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Abstract

Anomaly detection is a fundamental problem in computer vision and medical imag-
ing, which aims to detect unseen (i.e., not present in the training set) abnormal data
instances that deviate from the distribution of seen (or present in the training set) nor-
mal instances. Deep neural networks have been the dominant model behind current
solutions that have achieved great success in different application domains. Anomaly
detection can be formulated as: (i) unsupervised anomaly detection (UAD) developed
with a one-class classification method that only uses normal training data, (ii) few
shot anomaly detection that uses a small amount of abnormal training data and a
large amount of normal training data, and (iii) weakly supervised learning for video
anomaly detection with video-level labels without any indication of where the anomaly
happens inside the video sequence. Despite the remarkable achievements of current
approaches, there are still many challenges worth exploring to advance the field.

Traditional reconstruction-based UAD methods use generative models to learn to
reconstruct normal training images, where the assumption is that these models will re-
construct unseen abnormal images with larger error than the normal images. However,
such an assumption often fails since modern generative models, such as autoencoders
(AE) and generative adversarial networks (GAN), can generalise well to unseen abnor-
mal images and yield low reconstruction errors, particularly for hard anomalies (i.e.,
subtle abnormal samples that look similar to normal instances). Thus, this thesis first
targets this low reconstruction error for hard anomaly, present in generative models.
We design several new reconstruction-based UAD methods that explicitly constrain
the generative model to be able to only reconstruct normality patterns, reducing their
ability to reconstruct unseen abnormal cases, and consequently improving their un-
supervised anomaly detection accuracy. Moreover, we argue that another major issue
that may reduce UAD accuracy is the inadequate feature representations obtained from
pre-trained models designed to solve general classification tasks instead of UAD tasks.
To address this issue, we propose the new self-supervised pre-training methods in the
field designed specifically for downstream UAD tasks. When pre-training off-the-shelf
anomaly classifiers, our self-supervised methods are shown to enable substantial im-
provements in terms of anomaly detection accuracy. We also notice that the accuracy of
UAD methods can be improved by leveraging a few labelled abnormal samples during

xxxi



training, which should be used in addition the normal samples to facilitate the classifi-
cation of normal and abnormal instances. This idea allowed us to propose the new few-
shot anomaly detection method to improve anomaly detection accuracy. Furthermore,
we propose a new video anomaly detection approach that relies on weak video-level an-
notations. One of the major challenges of weakly supervised video anomaly detection
(WVAD) is how to accurately identify anomalous frames or snippets from abnormal
videos during training. Our solution for WAVD involves the design of a new temporal
feature learning and a novel transformer-based multiple instance learning framework.
Finally, we propose a simple and effective anomaly segmentation model that targets the
pixel-wise anomaly detection task from complex urban driving scenes. This method
aims to address the fundamental problem that current semantic segmentation mod-
els often produce misclassifications on unexpected road anomalies. We conduct our
experiments on public anomaly detection and segmentation benchmarks and most of
the methods presented in this thesis achieve state-of-the-art (SOTA) performance on
various natural image and medical image analysis datasets.
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Chapter 1

Introduction

Anomaly detection is a fundamental task in computer vision and medical image anal-
ysis, which consists of training a one-class classification model with a set of normal
samples, and during testing this model must be able to contrast between normal and
abnormal samples, even though the model has not been exposed to abnormal samples
during training. The development of models and algorithms for anomaly detection
has been an active research area, and current approaches play an important role on
many real-world applications, such as automatic surveillance systems, medical malig-
nant detection, safety for artificial intelligence systems, industrial defect detection, and
etc. Traditional approaches formulate the problem as a one-class classification method
using one-class SVM [35, 202] to learn a discriminative hyperplane to map the normal
samples, or utilise clustering methods, such as k-means or Gaussian Mixture Models
(GMM) [248, 272], to construct a normality distribution that identifies anomalies as
samples that fall outside this distribution. However, these traditional methods show
relatively poor performance when processing high-dimensional image and video data.
With the development of deep learning methods, deep neural networks have become
the main model explored for anomaly detection in both computer vision and medical
image analysis, leading to superior performance in several benchmarks, compared with
previously proposed machine learning models.

1.1 Anomaly Detection Setups

The task of anomaly detection has been intensively studied, where many problem setups
have been proposed, which include: unsupervised anomaly detection (UAD), few-shot
anomaly detection, and weakly-supervised anomaly detection (WAD), as shown in
Fig. 1.1. Anomaly detection methods are usually applied to problems that are difficult
to obtain high quality data and annotation. In computer vision, anomaly detection
can be applied to detect abnormal events from video surveillance or detect industrial
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defects from scanning images because the anomalies in these applications are often
open-set, where it is hard to collect all possible categories for effectively identifying all
unknown anomalies. Furthermore, in medical images, anomaly detection applied to
disease screening problems is particularly interesting because most of the patients are
healthy, where it is hard to collect a large number of abnormal/unhealthy data and
annotations in real world clinical scenarios.

Unsupervised Anomaly Detection: UAD methods typically train a one-class
classifier (OCC) using only data from the normal class, and anomalies (or abnormal
cases) are detected based on the extent that testing samples deviate from the normal
class. Such UAD formulation is crucial for detecting and segmenting anomalies in many
applications (e.g., disease screening datasets in medical image analysis), which contain
a disproportionately large number of normal (or healthy) images, and a small amount of
abnormal (or disease) images. Not only is the collection and annotation of such heavily
imbalanced training sets challenging, but it is also hard to acquire a representative
dataset containing a reasonable number of images from all possible abnormal sub-
classes given the intrinsic variations in the visualisation of different anomalies [139,
218, 221]. This can also bring substantial benefits for computer vision applications,
such as industrial defect detection [33] or detecting road anomalies for self-driving
systems [49, 219], where those abnormalities are often rare to collect and annotate.

Few-shot Anomaly Detection: Unfortunately, in practice UAD methods can
misclassify outliers that lie relatively close to inliers (e.g., when a lesioned tissue occu-
pies a small area of the image). One possible way to address such problem is to leverage
a small amount of abnormal training data through the design of training methods that
can deal with heavily imbalanced learning problems [126, 128]. Even though they may
be effective, these approaches still need a fairly high number of abnormal training im-
ages. Few-shot anomaly detection aims to propose a middle ground between these
approaches to effectively address the issues of requiring a relatively large annotated
data set from imbalance classification (containing normal and abnormal data), and
misclassifying challenging outliers from UAD.

Weakly-supervised Anomaly Detection: Another major setup of anomaly de-
tection is the weakly-supervised video anomaly detection (WVAD), where the training
set contains video-level normal and abnormal labels, but no indication of where in the
video the anomaly is present. Using this training data, the goal is to train a classifier
that not only classifies a test video into normal or abnormal, but it also localises the
anomaly within the video. WVAD has many applications, such as in the context of
surveillance, where examples of anomaly are bullying, shoplifting, violence, etc., and
in the context of colonoscopy videos, examples of anomaly are frames containing colon
polyps. For both applications, it is of utmost importance to detect abnormal frames
because surveillance and colonoscopy videos are often annotated with video-level labels
in real-world datasets. Although aforementioned UAD setup trained exclusively with
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Figure 1.1: Taxonomy of three types of deep anomaly detection models explored in
this thesis.

normal videos has been explored in this context [65, 87, 97, 145, 183, 184, 264], the best
performing approaches explore a weakly-supervised setup using training samples with
video-level label annotations [211, 217]. This weakly-supervised setup targets a better
anomaly classification accuracy at the expense of a relatively small human annotation
effort, compared with UAD approaches.

Even though previous approaches have shown accurate anomaly detection results,
we still find significant challenges that need to be further studied from both empirical
and theoretical viewpoints. In this thesis, we introduce our works under the afore-
mentioned anomaly detection setups, i.e., unsupervised anomaly detection, few-shot
anomaly detection and weakly supervised anomaly detection, to advance the field of
detecting and localising abnormalities in industrial data, colonoscopy data, fundus
data, Covid-19 Chest X-ray (CXR) data, self-driving obstacle data and surveillance
data (See Fig. 1.2).

1.2 Motivation

Anomalies are by nature a rare event, which means that they are hard to find, par-
ticularly when compared with a massive amount of normal data. In addition, it will
be even harder to collect a reasonable number of samples belonging to anomaly sub-
classes. Therefore, instead of trying to acquire a relatively balanced training set of
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normal and abnormal samples, anomaly detection approaches either ignore abnormal
data altogether or rely on extremely small amounts of (weakly-labelled) abnormal data.
This effort reduction in terms of training data collection is the main motivation behind
anomaly detection approaches.

Current UAD approaches [32, 34, 56, 139, 199, 216, 229] train deep generative mod-
els, such as autoencoder (AE) [108] and generative adversarial networks (GAN) [58], to
reconstruct normal images, and anomalies are detected based on large reconstruction
error values [165]. These approaches rely on a low-dimensional image representation
that must be effective for reconstructing normal images, where the main challenge is on
how to enforce this representation to not allow an accurate reconstruction of abnormal
images, particularly the ones containing subtle anomalies. We argue that one way of
improving the reconstruction-based UAD approaches is to use a dual GAN structure,
which consists of two generators and two discriminators, to explicitly constrain both
the latent and image spaces, yielding better anomaly detection performance (please see
Chapter 3).

Inspired by recent developments in the field [10, 30, 77, 90, 94, 133], we propose
the first1 self-supervised learning for anomaly detection in medical images designed
to tackle the low reconstruction error of subtle anomalies. This is achieved by pre-
training the UAD models to learn fine-grained feature representations with the con-
strained contrastive distribution (CCD) model (please see Chapter 4). This method
above is further extended to form a tighter and denser cluster than the CCD model in
Chapter 5, where the cluster is formed by re-formulating the standard one-class UAD
problem into an auxiliary multi-class centring/clustering problem. Another major issue
of UAD approaches is that they often suffer from overfitting the training data, espe-
cially when the training set is small or contaminated with anomalous samples. This is
of utmost importance in practice because real-world anomaly detection datasets often
contain a small amount of anomalous contamination, challenging the effectiveness and
robustness of existing UAD systems. To address this problem, we propose a new UAD
model that learns a one-class Gaussian anomaly classifier trained with adversarially
interpolated training samples to alleviate such issues, and for the first time, to assess
the robustness of anomaly detectors to training sets that are small or contaminated
with anomalous samples (please see Chapter 6). The subtle anomaly reconstruction
error issue of UAD methods can also be addressed by training a transformer based
memory-augmented masked autoencoder to explicitly encode and reconstruct normal-
ity patterns, thus forcing challenging anomaly cases to produce high reconstruction
errors (please see Chapter 7).

Another way to improve the accuracy of UAD methods [56, 139, 148, 273], particu-
larly with regards to subtle anomalies, is to include a small set of abnormal data into the
training set. Such problem can be defined as a highly-imbalanced learning problem or a

1To the best of our knowledge.
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few-shot learning task. Imbalanced learning methods [126, 128] can in principle address
this problem, but these approaches still need a much larger proportion and number of
abnormal training images than is usually available in anomaly detection datasets. This
thesis proposes the first middle-ground work between imbalanced learning and UAD.
Our setup utilises a large quantity of normal data, and a comparatively much smaller
amount of anomalous training samples, to effectively detect anomalies based on a novel
few-shot anomaly detection method (Chapter 10). The resulting anomaly classifier re-
quires significantly less abnormal training data to achieve better accuracy on anomaly
classification than the traditional imbalance learning approaches, and at the same time
it produces substantially more accurate results than UAD approaches.

Finally, this thesis explores weakly supervised video anomaly detection (WVAD)
that is trained with normal and abnormal video-level labelled samples, and during
testing, it aims to identify the time window when anomalous events happen in videos.
One of the major challenges of WVAD is how to identify anomalous snippets from a
whole video labelled as abnormal both during training and testing. This is due to the
following two reasons: 1) the majority of snippets from an abnormal video contain
normal events, which can overwhelm the training process and challenge the fitting of
the few abnormal snippets; and 2) abnormal snippets may not be sufficiently different
from normal ones, making a clear separation between normal and abnormal snippets
challenging. To tackle such challenges, we propose a novel and theoretically sound
method based on a feature magnitude learning function to recognise abnormal snippets,
substantially improving the robustness to the normal snippets from abnormal videos
(please see Chapter 8). We apply this WVAD method to polyp frame detection from
weakly-labelled colonoscopy videos. Such setup consists of a vital clinical application
for efficient and accurate colon cancer pre-diagnosis using minimally curated datasets
directly available from hospitals and clinics (please see Chapter 9).

The thesis also investigates anomaly detection problems in self-driving systems,
which produces pixel-wise anomaly classification for semantic segmentation models.
Current segmentation models use common uncertainty measures (e.g., classification
entropy or uncertainty) to detect anomalies [17, 20, 27, 49, 103, 130, 155, 246], but
they often fail to properly recognise anomalous objects that deviate from the training
inlier distribution (e.g., Cityscapes [39]), leading to potentially fatal model decisions.
We take an alternative approach and propose a simple and effective anomaly segmen-
tation method to tackle this task. Our method introduces a novel pixel-wise abstention
learning to improve the precision and robustness to detect small anomalous objects,
and achieve substantial performance improvements on existing benchmarks (please see
Chapter 11).
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Figure 1.2: Anomaly detection applications explored in this thesis: road obstacles,
industrial defect detection, Covid-19 detection from Chest X-ray, polyp detection from
colonoscopy frames, glaucoma detection from fundus screening images, and violence
detection from surveillance videos.

1.3 Contributions and Thesis Outline

We propose different deep learning methods for various anomaly detection tasks with
unlabelled, weakly labelled and few-shot labelled data. This thesis aims to improve the
performance (e.g. accuracy, robustness, stability and efficiency) of previous anomaly
detection methods from the literature, and to propose new methodological anomaly
detection formulations and novel computer vision and medical image analysis tasks.

The contributions of this thesis can be outlined as:

• Chapter 2 provides the details about the related literature. We introduce previously
published unsupervised anomaly detection methods and we also review few-shot and
weakly supervised anomaly detection approaches. Furthermore, we present anomaly
detection for semantic segmentation from complex urban driving scenes.

• Chapter 3 describes our proposed anomaly detection generative adversarial network
(ADGAN) approach for detecting anomalies from colonoscopy frames. Our ADGAN
comprises two generators and two discriminators, which are designed to explicitly
constrain the latent space, where the image GAN aims to preserve both the global
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Anomaly Detection Setups Computer Vision Medical Imaging

Unsupervised Anomaly Detection Chapter 6 Chapter 3, 4, 5, 6, 7
Weakly Supervised Anomaly Detection Chapter 8 Chapter 9

Few-shot Anomaly Detection Chapter 10 -
Pixel-wise Anomaly Detection in Self-driving Chapter 11 -

Table 1.1: Thesis contributions: We propose different deep learning methods for
various anomaly detection tasks, including unsupervised anomaly detection without
abnormal training data, weakly supervised anomaly detection with weakly labelled
video training data, and few-shot anomaly detection with few labelled image data.

and local information of input image data by combining mean square error (MSE)
and binary cross entropy (BCE) losses for better reconstruction of normal images.
We show that our ADGAN is more effective and more accurate than previous state-
of-the-art (SOTA) methods.

• Chapter 4 shows that one of the major challenges that hinders the accuracy of UAD
methods is the difficulty of learning effective low-dimensional image representations
to detect and segment subtle anomalies. To address this issue, we propose the first
self-supervised pre-training method specifically designed for UAD in medical imag-
ing, named constrained contrastive distribution (CCD), which learns fine-grained
feature representations by simultaneously predicting the distribution of augmented
data and image contexts using contrastive learning with pretext constraints. We
show that the pre-trained model can be adapted to a wide variety of anomaly clas-
sifiers, yielding better improvements than with Imagenet pre-trained models.

• Chapter 5 proposes a novel self-supervised pre-training method specifically designed
for MIA UAD applications to form denser and tighter clusters for normal sample
representations. Our method introduces a new design of the contrastive learning
optimisation that converts the OCC problem into a multi-class clustering task with
the help of our MedMix augmentations that simulate different types of lesions of
varying size and appearance using only normal training data. The proposed approach
is shown to learn effective feature representations that can adapt well to different
types of downstream UAD tasks and is able to be applied to several MIA problems.

• Chapter 6 focuses on building a new UAD approach for image anomaly detection.
The new one-class classifier (OCC) model targets the learning of an effective normal-
ity descriptor with a theoretically sound derivation of the expectation-maximisation
(EM) algorithm that optimises a Gaussian anomaly classifier constrained by adver-
sarial interpolation and multi-scale image reconstruction. This results in a robust
anomaly classifier that can be trained with small and contaminated training data.
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Our work introduces a new benchmark for UAD approaches with training sets that
are small or contaminated with anomalous samples.

• Chapter 7 investigates, for the first time in the field, the potential effectiveness of
masked autoencoders (MAE) for anomaly detection. Reconstruction methods, which
detect anomalies from image reconstruction errors, are advantageous for medical
imaging tasks but often fail because they can have low reconstruction errors even
for anomalous images. In this chapter, we propose a new reconstruction-based UAD
approach that addresses this low-reconstruction error issue for anomalous images by
using transformers for the encoder and decoder architectures. We further introduce
a novel memory module to facilitate the MAE training. The method achieves SOTA
performance on two MIA applications.

• Chapter 8 proposes a weakly-supervised anomaly detection method that can iden-
tify anomalous snippets from a whole video labelled as abnormal both during training
and testing. To accurately identify those anomalous snippets, we propose the robust
temporal feature magnitude (RTFM), which substantially improves the robustness
of current multiple instance learning (MIL) approaches trained with video-level weak
labels. A new multi-scale temporal feature learning is also introduced to seamlessly
incorporate long and short-range temporal dependencies within each video. We also
show a detailed theoretical analysis of our RTFM algorithm. The resulting model is
shown to achieve SOTA accuracy on four video surveillance datasets.

• Chapter 9 argues that current polyp detection methods from colonoscopy videos
often ignore the importance of temporal information in consecutive video frames.
Hence, in this chapter, we formulate polyp detection as a weakly-supervised anomaly
detection task that uses video-level labelled training data to detect frame-level polyps.
This is the first work to consider polyp detection as weakly-supervised anomaly detec-
tion task and we introduce a novel contrastive snippet mining to enable the detection
of challenging polyp cases (e.g., small, flat, or partially visible polyps). This method
is validated on a new large scale colonoscopy video dataset and achieves the best
results when compared with previous leading approaches.

• Chapter 10 introduces a new few-shot anomaly detection network (FSAD-Net)
based on an encoder trained to maximise the mutual information between feature
embeddings and normal images, followed by a few-shot score inference network,
trained with a large set of normal samples and a substantially smaller set of abnormal
samples. Our model is designed to improve the accuracy of UAD approaches without
requiring a relatively large amount of labelled abnormal training samples, as needed
by imbalanced learning approaches.

• Chapter 11 presents a fundamental issue with current semantic segmentation meth-
ods that tend to produce inaccurate predictions of unexpected road anomalous ob-
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jects (e.g., unexpected objects in the middle of the road can be mis-classified as the
road class). We propose a new method, named pixel-wise energy-biased abstention
learning (PEBAL), to address such failure cases for existing semantic segmentation
models. The proposed PEBAL explores a nontrivial joint training between a novel
pixel-wise abstention learning (PAL) that learns an adaptive pixel-level anomaly
class, and an energy-based model (EBM) that learns inlier pixel distribution. PE-
BAL achieves substantial performance improvement for detecting anomalous objects
from real-world urban driving scenes compared with previous SOTA.

• Chapter 12 summarises the methods and the contributions of this thesis and dis-
cusses the potential future directions for anomaly detection.
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Chapter 2

Literature Review

2.1 Unsupervised Anomaly Detection

Anomalies are defined as data that do not conform to the general distribution of normal
data [166]. For instance, in medical image analysis, anomaly detection can be used in
the detection of abnormal lesions in normal tissue [174, 199]. Unsupervised anomaly
detection (UAD) is the dominant method to tackle such problem, which are generally
formulated with a one-class classifier [23] that is trained using only normal training
samples. Important examples of UAD methods are provided by You et al. [253], who
train an outlier detection method that combined sample representations and random
walks on a representation graph. Also, Sabokrou et al. [195] propose a framework
that consists of two models, where one model works as the novelty detector and the
other supports it by improving the separability between enhanced normal samples and
distorted anomalies.

Alternatively, some recent approaches use features extracted from pre-trained deep
neural networks [72, 101, 205, 265], and train an anomaly score classifier using the
extracted features. DSVDD [191] consider UAD as a one-class classification problem,
which forces normal image features to be inside a hyper-sphere with a pre-defined
centre and a radius that is minimised to include all training images. Markovitz et
al. [150] extract human pose graphs from surveillance videos and cluster them in a
latent space to distinguish between normal and abnormal. Morais et al. [153] propose
an anomaly classifier to detect human-based anomalies using skeleton trajectories. The
anomaly detection approaches based on ImageNet pre-trained models [42, 185] often
fail to transfer representations learned from natural images to medical images.

UAD accuracy has recently been improved with self-supervised pre-training that
relies on pretext tasks, consisting of predicting geometric or brightness transforma-
tions [10, 31, 77, 90, 94, 133] to learn fine-grained normality training features. For
example, Pang et al. [169] propose the use of self-supervised learning to assign pseudo
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labels based on the predicted anomaly scores. However, self-supervised learning meth-
ods [31, 90, 133] are designed to work for downstream multi-class classification prob-
lems, so there are no guarantees that such approaches will seamlessly translate to
downstream UAD problems [238].

Recent UAD approaches also rely on generative models (i.e., GAN, autoencoder) for
accurate anomaly detection, where the generated normal image is produced conditioned
on another normal image. Autoencoder and GAN strategies assume that the abnormal
data cannot be reconstructed correctly during testing given that the model is trained
only with normal data. Liu et al. [65] propose a method based on future frame predic-
tion in a video sequence using a GAN-based method trained with normal data only,
and tested to distinguish normal and abnormal events on surveillance dataset. This ap-
proach is not applicable to medical images, and in particular colonoscopy data, because
the scopes used to acquire such images can have quick and unpredictable motions, so
future frames tend to be not as predictable as in a natural image sequence. Gong et
al. [56] propose a memory-module to enforce the autoencoder to reconstruct samples
into its normal form. Park et al. [170] improve such memory block by introducing a
more complex and effective memory update mechanism and two new losses to optimise
the memory module. OCGAN [175] introduce a few techniques to constrain the la-
tent space to represent the normal class. Abati et al. [2] design an autoencoder based
anomaly detection with a parametric density estimator that learns the probability dis-
tribution underlying its latent representations through an autoregressive procedure.
Another GAN-based anomaly detection, Anogan [64], trains a DCGAN [55] network
on normal (healthy) retinal OCT images. During testing, a computationally expensive
iterative back-propagation process is run to produce the closest image to the input im-
age. Schlegl et al. [199] addressed this large computational run-time issue by training
an encoder after training a WGAN [5] to speed up the inference time. Replacing the
iterative back-propagation from Anogan to an efficient encoding mechanism reduces
inference running time, but introduces an ineffective two-stage training process.

Given that anomalies tend to be localised in a small region of the image that can
be otherwise considered to be normal, it is important to pay attention not only to the
detection, but also the localisation of anomalies. Unsupervised anomaly localisation
targets the segmentation of anomalous pixels or patches, containing, for example, le-
sions in medical images [122], defects in industry images [11, 13], or road anomalies
in traffic images [173, 219]. The main idea explored in anomaly localisation is based
on extending the image based OCC/UAD to a pixel-based OCC/UAD, where testing
produces a pixel-wise anomaly score map [8, 15]. In general, methods that can localise
anomalies [11, 228] are tuned to particular range of anomaly sizes and structure, which
can cause then to miss anomalies outside that range. Therefore, it is important to
study new approaches that can localise anomalies of several sizes.
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2.2 Weakly Supervised and Few-shot Anomaly De-

tection

Leveraging a few labelled abnormal samples during training has shown to provide
substantial improvements over the aforementioned UAD approaches [137, 164, 193,
211, 216, 245, 257, 258, 259]. For example, Ruff et al. [193] propose to use a small
pool of labelled abnormal samples to learn an end-to-end deep anomaly classifier for
images. However, this method still requires a relatively large amount of abnormal
samples. Hence, an important open research question is how to enable the training of
anomaly detection models using significantly less anomalous images than imbalanced
learning and previous anomaly detection approaches. Such strategy is named few-shot
anomaly detection, which relies on a handful of anomalous images for training.

For video anomaly detection, it is too expensive to acquire large-scale frame-level
label annotation. Hence, current SOTA video anomaly detection approaches rely
on weakly supervised training that uses cheaper video-level annotations. Sultani et
al. [211] proposed the use of video-level labels and introduced the large-scale weakly-
supervised video anomaly detection dataset, UCF-Crime. Since then, this research
direction has attracted growing attention from the community [73, 231, 245, 262].
Weakly-supervised video anomaly detection (WVAD) methods are mainly based on the
multiple instance learning (MIL) framework [211]. However, most MIL-based meth-
ods [211, 262, 270] do not explicitly address the problem of label noise that might
be present in a positive bag because a normal snippet can be mistakenly selected as
the top abnormal event in an anomaly video. To deal with this problem, Zhong et
al. [266] reformulated this problem as a binary noisy-label classification and used a
graph convolution neural (GCN) network to fix the label noise. Although this paper
shows more accurate results than [211], the training of GCN and MIL is computation-
ally costly, and it can lead to an unconstrained latent space (i.e., normal and abnormal
features can lie at any place of the feature space) that can cause unstable performance.
The most recent work in this area [73] proposes a MIL self-training framework to re-
fine snippet-level feature representations between weak labelled normal and abnormal
videos.

However, those MIL based WVAD approaches suffer from some common issues,
namely: 1) the top anomaly score in an abnormal video may not be from an abnormal
snippet; 2) normal snippets randomly selected from normal videos may be too easy to
fit, which challenges training convergence; 3) if the video has more than one abnormal
snippet, we miss the chance of having a more effective training process containing
more abnormal snippets per video; 4) the use of classification score provides a weak
training signal that does not necessarily enable a good separation between normal and
abnormal snippet; and 5) the identification of challenging abnormal snippets that have
subtle anomalies is difficult and often incorrect. These issues above point to interesting
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research problems that need further investigation.

2.3 Pixel-wise Anomaly Detection in Semantic Seg-

mentation

Recent advances in semantic segmentation have shown tremendous improvements on
complex urban driving scenes [116]. Despite the accurate predictions on the inlier
classes, the model fails to properly recognise anomalous objects that deviate from
the training inlier distribution such as the unexpected objects in the middle of the
road. Current methods can be categorised to either uncertainty based or reconstruction
based approaches. Early uncertainty-based methods [95, 118, 127] focused on the
estimation of image-level anomalies and naively adapt their approach to pixel-wise task,
which tended to mis-classify some hard pixels (e.g., inlier object boundaries and subtle
anomalies) into inlier classes [103]. Jung et al. [103] mitigate such issue by iteratively
replacing false anomalous boundary pixels with neighbouring non-boundary pixels that
have low anomaly score, allowing the detection of anomalies without model re-training
or adding extra models. Moreover, the aforementioned boundary issue is also alleviated
with a pixel-wise uncertainty estimated with MC dropout in [106, 115, 155], but they
still yield a poor pixel-wise anomaly detection accuracy [130]. Without fine-tuning
using a proxy outlier dataset, the uncertainty estimation may not be accurate enough
to detect anomalies, especially for the challenging abnormal cases that share similar
appearance features with the normal objects.

Another strategy for pixel-wise anomaly detection is based on the use of extra
models for image reconstruction. With such models, unseen abnormalities can be seg-
mented from the reconstruction errors between the input image and its re-synthesised
version based on its predicted segmentation map [8, 33, 40, 49, 86, 130, 230, 246]. Those
approaches are challenged by the dependence on an accurate segmentation prediction,
by the complexity of reconstruction models that usually require long training and in-
ference processes, and also by the low quality of the reconstructed images. Moreover,
reconstruction methods that rely on a discrepancy module require re-training when-
ever the inlier segmentation model changes due to input distribution shift [49], limiting
their applicability in real-world systems.

Therefore, inspired by the image-level out-of-distribution detection [96], some pixel-
wise anomaly detectors utilise the outlier exposure (OE) strategy that uses an auxiliary
dataset of outliers, which has no overlap with real outliers (i.e., anomalies), to improve
the anomaly detection performance. The leading approaches in this field adopt Ima-
geNet [17, 18, 226], void class of Cityscape [49] or COCO [27] as the OE samples/pixels,
where the expectation is that the model trained with the OE strategy can generalise to
unseen outliers. However, maximising uncertainty for outliers using the OE strategy
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may often lead to a deterioration of the inlier segmentation accuracy [18, 226]. An-
other major issue that affects the methods above is that the training set of OE samples
often contains a disproportionately high amount of outliers [27], which can bias the
segmentation toward the anomaly class, leading to poor anomaly segmentation accu-
racy. Therefore, even though the OE strategy has led to the development of successful
methods, the issues around uncertainty maximisation and the large amount of outliers
should be addressed to enable further improvements on pixel-wise anomaly detection.

2.4 Anomaly Detection Datasets

In this thesis, we conduct experiments using several publicly available datasets. For
UAD datasets in computer vision, MNIST [48], Fashion MNIST [247] and CIFAR10 [113]
have been widely used to benchmark image anomaly detection methods, and we follow
the same experimental protocol as described in [1, 11, 41, 56, 176, 191, 228]. CIFAR10
contains 60,000 images with 10 classes. MNIST and Fashion MNIST contains 70,000
images with 10 classes of handwritten digits and fashion products, respectively. For
each dataset, the benchmark consists of 10 anomaly detection experiments by consider-
ing images from each class as normal samples and the images from remaining classes as
anomalies. The sampled normal data is split into training and testing sets with a ratio
of 2:1. The test sets contain 10,000 abnormal samples from the remaining anomalous
classes. The results reported in this thesis are the mean over the 10 anomaly detection
experiments.

MVTec AD [13] is a recently released dataset that contains 5,354 high-resolution
real-world images of 15 different industry objects and textures. The normal class of
MVTec AD is formed by the images without defects and consists of 3,629 images for
training and 467 images for testing. The anomalous class has more than 70 categories of
defects (such as dents, structural fails, contamination, etc.) and contains 1,258 images
used only for testing. Furthermore, MVTec AD also provides pixel-wise ground truth
annotations for all anomalies, allowing the evaluation of not only anomaly detection,
but also anomaly localisation.

We use four medical UAD datasets, namely: the colonoscopy images of Hyper-
Kvasir dataset [21], Liu et al.’s colonoscopy dataset [139], the LAG glaucoma dataset
using fundus images [121], and Covid-19 chest X-ray dataset [235]. Hyper-Kvasir is a
large multi-class public gastrointestinal image dataset [21]. The data were collected
from the gastroscopy and colonoscopy procedures from Baerum Hospital in Norway. All
labels were produced by experienced clinicians. The dataset contains 110,079 images
from abnormal (i.e., unhealthy) and normal (i.e., healthy) patients, where 10,662 of
those images have been labelled, and each image has size 300 × 300 pixels. We use a
subset of the normal (i.e., healthy) images from the dataset for training. Specifically,
2,100 images from ‘cecum’, ‘ileum’ and ‘bbps-2-3’ are selected as normal, from which
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we use 1,600 for training and 500 for testing. We also take 1,000 abnormal images and
their segmentation masks of polyps to be used exclusively for testing. LAG is a large
scale fundus image dataset for glaucoma diagnosis [121], containing 4,854 fundus images
with 1,711 positive glaucoma scans and 3,143 negative glaucoma scans, where images
have size of 500 × 500 pixels. For the experiments, we use 2,343 normal (i.e., negative
glaucoma) images for training, and 800 normal images and 1,711 abnormal images with
positive glaucoma diagnosis with attention maps annotated by ophthalmologists. The
attention maps are built using an eye tracking device, which automatically outputs
a region of interest for glaucoma diagnosis [121]. Covid-X [235] has a training set
with 1,670 COVID-19 positive chest X-ray images, and 13,794 COVID-19 negative
chest X-ray images of size 299 × 299 pixels. The test set contains 400 chest X-rays,
consisting of 200 positive and 200 negative images. We train the methods with the
13,794 COVID-19 negative chest X-ray training images and test on the 400 chest X-
ray images. Liu et al.’s colonoscopy dataset is a colonoscopy image dataset with 18
colonoscopy videos from 15 patients [139]. The training set contains 13,250 normal
(healthy) images without any polyps, and the testing set contains 967 images, with
290 abnormal images with polyps and 677 normal (healthy) images without polyps,
where images have size 64 × 64 pixels. For few-shot anomaly detection, we modify
Liu et al.’s colonoscopy dataset, and build a training set with 13,250 normal images
(without polyps) and 10 to 80 abnormal images. The testing set contains 967 images,
with 217 (25% of the set) abnormal images and 700 (75% of the set) normal images.

For the evaluation of weakly supervised anomaly detection approaches, four com-
puter vision datasets are used, namely: ShanghaiTech [65], UCF-Crime [211], XD-
Violence [245] and UCSD-Peds [250]. ShanghaiTech is a medium-scale dataset ob-
tained from fixed-angle street video surveillance. It has 13 different background scenes
and 437 videos, including 307 normal videos and 130 abnormal videos. The original
dataset [65] is a popular benchmark for the anomaly detection task. Zhong et al. [266]
reorganised the dataset by selecting a subset of the abnormal testing videos to insert
into the training data to build a weakly supervised training set, so that both training
and testing sets cover all 13 background scenes. We use the same procedure as in [266]
to convert ShanghaiTech to the weakly supervised setting. UCF-Crime is a large-scale
anomaly detection dataset [211] that contains 1,900 untrimmed videos with a total du-
ration of 128 hours from real-world street and indoor surveillance cameras. Unlike the
static backgrounds in ShanghaiTech, UCF-Crime consists of complicated and diverse
backgrounds. Both training and testing sets contain the same number of normal and
abnormal videos. The dataset covers 13 classes of anomalies in 1,610 training videos
with video-level labels and 290 test videos with frame-level labels. XD-Violence is
a recently proposed large-scale multi-scene anomaly detection dataset, collected from
real-life movies, online videos, sport streaming, surveillance cameras and CCTVs [245].
The total duration of this dataset is over 217 hours, containing 4,754 untrimmed videos
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with video-level labels in the training set and frame-level labels in the testing set. It is
currently the largest publicly available video anomaly detection dataset. UCSD-Peds
is a small-scale dataset comprising two sub-datasets: Ped1 with 70 videos and Peds2
with 28 videos. Previous papers [88, 266] re-formulate the dataset to the weakly su-
pervised anomaly detection problem by randomly selecting 6 abnormal videos and 4
normal videos to the training set, and the remaining videos to the testing set. Results
are computed with the mean accuracy over 10 times of this process.

For WVAD tasks in medical images, we propose a real-world large-scale video polyp
detection dataset, containing colonoscopy videos collected from two widely used public
datasets: Hyper-Kvasir [21] and LDPolypVideo [147]. The new dataset contains 61
normal videos without polyps and 102 abnormal videos with polyps for training, and
30 normal videos and 60 abnormal videos for testing. The videos in the training set
have video-level labels and the videos in testing set contain frame-level labels. This
dataset contains over one million frames and has diverse polyps with various sizes and
shapes, making it one of the largest and most challenging colonoscopy datasets in the
field.
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Chapter 3

Photoshopping Colonoscopy Frames

Abstract

The automatic detection of frames containing polyps from a colonoscopy video sequence
is an important first step for a fully automated colonoscopy analysis tool. Typically,
such detection system is built using a large annotated data set of frames with and
without polyps, which is expensive to be obtained. In this paper, we introduce a
new system that detects frames containing polyps as anomalies from a distribution of
frames from exams that do not contain any polyps. The system is trained using a
one-class training set consisting of colonoscopy frames without polyps – such training
set is considerably less expensive to obtain, compared to the 2-class data set mentioned
above. During inference, the system is only able to reconstruct frames without polyps,
and when it tries to reconstruct a frame with polyp, it automatically removes (i.e.,
photoshop) it from the frame – the difference between the input and reconstructed
frames is used to detect frames with polyps. We name our proposed model as anomaly
detection generative adversarial network (ADGAN), comprising a dual GAN with two
generators and two discriminators. To test our framework, we use a new colonoscopy
data set with 14317 images, split as a training set with 13350 images without polyps,
and a testing set with 290 abnormal images containing polyps and 677 normal images
without polyps. We show that our proposed approach achieves the state-of-the-art
result on this data set, compared with recently proposed anomaly detection systems.

3.1 Introduction

Colorectal cancer is considered to be one of the most harmful cancers – current research
suggests that it is the third largest cause of cancer deaths [62, 67]. Early detection of
colorectal cancer can be performed with the colonoscopy procedure for at-risk patients
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Figure 3.1: Top row shows test images containing polyps (highlighted with a red el-
lipse), which are considered to be anomalies in our framework. Bottom row shows the
reconstructed images by our ADGAN model, which deviate with their top row input
images leading to high reconstruction errors. Note that given that the ADGAN model
was trained with images without polyps, it is biased to reconstruct images without
polyps, as clearly seen in these examples.

with symptoms like hemotochezia and anemia [59]. Colonoscopy is based on the naviga-
tion of a small camera in the colon that enables doctors to classify and possibly remove
or sample polyps, which are considered as the precursors of colon cancer [62]. The
accurate detection of colon polyps may improve 5-year survival rate to over 90% [62].
Unfortunately, the accuracy of such manual detection varies substantially, leading to
potentially missing detection that can have harmful consequences for the patient [61].
For instance, the false negative polyp detection can lead to a future colon cancer,
which can be dangerous or even fatal [225]. Therefore, automated detection of polyps
is important in assisting doctors during a colonoscopy exam.

The automated polyp detection starts with the identification of frames containing
polyps. Typically, such detection system consists of a 2-class classifier, trained with
images containing polyps and images that do not contain polyps. The acquisition of
such training set is expensive, requiring the manual annotation of large amounts of
images for both classes. Furthermore, given the intrinsic variations in the visualisation
of polyps, it is challenging to collect a training set that is rich enough to thoroughly
represent the class of images that contain polyps [67]. To solve these two issues, this
detection problem can be re-formulated as an anomaly detection problem, generally
designed as a one-class classification problem that relies on a training set containing
images that do not show the anomaly to be detected (i.e., the negative images) [23].
Such classification approach generally does not scale well with the size of the training
set, reducing its applicability to large-scale medical image analysis problems. An alter-
native approach that addresses this scalability issue is based on a reconstruction model
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that first trains an encoder-decoder with negative images. Such model will produce
high reconstruction errors for positive images (i.e., images containing polyps) during
testing stage since only negative images were used during training [56, 148, 273] –
see Fig. 11.1. Note that the approaches above were developed for non-medical im-
age analysis problems. These encoder/decoder approaches suffer from two issues: 1)
the reliance on mean square error (MSE) loss to compute the distance between the
reconstructed images and its original image, can only preserve local visual informa-
tion [58, 148]; and 2) the latent space learned with encoder/decoder approaches can
accurately reconstruct abnormal images with similar appearance features to normal
images, leading to relatively small deviation between the distributions of normal and
abnormal data. For instance, the model that learns with colon wall images can also
reconstruct the abnormal colon wall image containing small polyps [174].

Anomaly detection can also be based on generative adversarial network (GAN) [58],
which addresses the local visual information issue mentioned above with an adversar-
ial training of a generator that tries to fool a discriminator to be confused with the
classification between real and synthetic images. However, unlike the encoder-decoder
model, GAN [58] cannot reconstruct an image based on a compressed latent variable
from a given input image, and suffers from unstable training. Schlegl et al. [199]
train an encoder to directly map an input image to GAN’s latent space and tackle
the unstable training issue by replacing the vanilla GAN [58] with Wasserstein GAN
(WGAN) [5]. Nevertheless, the framework proposed in [199] adopts a two-stage train-
ing strategy (encoder and WGAN are trained separately). Furthermore, the issues of
the encoder/decoder model mentioned above are not addressed in [199].

In this paper, we propose a new WGAN-based [5] anomaly detection model that
comprises two generators and two discriminators – this model is named anomaly detec-
tion GAN (ADGAN). Comparing with its competing approaches, our proposed model
can produce an explicitly constrained latent space using latent generator and discrimi-
nator, and take advantage of GAN’s generation ability to preserve both global and local
information of input data by combining MSE and binary cross entropy (BCE) losses to
improve the performance of anomaly detection. We show that our ADGAN is more ef-
fective (by relying on a one-stage end-to-end training) and more accurate (for anomaly
classification) than previous methods [174, 199]. We demonstrate that our method can
reconstruct the abnormal images with polyps into normal images by automatically re-
moving (i.e., ’photoshopping’) the polyps (Fig. 11.1). These results are demonstrated
on a new colonoscopy data set, containing 14317 high-quality colonoscopy images. The
training set contains 13250 normal (healthy) images without polyps and we use 100
normal images as validation set. The testing set contains 290 abnormal images with
polyps and 677 normal images without polyps (i.e., 30% of the testing images are
abnormal).
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3.2 Related work

Anomalies are defined as data that do not conform to the general distribution of normal
data. In medical image analysis, anomaly detection can be used, for example, in the
detection of abnormal lesions in normal tissue [174, 199]. Anomaly detection models
are generally based on one-class classifiers [23], encoder-decoder models [60, 174] and
GAN approaches [174, 199]. One-class classifiers are generally based on Gaussian
processes, which do not scale well with training set size [23]. Encoder/decoder and GAN
strategies assume that the abnormal data cannot be reconstructed correctly during
testing stage given a model trained only with normal data. The typical encoder-
decoder model for anomaly detection learns a deep auto-encoder [60] from the normal
data during training stage, and during testing, this model is expected to produce
larger reconstruction error for abnormal inputs [68], hopefully containing the lesions of
interest. The main issue with the encoder-decoder method is that the trained model
tends to accurately reconstruct abnormal samples during testing, leading to relatively
small deviation between the distribution of normal and abnormal images.

