracy results for two unsupervised methods
trained with different set sizes for (a) pre-training and (b) fine-

tuning data.

Moreover, SimCLR? scores on par with the fully supervised ResNet model, al-
though ResNet contains 1.5 times more parameters and was pre-trained on a
significantly larger image dataset. Finally, the baseline model trained from
scratch shows the lowest accuracy (12.78%) in our experiments. Without any
pre-training, the model quickly overfits the shape-colour combinations present
in the fine-tuning set and uses colour attribute as a ground for shape prediction.

We want the model to learn the task with as little data as possible, so we study
the effect of different pre-training (Figure 3.4a) and fine-tuning (Figure 3.4b)
set sizes. The performance of SimCLR? model only slightly degrades when the
pre-training size is reduced five or even ten times, but it still outperforms EBM
with all data sizes. Interestingly, EBM shows the highest accuracy with less
pre-training data, while its performance first drops and then improves as the
data size is growing. It has been shown that the training of EBM is unstable
and highly depends on random parameters (Grathwohl et al., 2019). So the
EBM’s performance could be mainly influenced by the randomness in training,
rather than by data size. As for fine-tuning step, both models can be trained
with as little as 72 labelled samples. While the EBM’s performance drops a
bit with the reduced fine-tuning size, the accuracy of SimCLR? model remains
almost identical. Overall, both models do not require much data to learn useful
image features and can be successfully fine-tuned to a downstream task with
limited labelled data.

In conclusion, we note that although EBM shows competitive results, the dif-
ficulty and constraints of its training outweigh the possible benefits. The con-
trastive learning method, on the contrary, shows stable superior performance
across all experiments and does not impose restrictions on image size and model
architecture. Furthermore, contrastive learning proved to be a good alternative
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for traditional supervised transfer learning, since the latter may not be appli-
cable when pre-training and downstream task domains do not intersect (for
example, in medical VQA X. He et al., 2020; Lau et al., 2018).

3.4.4 Out-of-Distribution Detection

One of the main advantages of EBMs that has attracted researchers is their
ability to detect out-of-distribution data (Elflein et al., 2021; W. Liu, Wang, et
al., 2020). In VQA, models typically can not distinguish between in-distribution
and out-of-distribution samples and can not tell if a particular question about
a particular image is unanswerable. Although in the real-world setting, it is
a common case when users provide images of low quality or irrelevant to the
question, and a model is just unable to find the correct answer to the question
asked (Bhattacharya et al., 2019; Chiu et al., 2020). We thus aim to test our
models for their out-of-distribution detection abilities.

A simple way to detect out-of-distribution samples is to set a threshold on
the softmax scores predicted by the model, such that all samples with low
confidence scores are classified as out-of-distribution (Hendrycks and Gimpel,
2016). In energy-based models, each input is mapped to a scalar value, where
training data is associated with lower energy values and unobserved data gets
higher energy. Therefore, negative energy scores can be used instead of softmax
confidence for out-of-distribution detection. In our experiments, we use four
datasets: CIFAR (Krizhevsky, Hinton, et al., 2009), MNIST (L. Deng, 2012),
SVHN (Netzer et al., 2011) and VQA v2 (Goyal et al., 2017); and the generated
images of random noise, cone shapes and empty images of the background, to
serve as an out-of-distribution data (examples are given in Figure 3.5).

CIFAR MNIST SVHN VQA v2 Background Cones

Figure 3.5. Example images from out-of-distribution datasets.

To compare out-of-distribution detection abilities of the models, we compute
Area Under the ROC Curve (AUROC) values using softmax and negative en-
ergy scores for SimCLR? and EBM methods respectively (Table 3.4). We also
visualise the distributions of scores in Figure 3.6. Overall, energy scores help
to almost perfectly distinguish between training data and external datasets
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(a) EBM (b) SimCLR?

(c) EBM (d) SimCLR?

(e) EBM (f) SimCLR?

(g) EBM (h) SimCLR?

Figure 3.6. Distribution of energy and softmax scores from
EBM and SimCLR? models respectively. In-distribution (blue)
data comes from the pre-training dataset and out-of-distribution
(orange) data is collected from public datasets or generated man-

ually.
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Noise CIFAR MNIST SVHN VQA v2 Background Cones

EBM 1.00 1.00 1.00 1.00 1.00 0.52 0.30
SimCLR? 0.96 0.92 0.97 0.91 0.94 0.94 0.82

Table 3.4. AUROC scores for out-of-distribution detection.
EBM ranks first for all external datasets, but fails to distinguish
samples of alternated original data (background and cone im-

ages).

(AUROC of 1.0 in five experiments). However, when out-of-distribution data
is visually similar to the training one (e.g . images of background and cones)
EBM’s performance falls far below its softmax-based counterpart. Therefore,
energy scores can be used to filter out the samples that are clearly distinct from
the training data but are not sufficient to spot fine-grained differences.

3.4.5 Supervised Training with Energy-Based Models

One of the reasons behind our choice to explore energy-based models is their
increasing popularity in multiple computer vision and natural language process-
ing applications. This recent interest is partially caused by the EBM’s ability
to solve generative and discriminative tasks simultaneously and improve un-
certainty calibration. We aim to investigate whether EBMs can benefit VQA
task in a similar way. We test two popular energy-based methods, namely
JEM (Grathwohl et al., 2019) and Conditional EBM (CEBM) (Du, Li, Tenen-
baum, et al., 2020; Du and Mordatch, 2019) with fully supervised training on
the VQA task. The dataset for these EBMs is similar to the one used in the
main experiments (Section 3.4.1). The training split contains 16,000 images
(each with one corresponding question about the shape), where spheres are of
any colour, cubes are either grey, blue, brown or yellow, and cylinders are ei-
ther red, green, purple or cyan. Test split has 5,000 images with spheres of
any colour, and cubes and cylinders having swapped colour sets. As a baseline,
we use a simple classifier model that has the same CNN-LSTM architecture as
JEM and CEBM in our experiments.

JEM method proposes to treat a discriminative classifier as an energy-based
model and optimise two objectives simultaneously:

log pθ(x, y) = log pθ(x) + log pθ(y|x) , (3.10)
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(a)

(b)

Figure 3.7. Examples of generated images with (a) high and
(b) low energy.

where x is a data point, and y is a class label. This objective can be op-
timised with standard cross-entropy for classification part and log-likelihood
(Equation 3.2) for energy learning. The energy function is defined as negative
LogSumExp(·) function of the logits of the classifier:

Eθ(x) = − log
∑
y

exp(fθ(x)[y]) . (3.11)

During experiments, we found it difficult to balance both losses to make sure
that the model learns to both correctly classify answers and generate new im-
ages. Typically, classification loss converges much faster and, to minimise energy
loss, the model starts to generate non-realistic images that always give high en-
ergy. With this setting (denoted as ‘JEM’ in results), the inclusion of energy
learning in the classifier becomes meaningless. To mitigate the dominance of
classification loss, we multiplied it by the weight parameter (0.1 value showed
the best results through parameter search). That slowed down the convergence
rate which gave the model more time to learn to produce naturally-looking im-
ages. Nevertheless, we observed that at some point during training the model
always starts to generate noisy images that are easily distinguishable from the
real ones (examples in Figure 3.7a). We thus introduced early stopping that
stops the training when energies of real and generated images diverge from each
other too far (i.e. when |Eθ(x′) − Eθ(x)| > 0.8), which means that the model
is no longer generating realistic images.

CEBM proposes to learn conditioned energy function Eθ(x|c). It is built upon
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a CNN architecture with conditional gains and biases (Dumoulin et al., 2016)
that was designed to generate images conditioned on style. Although CEBM
is mainly designed for the generation task, it shows robust classification per-
formance (Du and Mordatch, 2019) when the energy of images conditioned on
class labels is used to predict the label:

y? = argmin
y

Eθ(x|y) . (3.12)

As CEBM is a generative model, there are no obvious stopping criteria for train-
ing. We used FID score (Heusel et al., 2017) to evaluate the model’s performance
and stopped the training when FID value became stable and generated images
became similar to the real ones (by visual inspection of the results). However,
we further observed that there is no correlation between the generative perfor-
mance of the model measured by FID score and its classification results on the
VQA task. The model’s checkpoints from different epochs produce significantly
different predictions. For a fair comparison, we report the results for the epoch
that gives the best FID score.

Along with the accuracy performance, we measure the model’s calibration as
it has been shown that EBM training helps the model to achieve better cal-
ibration (Grathwohl et al., 2019; T. He et al., 2021). A model is considered
well-calibrated if its confidence is aligned with the predicted accuracy. That
is, the model is unsure about the wrong predictions and confident about the
correct ones. We use a standard metric for calibration - Expected Calibration
Error (ECE) (Guo et al., 2017). It splits the predictions into M equally-sized
bins according to their confidence values and measures the weighted average of
the difference between accuracy and confidence of each bin. The confidence is
a probability score, or softmax output, for the predicted label:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) , (3.13)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i , (3.14)

ECE =
M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣ , (3.15)
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Total Sphere Cube Cylinder ECE ↓

Baseline 28.46 100.00 0.00 0.00 71.54

CEBM 34.54 54.60 31.56 21.10 9.24

JEM 28.44 99.93 0.00 0.00 71.28

JEM (early stopping) 45.86 99.93 39.23 8.12 36.55

Table 3.5. Accuracy results and expected calibration error
(ECE) for supervised energy-based training.

where Bm is a set of indices in a bin, n is the number of samples, ŷi and p̂i

are ground truth label and probability score for the prediction yi respectively.
ECE values ranges from 0 to 100, where 0 indicates that the model is perfectly
calibrated (i.e. probability score pi is 1 for all correct predictions and 0 for all
incorrect ones).

The results for supervised EBM training are given in Table 3.5. The simple
classification baseline, unsurprisingly, learns shape-colour combinations seen
during training and is therefore unable to predict novel combinations in the
test set. That results in 100% accuracy for questions about spheres (present
in the training set) and 0% accuracy for cubes and cylinders. ECE score is
pretty high (71.54) since the model is confident in its wrong predictions. JEM
shows similar results, although with a slightly smaller calibration error (71.28).
As discussed above, in standard JEM training, classification objective quickly
dominates energy learning which explains similar performance. JEM trained
with classification loss weight and early stopping gives higher overall accuracy
(45.86%) and, consequently, lower ECE (36.55). While the baseline classifier
clearly overfits the training data, JEM can correctly answer some of the un-
seen samples, although it still often confuses cubes and cylinders with relatively
high confidence. CEBM surpasses the baseline with 34.54% accuracy, but finer
analysis suggests that this result is closer to random predictions. Both baseline
and JEM show almost perfect accuracy for spheres, while CEBM achieves only
54.60% accuracy, meaning that the model is underfitted to the task. The lowest
ECE score (9.24) is due to the model’s low confidence for all the predictions
and it does not imply good calibration. Overall, current EBMs are difficult to
train and can be used with limited data and architectures which makes them
unsuitable, in their current form, for such a complex task as VQA.
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3.5 Conclusion

In this work, we explored the applicability of unsupervised image feature pre-
training for visual question answering. We showed that two self-supervised
methods, energy-based model and contrastive learning can learn image repre-
sentations from unlabelled data sufficient for the downstream VQA task. Fur-
ther, both methods are able to generalise to unseen test samples from a small
annotated fine-tuning set. However, given the complexity of EBM training and
its unstable results, we can conclude that contrastive learning is currently a
more promising approach for unsupervised feature learning for the VQA task.
Moreover, we found that a contrastive method performs on par with a larger
fully-supervised model trained on a colossal ImageNet dataset.
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Chapter 4

Visual Question Answering with
Prior Class Semantics

In this chapter we present a novel mechanism to embed prior knowledge in a
model for visual question answering. The open-set nature of the task is at odds
with the ubiquitous approach of training of a fixed classifier. We show how
to exploit additional information pertaining to the semantics of candidate an-
swers. We extend the answer prediction process with a regression objective in
a semantic space, in which we project candidate answers using prior knowledge
derived from pre-trained word embeddings. An extensive study of learned rep-
resentations with the GQA dataset reveals that important semantic information
is captured in the relations between embeddings in the answer space. The pro-
posed method brings improvements in consistency and accuracy over a range
of question types. Experiments with novel answers, unseen during training,
indicate the method’s potential for open-set prediction.

4.1 Introduction

Most recent developments in the field of visual question answering (VQA) have
focused on the development of deep learning architectures that can be trained
with end-to-end supervision (i.e. questions, images, and answers). However,
even current large-scale datasets (Antol et al., 2015; Goyal et al., 2017; Hudson
and Manning, 2019a) can only cover a limited fraction of all knowledge poten-
tially useful for the task. The underlying reasons for this limitation are that
(1) the collection of data with end-to-end annotations, i.e. questions/answers is
expensive as it usually requires human resources, and (2) the desirable knowl-
edge about the world is constantly expanding, and no single dataset can ever
capture it all. Existing models trained once and for all on any of these datasets
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?

red

Is the color of the car
red or white

VQA model

Figure 4.1. Existing models treat VQA as a classification task
over predefined answers (upper branch). We supplement our
model with a regression objective in a semantic answer space
(lower branch). This allows incorporating additional prior knowl-
edge about answer semantics. This improves its accuracy and
consistency. In the above example, red and orange are similarly
likely with the traditional objective. Our regression lands closer
to the representation of red in the answer space. This resolves

the ambiguity and red is chosen as the final answer.

lack the generalisation and adaptation capabilities desirable in real-world ap-
plications. These shortcomings motivate our search for alternative sources of
information, and a method to exploit them in a VQA model.

