
-2.o, ì ,7 5

VLSI IMPLEMENTATION

OF

HEART SOUNDS

MAXIMUM ENTROPY SPECTRAL ESTIMATION

Mohammad Saeed Tahmasbi, B.Eng.

Thesis submitted for the degree of

MASTER OF ENGINEERING SCIENCE

in the Department of Electrical Engineering

and Applied Mathematics
The University of Adelaide

Adelaide, Australia
December 1994

/\'o"nJetl tl o'í

-

1

Contents

Chapter 1 INTRODUCTION

1.1 General lntroduction And The Outline Of The Research

1.2 Physical Characteristics Of Cardiac Structure

1.3 Heart Valves

Mechanical Events Of The Cardiac Cycle

Electrical Events Of The Cardiac Cycle - .

Heart Sounds

t.4

1.7 Heart Murmurs

) MAXIMUM ENTROPY
SPECTRAL ESTIMATION

Introduction. . . .

Uncertainty, Information, And Principle.
Of Insufficient Reason

Basic Concepts Of Estirnation Theory . .

Principle Of Maximum EntroPY

2.4.I Entropy Of A Normal Process

1.5

1.6

Chapter

2.r

2.2

2.3

2.4

I
I

3

4

5

7

8

10

12

t2

13

t4

16

20

11

2.5

Chapter 3

3.1

3.2

3.3

3.4

3.5

3.5

3.6

Chapter

4.1

2.4.2 Input Output Conelation Function.
Of Linear Digital Filters

2.4.3 Entropy Rate And Power Spectrum.

Maximum Entropy And Spectral Estimation . '

2.51 Filter Parameters And Auto-correlation
Sequence

2.5.2 Selection Of Model Order

ARCHITECTURAL MAPPING AND
ALGORITHM TRANSFORMATION

DSP Chip Families

Basic Featurcs Of The Chip .

Memory Organizatiolì. . . .

Architecture And Operation Of The Processor -

Instruction Set . .

The Stack And Subroutine Execution. . . .

Âlgorithm Transfotmation. . . .

4 PROCESSOR BUILDING BLOCKS

Multiplier

4.r.r

4.r.2

4.1.3

4.r.4

Generation Of The Partial Products

And Booth's Algorithm

Sign Bit Extension And Add-One Method . .

Hardware Lnplernentation Of The Algorithm

Multiplier Simulation Result And
Performance Estimation

4.2 32-Bit C arry-Look-Ahead Adder.

4.2.1 Algorithm And Hardware Implementation

4.2.2 Carry-Look-AheadAdder SimulationResult

Divider.4.3

111

4.3.4

4.3.r Restoring Binary Division

Non-restoring Binary Division. . .

Hardware Implementation .

Overflow Detection

Divider Simulation Result

4.3.2

4.3.3

4.3.5

Control Unit. .

4.4.I Design Methodologies

4.4.2 Hardware Implernentation . . .

4.4.3 Control Unit Specifications . .

Random Access Memory Design

4.51 HardwareDescription

4.5.2 Read Operation.

4.5.3 Write Operation

4.5.4 RAM Simulation Result. .

Reatl Only Metrtot'y Dcsign.

4.6.I Structule Of The ROM. . .

4.6.2 ROM Sirnulation Result. .

5 CONCLUSION AND THE FUTURE
DEVELOPMENTS

Instruction Set

Assembly Language Program For
Maximum Entropy Spectral Estimation

BDS Language Description Of The
Control Unit

Bibliography

75

76

79

81

85

87

88

89

91

97

98

100

100

r02

103

4.4

4.5

4.6

Chapter

103

. 105

L08

113

tzt

156

130

A

B

C

1V

List Of Figures

1.1 Blood flow through the heart

1.2 Representative pressure pulse fiom aorta, left ventricle, and left. .

atrium

1.3 Mechanical and electrical events of the cardiac cycle- 9

4

6

3r

34

38

40

42

43

54

55

58

59

60

6T

61

62

62

64

68

70

70

7I

72

2.1

3.1

3.2

3.3

Flow diagram of the maximum entfopy spectral analysis algorithm

Processor pin confi gulation

Processor block diagram

Multiplication simulation result.

3.4 Floor plan of the processor . - .

3.5 Distribution of the active area within the chip

4.I Star representation of multiplication

4.2

4.3

4.4

4.10

4.II

4.r2

4.13

4-5 (a) Circuitdiagram of a4-2 compressor.. -.....

4-5 (b) Equivalent circuit of a 4-2 compressor - -

4.6

4.6

(a) Control section of the Booth encoding block-

(b) Booth encoding block

4.7 CPL circuit modules

4.8 Multiplier simulation result

4.9 Circuit diagram of 4-bit adder slice

Encoding scheme of the modified Booth's algorithm

Partial products after applying the add-one method.

Block diagram of the multiplier.

Four group carry-look-ahead generator

Block diagram of 32-bit carry-look-ahead adder

Floor plan of the 32-bit carry-look-ahead adder

Layout design of the 32-bit cany-look-ahead adder . . .

4.r4

4.15

4.16

Carry look-ahead adder simulation result

Divider block diagram. .

Flow diagram of the non-rcstoring division algorithm for - .

two's complement numbers.

Circuit diagram of division overflow detector.

Divider simulation result.

Relationship between control unit and data processor

Block diagram of the control unit .

Program counter routine

Flag6 routine flow diagram . . .

Jump routine flow diagraln . . ,

(a) Flagl routine flow diagram

(b) Flag2 routine flow diagram . . .

(c) Flag3 routine flow diagram . . .

(d) Flag4 routine flow diagram . . .

Stack pointer routine flow diagram

(a) Flag5 routine flow diagram . . .

(b) Immediate address routine flow diagram

Next command routine flow diagram

(a) Overflow detect routine flow diagram

(b) Halt routine flow diagram . . .

Block diagram of the RAM

Floor plan of the RAM

RAM simulation result

74

80

82

84

86

87

90

92

92

93

94

94

94

94

95

96

96

96

97

97

99

101

t02

104

105

106

4.r7

4.18

4.r9

4.20

4.2r

4.22

4.23

4.24

4.24

4.24

4.24

4.25

4.26

4.26

4.27

4.28

4.28

4.29

4.30

4.31

4.32 Block diagram of the ROm

4.33 Floor plan of the ROM . . .

4.34 ROM simulation result . . .

5.1 (a) The synthetic data .

v1

109

5.1 (b) Normally distributed random noise. . .

5.2 Spectrum of the synthetic data. .

109

110

vll

List Of Thbles

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Instruction set; Data transfer group

Instruction set; Arithmetic group. . .

Instruction set; Branch group

Instruction set; Machine control group

Determination of the quotient bits .

Division overflow deæction.

Truth table for division overflow signal

Machine codes stoted in the ROM.

45

46

46

47

79

83

84

106

v111

Publications And Abstracts

During the course of my study the following paper has been presented at a learned society:

An oral presentation"Architectu.re And Design Of l6-Bit Processor; Maximum Entropy Spec-

tral Analyser."

Authors: M. S. Tahmasbi, K. Eshraghian and J. Mazumdar.

Engineering And The Physical Sciences In Medicine Conference, Sept. l2-L5 1994, Perth,

Australia.

Co-Sponsored By:

Australasian College Of Physical Sciences & Engineering In Medicine.

College Of Biomedical Engineers, Institution Of Engineers, Australia.

Society For Medical & Biological Engineering (WA) Inc.

1X

Declaration

I declare that this thesis contains no material which been accepted for the award of any other

degree or diploma in any university.

To the best of my knowledge and belief, this thesis contains no material previously pub-

lished or written by any other person, except where due reference is given in the text of the

thesis.

I consent to this thesis being made available for photocopying or loan.

IIGNED rE
/3/t r_____

x

Acknowledgements

I wish to express my appreciation to my supervisors, Prof. K. Eshraghian and Prof. J.

Mazumdar for their generous encouragement and continual support which has led to this

research. I also wish to extend my sincere gratitude to my friend Mr. Alireza Moini for his

extensive co-operation and our many discussions in various stages of the design and test of

this project.

My thanks are also extended to Dr. A. Bouzerdoum from whom I learned the first princi-

ples and theories of statistical signal processing. Last but not least my thanks go to Dr. N'

Burgess for reading, correction and constructive suggestions on my project progress reports.

x1

List Of Mathematical Symbols

H (u) = entropy of Partition U

P (Ð = probability of event ¿

(x(n)) = time average of random variable x(r)

(xnx,*^) = time autocorrelation sequence

Elx,l = expected value of x1n¡

Rr"(m) = autocorrelation function of x(n)

¡ = bias of an estimator

o? = uari*ce of estimator (

H(x,x2,...,r.) = jointentropy of several random variables

.f(¡) = probability density function of x

lit,...,r) = joint density of random variables

Hx = oûtropy rate of stationar) process x(n)

H(x) = system transfer function

syy(o) = powor spectrum of process r1n¡

FPE Qn) = final prediction error criterion

AIC(m) = Akaike information criterion

xii

spectral analysis, instrumentation, and so on. The aim of this study is to provide a more effi-

cient tool for the spectral analysis of the heaft sounds, the third heart sound in particular. In

recent times the stethoscope has been reinstated to its rightful important position because the

information gained from electrocardiography (ECG), phonocardiography (PCG)' and

echocardiography offers solid proof of the significance of the heart sounds and murmurs,

making the discipline of cardiac ausculation even more valuable as a diagnostic tool. How-

ever, the main deficiency of using traditional stethoscope, now an integral part of medicine,

in medical diagnosis lies in the limited frequency recognition and intensity resolution of

human ear. Although human ear is capable of functioning over a broad range of frequency

variation, unfortunately the usual range of cardiac sound is too low-pitched to be easily

heard. In addition, not everyone has the same capacity to hear sounds. Some examiners will

be able to detect vibrations of extremely low frequencies, while others will not. The problem

becomes more obvious considering the addition of environmental noise and other unwanted

biological signals like breathing suutrd, etc.

More advanced technology can be applied to overcome these limitations. One obvious

application of technology to the heart sound analysis has been spectral analysis. Although the

Fast Fourier Transform (FFT) methods provide a good solution for the spectral analysis of

the first and second heart sounds, still when it comes to the analysis of biological signals of

short duration like third heart sound, it suffers from limitation in frequency resolution- How-

ever, the efficiency of maximum entropy spectral estimation in producing sharper and more

pronounced peaks in the power density spectrum has proved satisfactory in dealing with

short length of data records.

Due to the shortcomings of the F.F.T. technique in the spectral analysis of the sampled sig-

nals of short duration, it was ilecided to design a special purpose processor for spectral anal-

t

ysis based on "Maximum Entropy" method. The processor will have application in different

areas, but it was particularly designed to work as the central processing unit of the "Biomon-

itor system", to be used for spectral analysis of the heart sounds. Parallelism and pipelining

was the focus for the architecture of the processor. A separate multiplier/accumulator, and a

high-speed ALU speeds the program. In addition to the direct speed increase provided by fast

multiplication in hardware, using the pipelining technique, the next input can be loaded

while the previous product is being calculated. Parallelism on the other hand, helps when

more identical operations, perfotmed at the same time, could speed progress.

This project deals with the design methodologies of the architecture of a 16-bit processor

based on "Maximum Entropy" method which provides a suitable platform for further study

in the field of spectral analysis of the heart sounds.

L.2 Physical Characteristics Of Cardiac Structure

The function of the heart is to transfer sufficient blood from the low-pressure venous sys-

tem to the arterial side of the circulation under the proper pressure to maintain the circulatory

needs of the body. The heart is an efficient force pump that few, if any, mechanical pumps

can equal without "downtime" for maintenance. In an engineering sense, the heart is made up

of two separate pump systems [28]. The right atrium and ventricle act as a single unit (the

right heart) to move venous blood from the great veins to the pulmonary circulation. The left

atrium and ventricle (the left heart) act together in a similar manner to pump blood from the

pulmonary system to the high-pressure system circulation. This directional flow of blood, as

well as some of the important structural features of the heart, are shown in Fig. 1.1. The

terms "right heart" and "left heart", although physiologically correct, ate not descriptive of

their position in the body. Due to the normal rotation of the heart on its longitudinal axis, the

right ventricle is in fi'ont of the left and occupies a position immediately behind the stemum,

3

k

,'l
r[.j

l

whereas the left ventricle is rotated so that it faces towarcl the left side and the back of the

thorax [33]

UU.(
Ao

P
(/

I
I

l

SVC

LA

PA

RA

RV
tvc

Figure l.l--Blood flow through the heart. SVC= superior vena cava; fVC= inferior vena cava; RA=

rig-ht atrium; LA= left atrium; pL= pulmonary artery; p!= putmonary veins; RV= right ventricle;

LV= left ventricle; Ao= aorta [17].

1.3 Heart Valves

The dynamic effect of cardiac contraction is surprisingly effective in moving blood through

the heart even in the absence of the competent valves. Nevertheless, these thin, delicate

valves, which guard the entrance and exit of each ventricle, greatly enhance the efficiency of

the cardiac pump. The heart valves are mechanical devices that permit the flow of blood in

one direction only. The two cuspid (atrio-ventricular) valves are located between the atria

and ventricles, while the two semi-lunar valves are located at the entrance to the pulmonary

artery and the great aorta [21]. In spite of their fragile appearance, the cusps of these valves

are deceptively strong and rcsilient. Their movcmcnts are essentially passive even though

some of the leaflets have been shown to contain muscle fibres. The crcscent-shaped (semilu-

4

:1

q

'I

l

nar) cusps of the pulmonic and aortic valves permit these structures to open maximally dur-

ing ventricular ejection and still provide a perfect seal when closed during diastole [33].