GAN-based models usually involve a conditional GAN approach, where the gener-
ated normal image is produced conditioned on another normal image. For instance,
Liu et al. [65] proposed a method based on future frame prediction in a video se-
quence using a GAN-based framework trained with normal data only, and tested to
distinguish normal and abnormal events on surveillance data set. This approach is
not applicable to medical image, and in particular colonoscopy data, because future
frames tend to be not as predictable from past frames in a sequence. OCGAN [174]
was proposed to distinguish abnormal data using a framework comprised of a de-
noising auto-encoder network, latent discriminator, visual discriminator and a classi-
fier. Nonetheless, the experiment results of this work indicate that the model perform
unsatisfactorily on complex image data (e.g., surveillance and medical images) [174].
Another GAN-based anomaly detection, Anogan [64], trains a DCGAN [55] network
on normal (healthy) retinal OCT images. During testing, a computationally expensive
iterative back-propagation process is run to produce the closest image to the input im-
age. Schlegl et al. [199] addressed this large computational run-time issue by training
an encoder after training a WGAN [5] to speed up the inference time. Replacing the
iterative back-propagation from Anogan to an efficient encoding mechanism reduces
inference running time, but introduces an ineffective two-stage training process. An-
other problem with the training above is that the encoder is under-constrained given
that the MSE loss only recovers local visual information and misses global information.

By taking the motivation from [199], our proposed GAN framework, based on the
Wasserstein GAN (WGAN) [5], resolves the issues mentioned above by an end-to-end
(i.e., one-step) training of a dual GAN that uses a new loss function that minimises
both the local and global reconstruction errors.
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Figure 3.2: Our proposed ADGAN model trains the visual generator, visual discrimina-
tor, latent generator and latent discriminator using adversarial training (left). During
testing, the input image is processed by the latent generator and the produced latent
embedding is used by the visual generator to produce the output image, which is then
compared with the input image to compute the anomaly score.

3.3 Data Set and Methods

3.3.1 Data Set

The data set is obtained from 18 colonoscopy videos from 15 patients. Video frames
containing blurred visual information are removed using the variance of Laplacian
method [66]. We then sub-sample consecutive frames by taking one frame every five
frames because consecutive frames generally contain similar visual information that
makes GAN training ineffective. We also remove frames containing feces and water to
improve the training efficiency (we plan to deal with such distractors in future work).
As a result, the frames used for training and testing are sharp, clean (of feces and
water), and discontinuous (in time domain).

This data set is defined by D = {xi, di, yi}|D|
i=1, where x : Ω → R3 denotes a

colonoscopy frame (Ω represents the frame lattice), di ∈ N represents patient identifi-
cation1, yi ∈ Y = {Normal, Abnormal} denotes the normal healthy colorectal frames
and abnormal colorectal frames that contains polyp. The distribution of this data set
is as follows: 1) Training set: 13250 normal (healthy) images without any polyps; 2)
Validation set: 100 normal (healthy) images for model selection; and 3) Testing set:
967 images, with 290 (30% of the set) abnormal images with polyps and 677 (70% of

1Note that the data set has been de-identified – di is useful only for splitting D into training,
testing and validation sets in a patient-wise manner.
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the set) normal (healthy) images without polyps. Note that the patients in testing
set do not appear in the training/validation sets and vice versa. This abnormality
proportion (on the testing set) is commonly defined in other anomaly detection lit-
erature [174] [199]. These frames were obtained with the Olympus ®190 dual focus
colonoscopy.

3.3.2 Methods

Our proposed ADGAN is shown in Figure 3.2, and comprises a visual generator,
a visual discriminator, a latent generator and a latent discriminator. Defining z ∼
U(−1, 1), with z ∈ RZ as the latent variable, the visual generator is defined by

x̂ = Gv(z; θv), (3.1)

where θv denotes the parameter vector of the generator, and x̂ : Ω → R3 denotes the
generated image. Similarly, the latent generator is defined by

ẑ = Gl(x̂; θl), (3.2)

where θv is again the parameter vector. During training, Gv(.) from (3.1) generates
fake images x̂ given z to fool the visual discriminator, defined as:

r = Dv(x̂; γv), (3.3)

where γv represents the discriminator parameters. The generated image x̂ is then fed
to the latent generator in (3.2) to produce a fake latent vector ẑ to fool the latent
discriminator, defined as

r = Dl(ẑ; γl), (3.4)

where γl is the discriminator parameters. The training process follows [83], where we
minimise the visual generation loss,

lDv = Dv(x) −Dv(x̂) + λ(||∇Dv(x̂)||2 − 1)2

lGv = −Dv(Gv(z));
(3.5)

and the latent generation loss:

lDl = log(Dl(z)) + log(1 −Dl(ẑ))

lGl = α log(1 −Dl(Gl(x̂))).
(3.6)

To generate realistic images, we also minimise the mean squared error (MSE) loss
between the input and generated latent vectors, as in lMSE = β ||z − Gl(Gv(z))||22.
For training, the hyper-parameters α, β are estimated from the validation set within
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the range [0.1, 10]. The training process consists of N iterations, where the visual
generator is trained for T < N iterations, and then the whole model is trained for
(N − T ) iterations.

During testing, given a sample x, a latent vector ẑ is produced with (3.2), which is
then fed to the visual generator in (3.1) and the anomaly score is computed with:

A(x) = ∥x−Gv(Gl(x))∥22. (3.7)

Small anomaly score indicates normal samples and high anomaly score generally in-
dicates abnormal samples, suggesting the presence of a polyp (see Fig. 11.1 for a few
reconstructions examples produced by ADGAN).

3.4 Experiment

In this section, we validate our proposed ADGAN model using the data set described
in Sec. 3.3.1. We compare our performance with other baseline approaches and state-
of-the-art methods. We show that our model achieves state-of-the-art area under the
ROC curve (AUC) results.

3.4.1 Experimental Setup

We pre-process the original colonoscopy image from 1072 × 1072 × 3 resolution to 64
× 64 × 3 to reduce the computational cost of the training and inference processes.
The model selection is done with the validation set mentioned in Sec. 3.3.1. This
method is implemented using Pytorch [171] and the code will be publicly available
upon acceptance of the paper. We use Adam [57] optimiser during training with a
learning rate of 0.0001. Our model has a similar backbone architecture as the other
competing methods in Tab. 3.1. In particular, the visual generator and discriminator
are based on the improved GAN [63] and use four residual convolution and four residual
de-convolution layers, respectively [63]. The latent generator and discriminator are
based on DCGAN [55] with three convolution/de-convolution layers. The number of
filters per layer for our visual discriminator are (64, 128, 256, 512) (reverse order for
visual generator). The number of filters per layer for our latent generator are (64, 128,
256, 512), and we use (256, 128, 64) as the number of filters per layer for our latent
discriminator. To train the model, we first train the visual generator and discriminator
for 80000 iterations while fixing the parameters of latent generator and discriminator.
We then jointly train the whole framework for 20000 iterations, with a batch size of
64.
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Methods AUC

DAE [60] 0.6294
VAE [51] 0.6478

OC-GAN [174] 0.5916
f-AnoGAN(ziz) [199] 0.6376
f-AnoGAN(izi) [199] 0.6638
f-AnoGAN(izif) [199] 0.6913

ADGAN 0.7296

Table 3.1: Comparison between our proposed ADGAN and other state of the art
methods.

3.4.2 Anomaly Detection Results

We compare the proposed ADGAN with state-of-the-art approaches, including OC-
GAN [174], f-anogan and its variants [199] that involve image-to-image MSE loss (izi),
Z-to-Z MSE loss (ziz) and its hybrid version (izif). We also compare our method
with some baseline approaches, including deep auto-encoder [60] and variational auto-
encoder [51]. The anomaly score A(x) in (3.7) is used to indicate the presence of
polyps. For the encoder-decoder architecture comparison, the models adopt similar
structure as our latent generator and latent discriminator. For GAN-based methods
comparison, we use the same structure as our visual generator and latent discriminator
with similar model capacity. We use area under the ROC curve (AUC) as the mea-
surement for performance validation [174, 199]. As shown in Table 3.1, our ADGAN
model outperforms other methods.

3.4.3 Image Reconstruction from ADGAN

Figure 11.1 demonstrates the input images (first row) from testing set and their re-
constructed images (second row) with our proposed ADGAN model. We manually
mark the abnormal polyp lesions using red circles. Our model reconstructs the abnor-
mal input images to their healthy versions, leading to substantial reconstruction error
(anomaly score) due to visual differences. The normal images from testing set are
generally reconstructed well producing small reconstruction errors (anomaly score).

3.5 Conclusions

In conclusion, we proposed a GAN-based framework (ADGAN) for anomaly detection
using one-class learning on a colonoscopy data set. The model was trained end-to-end
and experiments show that our model achieved the state-of-the-art anomaly detection
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result. We solve the issues of mapping between input image and GAN’s latent space
using a second GAN model, and proposed a new loss function that combines MSE loss,
Wasserstein loss and standard BCE loss. In the future, we plan to extend our model
to work with colonoscopy images showing feces and water, as explained in Sec. 3.3.1.
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Chapter 4

Constrained Contrastive
Distribution Learning for
Unsupervised Anomaly Detection
and Localisation in Medical Images

Abstract

Unsupervised anomaly detection (UAD) learns one-class classifiers exclusively with
normal (i.e., healthy) images to detect any abnormal (i.e., unhealthy) samples that do
not conform to the expected normal patterns. UAD has two main advantages over
its fully supervised counterpart. Firstly, it is able to directly leverage large datasets
available from health screening programs that contain mostly normal image samples,
avoiding the costly manual labelling of abnormal samples and the subsequent issues
involved in training with extremely class-imbalanced data. Further, UAD approaches
can potentially detect and localise any type of lesions that deviate from the normal
patterns. One significant challenge faced by UAD methods is how to learn effective low-
dimensional image representations to detect and localise subtle abnormalities, generally
consisting of small lesions. To address this challenge, we propose a novel self-supervised
representation learning method, called Constrained Contrastive Distribution learning
for anomaly detection (CCD), which learns fine-grained feature representations by si-
multaneously predicting the distribution of augmented data and image contexts using
contrastive learning with pretext constraints. The learned representations can be lever-
aged to train more anomaly-sensitive detection models. Extensive experiment results
show that our method outperforms current state-of-the-art UAD approaches on three
different colonoscopy and fundus screening datasets.
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4.1 Introduction

Classifying and localising malignant tissues have been vastly investigated in medical
imaging [9, 67, 70, 131, 134, 135, 140, 146, 216]. Such systems are useful in health
screening programs that require radiologists to analyse large quantities of images [180,
220], where the majority contain normal (or healthy) cases, and a small minority have
abnormal (or unhealthy) cases that can be regarded as anomalies. Hence, to avoid the
difficulty of learning from such class-imbalanced training sets and the prohibitive cost
of collecting large sets of manually labelled abnormal cases, several papers investigate
anomaly detection (AD) with a few or no labels as an alternative to traditional fully
supervised imbalanced learning [9, 140, 144, 163, 165, 198, 204, 216, 217, 223]. UAD
methods typically train a one-class classifier using data from the normal class only, and
anomalies (or abnormal cases) are detected based on the extent the images deviate from
the normal class.

Current anomaly detection approaches [32, 34, 56, 139, 198, 216, 229] train deep
generative models (e.g., auto-encoder [108], GAN [58]) to reconstruct normal images,
and anomalies are detected from the reconstruction error [165]. These approaches rely
on a low-dimensional image representation that must be effective at reconstructing
normal images, where the main challenge is to detect anomalies that show subtle devi-
ations from normal images, such as with small lesions [216]. Recently, self-supervised
methods that learn auxiliary pretext tasks [10, 30, 77, 90, 94, 133] have been shown to
learn effective representations for UAD in general computer vision tasks [10, 77, 94],
so it is important to investigate if self-supervision can also improve UAD for medical
images.

The main challenge for the design of UAD methods for medical imaging resides in
how to devise effective pretext tasks. Self-supervised pretext tasks consist of predicting
geometric or brightness transformations [10, 77, 94], or contrastive learning [30, 90].
These pretext tasks have been designed to work for downstream classification prob-
lems that are not related to anomaly detection, so they may degrade the detection
performance of UAD methods [238]. Sohn et al. [208] tackle this issue by using smaller
batch sizes than in [30, 90] and a new data augmentation method. However, the use of
self-supervised learning in UAD for medical images has not been investigated, to the
best of our knowledge. Further, although transformation prediction and contrastive
learning show great success in self-supervised feature learning, there are no studies
on how to properly combine these two approaches to learn more effective features for
UAD.

In this chapter, we propose Constrained Contrastive Distribution learning (CCD),
a new self-supervised representation learning designed specifically to learn normal-
ity information from exclusively normal training images. The contributions of CCD
are: a) contrastive distribution learning, and b)two pretext learning constraints, both
of which are customised for anomaly detection (AD). Unlike modern self-supervised

34



learning (SSL) [30, 90] that focuses on learning generic semantic representations for
enabling diverse downstream tasks, CCD instead contrasts the distributions of strongly
augmented images (e.g., random permutations). The strongly augmented images re-
semble some types of abnormal images, so CCD is enforced to learn discriminative
normality representations by its contrastive distribution learning. The two pretext
learning constraints on augmentation and location prediction are added to learn fine-
grained normality representations for the detection of subtle abnormalities. These two
unique components result in significantly improved self-supervised AD-oriented repre-
sentation learning, substantially outperforming previous general-purpose SOTA SSL
approaches [10, 30, 77, 94]. Another important contribution of CCD is that it is agnos-
tic to downstream anomaly classifiers. We empirically show that our CCD improves
the performance of three diverse anomaly detectors (f-anogan [198], IGD [34], MS-
SSIM) [241]). Inspired by IGD [34], we adapt our proposed CCD pretraining on global
images and local patches, respectively. Extensive experimental results on three differ-
ent health screening medical imaging benchmarks, namely, colonoscopy images from
two datasets [21, 139], and fundus images for glaucoma detection [121], show that our
proposed self-supervised approach enables the production of SOTA anomaly detection
and localisation in medical images.

4.2 Method

In this section, we introduce the proposed approach, depicted in the diagram of Fig, 9.1.
Specifically, given a training medical image dataset D = {xi}|D|

i=1, with all images
assumed to be from the normal class and x ∈ X ⊂ RH×W×C , our approach aims
to learn anomaly detection and localisation using three modules: 1) a self-supervised
constrained contrastive feature learner that pre-trains an encoding network fθ : X → Z
(with Z ⊂ Rdz) tailored for anomaly detection, 2) an anomaly classification model hψ :
Z → [0, 1] that is built upon the pre-trained network, and 3) an anomaly localiser that

leverages the classifier hψ(fθ(xω)) to localise an abnormal image region xω ∈ RĤ×Ŵ×C ,

centred at ω ∈ Ω (Ω is the image lattice) with height Ĥ << H and width Ŵ << W .

The approach is evaluated on a testing set T = {(x, y,m)i}|T |
i=1, where y ∈ Y =

{normal, abnormal}, and m ∈ M ⊂ {0, 1}H×W×C denotes the segmentation mask of
the lesion in the image x. For adapting our CCD pretraining on patch representations,
we simply crop the training images into patches before applying our method.

4.2.1 Constrained Contrastive Distribution Learning

Contrastive learning has been used by self-supervised learning methods to pre-train
encoders with data augmentation [30, 90, 238] and contrastive learning loss [207]. The
idea is to sample functions from a data augmentation distribution (e.g., geometric and
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Figure 4.1: Our proposed CCD framework. Left shows the proposed pre-training
method that unifies a contrastive distribution learning and pretext learning on both
global and local perspectives (Sec. 4.2.1), Right shows the inference for detection and
localisation (Sec. 4.2.2).

brightness transformations), and assume that the same image, under separate augmen-
tations, form one class to be distinguished against all other images in the batch [10, 77].
Another form of pre-training is based on a pretext task, such as solving jigsaw puzzle
and predicting geometric and brightness transformations [30, 90]. These self-supervised
learning approaches are useful to pre-train classification [30, 90] and segmentation mod-
els [162, 252]. Only recently, self-supervised learning using contrastive learning [208]
and pretext learning [10, 77] have been shown to be effective in anomaly detection.
However, these two approaches are explored separately. In this chapter, we aim at
harnessing the power of both approaches to learn more expressive pre-trained fea-
tures specifically for UAD. To this end, we propose the novel Constrained Contrastive
Distribution learning method (CCD).

Contrastive distribution learning is designed to enforce a non-uniform distribution
of the representations in the space Z, which has been associated with more effective
anomaly detection performance [208]. Our CCD method constrains the constrastive
distribution learning with two pretext learning tasks, with the goal of enforcing further
the non-uniform distribution of the representations. The CCD loss is defined as

ℓCCD(D; θ, β, γ) = ℓcon(D; θ) + ℓcla(D; β) + ℓpos(D; γ), (4.1)

where ℓcon(·) is the contrastive distribution loss, ℓcla and ℓpos are two pretext learning

36



tasks added to constrain the optimisation; and θ, β and γ are trainable parameters.
The contrastive distribution learning uses a dataset of weak data augmentations

Ap = {al : X → X}|Ap|l=1 and strong data augmentations An = {al : X → X}|An|l=1 ,
where al(x) denotes a particular data augmentation applied to x, and the loss is defined
as

ℓcon(D; θ) =

− E

[
log

exp
[
1
τ
fθ(a(x̃j))⊤fθ(a

′(x̃j))
]

exp
[
1
τ
fθ(a(x̃j))⊤fθ(a′(x̃j))

]
+
∑M

i=1 exp
[
1
τ
fθ(a(x̃j))⊤fθ(a′(x̃

j
i ))
]] , (4.2)

where the expectation is over x ∈ D, {xi}Mi=1 ⊂ D \ {x}, a(.), a′(.) ∈ Ap, x̃
j = aj(x),

x̃ji = aj(xi), and aj(.) ∈ An. The images augmented with the functions from the strong
set An carry some ‘abnormality’ compared to the original images, which is helpful to
learn a non-uniform distribution in the representation space Z.

We can then constrain further the training to learn more non-uniform representa-
tions with a self-supervised classification constraint ℓcla(·) that enforces the model to
achieve accurate classification of the strong augmentation function:

ℓcla(D; β) = −Ex∈D,a(.)∈An
[
log a⊤fβ(fθ(a(x)))

]
, (4.3)

where fβ : Z → [0, 1]|An| is a fully-connected (FC) layer, and a ∈ {0, 1}|An| is a one-hot
vector representing the strong augmentation a(.) ∈ An.

The second constraint is based on the relative patch location from the centre of the
training image – this positional information is important for segmentation tasks [110,
162]. This constraint is added to learn fine-grained features and achieve more accurate
anomaly localisation. Inspired by [52], the positional constraint predicts the relative
position of the paired image patches, with its loss defined as

ℓpos(D; γ) = −E{xω1 ,xω2}∼x∈D
[
logp⊤fγ(fθ(xω1), fθ(xω2))

]
, (4.4)

where xω1 is a randomly selected fixed-size image patch from x, xω2 is another image
patch from one of its eight neighbouring patches (as shown in ‘patch location prediction’
in Fig. 9.1), fγ : Z×Z → [0, 1]8, and p = {0, 1}8 is a one-hot encoding of the synthetic
class label.

Overall, the constraints in (5.8) and (5.9) to the contrastive distribution loss in (9.5)
are designed to increase the non-uniform representation distribution and to improve
the representation discriminability between normal and abnormal samples, compared
with [208].

4.2.2 Anomaly Detection and Localisation

Building upon the pre-trained encoder fθ(·) using the loss in (4.1), we fine-tune two
state-of-the-art UAD methods, IGD [34] and F-anoGAN [198], and a baseline method,
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multi-scale structural similarity index measure (MS-SSIM)-based auto-encoder [241].
All UAD methods use the same training set D that contains only normal image samples.

IGD [34] combines three loss functions: 1) two reconstruction losses based on local
and global multi-scale structural similarity index measure (MS-SSIM) [241] and mean
absolute error (MAE) to train the encoder fθ(·) and decoder gϕ(·), 2) a regularisa-
tion loss to train adversarial interpolations from the encoder [16], and 3) an anomaly
classification loss to train hψ(·). The anomaly detection score of image x is

sIGD(x) = ξℓrec(x, x̃) + (1 − ξ)(1 − hψ(fθ(x))), (4.5)

where x̃ = gϕ(fθ(x)), hψ(fθ(x)) ∈ [0, 1] returns the likelihood that x belongs to the
normal class, ξ ∈ [0, 1] is a hyper-parameter, and

ℓrec(x, x̃) = ρ∥x− x̃∥1 + (1 − ρ) (1 − (νmG(x, x̃) + (1 − ν)mL(x, x̃))) , (4.6)

with ρ, ν ∈ [0, 1], mG(·) and mL(·) denoting the global and local MS-SSIM scores [34].

Anomaly localisation uses (6.21) to compute sIGD(xω), ∀ω ∈ Ω, where xω ∈ RĤ×Ŵ×C

is an image region–this forms a heatmap, where large values denote anomalous regions.
F-anoGAN [198] combines generative adversarial networks (GAN) and auto-encoder

models to detect anomalies. Training involves the minimisation of reconstruction losses
in both the original image and representation spaces to model fθ(·) and gϕ(·). It also
uses a GAN loss [58] to model gϕ(·) and hψ(·). Anomaly detection for image x is

sFAN(x) = ∥x− gϕ(fθ(x))∥ + κ∥fθ(x) − fθ(gϕ(fθ(x)))∥. (4.7)

Anomaly localisation at xω ∈ RĤ×Ŵ×C is achieved by ∥xω − gϕ(fθ(xω))∥, ∀ω ∈ Ω.
For the MS-SSIM auto-encoder [241], we train it with the MS-SSIM loss for re-

constructing the training images. Anomaly detection for x is based on sMSI(x) =
1 − (νmG(x, x̃) + (1 − ν)mL(x, x̃)), with x̃ as defined in (6.21). Anomaly localisation

is performed with sMSI(xω) at image regions xω ∈ RĤ×Ŵ×C , ∀ω ∈ Ω. Inspired by
IGD [34], we also pretrain a local model using our CCD pretraining approach based
on the local patches for F-anogan [198] and MS-SSIM autoencoder [241], respectively.

4.3 Experiments

4.3.1 Dataset

We test our framework on three health screening datasets. We test both anomaly
detection and localisation on the colonoscopy images of Hyper-Kvasir dataset [21]. On
the glaucoma datasets using fundus images [121] and colonoscopy dataset [139] that do
not have lesion masks, we test anomaly detection only. Detection is assessed with area
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under the ROC curve (AUC). Localisation is measured with intersection over union
(ioU).

Hyper-Kvasir is a large multi-class public gastrointestinal dataset. The data was
collected from the gastroscopy and colonoscopy procedures from Baerum Hospital in
Norway. All labels were produced by experienced radiologists. The dataset contains
110,079 images from abnormal (i.e., unhealthy) and normal (i.e., healthy) patients, with
10,662 labelled. We use part of the clean images from the dataset to train our UAD
methods. Specifically, 2,100 images from ‘cecum’, ‘ileum’ and ‘bbps-2-3’ are selected as
normal, from which we use 1,600 for training and 500 for testing. We also take 1,000
abnormal images and their segmentation masks and stored them in the testing set.

LAG is a large scale fundus image dataset for glaucoma detection [121], containing
4,854 fundus images with 1,711 positive glaucoma scans and 3,143 negative glaucoma
scans. We reorganised this dataset for training the UAD methods, with 2,343 normal
(negative glaucoma) images for training, and 800 normal images and 1,711 abnormal
images with positive glaucoma for testing.

Liu et al.’s colonoscopy dataset is a colonoscopy image dataset for UAD using
18 colonocopy videos from 15 patients [139]. The training set contains 13,250 normal
(healthy) images without any polyps, and the testing set contains 967 images, having
290 abnormal images with polyps and 677 normal (healthy) images without polyps.

4.3.2 Implementation Details

For pre-training, we use Resnet18 [91] as the backbone architecture for the encoder
fθ(x), and similarly to previous works [30, 208], we add an MLP to this backbone as
the projection head for the contrastive learning. All images from the Hyper-Kvasir [21]
and LAG [121] datasets are resized to 256 × 256 pixels. For the Liu et al.’s colonoscopy
dataset, images are resized to 64 × 64 pixels. The batch size is set to 32 and learning
rate to 0.01 for the self-supervised pre-training. We investigate the impact of different
strong augmentations in An such as rotation, permutation, cutout and Gaussian noise.
All weak augmentations in Ap are the same as SimCLR [30] (i.e., colour jittering,
random grey scale, crop, resize, and Gaussian blur). The model is trained using SGD
optimiser with temperature 0.2. The encoder fθ(·) outputs a 128 dimensional feature
in Z. All datasets are pre-trained for 2,000 epochs.

For the training of IGD [34], F-anoGAN [198] and MS-SSIM auto-encoder [34],
we use the hyper-parameters suggested by the respective papers. For localisation, we
compute the heatmap based on the localised anomaly scores from IGD, where the final
map is obtained by summing the global and local maps. In our experiments, the local
map is obtained by considering each 32 × 32 image patch as a instance and apply
our proposed self-supervised learning to it. The global map is computed based on the
whole image sized as 256 × 256. For F-anoGAN and MS-SSIM auto-encoder, we use
the same setup as the IGD, where models based the 256 × 256 whole image and the
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Figure 4.2: Left: Anomaly detection performance results based on different batch
sizes of self-supervised pre-training. Right: Anomaly detection performance in terms
of different types of strong augmentations. Both results are on Hyper-Kvasir test set
using IGD as anomaly detector.

32 × 32 patches are trained, respectively. Code will be made publicly available upon
paper acceptance.

4.3.3 Ablation Study

In Fig. 4.2 (right), we explore the influence of strong augmentation strategies, repre-
sented by rotation, permutation, cutout and Gaussian noise, on the AUC results on
Hyper-Kvasir dataset, based on our self-supervised pre-training with IGD as anomaly
detector. The experiment indicates that the use of random permutations as strong aug-
mentations yields the best AUC results. We also explore the relation between batch
size and AUC results in Fig. 4.2 (left). The results suggest that small batch size (equal
to 16) leads to a relatively low AUC, which increases for batch size 32, and then de-
creases for larger batch sizes. Given these results, we use permutation as the strong
augmentation for colonoscopy images and training batch size is set to 32. For the LAG
dataset, we omit the results, but we use rotation as the strong augmentation because
it produced the largest AUC. We also used batch size of 32 for the LAG dataset.

We also present an ablation study that shows the influence of each loss term in (4.1)
in Tab. 11.5, again on Hyper-Kvasir dataset, based on our self-supervised pre-training
with IGD. The vanilla contrastive learning in [30, 90] only achieves 91.3% of AUC. After
replacing it with our distribution contrastive loss from (9.5), the performance increases
by 2.4% AUC. Adding distribution classification and patch position prediction losses
boosts the performance by another 2.7% and 0.8% AUC, respectively.
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ℓcon[30, 90] ℓcon ℓpre ℓpat AUC - Hyper-Kvasir

✓ 0.913
✓ 0.937
✓ ✓ 0.964
✓ ✓ ✓ 0.972

Table 4.1: Ablation study of the loss terms in (4.1) on Hyper-Kvasir, using IGD
as anomaly detector.

Supervision Methods Localisation - IoU

Supervised

U-Net [190] 0.746
U-Net++ [269] 0.743
ResUNet [50] 0.793

SFA [71] 0.611

Unsupervised
RotNet [77]+IGD [34]* 0.276

CAVGA-Ru [229] 0.349
Ours - IGD 0.372

Table 4.2: Anomaly localisation: Mean IoU results on Hyper-Kvasir on 5 different
groups of 100 images with ground truth masks. * indicates that we pretrained the
geometric transformation-based anomaly detection [77] using IGD [34] as the UAD
method.

4.3.4 Comparison to SOTA Models

In Tab. 5.1, we show the results of anomaly detection on Hyper-Kvasir, Liu et al.’s
colonoscopy dataset and LAG datasets. The IGD, F-anoGAN and MS-SSIM methods
improve their baselines (without our self-supervision method) from 3.3% to 5.1% of
AUC on Hyper-Kvasir, from -0.3% to 12.2% on Liu et al.’s dataset, and from 0.9% to
7.8% on LAG. The IGD with our pre-trained features achieves SOTA anomaly detection
AUC on all three datasets. Such results suggest that our self-supervised pre-training
can effectively produce good representations for various types of anomaly detectors
and datasets. OCGAN [174] constrained the latent space based on two discriminators
to force the latent representations of normal data to fall at a bounded area. CAVGA-
Ru [229] is a recently proposed approach for anomaly detection and localisation that
uses an attention expansion loss to encourage the model to focus on normal object
regions in the images. These two methods achieve 81.3% and 92.8% AUC on Hyper-
Kvasir, respectively, which are well behind our self-supervised pre-training with IGD
of 97.2% AUC.

We also investigate the anomaly localisation performance on Hyper-Kvasir in Tab. 7.3.
Compared to the SOTA UAD localisation method, CAVGA-Ru [229], our approach
with IGD is more than 3% better in terms of IoU. We also compare our results
to fully supervised methods [50, 71, 190, 269] to assess how much performance
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Methods Hyper - AUC Liu et al. - AUC LAG - AUC

DAE [60] 0.705 0.629 * -
OCGAN [174] 0.813 0.592 * -

F-anoGAN [198] 0.907 0.691 * 0.778
ADGAN [140] 0.913 0.730 * -

CAVGA-Ru [229] 0.928 - -
MS-SSIM [34] 0.917 0.799 0.823

IGD [34] 0.939 0.787 0.796
RotNet [77]+IGD [34] 0.905 - -

Ours - MS-SSIM 0.945 0.796 0.839
Ours - F-anoGAN 0.958 0.813 0.787

Ours - IGD 0.972 0.837 0.874

Table 4.3: Anomaly detection: AUC results on Hyper-Kvasir, Liu et al.’s colonocopy
and LAG, respectively. * indicates that the model does not use Imagenet pre-training.

Figure 4.3: Qualitative results of our localisation network based on IGD with self-
supervised pre-training on the abnormal images from Hyper Kvasir [21] test set.

is lost by suppressing supervision from abnormal data. The fully supervised base-
lines [50, 71, 190, 269] use 80% of the annotated 1,000 colonoscopy images containing
polyps during training, and 10% for validation and 10% for testing. We validate our ap-
proach using the same number of testing samples, but without using abnormal samples
for training. The localisation results are post processed by the Connected Component
Analysis (CCA) [25]. Notice on Tab. 7.3 that we lose between 0.3 and 0.4 IoU for not
using abnormal samples for training.

We present visual anomaly localisation results of our IGD with self-supervised pre-
training on the abnormal images from Hyper Kvasir [21] test set in Fig. 4.3. Notice
how our model can accurately localise polyps with various size and textures.
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4.4 Conclusion

To conclude, we proposed a self-supervised pre-training for UAD named as constrained
contrastive distribution learning for anomaly detection. Our approach enforces non-
uniform representation distribution by constraining contrastive distribution learning
with two pretext tasks. We validate our approach on three medical imaging bench-
marks and achieve SOTA anomaly detection and localisation results using three UAD
methods. In future work, we will investigate more choices of pretext tasks for UAD.
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Chapter 5

Self-supervised Pseudo Multi-class
Pre-training for Unsupervised
Anomaly Detection and
Segmentation in Medical Images

Abstract

Unsupervised anomaly detection (UAD) methods are trained with normal (or healthy)
images only, but during testing, they are able to classify normal and abnormal (or
disease) images. UAD is an important medical image analysis (MIA) method to be
applied in disease screening problems because the training sets available for those prob-
lems usually contain only normal images. However, the exclusive reliance on normal
images may cause the trained UAD model to become over-confident in the normal class
classification, and consequently fail in the detection of abnormal cases. Pre-training
UAD methods with self-supervised learning, based on computer vision techniques, can
mitigate this over-confident normal class classification issue, but they are sub-optimal
because they do not explore domain knowledge for designing the pretext tasks, and their
contrastive learning losses do not try to cluster the normal training images, which may
result in a sparse distribution of normal images that is ineffective for anomaly detection.
In this chapter, we propose a new self-supervised pre-training method for MIA UAD
applications, named Pseudo Multi-class Strong Augmentation via Contrastive Learning
(PMSACL). PMSACL consists of a novel optimisation method that contrasts a normal
image class from multiple pseudo classes of synthesised abnormal images, with each
class enforced to form a dense cluster in the feature space. In the experiments, we
show that our PMSACL pre-training improves the accuracy of SOTA UAD methods
on many MIA benchmarks using colonoscopy, fundus screening and Covid-19 Chest
X-ray datasets.
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5.1 Introduction and Background

Detecting and segmenting abnormal lesions from disease screening datasets is a crucial
task in medical images analysis (MIA) [9, 67, 70, 131, 134, 135, 140, 146, 216]. A
challenging aspect of this problem is that such screening datasets [180, 220] usually
contain a disproportionately large number of normal (or healthy) images, and a tiny
amount of abnormal (or disease) images that poorly represent all possible disease sub-
classes. Instead of designing a fully supervised training approach to handle such a
heavily imbalanced labelled dataset with a poor representation of disease sub-classes,
we consider in this chapter an alternative approach based on unsupervised anomaly
detection (UAD) [32, 34, 221], which is trained exclusively with normal images. There
are two advantages with such UAD strategy: 1) the acquisition of the training set is
straightforward given the large proportion of normal images in screening datasets; and
2) it is not necessary to collect a representative training set containing abnormal images
from all disease sub-classes. Nevertheless, this UAD strategy is challenging because
the model needs to classify abnormal images without being exposed to them during
training.

UAD methods are generally based on a one-class classifier (OCC) that learns a
normal image distribution from the normal training images, and test image anomalies
(or abnormal images) are detected based on the extent that they deviate from the
learned distribution [32, 34, 56, 139, 167, 186, 199, 204, 216, 217, 229]. Given their
exclusive dependence on normal training images, UAD methods can become over-
confident in their classifying, which is an issue that can be mitigated by pre-training the
UAD method to solve another classification task. For instance, a common approach is
to pre-train the model to classify ImageNet images [221], but there is no guarantee that
the learned representations from natural images will be effective for medical images.
Another pre-training approach is based on self-supervised learning (SSL) [10, 31, 77, 90,
94, 133, 221], whose effectiveness depends on the relatedness of the pretext tasks and the
final MIA classification task, and on the assumptions of the training process. SSL pre-
training for UAD methods applied to MIA screening problems have shown promising
results [221], but they have been sub-optimally explored given that they were adapted
from computer vision methods without using MIA domain knowledge in the design of
the pretext tasks or in the training process. For instance, in MIA, normal images should
form a single class, while disease images can be divided into sub-classes characterised
by variations in the number and appearance of lesions. Instead, previous SSL methods
in UAD [208, 214, 221] extend contrastive learning [31] that sub-divides the normal
class images into multiple classes formed by geometric or appearance transformations.
Such training process is sub-optimal for MIA UAD that needs to discriminate a single
tight and dense class of normal images against a relatively small number of abnormal
sub-classes that lie outside the normal class distribution.

In this chapter, we propose the Pseudo Multi-class Strong Augmentation via Contrastive
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Learning (PMSACL), a new self-supervised pre-training method modelled exclusively
with normal training images, and designed to learn effective image representations for
different types of downstream UAD methods applied to several MIA problems. The
main advantage of PMSACL, compared to previous self-supervised pre-training method
for MIA applications [221], is that we rely on MIA domain knowledge to design the
training and the pretext tasks. In particular, our training uses contrastive learning to
classify training samples into multiple tight and dense clusters in terms of Euclidean
distance and cosine similarity, with one cluster representing the normal images and the
remaining ones representing pseudo sub-classes of the disease images. These pseudo
disease sub-classes are synthesised with our MedMix augmentations that simulate a
varying number of lesions of different sizes and appearance in the normal training
images (see Fig. 5.2). We summarise our contributions as follows:

• Our PMSACL is the first self-supervised pre-training method specifically designed
for MIA UAD applications, where the main advantage lies in the contrastive
learning optimisation that learns multiple classes, one for normal images, and
the others for pseudo sub-classes of disease images, which are synthesised by our
MedMix augmentations by simulating a varying number of lesions of different
sizes and appearance.

• We extend our previously published CCD method [221] by proposing two new loss
functions to form tighter and denser clusters per class, namely: 1) a multi-centring
loss to constrain the feature representations of different classes into a subspace
around their class centres; and 2) a non-trivial extension of the normalisation of
the standard contrastive loss that repels samples from the same class with less
intensity than the samples from different classes.

• The proposed PMSACL is shown to learn effective image representations that
can adapt well to different types of downstream UAD methods applied to several
MIA problems.

We empirically show that PMSACL pre-training significantly improves the performance
of two SOTA anomaly detectors, PaDiM [43] and IGD [34]. Extensive experimen-
tal results on four different disease screening medical imaging benchmarks, namely,
colonoscopy images from two datasets [21, 139], fundus images for glaucoma detec-
tion [121] and Covid-19 Chest X-ray (CXR) dataset [235] show that PMSACL can be
used to pre-train diverse SOTA UAD methods to improve their accuracy in detecting
and segmenting lesions in diverse medical images.

Relationship to Preliminary Work: An early version of this work was presented
in our previously published paper [221]. In this new submission, we considerably ex-
pand that previous study by: 1) resolving the strong augmentations issue of CCD that
does not synthesise medical image anomalies that are relevant for downstream UAD
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applications; 2) addressing the issues around CCD’s contrastive learning that does not
consider that the downstream UAD methods will classify one class of normal images
and a few sub-classes of disease images; 3) providing a more comprehensive literature
review; 4) adding more experiments using datasets from many medical domains; and
5) including a more in-depth analysis of the proposed PMSACL.

5.2 Related Work

UAD approaches [32, 34, 56, 139, 167, 199, 204, 216, 217, 229] can be divided
into two categories: predictive-based (e.g., DSVDD [192], OC-SVM [35], and devi-
ation network [167]), and generative-based (e.g., auto-encoder [32, 34, 56, 229] and
GAN [3, 140, 199]). Predictive-based UAD approaches train a one-class classifier to
describe the distribution of normal data, and discriminate abnormal data using their
distance/deviation to the normal data distribution; whereas generative-based UAD
approaches train deep generative models to learn latent representations of normal im-
ages, and detect anomalies based on image reconstruction error [165]. A fundamental
challenge in both types of UAD methods is the learning of expressive feature represen-
tations from images, which is particularly important in MIA because abnormal medical
images may have subtly looking lesions that can be hard to differentiate from normal
images. Hence, if not well trained, these UAD models can become over-confident in
classifying normal training data and learn ineffective image representations that will
fail to enable the detection and segmentation of lesions.

Pre-training is an effective approach to address the representation challenge de-
scribed above. A heavily explored pre-training approach is based on using Ima-
geNet [47] pre-trained models, but transferring representations learned from natural
images to medical images is not straightforward [221]. Alternatively, the representa-
tion challenge can also be tackled by pre-training methods based on self-supervised
learning (SSL) that learns auxiliary pretext tasks [10, 31, 77, 90, 94, 133]. SSL is a
strategy that has produced effective representations for UAD in general computer vision
tasks [10, 77, 94, 214]. However, their application to MIA problems needs to be further
investigated because it is not clear how to design effective training or pretext tasks
that can work well in the detection of subtle lesions in medical images. Previous UAD
methods relied on self-supervised pretext tasks based on the prediction of geometric
transformations [10, 77, 94] or contrastive learning using standard data augmentation
techniques (e.g., scaling, cropping, etc.) [31, 90] to form a large number of image classes
characterising similar and dissimilar pairs. These pretext tasks and training strategy
are not specifically related to the detection of subtle anomalies in medical images that
contain a normal image class and a small number of disease sub-classes, so they may
even degrade the detection accuracy of downstream UAD methods [238].

For SSL UAD pre-training in MIA, the only previous work that we are aware is
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Figure 5.1: PMSACL: our proposed self-supervised pre-training for UAD trains four
classes of images: the normal images formed by the weak augmentations in distribu-
tion A0 (blue markers) and three classes of synthetised abnormal images formed by the
strong augmentation in distributions {An}3n=1 (green, pink and orange markers). The
optimisation uses a constrained contrastive learning that trains a four-class classifica-
tion problem. The different types of strong augmentations are produced by MedMix
that introduces a varying number of fake lesions by cutting patches from the normal
training images, altering them with random color jittering, Gaussian noise and non-
linear intensity transformations, and pasting them to other normal training images.

our previously published CCD method [221] that adapts standard contrastive learning
and two general computer vision pretext tasks to image anomaly detection and can be
applied to multiple downstream UAD methods. Although achieving good results in
many benchmarks, the training explored by CCD does not explore the fact that the
downstream UAD methods need to recognise one class of normal images and a small
number of sub-classes of disease images, and the CCD’s data augmentation will not
synthesise relevant medical image anomalies – both issues can challenge the training
of downstream UAD approaches.

5.3 Method

In this section, we introduce the proposed PMSACL pre-training approach depicted
in Fig. 9.1. Given a training medical image dataset D = {xi}|D|

i=1, with all images
assumed to be from the normal class and x ∈ X ⊂ RH×W×C (H: height, W : width,
C: number of colour channels), our learning strategy involves two stages: 1) the self-

51



supervised pre-training to learn an encoding network fθ : X → Z (with Z ⊂ RZ), and
2) the fine-tuning of an anomaly detector or segmentation model built from the pre-

trained fθ(.). The approach is evaluated on a testing set T = {(x, y,m)i}|T |
i=1, where

y ∈ Y = {normal, abnormal}, and m ∈ M ⊂ {0, 1}H×W×1 denotes the segmentation
mask of the lesion in the image x. Below, we first describe the optimisation proposed for
PMSACL in Sec. 5.3.1, then we describe the MedMix data augmentation in Sec. 5.3.2,
followed by a bried description of the UAD methods in Sec. 5.3.3.