A common approach to include existing knowledge in VQA models is to use
pre-trained models to obtain image and question features. On the image side,
pre-trained Convolutional Neural Network (CNN) or object detectors are ubiq-
uitous (Anderson, He, et al., 2018) to extract representative image features.
On the language side, pre-trained word embeddings like Word2Vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014) usually serve to encode the
words of the question. The advantage of these techniques is to leverage knowl-
edge learned from larger, non-VQA specific data (e.g . ImageNet J. Deng et
al., (2009) and large text corpora). The benefit of these approaches has been
widely demonstrated, which further motivates our quest for additional sources
of usable knowledge and techniques to incorporate it.

Existing models for VQA follow the common blueprint of a two-stream em-
bedding, followed by fusion and classification stages (Antol et al., 2015; Teney,
Anderson, et al., 2017; Z. Yang et al., 2016). The typical setting in VQA con-
sists of an image and a related question. The model takes this image-question
pair and predicts the correct answer by solving a classification problem over
the set of candidate answers that occur in the training data. This classification
approach, in contrast to text generation (Gao et al., 2015; Q. Wu, Shen, et al.,
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2017), considerably simplifies the evaluation process, as the model can be as-
sessed by its classification accuracy. However, treating VQA as a classification
task has major drawbacks. The answers are treated as distinct class labels and
answer words are abstracted from their meanings. This disregards semantic
relations between related answers. Moreover, some questions contain possible
answers in their wording (e.g . Is this car red or white? ) and it seems natural
to include mechanisms to explicitly represent the semantics of possible answers
as it is done for question words. Guided by these observations, we develop
an architecture that leverages prior knowledge about answers to improve the
performance of a VQA model.

Our main technical contribution is to treat VQA as a multitask problem, where
we both predict the answer label based on classification scores, and we ad-
ditionally learn a mapping into an answer representation space that captures
the semantics of these answers (Figure 4.1). We incorporate prior knowledge
into the model by initialising the representations of answers with pre-trained
word embeddings. We perform an extensive and rigorous analysis of the trained
model. It demonstrates the benefits of the approach and provides us with in-
sights in the ways language semantics are useful for the task of VQA. Moreover,
we show that learned answer representations can be used for out-of-vocabulary
answer prediction which is an important, yet understudied problem in VQA
field (Noh et al., 2019).

The contributions of this work are as follows.

• We formulate VQA as a multitask problem, where we train the model, not
only to assign scores to answer candidates but also to perform a regression
in a vector space that represents answer semantics.

• We use this multitask formulation to incorporate additional information
into the model with a particular loss and initialisation of the semantic
answer space. We also show that it allows the model to predict novel
answers that were not seen during training.

• We perform an extensive analysis of the model and various ablations. We
demonstrate clear advantages on the GQA dataset (Hudson and Manning,
2019a), and obtain insights on the ways in which answer semantics are
useful for the task of VQA.
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4.2 Related Work

The overarching motivation for research on VQA is that of tackling a complex,
open-world and multi-modal task. These aspects are among the foundations
required in general artificial intelligence (AI) systems. While the task has at-
tracted considerable attention over the past few years (K. Kafle and Kanan,
2017b; Teney, Wu, et al., 2017), its open-set and open-domain aspects have
largely been overlooked. The overarching motivation for research on VQA is
that of tackling a complex, open-world and multi-modal task. The common
practice of training a model with end-to-end supervision using a fixed dataset
is inherently limited. Our discussion focuses on the incorporation of external
knowledge and training signals into VQA models.

4.2.1 Answer Embeddings for VQA

Most techniques to incorporate additional information into VQA models are
based on representations of language, both of questions and of candidate an-
swers. In (Teney and van den Hengel, 2016) pre-trained word embeddings are
used as bag-of-words representations of candidate answers, which are passed
to the network as additional inputs, along with question and image features.
In (Teney, Anderson, et al., 2017) authors proposed to initialise the weights of
the output classifier with pre-trained answer embeddings. They used both a
textual branch, initialised with GloVe vectors, and a visual one, initialised with
visual features from images representing the candidate answers. In (H. Hu et
al., 2018), the authors propose to learn two sets of embeddings, image-question
and answer vectors. They optimise a projection of these two embeddings into a
joint space where the distances between compatible pairs are minimised. Their
experiments showed interestingly that the learned projections was transferable,
to some extent, across datasets with different sets of possible answers.

Different from the methods cited above, our model forgoes the notion of a fixed
answer set, and the output of the network is a location in a space representing
answer semantics. The final prediction is still obtained by searching for the
closest representation among answer candidates in this same space, but the for-
mulation offers improved flexibility. This allows us to explore different distance
measures in this semantic space. It also allows control over the contribution
made by prior and task-specific data. Finally, it easily accommodates mul-
tiple representations of a same answer, thereby accounting for polysemy and
context-dependent meaning of certain words and expressions.
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4.2.2 Class Embeddings for Image Classification

A related line of works use non-visual data to improve image classifiers. Tech-
niques have been proposed to use unannotated text (Frome et al., 2013), knowl-
edge graphs (H. Xu et al., 2018) or hierarchical word databases (Akata et al.,
2015) to obtain meaningful class embeddings, which proved beneficial for fine-
grained image classification. Our work applies similar ideas to the task of VQA,
where the key challenge is to find embeddings semantically connecting both vi-
sual and textual modalities.

4.3 Methodology

The main idea is to extend VQA with a regression objective, where the model
outputs a high-dimensional vector that represents the semantics of the answer.
This is a shift from the traditional classification objective over predefined can-
didate answers. Our formulation will open the door to compositional and un-
bounded sets of answers, and the possibility of truly open-set prediction. Tech-
nically, our method concerns only the latter stage of a VQA model and is thus
applicable to most existing “joint embedding” models, such as (Antol et al.,
2015; Saito et al., 2017; B. Zhou et al., 2015). In these models, the network
produces a vector x from the fusion of the image and question representations
(see Figure 4.2). The traditional approach then feeds this to a classifier and
obtains y = fθ(x), with y ∈ RA being a vector of scores of length A, the
cardinality of a predefined set of candidate answers.

4.3.1 VQA as a Regression Task

Our contribution is to learn a supplementary branch from x, which produces a
projection p = gψ(x), where ψ are the parameters of the projection. The vector
p ∈ RP is interpreted as a representation of the semantics of the predicted
answer. The key to this simple approach is both in the objective used to train
this branch, and in its use to select an actual textual answer, which we both
describe below.

Note that the traditional classifier over x can be interpreted as a special case of
our formulation. The classifier fθ(·) typically includes a non-linear layer followed
by a linear one. They can be interpreted as a non-linear projection followed by
the computation of distances (dot products) with representations of answers.
These representations then correspond to the rows of the weight matrix of the
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Figure 4.2. Our contributions apply to the classifier stage
(dashed box) of a VQA model. We feed the fused image/ques-
tion representation into two separate branches. (1) In the upper
branch, a traditional scoring model over predefined candidate
answers. (2) In the lower branch, a novel, learned projection
to a semantic answer space. The resulting vector p serves to
measure pairwise distances (d) with pre-trained representations
of candidate answers (M). Nodes marked N denote non-linear

layers, L linear layers, and X an element-wise product.

linear layer. In this view, our model is a generalisation of the classical approach,
with benefits of increased flexibility in the choice of the distance measure, of
the optimisation loss, and of the representations of candidate answers including
their initial and/or frozen values.

4.3.2 Training

To evaluate the possibility of mutual benefits of the classification and regression
objectives, our full model includes both branches on top of the fused representa-
tion x. Each of their respective outputs y and p is fed into a specific loss. The
whole network is trained by backpropagation of the gradient of the two losses
through all the layers leading to x. The model is therefore trained to minimise
the classification error and simultaneously learns the projection into the shared
answer embedding space.

Classification Loss

The output of the classification branch y goes through a standard logistic func-
tion σ(·) and binary cross entropy loss Lc. Denoting with â ∈ {0, 1}A the
one-hot (multi-hot) vector of the ground truth answer(s) of a specific training
instance, we have
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Lc =
A∑
i=1

−[ âi · log σ(yi) + (1− âi) · log(1− σ(yi)) ] , (4.1)

where i indexes vector elements. The sum allows for multiple ground truth
answers to a single training question.

Regression Loss

The output of the additional regression branch produces the vector p ∈ RP .
It is interpreted as a location in a high-dimensional space that captures the
semantics of the predicted answer. We store in a matrix MA×P representations
of A candidate answers in this space (P -dimensional row vectors). These rep-
resentations can be learned or initialised using prior knowledge, as described
below. The objective of the regression branch is to produce a vector p close
to the representation of the ground truth answer, and distinct from those of
incorrect ones. Using a metric dist(·, ·), we compute all distances between p

and the rows of M , noted as Mi. We have

d = [d1, d2, ..., dA] with di = dist(p,Mi) . (4.2)

We then define a hinge loss on these distances:

Lp =
A∑
i=1

li with li =

di if âi = 1 ,

max{0, δ − di} if âi = 0 .
(4.3)

where δ is a scalar margin hyperparameter.

Total Loss

Our overall optimisation objective is the convex combination of the classification
(Equation 4.1) and regression losses (Equation 4.3):

L = λ Lc + (1− λ) Lp , (4.4)

where the scalar hyperparameter λ balances the two objectives. By setting
λ = 1, the loss falls back to a unique traditional classification objective, which
serves as our baseline.
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4.3.3 Predictions

Due to the nature of existing datasets, answer prediction during test time does
not differ from the training, since both train and test splits typically share
a common answer set. Our major experiments thus simply use the answers
predicted by the network with the same combination of the classification and
regression branches as the training objective. That is, the final predicted answer
a? ∈ [1...A] is the one from the set of candidates with the combination of the
highest score and the lowest distance. Formally:

a? = argmax
i

(
λ softmax(y) + (1−λ) softmax(−d)

)
. (4.5)

To explore the full potential of the proposed task formulation, we conduct an
additional set of experiments where train and test answer splits do not intersect.
The experimental setting will be described in detail in Section 4.4.9.

4.3.4 Incorporating Prior Knowledge about Answers

The matrix M of the regression branch contains, in each of its rows, the repre-
sentation of a candidate answer. M can be treated and optimised as any other
parameter of the network, but it can also be initialised with values that con-
tain prior knowledge about answers. In particular, we experiment with GloVe
embeddings (Pennington et al., 2014) for single-word answers, and averaged
(i.e. as a bag-of-words) in the case of multi-word ones. The values of M are
further fine-tuned during training. In novel answers prediction setting (Sec-
tion 4.4.9) we use ConceptNet embeddings (Speer et al., 2017) that are frozen
during training.

As ablations of our model, we consider two other initialisation schemes of M .
They will serve to probe for the source of the gains of our model.

• Random. We initialise M with normally distributed random values, as
would be any other weight matrix of the network.

• Shuffled GloVe. We initialise M with GloVe embeddings as described
above but subsequently shuffle its rows randomly, as in (Teney, Anderson,
et al., 2017). The rows ofM are thus mismatched from their corresponding
answers. This allows us to disentangle the anticipated benefits of using the
semantic information carried in GloVe vectors, from the mere numerical
effects of using them as initial values.
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4.4 Experiments

We performed an extensive evaluation to thoroughly validate the benefits of the
proposed method, and understand the exact source of improvement. The overall
conclusion is that the improvements indeed stem from the information brought
in by the use of external data, rather than numerical artefacts or structural
modifications to the network architecture.

4.4.1 Datasets

GQA dataset (Hudson and Manning, 2019a) is used for the evaluation of the
approach as it provides the most comprehensive suite of metrics and cleanest
data of current VQA datasets. We use the validation split for hyperparameter
tuning and the test-dev split for model evaluation. The test set is used for
comparison with other existing methods. We do not aim to build a data-specific
solution, so our model does not utilise scene graphs and functional programs
included in the dataset. We do, however, report the model’s performance for
new metrics proposed by the authors:

• Validity measures whether the predicted answer fits the scope of the ques-
tion (e.g . a number for a counting question).

• Plausibility checks that the answer is semantically reasonable, defined as
occurring at least once with the given question in the whole dataset.

• Distribution is the χ2 distance between the distributions of predicted and
ground-truth answers over groups of questions. A lower value means a
better ability to predict less frequent answers.

• Consistency measures the agreement between answers to pairs of questions
about the same image where one entails the other.

• Grounding is used for the evaluation of attention-based models and is not
tested in our study since attention is not the focus of this research.

The dataset also assigns test questions to categories (Table 4.1), across which
the accuracy can be measured separately (as done in Table 4.5).