1.4 Mechanical Events Of The Cardiac Cycle [15]

Activation of the myocardium is followed by cardiac contraction. In the intact heart, this

leads to a series of events that are associated with its function as a pump. It is convenient to

relate these activities to the changes in pressure that take place inside the chambers of the

heart and the great vessels during the cardiac cycle. Representative pressure pulses from the

left atrium, left ventricle, and aorta are diagrammatically shown in Fig. I.2, along with a

graphic representation of the electric activity of the heart lines. The left heart pressure rela-

tionships are discussed in the analysis of the cardiac cycle that follows. In general, the pres-

sure relationships on the right side of the heart are the same as those shown for the left side,

although the pressures will be lower. The mechanical events are also similar on both sides of

the heart [15].

Blood flows from an area of higher pressure to an area of lower pressure. The pressure

developed in a heart chamber is related primarily to the chamber's size. For example, if the

chamber size decreases, the pressure increases. The pressure in the atria is called atrial pres-

sure, that in the ventricles is called ventricular pressure, and pressure in the aorta and pulmo-

nary trunk is referred to as afterial plessure. In a normal heartbeat, the two atria contract

while the two ventricles relax. Then, when the two ventricles contract, the two atria relax-

The term systole refers to the phase of contraction; diastole is the phase of relaxation. A car-

diac cycle, or complete heartbeat, consists of a systole and a diastole of both atria plus the

systole and diastole of both ventdcles.

The cardiac cycle represents a combination of mechanical, electrical and valvular events

whose interrelationship is complex but essential to understanding of how the heart functions

5

and how disease processes affect it. At rest, the normal adult heart beats at a rate of about 70

to75 perminute. Bloocl flows from the atria to the ventricles and from the ventricles to the

large arteries at a velocity which is determined by the pressure differences between the

chambers. Normally the valves offer no resistance and open or close as a function of the rel-

ative pressures exerted by the flowing stream and the energy imparted by the contractions of

the atrial and ventticular musculature'

TIME (seconds)

02 0.4 o6 OB
120

'I O0

9BO
E
E

6O
tu
(Í.
lv, 40tn
LrJ
CI
fL

20

0 a

R

SYSTOLE IASTOLE
R

T
P P

ECGos o

Figure l.2--Diagram showing a representative pressure pulse from aorta, left ventricle, and left

atriunr. An IICG also is shown [31].

At a ratc of 75 per minutc, the complete cycle for filling and emptying of the chamber

would occupy 0.8 sec or 800 mscc (Fig. 1.2). The cardiac cycle is,,divided into systole and

diastole. I-eft ventricular systole (i.e., the contractile period of the left heart) extends from the

early rise of the ventricular pressure ancl the closure of the AV valve (Fig- 1'2.4) to the clo-

sure of the aortic valve and the beginning of diastole (Fig. 1.2.C). During most of the period

from B to C, the ventdcular pressule is higher than the aortic, the aortic valve is open and the

ventricle ejects blood into the arl.erial system. At C the aortic valve closes'

6

c
Airiunr

Ventricle

Aorta

D

c

Diastole, which is the period of ventricular relaxation and filling, begins with the closing

of the aortic valve (C). When the ventricular pressure falls below the atrial, the AV valve

opens (D) and the ventricle begins to fill. Diastole ends when the ventricle again contracts

and the new cycle begins.

1.5 Electrical Events Of The Cardiac Cycle

In order for the cardiac muscle to contract, there must be a preceding action potential which

initiates the electrical and ionic events that culminate in ventricular systole- The ECG, which

is recorded at the body surface, is a graphical representation of the summed voltage changes

produced by electric depolarization and repolarization of the heart. These electrical impulses

begin at the sinoatrial (SA) node in the right atrium, spread over the entire heart and initiate

the contraction wave. The electrical phase of the cardiac cycle begins with excitation of the

atrium (i.e., atrial depolarization), denoted on the ECG by an initial upward positive deflec-

tion called the P wave (Fig. 1.2), which triggers atrial contraction.

After completion of the P wave, the ECG trace returns to base level, i.e., the isoelectric

line. About 0.16 to 0.22 seconds following the onset of the P wave, a second series of nega-

tive and positive waves are seen t331. A negative Q wave usually precedes a positive R and a

negative S wave. This QRS complex is caused by electrical depolarization of the ventricles

and is quickly followed by ventricular contraction. After a short interval, a positive T wave

appears which corresponds to tepolarization of the ventricular muscle mass. The ECG then

retums to the isoelectric line ancl usually there is electrical silence for the remainder of dias-

tole. The S-T segment is an impoftant phase of the record because it is specifically distoræd

in some heart diseases.

It should be emphasized that the action potential is the indispensable forerunner to cardiac

contraction. The heart has a spontaneous, intrinsic rhythmicity and automaticity, and contrac-

'l

tion is inevitably coupled to excitation

1.6 Heart Sounds [34]

The cardiac structure vibrations associated with cardiac mechanical events generate acoustic

waves that are transmitted to the chest. These acoustic waves are usually classified in four

different groups, known as heart sounds, and contain information of the vibratory source.

The two primary heart sounds are usually heard as a "lup-dup", a low-pitched first sound,

followed by a quicker, higher-pitched second. The intensity of heart sounds, as heard at chest

wall, depends upon several factors, i.e., the rate of the rise of the ventricular pressure, the

physical characteristics of the ventricles and valves, the volume contained in the heart, the

position of the AV valve leaflets at the beginning of ventricular systole and the transmission

characteristics of the chest wall. The relationship of the heart sounds to other events of the

cardiac cycle is shown in Fig. 1.3. The major components of the heart sounds are associated

with the ahrupt acceleration and deceleration of blood in and near the heart, but there is not

full agreement on the relative significance of valve activity and muscle vibration.

The First Heart Sound (S1) is associated with the closure of the mitral and tricuspid valves

at the start of ventricular systole and the two components can sometimes be distinguished- If

so, the first component of S1 is mitral in origin and the second component tricuspid.

The Second Heart Sound (S2) is usually of higher frequency and shorter duration than the

first. It marks the end of ventricular systole and the beginning of diastole and is associated

with the closure of the semilunar valves. It consists of two components, aortic and pulmonic.

Normally, the aortic valve closes several milliseconds before the pulmonic and the time dif-

ference is accentuated during the inspiratory phase of respiration.

This respiratory delay in closing of the pulmonary valve produces a "physiological" split-

8

ting of the second heart sound and is mainly clue to the sudden decreasc in intrathoracic pres-

sure associated with inspiration. This in turn, causes a temporary increase in venous return'

and an increase i¡ right heatt volume resulting in increased right ventricular output' a tempo-

rary prolongation of ejection time and a delay in pulmonary valve closure' At the same time'

pulmonary venous retum to the left heart is rliminished so that left ventricular stroke volume

decreases ancl the aortic valve closes slightly earliel

o

TIME (seconds)

o.2 0.4 o.6

IASTOLE

3 rcl

HEART SOUNDS

o.B

4th g

120

100

9Bo
E
c

60
LU(r
fq40
<.t)
U
cÉ(L

20

o

=
_E
LtI

f
-Jo

2.O

{}o

40

SYSI Ot E

lst ncl¿

I

R

T P
P

ECG oolrl
ICP

tr-igure 1.3--Mechanical and clectrical events of the carrliac cycle showing also ventricular volume

curYe and heart sounds [31].

A Third Heart sound (s3), shown in Fig. 1.3, is associatecl with the passive rapid-filling

phase. Because of the thinness of their skin of the chest, a physiological third sound may be

FIP

9

Atrir-¡m

tricle

Aorta

present and audible in younger individuals; however, if it occurs after the age of 40 years, it

is generally considered abnormal. It may occur in fever, cardiac failure and certain other car-

diac disorders.

The Fourth Heart Sound (S4) is associated with the active rapid filling phase (Fig. 1.3).

While it can often be recorded by phonocardiography, it is generally not audible- When it

does occur, it is usually recorded at the peak of atrial contraction and may be associated with

increased atrial pressures.

1.7 Heart Murmurs

Disturbances of normal blood flow patterns in the heart and great vessels often result in

abnormal sound, producing vibrations in the auditory frequency range known as murmurs.

They are classified on the basis of their timing as systolic, diastolic and continuous murmurs-

If the aortic or pulmonary valve is diseased or deformed, the increased turbulence through

the narrowed or distorted orifice results in the systolic murrnur characteristic of aortic or pul-

monary valve disease [34].

If the AV closure is incomplete because of disease of the mitral or tricuspid valves, the

valve will become incompetent ancl blood will regurgitate into the atrium producing a blow-

ing "whoosh" noise following the first heart sound. If this systolic munnur persists through-

out systole it is sometimes referred to as a pansystolic or holosystolic murmur.

Abnormal heart sounds which occur during diastole are associated either with an abnor-

mality of AV valve opening (usually mitral) or an abnormality of semilunar valve closure

(usually aortic). A murmur originating at the aortic valve and heard in early diastole may be

produced by incomplete closure of the aortic valve at the end of systole. Such an abnormality

could be due to fibrosis or stiffening of the valve in the open position or destruction of valvc

10

leaflets. The defect causes regurgitation of blood back into the left ventricle at the end of sys-

tole through the incompetent valve, producing the diastolic murmur of aortic regurgitation or

aortic insufficiency.

Stenosis of the mitral valve may cause abnormal heart sounds during early or late diastole.

The early component of this murmur is often initiated with an opening snap of the mitral

valve; the late component may be associated with the atrial systole, just before the onset of

ventricular systole, and is referred to as a "presystolic" murmur.

Summary

This chapter introduced the basic operation of the heart with a focus on the generation of

heart sounds. First the cardiac structure and its physical characteristics were presented. In

subsequent sections, mechanical and electrical events in the cardiac cycle were discussed in

detail. Finally the main hearl sounds, classified in four different categories, were introduced

and their relationships with other mechanical or electrical events of the cardiac cycle were

reviewed briefly. Furthermore, this chapter gave an overview on the objectives, as well as the

significance, of this study. The mathematical approach for the spectral analysis of the heart

sounds was mentioned here and is developed in the next chapter, which results in an AR

model for the signal and a recursive algorithm.

ll

Chapter 2

MAXIMUMENTROPY
SPECTRAL ESTIMATION

2.1 lntroduction

The Maximum Entropy Method (MEM) for spectral analysis was suggested by Burg (1967)

[5, 6]. Its mathematical properties have been discussed in detail by Lacoss (1971) [16], Burg

(1912), and Ulrych (1972) who found that the MEM is, in general, superior to the more con-

ventional methods of spectral estimation [361.

The application of entropy can be divided into two categories. The first deals with prob-

lems involving the determination of unknown distributions. The available information is in

the form of known expected values or other statistical functions, and the solution is based on

the principle of maximum entropy: we determine the unknown distribution so as to maxi-

mize the entropy ¡/(u) of some partition u subject to the given constraints. In the second

category, we are given u1u¡ and wish to construct various random variables so as to maxi-

t2

mize their expected values. The solution involves the construction of optimum mappings of

the random variables under consideration, into the given probability space.

The probability r(¿) of an event E can be interpreted as a measure of our uncertainty

about the occurrence or non-occurrence of n in a single performance of the experiment s. If

p (E) is close to one, then we are almost certain that r will occur; if p <q is close to zero,

then we are reasonably certain that ¿' will not occur; our uncertainty is maximum if

p(E) = 0.5.If u is apartition of s, i.e., u is acollection of mutuallyexclusiveevents Eí

whose union equals s, then the measure of uncertainty about u will be denoted by nQ) and

will be called the entropy of the partition.

The functioî H(u) must satisfy a ceftain number of conditions. The following is a typical

set of such conditions [C.E- Shannon and W. Weaver] [32]

l. n Q) is a continuous function of r, = p (E¡)

2. if rr= ... - PN = r/N, then a1u) is an increasing functiou of ¡v-

3. If a new partition B is formed by subdividing one of the sets of u, then H(B) >H(u) .

It can be shown that the sum

H (U) = - PrIogP, - ... - P"logP" (EQ 1)

satisfies these conditions and it is unique within a constant factor.

2.2 Uncertainty, Information, And Principle Of Insufficient Reason

In the heuristic interpretation of entropy, the number H(u> is a measure of our uncertainty

about the events r, of partition u prior to the performance of the experiment. If the experi-

ment is performed and the results concerning E, become known, then the uncertainty is

removed. We can therefore say that the experiments provides information about the events r,

l3

equal to the entropy of their partition. Thus uncertainty equals information and both are

measured by the sum in (EQ 1).

If t, are N events of a partition u of s and nothing is known about their probabilities,

then

P(8,) = L/N

Although conceptually the maximum entropy principle is equivalent to the principle of insuf-

ficient reason, operationally the maximum entropy method simplifies the analysis drastically

when, as in the case in most applications, the constraints are phrased in terms of probabilities

in the space s' of repeated trials. In such cases the equivalence still holds, although less obvi-

ous

The maximum entropy method is thus a valuable tool on the solution of applied problems.

It is used, in fact, even in deterministic problems involving the estimation of unknown

parameters from insufficient data. The maximum entropy principle is then accepted as a

smoothness criterion [23].