5.3.1 PMSACL Pre-training

The gist of our proposed PMSACL lies in the idea of discriminating the distribution
of weakly augmented samples (simulating normal images) from the distributions of
different types of strongly augmented samples (simulating multiple classes of abnormal
images). Instead of attracting and repelling samples within and between a large number
of image classes [208, 214, 221], we propose a new contrastive loss to separate samples
from the normal class and samples from pseudo abnormal sub-classes, and to enforce
the clusters representing the normal and abnormal sub-classes to be dense and tight.
To this end, our proposed loss is defined as:

ℓ(D; θ, β, γ) = ℓctr(D; θ) + ℓPMSACL(D; θ) + ℓaug(D; β) + ℓpos(D; γ), (5.1)

where ℓctr(.) denotes the new distribution multi-centring loss, ℓPMSACL(.) represents
the new PMSACL contrastive loss, ℓaug(.) and ℓpos(.) are the pretext learning losses
to regularise the optimisation [221], and θ, β and γ are trainable parameters. The
loss terms in (11.2) rely on weak data augmentation distribution, denoted by A0, and

|A| strong data augmentation distributions, represented by {An}|A|
n=1, each denoting

a different type of augmentation. From each of these distributions, we can sample
augmentation functions a : X → X .

The multi-centring loss in (11.2) depends on the estimation of the mean represen-
tation for each augmentation distribution, computed as

cn = Ex∈D,a∼An [fθ(a(x))], (5.2)

where n ∈ {0, ..., |A|}, with cn being the mean representation of the training data
augmented by the functions sampled from An. Note that these mean representations
are computed at the beginning of the training and frozen for the rest of the training.
The distribution multi-centring loss is then defined as:

ℓctr(D; θ) = Ex∈D,n∈{0,...,|A|},a∼An∥fθ(a(x)) − cn∥2, (5.3)

which pulls the representations of augmented samples toward their mean representa-
tions in (5.2), making the augmentation clusters dense and tight in Euclidean space.
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To further enforce the separation between different clusters and the tightness within
each cluster, we introduce a novel contrastive learning loss function. In our contrastive
learning, we maximisise the cosine similarity of samples that belong to the same class
(i.e., normal or one of the abnormal sub-classes) and minimise the cosine similarity
of samples belonging to different classes. An interesting aspect of this optimisation
is that samples are centred by their own cluster mean representation cn from (5.2),
so our contrastive learning, combined with the multi-centred loss in (5.3) will cluster
samples of the same class not only in Euclidean space, but also in inner product space
(with cosine measuring similarity between samples). Such re-formulated constrastive
learning, combined with the multi-centring loss (5.3), results in a loss that produces
multiple clusters, where cluster n = 0 contains the normal images and the others,
denoted by n ∈ {1, ..., |A|}), have the synthetised abnormal images. Our PMSACL
loss is defined as:

ℓPMSACL(D; θ) = Ex∈D,n∈{0,...,|A|},l∈{0,1}
[
ℓxPMSACL(x(n,l),D; θ)

]
(5.4)

where x(n,l) = a(x(n)) represents one of two (indexed by l ∈ {0, 1}) augmented data
obtained from the application of a weak augmentation a ∼ A0 on a strongly augmented
data denoted by x(n) = a(x) with a ∼ An. In (9.5), we have:

ℓxPMSACL(x(n,l),D; θ) = − log
exp

[
1
τ
(f (n,l))⊤f (n,(l+1)mod 2)

]∑
xj∈D

m∈{0,...,|A|}
k∈{0,1}

I(x(m,k)
j ̸= x(n,l)) exp [κ(n,m)(f (n,l))⊤f (m,k))]

,

(5.5)

where I(.) denotes an indicator function, x
(m,k)
j is defined similarly as x(n,l) in (9.5),

m ∈ {0, ..., |A|} indexes the set of strong augmentations, and k ∈ {0, 1} indexes one
of the two weak augmentations applied to the strongly augmented image. Lastly, to
further constrain the normal and strongly augmented data representations in (9.5), our
PMSACL loss minimises the distance between samples centred by their representation
means computed as:

f (n,l) =
fθ(x

(n,l)) − cn
∥fθ(x(n,l)) − cn∥2

, (5.6)

where cn is defined in (5.2). Also in (9.5) to map the representations from the same
distribution into a denser region of the hyper-sphere [37], we propose a temperature
scaling strategy defined as:

κ(n,m) =

{
1/(ατ) , if n = m

1/τ , otherwise
, (5.7)
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where α is a scaling factor that controls the shrinkage level of the temperature τ . As
a result, Eq. (5.7) alters the temperature for the samples that belong to the same
strong augmentation distributions (i.e., when n = m) to a smaller value α, which
allows smaller amount of repelling strength compared to samples that belongs to strong
augmentation distributions (i.e., n ̸= m). Putting all together, the loss in (9.5) clusters
the image representations into hyper-spheres and regions within the hyper-spheres,
where each hyper-sphere and region represent a different type of augmentation.

Inspired by [214, 221], we further constrain the training in (11.2) with a self-
supervised classification constraint ℓaug(·) that enforces the model to classify the strong
augmentation function (Fig. 9.1):

ℓaug(D; β) = −Ex∈D,n∈{0,...,|A|},a∼An
[
log a⊤

n fβ(fθ(a(x)))
]
, (5.8)

where fβ : Z → [0, 1]|A| is a fully-connected (FC) layer, and an ∈ {0, 1}|A| is a one-hot
vector representing the strong augmentation distribution (i.e., an(j) = 1 for j = n, and
an(j) = 0 for j ̸= n).

The final constraint in (11.2) is based on the relative patch location from the centre
of the training image and is adapted for local patches. This constraint is added to
learn positional and texture characteristics of the image in a self-supervised manner.
Inspired by [52], the positional constraint predicts the relative position of the paired
image patches, with its loss defined as

ℓpos(D; γ) = −E{xω1 ,xω2}∼x∈D
[
logp⊤fγ(fθ(xω1), fθ(xω2))

]
, (5.9)

where xω1 is a randomly selected fixed-size image patch from x, xω2 is another image
patch from one of its eight neighbouring patches, ω1, ω2 ∈ Ω represents indices to the
image lattice, fγ : Z × Z → [0, 1]8, and p = {0, 1}8 is a one-hot encoding of the
patch location. The constraints in (5.8) and (5.9) are designed to improve training
regularisation.

5.3.2 MedMix Augmentation

Our MedMix augmentation is designed to augment medical images to simulate multiple
lesions. We target a more effective data augmentation for MIA applications than
the computer vision augmentations in [221] (e.g., permutations, rotations) that do
not simulate medical image anomalies and may yield poor detection performance by
downstream UAD methods. We realise that anomalies in different medical domains
(e.g., glaucoma and colon polyps) can be visually different, but a commonality among
anomalies is that they are usually represented by an unusual growth of abnormal tissue.
Hence, we propose the MedMix augmentation to simulate abnormal tissue with a strong
augmentation that “constructs” abnormal lesions by the cutting and pasting (from and
to normal images) of small and visually deformed patches. This visual deformation
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MedMix – 0 cuts MedMix – 1 cuts MedMix – 2 cuts MedMix – 3 cuts

Figure 5.2: Examples of our MedMix data augmentation, showing augmentation A0

containing zero synthetic anomalies (leftmost column) and increasingly stronger aug-
mentations {An}3n=1 (second to fourth columns) with different number of synthetic
anomalies (from one to three).

is achieved by applying other transformations to patches, such as colour jittering,
Gaussian noise and non-linear intensity transformations. This approach is inspired
by cutmix [256] and CutPaste [120], where our contribution over those approaches is
the intensification of the change present in the cropped patches by the appearance
transformations above. These transformations are designed to encourage the model
to learn abnormalities in terms of localised image appearance, structure, texture and
colour.

In practice, we design |A| = 4 strong augmentation distributions, where An in-
cludes n ∈ {0, ..., 3} abnormalities in the image, which means that A0 denotes the
normal image distribution and An∈{1,2,3} represent the abnormal image distributions,
containing {1, 2, 3} anomalous regions. Therefore, our loss targets the classification of
MedMix augmentations, as shown in Fig. 5.2.

5.3.3 Anomaly Detection and Segmentation

After pre-training fθ(·) with PMSACL, we fine-tune it with a SOTA UAD, such as
IGD [34] or PaDiM [43]. Those methods use the same training set D as PMSACL,
containing only normal images from healthy patients.
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IGD [34] combines three loss functions: 1) two reconstruction losses based on local
and global multi-scale structural similarity index measure (MS-SSIM) [241] and mean
absolute error (MAE) to train the encoder fθ : X → Z and decoder gϕ : Z → X , 2)
a regularisation loss to train adversarial interpolations from the encoder [16], and 3)
an anomaly classification loss to train hψ : Z → [0, 1]. The anomaly detection score of
image x is defined by

sIGD(x) = ξℓrec(x, x̃) + (1 − ξ)(1 − hψ(fθ(x))), (5.10)

where x̃ = gϕ(fθ(x)), hψ(.) returns the likelihood that x is a normal image, ξ ∈ [0, 1]
is a hyper-parameter, and

ℓrec(x, x̃) = ρ∥x− x̃∥1 + (1 − ρ) (1 − (νmG(x, x̃) + (1 − ν)mL(x, x̃))) , (5.11)

with ρ, ν ∈ [0, 1], mG(·) and mL(·) denoting the global and local MS-SSIM scores from
the global and local models, respectively [34]. Anomaly segmentation uses (6.21) to

compute sIGD(xω), ∀ω ∈ Ω using global and local models, where xω ∈ RĤ×Ŵ×C is an
image patch. This forms a heatmap, where large values of sIGD(.) denote anomalous
regions. The final heatmap is formed by summing up the global and local heatmaps.

PaDiM [43] utilises the multi-layer features from the pre-trained network fθ(.) to
learn a position dependent multi-variate Gaussian distribution of normal image patches.
Training uses samples collected from the concatenation of the multi-layer features from
each patch position ω ∈ Ω to learn the mean and covariance of the Gaussian model
denoted by N (µω,Σω) [43]. Anomaly detection is based on the Mahalanobis distance
between the concatenated testing patch feature xω and the learned Gaussian distribu-
tion N (µω,Σω) at that patch position ω ∈ Ω to provide a score of each patch posi-
tion [43]. In particular, anomaly segmentation is inferred using the following anomaly
score map:

sPaDiM(xω) =
√

(xω − µω)⊤Σ−1
ω (xω − µω), (5.12)

and the final score of the whole image x is defined as: sPaDiM(x) = maxω∈Ω sPaDiM(xω).

5.4 Experiments

5.4.1 Datasets

We test our self-supervised pre-training PMSACL on four health screening datasets,
where we run experiments for both anomaly detection and localisation. The datasets
for anomaly detection and localisation are: the colonoscopy images of Hyper-Kvasir
dataset [21], and the glaucoma dataset using fundus images [121]. We also run anomaly
detection without localisation experiments on the following datasets: Liu et al.’s colonoscopy
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dataset [139], and Covid-19 chest ray dataset [235] – these two datasets do not have
lesion segmentation annotations, so we test anomaly detection only.

Hyper-Kvasir is a large multi-class public gastrointestinal imaging dataset [21].
We use a subset of the normal (i.e., healthy) images from the dataset for training.
Specifically, 2,100 images from ‘cecum’, ‘ileum’ and ‘bbps-2-3’ are selected as normal,
from which we use 1,600 for training and 500 for testing. We also take 1,000 abnormal
images and their segmentation masks of polyps to be used exclusively for testing, where
all images have size 300 × 300 pixels.

LAG is a large scale fundus image dataset for glaucoma diagnosis [121]. For the
experiments, we use 2,343 normal (negative glaucoma) images for training, and 800
normal images and 1,711 abnormal images with positive glaucoma with annotated
attention maps by ophthalmologists for testing, where images are 500 × 500 pixels.
The annotated attention maps are based on eye tracking, in which the maps are used
by the ophthalmologists to explore the region of interest for glaucoma diagnosis [121].

Liu et al.’s colonoscopy dataset is a colonoscopy image dataset with 18 colonoscopy
videos from 15 patients [139]. The training set contains 13,250 normal (healthy) images
without polyps, and the testing set contains 967 images, with 290 abnormal images
with polyps and 677 normal (healthy) images without polyps, where all images have
size 64 × 64 pixels.

Covid-X [235] has a training set with 1,670 Covid-19 positive and 13,794 Covid-
19 negative CXR images. The test set contains 400 CXR images, consisting of 200
positive and 200 negative images. We train the methods with the 13,794 Covid-19
negative CXR training images and test on the 400 CXR images, where images are 299
× 299 pixels.

5.4.2 Implementation Details

For the proposed PMSACL pre-training, we use Resnet18 [91] as the backbone archi-
tecture for the encoder fθ(x), and similarly to previous works [31, 208], we add an
MLP to this backbone as the projection head for the contrastive learning, which out-
puts features in Z of size 128. All images from the Hyper-Kvasir [21], LAG [121] and
Covid-X [235] datasets are resized to 256 × 256 pixels. For the Liu et al.’s colonoscopy
dataset [139], we use the original image size of 64 × 64 pixels. The batch size is set to
32 and learning rate to 0.01 for the self-supervised pre-training on all datasets. The
model is trained using stochastic gradient descent (SGD) optimiser with momentum.

We investigate the impact of different strong augmentations in An, including ro-
tation, permutation, cutout, Gaussian noise and our proposed MedMix. For MedMix
patches, we randomly apply colour jittering, Gaussian noise and non-linear intensity
transformations (i.e., fisheye and horizontal wave transformations). The weak augmen-
tations in A0 are the same as in SimCLR [31], namely: colour jittering, random grey
scale, crop, resize, and Gaussian blur.
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The model pre-trained with PMSACL is fine-tuned with IGD [34] or PaDiM [43].
For IGD [34], we pre-train the global and local models (see Figure 9.1), where the
patch position prediction loss in Eq. 5.9 is only fine-tuned for the local model. For
PaDiM [43], we pre-train the global model and use it to fine-tune the anomaly detection
and segmentation models. For the training of IGD [34] and PaDiM [43], we use the
hyper-parameters suggested by the respective papers. In our experiments, the local
map for IGD is obtained by considering each 32×32-pixel patch as an instance and
apply our proposed self-supervised learning to it. The global map for IGD is computed
based on the whole image sized as 256 × 256 pixels for Hyper-Kvasir, LAG and Covid-
X datasets. For Liu et al.’s colonoscopy dataset, we only train the model globally with
the image size 64 × 64. For the auto-encoder in IGD, we use the setup suggested
in [34], where the global model is trained with images of size 256×256 pixels or 64
× 64 for Liu et al.’s colonoscopy dataset, and the local model is trained with image
patches of size 32×32. For PaDiM [43], we only use the default setup in their work
and compute the segmentation mask based on the images of size 256×256 pixels for
Hyper-Kvasir, LAG and Covid-X datasets, and 64 × 64 for Liu et al.’s colonoscopy
dataset.

5.4.3 Evaluation Measures

The anomaly detection performance is quantitatively assessed by the area under the
receiver operating characteristic curve (AUROC), specificity, sensitivity and accuracy.
AUROC assesses anomaly detection by varying the classification threshold and com-
puting the area under the ROC curve. Sensitivity and specificity reflect the percentage
of positives and negatives that are correctly detected. Accuracy shows the overall per-
formance of correctly detected samples for both positive and negative images, where
the classification threshold is estimated with a small validation set that contains 50
normal and 50 abnormal images that are randomly sampled from the testing set. Note
that the validation set is only used for threshold estimation. For anomaly segmenta-
tion, the performance is measured by Intersection over Union (IoU), Dice score, and
Pro-score [11]. IoU is computed by dividing the intersection by the union between
the predicted segmentation and the ground truth mask. Dice also takes the predicted
segmentation and the ground truth mask and divides two times their intersection by
their sum. Pro-score weights the ground-truth masks of different sizes equally [11] to
verify if both large and small abnormal lesions are accurately segmented.

5.4.4 Anomaly Detection Results

In this section, we show the anomaly detection results on all datasets.
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Methods AUC Specificity Sensitivity Accuracy

DAE [60] 0.705 0.522 0.756 0.693
OCGAN [174] 0.813 0.691 0.811 0.795

F-Anogan [199] 0.907 0.846 0.915 0.883
ADGAN [140] 0.913 0.879 0.946 0.893
MS-SSIM [34] 0.917 0.857 0.925 0.912
PANDA [185] 0.937 0.805 0.919 0.917
CutPaste [120] 0.949 0.847 0.957 0.932

PaDiM [43] 0.943 0.846 0.929 0.898
CCD - PaDiM 0.978 0.923 0.961 0.967

PMSACL - PaDiM 0.996 0.966 0.981 0.983
IGD [34] 0.939 0.858 0.913 0.906

CCD - IGD 0.972 0.934 0.947 0.956
PMSACL - IGD 0.995 0.947 0.965 0.972

Table 5.1: Anomaly detection testing results on Hyper-Kvasir in terms of AUC,
Specificity, Sensitivity and Accuracy. Best results are highlighted.

Hyper-Kvasir

In Table 5.1, we show the results of anomaly detection on Hyper-Kvasir dataset,
where we present results from baseline UAD methods, including OCGAN [174], F-
Anogan [199], ADGAN [139], and deep autoencoder (DAE) [60] and its variant with
MS-SSIM loss [34]. As discussed in Section 5.3.3, we choose IGD [34] and PaDiM [43] as
the anomaly detector for evaluating our proposed PMSACL pre-training approach and
compare it with our previously proposed CCD pre-training approach [221] to fine-tune
IGD and PaDiM.

Comparing with the baseline UAD methods, the performance of PaDiM and IGD
are improved using our PMSACL pre-trained encoder by around 5% and 6% AUC,
which achieves SOTA anomaly detection AUC results of 99.6% and 99.5%, respectively,
on Hyper-Kvasir. Comparing with our previously proposed CCD pre-training [221],
our proposed PMSACL pre-training improves the performance by 2.3% and 1.8% for
PaDiM and IGD. This shows that our proposed MedMix and PMSACL loss improve the
generalisation ability of the fine-tuning stage for anomaly detection and produce better
constrained feature space of normal samples. Moreover, achieving SOTA results on two
different types of anomaly detectors suggests that our self-supervised pre-training can
produce good representations for both generative and predictive anomaly detectors.

OCGAN [174] constrains the latent space based on two discriminators to force the
latent representations of normal data to fall at a bounded area. F-Anogan [199] uses
an encoder to extract the feature representations of a input image and use a GAN to
reconstruct it. ADGAN [140] uses two generators and two discriminators to produce
realistic reconstruction of normal samples. These three methods achieve 81.3%, 90.7%
and 91.3% AUC on Hyper-Kvasir, respectively, which are well below our self-supervised
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Methods AUC Specificity Sensitivity Accuracy

MS-SSIM [34] 0.823 0.257 0.937 0.774
F-Anogan [199] 0.778 0.565 0.899 0.763
PANDA [185] 0.789 0.624 0.869 0.767
CutPaste [120] 0.745 0.372 0.788 0.685

PaDiM [43] 0.688 0.314 0.809 0.673
CCD - PaDiM 0.728 0.429 0.779 0.694

PMSACL - PaDiM 0.761 0.466 0.877 0.753
IGD [34] 0.796 0.396 0.958 0.805

CCD - IGD 0.874 0.572 0.944 0.875
PMSACL - IGD 0.908 0.531 0.979 0.884

Table 5.2: Anomaly detection testing results on LAG in terms of AUC, Specificity,
Sensitivity, Precision and Recall. Best results are highlighted.

PMSACL pre-training with IGD and PaDiM. Also, the recently proposed state-of-the-
art (SOTA) methods PANDA [185] and CutPaste [120] achieve significantly inferior
performance than our PMSACL pre-trained anomaly detectors. Note that CutPaste
uses a similar augmentation strategy as MedMix, but with inferior results, indicating
the effectiveness of our proposed PMSACL self-supervised loss function. Furthermore,
PaDiM with our PMSACL pre-training can achieve the SOTA results of 96.6% speci-
ficity, 98.1% sensitivity and 98.3% accuracy. It improves the previous PaDiM using
CCD pre-training by 4.3%, 2% and 1.6% for these three evaluation measures. Finally,
PaDiM pre-trained with PMSACL significantly outperforms the PaDiM pre-trained
with ImageNet [43] by 12%, 5.2% and 8.5% in terms of these three evaluation mea-
sures.

LAG

We evaluate the performance of our PMSACL pre-training on the LAG dataset and
show results on Table 5.2. Our PMSACL pre-training improves PaDiM and IGD AUCs
by 7.3% and 11.2%, compared with their ImageNet pre-trained model, where the PM-
SACL pre-trained IGD achieves the SOTA results of 90.8% AUC, 97.9% sensitivity and
88.4% accuracy. Comparing with our previous CCD pre-trained PaDiM and IGD [221],
our proposed PMSACL pre-trained PaDiM and IGD surpass them by 3.3% and 3.4%
in terms of AUC. The MS-SSIM autoencoder [34], F-Anogan [199], PANDA [185], and
CutPaste [120] baselines achieve 82.3%, 77.8%, 78.9%, and 74.5% AUC, respectively,
which are significantly inferior compared with our PMSACL pre-trained IGD. For LAG,
IGD with both reconstruction and anomaly classification constraints can generally out-
perform PaDiM variants, indicating the superiority of IGD when handling the subtle
image features to detect glaucoma.
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Methods AUC Specificity Sensitivity Accuracy

DAE [60] 0.629* 0.733* 0.554* 0.597*
OCGAN [174] 0.592* 0.716* 0.534* 0.624*
ADGAN [140] 0.730* 0.852* 0.496* 0.713*
F-Anogan [199] 0.735 0.865 0.579 0.694
PANDA [185] 0.719 0.846 0.551 0.671
CutPaste [120] 0.779 0.895 0.772 0.738

PaDiM [43] 0.741 0.851 0.738 0.751
CCD - PaDiM 0.789 0.946 0.792 0.767

PMSACL - PaDiM 0.814 0.973 0.725 0.803
IGD [34] 0.787 0.914 0.596 0.743

CCD - IGD 0.837 0.985 0.774 0.815
PMSACL - IGD 0.851 0.986 0.792 0.829

Table 5.3: Anomaly detection testing results on Liu et al.’s colonscopy in terms
of AUC, Specificity, Sensitivity and Accuracy. * indicates that the model does not use
ImageNet pre-training. Best results are highlighted.

Liu et al.’s Colonoscopy Dataset

We further test our approach on Liu et al.’s colonoscopy dataset [140], as shown in Ta-
ble 5.3. Our PMSACL pre-trained PaDiM improves the ImageNet pre-trained PaDiM
by 7.3% AUC, and CCD pre-trained PaDiM by 2.5% of AUC. The IGD with the PM-
SACL pre-trained encoder achieves the SOTA result of 85.1% AUC, surpassing the
previous CCD and ImageNet pre-trained IGD by 1.4% and 6.4% AUC, respectively.

Compared with other UAD approaches, such as F-Anogan, ADGAN, OCGAN,
PANDA, and CutPaste that achieve 73.5%, 73%, 59.2%, 70.2% and 77.9% AUC, our
PMSACL pre-trained IGD and PaDiM produce substantially better results. The gap
between PaDiM and IGD may be due to the low resolution of the images in this
dataset, which hinders the PaDiM performance that requires dense intermediate feature
maps. The additional results of the PMSACL pre-trained IGD are specificity of 98.6%,
sensitivity of 79.2%, and accuracy of 82.9%, which demonstrate the robustness of our
proposed model.

Covid-X

Table 5.4 shows that Covid-X results, where our PMSACL pre-trained PaDiM and IGD
methods achieve 65.8% and 87.2% AUC on the Covid-X dataset, significantly surpass-
ing their ImageNet pre-trained approaches by 4.4% and 17.2% AUC, and CCD pre-
trained by 2.6% and 12.6% AUC. Moreover, our approaches achieve significantly bet-
ter performance when compared against current SOTA MS-SSIM, F-Anogan, PANDA,
and CutPaste baselines. The small abnormal lesions in chest X-ray images are hard
to detect, so the generative-based anomaly detector IGD can learn more effectively
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Methods AUC Specificity Sensitivity Accuracy

MS-SSIM [34] 0.634 0.572 0.406 0.577
F-Anogan [199] 0.669 0.718 0.365 0.532
PANDA [185] 0.629 0.762 0.447 0.591
CutPaste [120] 0.658 0.701 0.494 0.648

PaDiM [43] 0.614 0.753 0.318 0.559
CCD - PaDiM 0.632 0.673 0.569 0.616

PMSACL - PaDiM 0.658 0.749 0.467 0.615
IGD [34] 0.699 0.885 0.490 0.688

CCD - IGD 0.746 0.851 0.595 0.722
PMSACL - IGD 0.872 0.863 0.775 0.813

Table 5.4: Anomaly detection testing results on Covid-X in terms of AUC, Speci-
ficity, Sensitivity and Accuracy, respectively. Best results are highlighted.

Dataset AUC Specificity Sensitivity Accuracy

Hyper-Kvasir [21] 0.0084 0.0079 0.0127 0.0036
LAG [121] 0.0163 0.0085 0.0105 0.0121

Covid-X [235] 0.0107 0.0149 0.0092 0.0171

Table 5.5: The standard deviation of five-run experimental results on the Hyper-Kvasir,
LAG and Covid-X based on the PMSACL pre-trained PaDiM anomaly detector. This
results should be studied together with the results shown in Tables 5.1, 5.2, 5.4.

the fine-grained appearances of normal images, leading to better ability to detect un-
seen anomalous regions during testing with the SOTA results of 87.2% AUC, 77.5%
of sensitivity and 81.3% of accuracy. The PMSACL pre-trained IGD achieves 86.3%
specificity, which is competitive with the result from IGD pre-trained with ImageNet.
It can also be observed that our PMSACL pre-trained PaDiM and IGD improve sen-
sitivity by 14.9% and 28.5%, when compared to the ImageNet pre-trained PaDiM and
IGD.

Variability in the Results

We show on Table 5.5 the standard deviation computed from the AUC, specificity,
sensitivity and accuracy results of five different trainings based on different model
initialisation of the PMSACL pre-trained PaDiM detector. These results in Table 5.5
should be studied together with the Tables 5.1, 5.2, 5.4. In general, we conclude that
the differences between the methods described in the sections above can be considered
significant in most cases given that the standard deviation only varies from 0.5% to
1.5%.
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GTPredImage GTPredImage

Figure 5.3: Localisation of four abnormal images from Hyper Kvasir [121], with their
predictions (Pred) and ground truth annotations (GT), using PaDiM with PMSACL
pre-training.

GTPredImage GTPredImage

Figure 5.4: Localisation of four abnormal images from LAG [121], with their predictions
(Pred) and ground truth attention maps (GT), using IGD with PMSACL pre-training.

5.4.5 Anomaly Localisation Results

In this section, we show the anomaly localisation results on Hyper-Kvasir and LAG.

Hyper-Kvasir

We demonstrate the anomaly localisation performance on Hyper-Kvasir on Table 7.3.
Following [221], we randomly sample 100 abnormal images from the test set and com-
pute the mean segmentation performance over five different such groups of 100 images.
The proposed PMSACL pre-training improves the IGD and PaDiM by 1.2% and 2.8%
IoU compared with the CCD pre-training, and 8.1% and 6.4% IoU with respect to
the ImageNet pre-training, respectively. In addition, our PMSACL pre-trained PaDiM
shows the SOTA result of 40.6% IoU and 55.4% Dice, demonstrating the effectiveness
of our PMSACL approach for abnormal lesion segmentation. The CCD version of
PaDiM achieves the SOTA result of 88.1% Pro-score.
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Methods IoU Dice Pro

PaDiM [43] 0.341 0.475 0.803
CCD - PaDiM 0.378 0.497 0.881

PMSACL - PaDiM 0.406 0.554 0.854
IGD [34] 0.303 0.417 0.794

CCD - IGD 0.372 0.502 0.865
PMSACL - IGD 0.384 0.521 0.876

Table 5.6: Anomaly localisation: Mean IoU, Dice and PRO-AUC testing results
on Hyper-Kvasir on 5 different groups of 100 images with ground truth masks.Best
results for each case are highlighted.

Methods IoU Dice Pro

PaDiM [43] 0.427 0.579 0.596
CCD - PaDiM 0.462 0.612 0.634

PMSACL - PaDiM 0.475 0.643 0.628
IGD [34] 0.409 0.539 0.603

CCD - IGD 0.509 0.645 0.677
PMSACL - IGD 0.516 0.667 0.693

Table 5.7: Anomaly localisation: Mean IoU, Dice and Pro-AUC testing results on
abnormal samples from LAG test set. Best results are highlighted.

LAG

We further demonstrate the segmentation results on LAG dataset on Table 5.7. The
PMSACL pre-trained IGD achieves the SOTA result of 51.6% IoU, 66.7% Dice and
69.3% Pro-score, showing that our model can effectively segment different types of
lesions, such as colon polyps or optic disk and cup with Glaucoma. Moreover, PaDiM
pre-trained with PMSACL improves PaDiM pre-trained with CCD and ImageNet by
1.3% and 4.8% IoU, respectively. Also, PaDiM with PMSACL pre-training achieves
64.3% Dice and 62.8% Pro-score, which are comparable to the SOTA results by the
PMSACL pre-trained IGD.

5.4.6 Qualitative Results

In this section, we show examples of anomaly localisation and detection results, and
t-SNE results displaying the distribution of image representations of the normal and
pseudo abnormal classes in the feature space.
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Figure 5.5: Visual detection results and anomaly scores produced by the PMSACL pre-
trained IGD on three different datasets: Hyper-Kvasir (top), LAG (middle), Covid-X
(bottom). Anomaly scores > 0.5 classifies the image as positive, otherwise, the image
is classified as negative. Correctly classified images are marked with green boxes, and
incorrectly classified cases are marked with red boxes.

Anomaly Localisation and Detection Visual Results

The visualisation of polyp localisation results of PaDiM with PMSACL pre-training on
Hyper-Kvasir [21] is shown in Fig. 5.3. Notice that our model can effectively localise
colon polyps with various sizes and shapes. We also show the localisation results based
on the pixel-level anomaly scores of IGD with PMSACL pre-training on the LAG
dataset in Fig. 5.4.

The visual anomaly detection results of IGD pre-trained with PMSACL on the
Hyper-Kvasir [21] test set is shown in Figure 5.5.

Visualisation of t-SNE results

To validate our proposed PMSACL pre-training, we show a comparison of the image
representations produced by ImageNet, CCD, DROC and PMSACL pre-training, using
t-SNE on Hyper-Kvasir testing images, in Fig. 5.6. The proposed PMSACL appears
to cluster all the normal data into a denser and tighter region of the representation
space, where the abnormal data fall outside of this region in relatively distinct three
clusters. In contrast, the models pre-trained with the other approaches produce a
poorly clustered normal data that is likely to challenge the training of the downstream
UAD method.
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ImageNet DROC

CCD MSACL

Figure 5.6: t-SNE results of the image representations of the test set of Hyper-
Kvasir [21] learned by IGD [34] after being pre-trained on ImageNet [47], or self-
supervised with DROC [208], CCD [221], and our PMSACL. Compared to other meth-
ods, PMSACL clusters the normal image representations (blue points) in a tighter
and denser region, and separates anomalous representations into three clusters (red
points), which can be associated with the three classes of synthetised abnormal images
formed by simulating a varying number of lesions of different sizes and appearance in
the normal images.

5.4.7 Ablation Study

In this section, we study the roles played by PMSACL components. We start by
investigating the loss terms in (11.2). Then we study the impact of using different types
of strong data augmentation to generate the pseudo abnormal images and the number
of pseudo abnormal classes in MedMix (i.e., the size |A| in (11.2)). We also compare
our approach with other recently proposed self-supervised pre-training approaches.

Loss Terms in PMSACL pre-training

We present an ablation study that shows the influence of each term of our proposed
PMSACL pre-training in (11.2) following PaDiM fine-tuning in Table 11.5 on Hyper-
Kvasir and LAG datasets. Starting from ℓPMSACL without temperature scaling strategy
κ(n,m) and multi-centring loss ℓctr, we notice that the performance can reach 94.9%
and 72.5% AUC on on Hyper-Kvasir and LAG datasets, respectively. Adding the
multi-centring loss ℓctr provides an improvement of ≈ 2% AUC. Then, adding the
temperature scaling κ(n,m) from (5.7) provides ≈ 0.8% improvement. This indicate
that the joint training between ℓPMSACL and ℓctr with temperature scaling strategy

66



ℓPMSACL ℓctr κ(n,m) ℓaug ℓpos AUC - Hyper AUC - LAG

✓ 0.949 0.717
✓ ✓ 0.971 0.738
✓ ✓ ✓ 0.979 0.745
✓ ✓ ✓ ✓ 0.991 0.756
✓ ✓ ✓ ✓ ✓ 0.996 0.761

Table 5.8: Ablation study of the PMSACL loss terms on the test sets of Hyper-
Kvasir and LAG, using PaDiM [43] as anomaly detector, with our MedMix as strong
augmentations.

Cut Gau Rot Perm Med
0.7

0.8

0.9

1.0
(AUC)

Hyper
Covid

Figure 5.7: Anomaly detection testing results in terms of different types of strong
augmentations (i.e., Cutmix, Gaussian noise, Rotation, Permutation, and our MedMix)
on Hyper-Kvasir and Covid-X, where our PMSACL is used as self-supervised pre-
training, and IGD [34] is used as the anomaly detector.

can learn better fine-grained low-dimensional features for the downstream anomaly
detectors (i.e., producing denser and tighter cluster for normal images ). Finally,
adding ℓaug and ℓpos further boost the performance to reach 99.6% and 76.1% AUC on
both datasets.

Strong Augmentations

In Fig. 5.7, we explore the influence of strong augmentation strategies, represented
by rotation, permutation, cutout, Gaussian noise and our proposed MedMix on the
AUC results of Hyper-Kvasir and Covid-X datasets, based on our self-supervised PM-
SACL pre-training with IGD as anomaly detector. The performance of our MedMix
reaches the SOTA results of 99.5% and 87.2% on those datasets. The second best
AUC (96.9%) on Hyper-Kvasir uses random permutations, which were used in CCD
pre-training [221], producing an AUC 0.2% worse than our MedMix. For Covid-X,
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Figure 5.8: Influence of the number of MedMix augmentation distributions |A| in (11.2)
on the AUC results of Hyper-Kvasir testing set, where PaDiM [43] is used as the
anomaly detector.

Methods AUC Specificity Sensitivity Accuracy

ImageNet 0.943 0.846 0.929 0.898
SimCLR [31] 0.945 0.794 0.942 0.914
Rot-Net [77] 0.938 0.856 0.905 0.905

CSI [214] 0.946 0.952 0.914 0.933
DROC [208] 0.931 0.954 0.881 0.914
SupCon [? ] 0.946 0.912 0.953 0.928
CCD [221] 0.978 0.923 0.961 0.967
PMSACL 0.996 0.966 0.981 0.983

Table 5.9: Ablation studies with different self-supervised pre-training approaches on
Hyper-Kvasir testing set. PaDiM [43] is used as the anomaly detector. Best results are
highlighted.

rotation is the second best data augmentation approach with an AUC result that is
5.1% worse than MedMix. Other approaches do not work well with the appearance
characteristics of X-ray images, yielding significantly worse results than our MedMix
on Covid-X. These results suggest that the use of MedMix as the strong augmentation
yields the best AUC results on different medical image benchmarks.

MedMix Augmentations

In Fig. 5.8, we explore the influence of the number of MedMix augmentation distri-
butions (i.e., |A|) on the AUC results of Hyper-Kvasir, based on our self-supervised
PMSACL pre-training and PaDiM anomaly detector. Our model achieves the best
performance when |A| = 4 strong augmentation distributions, when it reaches around
98% to 99% AUC. The AUC declines when |A| > 5 or |A| < 3. The performance
deterioration when |A| < 3 is due to an insufficient number of pseudo abnormal train-
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ing regions from the strong augmentation distributions. When the number of strong
augmentation distributions increases to |A| > 5, the pseudo abnormalities may hide
most of the normal image regions, causing the model to become over-confident when
classifying the pseudo abnormal regions.

Other Self-supervised Methods

In Table 5.9, we show the results of different pre-training approaches with PaDiM
as anomaly detector, on Hyper-Kvasir testing set. It can be observed that our PM-
SACL approach surpasses the previous SOTA CCD pre-training [221] by 2.2% AUC.
Other pre-training methods proposed in computer vision (e.g., ImageNet pre-training,
SimCLR [31], Rot-Net [77]) achieve worse results than CCD and PMSACL. An inter-
esting point in this comparison is the relatively poor result from ImageNet pre-training,
suggesting that it may not generalise well for anomaly detection in medical images. Fi-
nally, our PMSACL achieves better results than previous SOTA UAD SSL approaches
CSI [214] and DROC [208] by about 4% to 5% AUC, indicating the effectiveness of
our new contrastive loss. We also compare the SOTA supervised contrastive learning
SupCon [? ], which re-formulates the contrastive loss as a supervised task. To validate
the effectiveness of our proposed PMSACL contrastive loss, we adapted SupCon to our
pseudo multi-class pre-training paradigm for performance comparison. The anomaly
detection performance of our PMSACL significantly surpasses SupCon. We argue that
such performance improvement is due to the fact that SupCon does not contrast the
samples from same classes, missing the chance of learning fine-grained normality fea-
tures between those samples.

5.5 Conclusion

In this chapter, we proposed a new self-supervised pre-training approach, namely PM-
SACL, for UAD methods applied to MIA problems. PMSACL is based on a new con-
trastive learning optimisation to learn multiple classes of normal and pseudo abnormal
images, formed with the proposed MedMix data augmentation that simulates medical
abnormalities. After pre-training a UAD model using our PMSACL, we fine-tune it
with two SOTA anomaly detecting approaches. Experimental results indicate that our
PMSACL pre-training can effectively improve the performance of anomaly detection
and segmentation on several medical datasets for both anomaly detectors. In the fu-
ture, we plan to design a new anomaly detector that suits better the characteristics of
our self-supervised PMSACL pre-training.
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Chapter 6

Deep One-Class Classification via
Interpolated Gaussian Descriptor

Abstract

One-class classification (OCC) aims to learn an effective data description to enclose all
normal training samples and detect anomalies based on the deviation from the data de-
scription. Current state-of-the-art OCC models learn a compact normality description
by hyper-sphere minimisation, but they often suffer from overfitting the training data,
especially when the training set is small or contaminated with anomalous samples. To
address this issue, we introduce the interpolated Gaussian descriptor (IGD) method,
a novel OCC model that learns a one-class Gaussian anomaly classifier trained with
adversarially interpolated training samples. The Gaussian anomaly classifier differ-
entiates the training samples based on their distance to the Gaussian centre and the
standard deviation of these distances, offering the model a discriminability w.r.t. the
given samples during training. The adversarial interpolation is enforced to consistently
learn a smooth Gaussian descriptor, even when the training data is small or contami-
nated with anomalous samples. This enables our model to learn the data description
based on the representative normal samples rather than fringe or anomalous samples,
resulting in significantly improved normality description. In extensive experiments on
diverse popular benchmarks, including MNIST, Fashion MNIST, CIFAR10, MVTec
AD and two medical datasets, IGD achieves better detection accuracy than current
state-of-the-art models. IGD also shows better robustness in problems with small or
contaminated training sets.

6.1 Introduction

Anomaly detection and segmentation are critical tasks in many real-world applications,
such as the identification of defects on industry objects [13] or abnormalities from
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Figure 6.1: Mean testing AUC of DSVDD [191], and our proposed IGD trained with
the CIFAR10 training set contaminated with 1%, 5% and 10% of anomalous samples
(left), and small training sets, consisting of 20%, 60%, and 100% of the CIFAR10
training set (right).

medical images [199, 200]. Given that most of the training sets available for this task
contain only normal images, existing methods are typically formulated as one-class
classifiers (OCC) [191, 228]. OCCs aim to first learn a data description of normal
samples in the training set and then use a criterion (e.g., distance to the one-class
centre [191]) to detect and localise anomalies in test samples.

State-of-the-art (SOTA) OCC models are trained by minimising the radius of a
hyper-sphere to enclose all training samples in the representation space [177, 191, 193].
To avoid catastrophic collapse, where all training samples are projected to a single point
in the representation space, these OCC models fix the hyper-sphere centre and remove
the bias terms from the model. Even though these SOTA OCC models show accurate
anomaly detection results in several benchmarks, they can overfit the training data,
particularly when the training set is small or contaminated with anomalous samples,
as shown by the results of DSVDD [191] in Fig. 6.1.

In this paper, we introduce the interpolated Gaussian descriptor (IGD) method
to address the overfitting issue presented in SOTA OCC models. IGD is based on a
one-class Gaussian anomaly classifier modelled with adversarially interpolated training
samples. The classifier is trained to build a normality description to discriminate
training samples based on their distance to the Gaussian centre and the standard
deviation of these distances. The smoothness of the normality description is enforced
by the adversarial interpolation of the training samples that constrains the training of
IGD to be based on representative normal samples rather than fringe or anomalous
samples. This allows the normality description of IGD to be more robust than the
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SOTA OCC models, particularly when the training set is small or contaminated with
anomalous samples, as shown in Fig. 6.1 and t-SNE results in appendix.

In summary, our paper makes the following contributions:

• One novel OCC model that targets the learning of an effective normality descrip-
tion based on representative normal samples rather than fringe or anomalous
samples, resulting in an improved anomaly classifier, compared with the SOTA;

• One new OCC optimisation approach based on a theoretically sound deriva-
tion of the expectation-maximisation (EM) algorithm that optimises a Gaus-
sian anomaly classifier constrained by adversarially interpolated training samples
and multi-scale structural and non-structural image reconstruction to enforce a
smooth normality description; and

• One new OCC benchmark to assess the robustness of anomaly detectors to train-
ing sets that are small or contaminated with anomalous samples.

Extensive empirical results on six popular anomaly detection benchmarks for semantic
anomaly detection, industrial defect detection, and malignant lesion detection show
that our model IGD can generalise well across these diverse application domains and
perform consistently better than current SOTA detectors. We also show that IGD is
more robust than current OCC approaches when dealing with small and contaminated
training sets.