VQA v2 dataset (Goyal et al., 2017) is used for additional set of experiments.
To test the out-of-vocabulary answer prediction, we created a subset of VQA
v2 that we call VQA v2 with novel answers. We used the original training and
validation splits as our new training and test splits respectively. In each of
them, we filtered the questions according to the following rules:
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Type Example

Choose Is it an indoors or outdoors scene ?
Compare Are all these animals of the same type ?
Logical Are there nuts or vegetables ?
Query What is this bird called ?
Verify Is there a cat that is not white ?
Attribute What is the colour of the fence made of metal ?
Category What piece of furniture is not small ?
Global Which place is it ?
Object Is there a train in the picture ?
Relation What is the vegetable on top of the pizza ?

Table 4.1. Examples of each question type of the GQA dataset.

• Every ground truth answer has a corresponding ConceptNet embedding
(exact match).

• Every ground truth answer consists of one word only (e.g . discarding black
and white or don’t know).

• Every ground truth answer must occur in the original dataset between 5
and 500 times (thus discarding very rare and extremely frequent answers
such as yes and no).

• The sets of ground-truth answers in the training and test splits do not
intersect.

With this procedure, we obtain 91,255 training questions with 6,928 possible
answers and 13,367 test questions with another 1,187 answers.

4.4.2 Experimental Setting

Our contributions are implemented on top of the open-source Pythia frame-
work (Y. Jiang et al., 2018), the winning entry of the 2018 VQA Challenge1.
The technique is however applicable to a wide range of current and future mod-
els. Pythia thus serves as the main baseline. We also evaluate the Pythia model
where the weights of the output classifier are initialised with pre-trained answer
embeddings (noted ‘Pythia+GloVe’). We also compare our method to exist-
ing methods designed to inject prior knowledge into the model in the form of
answer embeddings. Precisely, we consider the two variants of the factorised

1https://visualqa.org/roe_2018.html

https://visualqa.org/roe_2018.html
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Probabilistic Model of Compatibility (fPMC) proposed by H. Hu et al., (2018),
using the code provided by the authors. All tested models use the same image
features (those provided with the GQA dataset) and representations of question
words (300-dimensional pre-trained GloVe embeddings).

Pythia. The baseline Pythia model is the implementation of the classical joint
embedding architecture. It uses object image features extracted with the pre-
trained Faster R-CNN (S. Ren et al., 2015) model provided with the GQA
dataset. On the language side, words are represented with word embeddings
initialised with pre-trained GloVe vectors, followed by an LSTM to produce a
vector representation of the whole question. A question-guided top-down atten-
tion is applied on image features to identify relevant image regions. The image
and question features are passed through non-linear layers and finally combined
with an element-wise multiplication. The final classifier comprises a non-linear
layer and a linear one, which produces a score for each candidate answer. All
non-linear layers throughout the network use weight normalisation (Salimans
and Kingma, 2016) and ReLU activations.

Pythia serves as a reference for evaluation, and as the base model on which to
build our contributions. This choice is justified by a few reasons. It is a high-
performing open-source implementation that still outperforms many others on
the VQA v2 dataset. This provides us with a strong – and thus challenging –
starting point to demonstrate the proposed method. Moreover, the implemen-
tation of Pythia is modular and easily allows one to separate, replace, and
compare the various blocks of the model. In our case, this enables us to focus
specifically on the classification part of the model, leaving the rest unchanged.

Pythia with pre-trained classifier. We compare our method to the Pythia
model, in which the output classifier is initialised with pre-trained answer em-
beddings. As discussed in Section 4.2.1, this is a reasonable approach to embed
semantic information about candidate answers within the model. Following a
procedure similar to (Teney, Anderson, et al., 2017), we collect 300-dimensional
GloVe embeddings for all words in the answer vocabulary (substituting unknown
words with zero vectors). We represent each answer directly by its matching
word embedding, or, in the case of multi-word answers, by the average embed-
ding of the constituent words. Next, we design the classifier block of the model
as follows: one non-linear layer with output dimension equal to the dimension-
ality of used GloVe embeddings followed by a linear layer with a weight matrix
w ∈ R300×A. Each row of w thus contains the vector corresponding to one spe-
cific answer. Besides the non-random initialisation of w, the only distinction
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with the original Pythia model is that the output dimension of the non-linear
layer is reduced from 5000 to 300 to match the dimensionality of GloVe vectors.

Factorised Probabilistic Model of Compatibility. We also compare the
proposed approach to fPMC. In this architecture, a joint image-question em-
bedding is learned alongside the answer embedding, and the model is trained
to increase the likelihood of the correct answer. We performed all experiments
with the following two variants of the architecture:

• fPMC (SAN?) model, described in the original paper, that utilises stacked
attention network (Z. Yang et al., 2016) together with bidirectional LSTM
and spatial image features extracted with ResNet-152 (K. He et al., 2016).
For obtaining answer embeddings, the model exploits two-layer bidirec-
tional LSTM over GloVe vectors. We used the code provided by the
authors of the paper and made the adjustments only required to make it
compatible with GQA dataset.

• fPMC (BUTD?) model is our modification of fPMC (SAN?) where we
used the “bottom-up and top-down attention” (Anderson, He, et al., 2018)
model with object image features for parameterising the joint embedding
in the same way as all the other models used in our experiments. We were
thus able to explicitly evaluate the approach of learning aligned answer
embeddings independently from the impact of different feature initialisa-
tions.

4.4.3 Implementation Details

The proposed method builds directly on the open-source Pythia implementa-
tion2, which uses PyTorch (Paszke et al., 2019). Our model is trained for
20,000 iterations with a batch size of 512 and AdaMax optimiser (Kingma and
Ba, 2014). We adopted a warm-up learning schedule strategy from the original
paper and tuned it to the current setup. Specifically, the starting learning rate
of 0.002 is linearly growing up to 0.1 during the first 1000 iterations and then
decreased by a factor of 0.1 at 11,000, 13,000 and 15,000 iterations. Importantly,
these hyperparameters were selected for the best performance of the baseline
model on the validation set of the GQA dataset, thus avoiding any unfair ad-
vantage for our contributions. The distance function dist(·, ·) (Equation 4.2) is
implemented as the Euclidean distance. This choice proved empirically supe-
rior, on the GQA validation set, to a dot product or a cosine similarity. The

2https://github.com/facebookresearch/pythia/tree/0.1

https://github.com/facebookresearch/pythia/tree/0.1
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values of the regression loss margin (δ = 1 in Equation 4.3) and of the loss
weight (λ = 0.5 in Equation 4.4) were determined by grid search for best over-
all accuracy on the GQA validation set. Every experiment was repeated with
five different random seeds, and we report the average over the five runs. The
ensembles use the average of the predicted scores/distances of several models
trained with different random seeds, before taking the argmax of Equation 4.5.

For VQA v2 dataset the only difference in hyperparameters is the learning
schedule. The model is trained for 12000 iterations with a learning rate de-
creasing at 5000, 7000, 9000 and 11,000 iterations, following the original Pythia
implementation. We also found it beneficial to apply L2 normalisation after
the projection layer. In the out-of-vocabulary experimental setting, we used a
subset of VQA v2 data, so parameters were adjusted to fit the smaller dataset.
Specifically, we reduced the batch size to 128 and increased the number of it-
erations to 30,000 with decreasing steps at 12,000, 17,000, 22,000, and 25,000
iterations.

4.4.4 Quantitative Results

Our main results on the GQA dataset are provided in Table 4.2 (see Appendix A
for additional results). Looking at the overall accuracy, our model clearly out-
performs all baselines and ablations. The same observations can be drawn on
both the binary and open-ended questions. The trend is also confirmed when
evaluating an ensemble of our model, versus a similar ensemble of the Pythia
baseline. The fPMC model obtains the lowest results, including our modified
version fPMC (BUTD?), which indicates its lack of adaptivity to complex fea-
ture representation methods. The fPMC model was initially tested only on the
very noisy VQA v2 dataset, and a possible reason for its weak performance on
GQA is the narrower answer set. A surprising outcome is that Pythia with the
pre-trained classifier (‘Pythia+GloVe’) shows worse accuracy results than the
baseline. This occurs mostly due to the overfitting of the pre-initialised classi-
fier to the most common answers in the training set, as observed by the reduced
accuracy on both the validation and test-dev sets. Unlike the other described
architectures, our model exploits the additional information contained in the
representations of answers in an effective way, increasing performance without
overfitting.

We present experiments on VQA v2 dataset in Table 4.3. Contrary to our
results on GQA, we observe no significant difference compared to the baseline.
We attribute this to the nature of the dataset. In VQA v2, a large fraction
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of the questions (over 37%) are to be answered with yes or no, and another
13% with a number. Our approach, which focuses on the representation of
answer semantics, is already expected to have no influence on this large part
of the dataset. Moreover, numbers in VQA v2 are used not only for counting
questions, but also to refer to abstract concepts, as in questions like How old
is animal?, What time is the clock showing?, or What is the size of the TV?.
It would certainly be difficult to infer a single representation of numbers that
would encompass such a variety of concepts.

An additional challenge with VQA v2 is that most questions have multiple
ground-truth answers that are actually synonyms. Other times, annotation
noise means that multiple answers with contradictory meanings are marked as
correct. For example, a question Is the dog male or female? has both male
and female answers in the annotation. In our model, all ground-truth answers
contribute equally to the projection loss, meaning that noisy or incorrect answer
labels can push the learned projection in wrong directions. This issue could be
mitigated by introducing instance-specific weights in the projection loss. This
is an interesting avenue for future work.

Overall, our approach still has a positive impact on VQA v2 for out-of-vocabulary
prediction (see Section 4.4.9). And importantly, the above issues did not incur
a decrease in performance compared to the baseline model.

4.4.5 Comparison with Existing Models

We compare our model with existing methods reported in (Hudson and Man-
ning, 2019a) and several contemporaneous state-of-the-art models (see Table 4.2).
We report the performance of the blind LSTM, the bottom-up top-down atten-
tion model (Anderson, He, et al., 2018), MAC (Hudson and Manning, 2018),
LXMERT (Tan and Bansal, 2019) and Neural State Machine (NSM) (Hudson
and Manning, 2019b). Our model shows better results than all the baselines,
and in spite of a much simpler architecture, it notably surpasses the MAC
model. However, the newest methods LXMERT and NSM show higher perfor-
mance which is not surprising. LXMERT model explores a more sophisticated
technique of image and language representation and is pre-trained on a sig-
nificantly larger amount of data. NSM implements a compositional approach
and performs explicit multi-step reasoning. Differently, our approach focuses
on the output stage of the VQA model, thus the contributions of this work are
expected to be applicable to these models.
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4.4.6 In-Depth Analysis

We report the detailed metrics of the GQA dataset in Table 4.4. The first ob-
servation is that a similar ranking of methods and ablations can be drawn from
most of the metrics. This stability further confirms the benefits of the proposed
method. The improvements on these advanced metrics also indicate benefits be-
yond the sole increase in accuracy. The validity and plausibility scores, in par-
ticular, which are noticeably higher, indicate a generally more robust model.
The higher consistency score implies that the answers produced over related
questions are compatible with one another (see Figure 4.3). The only metric on
which our model falls below the baseline is the answer distribution. It indicates
that the model occasionally favours one answer over most others. We explain
this by the fact that some answers are not assigned appropriate initial repre-
sentations. We also look at the accuracy per question category (Table 4.5). We
observe no significant drop in accuracy for any type, and the highest improve-
ments occur on the choose, query, attribute, and relational questions.

The ablations of our method (‘Ours+random’ and ‘Ours+shuffled GloVe’) are
important to determine whether the source of improvements is in the architec-
ture of our model (the additional output branch and loss), in numerical effects
from the initialisation of the matrix M with values from GloVe vectors, or in
the actual information conveyed in the GloVe vectors. The ablation with ran-
dom initial values is essentially similar to the Pythia baseline, which shows no
significant effect from the architecture alone. Surprisingly, the ‘shuffled GloVe’
ablation brings some improvement, which we explain by two factors. First,
since the values of M are further fine-tuned with the rest of the model, they
can still incorporate useful information from the task-specific supervision even
if the initial values do not contain relevant semantic information. Second, some
answers may actually benefit from the “wrong” initialisation: we have deter-
mined that the absolute values of the representations of answers do not play
the most significant role, but that their mutual relations are what encodes the
critical information. This shows up in particular with pairs of antonym answers
such as yes/no or left/right. The GloVe embeddings of these pairs are usually
similar, whereas the VQA task-specific supervision tends to push their represen-
tations apart. This can also be observed on the high accuracy of the ‘shuffled’
ablation on the choose category of questions which do specifically contain this
type of antonym answers (see Table 4.1). Despite these effects, the full model
still performs clearly better than the ablations, indicating an overall benefit
from the information conveyed in the GloVe representations of answers.
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Is the yellow taxi to the left or to
the right of the blue vehicle?
Baseline: right X
Proposed: right X

Is the yellow vehicle to the left of
the blue vehicle?
Baseline: yes ×
Proposed: no X

Are there either any catchers or
fences?
Baseline: no X
Proposed: no X

Do you see fences in this image?