2.3 Basic Concepts Of Estimation Theory

The characterization of a random process is usually made by its averages [24]. However, it is

often necessary to estimate averages of the random process model from a single sample

sequence of the random process, i.e., a sequence x(n) which is assumed to be a realization of

a random process defined by the set of random variables {x(n) } . The time avera'ge of a ran-

dom process is defined as

,IV
1(x(n))="t3r_fr'2x<">

t4

Similarly, the time autocorrelation sequence is defined as

N

(x,xn*
^)

=
"tgirfil ,l**r",

x* (n + m)

It can be shown that the above limits exist if {x@)} is a stationary process with finite mean-

A random process is said to be stationary in the strict sense if all its probability functions or

statistical averages are independent of time. As defined above, the time averages are func-

tions of an infinite set of random variables and thus are viewed as random variables them-

selves. However, under a condition known as ergodicity, the time averages defined by above

equations are equal to statistical averages. That is

(X(n))=EÍXnl=mx

(X (n) X* (n + n)) = EIX'X* n * ^7
= Ryy(m)

In general, a random process for which time averages equal statistical averages is called an

ergodic process.

In order to make the computation of the estimates possible, we must base our estimate on a

finite segment of the sample sequence x(n) .'When we consider ergodic processes, it is possi-

ble to compute estimates of the various desiled averages of the random variables {x,} from

a finite segment of a single sample sequence. The estimate (of the parameter (is thus a

function of the ranclom variables 4, 0 < n3N - t ; i.e.,

c = ptxo,xr,...,x*_r)

and

and therefore (is also a random variable.

15

The bias of an estimator is defined as the true value of the parameter minus the expected

value of the estimate, i.e.,

bias = (-E t(l =¡

An unbiased estimator is the one for which the bias is o. This then means that the expected

value of the estimate is the true value. The variance of the estimator is defined by

vartÇl = ø[tC-Et(] r'l =
"¿

An estimator is said to be consistent if as the number of observations becomes larger, the bias

and the variance both tend to zero

2.4 Principles Of Maximum Entropy

In the literature the explanation of the method of Maximum Entropy in spectral estimation

begins usually with the assumption that it is desirable to maximize the logarithmic integral ø

of the unknown spectrum slor¡ of a process s(n) and it leads to the conclusion that s1o)

must be an all pole rational function.

If s is a probability space, the axiomatic definition of entropy is in fact a number assigned

to each partition of s, i.e., the entropy nqa¡ of a partition e is the sum [10]

¡/
H(A) = -lr¡"r, where P¡= P(A¡)

i=l

Since pt+...+pu - 1 it can be shown that H(,4) is maximum if r, = r./N for i = t,...,¡v and

0l I1(A) S lnN

this maximum is equal to tnr, i.e.

l6

Suppose that the random variable x is of discrete type which can take the values .t, with

probabilities r,. Then the entropy H(x) of random variable x is by definition the entropy of

the partition formed by events {x = x¡1r

H(x) = -)r,mr, P¡= P7X=xr}

Correspondingly the entropy of a continuous variable x is defined as

where /(x) is the probability density function of x. As it is obvious from the above integral,

the entropy Ã1(x) is in fact the expected value of random variable h/(x) or

H (Ð -- -E { ln/(x) }

The joint entropy of several random variables is defined similarly

H (x' xr, . . ., xr) = -E {lnf (xt, xr, . .., xr) } (EQ 2)

If ¿ is non-singular r by r matrix and we form the random variable r as following

Y=AX where:){ = (x1,...,x,) & v = (yr,...,Y,)

Then the joint density of these random variables is given by

l(Yt, xr)

H(Yt,...,Y,) = H(X1,...,X,) + lnlÁl

H (x) f_-ral '.'f (x) rtx

r6,v,> = fi

Applying (EQ 2), we obtain

t'l

(EQ 3)

In the application of the concept of entropy to the problem in spectral estimation, the

quantity of interest is the entropy rate Hx of a stationary process X(z) . This quantity is

defined as

4 = lT-(* H@0,x,, ,x,)) t"ooi

where H(xs,x1,...,x.) is the joint entropy of the random variables x(n),x(n-L), '..,x(n-r) -

Suppose that x(n) is the input to the stable causal system H (z) - Furthermore, suppose that

¡1(z) is minimum phase, i.e., n e) and its inverse are analytic for lzl > t . If x(¿) is applied at

n = o, then the resulting response is

n

Note that 71n¡ is not stationary. However, it tends to the stationary process Y(z) as n-)æ-

(EQ 5) is a linear transformation of the random variable x(0), x(1) , ...,x(n) into the random

variable r(0), v(1) ,...,v(n) obtained with the transformation matrix

V@) = 2*@-k)-h(k) n = O,l,
k=0

A

0

h (0)

Considering (EQ 3), this results to

"(.4, \) = n1xo, "',x,) + (n+ l) 'ln/¿(o)

And from (EQ 4), we obtain

Hy = Hx+ lnå(o)

It is possible to write the ærm lnrr (0) in (EQ 6) in term of nl"i^'), in fact since

(EQ 5)

(EQ 6)

ln (0)
(1)

lr(¿*)l' = r(¿*) n(;i^r)

:l
o loil

Al = h("
* t) (o)

18

it follows with ,/'r = ¿ ând jrz. dø = ¿z that

¡rf"
"nlr(t^)l'o^

= f:" @k) .H(t/z))dz

where the integral is along the unit circle. But

fl*",., az = [L-¡(H(L/z))dz

therefore

tcto=l

fL^, at a, = rf, f'
"n

¿^)' dø (EQ 7)

The function hr1(z) is analytic for lzl> t by assumption, therefore, the circle of integration

can be made arbitrarily large. Based on initial value theorem

h(0) = lim ¡/(z)

,r(

z-+@

and it can be concluded that

flr" <r 1rr) dz = tnh Q) [+ = zni 'rn,, (o)

in which we used the result of Cauchy Residue theorem

#'ç"!:,-^" = Í(zo)

=0

if zo is inside circle c

if zo is outside c

where c is a closed path in the z-plane and /(¿) is a function of complex variable z . Consid-

rnh(o) = åf;."1 ,lr"t^')¡' o, TE

r

ering (EQ 7) we obtain

l9

oo (EQ 8)

Using (EQ 6) and (EQ 8), the entropy rate of the output of the system can be expressed in the

final form as following:

H, = H,-afili;."1.d "i^r)12a,
(EQ e)

2.4.1 Entropy Of A Normal Process

If the probability density function of a random variable x is defined as

fcoo=l

| -t2/2o'tQ) =

-ê
o Jzn

then x is called a normal process and we have

H(x) = -E{rnf (x)} = E{xztza2¡ *tnoJ-zn = rnalllõ

Suppose that v(n) is stationary white noise with average power n{f @)} = o2. In this

case, the random variables v@),v(n-1),..., V(n-r) are normalindependentwith variance o2-

Hence, their joint density can be expressed as:

l(V0,Vt,...,V,) = f(v)...f (v,)

and form (EQ 2)

H (Vo, ..., V,) = _-E{ h [f (v0) ...î (v,)]] = (r + t) tno J2ræ

dividing by r + I , it can be seen that the entropy rate of a normal whiæ-noise process v(n) is

Hv = lncJZtce

given by:

20

2.4.2 Input Output Correlation Functions Of Linear Digital Filters

Suppose that a signal x1n¡ with known auto-correlation R,,(m) is applied to a linear time

invariant system (LTI) with impulse response /r (z) , producing the output signal r1r¡

Input Output
(n)

Y(n) = h(n) Øx(n) = \ n(Ð -x(n-k)

The auto-correlation of the output signal y@) , cãr be obtained by using the above equation

and the properties of convolution. Thus we have

Rrr(*) = Y(m) ØY(-m)

-- [h(m) ØX(m)] @ lft(-,,') a xGm)l

= fh(m) Øh(-m)) Ø IX(m) ØX(-m)]

= R,ro(m) Ø R*,(m) (EQ 10)

where R,,(m) is the auto-correlation sequence of the input signal {x(n) } , Rrr(m) is the auto-

correlation sequence of the output {y(¿)} , Roo(m) is the auto-correlation sequence of the

impulse response {h(n)}. Since (EQ 10) involves the convolution operation, the z-transform

of this equation yields

sr, (e) = Sr, (z) ' S," (z)

= H (z).n[.-tJ s", (¿)

Evaluating sr, (e) on the unit circle, we can obtain the energy density spectrum of the output

signal as

LII
SYSTEM

h(n)

2I

syy (ol) = l¡1 (<o) ¡2 . s"" (or)

2.4.3 Entropy Rate And Power Spectrum:

For an arbitrary normal process N(n) we have the auto-correlation function defined as

Rn,Qn) = E {N (n + m)' N (n)}

and the power spectrum is

SNN((D) = t Rn,(m)-"-r^^

(EQ 11)

Since N (n) is a normal process, all its statistics including HN can be expressed in terms of its

auto-correlation.R,,lø). Hence, if anotherprocess f(n) has the same auto-correlation func-

tion, or equivalently, the Same power spectrum as N(z), then its entropy fate Hy will equal

HN. If ¡1(¿) is a minimum phase function which specifies a system with an impulse response

equal to N(¿) then sr"(z) can be written as a product

sNN(z) = H(z) ø(I/z) sNN(@) = lr(¿^)l'

Using as input to the system Hk) awhite-noise process v(n) with n{f @)} = 1, we obtain

as output a process Y(n) with a spectrum

syy(<o) = lI1(o)¡2'suu{co) = slvr(r¡)

Using (EQ 9), the entropy rate of the normal process N(n) can be expressed as

Hu = Hy = Hv+ohf:.rt.d "i^')l'a,

:'l
rl,l

lr

22

I .ô"

= tnJ2ne *
ôJ_.,tnt¡y¡(ro)

d<o (EQ 12)

2.5 Maximum Entropy And Spectral Estimation

Having defined the entropy rate of a random process s (n) in terms of its power spectrum

[See (EQ 12)], the estimation of the spectrum of s 1r¡ with the method of maximum entropy

involves the maximizationof its entropy rate r, subject to various constraints which are usu-

ally expressed as

E{st@)} = n* k = 1,...,m

where the functions 6o(x) and the numbers no àre given

The solution of the problem is based on the following inequality

- lrar- h/(.x) ax<- [t@) lnp (x) dx

with equality iff ¡qx¡ = p (x), rilhere /(r) and p e) are two density functions. The proof of the

above comes from the inequality tny I y - r . It can be shown that the optimum density is given

by

where

r_
-ì"rs(x) -...-)'^c^Q)

7. e

',}
ru

,i

I

and the constants)'k aÍe such that

23

dx

*

f s¡,@l 'P@)dx = no k = t, "',m

In practice we are given the ¡v + 1 values R (0) , R (1) , ..., .R (n) (data) of the auto-correlation

^R
(,,) of a random process s (n) and we wish to estimate its power spectrum s (.) . The statis-

tics of s(n) are determined in terms of the joint density of random variables

S(n),S(n-1),...,S(n-r). Hence, to apply the principle of maximum entropy, we must deter-

mine the unknown values of n 1-¡ so as to maximize the entropy ¡1(.s0, sl, ..., s,) of these ran-

dom variables and to find the limit as r -+ - . This is equivalent to the maximization of the

entropy Íate Hs of s1r¡ subject to the given constraints.

If we denote by 3 (n) the optimum linear predictor of s1r¡ in terms of its ¡¿ most recent

values [24]

rV

31n¡ = 2 "o-s(n-k)
,l
rtt

t-l

then the estimation error

e(n) = s(n) -3(n)

is the output of linear System with input s (n) and system function

N
-kH(z) = r+ Lak'z

k=1

e(n)
S(n) +

I
I
I

I
-1

Z
Prediction Enor FilterS(n-1) 3 (r)

*
24

and its average power r is given by

rl"2Ø)f = P = R(o) + L ao'R(k)
/V

k=l
(EQ 13)

(EQ 14)

From (EQ 9) it follows that

.¡v

ln L- \ ao'e dø
k=l

5""(z) = P

It follows from the above that the process s (n) satisfies recursive equation

lV

S(¿)-2"0 S(n-lc) =e(n)
,t= I

H" = Hs. +Jï.

The above integral depends only on the data, hence to maximize Hs,it suffices to maximize

the entropy Íate He of the artoÍ en. If x(n) is a stationary process with specified average

power p{f @)} = o2, then its entropy rate Hx is maximum iff x(n) is normal white noise.

By the same argument e(n) is normal white noise with power spectrum

ì

I

r
f
I

I

where ¿(n) is white noise. Therefore, s1n¡ is the output of the frlter tt(H(z)) with input

e (n) , hence, its power spectrum equals

s."(z)
s"" (z) = H(z) .H(L/z)

substituting z = "i^r results

t-\ao'e
k=l

S(o>) =

25

Therefore, it is concluded that s (n) is an auto-regressive (AR) process and since
"
(¿) is nor-

mal, s (n) is also normal.