6.2 Related Work

Unsupervised anomaly detection (UAD) is generally solved with OCCs [10, 11, 43, 77,
120, 176, 191, 197, 216, 217, 218, 221, 236, 237, 260]. A representative OCC model is
DSVDD [191], which forces normal image features to be inside a hyper-sphere with a
pre-defined centre and a radius that is minimised to include all training images. Then,
test images that fall inside the hyper-sphere are classified as normal, and the ones
outside are anomalous. Although powerful, the hard boundary of SVDD can cause
the model to overfit the training data – this problem was tackled with a soft-boundary
SVDD [191], but it can still overfit given that it lacks enough generalisation constraints.
OCC methods can also rely on generative models, such as generative adversarial net-
work (GAN) or Auto-encoder (AE). In [176], a GAN is trained to produce normal sam-
ples, and its discriminator is used to detect anomalies, but the complex training process
of GANs represents a disadvantage of this approach. An AE [56, 100, 157, 194, 195, 228]
is trained to reconstruct normal data, and the anomaly score is defined as the recon-
struction error between the input and reconstructed images. AE approaches depend
on the MSE reconstruction loss, which does not work well for structural anomalies.
Alternatively, single-scale SSIM loss [15] tends to work well for structural anomalies
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Figure 6.2: Our IGD consists of an encoder that transforms image x into representa-
tion z, a decoder to reconstruct the image (trained with MS-SSIM and MAE losses),
a Gaussian anomaly classifier trained to push the normal image representation close
to the centre of the estimated normal image distribution (denoted by a Gaussian with
mean µ and standard deviation σ), and a critic module that constrains the likelihood
maximisation by predicting the interpolation coefficient α that produces a convex com-
bination of training sample representations. Note that critic is a module similar to a
GAN discriminator.

of a specific size, but it may work poorly for non-structural anomalies and structural
anomalies outside that specific size. A more detailed review of these methods can be
found in [165].

An important aspect of current UAD approaches is their dependence on pre-trained
models to produce SOTA results. UAD models can be pre-trained on ImageNet [11,
228] or self-supervised tasks [10, 77]. To allow a fair comparison with current UAD
methods, we pre-train IGD with self-supervision and ImageNet.

Unsupervised anomaly localisation targets the segmentation of anomalous image
pixels or patches, containing, for example, lesions in medical images [122], defects in
industry images [11, 13], or road anomalies in traffic images [173, 219]. The main idea
explored is based on extending the image based OCC to a pixel-based OCC, where
testing produces a pixel-wise anomaly score map [8, 15]. In general, methods that can
localise anomalies [11, 228] are tuned to particular anomaly sizes and structure, which
can cause then to miss anomalies outside that range of sizes and structure. To avoid
this issue, we design IGD to detect multi-scale structural and non-structural anomalies
to improve the anomaly localisation accuracy.

6.3 Method

We denote the training set containing only normal samples by D = {xi}|D|
i=1, where x ∈

X ⊂ RW×H×3 represents an RGB image of width W and height H and sampled from
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the distribution of normal images as in x ∼ PX . The testing set contains normal and
anomalous images, where anomalous images can have segmentation map annotations.
This testing set is defined by T = {(xi, yi,b

(yi)
i }|T |

i=1, where yi ∈ Y = {0, 1} (0 denotes a
normal and 1 denotes an anomalous image), the segmentation map with the anomaly

is denoted by b
(yi)
i ∈ {0, 1}W×H (i.e., a pixel-wise anomaly map for image xi) if yi = 1,

and b
(yi)
i = 0W×H if yi = 0.

6.3.1 Interpolated Gaussian Descriptor (IGD)

As depicted in Fig. 6.2, the IGD model is represented by the general classifier pθ(y =
0|x,PX ) that consists of an encoder z = fψ(x) that transforms a training sample from
the image space X to a representation space Z ∈ RZ , a Gaussian anomaly classifier
pθ(y = 0|ω,x) ∈ [0, 1] that takes the normal image distribution parameter ω and image
x to estimate the probability that it is normal, a decoder x̂ = gϕ(z) that reconstructs an
image from the representation space, and a critic module α = dη(gϕ(αz1 + (1 − α)z2))
that predicts the interpolation constraint parameter α ∈ [0, 1], with z1, z2 obtained
from the encoder fψ(.). The IGD parameter θ ∈ Θ represents all module parameters
{ψ, ϕ, η} and is estimated with maximum likelihood estimation (MLE):

θ∗ = arg max
θ

1

|D|
∑
xi∈D

log pθ(yi = 0|xi,PX ). (6.1)

We train the one-class classifier in (6.1) using an EM optimisation [46], where the
mean and standard deviation of the normal image distribution are estimated during
the E-step, instead of being explicitly optimised [191], reducing the risk of overfitting.
To encourage the M-step to learn an effective normality description (such that the
optimisation is robust to small and contaminated training sets), we add an adversarial
interpolation constraint to enforce linear combinations of normal image representations
to belong to the normal distribution. We further increase the robustness of IGD to
overfitting by constraining the optimisation of the M-step to enforce accurate image re-
construction from its representation. Below, we provide more details about the training
process.

To formulate the EM optimisation, we re-write the log-likelihood in (6.1) as

log pθ(yi = 0|xi,PX )

= ℓELBO(q, θ) +KL[q(ω)||pθ(ω|PX )].
(6.2)

with ω ∈ W ⊂ RZ × R denoting the latent variables (mean and standard deviation)
that describe the distribution of normal image representations (defined in more detail
below). In (6.2), we remove the conditional dependence of pθ(ω|PX ) on yi = 0 and xi
because ω is a variable for the whole training distribution defined as

pθ(ω|PX ) = δa(∥ω(1) − µx∥2)δa(ω(2) − σx), (6.3)
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where δa(b) = 1
|a|

√
π

exp−(b/a)2 (a→ 0 approximates a Dirac delta function, and a→
∞ approximates a uniform function), µx = Ex∼PX [fψ(x)] and σ2

x = Ex∼PX [∥fψ(x) −
µx∥22], with fψ(.) representing the encoder; and in (6.2), we also have

ℓELBO(q, θ) =

Eq(ω)[log pθ(yi = 0, ω|xi,PX )] − Eq(ω)[log q(ω)],
(6.4)

where KL[·] denotes the Kullback-Leibler divergence, and q(ω) represents the varia-
tional distribution that approximates pθ(ω|PX ), defined in (6.3).

The E-step of the EM optimisation zeroes the KL divergence in (6.2) by setting
q(ω) = pθold(ω|PX ), where θold represents the previous EM iteration parameter value.
In practice, the E-step sets ω(1) to µx and ω(2) to σx, defined in (6.3). Next, the
M-step maximises ℓELBO in (6.4), with:

θ⋆ = arg max
θ

1

|D|
∑
xi∈D

(
Eq(ω)[ log pθ(yi = 0|ω,xi)

+ log pθ(ω|PX )
])
,

(6.5)

where Eq(ω)[log(q(ω))] is removed from ℓELBO because it depends only on the previous
iteration parameter θold, q(ω) is defined in the E-step above, and the conditional depen-
dence of pθ(y = 0|ω,xi) on PX is removed because the information from that distribu-
tion is summarised in θ. Therefore, (6.5) has two components: 1) the classification term

represented by the Gaussian anomaly classifier pθ(y = 0|ω,xi) = exp
(
−∥fψ(x)−ω(1)∥22

ω(2)2

)
,

with mean ω(1) and standard deviation ω(2); and 2) pθ(ω|PX ) defined in (6.3), which
approximates a uniform distribution to prevent the confirmation bias of the estimated
µx and σx from (6.3). To promote an effective normality description of IGD, we con-
strain the M-step (6.5) as follows:

max
θ

1

|D|
∑
xi∈D

Eq(ω)[log(pθ(y = 0|ω,xi))]

s.t. ℓd(xi, θ) = 0, ∀xi ∈ D,
ℓf,g(xi, θ) = 0,∀xi ∈ D,

(6.6)

where ℓd(.) is a constraint, defined in (6.10), to enforce the adversarial linear interpo-
lation of normal image representations to belong to the normal representation distri-
bution, and ℓf,g(.) is a constraint, defined in (6.11), to enforce accurate structural and
non-structural multi-scale image reconstruction. Note that the maximisation in (6.6)
constrains the optimisation in (6.5), which means that we are maximising a lower
bound to the original M-step. Using Lagrange multipliers, the optimisation in (6.6) is
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reformulated to minimise the following loss function:

ℓ(θ, ω,D) =
1

|D|

|D|∑
i=1

ℓh(xi, ω, θ) + λ1ℓd(xi, θ) + λ2ℓf,g(xi, θ), (6.7)

where
ℓh(x, ω, θ) = 1 − pθ(y = 0|ω,x) = pθ(y = 1|ω,x), (6.8)

with pθ(y = 0|ω,x) defined in (6.5), and λ1, λ2 denoting the Lagrange multipliers.
The interpolation constrain ℓd(.) in (6.6) and (6.7) regularises the training by linearly
interpolating the representations from training images, and estimating the interpolation
coefficient with the critic network [16]. This interpolation constrains the normal image
distribution denser in the representation space, reducing the likelihood that anomalous
representations may land in the same region of the representation space occupied by
normal samples. Unlike Mix-up [261], our interpolation constraint is a self-supervised
method that does not rely on data augmentation on the input space and does not
interpolate training labels, making it more adequate for our problem because it enforces
a compact and dense distribution of normal samples to be estimated for the Gaussian
anomaly classifier. The critic network is represented by

α̂ = dη (x̂α) , (6.9)

where x̂α = gϕ (αz1 + (1 − α)z2) represents the reconstruction of the interpolation of
z1 = fψ(x1) and z2 = fψ(x2) (with α ∼ U(0, 0.5), x1,x2 ∈ D, x1 ̸= x2, and U denoting
a uniform distribution ) [16], and gϕ(.) denotes the decoder. The goal of the critic
network dη(.) is to predict the interpolation coefficient α. The critic network in (6.9)
is similar to the discriminator in GAN [79], and relies on the following adversarial loss
to be optimised [16]

ℓd(x, θ) = ∥dη(x̂α) − α∥22 + ∥dη(x̂ζ)∥22, (6.10)

where x̂α is defined in (6.9), and x̂ζ = ζx+(1− ζ)x̂, with ζ ∼ U(0, 1) and x̂ denoting a
reconstruction of x by the auto-encoder. The first term of (6.10) minimises the critic’s
prediction error for α and the second term regularises the training to ensure that the
critic predicts α̂ = 0 when the original image is interpolated with its own reconstruction
in the image space X .

The image reconstruction constrain ℓf,g(.) in (6.6) and (6.7) is defined as

ℓf,g(x, θ) = ℓr(x, x̂, θ) + λ3∥dη(x̂α)∥22, (6.11)

where x̂ is a reconstruction of x by the auto-encoder, with the image reconstruction
loss ℓr(.) to be defined below in (6.12), and λ3 is a hyperparameter to weight the
regularisation term. This regularisation fools the critic to output α̂ = 0 for interpolated

79



embeddings, independently of α, following standard adversarial training [79]. In (6.11),
we also have

ℓr(x, x̂, θ) =∑
ω∈Ω

ρ|x(ω) − x̂(ω)| + (1 − ρ)
(

1 −m
(
x(ω), x̂(ω)

))
, (6.12)

with Ω denoting the image lattice, ρ ∈ [0, 1], |x(ω)− x̂(ω)| representing the MAE loss,
and m(x(ω), x̂(ω)) ∈ [0, 1] being the MS-SSIM score [242], with larger values indicating
higher similarity between patches ω ∈ Ω of the original and reconstructed images.

The loss in (6.7) is used to train two models. A global model that works on the whole

image x, and a local model that works on image patches x(L)(ω) ∈ X (L) ⊂ RW (L)×H(L)×3,
with W (L) < W and H(L) < H, centred at pixel ω ∈ Ω (Ω is the image lattice). During
inference, the results from the global and local models are combined to produce multi-
scale anomaly detection and localisation.

6.3.2 Theoretical Guarantees

IGD maximises a constrained ℓELBO(q, θ) in (6.6) rather than maximising pθ(y =
0|x,PX ) in (6.1). Using Theorem 1 in [46], Lemma A.6.1 demonstrates the correct-
ness of IGD, where an increase to the constrained ℓELBO(q, θ) implies an increase to
pθ(y = 0|x,PX ). Using Theorem 2 in [46], Lemma A.7.1 proves the convergence con-
ditions of IGD.

Lemma 6.3.1. Assuming that the maximisation of the constrained ℓELBO in (6.6)
produces θ that makes
Eq(ω)[log pθ(y = 0, ω|x,PX )] ≥ Eq(ω)[log pθold(y = 0, ω|x,PX )],

we have that (log pθ(y = 0|x,PX ) − log pθold(y = 0|x,PX )) is lower bounded by(
Eq(ω)[log pθ(y = 0, ω|x,PX )] − Eq(ω)[log pθold(y = 0, ω|x,PX )]

)
≥ 0,

with q(ω) = pθold(ω|PX ).

Proof. We follow the proof for Theorem 1 in [46]. From the main paper, we have

logpθ(y = 0|x,PX ) =

ℓELBO(q, θ) +KL[q(ω)||pθ(ω|PX )],
(6.13)

where q(ω) = pθold(ω|PX ). Subtracting log pθ(y = 0|x,PX ) and log pθold(y = 0|xPX ),
we have

logpθ(y = 0|x) − log pθold(y = 0|x) =

ℓELBO(q, θ) − ℓELBO(q, θold)+

KL[q(ω)||pθ(ω|PX )] −KL[q(ω)||pθold(ω|PX )].

(6.14)
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SinceKL[q(ω)||pθ(ω|PX )] ≥ KL[q(ω)||pθold(ω|PX )] and that ℓELBO(q, θ)−ℓELBO(q, θold) =
Eq(ω)[log pθ(y = 0, ω|x,PX )] − Eq(ω)[log pθold(y = 0, ω|x,PX )], we conclude that

logpθ(y = 0|x,PX ) − log pθold(y = 0|x,PX ) ≥
Eq(ω)[log pθ(y = 0, ω|x,PX )]−
Eq(ω)[log pθold(y = 0, ω|x,PX )] ≥ 0

(6.15)

because of the assumption in this Lemma.

Lemma 6.3.2. Assume that {θ(e)}+∞
e=1 denotes the sequence of trained model param-

eters from the constrained optimisation of ℓELBO in (6.6) such that: 1) the sequence
{log pθ(e)(y = 0|x,PX )}+∞

e=1 is bounded above, and 2)
(
Eq(ω)[log pθ(e+1)(y = 0, ω|x,PX )] − Eq(ω)[log pθ(e)(y = 0, ω|x,PX )]

)
≥

ξ
(
θ(e+1) − θ(e)

)⊤ (
θ(e+1) − θ(e)

)
, for ξ > 0 and all e ≥ 1, and q(ω) = pθ(e)(ω|PX ). Then {θ(e)}+∞

e=1

converges to some θ⋆ ∈ Θ.

Proof. We follow the proof for Theorem 2 in [46]. The sequence {log pθ(e)(y = 0|x,PX )}+∞
e=1

is non-decreasing (from Lemma A.6.1) and bounded above (from assumption (1) in
Lemma A.7.1), so it converges to L⋆ < +∞. Hence, using Cauchy criterion [158], for
any ϵ > 0, we have e(ϵ) such that, for e ≥ e(ϵ) and all r ≥ 1,

r∑
j=1

(log pθ(e+j)(y = 0|x,PX ) − log pθ(e+j−1)(y = 0|x,PX )) =

(log pθ(e+r)(y = 0|x,PX ) − log pθ(e)(y = 0|x,PX )) < ϵ.

(6.16)

From (A.7),

0 ≤ Eq(ω)[log pθ(e+j)(y = 0, ω|x,PX )]−
Eq(ω)[log pθ(e+j−1)(y = 0, ω|x,PX )]

≤ log pθ(e+j)(y = 0|x,PX ) − log pθ(e+j−1)(y = 0|x,PX )

(6.17)

for j ≥ 1 and q(ω) = pθ(e+j−1)(ω|PX ). Hence, from (A.8),
r∑
j=1

(Eq(ω)[log pθ(e+j)(y = 0, ω|x,PX ))]−

Eq(ω)[log pθ(e+j−1)(y = 0, z|x,PX ))]) < ϵ,

(6.18)

for e ≥ e(ϵ) and all r ≥ 1. Given assumption (2) in Lemma A.7.1 for e, e + 1, e +
2, ..., e+ r − 1, we have from (A.10),

ϵ > ξ

r∑
j=1

(
θ(e+j) − θ(e+j−1)

)⊤ (
θ(e+j) − θ(e+j−1)

)
, (6.19)

so
ϵ > ξ

(
θ(e+r) − θ(e)

)⊤ (
θ(e+r) − θ(e)

)
, (6.20)

which is a requirement to prove the convergence of θ(e) to some θ⋆ ∈ Θ.
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Figure 6.3: Example of the multi-scale structural and non-structural anomaly localisa-
tion result for an MVTec AD [13] image, using both the local and global IGD models.
The global model tends to produce smooth results but with some mistakes, while the
local model produces jagged results, but without the global mistakes, so by combining
the two results, we obtain a smooth and correct anomaly heatmap.

6.3.3 Training and Inference

The global and local IGD models are trained separately (see Fig. A.1), following the
EM optimisation, where the E-step estimates the the latent variable ω in (6.3), and
the M-step minimises the loss in (6.7) to obtain θ⋆.

During inference, anomaly detection is performed by combining the global and
local IGD anomaly scores for a testing image x as in:

s(x) = s(G)(x) + s(L)(x). (6.21)

The global score in (6.21) is defined as

s(G)(x) = ℓ(G)
r (x, x̂, θ∗) + ℓ

(G)
h (x, θ∗), (6.22)

where ℓ
(G)
r (.) denotes the reconstruction loss from (6.12) and ℓ

(G)
h (.) denotes the Gaus-

sian anomaly classification loss from (6.8) (both computed with the global IGD model
using the whole images), and x̂ is the reconstruction of x produced by the auto-encoder.
The local score in (6.21) is defined as

s(L)(x) = max
ω∈Ω

(
ℓ(L)r

(
x(L)(ω), x̂(L)(ω), θ∗

)
+

ℓ
(L)
h

(
x(L)(ω), θ∗

))
,

(6.23)

where ℓ
(L)
r (.) and ℓ

(L)
h (.) are the reconstruction and Gaussian anomaly classification

losses computed from the local model, with x(L)(ω) denoting an image patch of size
W (L) ×H(L) × 3 at pixel ω ∈ Ω. The use of max pooling of the local scores in (6.23)
facilitates detection of images that contain anomalies covering a small region of the
image.
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In particular, the MS-SSIM loss uses the MS-SSIM global score, defined as

m(G)(x(ω),x̂(ω)) = [lM(x(ω), x̂(ω))]αM×
m(G)∏
m=1

[cm(x(ω), x̂(ω))]βm [sm(x(ω), x̂(ω))]γm ,
(6.24)

where x(ω) denotes an image patch centred at ω ∈ Ω of size 11 × 11 × 3,

lM(x(ω), x̂(ω)) =
2µx(ω)µx̂(ω) + C1

µ2
x(ω) + µ2

x̂(ω) + C1

, (6.25)

cm(x(ω), x̂(ω)) =
2σx(ω)σx̂(ω) + C2

σ2
x(ω) + σ2

x̂(ω) + C2

, (6.26)

sm(x(ω), x̂(ω)) =
σx(ω)x̂(ω) + C3

σx(ω)σx̂(ω) + C3

, (6.27)

with C1, C2, C3 representing pre-defined constants, µx(ω) denoting the mean intensities
of x(ω), σ2

x(ω) the variance of x(ω), and σx(ω)x̂(ω) the covariance of x(ω) and x̂(ω).

In (A.1), m(G) = 5 denotes the number of scales, β1 = γ1 = 0.0448, β2 = γ2 = 0.2856,
β3 = γ3 = 0.3001, β4 = γ4 = 0.2363, α5 = β5 = γ5 = 0.1333 [242]. We follow
Ci = (KiL)2 (for i ∈ {1, 2, 3}) according to [240] and define L = 4.7579 as the pixel
range with K1 = 0.01, K2 = 0.03 and C3 = C2/2.

The local score m(L)(x(L)(ω), x̂(L)(ω)) is defined in the same way as in (A.1), where
x(L)(ω) is an image patch centred at ω ∈ Ω of size 3 × 3 × 3, m(L) = 4 scales with
weights β1 = γ1 = 0.0516, β2 = γ2 = 0.3295, β3 = γ3 = 0.3463, α4 = β4 = γ4 = 0.2726
modified based on the original proportion for m(G) = 5.

Anomaly localisation is computed for each pixel ω ∈ Ω to produce a local score

l(x(ω)) =ℓ(G)
r

(
x(ω), x̂(ω), θ∗

)
+

ℓ(L)r

(
x(L)(ω), x̂(L)(ω), θ∗

)
,

(6.28)

with

ℓ(G)
r

(
x(ω),x̂(ω), θ∗

)
= ρ
∣∣x(ω) − x̂(ω)

∣∣+
(1 − ρ)

(
1 −m(G)

(
x(ω), x̂(ω)

))
,

(6.29)

where ρ and m(G)(.) are defined in (6.12) and x̂ is a reconstruction of x produced by

the global IGD model. The ℓ
(L)
r

(
x(L)(ω), x̂(L)(ω), θ∗

)
in (6.28) is similarly defined using

the local IGD model. Thus, the anomaly localisation final map is a heatmap with high
values representing regions that are likely to contain anomalies.
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6.4 Experiments

6.4.1 Datasets and Evaluation Metric

Datasets: We use four computer vision and two medical image datasets to evaluate
our methods. The computer vision datasets are MNIST [48], Fashion MNIST [247], CI-
FAR10 [113] and MVTec AD [13]; and the medical image datasets are Hyper-Kvasir [21]
and LAG [121]. MNIST, Fashion MNIST and CIFAR10 have been widely used as
benchmarks for image anomaly detection, and we follow the same experimental proto-
col as described in [191]. CIFAR10 contains 60,000 images with 10 classes. MNIST and
Fashion MNIST contain 70,000 images with 10 classes of handwritten digits and fash-
ion products, respectively. MVTec AD [13] contains 5,354 high-resolution real-world
images of 15 different industry object and textures. The normal class of MVTec AD is
formed by 3,629 training and 467 testing images without defects. The anomalous class
has more than 70 categories of defects (such as dents, structural fails, contamination,
etc.) and contains 1,258 testing images. MVTec AD provides pixel-wise ground truth
annotations for all anomalies in the testing images, allowing the evaluation of anomaly
detection and localisation. We also tested our method on two publicly available medical
datasets: Hyper-Kvasir [21] and LAG [121] for polyp and glaucoma detection, respec-
tively. For Hyper-Kvasir, we has 1,600 normal images without polyps in the training
set and 500 in the testing set; and 1,000 abnormal images containing polyps in the
testing set. For LAG, we have 2,343 normal images without glaucoma in the training
set; and 800 normal images and 1,711 abnormal images with glaucoma for testing.

Evaluation: For anomaly detection, we assess performance with the area under the
receiver operating characteristic curve (AUC) and classification accuracy. On MNIST,
Fashion MNIST and CIFAR10, we use the same protocol as other methods in Tab. 6.1,
where training uses a single class as the normal data, with the nine remaining classes
denoting as semantically anomalous samples, and inference relies on a non-augmented
test image. We report the mean AUC over the 10 classes for the above three data sets.
On MVTec AD [11, 228], we evaluate anomaly detection with mean AUC and accuracy.
Follow previous works [218, 221], we evaluate the methods using AUC for the Hyper-
Kvasir and LAG. For anomaly localisation, we follow [228] and compute the mean
pixel-level AUC between the generated heatmap and the ground truth segmentation
map for each anomalous image in the testing set of MVTec AD.

6.4.2 Implementation Details

We implement our framework using Pytorch. The model was trained with Adam
optimiser using a learning rate of 0.0001, weight decay of 10−6, batch size of 64 images,
256 epochs for all dataset. We defined the representation space produced by the encoder
to have Z = 128 dimensions. Following [76], we set ρ = 0.15 to balance the contribution
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Pretrain Method MNIST CIFAR10 FMNIST

Scratch

DAE [85] 0.8766 0.5358 -

VAE [109] 0.9696 0.5833 -

KDE [19] 0.8140 0.6100 -

OCSVM [201] 0.9510 0.5860 -

AnoGAN [200] 0.9127 0.6179 -

DSVDD [191] 0.9480 0.6481 -

OCGAN [176] 0.9750 0.6566 -

PixelCNN [224] 0.6180 0.5510 -

CapsNetPP [125] 0.9770 0.6120 0.7650

CapsNetRE [125] 0.9250 0.5310 0.6790

ADGAN [41] 0.9680 0.6340 -

LSA [1] 0.9750 0.6410 0.8760

MemAE [56] 0.9751 0.6088 -

GradCon [114] 0.9730 0.6640 -

λ-VAEu [44] 0.9820 0.7170 0.8730

ULSLM [243] 0.9490 0.7360 -

SCADN [251] 0.9771 0.6690 -

Ours 0.9869 0.7433 0.9201

ImageNet

CAVGA-Du [228] 0.9860 0.7370 0.8850

Student-Teacher [11] 0.9935 0.8196 -

Ours 0.9927 0.8368 0.9357

SSL

Rot-Net [77] - 0.8160 0.9350

(author?) [10] - 0.8820 0.9410

Ours - 0.9125 0.9441

Table 6.1: Anomaly detection: mean AUC testing results on MNIST, CIFAR10
and Fashion MNIST. The results are split into ’Scratch’ (without any pre-training),
pretrained with ’ImageNet’, and self-supervised learning (’SSL’). Bold numbers repre-
sent the best result (within 0.5%) for each data set, discriminated by Scratch, SSL or
ImageNet.

of MAE and MS-SSIM losses in (6.12) and (6.29). We set λ1 = λ2 = 1 in (6.7)
and λ3 = 0.1 in (6.11), based on cross validation experiments. We use Resnet18
and its reverse architecture as the encoder and decoder for both the global and local
IGD models. When computing the accuracy of anomaly detection in MVTec AD,
the threshold of the anomaly detection score s(x) in (6.21) (to classify an image as
anomalous) is set to 0.5 [228]. To enable a fair comparison between our method and
previous approaches in the field [10, 11, 77, 228], we pre-train the encoders for the
global and local IGD models either with self-supervised learning (SSL) [29] or ImageNet
knowledge distillation (KD) [11, 80].

For this SSL pre-training, we use the SGD optimiser with a learning rate of 0.01,
weight decay 10−1, batch size of 32, and 2,000 epochs. Once we obtain the pre-trained
encoder with SSL, we remove the MLP layer and attach a linear layer to the backbone
with fixed parameters. Note that this SSL is trained from scratch. In contrast to
the vanilla self-supervised learning [29] suggesting large batch size, we notice that a
medium batch size yields significantly better performance for unsupervised anomaly
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Figure 6.4: Qualitative results of our anomaly localisation results on the MVTec AD
(red = high probability of anomaly). Top, middle and bottom rows show the testing
images, ground-truth masks and predicted heatmaps, respectively.

detection.

For the ImageNet KD pre-training, we minimise the ℓ2 norm between the 512-
dimensional feature vector output from encoder and an intermediate layer of the Ima-
geNet pre-trained ResNet18 with the same 512-dimensional features. For this ImageNet
KD pre-training, we use the Adam optimiser with a learning rate of 0.0001, weight de-
cay 10−5, batch size of 64, and 50,000 iterations. Once we obtain the pre-trained
encoder of KD, we fix the network parameters and attach a linear layer to reduce the
dimensionality of the feature space to 128.

6.4.3 Experiments on MNIST, Fashion MNIST and CIFAR10

Table 6.1 compares the unsupervised anomaly detection mean AUC testing results
between our method and the current SOTA on MNIST, Fashion MNIST and CIFAR10.
The rows labelled as ‘Scratch’ show results of models that were not pre-trained, and the
ones with ‘SSL’ display results from models using self-supervised learning method [10,
77]. The ones with ‘ImageNet’ show results from models that use ImageNet KD pre-
training [11, 228]. Our proposed IGD outperforms current SOTA methods for the
majority of pre-training methods on all three datasets.
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Metric Method Mean

Accuracy

AVID [195] 0.730

AESSIM [15] 0.630

DAE [85] 0.710

AnoGAN [200] 0.550

λ-VAEu [44] 0.770

LSA [1] 0.730

CAVGA-Du [228] 0.780

CAVGA-Ru [228] 0.820

Ours - ImageNet 0.840

Ours - SSL 0.850

AUC

AnoGAN [200] 0.503

GANomaly [3] 0.782

Skip-GANomaly [4] 0.805

SCADN [251] 0.818

U-Net [189] 0.819

DAGAN [215] 0.873

Ours - ImageNet 0.926

Ours - SSL 0.934

Table 6.2: Anomaly detection: mean testing accuracy and AUC on MVTec AD
produced by the SOTA and our IGD.

6.4.4 Experiments on MVTec AD

We report the results, based on SSL and ImageNet KD pre-trained models, for both
anomaly detection (Tab. 6.2) and localisation (Tab. 6.3) on MVTec AD, which con-
tains real-world images of industry objects and textures containing different types of
anomalies. Following [228] the score threshold is set to 0.5 for calculating the mean
accuracy of anomaly detection. For anomaly detection, our method produces the best
accuracy (at least 2% better than previous SOTA) and AUC (at least 5% better than
previous SOTA) results independently of the pre-training technique. For anomaly lo-
calisation, we compare our method and the SOTA using the mean pixel-level AUC of
all anomalous images in the testing set of MVTec AD. Notice that our method with
ImageNet and SSL pre-training are better than the previous SOTA CAVGA-Ru [228]
by 2% and 4%, respectively. Fig. 6.4 shows anomaly localisation results on MVTec AD
images, where red regions in the heatmap indicate higher anomaly probability. From
this results, we can see that our approach can localise anomalous regions of different
sizes and structures from different object categories.
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Method MVTec AD

DAE [85] 0.82

AESSIM [15] 0.87

AVID [195] 0.78

SCADN [251] 0.75

LSA [1] 0.79

λ-VAEu [44] 0.86

AnoGAN [200] 0.74

ADVAE [136] 0.86

CAVGA-Du [228] 0.85

CAVGA-Ru [228] 0.89

Ours - ImageNet 0.91

Ours - SSL 0.93

Table 6.3: Anomaly localisation: mean pixel-level AUC testing results on the
anomalous images of MVTec AD.

6.4.5 Experiments on Medical Datasets

To show that our method can generalise to other domains, we evaluate our approach on
two public medical datasets - Hyper-Kvasir for polyp detection and LAG for glaucoma
detection. As shown in Tab. 6.4, our SSL and ImageNet based results achieve the best
AUC results on both datasets. Our methods surpass the recent proposed CAVGA-
Ru [228] on both datasets by a minimum 0.9% and maximum 3.8%. Also, our model
performs better compared to the anomaly detector specifically designed for medical
data, such as f-anogan [199] and ADGAN [139].

The abnormalities in medical data (i.e., colon polyps, glaucoma) are significantly
different than the popular image benchmarks and MVTec AD in terms of appearance
and structural anomalies, suggesting that our model works in disparate domains.

6.4.6 Visualisation of the Distribution of Testing Samples

Figure A.2 shows the distribution of testing samples in the representation space, using
the t-SNE visualisation, for DSVDD [191], Gaussian anomaly classifier (GAC), and
our IGD. Notice that the normal samples seem to be more compactly represented with
fewer anomalous samples appearing inside the normal cluster. This suggests that IGD
has a superior normality description, compared with DSVDD and GAC.

6.4.7 Ablation Study

To investigate the effectiveness of each component of our method, we show the mean
AUC results of our method with different proposed variants in Tab. 11.5. Note that
all results are based on the initialisation of knowledge distillation from ImageNet.
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Methods Hyper-Kvasir LAG

DAE [60] 0.705 0.651

CAM [267] - 0.663

GBP [210] - 0.787

SmoothGrad [206] - 0.795

OCGAN [174] 0.813 0.737

F-anoGAN [199] 0.907 0.778

ADGAN [139] 0.913 0.752

CAVGA-Ru [228] 0.928 0.819

Ours - ImageNet 0.931 0.838

Ours - SSL 0.937 0.857

Table 6.4: Anomaly detection: AUC testing results on two medical datasets: Hyper-
Kvasir and LAG.

DSVDD GAC IGD

Abnormal Normal Center

Figure 6.5: t-sne visualisation from MVTec (class bottle).

For standard anomaly detection settings (AUC - Full), each proposed component of
our IGD improves performance by a minimum 1.7% and maximum 11.6% mean AUC.
Tab. 11.5 also shows the effectiveness of each component when trained with small (20%
of full training data) or anomaly contaminated (10% of contamination rate) training
sets, where our proposed Gaussian anomaly classifier (GAC) significantly improves over
the REC (i.e., MS-SSIM+MAE losses) baseline by 13% and 10.4% mean AUC. The
proposed adversarial interpolation regularisation (INTER) further improves the AUC
by 3.7% and 3.1%.

6.4.8 Experiments on Small/Contaminated Training Sets

To show the improved robustness of our approach to small training sets on CIFAR10
and MVTec, we compare the performance of DSVDD, DSVDD+REC (i.e., DSVDD
combined with our reconstruction loss), and our proposed IGD, using less normal data
in the training sets in Tab. 6.6. In particular, we randomly sub-sample 20%, 60%,
and 100% of the original training sets of CIFAR10 and MVTec AD, to form a smaller
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MSE REC GAC INTER AUC - Full AUC - ST AUC - AC

✓ 0.615 0.552 0.565

✓ 0.731 0.655 0.677

✓ ✓ 0.819 0.785 0.781

✓ ✓ ✓ 0.836 0.822 0.812

Table 6.5: Ablation study of our method on CIFAR10 using anomaly detection mean
testing AUC w.r.t standard OCC setup (AUC - Full), small training set containing
20% of training data (AUC - ST), and anomaly contaminated training set with 10%
contamination (i.e., 10% of the anomalous samples are removed from the testing set and
inserted into the training set) (AUC - AC). MSE denotes the baseline deep autoencoder
with MSE loss, REC denotes the baseline deep autoencoder with MS-SSIM + MAE
losses, GAC denotes our proposed Gaussian anomaly classifier, INTER represents our
interpolation regularisation. The encoder of all above methods are initialised based on
the knowledge distillation from ImageNet.

Dataset Train Size DSVDD DSVDD+REC IGD (Ours)

CIFAR10

20% 0.7064 0.7462 0.8219

60% 0.7367 0.7807 0.8298

100% 0.7612 0.7950 0.8365

MVTec

20% 0.7994 0.7291 0.9043

60% 0.8467 0.7737 0.9246

100% 0.8579 0.7826 0.9260

Table 6.6: Mean testing AUCs on CIFAR10 and MVTec with small training sets, where
REC=MS-SSIM+MAE losses.

training set. The results indicate that IGD achieves comparable performance under
significantly less training data, while the performance of DSVDD and DSVDD+REC
deteriorate dramatically when the number of training samples decreases. This result
shows that IGD has better robustness than DSVDD and DSVDD+REC to small train-
ing sets.

To show the improved robustness of our approach contaminated training sets, in
Tab. 6.7, we compare the performance of DSVDD, DSVDD+REC, and our IGD, using
training sets corrupted with anomalous samples (this contamination facilitates over-
fitting). In particular, we re-organise the original training and test data of CIFAR10
and MVTec AD by randomly sampling 1%, 5% and 10% of anomalies from the test
data to inject into the training data. With different rates of anomaly contamination,
the maximum fluctuation of our IGD is 1.3% on CIFAR10 and 0.44% on MVTec AD.

90



Dataset Noise Ratio DSVDD DSVDD+REC IGD (Ours)

CIFAR10

1% 0.7502 0.7694 0.8252

5% 0.7124 0.7448 0.8193

10% 0.6717 0.7073 0.8122

MVTec

1% 0.8523 0.7873 0.9363

5% 0.8391 0.7733 0.9319

10% 0.8175 0.7687 0.9363

Table 6.7: Mean testing AUCs on CIFAR10 and MVTec with different contamination
noise rates. REC defined in Tab. 6.6.

While the competing method DSVDD shows a much larger maximum fluctuation of
7.8% and 3.5% mean AUC, on CIFAR10 and MVTec AD, respectively. The results
show the substantially better robustness of IGD over DSVDD and DSVDD+REC for
the anomaly-contaminated training data.

6.5 Discussion

We do not compare some of the SOTA works [185, 208, 214] in Table 6.1, 6.2, and
6.3 due to unfair comparison. In particular, the comparison with PANDA [185] is
not fair because it uses a WideResNet50 × 2 for MVTec and ResNet152 for CIFAR,
both being much larger backbones than our ResNet18. Regarding CSI [214], it has
much slower inference (because of the 40× data augmentation of test images) and
more complex training that needs a coreset and large batch size of 512 for pre-training,
which challenges its use for problems with small training sets or high-resolution images.
For both CSI and DROC [208], their gains are mostly from the SSL pre-training. To
show that point for CSI, we use our training approach to fine-tune a pre-trained CSI
model and obtain 94.6% AUC on CIFAR10, which is higher than CSI (94.3% AUC).
Also, for the vanilla SSL pre-training reported in DROC paper, their performance
reduces from 92.5% to 89.0% AUC on CIFAR10, and from 86.5% to 80.2% AUC on
MVTec. Note that all above results are collected from their published papers unless
stated otherwise.

Furthermore, on MVTec, our approach obtains (93.4% AUC), which is much better
than CSI (63.6% AUC from Tab.2 of [186]) and PANDA (86.5%). For anomaly locali-
sation on MVTec, our 93% AUC is better than DROC (90%) and worse than PANDA
(96%). On high-resolution image datasets (e.g., Hyper-Kvasir), our approach (93.7%
AUC) is better than CSI (trained by us) that reaches 91.6% AUC. Other important
results shown by our paper, but missed by CSI, PANDA and DROC, are the ones
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with small training sets and contaminated training sets, which are new and impor-
tant benchmarks for real-world industrial applications and early detection of medical
diseases.

6.6 Conclusion

In this paper, we presented a new OCC model, called interpolated Gaussian descriptor
(IGD), to perform unsupervised anomaly detection and segmentation. IGD learns a
one-class Gaussian anomaly classifier trained with adversarially interpolated training
samples to enable an effective normality description based on representative normal
samples rather than fringe or anomalous samples. The optimisation of IGD is formu-
lated as an EM algorithm, which we show to be theoretically correct and to converge
to a stationary solution under certain conditions. To our knowledge, IGD is the first
method that is able to achieve the best performance across diverse application datasets,
including MNIST, CIFAR10, Fashion MNIST, MVTec AD, and two large scale medical
datasets, in terms of anomaly detection and localisation. We also show that IGD is
more robust than DSVDD and an image-reconstruction contrained DSVDD in prob-
lems with small or contaminated training sets. We plan to study the use of Gaussian
anomaly classifier in the pixel-wise localisation of anomalies and to investigate new
self-supervised learning approaches specifically designed for anomaly detection.
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Chapter 7

Unsupervised Anomaly Detection
in Medical Images with a
Memory-augmented Multi-level
Cross-attention Masked
Autoencoder

Abstract

Unsupervised anomaly detection (UAD) aims to find anomalous images by optimising a
detector using a training set that contains only normal images. UAD approaches can be
based on reconstruction methods, self-supervised approaches, and Imagenet pre-trained
models. Reconstruction methods, which detect anomalies from image reconstruction
errors, are advantageous because they do not rely on the design of problem-specific
pretext tasks needed by self-supervised approaches, and on the unreliable translation
of models pre-trained from non-medical datasets. However, reconstruction methods
may fail because they can have low reconstruction errors even for anomalous images.
In this chapter, we introduce a new reconstruction-based UAD approach that ad-
dresses this low-reconstruction error issue for anomalous images. Our UAD approach,
the memory-augmented multi-level cross-attentional masked autoencoder (MemMC-
MAE), is a transformer-based approach, consisting of a novel memory-augmented self-
attention operator for the encoder and a new multi-level cross-attention operator for
the decoder. MemMC-MAE masks large parts of the input image during its reconstruc-
tion, reducing the risk that it will produce low reconstruction errors because anomalies
are likely to be masked and cannot be reconstructed. However, when the anomaly
is not masked, then the normal patterns stored in the encoder’s memory combined
with the decoder’s multi-level cross-attention will constrain the accurate reconstruc-
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tion of the anomaly. We show that our method achieves SOTA anomaly detection and
localisation on colonoscopy and Covid-19 Chest X-ray datasets.

7.1 Introduction

Detecting and localising anomalous findings in medical images (e.g., polyps, malignant
tissues, etc.) are of vital importance [9, 67, 70, 131, 134, 135, 146, 216? ]. Systems
that can tackle these tasks are often formulated with a classifier trained with large-
scale datasets annotated by experts. Obtaining such annotation is often challenging
in real-world clinical datasets because the amount of normal images from healthy pa-
tients tend to overwhelm the amount of anomalous images. Hence, to alleviate the
challenges of collecting anomalous images and learning from class-imbalanced training
sets, the field has developed unsupervised anomaly detection (UAD) models [33, 221]
that are trained exclusively with normal images. Such UAD strategy benefits from
the straightforward acquisition of training sets containing only normal images and the
potential generalisability to unseen anomalies without collecting all possible anomalous
sub-classes.

Current UAD methods learn a one-class classifier (OCC) using only normal/healthy
training data, and detect anomalous/disease samples using the learned OCC [33, 56,
120, 139, 167, 199, 204, 219, 229]. UAD methods can be divided into: 1) reconstruction
methods, 2) self-supervised approaches, and 3) Imagenet pre-trained models. Recon-
struction methods [33, 56, 139, 199, 229] are trained to accurately reconstruct normal
images, exploring the assumption that the lack of anomalous images in the training
set will prevent a low error reconstruction of an test image that contains an anomaly.
However, this assumption is not met in general because reconstruction methods are in-
deed able to successfully reconstruct anomalous images, particularly when the anomaly
is subtle. Self-supervised approaches [208, 221? ] train models using contrastive learn-
ing, where pretext tasks must be designed to emulate normal and anomalous image
changes for each new anomaly detection problem. Imagenet pre-trained models [185? ]
produce features to be used by OCC, but the translation of these models into medical
image problems is not straightforward. Reconstruction methods are able to circumvent
the aforementioned challenges posed by self-supervised and Imagenet pre-trained UAD
methods, and they can be trained with a relatively small amount of normal samples.
However, their viability depends on an acceptable mitigation of the potentially low
reconstruction error of anomalous test images.