Baseline: yes ×
Proposed: no X

Is the green chair made of wood or
metal?
Baseline: metal X
Proposed: metal X

Is the green chair wooden or
metallic?
Baseline: wooden ×
Proposed: metallic X

Is the container that is to the left
of the stove purple or white?
Baseline: white X
Proposed: white X

Is the container that is to the left
of the stove white or purple?
Baseline: purple ×
Proposed: white X

Which kind of bag is the man
wearing?
Baseline: backpack X
Proposed: backpack X

Are there backpacks in this
picture?
Baseline: no ×
Proposed: yes X

What is the person by the statue
doing, sitting or standing?
Baseline: sitting X
Proposed: sitting X

What is the woman doing,
standing or sitting?
Baseline: standing ×
Proposed: sitting X

Which kind of animal is the cart
behind of?
Baseline: horse X
Proposed: horse X

What is the animal that the cart
is behind of?
Baseline: dog ×
Proposed: horse X

On which side of the picture is the
train?
Baseline: left X
Proposed: left X

Is the train on the left of the
image?
Baseline: no ×
Proposed: yes X

Are there any fries to the right of
the person on the table?
Baseline: yes X
Proposed: yes X

Do you see any fries to the right of
the woman that is eating food?
Baseline: no ×
Proposed: yes X

Figure 4.3. Qualitative examples from GQA dataset, with pre-
dictions of our model and of the Pythia baseline. We show pairs
of questions about a same image where the first entails the second
(this information is never provided to the model during training
or testing). Our model improves in consistency over the baseline,

producing pairs of answers compatible with one another.
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4.4.7 Answer Recall

To obtain deeper insights into the additional knowledge that is actually most
beneficial, we examined the improvements of our model over the Pythia base-
line on individual answers. We report, in Figure 4.4, the change in answer
recall for a random selection of answers. We define the answer recall as, for
an answer candidate â, the ratio of questions with â as ground truth that are
correctly answered by the model. The recall of most answers improves, but it
stays similar or even degrades on some others. We investigated the possible
reasons. A degradation is presumably related to less relevant initial represen-
tations of the corresponding answer. To assess this, we examined the closest
other answers in the space of pre-trained GloVe vectors. Most answers with a
negative gain in answer recall have neighbours with no semantic or syntactic
connections. For instance, the three closest neighbours to modern are {under,
rooftop, visitor}. Answers with a high recall improvement, on the contrary, tend
to have semantically related neighbours. For example, basket has the closest
neighbours {baskets, cane, sack}. These observations further support the claim
that mutual relations between representations of answers are the major way in
which the network stores and uses semantic information.
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Figure 4.4. Absolute gain in answer recall of our model over
the Pythia baseline (positive is an improvement). We report an
even subset of answers (every 25th one in descending recall gain).
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4.4.8 Combination of Losses

Since our architecture is trained to minimise a sum of two losses (classification
and regression), we sought to evaluate their possible mutual benefit by varying
their relative weight (λ in Equation 4.4). A value of λ=0 corresponds to the
regression loss alone, and λ=1 to the baseline using the traditional classification
loss alone. Interestingly, a balanced value of 0.5 leads to the highest accuracy
(Figure 4.5), demonstrating that they are indeed complementary.
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Figure 4.5. The performance of our model varies smoothly
with the relative weight of the classification and regression losses
(Equation 4.4). The value λ=1 corresponds to a traditional
classification-only baseline, while the optimal value λ=0.5 corre-

sponds to an even contribution of the two losses.

4.4.9 Prediction of Novel Answers

Our model trained with the regression objective can predict answers at test time
that are outside the predefined set of candidates used for training (i.e. open-set
prediction, or zero-shot VQA Teney and van den Hengel, 2016). This is achieved
by replacing the matrixM with new answers and setting λ to 0 at test time. To
evaluate this setting, we use ConceptNet embeddings (Speer et al., 2017), which
are designed to capture commonsense knowledge.We use the VQA v2 dataset
since it features a more diverse set of answers than GQA. We use splits with dis-
joint sets of answers at training and test time (as discussed in Section 4.4.1). In
this setting, our model achieves an accuracy of 27% on the test set, while fPMC
model, which also has tools for out-of-vocabulary prediction, obtains about 15%
accuracy. Given that test questions feature exclusively answers never seen dur-
ing training, this clearly demonstrates a capability for predictions beyond the
scope of the training set. However, the performance on novel answers is highly
dependent on the used answer representations. Embeddings like GloVe and
ConceptNet carry only limited, mostly linguistic information, which is insuffi-
cient for the full scope of their use in VQA.
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What animal is in the
picture?
Predicted: giraffe X

Is it daytime or night in the
picture?
Predicted: daytime X

How many of the cat’s eyes
are visible?
Predicted: both X

Where is the cat?
Predicted: floorboard ×
Ground truth: floor

Is this child male or female?
Predicted: boy ×
Ground truth: male

What colour is the ground?
Predicted: ochre ×
Ground truth: gold

Figure 4.6. Examples of out-of-vocabulary predictions. The
model works well when the ground truth answer has a clear and
distinct pre-trained embedding (top row), but fails to distinguish

between synonymous answers (bottom row).

We analysed the predicted answers in out-of-vocabulary test setting to discover
the cause of reduced performance and possible ways for improvement. The
reason for many failure cases is due to synonymous and/or related answers
(Figure 4.6). When the representations of multiple candidate answers are close
in the semantic space, it is difficult for the model to distinguish them, especially
when they are both plausible for a given question.

Another important factor in the success of our method is how well the semantic
space is covered by answers seen during training. For example, if the train-
ing questions all have similar answers, e.g . different animal species, the model
could generalise well to novel animals, but not as well to anything outside these.
In other words, the model is perfectly capable of interpolation, but extrapola-
tion remains a challenge. The VQA v2 dataset was not originally designed to
test the out-of-vocabulary prediction, and existing attempts to repurpose it all
have notable issues. For our experiments, we created our own splits with novel
answers, but we made no particular provision for even coverage of semantic
concepts with the training answers. These considerations suggest the need for
a specific benchmark to allow a more rigorous evaluation of models designed for
out-of-vocabulary and zero-shot VQA.
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4.4.10 Learned Representations

We use t-SNE (Van der Maaten and Hinton, 2008) projections to visualise and
compare off-the-shelf GloVe embeddings of candidate answers, which we use
as prior knowledge to initialise the representations, with these representations
after fine-tuning within our VQA model (Figure 4.7). As expected, the GloVe
embeddings carry the kind of semantic similarity that emerges from the co-
occurrence of words in natural language. In the fine-tuned representations,
we rather observe that the proximity of representations captures common co-
occurrences of concepts in the same image, such that they are plausible answers
to possible questions about this image. For example, the word steak is projected
close to the words {potato, carrot, broccoli, tomato, pickles} (Figure 4.7b). We
indeed observe co-occurrence of these objects in images from the GQA dataset
(Figure 4.7c). This implies that additional knowledge extracted from visual
data (e.g . as Noh et al., 2019) should be a useful complement to boost out-of-
vocabulary performance.

steak

lamb bacon
ham

roast beef

meats

beef
pork

grilled

tortillatofu
macaroni
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stew

fried sausagesausages

(a) GloVe embeddings.

gravy
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broccoli
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olive

potato
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(b) Learned answer representations.

(c) Example images from the GQA dataset.

Figure 4.7. Examples of t-SNE projections in 2D of (a) ini-
tial and (b) fine-tuned representations of answers. The prox-
imity of the learned representations better captures typical co-
occurrences of the corresponding concepts in images from the

dataset (c).
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4.4.11 Choice of Answer Embeddings

Alternative Answer Embeddings

GQA validation

Binary Open All V P D ↓

GloVe 76.93 46.99 61.48 95.16 91.55 4.01

ConceptNet 76.13 46.76 60.97 95.16 91.52 4.01

Visual 74.66 45.85 59.79 95.05 91.32 5.15

GloVe + shuffled GloVe 76.64 47.01 61.34 95.16 91.52 4.08
GloVe + ConceptNet 76.18 46.07 60.64 95.16 91.59 4.06

Table 4.6. Accuracy, (V)alidity, (P)lausibility and
(D)istribution results for other embeddings on GQA validation

set.

Our primary choice for pre-trained answer embeddings is motivated by the
popularity and widespread use of GloVe vectors in VQA models. We further
investigate the applicability of other word embeddings for the regarded task.
Specifically, we evaluate pre-extracted ConceptNet embeddings, visual repre-
sentations (see description below) and combinations of different embeddings.
The results for GQA validation set are given in Table 4.6 and Table 4.7.

ConceptNet is an open-source large-scale knowledge graph that contains com-
monsense and general knowledge about the world. We use pre-extracted Num-
berbatch embeddings 3 that were obtained from ConceptNet graph. These
embeddings were used in the experiment with novel answers (Section 4.4.9) be-
cause they showed superior performance over GloVe. In this setting, answer
embeddings are fixed during training and only the regression branch is used
for inference. It means that original ConceptNet vectors build semantic space
that is more suitable for VQA answers than GloVe. However, when answer
embeddings are fine-tuned during training, GloVe vectors (61.48%) outperform
ConceptNet (60.97%) in overall accuracy results, while performing on par in
other metrics. A possible explanation for such behaviour could be the fact that
GloVe vectors are used to initialise word embeddings used for question feature
extraction. The model, therefore, can better learn connections between words
in questions and answers. The results for choose category type, where GloVe
achieves 75.36% accuracy and ConceptNet gets 73.15%, support this hypothesis.

3https://github.com/commonsense/conceptnet-numberbatch

https://github.com/commonsense/conceptnet-numberbatch
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Questions in choose category always contain the answers in their wordings as one
of the options (e.g . Is it red or blue? ), so the model can learn the link between
two possible answers and the question. We tried ConceptNet embeddings as
initialisation for both questions and answers, but the overall accuracy fell below
the baseline, meaning that GloVe vectors provide better initial representations
for the task.

The analysis of learned answer embeddings in Section 4.4.10 revealed that the
model tends to learn “visual” representations from the co-occurrence of image
concepts. This motivates us to experiment with embeddings that contain visu-
ally grounded information. To collect the data, we follow a process similar to
the one described in (J. Kiros et al., 2018). Specifically, we use each answer as
a search query to retrieve the top ten image results from Google image search.
Then we use pre-trained Faster R-CNN model from (Anderson, He, et al., 2018)
to extract image features and take the average for ten images as the target vi-
sual embedding. We further reduce the dimensionality of the embeddings (J.
Kiros et al., 2018) to 300 to match GloVe embeddings. The results for our
visual embeddings rank lowest in our experiments (59.79% overall accuracy).
The accuracy for binary questions (74.66%) falls below the baseline, which is
not surprising because it is hard to find good visual representations for such
abstract answers as yes and no. The low performance of visual embeddings
shows that linguistic information is still necessary to build valid answer repre-
sentations. We also tried multiple variations of the method, including collecting
images from Visual Genome (Krishna et al., 2017) instead of Google search, us-
ing ResNet (K. He et al., 2016) as a feature extractor, and keeping the original
vector size, but all these modifications lead to lower performance.

Our model’s architecture allows combining multiple answer embeddings by
learning several distinct projections. As different answers may require different
types of representations (e.g . binary answers benefit when their representations
are projected far from each other, while in general, similar answers tend to
cluster together in the embedding space), multiple projections can potentially
solve the problem. Furthermore, the answers that do not have corresponding
pre-trained embeddings of one type, may be present in other embeddings’ vo-
cabularies. To combine embeddings, during training we learn two projection
branches and projection loss Lp (Equation 4.3) is the sum of individual losses
of each branch. During inference we compute softmax over negative distances
(Equation 4.5), similarly, for multiple embeddings, we take the average of all
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softmax results. In our experiments, we combine GloVe and ConceptNet em-
beddings to investigate whether the information they carry complements each
other. We also experiment with combined GloVe and shuffled GloVe embed-
dings, as we found out that shuffled vectors still benefit some question types
(see Section 4.4.6). However, the results show that the overall accuracy for
all embeddings combinations is lower than for single GloVe, although it still
surpasses baseline performance. ‘GloVe + ConceptNet’ vectors show a decline
in performance for choose question category, similarly to single ‘ConceptNet’
embeddings. ‘GloVe + shuffled GloVe’ overall achieves comparable results to
single GloVe. The information contained in different embeddings is either too
similar which does not bring any improvements, or, on the opposite, contradicts
each other which harms the overall performance. A proper way to combine em-
beddings, including weighting or gating mechanisms, is a promising direction
for future research.

Fixed Embeddings

GQA validation

Binary Open All V P D ↓

Fixed during training
GloVe 75.70 43.30 58.97 91.97 86.55 58.74
Shuffled GloVe 76.36 38.91 57.03 86.75 76.96 106.08

Trained with 0.1∗learning rate
GloVe 76.23 46.68 60.98 95.15 91.71 4.15

Table 4.9. Accuracy, (V)alidity, (P)lausibility and
(D)istribution results on GQA validation set for fixed and slowly
trained embeddings. GloVe embeddings trained with reduced
learning rate outperform fixed embeddings but score lower than

normally trained ones.