2.5.1 Filter Parameters And Auto-correlation Sequence

'When the power spectral density of the random stationary process is rational function, there

is a basic relationship which exists between the auto-correlation seQuenco À (lø) and the

parameters of the linear frlter tt (u (z)) that generates the process by filtering the white noise

sequence. This relationship may be obtained by multiplying the difference equation in (EQ

la) by s* (n- m) and taking the expected value of both sides of the resulting equation. Thus

we have

Ets(¿) S*(n-m)f = t aoEfS(n-k)S*(n -m)l +Ele(n) S*(¿-n)l
rV

k=t

Hence

R(r) = 2"0.R(r-k) +.R,"(r)
N

k=l

where,R,"(r) is the cross correlation sequence between ¿(n) and s(n)

The cross correlation Ã," (r) is related to the filter impulse response. That is,

.R," (r) = E [s* (z) e (n + m))

tå=E h(k)e*(n-k)e(n+m)

P-h(-rn)

where, in the last step, we have used the fact that the sequence e (n) is white. Hence

^R""(r) =oforr>o

and form (EQ 13)

26

N

rR(r) = 2"0'R(r-k) r = 1,...,N
,t= I

N

R(0)=P-Iao'R(k)
k=l

Therefore, there is a linear relationship between R (rn) and the ¡aoìr parameters. These equa-

tions, called the Yule-Walker equations 124f, may be expressed in the following matrix form

(0)
(1)

À (-1)
R (0)

À(-rÐ
R (-N+ 'I||

|l(N) R(N- 1) .. À(o)

This correlation matrix is Toeplitz and can be efficiently inverted by use of Levinson-Durbin

algorithm. The key to the Levinson-Durbin method of solution that exploits the Toeplitz

property of the matrix is to proceed recursively, beginning with a predictor of order ¡v = t

and to increase the order recursively, using the lower order solution to obtain the solution to

the next higher order. An objection that can be raised at this approach becomes evident when

we remember the maximum entropy interpretation of an AR representation. Accordingly, the

AR coefficients should be estimated in such a way that we do not use any information which

is unavailable to us. The estimation of the auto-correlation function coefficients using

Yule_Walker estimation, on the other hand, assumes that s (n) = 0 for Inl > N, an assumption

that contradicts the principle of maximum entropy.

Burg suggested a method of estimating the AR parameters or equivalently the prediction

error filter coefficients that does not require prior estimates of the auto-correlation function.

The Burg method uses a recursion that is very similar to that developed for the Yule-walker

estimation. We obtain the desired recursion for the predictor coefficients in the Burg algo-

rithm as [1]

2'l

a^(k) = a^-y(k) -a^(m)' a^-r(m-k) k = 1,...,m-I

where a- (r) is the kth coefficients of the predictor of order m and a^(m) is equal to

lv

-2
a (tn\ =m, .

1=m+l
IV

(gq ls)

(EQ 16)

(EQ 17)

The recursion is initiated by

n=m+l

bs(n) =b'(n) =31n¡

1V

-zfs1n¡.s(n-1)
n-2

N

I ltt @) +s2(r-r)]
n=2

b^(n) = b^-r(n) +a^(m)'b'^-r(n-l)

b'm@) = b'^_t (n- 1) + ø^(m) ' b^-r(n)

Therefore, the value for a, (1) equals

ø1 (l) =

The update equations for the recursion are

The recursive formulafor P^ is as follow

P^ = P^-rlt- o'^@))

where r- is the average power of e@) resulted from a filter of order r, - For m = o, ro is esti-

mated by

Po

It follows from the equation for computing ø^(@ that la^(m) ls r so that o 3P^.P^-,. The

recursive procedure is summarised in the flow diagram Fig- 2.I- It is also possible by use of

28

Eqs. (11), (12) and (13) to calculate all the quantities a.*(m) and P^ before evaluation of the

remaining filter coefficients.

2.5.2 Selection Of Model Order

One of the most important aspects of the use of the AR model is the selection of the order u

t9l. As a general rule, a model with a too low order gives a highly smoothed spectrum. On

the other hand, if .ur is too high, it may introduce spurious low-level peaks in the spectrum.

One indication of the performance of the AR model is the mean square value of the residual

error, which decreases as the order of the AR model is increased. The rate of the decrease can

be monitored in order to terminate the process when the rate of decrease becomes relatively

slow.

Various researchers have worked on this problem and many experimental results have

been achieved among which the papers by Gersch and Sharpe ll973l, Ulrych and Bishop

ÍIg7sl,Tong [1975 ,Ig7'll, Jones U9]6l,Nuttal lLgTíl,Berryman [1978], Kaveh and Bruz-

zone fI979l and Kashyap [1980] can be mentioned.

However, the two more known criteria for order selection have been proposed by Akaike

[1969, Ig74]. The first one is called the final prediction error (FPE) criterion, and is selected

to minimize the performance index [2, 3]

FPE(^) = r^(ffi*)

where p^, the estimated variance of the linear prediction error, is monotonically decreasing,

while the ærm in the brackets is monotonically increasing. The second criterion, called

Akaike information criterion (AIC), is based on the minimization of the following

29

AIC (m) = tnp^*2#

The experimental results indicate that the model order selection criteria do not yield defini-

tive results. For example, Ulrych and Bishop ll975l, Jones lL976l, and Berryman [1978]'

found that the FpE(m) criterion tends to underestimate the model order. Kashyap t19801

showed that the ¡tc criteion is statistically inconsistent as N-+-. In general, experimental

results indicate that for small data lengths, the order of the AR model should be in the range

N/3 to N/2 for good results. It is obvious that in the absence of any prior information about

the physical process based on which the data is resulted, one should try different model

orders and, ultimately, interpret the different results-

. Summary

In this chapter the necessary background for the statistical signal processing was presented.

In the subsequent sections, the theoretical development of the maximum entropy technique

and its application within the context of spectral analysis were discussed. Finally the result-

ant AR model for the signal under analysis, and the Burg method for the estimation of the fil-

ter parameters were introduced, which originated the recursive algorithm of the flow diagram

of Fig. 2.1. The VLSI implementation of the algorithm is presented in the next chapter along

with the basic feature of the chip developed for maximum entropy spectral estimation.

30

m=M

order checking algorithm

a(k) = a'(k) -ø(m) 'a'(m-k)

for k=1 to m-1

False

False

p^ = P^-rlr-4<^>)

a'(k) = a(¡ç¡
for k=l to m
b^(n) = b^_r(n) -a^(m)'b'^-r@-I)
b'm@) - b'^-r(n-r) +a^(m) 'b^-r(n)
for n=m+l to N

num=den=O
for n=m+1 to N
num. = num+ b^_r(n) -b'^_1(n)

den = den* b?^-r(") .b'I-, (n- 1)

True

m=m*1

P(o) = f _rs1"¡tN

m=1

for n=l to N

b
b (

(n)=S(n)
n)=S(n)

Start

Fís. 2.7: îvtßA. A[qoritfrm

31

Chapter 3

ARCHITECTURAL MAPPING ANT)
ALGORITHM TRANSFORMATION

The single most significant development in digital system design in recent years has been the

advent of the microprocessor, a central processing unit integrated on a single chip of silicon.

The processing power and economics of the microprocessor have had a tremendous impact

on the way digital systems are designed and on their scope of application. Because of some

nonideal features of general purpose microprocessors, they can not be applied to DSP prob-

lems. Among their limitations, the relatively slow speed of numerical multiplications, and

limitations on data input and output can be mentioned. A DSP chip, on the other hand, does

many or most of the same things that a general-purpose microprocessor chip does. Specifi-

cally, for DSP work, the chip should be exceptionally good at the things that are necessary in

DSP networks, e-g., multiplications, summations, and data moves.

32

Digital signal processing is computationally intensive; it requires many multiplications

and additions. A range of approaches are commonly used to implement DSP algorithms.

They present various degrees of hardware-software optimization. The single-chip digital sig-

nal processor combines software flexibility with DSP hardware power. It removes the bottle-

neck constraint of conventional microprocessor architecture by high DSP throughput at

moderate cost.

3.1 DSP Chip Families

A number of methods are used in the design of the DSP processor systems [12]: Bit-Slice,

Word-Slice, and microprocessor-plus-memory systems.

Bit-Slice systems are comprised of small but fast subunits arranged in parallel to build the

required word-length. Bit-Slice offers flexibility and high performance, atthe cost of high

count of components, large power consumption, and complexity of hardware development.

Word-Slice systems, on the other hand, have larger subunits than Bit-Slice ones, and are a

natural replacement for Bit-Slice, with comparable performance and far fewer components.

The deign of DSP microprocessors and microcomputers follows the Harvard architecture

t13l (a historical alærnative to the Von Neumann architecture, also defined in the 1940's)

with separate data and instruction buses, and that is basically the employed architecture in

the present study.

3.2 Basic Features Of The Chip

The processor is a single 16-bit chip, implemented with approximately 57000 transistors on

about 2I.3 mmz area of chip which could be contained in a 30-pin dual-in-line package. The

possible pin layout of the processor is shown in Fig. 3.1. The employed technology in the

33

design of the processor is CMOS 1.2 micron, and its instruction set consists of 69 instruc-

tions. Its architecture allows two levels of pipelinin g, i.e., while an instruction is being exe-

cuted, the next instruction is being consequently fetched, decoded, and executed. Many

instructions can be executed in parallel, such as load with address generation, multiply with

add, and so on.

RESET

AEN

Lrc

Vcc

NC

OVF

MS
-R/W

CLK

D15

D14

D13

Dl2
Dl1
D10

D9

D8

D7

U/D
P1/0

Bidi¡ectional
Bidirectional

Output
Input
Input
Input
Input
Input
Input
Input
Input

Output
Input

Input
Input

Address/Data Bus

Data Bus

Job Concluded

Memory Page

Up/Down Count
Set Counter

Load/Count
Address Enable

System Reset

Read/lVrite Control
Memory Enable

Overflow Detector

Sysæm Clock
Not. Connected

+5v
Ground

AD6-ADO
D15-D7
READY

P1/õ

û¡o
SET
Lrc
AEN

RESET
-R/W

MS
OVF
CLK
NC
Vcc
Vvs

Tlp"FunctionName

READY

ADO

ADl
ADz

AD3

AD4

AD5

AD6
Vss

Figure 3.1--Processor pin configuration

The processor operates on a single 5v power supply connected at Vcc; power supply

ground is connected to Vrr. Based on the results of simulation, the frequency of the intemal

clock, which synchronizes the operation of the processor, can be up to 30 MHz- As it is

shown in Fig. 1, some of the terminals have multiple functions. For example in the pin layout

we see that the address lines Ag through A6 and data lines D6 through D6 are time multi-

plexed. In fact these lines serve both as terminals through which the address register of the

internal memory (RAM) can be loaded and also as data lines. For this reason, these pins are

labelled ADg to AD6. Address information is provided on the address/data lines at the begin-

ning of each memory reference, and is latchecl and held during the remainder of the memory

1

2

3

4
5

6

7

8

9

10

11

t2
L3

I4
15

30
29

28

27
26

25

24
23

22

2t
20
T9

18

T7

t6

34

reference to provide address bits As to 46. A 7-bit register/counter latches the address infor-

mation from the address/data pins when clocked by the address register enable signal, AEN-

The address register can also work as counter, thus the user has the ability to point to any

location of the memory sequentially, by using the address register as a counter or randomly,

by loading the address register with the desired address.The remaining package pins provide

data, and control signals. They can be described as following (See also Fig- 1)

4. AEN - This signal enables the address register when it is logic 1, otherwise the address

register is disabled.

5. Lrc - This is the load/count control of the address register. When Ue is a logic one, the

address register can be loaded by data on D6-Dg. When L/e is a logic zero, the register

acts as a counter and the RAM can be addressed sequentially-

6. SET- - A logic zero on this signal sets the address register to the binary value 1111111 pro-

vidcd that L/e is one. ST must be logic one, if the acklress register is to be loaded by a

specific data.

j. úlD - 'When the address register is in counting mode, a logic zero specifies up-counting

while a logic one specifies down-counting.

8. RESET - A logic one on this signal resets the program counter to zero, and this will cause

the command in location zero of the ROM to be read into the control unit, which is no

operation command (NOP). This command disables all the registers in the chip, thus the

processor is prevented to write on the data bus and the internal control lines of the RAM

and address register are tri-stated, i.e., the address register and the RAM are under the user

control. Note that the content of the program counter (PC) remains zero as long as the

RESET is logic one. When RESET is logic zero, the chip is in operating mode, the exter-

nal data bus pins DrS-Dz and AD6-ADg of the chip and external control lines of the RAM

35

and address register are tri-stated. Therefore the RAM and the address register are under

the processor control.

9. READY - when the processor is executing the HALT command, this signal is logic one

which shows that the processor is finished with the processing of the data and the results

are ready. At this time the address register is pointing to the location of the first predictor's

coefficient which is always a one. The content of the program counter (PC) remains

unchanged until the processor will be reset.

10.OVF - A logic one on this signal shows that an overflow has occurred. It remains one until

the chip will be reset.

3.3 MemoryOrganization

The processor has 256 words (16-bit) of on chip data RAM and 5I2 words (g-bit) of ROM

for microprogram codes. Separate program and data buses enable the processor to perform

concurrent data read and write, and program fetches operations. With a clock signal of 20

MHz, the processor will have an ideal instruction cycle time of 50 ns, with most instructions

requiring only a single cycle. Thus, it is capable to execute up to 20 million instruction per

second. The data RAM can be addressed through eight address lines, seven of which are in

fact the outputs of the address register, and the MSB of the address is connected to pin p1/0

of the chip. This way, in fact the memory is divided into two pages, page zero and page one.

The user is only allowed to use memory locations one through I20 (DEC) of page zero to

store the original data set. The rest of the memory will be used by the C.P.U. during the

processing of the data.

The data RAM can be enabled for read or write operation by using the following control

signals

36

1. MS - Memory select, enables the RAM of the chip for active operation. When MS is logic

zero, the data outputs are tri-stated and the RAM is disabled. The data from the last read

operation are held in the output latches. When MS is a logic 1, the RAM is allowed to per-

form read and write operations.

2. -R/W - The -R/W signal specifies whether a read or write operation is to be performed. A

logic one on this signal specifies a write operation and places the output latches in a high

impedance state, while a logic zero specifies a read operation and enables the output

latches. Noæ that read and write operations take place from and on the same data lines,

i.e., the RAM has a common data inputs and outputs.

3. P1l0-- A logic zero on this signal activates page zerc of the RAM for write or read opera-

tion, while a logic one is equivalent to pointing to page one of the RAM.