In this chapter, we introduce a new UAD reconstruction method, the Memory-
augmented Multi-level Cross-attention Masked Autoencoder (MemMC-MAE), designed
to address the low reconstruction error of anomalous test images. MemMC-MAE is a
transformer-based approach based on masked autoencoder (MAE) [89] with of a novel
memory-augmented self-attention encoder and a new multi-level cross-attention de-
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coder. MemMC-MAE masks large parts of the input image during its reconstruction,
and given that the likelihood of masking out an anomalous region is large, then it is
unlikely that it will accurately reconstruct that anomalous region. However, there is
still the risk that the anomaly is not masked out, so in this case, the normal patterns
stored in the encoder’s memory combined with the correlation of multiple normal pat-
terns in the image, utilised by the decoder’s multi-level cross-attention can explicitly
constrain the accurate anomaly reconstruction to produce high reconstruction error
(high anomaly score). The encoder’s memory is also designed to address the MAE’s
long-range ’forgetting’ issue [151], which can be harmful for UAD due to the poor re-
construction based on forgotten normality patterns and ’unwanted’ generalisability to
subtle anomalies during testing. Our contributions are summarised as:

• To the best of our knowledge, this is the first UAD method based on MAE [89];

• A new memory-augmented self-attention operator for our MAE transformer en-
coder to explicitly encode and memorise the normality patterns; and

• A novel decoder architecture that uses the learned multi-level memory-augmented
encoder information as prior features to a cross-attention operator.

Our method achieves better anomaly detection and localisation accuracy than most
competing approaches on the UAD benchmarks using the public Hyper-Kvasir colonoscopy
dataset [21] and Covid-X Chest X-ray (CXR) dataset [235].

7.2 Method

7.2.1 Memory-augmented Multi-level Cross-attention Masked
Autoencoder (MemMC-MAE)

Our MemMC-MAE, depicted in Fig. 7.1, is based on the masked autoencoder (MAE) [89]
that was recently developed for the pre-training of models to be used in downstream
computer vision tasks. MAE has an asymmetric architecture, with a encoder that
takes a small subset of the input image patches and a smaller/lighter decoder that
reconstructs the original image based on the input tokens from visible patches and
dummy tokens from masked patches.

Our MemMC-MAE is trained with a normal image training set, denoted by D =
{xi}|D|

i=1, where x ∈ X ⊂ RH×W×R (H: height, W : width, R: number of colour
channels). Our method first divides the input image x into non-overlapping patches

P = {pi}|P|
i=1, where p ∈ RĤ×Ŵ×R, with Ĥ << H and Ŵ << W . We then randomly

mask out 75% of the |P| patches, and the remaining visible patches P(v) = {pv}|P
(v)|

v=1

(with |P(v)| = 0.25 × |P|) are used by the MemMC-MAE to encode the normality
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Figure 7.1: Top: overall MemMC-MAE framework. Yellow tokens indicate the un-
masked visible patches, and blue tokens indicate the masked patches. Our memory-
augmented transformer encoder only accepts the visible patches/tokens as input, and
its output tokens are combined with dummy masked patches/tokens for the miss-
ing pixel reconstruction using our proposed multi-level cross-attentional transformer
decoder. Bottom-left: proposed memory-augmented self-attention operator for the
transformer encoder, and bottom-right: proposed multi-level cross-attention opera-
tor for the transformer decoder.

patterns of those patches, and all |P(v)| encoded visible patches and |P|−|P(v)| dummy
masked patches are used as the input of a new multi-level cross-attention decoder to
reconstruct the image.

The training of MemMC-MAE is based on the minimisation of the mean squared
error (MSE) loss between the input and reconstructed images at the pixels of the
masked patches of the training images. The approach is evaluated on a testing set
T = {(x, y,m)i}|T |

i=1, where y ∈ Y = {normal, anomalous}, and m ∈ M ⊂ {0, 1}H×W×1

denotes the segmentation mask of the lesion in the image x. When testing, we also
mask 75% of the image and the patch-wise reconstruction error indicates anomaly lo-
calisation, and the mean reconstruction error of all patches is used to detect image-wise
anomaly. Below we provide details on the major contributions of MemMC-MAE, which
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are the memory-augmented transformer encoder that stores the long-term normality
patterns of the training samples, and the new multi-level cross-attentional transformer
decoder to leverage the correlation of features from the encoder to reconstruct the
missing normal pixels.

Memory-augmented Transformer Encoder (Fig. 7.1 - bottom left)

We modify the encoder from the transformer with our a novel memory-augmented
self-attention, by extending the keys and values of the self-attention operation with
learnable memory matrices that store normality patterns, which are updated via back-
propagation. To this end, the proposed self-attention (SA) module for layer l ∈
{0, ..., L− 1} is defined as:

X(l+1) = fSA
(
W

(l)
Q X(l), [W

(l)
KX(l),M

(l)
K ], [W

(l)
V X(l),M

(l)
V ]
)
, (7.1)

where X(0) is the encoder input matrix containing |P(v)| patch tokens formed from
the visible image patches transformed through the linear projection W(0), with |P(v)|
being the number of visible tokens/patches, X(l),X(l+1) are the input and output of

layer l, W
(l)
Q ,W

(l)
K ,W

(l)
V are the linear projections of the encoder’s layer l for query,

key and value of the self-attention operator, respectively, and M
(l)
K ,M

(l)
V are the layer

l learnable memory matrices that are concatenated with WKX
(l) and WVX

(l) using
the operator [., .]. The self-attention operator fSA(.) follows the standard ViT [53]
and transformer [227], which computes a weighted sum of value vectors according to
the cosine similarity distribution between query and key. Such memory-augmented
self-attention aims to store normal patterns that are not encoded in the feature X(l),
forcing the decoder to reconstruct anomalous input patches into normal output patches
during testing.

Multi-level Cross-Attention Transformer Decoder (Fig. 7.1 - bottom right).

Our transformer decoder computes the cross-attention operation using the outputs
from all encoder layers and the decoder layer output from the self-attention operator
(see Fig. 7.1 - Bottom right). More formally, the layer d ∈ {0, ..., D−1} of our decoder
outputs

Y(d+1) =
L∑
l=1

α(d,l) × fSA
(
fSA(Y(d),Y(d),Y(d)),W

(d)
K X(l),W

(d)
V X(l)

)
, (7.2)

where Y(d) and Y(d+1) represent the input and output of the decoder layer d containing
|P| tokens (i.e., |P(v)| tokens from the visible patches of the encoder and |P| − |P(v)|
dummy tokens from the masked patches), X(l) denotes the output from encoder layer
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Methods Publication Covid-X (AUC) Hyper-Kvasir (AUC)

DAE [60] ICANN’11 0.557 0.705

OCGAN [174] CVPR’18 0.612 0.813

F-anoGAN [199] IPMI’17 0.669 0.907

ADGAN [140] ISBI’19 0.659 0.913

MS-SSIM [33] AAAI’22 0.634 0.917

PANDA [185] CVPR’21 0.629 0.937

PaDiM [? ] ICPR’21 0.614 0.923

IGD [33] AAAI’22 0.699 0.939

CCD+IGD* [221] MICCAI’21 0.746 0.972

Ours 0.917 0.972

Table 7.1: Anomaly detection AUC test results on Covid-X and Hyper-Kvasir.
CCD+IGD* [221] requires at least 2×longer training time than other approaches in
the table because of a two-stage self-supervised pre-training and fine-tuning.

l−1, and W
(d)
K ,W

(d)
V are the linear projections of the layer d of the decoder for the key

and value of the self-attention operator, respectively. Note that all |P| input tokens for
the decoder are attached with positional embeddings. The multi-level cross-attention
results in (7.2) are fused together with a weighted sum operation using the weight α(l,d),
which is computed based on a linear projection layer and sigmoid function to control
the weight of different layers’ cross-attention results, as in

α(d,l) = σ
(
W(d,l)

α

([
fSA(Y(d),Y(d),Y(d)),Y(d+1)

]))
, (7.3)

where σ(.) is the sigmoid function, and W
(d,l)
α denotes a learnable weight matrix. Such

fusion mechanism enforces the correlation of multiple normal patterns in the image
present at different levels of encoding information to contribute at different decoding
layers by adjusting their relative importance using the self-attention output from fSA(.)
and cross-attention output Y(d+1).

7.2.2 Anomaly Detection and Segmentation

We compute the anomaly score [33] with multi-scale structural similarity (MS-SSIM) [241].
The anomaly scores are pooled from 10 different random seeds for masking image
patches with a fixed 75% masking ratio, which enables a more robust anomaly detec-
tion and localisation. The anomaly localisation mask is obtained by computing the
mean MS-SSIM scores for all patches, and the anomaly detection relies on the mean
MS-SSIM scores from the patches [33].
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7.3 Experiments and Results

Datasets and Evaluation Measures

Two disease screening datasets are used in our experiments. We test anomaly detection
on the CXR images of the Covid-X dataset [235], and both anomaly detection and lo-
calisation on the colonoscopy images of the Hyper-Kvasir dataset [21]. Covid-X [235]
has a training set with 1,670 Covid-19 positive and 13,794 Covid-19 negative CXR im-
ages, but we only use the 13,794 Covid-19 negative CXR images for training. The test
set contains 400 CXR images, consisting of 200 positive and 200 negative images, each
image with size 299 × 299 pixels. Hyper-Kvasir is a large-scale public gastrointestinal
dataset. The images were collected from the gastroscopy and colonoscopy procedures
from Baerum Hospital in Norway, and were annotated by experienced medical prac-
titioners. The dataset contains 110,079 images from unhealthy and healthy patients,
out of which, 10,662 are labelled. Following [221], 2,100 normal images from ‘cecum’,
‘ileum’ and ‘bbps-2-3’ are selected, from which we use 1,600 for training and 500 for
testing. The testing set also contains 1,000 anomalous images with their segmentation
masks. Detection is assessed with area under the ROC curve (AUC) [33, 56, 60, 174],
and localisation is evaluated with intersection over union (IoU) [33, 221, 229? ].

Implementation Details

For the transformer, we follow ViT-B [53, 89] for designing the encoder and decoder,
consisting of stacks of transformer blocks. Inspired by U-Net [269] for medical segmen-
tation, we add residual connections to transfer information from earlier to later blocks
for both the encoder and decoder. Each encoder block contains a memory-augmented
self-attention block and an MLP block with LayerNorm (LN). Each decoder block con-
tains a multi-level cross-attention block and an MLP block with LayerNorm (LN). We
also adopt a linear projection layer after the encoder to match the different width be-
tween encoder and decoder [89]. We add positional embeddings (with the sine-cosine
version) to both the encoder and decoder input tokens. RandomResizedCrop is used
for data augmentation during training. Our method is trained for 2000 epochs in an
end-to-end manner using the Adam optimiser [107] with a weight decay of 0.05 and a
batch size of 256. The learning rate is set to 1.5e-3. At the beginning, we warm up
the training process for 5 epochs. The method is implemented in PyTorch [172] and
run on an NVIDIA 3090 GPU. The overall training times is around 22 hours, and the
mean inference time takes 0.21s per image.

Evaluation on Anomaly Detection on Covid-X and Hyper-Kvasir

We compare our method with nine competing UAD approaches: DAE [60], OC-
GAN [174], f-anogan [199], ADGAN [140], MS-SSIM autoencoder [33], PANDA [185],
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GTPredImage Image GTPred

Figure 7.2: Segmentation results of our proposed method on Hyper-Kvasir [21], with
our predictions (Pred) and ground truth annotations (GT).

GTReconMasked Masked GTRecon Masked GTRecon

Figure 7.3: Reconstruction of testing images from Covid-X (Top) and Hyper-Kvasir
(Bottom). For each triplet, we show the masked image (left), our MemMC-MAE recon-
struction (middle), and the ground-truth (right). Normal testing images are marked
with green boxes, and anomalous ones are marked with red boxes.

PaDiM [? ], CCD [221] and IGD [33]. We apply the same experimental setup (i.e.,
image pre-processing, training strategy, evaluation methods) to these methods above
as the one for our approach for fair comparison. The quantitative comparison re-
sults for anomaly detection are shown in Table 7.1 for both Covid-X and Hyper-Kvasir
benchmarks. Our MemMC-MAE achieves the best AUC results on Covid-X and Hyper-
Kvasir datasets with 91.7% and 97.2%, respectively. On Covid-X, our result outper-
forms all competing methods by a large margin with an improvement of 17.1% over
the second best approach. For Hyper-Kvasir, our result is on par with the best result
in the field produced by CCD+IGD [221], which has a training time 2× longer than
our approach.

Evaluation on Anomaly Localisation on Hyper-Kvasir

We compare our anomaly localisation results on Table 7.3 with four recently proposed
UAD baselines: IGD [33], PaDiM [? ], CCD [221] and CAVGA-Ru [229]. The results
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MAE Mem-Enc MC-Dec AUC - Covid

✓ 0.799

✓ ✓ 0.862

✓ ✓ ✓ 0.917

Table 7.2: Ablation study on Covid-X
of the encoder’s memory-augmented operator
(Mem-Enc) and the decoder’s multi-level cross-
attention (MC-Dec).

Methods Localisation - IoU

IGD [33] 0.276

PaDiM [? ] 0.341

CAVGA-Ru [229] 0.349

CCD + IGD [221] 0.372

Ours 0.419

Table 7.3: Anomaly localisation: Mean IoU
test results on Hyper-Kvasir on 5 groups of 100
images.

of these methods on Table 7.3 are from [221]. Following [221], we randomly sample five
groups of 100 anomalous images from the test set and compute the mean segmentation
IoU. The proposed MemMC-MAE surpasses IGD, PaDiM, CAVGA-Ru and CCD by
a minimum of 4.7% and a maximum of 14.3% IoU, illustrating the effectiveness of our
model in localising anomalous tissues.

Visualisation of predicted segmentation.

The visualisation of polyp segmentation results of MemMC-MAE on Hyper-Kvasir [21]
is shown in Fig. 7.2. Notice that our model can accurately segment colon polyps of
various sizes and shapes.

Visualisation of Reconstructed Images

Figure 9.3 shows the reconstructions produced by MemMC-MAE on Covid-X (Top)
and Hyper-Kvasir (Bottom) testing images. Notice that our method can effectively re-
construct the anomalous images with polyps/covid as normal images by automatically
removing the polyps or blurring the anomalous regions, leading to larger reconstruc-
tion errors for those anomalies. The normal images are accurately reconstructed with
smaller reconstruction errors than the anomalous images.

Ablation Study

Tab. 11.5 shows the contribution of each component of our proposed method on Covid-
X testing set. The baseline MAE [89] achieves 79.9% AUC. Our method obtains a sig-
nificant performance gain by adding the memory-augmented self-attention operator to
the transformer encoder (Mem-Enc). Adding the proposed multi-level cross-attention
operator into the decoder (MC-Dec) further boosts the performance by about 5% AUC.
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7.4 Conclusion

We proposed a new UAD reconstruction method, called MemMC-MAE, for anomaly
detection and localisation in medical images, which to the best of our knowledge, is
the first UAD method based on MAE. MemMC-MAE introduced a novel memory-
augmented self-attention operator for the MAE encoder and a new multi-level cross-
attention for the MAE decoder to address the large reconstruction error of anoma-
lous images that plague UAD reconstruction methods. The resulting anomaly detec-
tor showed SOTA anomaly detection and localisation accuracy on two public medical
datasets. Despite the remarkable performance, the results can potentially improve if we
use MemMC-MAE as a pre-training approach for other UAD methods [33, 221, 229?
], which we plan to explore in the future.
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Chapter 8

Weakly-supervised Video Anomaly
Detection with Robust Temporal
Feature Magnitude Learning

Abstract

Anomaly detection with weakly supervised video-level labels is typically formulated
as a multiple instance learning (MIL) problem, in which we aim to identify snippets
containing abnormal events, with each video represented as a bag of video snippets. Al-
though current methods show effective detection performance, their recognition of the
positive instances, i.e., rare abnormal snippets in the abnormal videos, is largely biased
by the dominant negative instances, especially when the abnormal events are subtle
anomalies that exhibit only small differences compared with normal events. This issue
is exacerbated in many methods that ignore important video temporal dependencies.
To address this issue, we introduce a novel and theoretically sound method, named
Robust Temporal Feature Magnitude learning (RTFM), which trains a feature mag-
nitude learning function to effectively recognise the positive instances, substantially
improving the robustness of the MIL approach to the negative instances from abnor-
mal videos. RTFM also adapts dilated convolutions and self-attention mechanisms to
capture long- and short-range temporal dependencies to learn the feature magnitude
more faithfully. Extensive experiments show that the RTFM-enabled MIL model (i)
outperforms several state-of-the-art methods by a large margin on four benchmark
data sets (ShanghaiTech, UCF-Crime, XD-Violence and UCSD-Peds) and (ii) achieves
significantly improved subtle anomaly discriminability and sample efficiency.
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Figure 8.1: RTFM trains a feature magnitude learning function to improve the robust-
ness of MIL approaches to normal snippets from abnormal videos, and detect abnormal
snippets more effectively. Left: temporal feature magnitudes of abnormal and normal
snippets (∥x+∥ and ∥x−∥), from abnormal and normal videos (X+ and X−). Assum-
ing that µ = 3 denotes the number of abnormal snippets in the anomaly video, we
can maximise the ∆score(X+,X−), which measures the difference between the scores
of abnormal and normal videos, by selecting the top k ≤ µ snippets with the largest
temporal feature magnitude (the scores are computed with the mean of magnitudes of
the top k snippets). Right: the ∆score(X+,X−) increases with k ∈ [1, µ] and then
decreases for k > µ, showing evidence that our proposed RTFM-enabled MIL model
provides a better separation between abnormal and normal videos when k ≈ µ, even
if there are a few normal snippets with large feature magnitudes.

8.1 Introduction

Video anomaly detection has been intensively studied because of its potential to be used
in autonomous surveillance systems [87, 211, 245, 266]. The goal of video anomaly
detection is to identify the time window when an anomalous event happened – in
the context of surveillance, examples of anomaly are bullying, shoplifting, violence,
etc. Although one-class classifiers (OCCs, also called unsupervised anomaly detec-
tion) trained exclusively with normal videos have been explored in this context [65, 87,
97, 145, 183, 184, 264], the best performing approaches explore a weakly-supervised
setup using training samples with video-level label annotations of normal or abnor-
mal [211, 245, 266]. This weakly-supervised setup targets a better anomaly classifica-
tion accuracy at the expense of a relatively small human annotation effort, compared
with OCC approaches.

One of the major challenges of weakly supervised anomaly detection is how to
identify anomalous snippets from a whole video labelled as abnormal. This is due to
two reasons, namely: 1) the majority of snippets from an abnormal video consist of
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normal events, which can overwhelm the training process and challenge the fitting of
the few abnormal snippets; and 2) abnormal snippets may not be sufficiently different
from normal ones, making a clear separation between normal and abnormal snippets
challenging. Anomaly detection trained with multiple-instance learning (MIL) ap-
proaches [211, 245, 262, 270] mitigates the issues above by balancing the training set
with the same number of abnormal and normal snippets, where normal snippets are
randomly selected from the normal videos and abnormal snippets are the ones with
the top anomaly scores from abnormal videos. Although partly addressing the issues
above, MIL introduces four problems: 1) the top anomaly score in an abnormal video
may not be from an abnormal snippet; 2) normal snippets randomly selected from
normal videos may be relatively easy to fit, which challenges training convergence; 3)
if the video has more than one abnormal snippet, we miss the chance of having a more
effective training process containing more abnormal snippets per video; and 4) the use
of classification score provides a weak training signal that does not necessarily enable a
good separation between normal and abnormal snippets. These issues are exacerbated
even more in methods that ignore important temporal dependencies [65, 145, 245, 266].

To address the MIL problems above, we propose a novel method, named Robust
Temporal Feature Magnitude (RTFM) learning. In RTFM, we rely on the tempo-
ral feature magnitude of video snippets, where features with low magnitude represent
normal (i.e., negative) snippets and high magnitude features denote abnormal (i.e.,
positive)) snippets. RTFM is theoretically motivated by the top-k instance MIL [124]
that trains a classifier using k instances with top classification scores from the abnormal
and normal videos, but in our formulation, we assume that the mean feature magni-
tude of abnormal snippets is larger than that of normal snippets, instead of assuming
separability between the classification scores of abnormal and normal snippets [124].
RTFM solves the MIL issues above, as follows: 1) the probability of selecting abnormal
snippets from abnormal videos increases; 2) the hard negative normal snippets selected
from the normal videos will be harder to fit, improving training convergence; 3) it is
possible to include more abnormal snippets per abnormal video; and 4) using feature
magnitude to recognise positive instances is advantageous compared to MIL methods
that use classification scores [124, 211], because it enables a stronger learning signal,
particularly for the abnormal snippets that have a magnitude that can increase for the
whole training process, and the feature magnitude learning can be jointly optimised
with the MIL anomaly classification to enforce large margins between abnormal and
normal snippets at both the feature representation space and the anomaly classifica-
tion output space. Fig. 11.1 motivates RTFM, showing that the selection of the top-k
features (based on their magnitude) can provide a better separation between abnor-
mal and normal videos, when we have more than one abnormal snippet per abnormal
video and the mean snippet feature magnitude of abnormal videos is larger than that
of normal videos.
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In practice, RTFM enforces large margins between the top k snippet features with
largest magnitudes from abnormal and normal videos, which has theoretical guarantees
to maximally separate abnormal and normal video representations. These top k snippet
features from normal and abnormal videos are then selected to train a snippet classifier.
To seamlessly incorporate long and short-range temporal dependencies within each
video, we combine the learning of long and short-range temporal dependencies with
a pyramid of dilated convolutions (PDC) [254] and a temporal self-attention module
(TSA) [239]. We validate our RTFM on four anomaly detection benchmark data sets,
namely ShanghaiTech [65], UCF-Crime [211], XD-Violence [245] and UCSD-Peds [123].
We show that our method outperforms the current SOTAs by a large margin on all
benchmarks using different pre-trained features (i.e., C3D and I3D). We also show
that our method achieves substantially better sample efficiency and subtle anomaly
discriminability than popular MIL methods.

8.2 Related Work

Unsupervised Anomaly Detection. Traditional anomaly detection methods as-
sume the availability of normal training data only and address the problem with one-
class classification using handcrafted features [7, 152, 234, 263]. With the advent of
deep learning, more recent approaches use the features from pre-trained deep neural
networks [72, 101, 169, 205, 265]. Others apply constraints on the latent space of
normal manifold to learn compact normality representations [2, 10, 12, 14, 34, 36,
45, 77, 141, 150, 153, 170, 175, 192, 196, 212, 221, 233, 268]. Alternatively, some
approaches depend on data reconstruction using generative models to learn the rep-
resentations of normal samples by (adversarially) minimising the reconstruction er-
ror [22, 56, 65, 100, 100, 154, 157, 159, 170, 187, 194, 196, 228, 249, 273]. These ap-
proaches assume that unseen anomalous videos/images often cannot be reconstructed
well and consider samples of high reconstruction errors to be anomalies. However, due
to the lack of prior knowledge of abnormality, these approaches can overfit the training
data and fail to distinguish abnormal from normal events. Readers are referred to [165]
for a comprehensive review of those anomaly detection approaches.

Weakly Supervised Anomaly Detection. Leveraging some labelled abnor-
mal samples has shown substantially improved performance over the unsupervised
approaches [137, 164, 167, 193, 211, 216, 245, 257, 258, 259]. However, large-scale
frame-level label annotation is too expensive to obtain. Hence, current SOTA video
anomaly detection approaches rely on weakly supervised training that uses cheaper
video-level annotations. Sultani et al. [211] proposed the use of video-level labels
and introduced the large-scale weakly-supervised video anomaly detection data set,
UCF-Crime. Since then, this direction has attracted the attention of the research
community [232, 245, 262].
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Weakly-supervised video anomaly detection methods are mainly based on the MIL
framework [211]. However, most MIL-based methods [211, 262, 270] fail to leverage ab-
normal video labels as they can be affected by the label noise in the positive bag caused
by a normal snippet mistakenly selected as the top abnormal event in an anomaly video.
To deal with this problem, Zhong et al. [266] reformulated this problem as a binary
classification under noisy label problem and used a graph convolution neural (GCN)
network to clear the label noise. Although this paper shows more accurate results
than [211], the training of GCN and MIL is computationally costly, and it can lead
to unconstrained latent space (i.e., normal and abnormal features can lie at any place
of the feature space) that can cause unstable performance. By contrast, our method
has trivial computational overheads compared to the original MIL formulation. More-
over, our method unifies the representation learning and anomaly score learning by an
ℓ2-norm-based temporal feature ranking loss, enabling better separation between nor-
mal and abnormal feature representations, improving the exploration of weak labels
compared to previous MIL methods [211, 231, 245, 262, 266, 270].

Temporal Dependency. Temporal Dependency has been explored in [65, 112,
137, 145, 245, 250, 266]. In anomaly detection, traditional methods [112, 250] convert
consecutive frames into handcrafted motion trajectories to capture the local consistency
between neighbouring frames. Diverse temporal dependency modelling methods have
been used in deep anomaly detection approaches, such as stacked RNN [145], temporal
consistency in future frame prediction [65], and convolution LSTM [137]. However,
these methods capture short-range fixed-order temporal correlations only with single
temporal scale, ignoring the long-range dependency from all possible temporal loca-
tions and the events with varying temporal length. GCN-based methods are explored
in [245, 266] to capture the long-range dependency from snippets features, but they are
inefficient and hard to train. By contrast, our proposed module combines PDC [254]
and TSA [239] on the temporal dimension to seamlessly and efficiently incorporate both
the long and short-range temporal dependencies into our temporal feature ranking loss.

8.3 The Proposed Method: RTFM

Our proposed robust temporal feature magnitude (RTFM) approach aims to differen-
tiate between abnormal and normal snippets using weakly labelled videos for training.
Given a set of weakly-labelled training videos D = {(Fi, yi)}|D|

i=1, where F ∈ F ⊂ RT×D

are pre-computed features (e.g., I3D [24] or C3D [222]) of dimension D from the T
video snippets, and y ∈ Y = {0, 1} denotes the video-level annotation (yi = 0 if Fi

is a normal video and yi = 1 otherwise). The model used by RTFM is denoted by
rθ,ϕ(F) = fϕ(sθ(F)) and returns a T -dimensional feature [0, 1]T representing the clas-
sification of the T video snippets into abnormal or normal, with the parameters θ, ϕ
defined below. The training of this model comprises a joint optimisation of an end-
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to-end multi-scale temporal feature learning, and feature magnitude learning and an
RTFM-enabled MIL classifier training, with the loss

min
θ,ϕ

|D|∑
i,j=1

ℓs(sθ(Fi), (sθ(Fj)), yi, yj) + ℓf (fϕ(sθ(Fi)), yi), (8.1)

where sθ : F → X is the temporal feature extractor (with X ⊂ RT×D), fϕ : X → [0, 1]T

is the snippet classifier, ℓs(.) denotes a loss function that maximises the separability
between the top-k snippet features from normal and abnormal videos, and ℓf (.) is a
loss function to train the snippet classifier fϕ(.) also using the top-k snippet features
from normal and abnormal videos. Next, we discuss the theoretical motivation for our
proposed RTFM, followed by a detailed description of the approach.

8.3.1 Theoretical Motivation of RTFM

Top-k MIL in [124] extends MIL to an environment where positive bags contain a
minimum number of positive samples and negative bags also contain positive samples,
but to a lesser extent, and it assumes that a classifier can separate positive and neg-
ative samples. Our problem is different because negative bags do not contain positive
samples, and we do not make the classification separability assumption. Following the
nomenclature introduced above, a temporal feature extracted from a video is denoted
by X = sθ(F) in (9.1), where snippet features are represented by the rows xt of X. An
abnormal snippet is denoted by x+ ∼ P+

x (x), and a normal snippet, x− ∼ P−
x (x). An

abnormal video X+ contains µ snippets drawn from P+
x (x) and (T − µ) drawn from

P−
x (x), and a normal video X− has all T snippets sampled from P−

x (x).
To learn a function that can classify videos and snippets as normal or abnormal, we

define a function that classifies a snippet using its magnitude (i.e., we use ℓ2 norm to
compute the feature magnitude), where instead of assuming classification separability
between normal and abnormal snippets (as assumed in [124]), we make a milder as-
sumption that E[∥x+∥2] ≥ E[∥x−∥2]. This means that by learning the snippet feature
from sθ(F), such that normal ones have smaller feature magnitude than abnormal ones,
we can satisfy this assumption. To enable such learning, we rely on an optimisation
based on the mean feature magnitude of the top k snippets from a video [124], defined
by

gθ,k(X) = max
Ωk(X)⊆{xt}Tt=1

1

k

∑
xt∈Ωk(X)

∥xt∥2, (8.2)

where gθ,k(.) is parameterised by θ to indicate its dependency on sθ(.) to produce xt,
Ωk(X) contains a subset of k snippets from {xt}Tt=1 and |Ωk(X)| = k. The separability
between abnormal and normal videos is denoted by

dθ,k(X
+,X−) = gθ,k(X

+) − gθ,k(X
−). (8.3)
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For the theorem below, we define the probability that a snippet from Ωk(X
+) is abnor-

mal with p+k (X+) = min(µ,k)
k+ϵ

, with ϵ > 0 and from normal Ωk(X
−), p+k (X−) = 0. This

definition means that it is likely to find an abnormal snippet within the top k snippets
in Ωk(X

+), as long as k ≤ µ.

Theorem 8.3.1 (Expected Separability Between Abnormal and Normal Videos). As-
suming that E[∥x+∥2] ≥ E[∥x−∥2], where X+ has µ abnormal samples and (T − µ)
normal samples, where µ ∈ [1, T ], and X− has T normal samples. Let Dθ,k(.) be the
random variable from which the separability scores dθ,k(.) of (8.3) are drawn [124].

1. If 0 < k < µ, then

0 ≤ E[Dθ,k(X
+,X−)] ≤ E[Dθ,k+1(X

+,X−)].

2. For a finite µ, then
lim
k→∞

E[Dθ,k(X
+,X−)] = 0.

Proof.

E[Dθ,k(X
+,X−)] = E[gθ,k(X

+)] − E[gθ,k(X
−)]

= p+k (X+)E[∥x+∥2] + p−k (X+)E[∥x−∥2] − E[∥x−∥2]
(8.4)

1. Trivial given that E[∥x+∥2] ≥ E[∥x−∥2] and that p+k+1(X
+) > p+k (X+) for 0 <

k < µ

2. Trivial given that as µ is finite, limk→∞ p+k (X+) = 0.

Therefore, the first part of this theorem means that as we include more samples
in the top k snippets of the abnormal video, the separability between abnormal and
normal video tends to increase (even if it includes a few normal samples) as long as
k ≤ µ. The second part of the theorem means that as we include more than µ top
instances, the abnormal and normal video scores become indistinguishable because
of the overwhelming number of negative samples both in the positive and negative
bags. Both points are shown in Fig. 11.1, where score(X)=gθ,k(X), ∆score(X+,X−)
= dθ,k(X

+,X−), and ϵ = 0.4 to compute p+k (X+). This theorem suggests that by
maximising the separability of the top-k temporal feature snippets from abnormal and
normal videos (for k ≤ µ), we can facilitate the classification of anomaly videos and
snippets. It also suggests that the use of the top-k features to train the snippet classifier
allows for a more effective training given that the majority of the top-k samples in the
abnormal video will be abnormal and that we will have a balanced training using the
top-k hardest normal snippets. The final consideration is that because we use just the
top-k samples per video, our method is efficiently optimised with a relatively small
amount of training samples.
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Figure 8.2: Our proposed RTFM receives a T ×D feature matrix F extracted from a
video containing T snippets. Then, MTN captures the long and short-range temporal
dependencies between snippet features to produce X = sθ(F). Next, we maximise the
separability between abnormal and normal video features and train a snippet classifier
using the top-k largest magnitude feature snippets from abnormal and normal videos.

8.3.2 Multi-scale Temporal Feature Learning

Inspired by the attention techniques used in video understanding [132, 239], our pro-
posed multi-scale temporal network (MTN) captures the multi-resolution local tem-
poral dependencies and the global temporal dependencies between video snippets (as
shown in Fig. 8.3). MTN uses a pyramid of dilated convolutions over the time domain
to learn multi-scale representations for video snippets. Dilated convolution is usually
applied in the spatial domain with the goal of expanding the receptive field without
losing resolution [254]. Here we propose to use dilated convolutions over the tempo-
ral dimension as it is important to capture the multi-scale temporal dependencies of
neighbouring video snippets for anomaly detection.

MTN learns the multi-scale temporal features from the pre-computed fetures F =
[fd]

D
d=1. Then given the feature fd ∈ RT , the 1-D dilated convolution operation with

kernel W
(l)
k,d ∈ RW with k ∈ {1, ..., D/4}, d ∈ {1, ..., D}, l ∈ {PDC1,PDC2,PDC3},

and W denoting the filter size, is defined by

f
(l)
k =

D∑
d=1

W
(l)
k,d ∗

(l) fd, (8.5)

where ∗(l) represents the dilated convolution operator indexed by l, f
(l)
k ∈ RT represents
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Figure 8.3: Our proposed MTN consists of two modules. The module on the left uses
the pyramid dilated convolutions to capture the local consecutive snippets dependency
over different temporal scales. The module on the right relies on a self-attention net-
work to compute the global temporal correlations. The features from the two modules
are concatenated to produce the MTN output.

the output features after applying the dilated convolution over the temporal dimension.
The dilation factors for {PDC1,PDC2,PDC3} are {1, 2, 4}, respectively.

The global temporal dependencies between video snippets is achieved with a self-
attention module, which has shown promising performance on capturing the long-
range spatial dependency on video understanding [239], image classification [265] and
object detection [178]. Motivated by the previous works using GCN to model global
temporal information [245, 266], we re-formulate the spatial self-attention technique
to work on the time dimension and capture global temporal context modelling. In
detail, we aim to produce an attention map M ∈ RT×T that estimates the pairwise
correlation between snippets. Our temporal self-attention (TSA) module first uses a
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1 × 1 convolution to reduce the spatial dimension from F ∈ RT×D to F(c) ∈ RT×D/4

with F(c) = Conv1×1(F). We then apply three separate 1 × 1 convolution layers to
F(c) to produce F(c1),F(c2),F(c3) ∈ RT×D/4, as in F(ci) = Conv1×1(F

(c)) for i ∈ {1, 2, 3}.
The attention map is then built with M =

(
F(c1)

) (
F(c2)

)⊺
, which produces F(c4) =

Conv1×1(MF(c3)).
A skip connection is added after this final 1 × 1 convolutional layer, as in

F(TSA) = F(c4) + F(c). (8.6)

The output from the MTN is formed with a concatenation of the outputs from the
PDC and MTN modules F̄ = [F(l)]l∈L ∈ RT×D, with L = {PDC1,PDC2,PDC3,TSA}.
A skip connection using the original features F produces the final temporal feature
representation X = sθ(F) = F̄ + F, where the parameter θ comprises the weights for
all convolutions described in this section.

8.3.3 Feature Magnitude Learning

Using the theory introduced in Sec. 8.3.1, we propose a loss function to model sθ(F)
in (9.1), where the top k largest snippet feature magnitudes from normal videos are
minimised and the top k largest snippet feature magnitudes from abnormal videos
are maximised. More specifically, we propose the following loss ℓs(.) from (9.1) that
maximises the separability between normal and abnormal videos:

ℓs(sθ(Fi), sθ(Fj), yi, yj) ={
max

(
0,m− dθ,k(Xi,Xj)

)
, if yi = 1, yj = 0

0 , otherwise

(8.7)

where m is a pre-defined margin, Xi = sθ(Fi) is the abnormal video feature (similarly
for Xj for a normal video), and dθ,k(.) represents separability function defined in (8.3)
that computes the difference between the score of the top k instances, from gθ,k(.)
in (8.2), of the abnormal and normal videos.

8.3.4 RTFM-enabled Snippet Classifier Learning

To learn the snippet classifier, we train a binary cross-entropy-based classification loss
function using the set Ωk(X) that contains the k snippets with the largest ℓ2-norm
features from sθ(F) in (9.1). In particular, the loss ℓf (.) from (9.1) is defined as

ℓf (fϕ(sθ(F)), y) =∑
x∈Ωk(X)

−(y log(fϕ(x)) + (1 − y) log(1 − fϕ(x))), (8.8)
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where x = sθ(f). Note that following [211], ℓf (.) is accompanied by the tempo-
ral smoothness and sparsity regularisation, with the temporal smoothness defined as(
fϕ(sθ(ft))− fϕ(sθ(ft−1))

)2
to enforce similar anomaly score for neighbouring snippets,

while the sparsity regularisation defined as
∑T

t=1 |fϕ(sθ(ft))| to impose a prior that
abnormal events are rare in each abnormal video.

8.4 Experiments

8.4.1 Data Sets and Evaluation Measure

Our model is evaluated on four multi-scene benchmark datasets, created for the weakly
supervised video anomaly detection task: ShanghaiTech [65], UCF-Crime [211], XD-
Violence [245] and UCSD-Peds [250].

UCF-Crime is a large-scale anomaly detection data set [211] that contains 1900
untrimmed videos with a total duration of 128 hours from real-world street and indoor
surveillance cameras. Unlike the static backgrounds in ShanghaiTech, UCF-Crime
consists of complicated and diverse backgrounds. Both training and testing sets contain
the same number of normal and abnormal videos. The data set covers 13 classes of
anomalies in 1,610 training videos with video-level labels and 290 test videos with
frame-level labels.

XD-Violence is a recently proposed large-scale multi-scene anomaly detection data
set, collected from real life movies, online videos, sport streaming, surveillance cameras
and CCTVs [245]. The total duration of this data set is over 217 hours, containing
4754 untrimmed videos with video-level labels in the training set and frame-level labels
in the testing set. It is currently the largest publicly available video anomaly detection
data set.

ShanghaiTech is a medium-scale data set from fixed-angle street video surveil-
lance. It has 13 different background scenes and 437 videos, including 307 normal
videos and 130 anomaly videos. The original data set [65] is a popular benchmark
for the anomaly detection task that assumes the availability of normal training data.
Zhong et al. [266] reorganised the data set by selecting a subset of anomalous testing
videos into training data to build a weakly supervised training set, so that both train-
ing and testing sets cover all 13 background scenes. We use exactly the same procedure
as in [266] to convert ShanghaiTech for the weakly supervised setting.

UCSD-Peds is a small-scale dataset combined by two sub-datasets – Ped1 with
70 videos and Peds2 with 28 videos. Previous work [88, 266] re-formulate the dataset
for weakly supervised anomaly detection by randomly selecting 6 anomaly videos and
4 normal videos into the train set, with the remaining as test set. We report the mean
results over 10 times of this process.

Evaluation Measure. Similarly to previous papers [56, 65, 211, 232, 262], we use
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the frame-level area under the ROC curve (AUC) as the evaluation measure for all data
sets. Moreover, following [245], we also use average precision (AP) as the evaluation
measure for the XD-Violence data set. Larger AUC and AP values indicate better
performance. Some recent studies [75, 182] recommend using the region-based detec-
tion criterion (RBDC) and the track-based detection criterion (TBDC) to complement
the AUC measure, but these two measures are inapplicable in the weakly-supervised
setting. Thus, we focus on the AUC and AP measures.

8.4.2 Implementation Details

Following [211], each video is divided into 32 video snippets, i.e., T = 32. For all
experiments, we set the margin m = 100, k = 3 in (9.4). The three FC layers described
in the model (Sec. 8.3) have 512, 128 and 1 nodes, where each of those FC layers is
followed by a ReLU activation function and a dropout function with a dropout rate of
0.7. The 2048D and 4096D features are extracted from the ’mix 5c’ and ’fc 6’ layer
of the pre-trained I3D [105] or C3D [104] network, respectively. In MTN, we set the
pyramid dilate rate as 1, 2 and 4, and we use the 3 × 1 Conv1D for each dilated
convolution branch. For the self-attention block, we use a 1 × 1 Conv1D.

Our RTFM method is trained in an end-to-end manner using the Adam opti-
miser [107] with a weight decay of 0.0005 and a batch size of 64 for 50 epochs. The
learning rate is set to 0.001 for ShanghaiTech and UCF-Crime, and 0.0001 for XD-
Violence. Each mini-batch consists of samples from 32 randomly selected normal and
abnormal videos. The method is implemented using PyTorch [172]. For all baselines,
we use the published results with the same backbone as ours. For a fair comparison,
we use the same benchmark setup as in [211, 245, 266].

8.4.3 Results on ShanghaiTech

The frame-level AUC results on ShanghaiTech are shown in Tab. 8.1. Our method
RTFM achieves superior performance when compared with previous SOTA unsuper-
vised learning methods [65, 87, 145, 170, 255] and weakly-supervised approaches [231,
262, 266]. With I3D-RGB features, our model obtains the best AUC result on this
data set: 97.21%. Using the same I3D-RGB features, our RTFM-enabled MIL method
outperforms current SOTA MIL-based methods [211, 231, 262] by 10% to 14%. Our
model outperforms [231] by more than 5% even though they rely on a more advanced
feature extractor (i.e., I3D-RGB and I3D Flow). These results demonstrate the gains
achieved from our proposed feature magnitude learning.

Our method also outperforms the GCN-based weakly-supervised method [266] by
11.7%, which indicates that our MTN module is more effective at capturing temporal
dependencies than GCN. Additionally, considering the C3D-RGB features, our model
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achieves the SOTA AUC of 91.51%, significantly surpassing the previous methods with
C3D-RGB by a large margin.