When pre-trained answer embeddings are further learned as model’s parameters,
there is a risk that the knowledge encoded in the initial representations will be
washed out during training. To examine how original pre-trained embeddings
perform in our setting, we conduct two types of experiments: (1) we fix the
answer embeddings and do not update them during training, (2) we update
the embeddings, but the learning rate used for answer embeddings’ parameter
group is reduced by a factor of ten. The results for these experiments are shown
in Table 4.9 and Table 4.8.
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First of all, both fixed and slowly trained embeddings fall behind normally
trained GloVe embeddings. That implies that the knowledge contained in GloVe
vectors is not fully sufficient for the task, although it provides acceptable ini-
tial representations. Furthermore, fixed embeddings not only show the lowest
overall accuracy but also lose in validity and plausibility metrics, which indi-
cates the discrepancy between textual (used for GloVe pre-training) and visual
(GQA dataset) contexts, where different answers are considered valid or plausi-
ble. Interestingly, shuffled GloVe embeddings achieve high accuracy on binary
questions, especially for logical and verify question categories, in which all the
questions can be answered with yes or no. These results further confirm our
observation that “wrong” shuffled representations may help to distinguish be-
tween antonymous answers. To conclude, fine-tuned GloVe embeddings give the
largest overall gain for the task and work best with the current VQA model’s
setting, thus, GloVe is our primary choice for main experiments.

4.5 Conclusion

In this work, we reformulated VQA as a multitask problem, which allowed us to
exploit prior semantic knowledge about answers. We demonstrated that GloVe
word embeddings carry information about typical answers that is relevant to
the task. In contrast to existing methods for incorporating additional data into
VQA models, our technique is both simple and effective, and allows to tune
the reliance of the model on general prior knowledge, and learned task-specific
information. We evaluated our technique on the GQA dataset and obtained
consistent improvement in accuracy in the majority of question categories. The
extensive set of metrics also allowed identifying benefits in robustness and con-
sistency of the model across related questions.

The fundamental idea in this work of including a regression task as part of
VQA has implications that go beyond what could be demonstrated with existing
datasets. This formulation opens the door to the generation of compositional
multi-word answers, and to open-set prediction, that is, predicting answers
beyond the set of candidate answers predefined at training time.
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Chapter 5

Reasoning over Vision and
Language:
Exploring the Benefits of
Supplemental Knowledge

This chapter investigates the injection of supplementary knowledge from general-
purpose knowledge bases (KBs) into vision-and-language transformers. The
limits of applicability of vision-and-language models are defined by the cover-
age of their training data. Tasks like visual question answering (VQA) often
require commonsense and factual information beyond what can be learned from
task-specific datasets. In this work, we use an auxiliary training objective that
encourages the learned word representations to align with graph embeddings
of matching knowledge entities in a KB. We empirically study the relevance
of various KBs to multiple tasks and benchmarks. The technique brings clear
benefits to knowledge-demanding question answering tasks by capturing seman-
tic and relational knowledge absent from existing models. More surprisingly,
the technique also benefits visual reasoning tasks. We perform probing experi-
ments and show that the injection of additional knowledge regularises the space
of embeddings, which improves the representation of lexical and semantic sim-
ilarities. The technique is model-agnostic and can expand the applicability of
any vision-and-language transformer with minimal architectural modifications
and computational overhead.
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5.1 Introduction

The last few years have seen a surge of interest in vision and language (V&L)
tasks. They require processing two modalities and reasoning over textual, vi-
sual, and abstract concepts. The current state of the art in V&L are models
based on transformers such as BERT (Devlin et al., 2019) that have been ex-
tended to handle visual inputs (e.g . Tan and Bansal, 2019). These models are
usually pre-trained on a collection of datasets of paired textual and visual data.
Suitable datasets include image captioning data (X. Chen et al., 2015; Sharma
et al., 2018) and visual question answering (VQA) data (Goyal et al., 2017;
Hudson and Manning, 2019a). Despite their large scale, these datasets only
cover limited domains. Many are based on images from COCO (T.-Y. Lin et
al., 2014) and Visual Genome (Krishna et al., 2017) and the linguistic diversity
of textual annotation is limited. The V&L tasks that we are ultimately inter-
ested in require knowledge beyond current datasets (e.g . about specific events,
named entities, common sense, and abstract concepts).

Figure 5.1. Additional infor-
mation from knowledge bases
is injected in a vision-and-
language transformer. We first
preprocess the knowledge base
into a set of knowledge embed-
dings. Then during training,
we use an auxiliary objective
that aligns its learned word rep-
resentations with corresponding

knowledge embeddings.

What is the name of this
animal in the movie

Madagascar ?

Marty

Visual
embedding

Multi-modal transformer

KB

Entity
matching

T
Knowledge
alignment 

Text
embedding

This work focuses on the expansion of the applicability of V&L models with
additional knowledge (Figure 5.1). During training, we infuse the model with
knowledge from an external source, distinct from datasets of paired V&L data.The
challenge is that standard V&L data is not annotated or paired with such addi-
tional knowledge. Even though techniques have been proposed to exploit addi-
tional data in natural language processing (NLP), including text-based question
answering (S. Kafle et al., 2019; B. Y. Lin et al., 2019; Lv et al., 2020; Rajani
et al., 2019), little work has been done on the extension to V&L. Works in
NLP with benchmarks of knowledge-demanding questions (Clark et al., 2018;
Mihaylov et al., 2018; Sap et al., 2019; Talmor et al., 2019; Y. Yang et al., 2015)
have shown that knowledge bases (KBs) contain information that can benefit
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large-scale pre-trained models. Motivated by this line of evidence, we aim to
evaluate similar mechanisms for V&L tasks.

In the context of VQA, datasets of knowledge-demanding questions (Marino et
al., 2019; Shah et al., 2019; P. Wang et al., 2017b) have proved challenging for
existing methods. For example, a question like Is the man eating healthy food?
requires recognising a type of food and relating it to its nutritional quality.
Learning this type of knowledge from VQA training examples would be clearly
inefficient. Other examples of challenging questions involve references to named
entities such as brands, locations, or movie titles. For example, the question
Levi’s is a popular brand of what item shown here? requires knowledge of the
brand’s specialisation before identifying the correct element in the image. We
believe that embedding this type of knowledge in a model is a necessary step
to enable progress on complex multi-modal question answering.

This work describes a technique to inject information from KBs into a transformer-
based model during its training). We take inspiration from (Goodwin and
Demner-Fushman, 2019) and adapt their regulariser from text-based models to
V&L transformers. We provide an implementation of our method on top of the
popular LXMERT model (Tan and Bansal, 2019) and investigate the suitabil-
ity of several KBs to different tasks and benchmarks. Our contributions are
summarised as follows.

• We describe a method to inject information from knowledge bases during
the training of vision-and-language transformers.

• We implement the method on top of the popular LXMERT model with the
ConceptNet (Speer et al., 2017) and Wikidata (Vrandečić and Krötzsch,
2014) knowledge bases.

• We perform an extensive empirical evaluation on four downstream tasks.
We demonstrate clear improvements on knowledge-demanding VQA and
visual reasoning datasets.

• We conduct an in-depth analysis, including ablations and probing experi-
ments. They show that we improve the representation of lexical, semantic,
and relational knowledge that is lacking in typical V&L models. This ex-
plains the surprising improvements on tasks that do not explicitly depend
on external knowledge.
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5.2 Related Work

5.2.1 Vision and Language Tasks

V&L tasks require joint processing of visual and textual data e.g . for image cap-
tioning (Anderson, He, et al., 2018; Hossain et al., 2019) and VQA (Teney, Wu,
et al., 2017; Q. Wu, Teney, et al., 2017). They have historically been approached
with task-specific models, but recent transformer-based models (Vaswani et al.,
2017) were shown to be applicable to a variety of tasks. A transformer can
thus be pre-trained on multiple datasets and then fine-tuned for one specific
task (Alberti et al., 2019; Y.-C. Chen et al., 2020; G. Li et al., 2020; L. H. Li
et al., 2019; Lu et al., 2019; Su et al., 2019; Sun et al., 2019; Tan and Bansal,
2019; L. Zhou et al., 2020). Through the multi-task pre-training, it benefits
from a large amount of data from the other tasks and datasets. This work de-
scribes a method to embed additional information in a transformer-based model
(“additional” to the pre-training and fine-tuning datasets). Our implementation
builds on the popular LXMERT model (Tan and Bansal, 2019).

5.2.2 Additional Knowledge in NLP

Inclusion of external knowledge in NLP models can help with tasks requiring
commonsense or factual information (Storks et al., 2019). Various techniques
have been proposed to improve transformers such as BERT (Devlin et al., 2019).
Z. Zhang et al., (2019) proposed ERNIE, which feeds graph embeddings of text
entities to the model. Peters et al., (2019) proposed KnowBert, a similar tech-
nique suitable to multiple KBs. Levine et al., (2020) used WordNet (Miller,
1998) to aid in the masked-word prediction objective, and improve lexical under-
standing in downstream tasks. Ye et al., (2019) proposed a multiple-choice ques-
tion answering pre-training task and improved performance on multiple datasets
requiring commonsense reasoning. W. Liu, Zhou, et al., (2020) addressed noise
issues by controlling the amount of domain-specific knowledge infused into the
model. Goodwin and Demner-Fushman, (2019) proposed OSCAR, a regularisa-
tion method to inject ontological knowledge in a pre-trained language model. X.
Wang et al., (2019) proposed to simultaneously learn knowledge representations
while optimising a masked-language objective, rather than using pre-trained
knowledge embeddings. All of these works were applied to NLP tasks. This
paper studies the suitability of similar mechanisms to V&L tasks by applying
the OSCAR technique (Goodwin and Demner-Fushman, 2019) to a multi-modal
transformer.
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5.2.3 Knowledge-based VQA

Knowledge-based VQA refers to benchmarks designed to require additional in-
formation (Marino et al., 2019; Shah et al., 2019; P. Wang et al., 2017a, 2017b).
Models have been proposed that retrieve such information from KBs based on
question and image contents (Narasimhan and Schwing, 2018; P. Wang et al.,
2017a, 2017b; Q. Wu et al., 2016). Some works use other sources of external in-
formation at training (Teney and van den Hengel, 2016) or test time (Teney and
van den Hengel, 2018, 2019) but they showed limited improvements on VQA
benchmarks. The recently proposed ConceptBert (Gardères et al., 2020) model
jointly learns visual, textual and knowledge embeddings to fuse commonsense
information into VQA models. This work describes a method applicable to a
variety of sources of information and to tasks beyond VQA. We also show that
different tasks benefit from different types of information.

5.3 Methodology

We describe a general, simple yet effective technique to embed additional knowl-
edge into a transformer-based model. It is compatible with existing multi-modal
transformers and thus suitable for a variety of tasks. The method proceeds in
three stages (Figure 5.2):

1. We preprocess the additional knowledge into a set of vector representa-
tions that we call knowledge embeddings. For example, with a relational
knowledge base, we apply a graph embedding method to obtain a vector
representation of every of its entities. Each is associated with a textual
expression.

2. We match sentences in the V&L training data with knowledge embed-
dings. Matches in the training data are referred to as knowledge-rich
expressions.

3. During the training of the transformer (pre-training and/or fine-tuning),
we optimise an additional objective that aligns its learned representations
of knowledge-rich expressions with the matching knowledge embeddings.

We now describe each stage in detail.
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[CLS]
t1

what 
t2

kind 
t3

of 
t4

camera 
t5

lens 
t6

created 
t7

this 
t8

photo 
t9

effect 
t10

...             what kind of              camera lens             created              photo             effect             ... 

[SEP] 
t11

Entity matching

         (t2, t3, t4)             (t5, t6)             (t7)             (t9)             (t10)

Output: matched tokens and embeddings

Representations of knowledge-rich expressions

 c1 = e2 + e3 + e4       c2 = e5 + e6      c3 = e7       c4 = e9      c5 = e10 

Mapping into a common space

c'5
v5

c'2

v2
v1c'1

c'3
v3

v4
c'4

       (e2, e3, e4)           (e5, e6)           (e7)            (e9)            (e10)

w1 w2 w3 w4 w5 

Figure 5.2. Summary of the approach. During training, we
first match tokens in the V&L training data (yellow) with entities
of the knowledge base (green). We then train the transformer
with an additional loss to align the learned representations ck
(sums of word embeddings in knowledge-rich expressions from
the transformer, in blue) with the knowledge embeddings vk de-

rived from the knowledge base.

5.3.1 Representations of Additional Knowledge

The versatility of the approach rests on storing the additional knowledge as a
set of knowledge embeddings V = {vi} with vi ∈ Rdv . These can be produced
by preprocessing sources such as text corpora (with word embedding methods,
e.g . Mikolov et al., 2013; Pennington et al., 2014) or relational knowledge bases
(with a graph embedding method, see Cai et al., 2018). These knowledge em-
beddings capture semantic information about the relations between entities,
which we will incorporate into the V&L model. Each knowledge embedding vi

is associated with an entity wi in the V&L data. In this work, the wi are purely
textual (single- and multiple-word expressions) but future work could consider
visual representations of concepts represented by knowledge embeddings. We
denote with W = {wi} the vocabulary of these instantiations.
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5.3.2 Matching V&L Training Data with Knowledge Em-

beddings

We match parts of the training data with entities having additional knowledge.
Since our vocabulary W contains textual expressions, we use greedy longest-
string matching (Algorithm 1) to identify subsequences in the data that match
any wi. Possible improvements left for future work include performing named
entity recognition and homonym disambiguation. In practice, entities in our
KBs have unique textual representations, making homonyms a non-issue.