3.4 Architecture And Operation of The Processor

A block diagram of the intemal architecture of the processor is shown in Fig. 3.2. The proc-

essor contains registers with both general and dedicated purpose.

1. A 9-bit program counter (PC).

2. A9-bit stack register (ST).

3. Eight 16-bit dedicated purpose registers: Z,W,X, Y, MUl,MUz, COl, CO2-

4. A 63-bit register to store the final partial products in the pipelined Multiplier: MU3.

5. Two 7-bit address registers/counters: AI, 1l2.

6. A 16-bit temporary register: TEMP.

The 9-bit program counter fetches instructions from any one of 572 possible memory loca-

tions. When the Reset pin of the processor is made logic one, the program counter is reset to

3'7

r
Booth Dec. Booth

\ I Multiplier
<s

B
Output
Buffers

6
É,9--
E êÞ
ËõE
FC

LatchMemory Input Latch

256-Word Data Memory
RAM

ffu . 3.2- lProcessor ß[ock Dianrøm

Control Lines

32-Bit Accumulator

Address Reg.
A1

32-Bit Adder

Re

Data Bus

ST.
32-Bit bufferY-Register

P.C.

R

C

ConfolUnit

Decoder
Timing &
Control
Section

co.2

co.1

X-Register
Carry Save Adder

Address Latch

Address Reg.
A2

.L.U

Division

Instruction

63-Bit Latch
MU3

MUl Register

U
2

U
2

5l2-V/ord
ROM

Caoy
-Save-
Adder

38

zero; the control unit transfers the contents of the PC to the address latch, providing the

address of the first instruction to be executed. Thus, program execution in the processor

begins with the instruction in memory location zero, which is a no operation instruction and

disables all the registers in the processor unit.

The processor's control unit controls and synchronizes all data transfers and transforma-

tions and is the key sequential subsystem in the processor [4, 35]. All the actions attributable

to the processor are actions implemented by the control unit. The basic operation of the proc-

essor is regulated by the control unit and consists ofthe sequential fetching and execution of

instructions. Each instruction execution cycle has two primary states: the fetch state and the

execute state. The fetch state transfers an instruction from the memory (ROM) into the con-

trol unit, and the execute state executes the instruction. Because of the pipelined nature of the

processor, it does not cycle between fetching and execution of instructions. Therefore, the

execution cycle of one instruction is in fact the fetching cycle of the next instruction. At the

falling edge of each clock cycle, a new instruction is fetched from the ROM and is processed

by the control unit. At the falling edge of the next clock cycle, the control unit updates the

contents of the control-unit-register (C.U.R), and fetches the next instruction from the ROM.

Therefore, while the control unit is processing a new instruction, the processing unit is exe-

cuting the previous instruction which can be a data transfer operation, arithmetic operation,

etc. As an example, the multiplication of two numbers is shown in Fig. 3.3.

Processor instructions are 1 or 2 bytes in length. The first byte always contains the opera-

tion code (OP code). During the instruction fetch, the first byte is transferred from the mem-

ory into the instruction register. The PC is automatically incremented so it contains the

address of the next instruction if the instruction contains only 1 byte, or the address of the

next byte of the present instruction if the instruction consists of 2 bytes. In the case of a mul-

l9

tiple instruction, the timing and control section provides additional operation to read in the

additional byte. The timing and control section uses the instruction register output and exter-

nal control signals to generate the state signals. After all the bytes of an instruction have been

fetched, the instruction is executed.

lig. 3.3--Multiplication of ffc6(HEX) by fïal(HBX)

Timing description of the multiply operation depicted in Fig. 3:

1. At time 146900 ns, the first operand (ffcQ is moved to the register MUl.

2. At time l47l0o ns, the second operand (ffal) is moved to the register MUl.

3. At time 147300 ns, Mul*Mu2 is moved to the MU3 and is added to the content of the accumulator,

which is fffDde5(HEX).

4. At time 147700 ns, the final result is stored in the accumulator.

Note that the data in the accumulator is the complement of the actual result.

flal

tllc mf4

0m4 0001

fffl885fttffgdeS ffffl 0b€

9493

067ú2200ff)1 a2 067àm3 017ú22 067ú22

00f0lb 040011:00f 0ea

0e40e3 0e60e5 0eb0ea0þ7

dala ffc€

P.C._Reg i 0e1

dock

C.U.R_Reg

A1-Heg

Z_Reg fifl

W_Reg

Accu.

x_Reg

a647 10be I

lllla6{7

0001

Y-Hegi tfÍf

MU1_Reg lfc6

M2-Reg:003a 0001 |

üme(rß)
1182500 14M00

116000 0 147000 0 147250 0 1 47500 0 117750.0 140m0 0

Stn

40

A subroutine call is mainly performed by using the stack register (ST). The 9-bit stack

register, ST, maintains a pointer to the location of the ROM to which the control of the pro-

gram has to return after the execution of the called subroutine is finished. In the current algo-

rithm, it is mainly used for the division subroutine.

The processor's arithmetic unit performs arithmetic operations on data. Depend on which

operation is to be performed, the operands for these operations are stored in four registers

associated with the ALU: the 16-bit X register, the 16-bit Y register, the 16-bit MUl register

and the 16-bit MU2 register. The register pair ZW is used as the accumulator and serves as

the destination register for all the arithmetic operations. The accumulator is loaded from the

outputs of the ALU and can transfer data to the internal bus.

Associated with the ALU are four flag registers, which indicate the condition associated

with the results of the arithmetic operations. The flags indicate zero, addition overflow, divi-

sion overflow, and whether the result is more than 16-bit in length-

The processor's internal data bus is 16 bits wide and transfers data among various internal

registers, and the data memory (RAM) or to external devices through the multiplexed data

bus buffers. The bidirectional three-state data bus buffer isolates the processor internal data

bus from the external system data bus. In the output mode, the information on the internal

bus is transfered to the external bus through data bus output buffers. The output buffers are

floated during input operations. During the input mode, data from the external data bus is

transferred to the internal data bus.

The floor plan of the chip and the distribution of the active area within the chip are

depicted in Fig. 3.4 and Fig. 3.5 respectively.

4t

'I
IT

AMCZXZ 16X32

AMCZXZ 16X32 ?

AMCZXZ I6X3Z

AMCZXZ 1ËX3Z 3

-

AÊvllltflffi38E3

:NL N

Register
A2

A1
Register

control un¡t 0

r[trr-rnv

control un¡t

r3

MU3
tB

Adder
512-Bit
ROM

Carry
Save

Fig. 3.4-- Floor Plan of the processor

42

V

!l
!J

Figure 3.5-- Distribution of the active area within the chip.

r
43

:l
!J
:

3.5 Instruction Set

The function of the processor is implemented by a sequence of data transfers between regis-

ters in the main memory and the processor. Each register which can be manipulated under

program control is addressable in some manner, allowing it to be designated for use in data

transfer or transformation.

The kinds of individual transfers and transformations which are possible are specified by

the processor's instruction set. Each instruction in the set causes one or more data transfers

and/or transformations. The control section of the processor decodes the program instruc-

tions, and using the system clock, controls what register transfers or transformations take

place and when. The instruction set of the processor is grouped in order under four different

functional headings[29]

1. Data Transfer Group-- Moves data between registers or between memory locations and

registers.

2. Arithmetic Group-- Adds, subtracts, increments, or decrements data in registers.

3. Branch Group-- Initiates conditional or unconditional jumps, subroutine calls and returns.

4. Machine Control Group-- Includes instructions for setting and clearing flags, setting regis-

ters, shifting accumulator and Halt.

A summary of the processor instruction set is given in tables one to four. It shows the

machine code equivalents (Hex.) as well as assembly language mnemonics. A full descrip-

tion of the instruction set is given in appendix A.

I

þ
44

t
Ì

MV4 MUl,
ML

MV3 MUl
ML

¡/dvz MUl,
ML

MVI MUl
ML

MV 42, ML
ML
MV CO2,

ML
MV COl,

MV TEMP,
ML

MV2M,V/

MV1 M, W

M,MV2
TEMP

M,MVl
TEMP

I['4Vz}/4.,Z

MVI M, Z

MV A1, A2

MV MUl, V/

MVX,W

MV2 MU1,
TEMP

MVl MUl
TEMP

MV MUl, Z
MV A2,Z

MV AI,Z
MV CO2,Z

MV COl, Z

MY X,Z
MV Y,Z

Mnemonic

TAßLE 1. Instruction Set--Data Transfer Group

Machine
Code

(rDx)
t2

22

OB

2B

2A

23

15

20

25

18

t9

1C

2D

ID
07

Function

(Y) <- (z)

(x) <- (z)

(col) <- (z)

(coz) <- (z)

(A1) <- (Z)

(¡'2) <- (Z)

(MU1)<-(Z) &. Gvru2)<-MUl) &. (MU3)<-MUI)*(MU2) &'

((z)cw))<-0

(MU1)<-(TEMP) & (MU2)<-MU1) &. (MU3)<-MU1)*(MU2) &.

Load ((ZXw))

MU1)<-(TEMP) & (MU2)<-(MUI)

(x) <- (v/)

o4u1)<-(ìv) &. MU2)<-(MUl) &. MU3)<-(MU1)*(MU2) &.

((zxw))<-0

(41) <- (42)

(041) <- (Z) & (Ar) <- (A.1)+l

(1Al) <- (Z) & (Ar) <- (Al)+l
(0Al) <- (TEMP) & (41) <- (41)+1

(1Al) <- (TEMP) & (41) <- (41)+1

(041) <- (v/)

(lA1) <- (V/)

(TEMP) <- (ML) & (lvtl-) <- (141)

(col) <- (ML) & (ML) <- (041)

(CO2) <- (lvtl-) & (ML) <- (041)

(42) <- (lvII-) & O4L) <- (141)

(ML)<-(0A1) &. (MUl)<-(ML) & (MU2)<-(MUl) &. MU3)<
(MUl)*Oru2) & (41)<-(41)+1 & ((ZXw))<-0

(ML)<-(IA1) &. (MUl)<-(ML) & (MU2)<-(MUl) &. (MU3)<-
(MUl)*(MU2) & (Al)<-(Ä1)+1 & ((z)0ÃD)<-0

(ML)<-(1AI) &. (MU1)<-(lvIL) & (MU2)<-MUI) &. (MU3)<-
(MU1)*(MU2) & (Al)<-(Al)+1 & Load ((Z)C$D)

(ML)<-(OA1) &. (MUl)<-O4L) & (MU2)<-OIUl) &. (MU3)<-
(MUl)*(MU2) & (41)<-(Al)+1 & Load (Z)(\Ð)

33

OF

OD

27

OA

32

24

OC

1F

08

OE

MV5 MU1 (ML)<-(0A1) & O4U1)<-(ML) & (N4U2)<-MU1)IB
ML

45

þ

Function

(ML)<-(1A1) & (MUl)<-(ML) & (MU2)<-(MU1

(ML)<-(OAI) & (MUl)<-(ML) & (MU2)<-(MUl) & (41)<-(Al)+1

(ML) <- (041) & (X) <- (ML)

(ML) <- (041) & (x) <- (ML) & (41) <- (Al) -1

(ML) <- (0Al) & (Al) <- (41) +l
(ML) <- (0Al)
(ML) <- (141)

A'1, (41) <- (byte2)

TABLE 2. Instruction Set--Arithmetic Group

TABLE 1. Instruction Set--Data Transfer Group

Machine
Code

(rßx)
IE

10

t6

09

1A

06

3E MVI
dal^

Machine
Code

(HEx)

'2.6 (Z) <- (Y)+(X)

t7 (z)<-(Y)-(x)

13 (z)<-(Y)r(x)

t4 (z)<-(Y)rcx)

(42) <- (,q.2)+1

(A2) <- (42)-1

(41) <- (41)+1

2t DCRAl (A1) <- (A1)-1

TABLE 3. Instruction Set--Branch Group

Machine
Code

(rrEx)

2C

Function

29

28

05

Function

(PC) <- (byte2)36

01

03

02

34

IFIGot) < (Co2)l + (PC) <- byte2

(PC) <- (byte2) & (SÐ <- (PC)+2

ec) <- (sÐ

rF [(AL) + (COru.o) ì + (PC) <- byte2

IFt@G) = 1l + (PC) <- byte2

IF l(CoI) < (Co2)) + (PC) <- bYte2

ZF

MV3 ML, M

MV2 MLM
MVl ML, M

MVYML
MV X, ML

MV7 MUI,
ML

MV6 MUI,
ML

Mnemonic

INR A1

DCRA2

INR A2

DIV2

DIVl
SUB

ADD

Mnemonics

JLE addr

JBG addr

JNE addr

RTN

BNCH addr

JMP addr

Mnemonics

35 JLT addr

46

JF3 addr

JF2 addr

JFl addr

JEQ addr

Mnemonics

TABLE 3. Instruction Set--Branch Group

Machine
Code

(rrEx) Function

IFI(Cot) = (Co2)) + (PC) <-byte2

40 IFt@D = 1l + (PC) <- bYæ2

4l IFtTz) = 1l + (PC) <- byæ2

42 IFI(F3) = ll + (PC) <- byte2

43 JF4 addr IFt@4) = ll + (PC) <- byte2

TABLE 4. Instruction Set--Machine Control Group

Macbine
Code Function

(A1) <- (1111111)

No Operation

Halt

Check Division Overflow

(Fl) <- (1)

(F1) <- (0)

(F2) <- (1)

(F2) <- (0)

(F3) <- (1)

(F3) <- (o)

(F4) <- (1)

(F4) <- (0)

Øo) <- OMrs); (Wo) <- (0)

44 SHD (Zo) <- (Wrd ; OMo) <- D.C

3.5 The Stack And Subroutine Execution

One of the important techniques in software design for microprocessor systems is the use of

subroutines. It is in fact a task which is required to be carried out, at several points in a pro-

gram, and requires the execution of the same group of instructions. It is more cost effective in

terms of memory usage if the needed group of instructions appears only once but can be exe-

cuted from several points in a program. Central to this is a storage structure called stack,

37

04

00

3F

2E

30

31

38

39

3^
3B

3C

3D

11 SHL

RST F4

SET F4

RST F3

SET F3

RST F2

SET F2

RSTFl

SET F1

SET OVF

HLT

NOP

SET A1

Mnemonics

41

which is a collection of registers organized in such a way that the last dat¿ written is the first

one available to be read. In other words, a stack is a last-in first-out memory, or LIFO mem-

ory. Depend on the level of subroutine calls, a stack located in a microprocessor is of fixed

depth, typically between four and 16 words. In case of this study, provision is made for only

one level of subroutine call, which was primarily needed for the execution of division sub-

routine

3.6 AlgorithmTiansformation

The design of microprocessor system requires a knowledge of both hardware and soft-

ware. The mathematical background of the algorithm was developed in chapter two which

resulted in the flow diagram of Fig. 2.1. This flow diagram is the key solution to the question

of what are the basic requirements of the processor in order to achieve a reasonably good

performance together with the basic goal of logic design which is a system that functions as

required and is reliable, easy to maintain, ald cost effective. A closer iuspection of the pro-

posed algorithm reveals the following facts

. The algorithm is recursive, and because the final result, i.e., the spectrum of the signal is

theoretically irrespective of the magnitude of the sampled signal, the initial scaling of the

data can result in better computational accuracy as well as avoiding under-flow and/or

over-flow without any penalties.