Supervision Method Feature AUC(%)

Conv-AE [87] - 60.85

Stacked-RNN [145] - 68.00

Unsupervised Frame-Pred [65] - 73.40

Mem-AE [56] - 71.20

MNAD [170] - 70.50

VEC [255] - 74.80

GCN-Anomaly [266] C3D-RGB 76.44

GCN-Anomaly [266] TSN-Flow 84.13

GCN-Anomaly [266] TSN-RGB 84.44

Zhang et al. [262] I3D-RGB 82.50

Sultani et al.* [211] I3D RGB 85.33

Weakly Supervised AR-Net [231] I3D Flow 82.32

AR-Net [231] I3D-RGB 85.38

AR-Net [231] I3D-RGB & I3D Flow 91.24

Ours C3D-RGB 91.51

Ours I3D-RGB 97.21

Table 8.1: Comparison of frame-level AUC performance with other SOTA un/weakly-
supervised methods on ShanghaiTech. * indicates we retrain the method in [211] using
I3D features. Best result in red and second best in blue.

8.4.4 Results on UCF-Crime

The AUC results on UCF-Crime are shown in Tab. 8.2. Our method outperforms
all previous unsupervised learning approaches [87, 145, 209, 233]. Remarkably, using
the same I3D-RGB features, our method also outperforms current SOTA MIL-based
methods, Sultani et al. [211] by 8.62%, Zhang et al. [262] by 5.37%, Zhu et al. [270]
by 5.03% and Wu et al. [245] by 1.59%. Zhong et al. [266] use a computationally
costly alternating training scheme to achieve an AUC of 82.12%, while our method
utilises an efficient end-to-end training scheme and outperforms their approach by
1.91%. Our method also surpasses the current SOTA unsupervised methods, BODS
and GODS [233], by at least 13%. Considering the C3D features, our method surpasses
the previous weakly supervised methods by a minimum 2.95% and a maximum 7.87%,
indicating the effectiveness of our RTFM approach regardless of the backbone structure.

8.4.5 Results on XD-Violence

XD-Violence is a recently released data set, on which few results have been reported, as
displayed in Tab. 8.3. Our approach surpasses all unsupervised learning approaches by
a minimum of 27.03% in AP. Comparing with SOTA weakly-supervised methods [211,
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Supervision Method Feature AUC (%)

SVM Baseline - 50.00

Conv-AE [87] - 50.60

Sohrab et al. [209] - 58.50

Unsupervised Lu et al. [143] C3D RGB 65.51

BODS [233] I3D RGB 68.26

GODS [233] I3D RGB 70.46

Sultani et al. [211] C3D RGB 75.41

Sultani et al.* [211] I3D RGB 77.92

Zhang et al. [262] C3D RGB 78.66

Motion-Aware [270] PWC Flow 79.00

GCN-Anomaly [266] C3D RGB 81.08

Weakly Supervised GCN-Anomaly [266] TSN Flow 78.08

GCN-Anomaly [266] TSN RGB 82.12

Wu et al. [245] I3D RGB 82.44

Ours C3D RGB 83.28

Ours I3D RGB 84.30

Table 8.2: Frame-level AUC performance on UCF-Crime. * indicates we retrain the
method in [211] using I3D features. Best result in red and second best in blue.

245], our method is 2.4% and 2.13% better than Wu et al. [245] and Sultani et al. [211],
using the same I3D features. With the C3D features, our RTFM achieves the best
75.89% AUC when compared with the MIL baseline by Sultani et al. [211]. The
consistent superiority of our method reinforces the effectiveness of our proposed feature
magnitude learning method in enabling the MIL-based anomaly classification.

Supervision Method Feature AP(%)

SVM baseline - 50.78

Unsupervised OCSVM [203] - 27.25

Hasan et al. [87] - 30.77

Sultani et al. [211] C3D RGB 73.20

Weakly Supervised Sultani et al.* [211] I3D RGB 75.68

Wu et al. [245] I3D RGB 75.41

Ours C3D RGB 75.89

Ours I3D RGB 77.81

Table 8.3: Comparison of AP performance with other SOTA un/weakly-supervised
methods on XD-Violence. * indicates we retrain the method in [211] using I3D features.
Best result in red and second best in blue.
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Figure 8.4: Anomaly scores and feature magnitude values of our method on
UCF-Crime (stealing079,shoplifting028, robbery050 normal876 ), and ShanghaiTech
(01 0052, 01 0053 ) test videos. Pink areas indicate the manually labelled abnormal
events.

8.4.6 Results on UCSD-Peds

We showed the result on UCSD-Ped2 in Tab. 8.4, with TSN-Gray and I3D-RGB fea-
tures, respectively. Our approach surpasses the previous SOTA [266] by a large 3.2%
with the same TSN-Gray features. Finally, we achieves the best 98.6% mean AUC,
surpassing Sultani et al. [211] by 6.3%, using the same I3D features.

Method Feature AUC (%)

GCN-Anomaly [266] TSN-Flow 92.8

GCN-Anomaly [266] TSN-Gray 93.2

Sultani et al.*[211] I3D RGB 92.3

Ours TSN-Gray 96.5

Ours I3D-RGB 98.6

Table 8.4: Comparison of AUC performance with other SOTA weakly-supervised meth-
ods on UCSD Ped2. * indicates we retrain the method in [211] using I3D features. Best
result in red and second best in blue.

8.4.7 Sample Efficiency Analysis

We investigate the sample efficiency of our method by looking into its performance
w.r.t. the number of abnormal videos used for training on ShanghaiTech. We reduce
the number of abnormal training videos from the original 63 videos down to 25 videos,
with the normal training videos and test data fixed. The MIL method in [211] is used
as a baseline. For a fair comparison, the same I3D features are used in both methods,
and average AUC results ((computed from three runs using different random seeds))
are shown in Fig. 8.5. As expected, the performance of both our method and Sultani
et al. [211] decreases with decreasing number of abnormal training videos, but the
decreasing rate of our model is smaller that of than Sultani et al. [211], indicating the
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robustness of our RTFM. Remarkably, our method using only 25 abnormal training
videos outperforms [211] using all 63 abnormal videos by about 3%, i.e., although
our method uses 60% less labelled abnormal training videos, it can still outperform
Sultani et al. [211]. This is because RTFM performs better recognition of the positive
instances in the abnormal videos, and as a result, it can leverage the same training
data more effectively than a MIL-based approach [211]. Note that we retrain Sultani
et al.’s method using the same I3D features.

25 35 45 55 63
Num of abnormal videos

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

AU
C

89.89%
91.21%

92.68%
94.87%

96.79%

70.46%

81.74% 82.84%

86.79% 87.03%

Ours
Sultani et al.[56]

Figure 8.5: AUC w.r.t. the number of abnormal training videos.

8.4.8 Subtle Anomaly Discriminability

We also examine the ability of our method to detect subtle abnormal events on the
UCF-Crime dataset, by studying the AUC performance on each individual anomaly
class. The models are trained on the full training data and we use [211] as baseline, and
results are shown in Fig. 8.6. Our model shows remarkable performance on human-
centric abnormal events, even when the abnormality is very subtle. Particularly, our
RTFM method outperforms Sultani et al. [211] in 8 human-centric anomaly classes
(i.e., arson, assault, burglary, robbery, shooting, shoplifting, stealing, vandalism), sig-
nificantly lifting the AUC performance by 10% to 15% in subtle anomaly classes such as
burglary, shoplifting, vandalism. This superiority is supported the theoretical results
of RTFM that guarantee a good separability of the positive and negative instances.
For the arrest, fighting, road accidents and explosion classes, our method shows com-
petitive performance to [211]. Our model is less effective in the abuse class because
this class contains overwhelming human-centric abuse events in the training data but
its testing videos contain animal abuse events only.
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abuse arrest arson assault burglary explosion fighting roadacc robbery shooting shoplifting stealing vandalism
Abnormal classes in UCF-Crime
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Figure 8.6: AUC results w.r.t. individual classes on UCF-Crime.

8.5 Computational Efficiency

We investigate if our system can run in real time. During inference, our method
processes a 16-frame clip in 0.76 seconds on a Nvidia 2080Ti–this time includes the I3D
extraction time. This indicates that our system can achieve good real-time detection
in real-world applications.

8.5.1 Ablation Studies

We perform the ablation study on ShanghaiTech and UCF Crime with I3D features,
as shown in Tab. 11.5, where the temporal feature mapping function sθ is decomposed
into PDC and TSA, and FM represents the feature magnitude learning from Sec.
8.3.3. The baseline model replaces PDC and TSA with a 1× 1 convolutional layer and
is trained with the original MIL approach as in [211]. The resulting baseline achieves
only 85.96% AUC on ShanghaiTech and 77.32% AUC on UCF Crime (a result similar
to the one in [211]). By adding PDC or TSA, the AUC performance is boosted to
89.21% and 91.73% on ShanghaiTech and 79.32% and 78.96% on UCF, respectively.
When both PDC and TSA are added, the AUC result increases to 92.32% and 82.12%
for the two datasets, respectively. This indicates that PDC and TSA contributes to
the overall performance, and they also complement each other in capturing both long
and short-range temporal relations. When adding only the FM module to the baseline,
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Baseline PDC TSA FM AUC (%) - Shanghai AUC (%) - UCF

✓ 85.96 77.39

✓ ✓ 89.21 79.32

✓ ✓ 91.73 78.96

✓ ✓ ✓ 92.32 82.12

✓ ✓ 92.99 81.28

✓ ✓ ✓ 94.63 82.97

✓ ✓ ✓ 93.91 82.58

✓ ✓ ✓ ✓ 97.21 84.30

Table 8.5: Ablation studies of our method on ShanghaiTech and UCF-Crime.

the AUC substantially increases by over 7% and 4% on ShanghaiTech and UCF Crime,
respectively, indicating that our feature magnitude learning considerably improves over
the original MIL method as it enables better exploitation of the labelled abnormal video
data. Additionally, combining either PDC or TSA with FM helps further improve the
performance. Then, the full model RTFM can achieve the best performance of 97.21%
and 84.30% on the two datasets. An assumption made in theoretical motivation for
RTFM is that the mean feature magnitudes for the top-k abnormal feature snippets
is larger than the ones for normal snippets. We measure that on the testing videos
of UCF-Crime and the mean magnitude of the top-k snippets from abnormal videos
is 53.4 and for normal, it is 7.7. This shows empirically that our our assumption
for Theorem B.1.1 is valid and that RTFM can effectively maximise the separability
between normal and abnormal video snippets. This is further evidenced by the mean
classification scores of 0.85 for the abnormal snippets and 0.13 for the normal snippets.

8.5.2 Qualitative Analysis

In Fig. 8.4, we show the anomaly scores produced by our MIL anomaly classifier for
diverse test videos from UCF-Crime and ShanghaiTech. Three anomalous videos and
one normal video from UCF-Crime are used (stealing079, shoplifting028, robbery050
and normal876 ). As illustrated by the ℓ2-norm value curve (i.e., orange curves), our
FM module can effectively produce a small feature magnitude for normal snippets and a
large magnitude for abnormal snippets. Furthermore, our model can successfully ensure
large margins between the anomaly scores of the normal and abnormal snippets (i.e.,
blank and pink shadowed areas, respectively). Our model is also able to detect multiple
anomalous events in one video (e.g., stealing079 ), which makes the problem more
difficult. Also, for the anomalous events stealing and shoplifting, the abnormality is
subtle and barely seen through the videos, but our model can still detect it. We also
show the anomaly scores and feature magnitudes produced by our model for 01 0052
and 01 0053 from ShanghaiTech (last two figures in Fig. 8.4). Our model can effectively
yield large anomaly scores for the anomalous event of vehicle entering in these two

124



scenes.

8.6 Conclusion

We introduced a novel method, named RTFM, that enables top-k MIL approaches for
weakly supervised video anomaly detection. RTFM learns a temporal feature mag-
nitude mapping function that 1) detects the rare abnormal snippets from abnormal
videos containing many normal snippets, and 2) guarantees a large margin between
normal and abnormal snippets. This improves the subsequent MIL-based anomaly
classification in two major aspects: 1) our RTFM-enabled model learns more discrimi-
native features that improve its ability in distinguishing complex anomalies (e.g., subtle
anomalies) from hard negative examples; and 2) it also enables the MIL classifier to
achieve significantly improved exploitation of the abnormal data. These two capabili-
ties respectively result in better subtle anomaly discriminability and sample efficiency
than current SOTA MIL methods. They are also the two main drivers for our model
to achieve SOTA performance on all three large benchmarks.
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Chapter 9

Contrastive Transformer-based
Multiple Instance Learning for
Weakly Supervised Polyp Frame
Detection

Abstract

Current polyp detection methods from colonoscopy videos use exclusively normal (i.e.,
healthy) training images, which i) ignore the importance of temporal information in
consecutive video frames, and ii) lack knowledge about the polyps. Consequently, they
often have high detection errors, especially on challenging polyp cases (e.g., small,
flat, or partially visible polyps). In this work, we formulate polyp detection as a
weakly-supervised anomaly detection task that uses video-level labelled training data to
detect frame-level polyps. In particular, we propose a novel convolutional transformer-
based multiple instance learning method designed to identify abnormal frames (i.e.,
frames with polyps) from anomalous videos (i.e., videos containing at least one frame
with polyp). In our method, local and global temporal dependencies are seamlessly
captured while we simultaneously optimise video and snippet-level anomaly scores. A
contrastive snippet mining method is also proposed to enable an effective modelling of
the challenging polyp cases. The resulting method achieves a detection accuracy that
is substantially better than current state-of-the-art approaches on a new large-scale
colonoscopy video dataset introduced in this work.

9.1 Introduction and Background

Colonoscopy has become a vital exam for colorectal cancer (CRC) early diagnosis.
This exam targets the early detection of polyps (a precursor of colon cancer), which
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can improve survival rate by up to 95% [102, 181, 216]. During the procedure, doctors
inspect the lower bowel with a scope to find polyps, but the quality of the exam
depends on the ability of doctors to avoid mis-detections [181]. This can be alleviated
by systems that automatically assist doctors detect frames containing polyps from
colonoscopy videos. Nevertheless, accurate polyp detection is challenging due to the
variable appearance, size and shape of colon polyps and their rare occurrence in an
colonoscopy video.

One way to mitigate polyp detection challenges is with fully supervised training
approaches, but given the expensive acquisition of fully labelled training sets, recent
approaches have formulated the problem as an unsupervised anomaly detection (UAD)
task [67, 139, 216, 221]. These UAD methods [139, 221] are trained with only normal
training images and videos, and abnormal testing images and videos that contain polyps
are detected as anomalous events. However, UAD approaches do not use training
images or snippets (i.e., a set of consecutive video frames) containing polyps, so they
are ineffective in recognising polyps of diverse characteristics, especially those that
are small, partially visible, or irregularly shaped. As shown in a number of recent
studies [167, 168, 211, 216, 217, 245], incorporating some knowledge about anomalies
into the training of anomaly detectors has improved the detection accuracy of hard
anomalies. For example, weakly-supervised video anomaly detection (WVAD) [211,
217, 245] relies on video-level labelled data to train detection models. The video-
level labels only indicate whether the whole video contains anomalies or not, which is
easier to acquire than fully-labelled datasets with frame-level annotations. The WVAD
formulation is yet to be explored in the detection of polyps from colonoscopy, but it is
of utmost importance because colonoscopy videos are often annotated with video-level
labels in real-world datasets.

Most existing WVAD methods [73, 211, 217, 245, 266] rely on multiple instance
learning (MIL), in which all snippets in a normal video are treated as normal snippets,
while each abnormal video is assumed to have at least one abnormal snippet. This
approach can utilise video-level labels to train an anomaly-informed detector to find
anomalous frames, but MIL methods often fail to select rare abnormal snippets in
anomalous videos, especially the challenging abnormal snippets that have subtle visual
appearance differences from the normal ones (e.g., small and flat colon polyps or frames
with partially visible polyps–see Fig. 9.2). Consequently, they perform poorly in detect-
ing these subtle anomalous snippets. Moreover, the WVAD methods above are trained
on individual images, ignoring the important temporal dependencies in colonoscopy
videos that can be explored for a more stable polyp detection performance.

In this chapter, we introduce the first WVAD method specifically designed for
detecting polyp frames from colonoscopy videos. Our method introduces a new con-
trastive snippet mining (CSM) algorithm to identify hard and easy normal and abnor-
mal snippets. These snippets are further used to simultaneously optimise video and
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snippet-level anomaly scores, which effectively reduces detection errors, such as mis-
classifying snippets with subtle polyps as normal ones, or normal snippets containing
feces and water as abnormal ones. The exploration of global temporal dependency is
also incorporated into our model with a transformer module, enabling a more stable
anomaly classifier for colonoscopy videos. To resolve the poor modelling of local tem-
poral dependency suffered by the transformer module [244], we also propose a convolu-
tional transformer block to capture local correlations between neighbouring snippets.
Our contributions are summarised as follows:

• To the best of our knowledge, this is the first work to tackle polyp detection from
colonoscopy in a weakly supervised video anomaly detection manner.

• We propose a new transformer-based MIL framework that optimises anomaly
scores in both snippet and video levels, resulting in more accurate anomaly scor-
ing of polyp snippets.

• We introduce a new contrastive snippet mining (CSM) approach to identify hard
and easy normal and abnormal snippets, where we pull the hard and easy snippets
of the same class (i.e., normal or abnormal) together using a contrastive loss. This
helps improve the robustness in detecting subtle polyp tissues and challenging
normal snippets containing feces and water.

• We propose a new WVAD benchmark containing a large-scale diverse colonoscopy
video dataset that combines several public colonoscopy datasets.

Our extensive empirical results show that our method achieves substantially better
results than six state-of-the-art (SOTA) competing approaches on our newly proposed
benchmark.

9.2 Method

Our method is trained with a set of weakly-labelled videos D = {(Fi, yi)}|D|
i=1, where

F ∈ F ⊂ RT×D represents pre-computed features (e.g., I3D [24]) of dimension D from
T video snippets, and y ∈ Y = {0, 1} denotes the video-level annotation (yi = 0 if Fi

is a normal video and yi = 1 otherwise), with each video being equally divided into a
fixed number of snippets. Our method aims to learn a convolutional transformer MIL
anomaly classifier for the T snippets, as in rθ,ϕ : F → [0, 1]T , where this function is
decomposed as rθ,ϕ(F) = sϕ(fθ(F)), with fθ : F → X being the transformer-based
temporal feature encoder parameterised by θ (with X ⊂ RT×D) and sϕ : X → [0, 1]T

denoting the MIL anomaly classifier, parameterised by ϕ, to optimise snippet-level
anomaly scores.
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Figure 9.1: (a) The architecture of our method consists an I3D [24] snippet feature
extractor and a Convolutional Transformer MIL Network. The I3D features are con-
sidered as snippet feature tokens to the transformer to predict snippet-wise anomaly
scores using a snippet classifier. The Cls token is applied for a video classifier to predict
if a video contains anomalies. The output features from the transformer are utilised to
mine hard and easy snippets from normal and abnormal videos. The anomaly scores
and hard/easy snippet representations are optimised by three proposed losses in (9.1).
(b) The proposed Temporal Convolutional Transformer Layer replaces the linear pro-
jection with depthwise separable convolution (DW Conv1D) [38].

9.2.1 Convolutional Transformer MIL Network

Motivated by the recent success of transformer architectures in analysing the global
context of images [53] and videos [6], we propose to use a transformer to model the tem-
poral information between the snippets of colonoscopy videos. Standard transformer
without convolution [53] cannot learn the local structure between adjacent snippets,
which is important for modelling local temporal relations because adjacent snippets
are often highly correlated [211, 221, 245]. Hence, we replace the linear token projec-
tion of the transformer by convolution operations. More specifically, we follow [244]
and adopt the depth-wise separable 1D convolution [38] on the temporal dimension, as
shown in Fig. 9.1(b). As shown in Fig. 9.1(a), the encoder comprises N convolutional
transformer blocks that produce the final temporal feature representation X = fθ(F).

9.2.2 Transformer-based MIL Training

The training of our model comprises a joint optimisation of a transformer-based tem-
poral feature learning, a contrastive snippet mining (CSM) that is used to train a
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CSM-enabled MIL classifier, and a video-level classifier, with

θ∗, ϕ∗, γ∗ = arg min
θ,ϕ,γ

ℓcnt(D; θ) + ℓsnp(D; θ, ϕ) + ℓvid(D; θ, γ) + ℓreg(D; θ, ϕ) (9.1)

where ℓcnt(.) denotes a contrastive loss that uses the mined hard and easy normal and
abnormal snippet features, ℓsnp(.) is a loss function to train the snippet classifier sϕ(.)
using the top k snippet-level anomaly scores from normal and abnormal videos, ℓvid(.)
is a loss function to train the video classifier to predict whether the video contains
anomalies, θ, ϕ and γ are respectively parameters of ℓcnt(.), ℓsnp(.) and ℓvid(.), and the
regularisation loss is defined by

ℓreg(D; θ, ϕ) =
∑

(Fi,yi)∈D

α

(
1

T

T∑
t=2

(ỹi(t) − ỹi(t− 1))2

)
+ β

(
1

T

T∑
t=1

|ỹi(t)|

)
, (9.2)

with ỹi(t) ∈ [0, 1] denoting the anomaly classifier output for the tth snippet from ỹi =
sϕ(fθ(Fi)). Note that in (11.8), the first term is a temporal smoothness regularisation,
given that anomalous and normal events tend to be temporally consistent [211], the
second term is the sparsity regularisation formulated based on the assumption that
anomalous snippets are rare events in abnormal videos, and α and β are the hyper-
parameters that weight both terms. Below, we describe the training of the video-level
classifier, the snippet classifier, and the snippet contrastive loss.

Video Classifier Training. The video classifier is trained from a binary cross
entropy loss to estimate if a video shows a polyp using the video-level labels. The loss
ℓvid(.) from (9.1) is the binary cross entropy loss defined as

ℓvid(D; θ, γ) = −
∑

(Fi,yi)∈D

(
yi log(vγ(fθ(Fi)) + (1 − yi) log(1 − vγ(fθ(Fi)))

)
, (9.3)

where vγ : X → [0, 1] is the video level anomaly classifier parameterised by γ.
Snippet Classifier Training. The snippet classifier is optimised by training a

top k ranking loss function using a set that contains the k snippets with the largest
anomaly scores from sϕ(F) in (9.1). More specifically, we propose the following loss
ℓsnp(.) from (9.1) that maximises the separability between normal and abnormal videos:

ℓsnp(D; θ, ϕ) =
∑

(Fi,yi)∈D,yi=1
(Fj ,yj)∈D,yj=0

max (0, 1 − gk(sϕ(fθ(Fi)) − gk(sϕ(fθ(Fj)))) , (9.4)

where gk(.) returns the mean anomaly score from sϕ(.) of the top k snippets from a
video [124, 217].

Contrastive Snippet Mining. To make anomaly classification robust to hard
normal and abnormal snippets, we propose the following novel snippet contrastive
loss:

ℓcnt(D; θ) = ℓc(DHA,DEA,DEN ; θ) + ℓc(DHN ,DEN ,DEA; θ), (9.5)
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Figure 9.2: Hard abnormal snippet mining algorithm to select temporal edge snippets
and missed pseudo abnormal snippets. Those two types of hard anomalies represent:
1) transitional frames where polyps may be partially visible, or 2) subtle (i.e., small
and flat) polyps that can lead to incorrect low anomaly scores.

where DHA and DEA represent sets of hard and easy abnormal snippets, while DHN

and DEN denote sets of hard and easy normal snippets,

ℓc(DHA,DEA,DEN ; θ) =
∑

Fi∈DHA,Fj∈DEA log
exp[ 1

τ
fθ(Fi)

⊤fθ(Fj)]
exp[ 1

τ
fθ(Fi)

⊤fθ(Fj)]+
∑

Fm∈DEN exp[ 1
τ
fθ(Fi)

⊤fθ(Fm)]
, (9.6)

and in a similar way we compute ℓc(DHN ,DEN ,DEA; θ). The idea explored in (9.5) is
to pull together easy and hard snippet features in X from the same class (normal or
abnormal) and push apart features from different classes.

The selection of DHN ,DEN ,DHA,DEA and their incorporation into our MIL learn-
ing framework is one key contribution of this work to address the poor detection ac-
curacy of hard anomalous snippets in existing WVAD methods. Specifically, for ab-
normal videos, we first classify each of their T snippets with ŷ(t) = (ỹ(t) > ϵ), where
ỹ = sϕ(fθ(F)). We then identify the temporal edge snippets and missed pseudo abnor-
mal snippets as hard anomalies DHA. For temporal edge detection, we use the erosion
operator to subtract the original and eroded sequences and locate such transitional
edge snippets, which are considered as hard anomalies (See Fig. 9.2 - temporal edge
detection), and inserted into DHA. For locating the missed pseudo abnormal snippets,
we assume that a subtle anomalous event (i.e., a small/flat polyp) happens in a region
of K consecutive snippets when R

K
(majority) of them have ŷ(t) = 1, where K and

R are respectively the hyper-parameters to control the temporal length of the pseudo
abnormal region and the ratio of the minimum number of the abnormal pseudo snip-
pets inside that region. The incorrectly predicted normal snippets inside abnormal
regions (i.e., missed abnormal snippets in Fig. 9.2) are also inserted into DHA as hard
anomalies.
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This hard anomaly selection process is motivated by the following two main observa-
tions: 1) subtle abnormal snippets from anomalous videos share similar characteristics
to normal snippets (i.e., small and flat polyps) and consequently have low anomaly
scores, and this can be easily identified from the adjacent abnormal snippets with
higher anomaly scores since abnormal frames containing polyps are often contiguous;
and 2) the transitional snippets between normal and abnormal events often contain
noise such as water, endoscope pipe or partially visible polyps, so they are unreliable
and can lead to inaccurate detection.

Hard normal (HN) snippets (e.g., healthy frames containing water and feces) are
collected by selecting the snippets with top k anomaly scores from normal videos since
normal videos do not have any abnormalities, so the ones with incorrectly predicted
higher scores can be deemed as hard normal. For easy snippet mining, we hypothesise
that the snippets with the smallest k anomaly scores from normal videos and the
snippets with top k anomaly scores from abnormal videos are easy normal (EN) and
easy abnormal (EA).

9.3 Experiments and Results

9.3.1 Dataset

To form a real-world large-scale video polyp detection dataset, we collected colonoscopy
videos from two widely used public datasets: Hyper-Kvasir [21] and LDPolypVideo [147].
The new dataset contains 61 normal videos without polyps and 102 abnormal videos
with polyps for training, and 30 normal videos and 60 abnormal videos for testing.
The videos in the training set have video-level labels and the videos in testing set con-
tain frame-level labels. This dataset contains over one million frames and has diverse
polyps with various sizes and shapes, making it one of the largest and most challenging
colonoscopy datasets in the field. The dataset setup will be publicly available upon
paper acceptance.

9.3.2 Implementation Details

Following [211, 217], each video is divided into 32 video snippets, i.e., T = 32. For all
experiments, we set k = 3 in (9.4). The 2048D input tokens are extracted from the
’mix 5c’ layer of the pre-trained I3D [105] network. Note that the I3D network is not
fine-tuned on any medical dataset. For the transformer block, we set the number of
heads to 8, depth of transformer blocks to 12, and use a 3 × 1 DW Conv1D. α and
β in (11.8) are both set to 5e − 4. Our method is trained in an end-to-end manner
using the Adam optimiser [107] with a weight decay of 0.0005 and a batch size of 32
for 200 epochs. The learning rate is set to 0.001. Following [211, 217], each mini-
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Method Publication AUC AP

DeepMIL [211] CVPR’18 89.41 68.53

GCN-Ano [266] CVPR’19 92.13 75.39

CLAWS [258] ECCV’20 95.62 80.42

AR-Net [231] ICME’20 88.59 71.58

MIST [73] CVPR’21 94.53 72.85

RTFM [217] ICCV’21 96.30 77.96

Ours 98.41 86.63

Table 9.1: Comparison of frame-level AUC and AP performance with other SOTA
WVADs on colonoscopy dataset using the same I3D feature extractor.

batch consists of samples from 32 randomly selected normal and abnormal videos. The
method is implemented in PyTorch [172] and trained with a NVIDIA 3090 GPU. The
overall training times takes around 2.5 hours, and the mean inference time takes 0.06s
per frame – this time includes the I3D extraction time. For all baselines, we use the
same I3D backbone and benchmark setup as ours.

9.3.3 Evaluation on Polyp Frame Detection

Baselines. We train six SOTA WVAD baselines: DeepMIL [211], GCN-Ano [266],
CLAWS [258], AR-Net [231], MIST [73], and RTFM [217]. The same experimental
setup as our approach is applied to these baselines for fair comparison.

Evaluation Measures. Similarly to previous papers [56, 211], we use the frame-level
area under the ROC curve (AUC) as the evaluation measure. Given that the AUC
can produce optimistic results for imbalanced problems, such as anomaly detection, we
follow [168, 245] and use average precision (AP) as another evaluation measure. Larger
AUC and AP values indicate better performance.

Quantitative Comparison. We show the quantitative comparison results in Ta-
ble 9.1. Our model achieves the best 98.4% AUC and 86.6% AP and outperforms all
six SOTA methods by a large margin. We obtain a maximum 10% and a minimum
2% AUC improvement, and a maximum 18% and a minimum 6% AP improvement
over the second best approaches. Our method substantially surpasses the most recent
WVAD approach RTFM [217] by 8% AP.

Qualitative Comparison. In Fig. 9.3, we show the anomaly scores produced by our
model for test videos from our polyp detection dataset. As illustrated by the orange
curves, our model can effectively produce small anomaly scores for normal snippets
and large anomaly scores for abnormal snippets. Our model is also able to detect
multiple anomalous events (e.g., videos with two polyp event occurrences - first figure
in Fig 9.3) in one video. Also, our model can also detect the subtle polyps (middle
figure in Fig 9.3).
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Figure 9.3: Anomaly scores (orange curve) of our method on test videos. Pink areas
indicate the labelled testing abnormal events.

top-k (ℓsnp) CTE ℓvid ℓcnt AUC AP

✓ 92.88 71.96

✓ ✓ 94.92 79.56

✓ ✓ ✓ 96.74 82.88

✓ ✓ ✓ ✓ 98.41 86.63

Table 9.2: Ablation studies for polyp frame detection. The linear network with top-k
MIL ranking loss is considered as the baseline, and CTE denotes the Convolutional
Transformer Encoder.

9.3.4 Ablation Study

Tab. 11.5 shows the contribution of each component of our proposed method on the
testing set. The baseline top-k MIL network, trained with ℓsnp, achieves 92.8% AUC
and 71.9% AP. Our method obtains a significant performance gain by adding the
proposed convolutional transformer encoder (CTE). Adding the video classifier, repre-
sented by the loss ℓvid(.), boosts the performance by about 2% AUC and 3% AP. The
proposed hard/easy snippet contrastive loss, denoted by the loss ℓcnt(.), further im-
prove the performance (e.g., increasing AP by about 4%), indicating the effectiveness
of addressing the hard anomaly issues.

9.4 Conclusion

We proposed a new transformer-based MIL framework as a robust anomaly classifier
for detecting polyp frames in colonoscopy videos. To the best of our knowledge, our
method is the first to formulate polyp detection as a weakly-supervised video anomaly
detection problem, and also to introduce transformer to explore global temporal de-
pendency between video snippets. We also proposed a novel and effective contrastive
snippet mining (CSM) to enable an effective learning of challenging abnormal polyp
frames (i.e., small and partially visible polyps) and normal frames (i.e., water and fe-
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ces). The resulting anomaly classifier showed SOTA results on our proposed large-scale
colonoscopy dataset. Despite the remarkable performance on detecting polyp frames,
our model may fail for online inference due to the transformer self-attention operation.
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Chapter 10

Few-Shot Anomaly Detection for
Polyp Frames from Colonoscopy

Abstract

Anomaly detection methods generally target the learning of a normal image dis-
tribution (i.e., inliers showing healthy cases) and during testing, samples relatively far
from the learned distribution are classified as anomalies (i.e., outliers showing disease
cases). These approaches tend to be sensitive to outliers that lie relatively close to
inliers (e.g., a colonoscopy image with a small polyp). In this chapter, we address
the inappropriate sensitivity to outliers by also learning from inliers. We propose a
new few-shot anomaly detection method based on an encoder trained to maximise the
mutual information between feature embeddings and normal images, followed by a
few-shot score inference network, trained with a large set of inliers and a substantially
smaller set of outliers. We evaluate our proposed method on the clinical problem of
detecting frames containing polyps from colonoscopy video sequences, where the train-
ing set has 13350 normal images (i.e., without polyps) and less than 100 abnormal
images (i.e., with polyps). The results of our proposed model on this data set reveal
a state-of-the-art detection result, while the performance based on different number of
anomaly samples is relatively stable after approximately 40 abnormal training images.

10.1 Introduction

Classification of rare events is a common problem in medical image analysis [131],
e.g., disease detection in medical screening tests such as colonoscopy. In this scenario,
normal images generally come from healthy patients, while abnormal images are from
unhealthy ones, where the proportion of normal images in the training set tends to
be substantially larger than the abnormal ones. One possible way to address such
problems is through the design of training methods that can deal with imbalanced
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Figure 10.1: Depiction of the three different approaches to handle few-shot and zero-
shot anomaly detection. Our proposed FSAD-NET demonstrate better deviations
between normal and abnormal samples

learning problems [126, 128] (Fig. 10.1-(a)). Even though they are often effective, these
approaches still need a fairly high number of abnormal training images. Alternatively,
zero-shot anomaly detection methods [56, 139, 148, 273] tackle this problem using a
training set containing only normal images to train a conditional generative model that
can reconstruct normal images, and anomalies are detected based on the reconstruction
errors of testing images (Fig. 10.1-(b)). Unfortunately, in practice these methods can
misclassify outliers that lie relatively close to inliers (e.g., when cancer tissue occupies
a small area of the image). Therefore, we propose a middle ground between these two
approaches to address the issues of requiring a relatively large annotated data set and
misclassifying challenging outliers.

In this chapter, we propose a few-shot anomaly detection method network (FSAD-
NET) that is trained with a highly imbalanced training set, containing a large number
of normal images (more than 10, 000) and few abnormal images (less than 100) –
Fig. 10.1-(c). The method first learns a feature encoder that is trained with normal
images to maximise the mutual information (MI) between the training images and
feature embeddings [98]. Next, we train a score inference network (SIN) [167] that
pulls the feature embeddings of normal images close together toward a particular region
of the feature space and pushes the embeddings of abnormal images away from that
region of normal features.

In practice, FSAD-NET needs significantly less abnormal training images than typ-
ical imbalanced learning problems [126, 128]. Moreover, given that we access a few
abnormal training images, FSAD-NET has the potential to be more effective at cor-
rectly classifying challenging outliers compared to typical zero-shot anomaly detection
methods [56, 139, 148, 273]. To the best of our knowledge, our method is the first med-
ical image analysis work to explore few-shot anomaly detection with a feature encoder
that maximises MI between training images and embeddings, and explicitly optimises
anomaly scores. We evaluate FSAD-NET on the detection of colonoscopy video frames
that contain polyps with a training set of more than 10000 normal images (without
polyps) and less than 100 abnormal images. Results show that our FSAD-NET is
more accurate than previous zero-shot anomaly detection approaches, which allows us
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to conclude that incorporating few abnormal cases into the training process improves
the performance of anomaly detection methods. Our approach also shows better accu-
racy than imbalanced learning methods, suggesting that FSAD-NET is more effective
at dealing with very small training sets of abnormal images.

10.2 Related Work

Colorectal cancer is considered to be one of the most harmful cancers [67, 181]. One
effective method for screening patients for colorectal cancer is colonoscopy, where the
goal is to detect polyps that are malignant or pre-malignant using a camera that is
inserted into the bowel. Accurate early detection of polyps may improve the 5-year
survival rate to over 90% [62]. Unfortunately, the accuracy and speed of manual polyp
detection can be affected by human factors, such as fatigue and expertise [180, 181,
225]. Therefore, automated polyp detection systems could help doctors improve polyp
detection accuracy during a colonoscopy [67, 181]. Traditional systems to detect polyps
are based on a supervised two-class classifier [67, 111] trained with large training sets
of images without polyps (i.e. normal) and images containing polyps (i.e. abnormal).
Annotation of such training sets is unfortunately difficult because the vast majority of
colonoscopy video frames contain normal images, making the manual search for images
that contain polyps challenging. Imbalanced learning solutions can therefore be used
in this context [126, 128], but its extension to polyp detection may not be effective
without a relatively large number of abnormal images in the training set. Because of
this limitation, zero-shot anomaly detection methods have been studied [60, 64, 65, 139,
167, 174, 199], where the idea is to learn a distribution of normal images in a particular
feature space, to subsequently test samples that do not fit well in this distribution and
are then classified as an outlier that may contain a polyp.

Zero-shot anomaly detection methods assume that the conditional generative model [56,
64, 139, 148, 174, 199, 273]) can only reconstruct normal data. Hence, when presented
with an abnormal test image, the model produces a large reconstruction error. How-
ever, using an image reconstruction error for training is an indirect optimisation of the
anomaly score, which can lead to a sub-optimal training process. For example, an ab-
normal image with a small polyp may have a low reconstruction error because the small
area affected by the polyp and can be wrongly classified as normal. We advocate that
the performance of zero-shot anomaly detection methods can improve with the use of a
small set of abnormal training images (less than 100). Such imbalance learning problem
has been tackled by few-shot classification approaches before. However, our problem
has a different setup compared to problems handled by traditional few-shot learning
methods that generally have many few-shot balanced multi-class problems for train-
ing [74, 160, 213], while ours has only one few-shot highly imbalanced binary problem
for training. Hence, we can only compare our method with baseline approaches that
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handle imbalance learning [128, 188]. For instance, Ren et al. [188] propose a learning
algorithm for highly imbalanced learning problems that weights training samples using
a balanced validation set – the need for this validation set is a disadvantage of this
approach. The focal loss approach [128] is effective at handling imbalanced learning,
but it may still need a large number of samples from both classes.

Few-shot anomaly detection has been shown in a non-medical image analysis con-
text with the method SIN [164] that is designed to directly optimise an anomaly score
for normal and abnormal images. The main challenge to train SIN lies in the high
dimensionality of the images [164]. Therefore, one way to alleviate this challenge is
to introduce a dimensionality reduction before training SIN. Recently, deep infomax
(DIM) [98] has been shown to be an effective dimensionality reduction approach. In
our paper, we propose a method that uses DIM to learn a low-dimensionality feature
embedding that is then used by SIN to classify anomalies.

10.3 Data Set and Method

10.3.1 Dataset

The data set is obtained from 18 colonoscopy videos from 15 patients. Video frames
containing blurred visual information are removed using the variance of Laplacian
method [66]. We then sub-sample consecutive frames by taking one of every five
frames because the correlation between them makes training ineffective. We also re-
move frames containing feces and water to reduce the need for a very large normal
training set (we plan to handle such distractors in future work). This data set is defined

by D = {(x, d, y)i}|D|
i=1, where x : Ω → R3 denotes a colonoscopy frame (Ω represents the

frame lattice), d ∈ N represents patient identification1, y ∈ Y = {Normal, Abnormal}
denotes the normal (without polyp) and abnormal (with polyp) classes. The distri-
bution of this data set is as follows: 1) Training set: a set of 13250 normal images
(without polyps), denoted by DN ⊂ D, and a set containing between 10 and 80 ab-
normal images, denoted by DA ⊂ D; 2) Validation set: 100 normal images and 100
abnormal images for model selection; and 3) Testing set: 967 images, with 217 (25% of
the set) abnormal images and 700 (75% of the set) normal images. The patients in the
testing set do not appear in the training/validation sets and vice versa. This abnor-
mality proportion (on the testing set) is commonly defined in other anomaly detection
literature [174, 199]. These frames were obtained with the Olympus ®190 dual focus
endoscope.

1Note that the data set has been de-identified, so d is useful only for splitting D into training,
testing and validation sets in a patient-wise manner.
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Figure 10.2: The first stage of FSAD-NET training consists of modelling the encoder
by maximising the MI between normal training images and embeddings in a global
and local manner and by minimising the divergence of embeddings and a prior distri-
bution [98]. The embeddings produced by the encoder are then used to train the SIN
using a contrastive-like loss [167].

10.3.2 Method

The training process of our proposed FSAD-NET (Fig. 10.3) is divided into two stages:
1) pre-training of a feature encoder z = fE(x; θE) (θE is the encoder parameter and
z ∈ RZ) to learn an image embedding that maximises the mutual information (MI)
between normal images x ∈ DN and their embeddings z [98]; and 2) training of the
SIN fS(fE(x; θE); θS) [167], parameterised by θS, with a contrastive-like loss that uses
DN and DA to achieve the goal fS(fE(x ∈ DA; θE); θS) > fS(fE(x ∈ DN ; θE); θS).

More specifically, the training of the encoder to maximise the MI between the
normal samples x ∈ DN and their feature embeddings z = fE(x ∈ DN ; θE) [98] is
achieved with

θ∗E, θ
∗
G, θ

∗
L = arg max

θE ,θG,θL

(
αÎθG(x; fE(x; θE)) +

β

|M|
∑
ω∈M

ÎθL(x(ω); fE(x(ω); θE))
)

+ γ arg min
θE

arg max
ϕ

D̂ϕ(V||UP,θE)

(10.1)

where α, β, γ are the model hyperparameters, the functions ÎG(.) and ÎL(.) denote an

145



MI lower bound based on the Donsker-Varadhan representation of the Kullback-Leibler
(KL)-divergence [98], defined by

ÎθG(x; fE(x; θE)) = EJ[fG(x, fE(x; θE); θG)] − logEM[efG(x,fE(x;θE);θG)], (10.2)

with J denoting the joint distribution between images x and their respective em-
beddings z = fE(x; θE), M representing the product of the marginals of the images
and embeddings, and fG(x, fE(x; θE); θG) being a discriminator parameterised by θG.
Also in (10.1), the function ÎθL(x(i); fE(x(i); θE)), defined similarly as (10.2) for the
discriminator fL(x(ω), fE(x(ω); θE); θL), is the local MI between image regions x(ω)
(ω ∈ M ⊂ Ω) and respective local embeddings fE(x(ω), θE). Moreover in (10.1),

arg min
θE

arg max
ϕ

D̂ϕ(V||UP,θE) = EV[log d(z;ϕ)] + EP[log(1 − d(fE(x; θE));ϕ))], (10.3)

with V denoting a prior distribution for the embeddings z (V is assumed to be a
normal distribution N (.;µV,ΣV), with mean µV and covariance ΣV), P the distribution
of the embeddings z = fE(x ∈ NN ; θE), and d(.;ϕ) is a discriminator modelled with
adversarial training to estimate the likelihood that the input is sampled from V or
P. This objective function pulls the feature embeddings of the normal images toward
N (.;µV,ΣV).