We represent text in the training data as a sequence of tokens T = (t1, ... , tM).
The transformer internally maps each token tj to a word embedding ej ∈ Rde .
Each correspondence identified by the matching algorithm is of the form of a
subsequence (tak , ... , tbk) ⊂ T that matches wk ∈W . We refer to such a subse-
quence as a knowledge-rich expression. To obtain a fixed-size representation ck

of a knowledge-rich expression, we sum the word embeddings of its constituent
tokens i.e. ck = eak + ... + ebk .

Algorithm 1 Entity matching
Input: Sentence tokens (t1, ..., tn)

Vocabulary of entities W = {wi}
Output: Knowledge-rich expression (tak , ... , tbk) ⊆ (t1, ... , tn)

Corresponding word embeddings (eak , ... , ebk)

1: i← 1

2: while i ≤ n do
3: find the longest series of tokens starting at the ith position
4: that match any wk ∈W

5: (ti, ..., ti+p) = wk

6: if match is found (p ≥ 0) then
7: Return matched tokens and embeddings
8: ak ← i

9: bk ← i+ p

10: return (tak , ... , tbk) , (eak , ... , ebk)

11: Skip tokens that are already matched
12: i← i+ p+ 1

13: else
14: i← i+ 1

15: end if
16: end while
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5.3.3 Aligning Learned Representations with Knowledge

Embeddings

The core of the method is an additional training objective that encourages the
transformer to produce representations of knowledge-rich expressions (ck) that
collectively align with knowledge vectors (vk). A vector ck as defined above is
the representation of a knowledge-rich expression learned by the model. We do
not expect these vectors to correspond to their matching knowledge embeddings
v, but we desire them to capture the information globally represented in the
relations between the knowledge embeddings in V . Therefore, we define a new
linear layer that maps a learned representation ck ∈ Rde to c′k ∈ Rdv :

c′k = W cck + bc , (5.1)

where W c ∈ Rde×dv and bc ∈ Rdv are learned weights and biases. We then
define our alignment loss that encourages each projection c′k to be close to its
corresponding knowledge embedding vk:

Lalign =
∑
k

‖c′k − vk‖2 . (5.2)

Together, Equation 5.1 and 5.2 encourage the global structure of the learned
representations c to align with the set of knowledge embeddings V through the
projection W c. The learned representations incorporate information from the
knowledge embeddings while allowing the transformer to also represent task-
specific information. The model is trained for the combination of its original
main loss, and the new alignment loss weighted by a hyperparameter λ:

L = Lmain + λLalign . (5.3)

At test time, the model is used without any modifications.

5.3.4 Training Strategies

Typically, a transformer-based model is pre-trained on a collection of datasets
and then fine-tuned for one specific task. We experimented with the application
of the method during pre-training and/or fine-tuning, referred to as FT, PT,
and PT+FT below. Enabling the additional objective during pre-training can
benefit from the larger overlap between the training data and the additional
knowledge. However, most pre-training tasks do not specifically require addi-
tional knowledge, and the model may not learn to effectively use it. During
fine-tuning on knowledge-demanding tasks, the model is likely to better learn
to capture and use relevant additional knowledge.
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5.4 Experiments

We performed a suite of experiments with multiple tasks and benchmarks. Our
objective is to evaluate the suitability of two popular knowledge bases (Con-
ceptNet and Wikidata) to these tasks. The overall conclusion is that the tasks
considered indeed benefit from the inclusion of additional knowledge.

5.4.1 Datasets

Images Questions Answers Task

OK-VQA 14,031 14,055 14,456 knowledge-based VQA
FVQA 2,190 5,826 954 knowledge-based VQA
SNLI-VE 31,783 565,286 3 entailment
NLVR2 141,480 107,292 2 reasoning

Table 5.1. Summary of datasets used in the experiments.

We evaluated the proposed method on four V&L datasets requiring knowledge-
intensive and/or general visual reasoning capabilities (see Table 5.1 for statistics
of datasets).

OK-VQA (Marino et al., 2019) is an open-ended VQA dataset where all ques-
tions require some sort of outside knowledge. It comprises about 14,000 ques-
tions about images from the MS COCO (T.-Y. Lin et al., 2014) dataset. All
questions are produced by human annotators based either on information found
in Wikipedia, or commonsense knowledge and visual evidence from the images.
The questions are divided into ten categories (see Table 5.2) according to the
type of knowledge needed to answer them. OK-VQA is one of the most diverse
VQA datasets currently available that requires general knowledge. We use it
accordingly as a primary benchmark in this study.

FVQA (P. Wang et al., 2017b) is a VQA dataset that contains about 5,000
questions that probe for commonsense knowledge. The questions are produced
by annotators in a procedure that forces the question to involve facts found
in a reference KB. Each question in the dataset is therefore associated with
one specific “supporting” fact that describes a relation between concepts in the
question and/or image. We do not use the annotations of these supporting
facts. FVQA provides five different training/test splits. We report results that
correspond to the average across the five splits. The quality of the questions in
FVQA is mediocre in comparison to OK-VQA, and it is also much smaller. We
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Alias Category Example

VT Vehicles and Transportation What is the title of the person driving this vehicle?
BCP Brands, Companies and Products Name the laptop model shown in this picture?
OMC Objects, Material and Clothing What sort of room is this woman sitting in?
SR Sports and Recreation What is this baseball player doing?
CF Cooking and Food Which of the foods here have the highest saturated fats?
GHLC Geography, History, Language and Culture What city is this meeting taking place?
PEL People and Everyday Life What kind of hairstyle does the woman in the black shirt have?
PA Plants and Animals What sound does this animal make?
ST Science and Technology Which rodent has a similar name to the technical device seen?
WC Weather and Climate What kind of clouds are shown?

Table 5.2. Categories of questions in the OK-VQA dataset
corresponding to the type of knowledge required.

include it in this study because it previously served to evaluate other models
designed to use KBs for VQA.

SNLI-VE (N. Xie et al., 2019) is a dataset for a visual entailment task. The
task is an extension of the classical task of natural language inference. The
visual version involves an image “premise” and a text “hypothesis”. The model
must determine whether the hypothesis contradicts the information shown in
the image, entails it, or whether there are not enough clues to draw any con-
clusion. The SNLI-VE dataset contains about 560,000 instances, which were
constructed from captions from SNLI (Bowman et al., 2015) paired with images
from Flickr30k (Young et al., 2014). Despite similarities in the skills required
for this task and for VQA, existing VQA models show relatively poor perfor-
mance on SNLI-VE. The authors of the dataset attribute it to the need for more
fine-grained visual understanding and reasoning, and they suggested the use of
external knowledge to improve performance, hence its inclusion in this study.

NLVR2 (Suhr et al., 2019) is a dataset that evaluates visual reasoning over
pairs of images. Each of the ∼107,000 instances in the dataset consists of two
images with a statement in natural language. The model must predict whether
the statement accurately describes the pair of images. The creation of the
dataset emphasised the linguistic diversity of the sentences, with the objective
for the task to require some compositional reasoning. We use this task in
our study to evaluate the suitability of our model to perform compositional
reasoning on the knowledge injected into them from KBs.
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5.4.2 Knowledge Bases

In this work, we experimented with two popular knowledge graphs that pro-
vide well-organised and preprocessed information. To incorporate structural
data into an end-to-end model we applied graph embedding techniques and
obtained low-dimensional vector representations that we call knowledge em-
beddings (noted as V in Section 5.3.1). Knowledge graphs and embedding
techniques used are described below.

ConceptNet (Speer et al., 2017) is a knowledge graph that encodes the mean-
ing of expressions useful for general language understanding. This decades-old
project is built on a number of crowd-sourced and curated sources including
dictionaries, encyclopedias, and ontologies. We use the 300-dimensional Num-
berbatch embeddings distributed by the authors of ConceptNet. They are built
using the technique of retrofitting (Faruqui et al., 2015) to combine relational in-
formation from the KB with distributional semantics from Word2Vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), and OpenSubtitles (Tiedemann,
2012). We only use the subset of English expressions (∼500,000 entities).

Wikidata (Vrandečić and Krötzsch, 2014) is a collaboratively edited database
of general knowledge. While ConceptNet mostly covers commonsense knowl-
edge, Wikidata spans a larger domain, including historical events, celebrities,
locations, science facts, etc. We obtain 200-dimensional embeddings with the
PyTorch-BigGraph graph embedding method (Lerer et al., 2019). We use a
subset of entities that have links to meaningful Wikipedia pages as done in (X.
Wang et al., 2019). We also discard entities associated with stop words (e.g . the,
are, there) which are common in VQA questions but carry no important seman-
tic information. We retain ∼4.7M entities associated with ∼10M aliases.

5.4.3 Implementation Details

The implementation of our method builds on top of the official implementa-
tion of LXMERT1, the state-of-the-art model on multiple tasks at the onset of
this project. This model is pre-trained on five captioning and VQA datasets:
COCO (T.-Y. Lin et al., 2014) and Visual Genome (Krishna et al., 2017) cap-
tions, VQA v2 (Goyal et al., 2017), GQA (Hudson and Manning, 2019a) and
Visual Genome QA (Y. Zhu et al., 2016). We also include experiments with
scaled-down pre-training on two datasets (VQA v2 and GQA) which will ease
the computational cost of replication.

1https://github.com/airsplay/lxmert

https://github.com/airsplay/lxmert
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We use values of hyperparameters recommended in the code, including a reduced
number of 12 training epochs (compared to 20 mentioned in the paper) and a
single-stage training strategy. The loss weight λ (Equation 5.3) was selected by
cross-validation for maximum accuracy on the OK-VQA validation set. From
the set {0.1, 0.5, 1, 10, 100, 200}, the optimal values were found to be 0.5 for
Wikidata and 100 for ConceptNet. The optimal λ seems to vary in inverse
proportion with the size of the KB. The fine-tuning experiments used the same
batch size of 32 and the learning rate of 0.00005 as the original LXMERT
implementation. The number of fine-tuning epochs was adjusted according to
the dataset size: 25 for OK-VQA and FVQA, 8 for NLVR2 and SNLI-VE.

Most transformer-based V&L models map the input text tokens to word, seg-
ment, and position embeddings, that are ultimately combined. Our approach is
applied to word embeddings. Since the matching of KB entities with the V&L
training data proceeds by exact string matching, we processed the KB entities
with the same WordPiece tokeniser (Y. Wu et al., 2016) as the LXMERT model
does for the V&L training data. To enable fast indexing of the KB, we store
the knowledge embeddings V as a hash table indexed by textual expressions
W .

5.4.4 Quantitative Results

We report the overall accuracy on all datasets in Table 5.3. Our approach
clearly outperforms the baseline, with a higher accuracy on the knowledge-
demanding VQA datasets OK-VQA (+1.78%) and FVQA (+1.97%). We also
get clear improvements on the visual reasoning datasets SNLI-VE (+1.19%)
and NLVR2 (+1.28%). These do not explicitly require specific knowledge, so we
hypothesised that the improvement is due to the richer linguistic representations
learned by our model. We verified this hypothesis through probing experiments
with the SentEval toolkit (Conneau and Kiela, 2018), which showed that our
model better captures multiple semantic and syntactic properties of words (see
Section 5.4.11). Example results for all four datasets are given in Figure 5.3
(more results can be found in Appendix B).

The best training strategy is generally to use the additional objective during
both pre-training and fine-tuning (PT+FT). Only on OK-VQA did the
PT strategy perform slightly better. Comparing PT alone with FT alone (the
former being superior on all datasets) shows that fine-tuning the representations
is not sufficient. Recall that the method relies on the structure of the embed-
ding space to store the additional knowledge. Pre-training the model without
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How did you make this dish?

Baseline: pasta ×
Proposed: boil X

What health benefit does this type of
vegetable have?
Baseline: steam ×
Proposed: fiber X

Which food in this image is full of vitamin
C?
Baseline: banana ×
Proposed: orange X

Which animal is related to wolf?

Baseline: cat ×
Proposed: dog X

There is a man sleeping next to a woman
on the subway.
Baseline: entailment ×
Proposed: neutral X

Hockey players hugging.