. Among the four basic required arithmetic operations (+, -, X , *), multiplication is the

most important one. That is primarily because it is encountered more frequently in the

proposed routine, and also because of the fact that some other calculations like the square

or mean value of the data can be carried out more efficiently, provided a high speed multi-

plier is available.

48

. In each recursion, one division is required that provides a result which is always less than

one. Thus, a serial non-restoring divider can meet the desired accuracy and speed specifi-

catlOns

. The main block in all the arithmetic operations and also some address generations of the

memory is the 32-bitadder. A two-level,32-bit, carry look ahead adder proved to meet the

speed demands of other blocks as well as providing an efficient area to speed ratio.

The main routine of the program can be partitioned into several smaller subroutines

1. Initialization-- To decrease the possibility of overflow, and also to speed the processing,

the processor calculates the mean value of data by successive multiply-accumulate opera-

tions. Each datum is multiplied by a one, which is already stored in TEMP register, and

the result will be added to the outcome of next multiply operation. Two copies of data are

then generated by subtracting the mean value from the original data set and will be stored

in page zero and page one of the data RAM respectively. They are shown as strings b (n)

and ø' (n) in the flow diagram of Fig 2.1.

2. The Main Loop-- The fwo variables wou and DEN are calculated as

Do 30 r=t,(N_tuÐ

NOM = NoM+b(T)'b'(T)

DEN = DEN+b(D'b(T) +b'(T:)'b'(T)

30 CONTINUE

again through successive multiply-accumulate operations. Since for every T

@Q)-b'1T7¡tro

then

49

b (T) - b (7) + b' (7) . b' (T) >2b (D ' b' (T)

+>b Q) . b (r) + b' (r) ' b' (7) ,2>b (n ' b' (r)
TT

+DEN>2.NOM+A(M) <L

In order to calculate the value of AQr) accurately, the processor first calculates the value

of p¿¡y .If on¡t is more than 16-bit in length, then both oru and ¡,tou will be divided by

N, where N is the total number of sampled data. The result of any division operation must

not be more than 16-bit long, otherwise the OVF signal will be logic one, which shows the

sampled data are not properly scaled. The processor multiplies the value of wou by 4ffX)

(Hex.) and stores the result in the accumulator. Thus, the result of division of Notnt by

DEN has its radix point after bit 14, i.e., it has 14 meaningful digits before radix point

which give the desired accuracy.

Multiplication of two numbers with different radix points can be simply carried out without

any pre-adjustment of radix points. However, for addition and subtraction, the operands have

to be adjusted in order to have their radix points at the same place. In updating the value of

the previously calculated filter coefficients, A(m), and the data in data RAM, using the value

of A(M), it is therefore important to consider the fact that A(M) has its radix point afær bit

14. Each time, at the end of execution of the main loop, the processor adjusts the value of

A(M) so that it has only 9 digits before the radix point. It is therefore possible to assign a

broad range of values, both smaller and bigger than zero, to the filter coefficients A(m) when

the processor updates these quantities. The processor then provides two copies of filter coef-

ficients in pages zero and one of the RAM respectively. The update equation for the filær

coefficients can be written as

DO 40 T = t, (M-r)

50

A(7) = AAQ) -A(M)'AA(M-r) (EQ 18)

40 CONTINUE

To ease the addressing of the memory, the second copy of the filter coefficients in page one of

the memory is stored downward, compared to the first copy in page zero, i.e., the address of

the last filter coefficient has a value which is smaller than the address of the first one. There-

fore, in calculation of (EQ 18), the processor needs to address pages zero and one of the

memory just in one direction (Upward). Note that in each recursion one location of the mem-

ory will be released and therefore can be used to store the recently calculated filter coeffi-

cient. In most cases the addressing of the memory locations is done upward and sequentially

by using the address register Al as a counter. There are however occasions that it is neces-

sary to use counter A2 to keep track of memory locations in page one, e.g., for copying filter

coefficients in page one.

3. Division Subroutine-- The only subroutine which is used in the program is the division

subroutine. The machine codes of this routine are stored in locations 1F0 (Hex.) to the end

of the ROM. The algorithm uses a non-restoring method and mainly consists of succes-

sive shift and add or subtract operations.

The complete program of the flow diagram of Fig. 2.1, written by using assembly language

mnemonics, is given in appendix B.

. Summary

In this chapter, the operation of the processor was described. First a general overview on the

processor was given and its pin configuration was discussed and the function of each termi-

nal was explained briefly. In subsequent paragraphs, the organization of the memory (RAM)

and the architecture of the processor were described in more details. The major parts of the

processor were listed and the function of each was clarified concisely. The floor plan of the

51

processor shows how these elements are distributed within the chip and the processor's block

diagram depicts the interaction of these components. Particular attention was paid to the

operation of the control unit and its pipelined nature in synchronizing all the events within

the processor was explained by an example.

Finally the instruction set available in the processor was introduced. The instructions were

classified in four functional groups and presented in separate tables. Next chapter is devoted

ro the design methodologies of major parts of the processor. Mathematical background

behind the operation of each block is discussed and its hardware design as well as the simula-

tion results are described in detail.

52

Chapter 4

PROCESSOR BUILDING BLOCKS

4.L Multiplier

For a given resolution, speed is the dominant specification of a multiplier. Therefore DSP

multipliers are parallel "àÍta,y" multipliers rather than the clocked "shift-and-add" of soft-

ware multiplication. The cost in chip area is reduced somewhat by employment of algorithms

(e.g. Booth's algorithm) to eliminate redundant operations when a string of l's or 0's is

encountered. The main benefit is single-cycle multiply speed to match other computational

elements and data transfers. An accumulator combined with a multiplier is desirable since it

facilitates carrying out terms like:

2o <"¡ x(n- k)

which are frequently encountered in the operation of filters, Fourier analysis, and vector

operations. Intermediate pipelining registers enhance throughput because overhead on repct-

53

itive calculations is lessened. Internal feedback path can make possible, for example, single-

cycle computation of the common DSP operation øx D+8. Pipelining, on the other hand

increases the bandwidth of the system for a given latency by allowing simultaneous execu-

tion of several tasks at the cost of higher gate count due to additional latches. Fig. 1 is a con-

venient star representation of the concept of the multiplication of two 16-bit operands. The

scheme is based on simultaneous generation and reduction of partial products which takes

place in two independent steps.

* * ** * **** * ** * * * *

* * ** * **** * ** ** * *

4s............,........4s* *** *** * :t * * * * ** *

b"..,.............,b"xx*xx**xx*******

C...............C"x*******r.*******

dr......,,..tlrx**************t(
€........e.**xx************
f......frx*xx************
gsgs********r<*******
hr* x * * * x x * x * t! *** * *

:*,* *'*'1.*** *** * * * **** *+¡l.¡1.***Í*+:l:f:

FIGURE 4.1-- Star representation of multiplication of two 16-bit numbers.

4.1.1 Generation Of The Partial Products And Booth's Algorithm

Partial products can be generated using AND gates and in this way an n-bit multiplier gener-

ates n partial products. However it is possible to reduce the number of partial products by

using encoding techniques. The modified Booth's algorithm [7] is one of these techniques

which reduces the number of partial products by half. The original Booth's algorithm sug-

gests to skip over any string of 1's or 0's. Skipping over a string of 0's is straightforward, but

a string of 1's is equal to a 1 followed by n 0's less one. A more commonly used algorithm is

modified Booth which differs from original Booth in that it always generates n/2 independent

54

partial products whereas the former produces a varying number (at most nl2) of dependent

partial products.

The modified Booth's algorithm generates 8 partial products for a 16 by 16-bit multiplier

by encoding 3-bit groups. Each multiplier is divided into groups of three bits and adjacent

groups share a common bit. In using the Booth's algorithm for two's complement numbers,

rhe mosr significant bit has a weight of (2n) and requires the multiplier to be padded by a 0 to

the right to form 8 complete 3-bit groups. Of course in two's complement, the sign bit must

be extended to the full width of the final result, as shown by the repetitive terms in Fig. 4.1-

Fig. 4.2 depicts the encoding scheme of modified Booth's algorithm [37].

+0
+x
+x
+2x
-2x
-x
-x
-0

add zero
add multiplicand
add multiplicand
add twice the multiplicand
subtract twice the multiplicand
subtract multiplicand
subtract multiplicand
subtract zero

0
1

0
1

0
1

0
1

0
0
I
1

0
0
I
I

0
0
0
0
1

1

1

1

operatlon

mi-1m1mi+l

2-r202r

Bir

Figure 4.2--Encoding scheme of the modified Booth's algorithm.

Based on this scheme, if the shared bit is 1 the subtraction indicated since we prepare for

a string of 1's. For the lowest order action, only four actions are possible and derived from

bits m1m9 paddcd with a 0 to the right. In generating the next partial product, the participat-

ing bits âro m3m2m1. The resulting partial product must be shifted by two with respect to the

previous one, and this is true for any partial product so generated.

55

4.1.2 Sign Bit Extension And Add One Method

Since a modified Booth algorithm is adopted, eight 17 bits partial products are generated.

The sign bits of these partial products are located 2 bits apart from each other. Therefore, the

sign bit of partial product zero is to be extended to the sign bit position of partial product 7,

which is the most significant partial product. Obviously this operation needs alatge number

of circuits. However using add-one method [40], the sign bit extension can be treated in a

simple way.

Based on this method instead of extending the sign bit (bit 17) of partial products, the fol-

lowing three steps can be adopted

4. Invert the sign bit (bit 17) of the partial products

5. Set a "1" between the sign bit of partial product (i-1) and partial product (i)

6. Set a "1" in the partial product zero sign bit position.

It should be noted that the result of the multiplication of two 16-bit two's complement num-

bers is always less than or equal to 3l-bit long. The proof of this method is as following.

The result of the multiply operation can be found by adding the partial products as is given

by

pps+ppy 22 +ppz'2a +ppz'26 +pp+'28 +pps'2r0 *PPa'212 +PPt'2ra =

o,> 2'* 2o, 2i-o".23r).Ib,> 2'* Lb,.2i -b".2'e 22+
30 l5

26 l5

28 15

i=16 i=0 í=16 i=0

,,2 2'* I r, . 2i - r,. 227 24+ 0,2 ,' * 2 d,.2i -d,-22s 26+
í--16 i=0

24 t5

20 15

i=16 i=0

l5

T
i=0

e+(",,i,,r' 2i r,2 ,' * 2î,' r' -.f"'r" 0
e

s
2 +

i=16 t=0
223 28+

56

l8 15 15

i=0

t4
s,>2' * Ic, 'r'-r,'r'n 2r h"-2'u * Zhr.zí -hr.zr7

1 (EQ re)2+

Coefficients as to h, are sign bits of partial products zeÍo to seven. The sign extension term in

(EQ 19) can be separated and shown by a term referred to as S

i=16 i=0

s= a
s

^3-a ¿
s).(

b"\ 2i -b,.22e 22+ ,oL 2t -"r-2" ¿,2 ,t - d,.2" 26+24+
i=t6 i=16

l8

22r g,l 2i - g,'2Le 2r2

¡=16
223e

J

2

30

=t6

2i

22

I,
í=16

€,

28

i=t6

26 24

,' *þ,f,'-r, *(n,-z'u -n,.2").2'n
) "'.[

I

I

I

Defining new parameters

a, = (L-ar) bs = (I-bs) c" = (1-ão) d" = (l-ã")

e, = (l-er) S" = (1-g,¡ h, = (L--h,)

and considering

n

i=m

., i _ nn+l nm

it is concluded that

l, = Q -¡"¡

s=
30

i= 16).I
30

í=22
o">2'-o"-2tt b,> 2'-b,-2t' +

30

2i
30

I,
=20

31
+ +do\ 2¡ -do.23rc

sct
i

2

[,

30

i =24

2 -e s

i = 18

,"
).?",ä,r'-r"

r").I

- (1-¿.,)

30

8,> 2t - g,'2tt
i -28).(*

z'o-n" 2")

+s = (1-+l(2" -r).r'u z3r + (L-u"r(rtt-,) ,tt-(1-t") 2t' *

(1-;")[rtt-,)-r'o-(r-;") 23t+çL-¿"llrn- ,) ,"-Q-A,) +

5'l

2
3l

on the other hand and in spite of its difficult physical realization, is another option in reduc-

ing the propagation stages. Moreover, a 4-2 compressor unit is employed instead of conven-

tional full adders which are usually used in multiplier affays. As is shown in the block

diagram of Fig. 4.4, the multiplier consists of three major blocks

1. Booth encoding block: generates 8 partial products according to the modified Booth's

algorithm.