The next step of the learning process consists of computing the embeddings of
normal and abnormal images with z = fE(x ∈ DA

⋃
DN ; θ∗E) to train fS(z; θS) using

a contrastive-like loss to directly optimise the anomaly score [167]. More specifically,
the constrastive loss for each training sample is defined as:

ℓS = I(y is Normal)|s(fS(z; θS))| + I(y is Abnormal) max(0, a− s(fS(z; θS))), (10.4)

where I(.) is an indicator function that is equal to one when the condition in the
parameter is true, and zero otherwise, s(x) = x−µS

σS
with µS = 0 and σS = 1 representing

the mean and standard deviation of the prior distribution for the anomaly scores for
normal images, and a is the minimum margin between µS and the anomaly scores of
abnormal images [167]. The loss in (10.4) pulls the scores from normal images to µS
and pushes the scores of abnormal images away from µS with a margin of at least a.

During inference, we take a test image x, compute the feature embedding with
fE(x; θE) and then compute the score with s = fS(z; θS) – the score result s is then
compared to a threshold τ to determine if the test image is normal or abnormal. We
considered the score s as the estimation of the notion of closeness which is related to
the likelihood that the embedding of a colonoscopy image is classified as belonging to
the set of normal images.
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10.4 Experiment

10.4.1 Experimental Setup

The original colonoscopy images are resized from initial resolution 1072 × 1072 × 3
to 64 × 64 × 3 to reduce the training and inference computational costs. We found
that 64 × 64 × 3 is the minimum size that we can use without a negative impact on
AUC. We note the polyps are still visible at such resolution, as shown in Fig 10.4.
The model selection (to select optimiser, learning rate and model structure) is done
using the validation set mentioned in Sec. 10.3.1. We use Adam [57] optimiser during
training with a learning rate of 0.0001 for the encoder and SIN learning. We adopt
batch normalisation for both stages. We make sure our method uses a similar backbone
architecture as other competing approaches in Tab. 10.1. In particular, the encoder
fE(.; θE) uses four convolution layers (with 64, 128, 256, 512 filters of size 4 × 4). The
global discriminator fG(.; θG) has three convolutional layers (with 128, 64, 32 filters
of size 3 × 3). The local discriminator fG(.; θG) has three convolutional layers (with
192, 512, 512 filters of size 1 × 1). The prior discriminator d(.;ϕ) has three linear
layers with 1000, 200, 1 nodes per layer). We also use the validation set to estimate
a = 6 in (10.4). In (10.1), we follow the DIM paper for setting the hyper-parameters
as follows [98]: α = 0.5, γ = 1, β = 0.1. For the prior distribution for the embeddings
in (10.3), we set µV = 0 (i.e., a Z-dimensional vector of zeros), and ΣV is a Z × Z
identity matrix. To train the model, we first train the encoder, local, global and prior
discriminator (representation learning stage) for 6000 epochs with a mini-batch of 64
samples. We then train SIN for 1000 epochs, with a batch size of 64, while fixing
the parameters of encoder, local, global and prior discriminator. We implement our
method using Pytorch [171]. The detection results are measured with the area under
the receiver operating characteristic curve (AUC) on the test set [174, 199], computed
by varying the inference threshold τ for the score result s.

10.4.2 Anomaly Detection Results

The test set AUC results shown in Table 10.1 are divided into zero-shot and few-shot.
The zero-shot rows show results obtained from the following zero-shot anomaly de-
tection methods2: ADGAN [139], OCGAN [174], f-anogan and its variants [199] that
involve image-to-image mean square error (MSE) loss (izi), Z-to-Z MSE loss (ziz) and
its hybrid version (izif). Our FSAD-NET model outperforms all zero-shot learning
methods by a large margin, showing the importance of using a few abnormal samples
for training. For the few-shot results, we consider the cases where we have 30 and
40 abnormal training images, and we test several variants of the FSAD-NET. We use

2Codes were downloaded from the authors’ Github pages and tuned for our problem.
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Table 10.1: Comparison between our proposed FSAD-NET and other state of the art
zero-shot and few-shot anomaly detection methods.

Methods AUC

Zero-Shot

DAE [60] 0.6384

VAE [51] 0.6528

OC-GAN [174] 0.6137

f-AnoGAN(ziz) [199] 0.6629

f-AnoGAN(izi) [199] 0.6831

f-AnoGAN(izif) [199] 0.6997

ADGAN [139] 0.7391

Few-Shot

Densenet121 [99] (40 abnormal samples) 0.8231

cross-entropy (30 abnormal samples) 0.6826

cross-entropy (40 abnormal samples) 0.7115

Focal loss (30 abnormal samples) 0.7038

Focal loss (40 abnormal samples) 0.7235

without RL (40 abnormal samples) 0.6011

Learning to Reweight [188] (40 abnormal samples) 0.7862

AE network (30 abnormal samples) 0.819

AE network (40 abnormal samples) 0.835

FSAD-NET (30 abnormal samples) 0.855

FSAD-NET (40 abnormal samples) 0.9033

between 30 and 40 abnormal training images because that is the range, where we ob-
serve that our FSAD-NET produces stable AUC results. As a baseline approach, we
train Densenet121 [99] using high levels of data augmentation to deal with the training
imbalance issue. However, our FSAD-Net outperforms Densenet121 by a large mar-
gin. The variants of FSAD-NET are designed to test the importance of each stage
of our method. The methods labelled as ’Cross entropy’ and ’Focal loss’ replace the
contrastive loss in (10.4) by the cross entropy loss (commonly used in classification
problems) [78] and the focal loss (robust to imbalanced learning problems) [128], re-
spectively. FSAD-NET shows substantially better results, indicating the importance
of using a more appropriate loss function for few-shot anomaly detection. To show
the importance of representation learning (RL) in FSAD-Net, we tested FSAD-Net
without it, which shows much lower AUC results than competing approaches. Also, we
compared our method with a few-shot learning baseline [188], which proposes a learn-
ing algorithm for highly imbalanced learning problems. When used to train FSAD-Net,
it achieved 78.62% of mean AUC when training with 40 abnormal training samples.
Hence our model shows more accurate results than that approach. Furthermore, we
test the importance of DIM to train the encoder in (10.1) by replacing it by the deep
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Figure 10.3: AUC mean and standard deviation of FSAD-NET computed over different
number of abnormal training images.

Figure 10.4: True positive (TP), true negative (TN), false positive (FP) and false
negative(FN) results produce by FSAD-NET (Negative = frame with polyp).

auto-encoder [60] (labelled as AE network) – results show that FSAD-NET is more
accurate, indicating the effectiveness of using MI and prior distribution for learning
the feature embeddings in (10.1).

We further investigate the performance of our proposed FSAD-NET as a function of
the number of abnormal training images that can vary from 10 to 80. For each number
of abnormal training images, we train our model three times, using different training
sets each time, and we compute the mean and standard deviation of the AUC results.
The result of this experiment in Fig. 10.3 shows that: 1) the performance stabilises
between 85%-90% when feeding the model 30 or more abnormal training images; and
2) our method is robust to extremely small training sets of abnormal images. We show
a few true positive, true negative, false positive and false negative results produce by
FSAD-NET in Fig. 10.4.
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10.5 Conclusion

We propose the first few-shot anomaly detection framework, named as FSAD-NET,
for medical image analysis applications. FSAD-NET consists of an encoder trained to
maximise the mutual information between normal images and respective embeddings
and a score inference network that classifies between normal and abnormal colonoscopy
frames. Results show that our method achieves state-of-the-art anomaly detection per-
formance on our colonoscopy data set, compared to previous zero-shot anomaly detec-
tion methods and imbalanced learning methods. In the future, we expect to extend
our approach to polyp localisation and to work with colonoscopy frames containing
distractors, like feces and water.
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Chapter 11

Pixel-wise Energy-biased
Abstention Learning for Anomaly
Segmentation on Complex Urban
Driving Scenes

Abstract

State-of-the-art (SOTA) anomaly segmentation approaches on complex urban driv-
ing scenes explore pixel-wise classification uncertainty learned from outlier exposure,
or external reconstruction models. However, previous uncertainty approaches that di-
rectly associate high uncertainty to anomaly may sometimes lead to incorrect anomaly
predictions, and external reconstruction models tend to be too inefficient for real-time
self-driving embedded systems. In this chapter, we propose a new anomaly segmen-
tation method, named pixel-wise energy-biased abstention learning (PEBAL), that
explores pixel-wise abstention learning (AL) with a model that learns an adaptive
pixel-level anomaly class, and an energy-based model (EBM) that learns inlier pixel
distribution. More specifically, PEBAL is based on a non-trivial joint training of EBM
and AL, where EBM is trained to output high-energy for anomaly pixels (from out-
lier exposure) and AL is trained such that these high-energy pixels receive adaptive
low penalty for being included to the anomaly class. We extensively evaluate PE-
BAL against the SOTA and show that it achieves the best performance across four
benchmarks.

11.1 Introduction

Recent advances in semantic segmentation have shown tremendous improvements on
complex urban driving scenes [116]. Despite the accurate predictions on the inlier
classes, the model fails to properly recognise anomalous objects that deviate from
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the training inlier distribution (col. 2 of Fig. 11.1). Addressing such failure cases is
crucial to road safety for autonomous driving vehicles. For example, anomalies can be
represented by unexpected objects in the middle of the road, such as a large rock or
an unexpected animal that can be incorrectly predicted as a part of the road class,
leading to potentially fatal traffic collisions.

Current methods [17, 20, 27, 49, 103, 130, 155, 246] to detect and segment anoma-
lous objects in complex urban driving scenes tend to depend on classification uncer-
tainty or image reconstruction. The association of high classification uncertainty with
anomaly is intuitive, but it has a few caveats. For instance, classification uncertainty
happens when samples are close to classification decision boundaries, but there is no
guarantee that all anomalies will be close to classification boundaries. Furthermore,
samples close to classification boundaries may not be anomalies at all, but just hard
inlier samples. Hence, these uncertainty based methods may detect a large number
of false positive and false negative anomalies. For example, Fig. 11.1 shows that the
previous SOTA Meta-OoD [27] misses important anomalous pixels (all rows), while
misclassifying anomalies (e.g., vegetation in rows 1, 2, 3), even with the use of the
outlier exposure (OE) strategy [96]. In fact, the OE strategy maximises the uncer-
tainty for proxy anomalies, which can cause the model to be more uncertain for all
inlier classes and detect false positive anomalies (e.g., Meta-OoD mis-classifies trees or
bush with high anomaly scores – Fig. 11.1 col 4). Reconstruction methods [49, 246]
add an extra network to reconstruct the input images from the estimated segmenta-
tion, where differences are assumed to be anomalous. Not only does this approach
depend on accurate segmentation results for precise reconstruction, but they also re-
quire an extra reconstruction network that is hard to train and inefficient to run in
real-time self-driving embedded systems. Moreover, reconstruction methods that rely
on a discrepancy module require re-training whenever the inlier segmentation model
changes due to input distribution shift [49], limiting their applicability in real-world
systems. Furthermore, previous approaches [17, 27, 49, 82, 103, 130] ignore a couple of
important constraints for anomaly segmentation, namely smoothness (e.g., Meta-OoD
fails to classify neighbouring anomaly pixels in Fig. 11.1, rows 1, 4) and sparsity (e.g.,
Meta-OoD incorrectly detects a large number of anomalous pixels–see yellow and red
regions in Fig. 11.1, rows 1, 2, 3). Another common issue shared by previous meth-
ods [17, 27, 130] is that they usually rely on the re-training of the entire network for
OE, which is inefficient and can also bias the classification towards outliers.

In this chapter, we propose a new anomaly segmentation method, the pixel-wise
energy-biased abstention learning (PEBAL), that directly learns a pixel-level anomaly
class, in addition to the pre-defined inlier classes, to reject/abstain anomalous pixels
that are dissimilar to any of the inlier classes. It is achieved by a joint optimisation
of a novel pixel-wise anomaly abstention learning (PAL) and an energy based model
(EBM) [81, 117, 138]. Particularly, abstention learning (AL) [142] was originally de-
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Input Image Initial Prediction Final Prediction (Ours)Anomaly Prediction (Meta-OoD) Anomaly Prediction (Ours)

Figure 11.1: Anomaly segmentation overview. From the input image (anomaly
highlighted with a yellow box), the initial prediction shows the original segmen-
tation results with anomalies classified as a one of the pre-defined inlier classes.
Anomaly predictions by the previous SOTA Meta-OoD [27] and our method
show an anomaly map with high scores (in yellow and red) for anomalous pixels, where
our approach shows less false positive and false negative detections. Consequently, our
method can detect small and distant anomalies (row 2) and blurry/unclear anomalies
(rows 1, 3, 4) more accurately than Meta-OoD [27]. In our final prediction, anoma-
lous pixels are coloured as cyan. Some anomalies are small and blurred (e.g.,
row 2), so please zoom in the PDF for better visualisation.

veloped to learn an image-level anomaly class, which is significantly challenged by the
pixel-wise anomaly segmentation task that requires pixel-level anomaly class learning.
This is because the original AL model treats all pixel inputs equally with a single pre-
defined fixed penalty factor to regularise the classification of anomalous pixels, while
adaptive penalties are typically required for different pixels in a complex driving scene,
e.g., pixels in small (distant) objects vs. large (near) objects, or centred pixels vs
fringe pixels of objects. PEBAL is designed to address this issue by learning adap-
tive pixel-wise energy-based penalties, which automatically decreases the penalty for
pixels that are likely to be anomalies. Hence, our model does not explore previously
proposed uncertainty measures (e.g., entropy or softmax criteria) or image reconstruc-
tion, and instead, for the first time, explicitly learns a new pixel-wise anomaly class.
The learned penalty factors are jointly optimised with EBM, resulting in a mutually
beneficial optimisation of anomaly and inlier segmentation. Additionally, we impose
smoothness and sparsity constraints to the learning of the anomaly segmentation by
PEBAL, incorporating local and global dependencies into the pixel-wise penalty esti-
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mation and anomaly score learning. Finally, the training of PEBAL is efficient given
that we only need to fine-tune the last block of the segmentation model to achieve
accurate inference. To summarise, our contributions are the following:

• We propose the pixel-wise energy-biased abstention learning (PEBAL) that jointly
optimises a novel pixel-wise anomaly abstention learning (PAL) and energy-based
models (EBM) to learn adaptive pixel-level anomalies. PEBAL mutually rein-
forces PAL and EBM in detecting anomalies, enabling accurate segmentation of
anomalous pixels without compromising the segmentation of inlier pixels (cols.
4,5 of Fig. 11.1).

• We introduce a new pixel-wise energy-biased penalty estimation, which can learn
adaptive energy-based penalties to highly varying pixels in a complex driving
scene, allowing a robust detection of small/distant and blurry anomalous objects
(Fig. 11.1 row 2).

• We further refine our PEBAL training, using a novel smoothness and sparsity
regularisation on anomaly scores to consider the local and global dependencies of
the pixels, enabling the reduction of false positive/negative anomaly predictions.

We validate our approach on Fishyscapes leaderboard [20], and achieve SOTA clas-
sification accuracy on all relevant benchmarks. We also achieve the best classification
results on LostandFound [179] and Road Anomaly [130] test sets, significantly surpass-
ing other competing methods. We also show that our approach produces competitive
pixel-wise calibration results on Cityscapes [39].

11.2 Related work

Uncertainty-based Anomaly Segmentation. Early uncertainty-based methods [95,
118, 127] focused on the estimation of image-level anomalies, but they tended to mis-
classify object boundaries as anomalies [103]. Jung et al. [103] mitigate this issue by
iteratively replacing false anomalous boundary pixels with neighbouring non-boundary
pixels that have low anomaly score. In [106, 115, 155], the boundary issue was tack-
led with a pixel-wise uncertainty estimated with MC dropout, but they showed a low
pixel-wise anomaly detection accuracy [130]. Without fine-tuning using a proxy outlier
dataset, uncertainty estimation may not be accurate enough to detect anomalies and
can predict high uncertainty for challenging inliers or low uncertainty for outliers due
to overconfident misclassification.
Reconstruction-based Anomaly Segmentation. Anomalies can also be segmented
from the errors between the input image and its reconstruction obtained from its pre-
dicted segmentation map [8, 33, 40, 49, 86, 130, 230, 246]. Those approaches are chal-
lenged by the dependence on an accurate segmentation prediction, by the complexity
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of reconstruction models that usually require long training and inference processes, and
also by the low quality of the reconstructed images.

Anomaly Segmentation via Outlier Exposure. Hendrycks et al. [96] propose
the outlier exposure (OE) strategy that uses an auxiliary dataset of outliers that do
not overlap with the real outliers/anomalies to improve the anomaly detection per-
formance. This OE strategy uses outliers from ImageNet [17, 18, 226], void class of
Cityscape [49] or COCO [27], where the expectation is that the model can generalise to
unseen outliers. Maximising uncertainty for outliers using the OE strategy can lead to
a deterioration of the segmentation of inliers [18, 226]. Another major drawback of OE
methods is that they are trained using outlier images or objects without considering the
fact that outliers are rare events that appear around inliers. Hence, the training con-
tains a disproportionately high amount of outliers [27] that can bias the segmentation
toward the anomaly class. We address this issue by respecting the anomaly detection
assumption, where anomalous objects are rare, contribute to a small proportion of the
training set, and appear around inliers.

Abstention Learning. The abstention learning mechanism [54] adds a “reserve” (i.e.,
anomaly) class that is predicted when the classification predictions for all inlier classes
are not high enough. This method shows good performance in learning holistic image-
level anomaly class with a single pre-defined penalty factor for the whole training
set, but it fails to learn fine-grained pixel-level anomaly class as an adaptive pixel-
wise penalty is required for highly varying pixel-level anomalies (see Table 11.5). We
address this issue by learning a novel pixel-wise energy-biased penalty estimator that is
jointly trained with fine-grained abstention learning. It is worth noting that differently
from uncertainty-based methods [20, 27, 93, 103] that assume anomaly even when the
model is uncertain but confident, abstention learning requires all classes to have low
confidence to predict the anomaly class.

Energy-based Models. EBM is trained such that inlier training samples have low
energy, whereas non-training outlier samples (i.e., anomalies) are expected to have
high energy [117]. This energy value can then be used to compute the probability of
a sample to belong to the inlier distribution. Recently, EBMs are being implemented
with deep learning models [81, 138, 161], and to learn them, it is necessary to compute
the partition function, which is generally estimated with Markov Chain Monte Carlo
(MCMC) [81], but this estimation cannot generate accurate high-resolution images.
Hence, we follow the simpler idea of estimating the energy score with the logsumexp
operator [81, 138], where we minimise the energy of inliers and use an OE strategy [96]
to maximise the energy of outliers. Hence, we do not need to compute the partition
function.
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Inlier Logits 

 
Outlier Logits 
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Figure 11.2: PEBAL. The pixel-wise anomaly abstention (PAL) loss ℓpal learns to
abstain the prediction of outlier pixels from xout containing OE objects (i.e., cyan
coloured masks) and calibrate the logit of inlier classes (i.e., reduction of the inlier
logits) from both inlier image xin and outlier image xout. The EBM loss ℓebm pushes
the free energy Eθ to low values for inlier pixels and pulls that to high values for outlier
pixels, where a regularisation loss ℓreg enforces the smoothness and sparsity constraints
on the energy maps. Such EBM learning reduces the logit of inlier classes to share
similar values at the same time, facilitating the ℓpal learning. Then, the pixel-wise
penalty aω associated with the abstention class at position ω is estimated to bias the
penalty to be low for outlier pixels and high for inlier pixels, which in turn encourages
high free energy for anomalies and enforces ℓpal to abstain the anomalous pixels.

11.3 Method

We present our PEBAL in this section (see Fig. 11.2), where we first describe the
dataset, then introduce abstention learning and EBM. Next, we present the loss func-
tion to train the model, followed by the training and inference procedures.

11.3.1 Training Set

We assume to have a set of inlier training images and annotations Din = {(xi,y
in
i )}|D

in|
i=1 ,

where x ∈ X ⊂ RH×W×C denotes an image with C colour channels, and yin ∈ Y in ⊂
{0, 1}H×W×Y denotes the inlier pixel level labels that can belong to Y classes. We also

have a set of outlier images and annotations Dout = {(xi,y
out
i )}|D

out|
i=1 , where yout ∈

Yout ⊂ {0, 1}H×W×(Y+1) denotes the outlier pixel-level labels, with the class Y + 1
reserved for pixels belonging to the anomaly class. Note that similarly to previous
papers [27], the types of anomalies in training set Dout do not overlap with the anomalies
to be found in the testing set.

11.3.2 Pixel-wise Energy-biased Abstention Learning (PEBAL)

The PEBAL model is denoted by

pθ(y|x)ω =
exp(fθ(y;x)ω)∑

y′∈{1,...,Y+1} exp(fθ(y′;x)ω)
, (11.1)
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where θ is the model parameter, ω indexes a pixel in the image lattice Ω, pθ(y|x)ω
represents the probability of labelling pixel ω with y ∈ {1, ..., Y + 1}, and fθ(y;x)ω is
the logit for class y at pixel ω.

To train the model in (11.1), we formulate a cost function that jointly trains PAL
and EBM to classify anomalous pixels. An important training hyper-parameter for
PAL is the penalty to abstain from the classification into one of the inlier classes
in {1, ..., Y }–this penalty is generally tuned to a single value for all training samples
through model selection (e.g., cross validation) [142]. Instead of treating this as a
tunable hyper-parameter, we propose the use of EBM (defined below in (11.4)) to
automatically estimate this penalty during the training process for each pixel within
each training image. More specifically, the cost function to train the PEBAL model
in (11.1) is:

ℓ(Din,Dout, θ) =∑
(x,yin)∈Din

(
ℓpal(θ,y

in,x, Eθ(x)) + λℓinebm(Eθ(x)) + ℓreg(Eθ(x))
)
+

∑
(x,yout)∈Dout

(
ℓpal(θ,y

out,x, Eθ(x)) + λℓoutebm(Eθ(x)) + ℓreg(Eθ(x))
)
.

(11.2)

where ℓpal(.) denotes the PAL loss defined as

ℓpal(θ,y,x, Eθ(x)) = −
∑
ω∈Ω

log
(
fθ(yω;x)ω +

fθ(Y + 1;x)ω
aω

)
, (11.3)

with yω ∈ {1, ..., Y } for yin, yω ∈ {1, ..., Y + 1} for yout, and aω denotes the pixel-
wise penalty associated with abstaining from the classification of the inlier classes.
The minimisation of the loss in (11.3) will abstain from classifying outlier pixels into
one of the inlier classes, where a pixel is estimated to be an outlier with aω. Before
formulating aω, let us define the inlier free energy at pixel ω, which is denoted by
Eθ(x)ω and computed with the logsumexp operator as follows [81, 117, 138]:

Eθ(x)ω = − log
∑

y∈{1,...,Y }

exp(fθ(y;x)ω). (11.4)

The pixel-wise penalty associated with abstaining from the classification of the inlier
classes is defined by

aω = (−Eθ(x)ω)2, (11.5)

which means that the larger the aω (i.e., low inlier free energy, so the sample is an
inlier), the higher the loss to abstain from classifying into one of the Y classes, and
low value of aω (i.e., high free inlier energy, which means an outlier sample) implies
a lower loss to abstain from classifying one of the Y classes. Also in (11.2), ℓinebm(.)
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(weighted by hyper-parameter λ) represents the EBM loss that pushes the inlier free
energy in (11.4) for samples in Din to low values, with

ℓinebm(Eθ(x)) =
∑
ω∈Ω

(
max(0, Eθ(x)ω −min)

)2
, (11.6)

representing the loss of having inlier samples with free energy larger than threshold
min, and

ℓoutebm(Eθ(x)) =
∑
ω∈Ω

(
max(0,mout − Eθ(x)ω)

)2
, (11.7)

denoting the loss of having outlier samples with inlier free energy smaller than threshold
mout, where the margin losses in (11.6) and (11.7) effectively create an energy gap
between normal and abnormal pixels. The last term to define in (11.2) is the inlier free
energy regularisation loss to enforce that anomalous pixels are sparse and pixel anomaly
classification is smooth (i.e., anomalous pixels tend to have anomalous neighbouring
pixels), which is defined as

ℓreg(Eθ(x)) =
∑
ω∈Ω

β1|Eθ(x)ω − Eθ(x)N (ω)| + β2|Eθ(x)ω|, (11.8)

where β1 and β2 are hyper-parameters that weight the contributions of the smoothness
and sparsity and sparsity regularisations, and N (ω) denotes neighbouring pixels in
horizontal and vertical directions.

11.3.3 Training and Inference

Training. An important point of the training process is how to setup the inlier and
outlier datasets Din and Dout. A recently published paper [27] carefully selects images
to be included in Dout by making sure that the segmentation labels presented in those
images do not overlaps with the inlier labels. In particular for [27], Din has images and
annotations from Cityscape and Dout has images and annotations from COCO [129].
We argue that there are two issues with this strategy to form Dout, which are: 1) the
selected COCO images generally only contain anomalous pixel labels, leading to unsta-
ble training of the outlier losses (i.e., second summation in (11.2)) given the exclusive
presence of the anomaly class (in effect, this becomes a one-class segmentation prob-
lem); 2) re-training the model with images containing only anomalous pixels removes
the semantic context of inlier pixels when training for the outlier losses, which can
deteriorate the segmentation accuracy of the inlier labels.

To mitigate these issues, we form Dout using a novel extension based on CutMix
and CutPaste [120, 256], which we refer to as AnomalyMix. AnomalyMix cuts the
anomalous objects from an outlier dataset (e.g., COCO) using its labelled masks and
paste them into the images of the inlier dataset (e.g., CitySpace), where we label the
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pixels of the anomalous object with the class Y + 1 – these images are then inserted
into Dout. AnomalyMix addresses the two issues above because the outlier images
now contain a combination of inlier and outlier pixels, allowing a balanced learning
and keeping the visual context of inlier labels when training for the outlier losses.
Furthermore, AnomalyMix can form a potentially infinite number of training images
for Dout given the range of transformations to be applied to the cut objects and the
locations of the inlier images that the objects can be pasted. Previous papers [49, 103]
argue that re-training the whole segmentation model can jeopardise the segmentation
accuracy for the inlier classes. Furthermore, such re-training requires a long training
time, leading to inefficient optimisation. In this work, we propose to fine-tune only
the final classification block using the loss in (11.2), instead of re-training the
whole segmentation model. Besides being efficient, this fast fine-tuning keeps the
segmentation accuracy of the model in the original dataset used for pre-training the
model. Furthermore, an interesting side-effect of our training is that the cost function
in (11.2) will calibrate the segmentation prediction for the inlier classes. This happens
because the terms ℓpal(.), ℓ

in
ebm(.) and ℓoutebm(.) jointly constrain the maximisation of logits

and naturally calibrate classification confidence.

Inference. During inference, pixel-wise anomaly detection is performed by computing
the inlier free energy score Eθ(x)ω from (11.4) for each pixel position ω given a test
image x and inlier segmentation is obtained from the inlier classes from the PEBAL
model in (11.1). Following [103], we also apply a Gaussian smoothing kernel to produce
the final energy map.

11.4 Experiment

11.4.1 Datasets

LostAndFound [179] is one of the first publicly available urban driving scene anomaly
detection datasets containing real-world anomalous objects. The dataset has an official
testing set containing 1,203 images with small obstacles in front of the cars, collecting
from 13 different street scenes, featuring 37 different types of anomalous objects with
various sizes and material.

Fishyscapes [20] is a high-resolution dataset for anomaly estimation in semantic seg-
mentation for urban driving scenes. The benchmark has an online testing set that
is entirely unknown to the methods. The dataset is composed by two data sources:
Fishyscapes LostAndFound that contains a set of real road anomalous objects [179]
and a blending-based Fishyscapes Static dataset. The Fishyscapes LostAndFound
validation set consists of 100 images from the aforementioned LostAndFound dataset
with refined labels and the Fishyscapes Static validation set contains 30 images with
the blended anomalous objects from Pascal VOC [69]. For all datasets, we select the
checkpoints based on the results on the public validation sets, but submitted our code
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and checkpoints to the benchmark website to be evaluated on their hidden test sets.
Road Anomaly [130] contains real-world road anomalies in front of the vehicles.
The dataset has 60 images from the Internet, containing unexpected animals rocks,
cones and obstacles.Unlike the LostAndFound and Fishyscapes, this dataset contains
abnormal objects with various scales and sizes, making it even more challenging.

11.4.2 Implementation Details

Following [26, 27], we use DeepLabv3+ [28] with WideResNet34 trained by Nvidia [271]
and ResNet101 from [103] as the backbone of our segmentation models. The training
details of those models can be found in their original papers or our supplementary
material. The models are trained on Cityscapes [39] training set. For our PEBAL
fine-tuning, we empirically set the min and mout in Eq. 11.6 and Eq. 11.7 as -12 and
-6, respectively. The weights β1 and β2 in Eq. 11.8 are set to 5e− 4 and 3e− 6 [211], λ
in Eq. 11.2 to 0.1, and the weight of ℓebm to 0.1, respectively. Note that those hyper-
parameters are selected at the first training epoch to normalise loss values to a similar
scale. We also show our model can obtain consistently SOTA results regardless of the
selection of hyper-parameters in the supplementary material. Our training consists
of fine-tuning the final classification block of the model for 20 epochs. We use the
same resolution of random crop as in [271], and use Adam with a learning rate of
1e−5. The batch size is set to 16. Following [27], for our AnomalyMix augmentation,
we randomly sample 297 images as training data from the remaining COCO images
that do not contain objects in Cityscapes or our anomaly validation/testing sets and
randomly apply AnomalyMix to mix them into the Cityscape training images, following
Chan et al. [27].

11.4.3 Evaluation Measures

Following [20, 27, 49, 103], we compute the the area under receiver operating character-
istics (AUROC), average precision (AP), and the false positive rate at a true positive
rate of 95% (FPR95) to validate our approach. For Fishyscapes public leaderboard,
we use AP and FPR95 to compare with other methods, same as their website.

11.4.4 Comparison on Anomaly Segmentation Benchmarks
Comparison on LostAndFound.

Table 11.1 shows the result on the testing set of LostAndFound. Notably, our ap-
proach surpasses the previous baseline approaches (i.e., MSP [93], Mahalanobis [119],
Max Logit [95] and Entropy [95]) by 10% to 40% AP, and 13% to 22% FPR95, re-
spectively. When compared with previous SOTA approaches such as SynBoost [49],
SML [103] and Meta-OoD [27], we improve the AP performance by a large margin (15%
to 40%), and decrease the FPR95 by about 5% to 70%. This illustrates the robust-
ness and effectiveness on detecting small and distant anomalous objects given that the
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Table 11.1: Anomaly segmentation results on LostAndFound testing set, with
WideResnet34 backbone. All methods use the same segmentation models. * in-
dicate that the model requires additional learnable parameters. † indicates that the
results are obtained from the official code with our WideResnet34 backbone.

Methods AUC ↑ AP ↑ FPR95 ↓
MSP [93] 85.49 38.20 18.56

Mahalanobis [119] 79.53 42.56 24.51

Max Logit [95] 94.52 65.45 15.56

Entropy [95] 86.52 50.66 16.95

Energy [138] 94.45 66.37 15.69

Meta-OoD [27] 97.95 71.23 5.95
†SML [103] 88.05 25.89 44.48

†SynBoost* [49] 98.38 70.43 4.89

Deep Gambler [142] 98.67 72.73 3.81

Ours 99.76 78.29 0.81

dataset contains mostly real-world small objects. Our PEBAL also improves the EBM
baseline [138] and the AL baseline based on Deep Gambler [142]. This demonstrates
that a simple adaptation of AL and EBM is not enough to enable accurate pixel-wise
anomaly detection. Previous SOTA SML [103] aims to balance the inlier class-wise
discrepancy on prediction scores, which is disadvantageous for measuring performance
on LostAndFound test set since there may be no classes in the evaluation other than
the road class (i.e., most of the inlier classes within LF test set is road class), thus
leading to significant performance variations between LostAndFound and Fishyscapes.
It is worth noting that our approach achieves 1.03% FPR95, significantly reducing the
false positive pixels, improving the chances of applying it to real-world applications.

Comparison on Fishyscapes Leaderboard.

Table 11.2 shows the leaderboard results on the test set of Fishyscapes LostAndFound
and Fishyscapes Static. Following [103], we compared the methods based on whether
they require re-training of the entire segmentation network, adding the extra network,
or utilising the OoD data. We achieve the SOTA performance by a large margin
on Fishyscapes leaderboard when compared with the previous methods except [17]
(Static) that rely on an inefficient re-training segmentation model, extra learnable
parameters, and extra OoD training data. Without re-training the entire network
or adding extra learnable parameters, our approach can work efficiently to surpass
previous SOTA competing approaches that fall into the same category by about 13%
to 42% on LostAndFound and 40% to 50% AP on Static. Such significant improvements
indicate the generalisation ability of our proposed PEPAL on detecting a wide variety
of unseen abnormalities (i.e., of different size, type, scene, and distance) substantially
reducing false negative and positive pixels. Moreover, it is worth noting that PEBAL
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Table 11.2: Comparison with previous approaches on Fishyscapes Leaderboard. We
achieve a new state-of-the-art performance among the approaches that require extra
OoD data, and without re-training the segmentation networks and extra networks on
Fishyscapes Leaderboard.

Models re-training Extra Network OoD Data
FS LostAndFound FS Static

AP ↑ FPR95 ↓ AP ↑ FPR95 ↓
Discriminative Outlier Detection Head [17] " " " 31.31 19.02 96.76 0.29

MSP [93] $ $ $ 1.77 44.85 12.88 39.83

Entropy [95] $ $ $ 2.93 44.83 15.41 39.75

SML [103] $ $ $ 31.05 21.52 53.11 19.64

kNN Embedding - density [20] $ $ $ 3.55 30.02 44.03 20.25

Bayesian Deeplab [155] " $ $ 9.81 38.46 48.70 15.05

Density - Single-layer NLL [20] $ " $ 3.01 32.9 40.86 21.29

Density - Minimum NLL [20] $ " $ 4.25 47.15 62.14 17.43

Image Resynthesis [130] $ " $ 5.70 48.05 29.6 27.13

OoD Training - Void Class " $ " 10.29 22.11 45.00 19.40

Dirichlet Deeplab [149] " $ " 34.28 47.43 31.30 84.60

Density - Logistic Regression [20] $ " " 4.65 24.36 57.16 13.39

SynBoost [49] $ " " 43.22 15.79 72.59 18.75

Ours $ $ " 44.17 7.58 92.38 1.73

Table 11.3: Anomaly segmentation results on Fishyscapes validation sets (LostAnd-
Found and Static), and the Road Anomaly testing set, with WideResnet34 back-
bone. * indicate that the model requires additional learnable parameters. † indicates
that the results are obtained from the official code with our WideResnet34 backbone.
Best and second best results in bold.

Methods
FS LostAndFound FS Static Road Anomaly

AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓
MSP [93] 89.29 4.59 40.59 92.36 19.09 23.99 67.53 15.72 71.38

Max Logit [93] 93.41 14.59 42.21 95.66 38.64 18.26 72.78 18.98 70.48

Entropy [95] 90.82 10.36 40.34 93.14 26.77 23.31 68.80 16.97 71.10

Energy [138] 93.72 16.05 41.78 95.90 41.68 17.78 73.35 19.54 70.17

Mahalanobis [119] 96.75 56.57 11.24 96.76 27.37 11.7 62.85 14.37 81.09

Meta-OoD [49] 93.06 41.31 37.69 97.56 72.91 13.57 - - -
†Synboost* [49] 96.21 60.58 31.02 95.87 66.44 25.59 81.91 38.21 64.75

†SML [103] 94.97 22.74 33.49 97.25 66.72 12.14 75.16 17.52 70.70

Deep Gambler [142] 97.82 31.34 10.16 98.88 84.57 3.39 78.29 23.26 65.12

Ours 98.96 58.81 4.76 99.61 92.08 1.52 87.63 45.10 44.58

reduces the amount of false positive pixels to 7.58 and 1.73 FPR on the two datasets.
This result is publicly available on the Fishyscapes website.

Comparison on Fishyscapes validation sets and Road Anomaly.

In Tables 11.3 and 11.4, we compare our approach on the Fishyscapes validation sets
and Road Anomaly using two different backbones. Our model outperforms the previous
methods by a large margin on all three benchmarks, regardless of the backbones and
their segmentation accuracy. To verify the applicability of our method, except for
the modern WideResnet34 backbone, we use a ResNet101 DeepLabv3+ to investigate
the performance in terms of the size of the architecture and its inlier segmentation
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Table 11.4: Anomaly segmentation results on Fishyscapes validation sets (LostAnd-
Found and Static), and the Road Anomaly testing set, with Resnet101 backbone.
* indicate that the model requires additional learnable parameters. † indicates that
the results are obtained from the official code with our Resnet101 backbone. Best and
second best results in bold.

Methods
FS LostAndFound FS Static Road Anomaly

AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓
MSP [93] 86.99 6.02 45.63 88.94 14.24 34.10 73.76 20.59 68.44

Max Logit [93] 92.00 18.77 38.13 92.80 27.99 28.50 77.97 24.44 64.85

Entropy [95] 88.32 13.91 44.85 89.99 21.78 33.74 75.12 22.38 68.15

Energy [138] 93.50 25.79 32.26 91.28 31.66 37.32 78.13 24.44 63.36
†SynthCP* [246] 88.34 6.54 45.95 89.9 23.22 34.02 76.08 24.86 64.69
†Synboost* [49] 94.89 40.99 34.47 92.03 48.44 47.71 85.23 41.83 59.72

SML [103] 96.88 36.55 14.53 96.69 48.67 16.75 81.96 25.82 49.74

Deep Gambler [142] 97.19 39.77 12.41 97.51 67.69 15.39 85.45 31.45 48.79

Ours 99.09 59.83 6.49 99.23 82.73 6.81 92.51 62.37 28.29

accuracy. The results demonstrate that our approach is applicable to a wide-range
of segmentation models, indicating the effectiveness of PEBAL to adapt to real-world
systems.

Moreover, our fine-tuning sacrifices only marginally the inlier segmentation accu-
racy (i.e., 0.2% - 0.7% mIoU on Cityscapes) for both backbones, achieving good per-
formance on both inlier and anomaly segmentation. We present details of all inlier
segmentation models (i.e., Cityscapes training setup and mIoU), and include more
experimental results of other DeepLabv3+ checkpoints in supplementary material.

Remarks – Superior Performance on Challenging Benchmarks.

Each dataset has different challenges. For example, the LostAndFound testing set
considers only drivable areas with homogeneous normal scenes (i.e., road) and limited
categories of abnormalities (i.e., road obstacles), leading to a relatively less challenging
benchmark on which most methods can obtain good AUC performance, as shown in
Tables 11.1, 11.3 and 11.4. On the contrary, Fishyscapes and RoadAnomaly contain
large number of heterogeneous inlier and outlier pixels from diverse classes, leading to
significantly more difficult testbeds than the LostAndFound testing set. Furthermore,
Fishyscapes and RoadAnomaly contain domain shift compared with Cityscapes (e.g.,
both datasets contain different scenes than Cityscapes) and have different types/sizes
of OoD objects. Most existing SOTA methods work ineffectively on these two datasets
due to those challenges, while our adaptive pixel-level anomaly class learning helps our
model effectively detect these challenging inlier and outlier pixels in the aforementioned
heterogeneous and domain-shifted scenes, yielding substantial improvements (i.e., 20%
to 50%) to previous approaches, as shown in Tables 11.2, 11.3 and 11.4.
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Table 11.5: Ablation studies for anomaly segmentation on LostAndFound, with
WideResnet34 backbone, where all proposed modules are trained with COCO OE
images with AnomalyMix. CE denotes the baseline method that adds an extra OoD
class to learn the OE training samples with cross-entropy (first row).

CE ℓebm ℓpal ℓreg AUC ↑ AP ↑ FPR95 ↓
✓ 96.88 69.02 8.03

✓ 97.88 70.24 8.92

✓ 98.67 72.73 3.81

✓ ✓ 99.63 77.19 1.19

✓ ✓ ✓ 99.76 78.29 0.81

Table 11.6: The performance comparison of our approach on Fishyscapes benchmark
w.r.t different diversity of OE classes (mean results over six random seeds), in terms
of AP and FPR95.

Class Per.
FS LostAndFound FS Static

AP ↑ FPR95 ↓ AP ↑ FPR95 ↓
1% 53.57 ±3.74 6.97 ±1.98 85.84 ±1.01 3.05 ±0.97

5% 52.16 ±3.88 6.58 ±1.95 90.57 ±1.75 1.93 ±0.52

10% 55.14 ±3.02 5.78 ±1.59 91.37 ±1.28 1.64 ±0.58

25% 55.48 ±3.32 5.98 ±1.27 91.28 ±1.94 1.77 ±0.18

50% 56.69 ±2.57 5.32 ±1.16 91.88 ±0.71 1.62 ±0.05

75% 57.86 ±2.83 5.11 ±1.69 91.85 ±0.56 1.63 ±0.09

11.4.5 Ablation Study

Table 11.5 shows the contribution of each component of our PEBAL on the LostAnd-
Found testing set. All modules are trained with COCO OE images using AnomalyMix.
Adding an extra OoD class to learn the OE training samples with cross-entropy (CE)
is our baseline (first row). To justify the effectiveness of our proposed joint training, we
show the results using energy-based models (ℓebm without ℓpal) and pixel-wise absten-
tion (ℓpal with pre-defined fixed penalty). Both outperform the CE baselines (AP=70.2,
FPR=8.9 and AP=72.7, FPR=3.8 vs. AP=69, FPR=8.03), while our proposed joint
training (ℓebm + ℓpal) obtains 77.19% of AP and 1.19% of FPR, improving over each
module by 4% to 7%. This indicates the effectiveness of our joint training and the
significance of our proposed PAL with learnable adaptive energy-based penalties aω.
Finally, the smoothness and sparsity regularisation losses stabilise the training and
further improve the performance.
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Figure 11.3: Confidence calibration performances between WideResnet34 baseline,
Meta-OoD [27], and our approach.