Baseline: entailment ×
Proposed: contradiction X

All of the bottles in the right image are
unlabeled.
Baseline: false ×
Proposed: true X

At least one of the pillows has a minimum
of 4 different colors.
Baseline: true ×
Proposed: false X

Figure 5.3. Test cases on which our model (Pre-training with
VQA v2, GQA w/ ConceptNet PT+FT) produces better predic-

tions than the baseline.
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OK-VQA FVQA SNLI-VE NLVR2

Pre-training with COCO captions, Visual Genome captions, VQA v2, GQA

Baseline (LXMERT) 37.26 ± 0.23 52.30 ± 0.09 74.05 ± 0.19 71.31 ± 0.56

w/ ConceptNet PT 39.04 ± 0.24 54.08 ± 0.09 75.18 ± 0.21 71.61 ± 0.24
w/ ConceptNet FT 36.99 ± 0.01 52.19 ± 0.15 74.80 ± 0.08 70.82 ± 0.34
w/ ConceptNet PT+FT 38.56 ± 0.31 54.27 ± 0.28 75.24 ± 0.22 72.59 ± 0.23

Pre-training with VQA v2, GQA

Baseline (LXMERT) 36.71 ± 0.22 50.38 ± 0.24 73.57 ± 0.17 67.88 ± 0.66

w/ ConceptNet PT 38.05 ± 0.41 51.94 ± 0.25 74.07 ± 0.48 69.47 ± 0.20
w/ ConceptNet FT 36.73 ± 0.50 50.54 ± 0.08 74.24 ± 0.15 67.09 ± 0.32
w/ ConceptNet PT+FT 38.12 ± 0.11 51.53 ± 0.17 74.26 ± 0.22 69.69 ± 0.12

w/ Wikidata PT 37.39 ± 0.35 51.00 ± 0.03 73.48 ± 0.17 68.27 ± 0.89
w/ Wikidata FT 36.31 ± 0.28 50.59 ± 0.24 73.60 ± 0.26 67.64 ± 0.19
w/ Wikidata PT+FT 37.43 ± 0.25 50.74 ± 0.29 73.50 ± 0.04 68.25 ± 0.51

Table 5.3. Overall results. Our model with ConceptNet dur-
ing pretraining and fine-tuning. (ConceptNet PT+FT) generally
proves best. We report the average accuracy (%) ± one standard

deviation over three random seeds.

the additional objective may cause it to use its capacity in ways not flexible
enough to accommodate the additional knowledge during fine-tuning. A sec-
ond plausible explanation is that the small amount of fine-tuning data does not
have enough coverage to capture a beneficial amount of additional knowledge.
It is also interesting to note that the knowledge injection during pre-training
is effective despite the pre-training tasks not specifically requiring additional
knowledge.

5.4.5 ConceptNet vs Wikidata

We now examine the suitability of ConceptNet and Wikidata to the datasets
considered. ConceptNet provides larger improvements than Wikidata
on every dataset. Wikidata shows improvements on knowledge-driven tasks
(OK-VQA and FVQA) but fails to improve over the baseline on the visual
reasoning ones (SNLI-VE, NLVR2). Wikidata is almost ten times larger than
ConceptNet, but it contains more redundant and noisy information due to its
open-source nature. ConceptNet, in contrast, is based on a collection of mostly
curated sources. Finally, the vector representations of ConceptNet used were
obtained through an advanced and proven procedure that involves Concept-
Net as well as other pre-trained word representations. The representations of
Wikidata used are a more direct representation of the knowledge graph.
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OK-VQA NLVR2

With less data (no pre-training)
MLP 20.67 –
BAN 25.17 –
BAN+ArticleNet 25.61 –
MUTAN 26.41 –
MUTAN+ArticleNet 27.84 –
FiLM – 52.1

ConceptBert (Conceptual Cap.) 33.66 –
VisualBERT (COCO captions) – 67.00
UNITER (COCO, VG, Conceptual Cap., SBU) – 79.50
LXMERT-Paper (cannot be reproduced, see text) 42.94 74.50

This paper (COCO and VG captions, VQA v2, GQA, VG QA)
LXMERT-GitHub 37.26 71.31
LXMERT-GitHub w/ ConceptNet 39.04 72.59

Table 5.4. Comparison with existing methods. Datasets used
for pre-training are given in parentheses.

5.4.6 Comparison with Existing Methods

In Table 5.4 we compare our results with the top entries from the leaderboards
of OK-VQA2 and NLVR23. On OK-VQA, the best accuracy is shown by Con-
ceptBert model pre-trained on a captioning dataset. The other reported results
are from the traditional VQA models BAN (J.-H. Kim et al., 2018) and MU-
TAN (Ben-Younes et al., 2017). The BAN and MUTAN models supplemented
with ArticleNet (Marino et al., 2019) obtain each a small improvement (+.44
and +1.43%). This component retrieves Wikipedia articles from which it ex-
tracts an answer for each question. These models perform much worse than
the LXMERT baseline, which is trained on multiple datasets. We include an
LXMERT model provided by its authors (LXMERT–Paper) and one retrained
with code they provide (LXMERT–GitHub). The latter uses a simplified train-
ing strategy, hence a slight discrepancy (e.g . 69.50% on VQA v2 with their
model and 68.52% with the retrained one). Our model brings a clear improve-
ment over LXMERT-github, but it does not surpass LXMERT-paper that we
could not reproduce.

2https://okvqa.allenai.org
3http://lil.nlp.cornell.edu/nlvr/

https://okvqa.allenai.org
http://lil.nlp.cornell.edu/nlvr/
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On NLVR2, the classical method FiLM (Perez et al., 2018) expectedly per-
forms worse than transformers pre-trained on multiple datasets. The LXMERT
baseline surpasses VisualBERT (L. H. Li et al., 2019), and our knowledge in-
jection brings a small improvement. The state of the art on NLVR2 is obtained
by UNITER (Y.-C. Chen et al., 2020) which is pre-trained on a much greater
amount of captioning data and uses a significantly larger architecture.

5.4.7 Results on OK-VQA

We examine the accuracy on question categories of OK-VQA in Table 5.5. Each
category corresponds to a type of knowledge required. We get high gains on
categories that correspond to a type of knowledge covered in Con-
ceptNet (objects properties and features, behaviour of people, etc.). These
include OMC (objects, material and clothing), PEL (people and everyday life),
BCP (brands, companies and products) and VT (vehicles and transportation).
The only category with a drop in accuracy is ST (science and technology), which
is also the smallest (84 questions). The category with the largest gain is GHLC
(geography, history, language, and culture), but it contains only 141 questions,
and some are distant from these topics (e.g. What fruit come from these trees? ).
These results should not be over interpreted because of the small size of these
categories. Some questions also have imprecise labels. For example, the ques-
tion What activity are they doing? is labelled with the correct answer video
game, and our model’s answer play video game is considered incorrect.

The hardest questions for our model are those referring to exact facts and
entities such as place names, famous people, or historical dates. Such precise
facts are more difficult to represent and recall than “soft” commonsense knowl-
edge. For example, the question What year was this picture taken? requires to
recognise a specific event and fetch a precise related fact. Additionally, these
exact knowledge entities may lack from ConceptNet making the related ques-
tions unanswerable. Other difficult questions refer to precise visual cues, while
the text of the question is generic, like What language is on the sign?, Can you
guess the place shown in this picture? or Which season is it?. A recent analy-
sis showed that V&L transformers rely primarily on the textual modality (Cao
et al., 2020; Singh et al., 2020). Additional mechanisms would be needed to
allow the recall of facts solely from visual cues and future improvements on the
grounding across modalities could bring benefits here.
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NLVR2 Test-P

All Consist. Bal. Unbal.

Baseline (LXMERT) 71.31 34.65 70.34 72.45

w/ ConceptNet PT 71.61 34.84 71.11 72.60
w/ ConceptNet FT 70.82 34.42 69.86 72.35
w/ ConceptNet PT+FT 72.59 37.56 72.12 73.71

Table 5.7. Detailed metrics on NLVR2: consistency (%) and
accuracy (%) on balanced and unbalanced subsets. The method

brings a clear improvement in consistency.

5.4.8 Results on NLVR2

We examine the extended metrics on NLVR2 in Table 5.7. Consistency reflects
whether the model answers a given question correctly for all related pairs of
images. Our model shows a clear improvement in consistency over the
baseline (34.65→ 37.56). This suggests that the model can better relate a given
textual input to different image contexts. We also report the accuracy on the
balanced and unbalanced test sets, designed to evaluate a model’s reliance on
visual biases. In the balanced set, every image pair appears twice, one with each
label (true/false). A drop in performance from the standard test set (All) to
the balanced set (Bal.) would indicate that the method exploits biases. Neither
the baseline nor our models show an undesirable reliance on image biases.

5.4.9 Knowledge Ablation

The main source of improvements on knowledge-demanding tasks like OK-VQA
is the representation of knowledge relevant to test questions. To illustrate this
claim, we create a small knowledge test with OK-VQA to examine how removing
certain pieces of knowledge affects model performance. We select, by keyword
search, a small subset of 19 test questions that focus on nutrition, on which our
model obtains an accuracy of 91.11% vs 71.11% for the baseline. We then iden-
tify all entities related to nutrition (e.g . health benefit, fiber, protein, vitamin,
etc.) and remove them from the knowledge base. After retraining our model
with the pruned KB, the performance on nutrition questions drops markedly
to 68.89%. The overall accuracy (on mostly non-nutrition-related questions) is
maintained. This confirms that the withheld knowledge was indeed responsible
for the high performance on related questions. The automated construction of
diagnostic tests of this type could allow a quantitative evaluation and would be
an interesting direction for future work.
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5.4.10 Nearest Neighbours in Embedding Space

To better understand how the regularisation with additional knowledge changes
the structure of the learned embedding space, we examine the nearest neigh-
bours of embeddings of individual words (see Table 5.8). The neighbours are
computed using the L2 distance. Using the cosine distance gives qualitatively
similar results. Our model clearly captures more lexical and semantic informa-
tion. For example, the nearest neighbours for vitamin are calcium and sup-
plements with our model, but they are margarita and amphibious with the
baseline. This stark qualitative difference was observed across the board and
is not confined to cherry-picked examples. The lack of linguistic information
encoded by baseline V&L transformers is unsurprising since their training data
has limited linguistic diversity. Initialising a V&L model with a pre-trained
BERT has been proposed to address this deficiency, but it was reported to give
lower downstream performance by the authors of LXMERT. In comparison, our
method brings linguistic information while improving downstream performance.

Word Nearest neighbors with the baseline Nearest neighbors with our model

argentina questioned, [PAD], neutron, dorset argentine, uruguay, paraguay, mendoza
behaviour [PAD], absurd, authoritative, mba behavior, behaviors, demeanor, behavioral
bowling boxing, smashed, dancing, 75 bowler, bowled, cricket, tennis
cottage farmhouse, scan, condo, ##tta cottages, bungalow, farmhouse, ##ode
facebook jade, brady, institution, utrecht myspace, twitter, youtube, dit
genes [PAD], oro, subsistence, ##vah gene, genetic, genetics, genome
lecturer greenberg, [unused983], avoidance, ##mour professor, prof, professors, lectures
playstation splendid, indo, financial, tapping xbox, wii, sega, consoles
birth ##gm, dat, sensitive, incorporated births, childbirth, born, newborn
boxers dare, indo, briefs, aiding boxer, briefs, underwear, panties
creeping goalscorer, fertility, ineffective, [PAD] crept, creep, crawling, sneaking
dependent bacterial, [PAD], ##idad, outlaws depended, depend, depends, dependency
displaced neptune, roche, peterborough, norway displacement, refugees, relocated, atletico
down up, MASK, ##combe, ##ending up, on, out, ##s
equity [PAD], implementations, eurasian, newfound investors, investments, investor, investment
ghosts [PAD], germain, combustion, ##ignment ghost, ghostly, haunted, phantom
indication neptune, musee, converting, legion indications, indicating, signaled, indicative
limb stump, branch, limbs, thorn limbs, branch, leg, ##wara
policemen cowboys, firefighters, youths, 37 policeman, police, cops, constabulary
quebec sutton, [PAD], monasteries, frederick montreal, laval, ontario, sudbury
smells [PAD], aiding, preston, quentin smelled, smell, odor, scent
successes [PAD], kilometres, tina, marne success, achievements, accomplishments, successful
sugar yeast, powder, memo, coating chocolate, butter, candy, celaena
taste feel, smell, fade, become tastes, flavor, tasted, flavors
unmarried [PAD], [unused285], [unused685], ##dium divorced, childless, widowed, marrying
vintage retro, antique, victorian, rustic antique, retro, old, ##60

Table 5.8. Selection of nearest neighbours in the space of word
embeddings learned by the baseline and by our model. Here,
[PAD] is a special token and “##” indicates sub-word tokens.
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5.4.11 Linguistic Probing Analysis

The probing tasks aim to identify the linguistic information encoded in the
learned representations. Following (Cao et al., 2020), we tested our model on
the following ten linguistic probing tasks (Conneau et al., 2018):

• SentLen: predict the length of sentences;

• WC: word content task requires to predict which words appear in the
sentence;

• TreeDepth: categorize the sentence according to the depth of its syntax
tree;

• TopConst: predict the sequence of top constituents;

• BShift: check whether two random adjusted words have been inverted in
the sentence;

• Tense: predict the tense of the main-clause verb;

• SubjNum: predict if the main-clause subject is in singular or plural form;

• ObjNum: same as SubjNum but for the main-clause object;

• SOMO: semantic odd man count task is to determine if a random noun
or verb has been replaced.

• CoordInv: check whether two coordinate clauses have been inverted.

These tasks are designed to evaluate the quality of sentence embeddings, but
LXMERT model learns separate embeddings for each token. To obtain sentence
representations, we thus take outputs of 9 intermediate layers in the language
encoder and average each of them across all tokens. Every layer output is used as
a separate embedding and we report the best result across all layers (Table 5.6).
Since the first 9 layers perform attention over textual modality only, no image
input is required.