2. Compressor: reduces four lines of partial products to two. In this block the Wallace tree

structure has been applied to reduce the propagation delay.

3. 32 bits carry_Iook-ahead adder: Performs the final addition and generatés the final result.

Figure 4.4-Block diagram of the 16 by 16 multiplier.

The circuit diagram for a 4-2 compressor l22l is shown in Fig. 4-5(a), and its equivalent

circuit is shown in Fig. 4.5(b). It has five inputs and three outputs and is capable of compress-

ing four partial products (xl, x2, x3, x4) into two new partial products (sum, co), simultane-

l6
Bir

Latch

C
o
M
P
R
E
S
s
o
R
S

6
3

B
I
T

L
A
T
C
H

3
2

B
I
T

A
c
c
U
M
U
L
A
T
o
R

A
D
D
E
R

3)

B
I
T

CLA

16 Bits Data

<-=_16 Bits Data

59

ously. Note that the generation of "Cout" is independent of the arrival of 'cin' therefore no

carry signal will propagate through the array. Only two stages of this compressor are needed

to sum up 8 partial products and three stages for multiply accumulator.

The Booth encoding block consists of two major parts [37]. The first part is the control

section which generates the control signals N, xl and x2 by considering the logic levels of 3-

bit groups of the multþlier. These signals control the operation of all the other similar blocks

which act on the input multiplicand. The circuit diagram of the control section is shown in

Figure 4.5(a)--Circuit diagram oT a 4-2 comPressor,

V VEM cell compressor:schematic

Hl *2 $l H+

cout

UM

co

c n

l5?. -1rgûl üor'tìpr' esso r : sc he rnatic -tti5J

t

60

x1 x2 x3 x4

cm
A B cln

cout

co sum

F.A.

F.A.

Figure a.5þ)--Equivalent circuit of a 4-2 compressor.

Fig. 4.6(a). The second part is essentially a multiplexer which outputs one of the signals mul-

tiplicand(n), multiplicand(n-1), zero oÍ their complements as proposed by the control signals

xI, x2 and N. The circuit diagram of the multiplexer block is depicted in Fig. 4.6(b)-

Figure 4.6(a)--Control section of the Booth encoding block.

VEM cell Booth-encoder-l :sche matic

m2 m1 m0

N

X1

N2

10, ûl Eooth encoder 1: 4 -219

6L

v

PP(n)

VEM cell Booth-encoder-Z:schematic

multiplicand(n- l

}(Z

N

multiplicand(n)

)(1

Figure 4.6(b)--The circuit diagram of the multiplexer used in Booth Encoding Block

A complementary pass transistor logic (CPL) is applied to the Booth encoding blocks [4U. It

consists of complementary inputs and outputs, NMOS pass transistor logic network and

CMOS output inverters. It is necessary to use output inverters to amplify the output of the

pass transistors which their high level is less than supply voltage by threshold voltage of the

pass transistors. To acquire better noise margin, the threshold voltage of the output inverters

has to be less thanYccl2. The basic circuit modules, shown in Fig. 4.7, are used to construct

the Booth encoding blocks shown in Fig. 5.

B B

A
a

B

B
a

Ã

OR/NOR

o vrtdl ciLcrrehiúþ

EB

A

B

B

Ã

o

a

o vrrÐll atr-c¡rElrchr&

a

A

A

O
A

A

BB

vÉxës d-4Ìerþird¿

Figure 4.7-- CPL Circuit modules

62

4.1.4 Multiplier Simulation Result And Performance Estimation

If a system performs only one task at a time the bandwidth is defined as the inverse of the

latency. In general, bandwidth is the number of tasks that can be performed in each specific

time interval. Pipelining technique, in addition to the parallelism, can result in increasing the

bandwidth of the system while keeping the latency constant. The increased bandwidth is

achieved by dividing the combinational logic into several stages separated by latches. There-

fore increasing the bandwidth by pipelining results in higher gate count due to additional

latches.

Referring to Fig. 4.4 it can be inferred that both multiplicand and multiplier can be loaded

in two clock cycles. At clock cycle three the result is ready at the output of the 63-bit latch to

be added to the current data in the accumulator and also the second multiplicand can be

loaded into the 16-bit input latch. At clock cycle four the second multiplier can be loaded and

the final result of the first multiply accumulate operation is ready at the input of the 32-bit

accumulator. Fig. 4.8 depicts a typical simulation sequence of the multiplier circuitry. In this

simulation the multiplier is æsted against the most common operation in DSP programs, as

well as the algorithm of Fig. 2.1, which is the calculation of terms like

(Al) . (Br) + @r)' (82)

Timing description of the simulation is as follows

1. At time 8300 ns, the first number (lC) is moved to register MUl and accumulator is reset

to zero.

2. At time 8500 ns, the second number (11) is moved to register MUl-

3. At time 8700 ns, the third number (-lC -> two's complement -> FFE4) is moved to regis-

ter MUl and the contents of registers MU3 and accumulator are updated.

63

o\À

data OO1 c oool

P.C._Reg' oo8 010

lnstruc_Reg OOc opo

clock

C.U.R_Reg', O67e522 oof9o23

A1_Reg 71

Z_P.eg XXXX ffff

W_Reg XXXX ffff

Accu. XXXXXXXX fffffffl

x_Reg XXXX oo04

Y_Reg XXXX tffc

MU1_Reg : oool oool

MU2_Reg oool oool

reset i

t¡me (ns) ì
aoog.3 4250-o a500.o 8750.O gmo-o

o1 o2

oooo

oo79122 o67b122 ooÍ9122 o67b122 oofao23 067ao23

Ozc OOe O2c oof ood oof

oo9 OOa oob OOc ood OOe oof

oo1 1 t'le4 oo1 1

OO1 c oo1 1

oooo

5557

t]e4 oQ1 1

ffff

oooooooo ffffffff fffffe23

fffc

le23

ffff

aâaB oo04 oooo

OO1 c oo1 1 l1Þ4 oo1 1

9250-O 9500.o

Sun Oct 23 1

Figure 4.8-- Simulation result of the calculation of (I C) - (1l) + (-1 C) - (I l) , all the numbers are in llexadecimal base.

4. At time 8900 ns, the fourth number (11) is moved to register MU1.

So far all the four numbers have been moved to the multiplier. In order to get the final result,

which is obviously zeÍo, it is always necessary to terminate the sequence of data transfers to

register MUl by three extra data move operations. These additional operations put the final

result in the accumulator, and prepare the multiplier for the next sequence of multiply-accu-

mulate operations by loading registers MUl and MU2 with a 1. In this simulation the final

result is moved to the accumulator at time 9500 ns. Note that the content of the accumulator

is in fact the complement of the actual result. The sequence of instructions required for this

simulation is as following

MVI MUl, ML (Instruction Register: 0C)

MV7 MUl, ML (Instruction Register: 2C)

MV4 MU1, ML (Instruction Register: 0E)

MV7 MUl, ML (Instruction Register: 2C)

MV1 MUl, TEMP (Instruction Register: 0F)

MV2 MUl, TEMP (Instruction Register: 0D)

MVl MUl, TEMP (Instruction Register: 0F)

NOP (Instruction Register: 00)

Note that due to the pipelined nature of the processor, the instruction register always shows

the machine code of the next instruction to be executed.

The maximum rate at which this pipeline can operate depends on the maximum and mini-

mum propagation delay of the combinational logic. The minimum clock period ar required

for each stage is equal to:

L,t> t^or- t^ir+ tg

l
r[j

-:

l 65

where

knax = maximum propagation delay of the stage

t-in = minimum propagation delay of the stage

tg = gate width or set up time required for the data to be valid at the input of the latches in

order to be stored properly.

The maximum rate is determined by the slowest block and is equal to: L,/Lt^o,.

The result of the simulation shows that the minimum clock period required is about 15 ns.

4.2 32-Bit Carry-Look Ahead Adder

4.2.1 Algorithm And Hardware Implementation

Due to the simplicity and modularity that make it particularly acceptable to integrated circuit

implementation, carry look_ahead is one of the most popular methods of addition. To show

the hardware implementation of the algorithm the equations for a 4-bit slice can be written as

follow 125,26)

Sum equations So = Ao@Bo@Co

Sr=Ar@Bl@Cl

52 = Az@Bz@Cz

53 =A¡@83@C3

Or in general s. = A.OB.@C.rttt

Cl = AoBo+ Co (Ao + Bo)

Ct = ArBr+ Cr(AL + Bl)

:ì
rlt

þ

Carry equations

66

t

ll
I

C, = ArBr+ Cr(A2+ 82)

Co = ArBr+ Cr(Ar+ Br)

Or in general C¡*t = A,B,+C,(A,+Bt)

If we define the Generate term G1 as Gl = Ai Bi and propagate term Pi as P¡ =4 o B¡ then

Ct = Go+PrCo

Cz= Gt+PrC,

Substitute C1 into the c2 equation we have

Cz = Gt + PtGo+ PrPoLo

and in the same wa) C3 and Ca can be expressed as follows

Ct = Gz+ PrC, = Gr+ PrGr+ PrPrGo+ PrPrPoCo

C + = Gs + P rG, + P rPrG, + P rP rP rGo + P tPrP tP oCo

Generalizing the above procedure, the carry look ahead equation can be derived as

C¡*t = Gr+ P,Gr_r+ P,P,-rG,-z+ ... + PiP¡-t...PoCo

Based on this equation a carry to any bit position can be computed in two gate delays, how-

ever because of the fan in limitation it can't be realized in practice. The solution to this prob-

lem is to have several levels of carry look-ahead. To illustrate this concept the equation for

C4 can be rewritten as follow

C¿ = G'o+P'oCo

:{
rrj

I

ï
67

where

G'o =Group generate=c, + PrGr+ PrPrG, + PrPrP rGo

P'o =Group propasate= P3P2PrPoco

With a fan in of 4, one level of carry-look-ahead is enough for 16 bits. Therefore two levels

of carry look_ahead are employed for 32-bit addition. The hardware implementation of the

adder is shown in Fig. 4.9 for a 4-bit slice [39].

and

i
I

l

v VEM ce ll 4-E ¡t-S lice-ClA:sche mat¡c

B3 3B A2B 1B 0

G3 G2 G1 GO
3 P1 0

CO

P' tl L-l C2 C1 S

l-\ r')ù,J

|-5'' -51 4-Bit-$Iice-tlå : sclænatic -+':ir-,+'l¿Jtl1J\J J

S2 S1

I

Figure 4.9--Circuit diagram of 4-bit adder slice

68

The logic equations of this circuit have been optimised by using a logic optimser software in

order to reduce the number of gates, and as a result, increasing the speed as well as reducing

the layout area of the block.

The first level of carries are generated using the following equations

Cq= G'o+P'oCo

Cs = G't + P'tG'o + P' rP'rCo

C tz = G'z + P' ,G' , + P' ,P' tG'o + P'rP' ,P'oCo

The second level generate and propagate terms are

G" = G' z + P' rG', + P' rP' rG' t + P' rP' rP' tG' o

P" = P'zP'zP'Ì'o

The only second level carry in case of 32-bit adder is

Crc= G"+P"C,

Figure 4.10 shows the gate implementation of the 4 group carry generator. It should be

mentioned that in the actual design of this block, the carry generator of each slice is included

in the previous slice. Although this scheme results in four different modules and reduces the

modularity of the design, but it increases the speed of the adder. This in turn affects the speed

of the whole system due to the importance of the adder in many operations of the processor.

The increase in speed is primarily because of the resultant simplicity of the placement and

routing of the four sub-modules so generated. The input carry signal of each slice is readily

available as the output carry of the previous slice. Therefore there is no demand for long

metal lines to distribute the carry signals between different blocks which can result in addi-

69

tional delay due to increasing wiring capacitance. The scheme also reduces the required area

for 32-bit adder and provides a rectangular shape block which is consistent with the rest of

the system.

Figure 4.10--Four group Carry Look-Ahead generator

Figure 4.11--Block diagram of 32-bit Carry Look-Ahead adder

V VEM ce I I 4-Gro u p-CLA-Ge nerator:sche mat¡c

C8C1

CO

P1P3
G2 cio

C4P'

JG
J

t-?

ÉoÉr
cir

Second Level Carry Generator

First Level Carry Generator First Level Carry Generator

c16c20c24c28 C4C8ctz

4-Bir
C_L-A

4-Bir
CLA

4-Bir
C-L_A

4-Bit
C

4-Bit
C L-A

4-Bir
CLA

4-Bir
C_L-A

4-Bit
C-L-A

CO
B3

70

The block diagram of the final adder is depicted in Fig. 4. 1 1. An array of 32 Exclusive-OR

gates is placed at one of the inputs of the adder which can be used to generate the two's com-

plement of the input data. This gives the possibility to use this block as a 32-bit adder/sub-

tracter simply by using the other input of the Ex-Or gates as the control line. Fig. 4.12 shows

the floor plan of the 32-bit adder, and its layout is depicted in Fig. 4.13.