11.4.6 Outlier Samples, Calibration and Efficiency
Outlier Diversity and Efficiency.

In Table 11.6, we randomly select 1%, 5%, 10%, 25% 50%, and 75% of COCO classes
as the OE data during training and compute the mean results over six different random
seeds. We achieve consistent AP and FPR performance regardless of the number of
COCO classes used during the training on Fishyscapes. It is also worth noting that
our approach can effectively learn the PEBAL model using only one class (1% in
Table 11.6) of outlier data, which selects some of the irrelevant classes of COCO objects
that are not possible to be found on road in real life (e.g., dining table, laptop, and
clock). The results indicate that our model can consistently achieve SOTA performance
on Fishyscapes without a careful selection of OE classes, demonstrating the robustness
of our approach under diverse outlier classes. We also investigate the outlier sample
efficiency of our model w.r.t smaller OE training sets with a fixed 100% COCO classes
(80 classes) on Fishyscapes in Table 11.7, and we achieve consistently good performance
regardless the number of outlier training samples. All those experiments show the
applicability of our PEBAL to real-world autonomous driving systems.

Confidence Calibration.

In Fig. 11.3, we show that our model can also improve the calibration of the segmen-
tation confidence. This figure shows that we improve the ECE and MCE [84] scores
by a small margin, showing another benefit of using our PEBAL approach.

Computational Efficiency.

We compare the computational efficiency of our PEBAL with previous SOTA Meta-
OoD [27] and Synboost [49] in terms of the trainable parameters, training time and
mean inference time per image, on an NVIDIA3090. As PEBAL requires the fine-tuning
of the final classification block, it has only 1.3M parameters and each training epoch
takes about 12 minutes, which is significantly less than the re-training approach Meta-
OoD that has 137.1M parameters and each training epoch takes about 26 minutes, and
the reconstruction based approach Synboost that takes about 33 minutes to train a
epoch of its re-synthesis and dissimilarity networks with 157.3M parameters. Moreover,
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Table 11.7: The performance comparison of our approach on Fishyscapes benchmark
w.r.t different amount of OE training samples (mean results over six random seeds),
in terms of AP and FPR95.

Train Size
FS LostAndFound FS Static

AP ↑ FPR95 ↓ AP ↑ FPR95 ↓
5% 54.32 ±1.89 5.77 ±2.38 89.11 ±1.52 2.23 ±0.65

10% 56.28 ±1.05 4.66 ±1.36 90.02 ±0.57 1.67 ±0.28

25% 56.18 ±1.69 4.81 ±1.44 91.23 ±0.95 1.63 ±0.22

50% 57.34 ±1.19 4.75 ±1.32 91.29 ±0.92 1.67 ±0.17

our method also has a much faster mean inference time of 0.55s compared to 0.68s of
Meta-OoD and 1.95s of Synboost. Those results suggest the practicability of our model
in real-world self-driving systems.

11.5 Conclusions and Discussions

We proposed a simple yet effective approach, named Pixel-wise Energy-biased Absten-
tion Learning (PEBAL), to fine-tune the last block of a segmentation model to detect
unexpected road anomalies. The approach introduces a non-trivial training that jointly
optimises a novel pixel-wise abstention learning and an energy-based model to learn
an adaptive pixel-wise anomaly class, in which a new pixel-wise energy-biased penalty
estimation method is proposed to improve the precision and robustness to detect small
and distant anomalous objects. The resulting model significantly reduces the false
positive and false negative detected anomalies, compared with previous SOTA meth-
ods. The results on four benchmarks demonstrate the accuracy and robustness of our
approach to detect anomalous objects regardless of the amount or diversity of exposed
training outliers. Despite the remarkable performance on most datasets, PEBAL is
not as effective on the most challenging dataset, Road Anomaly, that contains signif-
icantly more diverse and realistic anomalous objects. We plan to further enhance the
generalisation of our model to accurately detect more unknown, diverse anomalies.

168



Chapter 12

Conclusion

In this thesis, we developed effective deep anomaly detection methods for computer
vision and medical image analysis tasks. First, we discussed the issues of current
reconstruction-based UAD approaches. For instance, UAD models often generalise so
well that they can also accurately reconstruct abnormalities (i.e., with low reconstruc-
tion error), leading to potential mis-detection of anomalies. To address this issue, we
proposed ADGAN for anomaly detection using a dual GAN structure that provides
stronger constraints to map between the input image and GAN’s latent spaces.

Inspired by the recently proposed Masked Autoencoders [89] (MAE), we introduced
a new UAD reconstruction method to address the aforementioned low-reconstruction
error issue, named MemMC-MAE, for anomaly detection and localisation in medical
images. To the best of our knowledge, our MemMC-MAE is the first UAD method
based on MAE. We modified the standard MAE transformer encoder with a novel
memory-augmented self-attention operator and a new multi-level cross-attention for
the MAE transformer decoder. MemMC-MAE randomly masked large regions of the
input image during its reconstruction, reducing the risk that it will produce low re-
construction errors because anomalous regions are likely to be masked and cannot
be reconstructed. However, when anomaly regions are not masked, then the normal
patterns stored in the encoder’s memory combined with the decoder’s multi-level cross-
attention will constrain the reconstruction ability of the model and enforce it to re-
construct the abnormal images into their normal version. The resulting model showed
SOTA anomaly detection and localisation performance on colonoscopy and Covid-19
Chest X-ray datasets.

We then proposed the first few-shot anomaly detection framework, named FSAD-
NET. This new approach introduces a middle ground between the imbalanced learning
methods that generally require a relatively large amount of abnormal training data
and the UAD methods that use no abnormal training data. FSAD-NET is trained
to learn fine-grained anomalous features from only a few abnormal samples and to
generalise well for unseen anomalies. The resulting FSAD-NET achieves significantly
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better accuracy than previous UAD and imbalanced learning methods.

Another major challenge faced by UAD methods is how to learn effective low-
dimensional feature representations to detect and localise subtle abnormal lesions
(e.g., small and flat polyp). Such low-dimensional representations are crucial for
downstream anomaly classifiers. Despite the recent progress of self-supervised meth-
ods [10, 30, 77, 90, 94, 133] that have been shown to learn effective representations
for general computer vision tasks [10, 77, 94], the effectiveness of those methods in
UAD for medical images remains unexplored. We addressed this issue with a new
self-supervised pre-training solution for UAD methods, named constrained contrastive
distribution (CCD) learning, which enforces non-uniform representation distribution
by constraining contrastive distribution learning with two pretext tasks. Our CCD
achieves state-of-the-art results when pre-training a wide range of off-the-shelf anomaly
classifiers, indicating that our method is agnostic to downstream classifiers. Although
achieving good results in many benchmarks, the contrastive learning explored by CCD
ignores the fact that the downstream UAD methods need to recognise one class of nor-
mal images and a small number of sub-classes of disease images. Moreover, CCD’s data
augmentation is based on methods designed for computer vision images and cannot pro-
duce realistic synthesised medical image anomalies. Those two issues can challenge the
training of downstream UAD approaches for medical image analysis problems. Hence,
we extended our CCD pre-training approach by introducing a new contrastive learn-
ing loss to convert the training of one-class classifiers into the training of multi-class
clustering methods, with the goal of constructing denser and tighter clusters with the
proposed MedMix data augmentation to simulate realistic medical abnormalities. The
resulting MSACL pre-training yields significantly better performance than our previous
CCD pre-training. To the best of our knowledge, Our CCD and MSACL are the first
works to explore self-supervised pre-training for UAD tasks in medical image analysis.

Despite the remarkable performance of UAD methods with self-supervised pre-
training, the training of anomaly classifier often suffers from overfitting the training
data, especially when the training set is small or contaminated with anomalous sam-
ples. To address this issue, we proposed a novel UAD model, named interpolated Gaus-
sian descriptor (IGD), to perform unsupervised anomaly detection and segmentation.
Our IGD aims to tackle the overfitting and unstable training issues (e.g., catastrophic
collapse) of previous OCC/UAD models by formulating the optimisation as an EM
algorithm. We show that the proposed one-class Gaussian anomaly classifier trained
with adversarially interpolated samples enables a robust representation of normal sam-
ples, which is able to achieve the best performance on six anomaly detection datasets.
To the best of our knowledge, IGD is also the first method to assess model’s robustness
under insufficient and contaminated datasets.

For weakly supervised video anomaly detection, we introduced a novel method,
named Robust Temporal Feature Magnitude learning (RTFM). RTFM learns a tem-
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poral feature magnitude mapping function that: 1) detects rare abnormal snippets
from abnormal videos containing many normal snippets, and 2) guarantees a large
margin between normal and abnormal snippets. The proposed RTFM model is able
to learn discriminative features that allows a robust identification of subtle anomalies
from videos labelled as abnormal, allowing a better exploitation of abnormal training
data. We then adapted this WVAD setup to polyp frame detection with a novel con-
volutional transformer-based multiple instance learning method designed to identify
abnormal polyps frames from anomalous videos containing at least one frame with
polyp. Our transformer architecture can seamlessly map the local and global temporal
dependencies while simultaneously optimising video and snippet-level anomaly scores.
Moreover, a novel and effective contrastive snippet mining (CSM) was proposed to
enable the selection of challenging abnormal polyp frames from abnormal colonoscopy
videos. Our model showed substantially better results than previous SOTA competing
methods on our newly proposed large-scale colonoscopy video dataset.

Finally, we introduced a simple yet effective approach, named Pixel-wise Energy-
biased Abstention Learning (PEBAL), to tackle anomaly segmentation tasks. This
task is particularly important for self-driving systems because current segmentation
models often fail to detect unexpected road anomalies, leading to potentially fatal
traffic collisions. We argue that previous uncertainty-based approaches tend to not
work well for pixel-wise tasks, and reconstruction-based approaches depend on an extra
reconstruction network that is hard to train and inefficient to run in real-time self-
driving embedded systems. Hence, to resolve the issues above, our PEBAL introduced
a non-trivial training that learns a novel adaptive energy-based penalty for every pixel
through an energy-based model, which is jointly optimised with a novel pixel-wise
abstention learning. The resulting method is efficient to run and able to significantly
improve the precision and robustness of the detection of small and distant anomalous
objects, compared with previous competing approaches on four benchmarks.

12.1 Limitations and Future Work

In this thesis, we developed new methods for anomaly detection under the unsuper-
vised, weakly supervised and few-shot settings. However, in real-world applications,
the normal datasets may contain a few anomalous samples, which highlights the im-
portance of studying methods that can be trained with anomaly contaminated training
data. Hence, we plan to develop new approaches that will be robust to around 5% to
10% of anomalous data incorrectly present in the training set of normal data. Our
methods will be designed to identify such anomalous data by pseudo-labelling them
during the training process. Unlike our previous IGD approach that showed robust-
ness under anomaly contamination, our planned approach will take advantage of the
outlier samples through the pseudo labelling process and re-formulate the problem as
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an open-set noisy-label learning.
For self-supervised pre-training of UAD methods in medical images, the current

CCD and MSACL models only consider 2D images. In future work, we plan to extend
such self-supervised pre-training approaches to 3D CT and MRI images. Moreover,
inspired by the recent success of vision transformer, we will further explore the self-
supervised pre-training for UAD methods using the transformer architecture.

IGD proposed a Gaussian anomaly classifier to learn normality patterns from whole
images only, ignoring the important pixel/patch level information. In future work, we
plan to study the use of Gaussian anomaly classifier using pixel/patch data to enable
better segmentation accuracy. Furthermore, inspired by the MAE pre-training ap-
proach for multi-class classification [89], we will adapt our MemMC-MAE pre-training
to other UAD methods in future work.

Despite the remarkable performance on most datasets, PEBAL is not as effective on
the most challenging dataset, Road Anomaly, that contains significantly more diverse
and realistic anomalous objects under domain-shifted scenes. In the future, we will
improve PEBAL’s robustness to domain shift scenarios with data transformations (e.g.,
color jittering and Gaussian blur) to suppress domain-shifted feature correlations, and
a combination of instance and batch normalisation.

For weakly-supervised video anomaly detection (WVAD) approaches, the two mod-
els introduced in this thesis (in Chapter 8 and 9) will fail on online applications be-
cause the models require the whole videos to be analysed during the self-attention
operation. To resolve this issue, we plan to propose an online approximator to com-
pute the self-attention using only past video snippets. Another potential future work
for the WVAD setup is on the exploration of unsupervised deep clustering approaches
to assign video level pseudo labels during training, completely avoiding the labori-
ous annotation process. Lastly, low computational complexity is critical to enable the
deployment of systems to real-time applications, such as video surveillance and self-
driving cars. Therefore, we plan to modify our anomaly detection systems so that
they have small run-time and memory complexities. We hope this thesis can serve as
inspiration to build effective, robust, and practical anomaly detectors for the computer
vision community.
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Appendix A

IGD (Chapter 6) Appendix

A.1 Datasets

CIFAR10 contains 60,000 images with 10 classes. MNIST and Fashion MNIST contain
70,000 images with 10 classes of handwritten digits and fashion products, respectively.
MVTec AD [13] contains 5,354 high-resolution real-world images of 15 different industry
object and textures. The normal class of MVTec AD is formed by 3,629 training and
467 testing images without defects. The anomalous class has more than 70 categories of
defects (such as dents, structural fails, contamination, etc.) and contains 1,258 testing
images. MVTec AD provides pixel-wise ground truth annotations for all anomalies
in the testing images, allowing the evaluation of anomaly detection and localisation.
Hyper-Kvasir has 1,600 normal images without polyps in the training set and 500 in
the testing set; and 1,000 abnormal images containing polyps in the testing set. For
LAG, we have 2,343 normal images without glaucoma in the training set; and 800
normal images and 1,711 abnormal images with glaucoma for testing.

A.2 Global and Local IGD Models

Figure A.1 shows an example of a multi-scale structural and non-structural anomaly
localisation result for an MVTec AD image, using both the local and global IGD models.
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Figure A.1: Example of the multi-scale structural and non-structural anomaly localisa-
tion result for an MVTec AD [13] image, using both the local and global IGD models.
The global model tends to produce smooth results but with some mistakes, while the
local model produces jagged results, but without the global mistakes, so by combining
the two results, we obtain a smooth and correct anomaly heatmap.

A.3 Multi-scale Structure Similarity Index (MS-

SSIM) Score

The MS-SSIM loss uses the MS-SSIM global score, defined as

m(G)(x(ω),x̂(ω)) = [lM(x(ω), x̂(ω))]αM×
m(G)∏
m=1

[cm(x(ω), x̂(ω))]βm [sm(x(ω), x̂(ω))]γm ,
(A.1)

where x(ω) denotes an image patch centred at ω ∈ Ω of size 11 × 11 × 3,

lM(x(ω), x̂(ω)) =
2µx(ω)µx̂(ω) + C1

µ2
x(ω) + µ2

x̂(ω) + C1

, (A.2)

cm(x(ω), x̂(ω)) =
2σx(ω)σx̂(ω) + C2

σ2
x(ω) + σ2

x̂(ω) + C2

, (A.3)

sm(x(ω), x̂(ω)) =
σx(ω)x̂(ω) + C3

σx(ω)σx̂(ω) + C3

, (A.4)

with C1, C2, C3 representing pre-defined constants, µx(ω) denoting the mean intensities
of x(ω), σ2

x(ω) the variance of x(ω), and σx(ω)x̂(ω) the covariance of x(ω) and x̂(ω).

In (A.1), m(G) = 5 denotes the number of scales, β1 = γ1 = 0.0448, β2 = γ2 = 0.2856,
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β3 = γ3 = 0.3001, β4 = γ4 = 0.2363, α5 = β5 = γ5 = 0.1333 [242]. We follow
Ci = (KiL)2 (for i ∈ {1, 2, 3}) according to [240] and define L = 4.7579 as the pixel
range with K1 = 0.01, K2 = 0.03 and C3 = C2/2.

The local score m(L)(x(L)(ω), x̂(L)(ω)) is defined in the same way as in (A.1), where
x(L)(ω) is an image patch centred at ω ∈ Ω of size 3 × 3 × 3, m(L) = 4 scales with
weights β1 = γ1 = 0.0516, β2 = γ2 = 0.3295, β3 = γ3 = 0.3463, α4 = β4 = γ4 = 0.2726
modified based on the original proportion for m(G) = 5.

A.4 Implementation Details

For this SSL pre-training, we use the SGD optimiser with a learning rate of 0.01, weight
decay 10−1, batch size of 32, and 2,000 epochs. Once we obtain the pre-trained encoder
with SSL, we remove the MLP layer and attach a linear layer to the backbone with
fixed parameters. Note that this SSL is trained from scratch. In contrast to the vanilla
self-supervised learning [29] suggesting large batch size, we notice that a medium batch
size yields significantly better performance for unsupervised anomaly detection.

For the ImageNet KD pre-training, we minimise the ℓ2 norm between the 512-
dimensional feature vector output from encoder and an intermediate layer of the Im-
ageNet pre-trained ResNet18 [92] with the same 512-dimensional features. For this
ImageNet KD pre-training, we use the Adam optimiser with a learning rate of 0.0001,
weight decay 10−5, batch size of 64, and 50,000 iterations. Once we obtain the pre-
trained encoder of KD, we fix the network parameters and attach a linear layer to
reduce the dimensionality of the feature space to 128.

A.5 Visualisation of the Distribution of Testing Sam-

ples

Figure A.2 shows the distribution of testing samples in the representation space, using
the t-SNE visualisation, for DSVDD [191], Gaussian anomaly classifier (GAC), and
our IGD. Notice that the normal samples seem to be more compactly represented with
fewer anomalous samples appearing inside the normal cluster. This suggests that IGD
has a superior normality description, compared with DSVDD and GAC.
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DSVDD GAC IGD

Abnormal Normal Center

Figure A.2: t-sne visualisation from MVTec (class bottle).

Metric Method Bottle Hazelnut Capsule Metal Nut Leather Pill Wood Carpet Tile Grid Cable Transistor Toothbrush Screw Zipper Mean

Accuracy

AVID [195] 0.85 0.86 0.85 0.63 0.58 0.86 0.83 0.70 0.66 0.59 0.64 0.58 0.73 0.66 0.84 0.73

AESSIM [15] 0.88 0.54 0.61 0.54 0.46 0.60 0.83 0.67 0.52 0.69 0.61 0.52 0.74 0.51 0.80 0.63

DAE [85] 0.80 0.88 0.62 0.73 0.44 0.62 0.74 0.50 0.77 0.78 0.56 0.71 0.98 0.69 0.80 0.71

AnoGAN [200] 0.69 0.50 0.58 0.50 0.52 0.62 0.68 0.49 0.51 0.51 0.53 0.67 0.57 0.35 0.59 0.55

λ-VAEu [44] 0.86 0.74 0.86 0.78 0.71 0.80 0.89 0.67 0.81 0.83 0.56 0.70 0.89 0.71 0.67 0.77

LSA [1] 0.86 0.80 0.71 0.67 0.70 0.85 0.75 0.74 0.70 0.54 0.61 0.50 0.89 0.75 0.88 0.73

CAVGA-Du [228] 0.89 0.84 0.83 0.67 0.71 0.88 0.85 0.73 0.70 0.75 0.63 0.73 0.91 0.77 0.87 0.78

CAVGA-Ru [228] 0.91 0.87 0.87 0.71 0.75 0.91 0.88 0.78 0.72 0.78 0.67 0.75 0.97 0.78 0.94 0.82

Ours - ImageNet 0.95 0.93 0.80 0.82 0.87 0.77 0.94 0.69 0.90 0.92 0.73 0.88 0.98 0.58 0.85 0.84

Ours - SSL 0.95 0.93 0.81 0.82 0.90 0.74 0.89 0.71 0.94 0.90 0.79 0.85 0.98 0.67 0.88 0.85

AUC

AnoGAN [200] 0.800 0.259 0.442 0.284 0.451 0.711 0.567 0.337 0.401 0.871 0.477 0.692 0.439 0.100 0.715 0.503

GANomaly [3] 0.794 0.874 0.721 0.694 0.808 0.671 0.920 0.821 0.720 0.743 0.711 0.808 0.700 1.000 0.744 0.782

Skip-GANomaly [4] 0.937 0.906 0.718 0.790 0.908 0.758 0.919 0.795 0.850 0.657 0.674 0.814 0.689 1.000 0.663 0.805

U-Net [189] 0.863 0.996 0.673 0.676 0.870 0.781 0.958 0.774 0.964 0.857 0.636 0.674 0.811 1.000 0.750 0.819

DAGAN [215] 0.983 1.000 0.687 0.815 0.944 0.768 0.979 0.903 0.961 0.867 0.665 0.794 0.950 1.000 0.781 0.873

SCADN [251] 0.957 0.856 0.765 0.504 0.983 0.833 0.659 0.624 0.814 0.831 0.792 0.981 0.863 0.968 0.846 0.818

Ours - ImageNet 1.000 0.986 0.907 0.886 0.922 0.870 0.982 0.828 0.979 0.979 0.856 0.909 0.997 0.815 0.969 0.926

Ours - SSL 1.000 0.997 0.915 0.913 0.958 0.873 0.946 0.828 0.991 0.978 0.906 0.906 0.997 0.825 0.970 0.934

Table A.1: Anomaly detection: mean testing accuracy and AUC on MVTec AD
produced by the SOTA and our method.

A.6 Correctness Proof

Lemma A.6.1. Assuming that the maximisation of the constrained ℓELBO produces θ
that makes
Eq(ω)[log pθ(y = 0, ω|x,PX )] ≥ Eq(ω)[log pθold(y = 0, ω|x,PX )],

we have that (log pθ(y = 0|x,PX ) − log pθold(y = 0|x,PX )) is lower bounded by(
Eq(ω)[log pθ(y = 0, ω|x,PX )] − Eq(ω)[log pθold(y = 0, ω|x,PX )]

)
≥ 0,

with q(ω) = pθold(ω|PX ).

176



Proof. We follow the proof for Theorem 1 in [46]. From the main paper, we have

logpθ(y = 0|x,PX ) =

ℓELBO(q, θ) +KL[q(ω)||pθ(ω|PX )],
(A.5)

where q(ω) = pθold(ω|PX ). Subtracting log pθ(y = 0|x,PX ) and log pθold(y = 0|xPX ),
we have

logpθ(y = 0|x) − log pθold(y = 0|x) =

ℓELBO(q, θ) − ℓELBO(q, θold)+

KL[q(ω)||pθ(ω|PX )] −KL[q(ω)||pθold(ω|PX )].

(A.6)

SinceKL[q(ω)||pθ(ω|PX )] ≥ KL[q(ω)||pθold(ω|PX )] and that ℓELBO(q, θ)−ℓELBO(q, θold) =
Eq(ω)[log pθ(y = 0, ω|x,PX )] − Eq(ω)[log pθold(y = 0, ω|x,PX )], we conclude that

logpθ(y = 0|x,PX ) − log pθold(y = 0|x,PX ) ≥
Eq(ω)[log pθ(y = 0, ω|x,PX )]−
Eq(ω)[log pθold(y = 0, ω|x,PX )] ≥ 0

(A.7)

because of the assumption in this Lemma.

A.7 Convergence Conditions Proof

Lemma A.7.1. Assume that {θ(e)}+∞
e=1 denotes the sequence of trained model parame-

ters from the constrained optimisation of ℓELBO such that: 1) the sequence {log pθ(e)(y =
0|x,PX )}+∞

e=1 is bounded above, and 2)
(
Eq(ω)[log pθ(e+1)(y = 0, ω|x,PX )] − Eq(ω)[log pθ(e)(y = 0, ω|x,PX )]

)
≥

ξ
(
θ(e+1) − θ(e)

)⊤ (
θ(e+1) − θ(e)

)
, for ξ > 0 and all e ≥ 1, and q(ω) = pθ(e)(ω|PX ). Then

{θ(e)}+∞
e=1 converges to some θ⋆ ∈ Θ.

Proof. We follow the proof for Theorem 2 in [46]. The sequence {log pθ(e)(y = 0|x,PX )}+∞
e=1

is non-decreasing (from Lemma A.6.1) and bounded above (from assumption (1) in
Lemma A.7.1), so it converges to L⋆ < +∞. Hence, using Cauchy criterion [158], for
any ϵ > 0, we have e(ϵ) such that, for e ≥ e(ϵ) and all r ≥ 1,

r∑
j=1

(log pθ(e+j)(y = 0|x,PX ) − log pθ(e+j−1)(y = 0|x,PX )) =

(log pθ(e+r)(y = 0|x,PX ) − log pθ(e)(y = 0|x,PX )) < ϵ.

(A.8)

From (A.7),

0 ≤ Eq(ω)[log pθ(e+j)(y = 0, ω|x,PX )]−
Eq(ω)[log pθ(e+j−1)(y = 0, ω|x,PX )]

≤ log pθ(e+j)(y = 0|x,PX ) − log pθ(e+j−1)(y = 0|x,PX )

(A.9)
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for j ≥ 1 and q(ω) = pθ(e+j−1)(ω|PX ). Hence, from (A.8),

r∑
j=1

(Eq(ω)[log pθ(e+j)(y = 0, ω|x,PX ))]−

Eq(ω)[log pθ(e+j−1)(y = 0, z|x,PX ))]) < ϵ,

(A.10)

for e ≥ e(ϵ) and all r ≥ 1. Given assumption (2) in Lemma A.7.1 for e, e + 1, e +
2, ..., e+ r − 1, we have from (A.10),

ϵ > ξ
r∑
j=1

(
θ(e+j) − θ(e+j−1)

)⊤ (
θ(e+j) − θ(e+j−1)

)
, (A.11)

so
ϵ > ξ

(
θ(e+r) − θ(e)

)⊤ (
θ(e+r) − θ(e)

)
, (A.12)

which is a requirement to prove the convergence of θ(e) to some θ⋆ ∈ Θ.

A.8 Class-level Results

The class-level results are shown in Tables A.1, A.2, A.3, A.4, and A.5. The mean
accuracy and class-level anomaly detection accuracy on MVTec dataset is displayed
in Tab. A.1, where our ImageNet KD pre-trained model outperforms the previous
SOTA methods CAVGA-Du and CAVGA-Ru [228] by 6% and 2%, respectively, and
our SSL pre-trained model outperforms their approach by 7% and 3%, respectively.
With ImageNet KD pre-training, our model achieves the best accuracy results in ten
categories of the MVTec AD. The shallow generative baselines, such as DAE, AE-
SSIM and AnoGAN yield sub-optimal results on MVTec AD. When compared with
methods recently considered to be the MVTec AD SOTA, such as LSA [1] and λ-
VAEu [44], our approach shows more than 7% improvement. We also show the AUC
anomaly detection results in Tab. A.1, where our method, with SSL and ImageNet
KD pre-training, surpasses all previous methods by at least 5.3%, and produces the
best results in eleven categories. The results of IGD for MNIST in Tab.A.2 show
that our approach pre-trained with ImageNet KD is competitive with the Student-
Teacher [11], and both are better than any of the previously proposed methods in
the field. In Table A.3, we only show the results of our approach because we could
not find the class-level results for other approaches. On the class-level results for
CIFAR10, on Tab. A.4, we notice that our approach pre-trained with ImageNet and
SSL shows the best AUC result in the field by a large margin (around 10%) compared
with the Student-Teacher [11] approach. Finally, the class-level anomaly localisation
AUC results for MVTec on Tab. A.5 only shows the results of our approach because
we could not find results from other approaches.
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Method 0 1 2 3 4 5 6 7 8 9 Mean

DAE [85] 0.894 0.999 0.792 0.851 0.888 0.819 0.944 0.922 0.740 0.917 0.8766

VAE [109] 0.997 0.999 0.936 0.959 0.973 0.964 0.993 0.976 0.923 0.976 0.9696

KDE [19] 0.885 0.996 0.710 0.693 0.844 0.776 0.861 0.884 0.669 0.825 0.8140

OCSVM [201] 0.988 0.999 0.902 0.950 0.955 0.968 0.978 0.965 0.853 0.955 0.9510

AnoGAN [200] 0.966 0.992 0.850 0.887 0.894 0.883 0.947 0.935 0.849 0.924 0.9127

DSVDD [191] 0.980 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.9480

OCGAN [176] 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981 0.9750

PixelCNN [224] 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.6180

CapsNetPP [125] 0.998 0.990 0.984 0.976 0.935 0.970 0.942 0.987 0.993 0.990 0.9770

CapsNetRE [125] 0.947 0.907 0.970 0.949 0.872 0.966 0.909 0.934 0.929 0.871 0.9250

ADGAN [41] 0.999 0.992 0.968 0.953 0.960 0.955 0.980 0.950 0.959 0.965 0.9680

LSA [1] 0.993 0.999 0.959 0.966 0.956 0.964 0.994 0.980 0.953 0.981 0.9750

GradCon [114] 0.995 0.999 0.952 0.973 0.969 0.977 0.994 0.979 0.919 0.973 0.9730

λ-VAEu [44] 0.991 0.996 0.983 0.978 0.976 0.972 0.993 0.981 0.98 0.967 0.9820

ULSLM [243] 0.991 0.972 0.919 0.943 0.942 0.872 0.988 0.939 0.96 0.967 0.9490

CAVGA-Du [228] 0.994 0.997 0.989 0.983 0.977 0.968 0.988 0.986 0.988 0.991 0.9860

Student-Teacher [11] 0.999 0.999 0.990 0.993 0.992 0.993 0.997 0.995 0.986 0.991 0.9935

Ours - ImageNet 0.998 0.999 0.992 0.991 0.993 0.991 0.997 0.990 0.984 0.991 0.9927

Table A.2: Anomaly detection: class-level testing AUC on MNIST produced by the
SOTA and our methods.

A.9 Qualitative Localisation Results

Figure A.3 shows the polyp segmentation results on Hyper-Kvasir testing set images,
and Figure A.4 displays the defect results on MVTec AD testing set images.

Figure A.3: Qualitative visual results from Hyper-Kvasir testing set (red = anomaly).
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Method 0 1 2 3 4 5 6 7 8 9 Mean

Ours - ImageNet 0.908 0.992 0.902 0.946 0.93 0.95 0.818 0.993 0.938 0.981 0.935

Ours - SSL 0.926 0.992 0.922 0.946 0.931 0.971 0.832 0.992 0.946 0.982 0.944

Table A.3: Anomaly detection: class-level testing AUC on FMNIST produced by
our methods.

Method Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

DAE [85] 0.411 0.478 0.616 0.562 0.728 0.513 0.688 0.497 0.487 0.378 0.5358

VAE [109] 0.634 0.442 0.640 0.497 0.743 0.515 0.745 0.527 0.674 0.416 0.5833

KDE [19] 0.658 0.520 0.657 0.497 0.727 0.496 0.758 0.564 0.680 0.540 0.6100

OCSVM [201] 0.630 0.440 0.649 0.487 0.735 0.500 0.725 0.533 0.649 0.508 0.5860

AnoGAN [200] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.6179

DSVDD [191] 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.6481

OCGAN [176] 0.757 0.531 0.640 0.62 0.723 0.620 0.723 0.575 0.820 0.554 0.6566

PixelCNN [224] 0.788 0.428 0.617 0.574 0.511 0.571 0.422 0.454 0.715 0.426 0.5510

CapsNetPP [125] 0.622 0.455 0.671 0.675 0.683 0.350 0.727 0.673 0.710 0.466 0.6120

CapsNetRE [125] 0.371 0.737 0.421 0.588 0.388 0.601 0.491 0.631 0.410 0.671 0.5310

ADGAN [41] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.6180

LSA [1] 0.735 0.580 0.690 0.542 0.761 0.546 0.751 0.535 0.717 0.548 0.6410

GradCon [114] 0.760 0.598 0.648 0.586 0.733 0.603 0.684 0.567 0.784 0.678 0.6640

λ-VAEu [44] 0.702 0.663 0.68 0.713 0.77 0.689 0.805 0.588 0.813 0.744 0.7170

ULSLM [243] 0.740 0.747 0.628 0.572 0.678 0.602 0.753 0.685 0.781 0.795 0.7360

CAVGA-Du [228] 0.653 0.784 0.761 0.747 0.775 0.552 0.813 0.745 0.701 0.741 0.7370

Student-Teacher [11] 0.789 0.849 0.734 0.748 0.851 0.793 0.892 0.830 0.862 0.848 0.8196

Ours - ImageNet 0.868 0.870 0.738 0.716 0.850 0.766 0.890 0.871 0.898 0.899 0.8368

Ours - SSL 0.906 0.979 0.839 0.823 0.886 0.899 0.909 0.964 0.969 0.948 0.9125

Table A.4: Anomaly detection: class-level testing AUC on CIFAR10 produced by
the SOTA and our methods.
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Method Bottle Hazelnut Capsule Metal Nut Leather Pill Wood Carpet Tile Grid Cable Transistor Toothbrush Screw Zipper Mean

Ours - ImageNet 0.928 0.981 0.967 0.902 0.983 0.962 0.827 0.901 0.727 0.916 0.835 0.843 0.974 0.960 0.932 0.909

Ours - SSL 0.922 0.980 0.977 0.926 0.995 0.973 0.891 0.947 0.780 0.977 0.847 0.844 0.977 0.970 0.967 0.931

Table A.5: Anomaly localisation: class-level testing pixel-wise localisation AUC
results on the anomalous images of MVTec AD produced by our methods.
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Figure A.4: Qualitative results of our anomaly localisation results on the MVTec AD
testing set (red = high probability of anomaly).
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Appendix B

RTFM (Chapter 8) Appendix

B.1 Theoretical Motivation of RTFM

Theorem B.1.1 (Expected Separability Between Abnormal and Normal Videos). As-
suming that E[∥x+∥2] ≥ E[∥x−∥2], where X+ has µ abnormal samples and (T − µ)
normal samples, where µ ∈ [1, T ], and X− has T normal samples. Let Dθ,k(.) be the
random variable from which the separability scores dθ,k(.) of Eq.3 in the main paper are
drawn [124].

1. If 0 < k < µ, then

0 ≤ E[Dθ,k(X
+,X−)] ≤ E[Dθ,k+1(X

+,X−)].

2. For a finite µ, then

lim
k→∞

E[Dθ,k(X
+,X−)] = 0.

Proof.

E[Dθ,k(X
+,X−)] = E[gθ,k(X

+)] − E[gθ,k(X
−)]

= p+k (X+)E[∥x+∥2] + p−k (X+)E[∥x−∥2] − E[∥x−∥2]
(B.1)

1. Trivial given that E[∥x+∥2] ≥ E[∥x−∥2] and that p+k+1(X
+) > p+k (X+) for 0 <

k < µ

2. Trivial given that as µ is finite, limk→∞ p+k (X+) = 0.

183



Intuition of feature magnitude: Assuming the expected magnitude of abnormal
samples is larger than of normal samples, we can derive Thm. 3.1 that proves that
the expected feature magnitude-based separability score between normal and abnormal
videos grows for 0 < k < µ and reduces to zero for k → ∞. Hence, to use Thm. 3.1,
we need to enforce larger magnitude for abnormal features using our proposed RTFM.
The similarity between the theoretical and empirical curves in Fig.B.1(left) is evidence
of the soundness of Thm. 3.1.

B.2 Computational Efficiency

We investigate if our system can run in real time. During inference, our method
processes a 16-frame clip in 0.76 seconds on a Nvidia 2080Ti–this time includes the I3D
extraction time. This indicates that our system can achieve good real-time detection
in real-world applications.

B.3 Temporal Dependency

Temporal Dependency has been explored in [65, 112, 137, 145, 245, 250, 266]. In
anomaly detection, traditional methods [112, 250] convert consecutive frames into
handcrafted motion trajectories to capture the local consistency between neighbour-
ing frames. Diverse temporal dependency modelling methods have been used in deep
anomaly detection approaches, such as stacked RNN [145], temporal consistency in
future frame prediction [65], and convolution LSTM [137]. However, these methods
capture short-range fixed-order temporal correlations only with single temporal scale,
ignoring the long-range dependency from all possible temporal locations and the events
with varying temporal length. GCN-based methods are explored in [245, 266] to cap-
ture the long-range dependency from snippets features, but they are inefficient and
hard to train. By contrast, our proposed module combines PDC [254] and TSA [239]
on the temporal dimension to seamlessly and efficiently incorporate both the long and
short-range temporal dependencies into our temporal feature ranking loss.

B.4 Ablations for k and m

We show the AUC results as a function of top-k and margin m values on ShanghaiTech
in Fig.B.1. Consistent to our theoretical analysis, the performance of our model peaks
at a sufficiently large k, flattens at around k ≈ µ and then drops with increasing k
(Fig.B.1(left)). It is also robust to a large range of m ∈ [50, 1200] with a stable AUC
in [93%, 96%] (Fig.B.1(right)).
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Figure B.1: AUC w.r.t. top-k (Left) and the margin m (Right).
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Appendix C

PEBAL (Chapter 11) Appendix

C.1 Qualitative results

In Figure C.1, we show some additional qualitative results. Our approach can effectively
detect small and distant objects (rows 6 and 7) and objects with different scales (rows
1 to 5).

C.2 More AUC results

In Tables C.1 and C.2, we show the AUC results in addition to the AP and FPR results
in Tables 6 and 7 of the main paper. We achieve consistently SOTA AUC performance
regardless of the selection of outlier classes or the number of outlier training samples.

Class Per. FS LF - AUC FS Static - AUC

1% 97.59 ±0.39 98.37 ±0.56

5% 98.17 ±0.45 98.25 ±0.71

10% 98.47 ±0.39 99.59 ±0.25

25% 98.39 ±0.28 99.52 ±0.17

50% 98.63 ±0.07 99.54 ±0.08

75% 98.71 ±0.05 99.59 ±0.03

Table C.1: AUC testing results (mean results over six random seeds) of our approach
on Fishyscapes benchmark w.r.t. different diversity of OE classes.
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Input Image Initial Prediction Anomaly Prediction Final Prediction

Figure C.1: From the input image (anomaly highlighted with a yellow box), the
initial prediction shows the original segmentation results with anomalies classified
as a one of the pre-defined inlier classes. Anomaly predictions from our method
show an anomaly map with high scores (in yellow and red) for anomalous pixels. In
our final prediction, anomalous pixels are coloured in cyan.

C.3 Hyper-parameters Selection

For testing, we note a small performance gap with λ ∈ {0.1, 0.01} on LF test set, with
AP=78.29 for λ = 0.01 and AP=77.15 for λ = 0.1. For the EBM margin, PEBAL
reaches AP∈ [76.9, 78.3] and FPR∈ [0.8, 1.3] for min ∈ [−12,−22] and mout ∈ [−2,−8]
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Train Size FS LF - AUC FS Static - AUC

5% 98.13 ±0.12 99.16 ±0.09

10% 98.35 ±0.15 99.57 ±0.07

25% 98.36 ±0.06 99.51 ±0.06

50% 98.69 ±0.05 99.37 ±0.07

Table C.2: AUC testing results (mean results over six random seeds) of our approach
on Fishyscapes benchmark w.r.t. different amount of OE training samples.

for different values of min and mout on LF test set.

C.4 Training Details on Cityscapes

Following [26, 27], we use the same DeepLabv3+ [28] with WideResNet34 (90.3 mIoU
on Cityscapes Val) trained by Nvidia [271] as one of the backbones of our segmen-
tation model. As mentioned in [271], the model is firstly pre-trained on Mapillary
Vista dataset [156], and then fine-tuned on Cityscapes train set with their proposed
label relaxation loss and sdc-aug label propagation. Their model uses a different
{cv2: monchengladbach, strasbourg, stuttgart} validation split than the standard split
{cv0: munster, lindau, frankfurt}. Please refer to their paper for more details. For
DeepLabv3+ [28] with Resnet101 backbone (80.3 mIoU on Cityscapes Val) from [103],
the authors trained their model with the standard cv0 train/validation split using de-
fault formulations in [28]. All those checkpoints are downloaded from their official
Github pages.

C.5 Results Based on Different DeepLabv3+ Check-

point

In this section, we show the results of another DeepLabv3+ [28] with WideResNet34
trained by Nvidia [271] using the Cityscapes {cv0: munster, lindau, frankfurt}
standard train/val split. The checkpoint is downloaded from the their official Github
page [271], with a 81.8% mIoU on Cityscapes validation set. This model was firstly pre-
trained on Mapillary Vista dataset [156] and then fine-tuned on Cityscapes but without
their label relaxation loss and sdc-aug label propagation. As shown in Tab. C.3, our
model outperforms the previous methods by a large margin on all three benchmarks,
regardless of the backbones, the segmentation accuracy and the Cityscapes train/val
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Table C.3: Anomaly segmentation results on Fishyscapes validation sets (LostAnd-
Found and Static), and the Road Anomaly testing set, with WideResnet34 back-
bone under cv0 standard train/val split.

Methods
FS LostAndFound FS Static Road Anomaly

AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓ AUC ↑ AP ↑ FPR95 ↓

MSP [93] 89.26 11.84 32.55 89.26 11.84 32.55 72.37 20.23 67.98

Max Logit [93] 93.14 12.78 38.15 93.27 18.89 25.49 76.39 23.46 64.55

Entropy [95] 89.01 8.79 47.81 90.28 15.19 31.71 73.70 22.13 67.42

Energy [138] 93.45 14.29 37.71 93.52 19.22 25.02 76.76 23.48 64.04

SML [103] 96.03 21.71 20.09 95.79 32.04 15.81 74.45 22.16 68.59

Ours 98.52 64.43 6.56 99.33 86.01 2.63 88.85 44.41 37.98

splits. Notably, our method surpasses the previous SOTA SML by 40%, 50% and 20%
of AP on three datasets, respectively. We also achieve best AUC and FPR results on
all datasets.
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