The results show that our model surpasses the baseline in most of the tasks.
The highest gain (+9.36%) is seen in WC category meaning that our model bet-
ter captures the content of words in a sentence. Importantly, the best results
for this task are obtained with the first layer outputs. WC accuracy drops for
every subsequent layer output till it reaches 16.11% and 18.65% for the baseline
and our model respectively. It implies that information about individual words
is well encoded in early layers but gets washed off with further self-attention.
Surprisingly, we observe a noticeable gain in accuracy for predicting tense and
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plurality of words (+7.72% in Tense, +3.88% in SubjNum and +3.17% in Ob-
jNum tasks). Slight improvements in BShift and CoordInv tasks may be caused
by additional constraints imposed on the word order by our model where the
order of tokens that constitute a knowledge-rich expression is important. Fi-
nally, SentLen and TreeDepth probes highly rely on the length of sentences and
since both tested models limit textual input to 20 tokens, the results may not
be reliable.

5.4.12 Discussion and Limitations

Our experiments showed that KBs can expand the domain of applicability of
V&L models. The tested approach proved robust in a range of settings with
ConceptNet but the larger Wikidata did not fulfil our expectations. Our re-
sults suggest that the noise and ambiguities in Wikidata prevent realising its
full potential. Methods for better text-to-knowledge matching such as named
entity recognition and homonym disambiguation are promising solutions to in-
vestigate.

We also identified the grounding of knowledge with visual evidence to be a
limitation currently for certain tasks. Questions in OK-VQA about specific
places or famous people for example require the model to recall specific facts
on the basis of precise visual cues. Although such facts are stored in Wikidata,
the tested model did not prove effective at recalling them. Improvements of
the visual grounding could also help with visual reasoning tasks like SNLI-VE
where the correct interpretation of the text input is heavily dependent on the
visual input.

5.4.13 Additional Results

We explored a variety of architectural choices, but some of them did not gain
any improvement over the baseline. To measure the distance between learned
projections and their embeddings in Equation 5.2 we tried two other options:
smooth L1 loss and cosine distance, but they showed worse results than the
used mean squared error. To obtain representations for knowledge-rich expres-
sions we first included an additional knowledge embedding layer as the fourth
component of textual representations along with word, segment and position
embeddings. This technique proved to be inefficient, so eventually, we used
word embeddings as a target for knowledge alignment.
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Further, we tried to leverage information about objects detected in the image.
We used predicted labels for each image object as a knowledge-rich expression
and added another learning objective to align visual embeddings with corre-
sponding knowledge. With this objective, the model converged to a smaller loss
during pre-training but the accuracy on all fine-tuning tasks was lower than the
baseline results indicating possible overfitting. A possible way to better exploit
visual information could be to use object labels as additional supervision to
enhance entity matching.

5.5 Conclusion

In this work, we described a general-purpose technique to inject external in-
formation from knowledge bases into multi-modal transformers for vision-and-
language tasks. The current prevailing paradigm is to pre-train large models
on collections of datasets. Our experiments demonstrate that some types of
commonsense and factual knowledge are not captured within these models.
Knowledge bases like ConceptNet and Wikidata can fill in these deficiencies.
We showed clear improvements in performance on a variety of tasks and bench-
marks requiring visual and multi-modal reasoning, demonstrating the versatility
of the procedure.

The value of these results for future research is twofold. On the one hand,
they indicate that the combination of heterogeneous sources of information is a
promising way to expand the applicability of current machine learning models.
On the other hand, by improving the availability of supporting knowledge, the
approach opens the door to future advances in reasoning procedures that process
this information. Advances on this front would lead to improved capabilities on
tasks that require high-level or multi-hop reasoning, for example.
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Conclusion

We have witnessed enormous changes in the visual question answering field over
the last few years. What was originally designed as a straight-forward image
query task, has grown into a massive benchmark for multi-modal understand-
ing and reasoning evaluation. While the early attempts to solve VQA mostly
focused on image modality trying to extract the most relevant information for
image understanding, recent studies have shifted their focus towards language
inputs as well, in an attempt to perform true multi-modal reasoning. That in-
dicates that VQA is no longer a task that just brings together advances made in
computer vision and natural language processing fields, but a separate vision-
and-language research area.

In this thesis, we investigated ways of using external information that can not
be learned from traditional VQA training datasets but brings real benefit when
solving the task. In particular, we explored unsupervised image pre-training
that can be applied when VQA annotated data is scarce. Our experiments
showed that contrastive training can learn adequate image features that needs
little annotated data to fine-tune on a downstream task. We believe that un-
supervised pre-training is crucial for small VQA tasks when transfer learning
from public datasets is not available, for example, due to image domain mis-
match. Further, we proposed to leverage prior knowledge about answers. We
showed that information hidden in the semantics of answers can improve the
general accuracy and consistency of a VQA model. Moreover, the use of an-
swer embeddings in an additional regression branch opens up the possibility for
open-set prediction, which is lacking in the majority of existing models. Lastly,
we described a universal technique to inject external knowledge into multi-
modal transformers. This method allows the model to capture commonsense
and factual knowledge that typically can not be extracted from the training
data alone. We found that our method not only boosts the performance on
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knowledge-demanding and general visual reasoning tasks but also improves the
representation of lexical and semantic similarities of textual features. We be-
lieve that ability to incorporate additional knowledge in VQA models is vital
for expanding their applicability in real-world conditions.

Although we aimed at exploiting varied knowledge sources in our works, most
of the information we used in fact came from the language domain. Existing
knowledge bases and word embeddings are trained on text corpora, so the infor-
mation they encode is not grounded in vision. Nonetheless, there are types of
commonsense knowledge that can only be extracted from visual modality, as we
discussed in Sections 4.4.10 and 5.4.12. A natural future research direction is
therefore to collect and exploit visually grounded knowledge that complements
existing language knowledge sources. For example, by extracting objects from
images and understanding their attributes and relationships, one can build an
ontology of visual concepts. The similarity of concepts, in turn, can be decided
based on their visual appearance or co-occurrence in images.

Another critical problem we faced during our studies is that current VQA
datasets and evaluation metrics are designed for the classification approach
where an answer is picked from a closed set of candidates. However, in real-
world applications, it is not sensible to expect that a single pre-defined answer
set will cover all possible scenarios. Several attempts have been made to tackle
the problem of rare or zero-shot answer prediction but with the existing evalu-
ation paradigm, the merits of these methods can not be adequately recognised.
The future VQA research should focus on establishing novel evaluation proce-
dures that take account of true open-ended VQA possibility. These evaluation
metrics, for example, can measure whether the predicted answer is equivalent,
synonymous or contradictive to the ground truth answer and assign a score ac-
cordingly. Furthermore, to allow free-form answer generation, additional met-
rics that measure the quality and similarity of text must be incorporated into
the evaluation pipeline. These methods can be adopted from the related natural
language understanding field, however, they will require further adjustments to
include language-to-image grounding as a part of the text quality evaluation.
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Additional Quantitative Results

In the main chapters, we use an average accuracy over multiple runs to report
experimental results. This section provides additional tables with minimum
and maximum accuracy reported. Table A.1 extends Table 3.3 in Chapter 3,
Table A.2 extends Table 4.2 in Chapter 4, and Table A.3 extends Table 5.3 in
Chapter 5.

Test

Total Cube Sphere

min max min max min max

ResNet 98.97 99.36 98.11 98.72 99.83 100.00

Baseline 1.78 20.36 0.00 0.11 3.44 40.72
EBM 77.11 91.67 94.33 98.11 59.89 86.06
SimCLR 98.92 99.44 98.56 99.06 99.28 99.83

Table A.1. Minimum and maximum accuracy results of the
methods explored in Chapter 3.
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GQA validation

Binary Open All

min max min max min max

Pythia 74.87 76.43 44.74 46.63 59.32 61.05
Pythia + GloVe 74.37 76.15 45.35 46.84 59.49 61.02

fPMC (BUTD?) 69.57 70.09 41.90 42.62 55.29 55.86
fPMC (SAN?) 71.69 72.16 41.51 42.13 56.27 56.48

Ours + random 74.07 76.11 45.26 47.18 59.26 61.02
Ours + shuffled GloVe 75.92 76.51 46.00 47.21 60.49 61.27
Ours + GloVe 75.99 77.46 46.09 47.67 60.55 62.09

Table A.2. Minimum and maximum accuracy results of the
methods explored in Chapter 4

OK-VQA FVQA SNLI-VE NLVR2

min max min max min max min max

Pre-training with VQA v2, GQA

Baseline (LXMERT) 36.46 36.86 50.15 50.63 73.41 73.74 67.13 68.39
w/ ConceptNet PT 37.68 38.49 51.79 52.22 73.60 74.55 69.27 69.66
w/ ConceptNet FT 36.40 37.30 50.45 50.59 74.09 74.39 66.79 67.42
w/ ConceptNet PT+FT 38.02 38.24 51.34 51.68 74.01 74.43 69.57 69.80

Table A.3. Minimum and maximum accuracy results of the
methods explored in Chapter 5
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Additional Qualitative Results

In this section, we provide additional qualitative results of the knowledge in-
jection method described in Chapter 5. Figure B.1 and Figure B.2 compare
test predictions of the baseline (LXMERT) and of our model (pre-trained with
VQA v2, GQA w/ ConceptNet PT+FT). See discussion in Section 5.4.4.
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What are they riding on?

Baseline: ski X
Proposed: ski X
GT: ski, snowboard

What is outside of the window?

Baseline: pane
Proposed: tree X
GT: bench, tree, table

What is the blue eagle on the buffet
made out of?
Baseline: metal
Proposed: plastic
GT: ice

What type of business is this pic-
ture taken in?
Baseline: hotel X
Proposed: hotel X
GT: hotel

What season are these gourds typ-
ically harvested in?
Baseline: fall X
Proposed: summer
GT: fall

What is the man in that ad riding?

Baseline: ski
Proposed: snowboard X
GT: snowboard, microphon,
board

How many chromosomes do these
creatures have?
Baseline: 3
Proposed: 46 X
GT: 46, 23 pair, 23

What website is the left computer
currently on?
Baseline: flickr
Proposed: flickr
GT: googl, weathergov, ya-
hoocom, amazon

1

(a) OK-VQA.

What is the large object in the
right of this image used for?
Baseline: tennis
Proposed: playing tennis
GT: play tennis

Where can people find fish?

Baseline: fish
Proposed: fish
GT: lakes rivers and ocean

What is the brass object in this im-
age?
Baseline: cello
Proposed: trombone X
GT: trombone

What the woman is using to insert
screw?
Baseline: toothbrush
Proposed: screwdriver X
GT: screwdriver

Which kind of outdoor recreation
are shown in this image?
Baseline: skis X
Proposed: skis X
GT: skis

Which object in this image is used
for sitting?
Baseline: couch
Proposed: couch
GT: sofa

Which objects in this image may
be known as avians?
Baseline: boats
Proposed: bird
GT: birds

What object in this image is com-
monly eaten for lunch?
Baseline: sandwich X
Proposed: sandwich X
GT: sandwich

1

(b) FVQA.

Figure B.1. Random selection of test instances from OK-VQA
and FVQA datasets, with predictions of the baseline (LXMERT)
and of our model (pre-trained with VQA v2, GQA w/ Concept-

Net PT+FT).
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A man plays violin.

Baseline: contradiction
Proposed: entailment X
GT: entailment

There are many children.

Baseline: entailment X
Proposed: entailment X
GT: entailment

A group of casually dressed people
stand in the room.
Baseline: contradiction X
Proposed: contradiction X
GT: contradiction

The boy is wearing overalls.

Baseline: contradiction
Proposed: neutral X
GT: neutral

A man plays with a dog.

Baseline: entailment X
Proposed: contradiction
GT: entailment

A cat sleeps indoors.

Baseline: contradictionX
Proposed: contradictionX
GT: contradiction

The man is cutting steak on the
counter.

Baseline: contradictionX
Proposed: contradictionX
GT: contradiction

The Broadway Rite Aid captures
the attention of everyone who
walks by due to the good sales.
Baseline: neutral X
Proposed: neutral X
GT: neutral

1

(a) SNLI-VE.

An image shows a forward-facing
non-standing hound with a paw on
some type of toy.
Baseline: true X
Proposed: false
GT: true

At least one image is of a multi-
serving trifle bowl.

Baseline: false X
Proposed: false X
GT: false

One of the images features exactly
three musicians.

Baseline: false
Proposed: false
GT: true

An image shows exactly one fra-
grance bottle displayed on the right
of an upright black box.
Baseline: false
Proposed: true X
GT: true

All the instruments are standing on
their ends.
Baseline: true
Proposed: false X
GT: false

A beetle on top of a dungball is fac-
ing left.
Baseline: true
Proposed: false X
GT: false

There is a plant near the cabinet in
the image on the left.
Baseline: true X
Proposed: true X
GT: true

Each sled driver is driving a group
of at least five dogs.
Baseline: false X
Proposed: false X
GT: false

1

(b) NLVR2.

Figure B.2. Random selection of test instances from SNLI-
VE and NLVR2 datasets, with predictions of the baseline
(LXMERT) and of our model (pre-trained with VQA v2, GQA

w/ ConceptNet PT+FT).
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