Figure 4.12--Floor plan of the 32-bit Carry Look-Ahead adder.

Clad_4

Clad 4 0

Clad 1

Clad 1 1

Clad 2

Clad,2 I

Clad 3

Clad 3 L

Clad 4

Clad 4 1

Clad_1

Clad I 0

Clad 2

Clad 2 0

Clad_3

Clad 3 0

7t

EXI
OR;

É

¡'! ¡:!

OR

¿Jj

ts

o o
ir

l'

EX

{
l')

Figure 4.l3--Layout design of the 32-bit Carry-Look-Ahead adder.

4.2.2 Carry_Look-Ahead Adder Simulation Result

The result of simulation shows that the maximum delay between inputs and outputs of the

adder is about 11 ns. From the analysis of the circuit of Fig. 4-9, it is obvious that the propa-

gate terms p i ate readily available just in one gate delay. This is the arrival of the caffy c i

that determines the final status of the sum si. If the carry is zero, then the value of the sum

remains unchanged, however if the carry is a logic one then it inverts the value of the sum.

Among the carry signals c,, maximum propagation delay belongs to car . Therefore the

worst situation occurs when this carry signal attempts to change the sum .s3r, i.e., when c'

changes to one as a result of propagation of the carry signal co. A typical situation in which

this condition occurs is the addition of 80000000 (Hex.) with TFFFFFFF (Hex.), when the

carry co is one. The picture of Fig. 4.14 shows the simulation result for the worst case analy-

sis of the32-bitadder. As it was predicæd, the longest delay is associated with s' which set-

tles to logic one at time 18.5 ns. The fastest output however is always so.

4.3 Divider

Based on their iterative operator, division algorithms can be grouped into two classes. In the

first class, subtraction is the basic iterative operation and their execution time is generally

proportional to the operand (divisor) length. This group can be further partitioned into many

algorithms such as non-restoring division, which is comparatively slow but fast enough to be

a suitable candidate for this study. The second class however is the one where multiplicaúon

is the iterative operator. This group of algorithms are faster and converge quadratically, i.e.,

their execution time are proportional to log2 of the divisor length.

There are usually two numbers in fixed point division, a divisor v and a dividend p. The

73

þL

7-7 7-f

ru+ ruE
E

ut
(fE(J-l EÊ

7-f-

o-

7-f

ru+
o
rOc:]

!."!",1'

Z-1 7-f

ru+ru+
oo

ru+
o
r(JE

lillilrlr

Eo
I

I
01:

ut
a
I

fE

o

IIlr

(Jt

õ
z[" l"'l'

(')
I

o
z.

o-

o:
z.i

zi.r(
{:

Ðol
tz.'

Õ

R.i
st' i

-Õ,'zi

F-lÉ
fu

ro

=

ü)
I

É

ül
I

E
z

lr
E

o

-{
H

=fÎÉ
ru

|_E
-Z

Þ

:
E
z.

]l

qt

hir

H

m
I

l-u¡ rr.

F.

æ-'-:" ':'
.:::
oi::
z'

:::
l-u¡l.rL.L

t
trt
ruru
010
õ'_Itf,:õ
lro

i

I

I

f) r-)
o-
ÕD

E
E
fÎ
E
tu

-{
E

lrl al
trl-
ÞD

E
E
t-t
E
n)

-l
F

T:
cn

Fol.'
l'
I

I

I
-{n

E
Ð
m
ulz

L

-
I

I

I
'¿

-titp

o
z

ç0Ð
I

O
z

Õ

rü-":
õ-
z'i:

L'

ø¡-
o-
z

¿

1

t.--

'--i.

E

Ð
z.

g)

o
z

ñ

F."
lt¡

ru

:
õ
lm
'tpl*
i

I

I

Fr
o
o
1

-{

E

rf

-{

nI

-a

ts
o
I

o

=I

Á
r'lH

ru

H
(tJ

I

a]
fÎ
E
(!

ru

:
+
m

\-\ .\

¡
¡

\

l-cJ

=

¡-

-
H

+

O

H

0'l

O
z

Þ
æ

z

t

.'.!-

,tl

:Ï
.t

\l
1

F

ts
ñ-:
tf-
z o:

ts

I'

fUei
oZi

{

oi
z',

fUei
ozi

I

l-u.¡.l.r.rLur r

T:

fu

:
Õ

r
h.t r.-'u

T:
I'
I

I

I

E
m
ruru
Ul CJ

õ'_
tÈft7
lru
I

I

i

i

fur-)
\f-
ft-lD

E
E
r1
n
ru

(r)t-)
Ët-
utD

E
E
r'.l
E
t'u

-{n

æct
fu-
+D

E
E
l-I
E
ru

-{n

fDn
füt-
]rD

E
E
TI
T
ru

-l
n

æ

tÐ

*F-
o læ'l'

I

I

I

Ð(¡

Frt

0a

ã
5
5
I
IF

0a
('ì

.D

.D
ø

0
oe

Þ

v)t,

U)

Þ
ID
lh

{
?o

oE

ô

Iôtt
abê

(!

third number g, called the quotient, is to be calculated in such a way that

D = QxV+R

In the above equation, n is the remainder and required to be of smaller magnitude of v, i.e.,

0 < lnl < y. Division circuits are usually designed to compute the quotient Q of some specific

length. In case of this study, only the quotient q is required and the remainder ¡ is discarded.

In division algorithms, usually dividend ¿ is considered to be the first partial remainder and

in our case it is always smaller than the divisor v. To get the required accuracy, it is therefore

necessary to pad the dividend by a number of zeros to the right. Generally speaking, the final

remainder À may be used to generate additional quotient digits by second division operation

of n by v. In this way successive division instructions can be used to generate a more accu-

rate result.

4.3.1. Restoring Binary Division [30]

One of the simplest methods for division is the sequential shift and subtract method which is

similar to the conventional pencil-and-paper technique. To explain this approach, and for

simplicity, let's suppose that the dividend o and the divisor v aÍe positive integer binary

numbers. The quotient bits en_1,...,e1,8s ãÍe computed one bit at a time. At each step, the

divisor v is shifted one bit to the right and is compared with the dividend ¿ or the current

partial remainder n,. If the shifted divisor is less than or equal to the partial remainder, then

the new quotient bit is set to 1; otherwise the new quotient bit will be zero. The following

partial remainder can be calculatecl using the relation

À¡*rêRr-q,z-'V

where ¡ is the iteration number. In hardware implementation it is usually more convenient to

15

shift the partial remainder to the left rather than shifting the divisor to the right. FurtheÍnore,

the new quotient bit a, is determined by subtracting v from zn,.If the result is negative then

ei = o; otherwise e¡ = | .It should be noted that wheneyaf q, = 0 , then the result of the sub-

traction is zR,-v, however the new partial remainder R,*r must be equal to 2Ri. It is there-

fore necessary to add the divisor y to the result of subtraction in order to restore the result

back to its original value zn,.

4.3.2 Non-restoring Binary Division [30]

In restoring algorithm, the machine may need up to 2n- t cycle to compute all the quotient

bits, i.e., there are /' cycles for the trial subtractions, and there may be additional n-t cycle

for the restoration. Non-restoring division is a faster algorithm which effectively eliminates

the restoring phase. To explain this method, consider that in restoring method in every step

the operation

Ài* r ê 2R¡-V

is performed. When the result of this subtraction is negative, a restoring addition is per-

formed as follows

Ài*t eRi*, +v therefore +R,*, = 2R,

To calculate the partial remaindeÍ Ri*2, again we have

Ri*z+ (2R¡*t-n - GRi-n

However the non-restoring algorithm suggests that before the restoring addition is performed

the resultant partial remainder be shifted and then the restoring addition takes place, that is

16

R. = 2R.-Vt+l I

and

R¡*z+ l2(2R¡-V) +V = 4R¡-V

Apparently the result of non-restoring method is exactly the same as restoring algorithm with

the difference that one subtraction operation is saved, and hence results in a faster algorithm.

Similar to restoring method, in non-restoring algorithm the quotient bit q, at each step

determines the next operation to be performed. However, unlike restoring method, in non-

restoring algorithm the quotient digits are selected from the set {-1, l} [39]. If ø, = 1 then the

next operation will be subtraction; otherwise the next operation is addition. Once the quotient

bits q, i = L...,n-r àro computed, the result of the division operation can be represented in

signed digit format as following

n-l
g = lø,'2' q¡ = {t,-t} (EQ 20)

i=0

Based on the fact that -1 can not be represented in the binary system used by processors, the

following scheme is adopted

(q;=-1) +o

(q¡=1)+t

However this arises another problem since the result will be interpreted as a different number

by a standard binary machine. Fortunately, the signed digit numbers gonerated by non-restor-

ing algorithm can be converted to standard binary format by using a very simple algorithm

and considering that

77

l. zn -1. 2n-L = o. 2n + l - 2n-L

Based on this algorithm the next three steps should be followed

1. Shift the result left one bit position.

2. Complement the most significant bit (MSB) of the result.

3. Set a 1 into the least significant bit (LSB) of the result.

If the ith bit of the extracted number r is represented as K;, then there is a basic relationship

between r, and q, as

Ko=1 K, = {0,1}

4¡=2K,*r-l if i=0,...,n-2

e¡=l-2K.*, if i=n_ L

(EQ 21)

It is important to note that in practice the bit length of r and O must be the same. This

implies that the shift operation of step one will cause the MSB of the result to be lost, there-

fore step two is redundant. It still gives the correct result if

K =Kn n- |

otherwise an overflow signal detects the case. In order to prove that the algorithm is valid for

two's complement numbers, we have to show that K is in fact the two's complement repre-

sentation of the quotient g. If we replace a, in (EQ 20) by its equivalent value in (EQ 2l) we

get

O = >qi.2í = e-2K,).2'-r +L tzx.*t-t) .zi
n-I n-2

i=0

'18

i=0

- 2n-r -2' .K,+ \zxr*r.r'- 2r'
n-2

i=0

n-2

i=0

Since

then

2'-t -2r' =,
n-2

i=0

Q = -2'' rc^* 2Ki*r' zi*r + I
n-2

i=0

n-l
or Q=-2n.x^*2Kr.2'+Ko

i=1

The last equation shows that the binary two's complement number r is equal to the quotient

A .The basic rule in calculation of quotient bits q, is to bring the partial remainder as close to

zero as possible. If the dividend is considered to be the first partial remainder, then q, can be

determined by using table five.

TABLE 5. Quotient bits determination

Table five [39] implies that the next quotient bit can be generated by following relation

e¡-t = (SIGN oF DIVISOR) o (ffiN-)

where R¡ is the current partial remainder.

ISubt¡action

Addition+ 0

+ 0Addition

Subtraction++ 1

4.3.3 Hardwarelmplementation

79

The block diagram of the 32 by 16-bit divider is shown in Fig. 4.15. The 32-bit carry look

ahead adder/subtracter designed for the multiplier is modified so that this block can be shared

between multiplier and divider. The employed multiplexer enables the system to use the

adder as a 32-bit or 16-bit adder/subtracter, or as part of the divider in which case the 16-bit

adder is governed by the control circuitry of the divider that determines whether an addition

or a subtraction is to be performed.

Tri-State
fnverter-BufferDSR

Tri-State
Inverter-Buffer

16-bit data

Z-Reg W-Reg

Ovcr
Flow

Detect
Unit

Control

16-Bit Adder Mux 16-Bit Adder

Y-RegX-Reg

16-bit add/sub

div.next

Figure 4.15--Block diagram of 32 by 16-bit non-restoring divider

At the beginning of the division operation the 32-bit dividend is stored in accumulator

which is composed of registers Z and W. The most significant portion of the dividend is in

the Z register, and the least significant portion is in the'W register. Register X is loaded with

16-bit divisor and the quotient bits q, are generated one at a time and are left shifted into reg-

ister W. It should be noted that the output carry of add/subtract unit is used to generate the

80

next quotient bit. It is legitimate because in two's complement addition/subtraction the carry

out is always of opposite sign to the sign bit of the result, provided that no overflow has

occurred. Therefore it is possible to merge the left shift operation of the dividend and the left

shift operation of the new quotient bit into one shift operation. The result of division is

always of 16-bit length and will be stored in W register. The flow diagram of the algorithm is

shown in Fig. 4.16 ÍI4l- The microprogram of the non-restoring division is given in Appen-

dix B.

4.3.4 Overflow Detection [39]

For our 16-bit processor, the dividend is 32 bits, and the divisor is 16 bits. The quotient ¿

must be at most of 16 bits length [19], otherwise an overflow flag will be set which shows a

division overflow has occurred. Using two's complement representation for the quotient p,

the below restrictions should be imposed in order to avoid overflow.

lel <zts for positive quotients,

lel<21s for negative quotients,

replacing O by its equivalent value

øt =lz z':.1""

-lz.ztu **1.r" ,n=lt ,.ft1.W

where w is the least significant portion of the dividend and is always positive. Considering

that in fixed point division the remainder n must satisfy the following relation

0<lrRl <divisor

8l

erc = DSR@X(msb)

Left-shift Accu.

Accu. <- Dividend

X-Reg. <- Divisor
Counter <- 0

Stan

Counter <-- Counter+l
15

Counter

8¡ = Cout@X(msb)

Accu.
<- o.rl

Y-Reg <- Z-Reg

Qs = Cout@X(msb)

l5q<_

Accu.

Check overflow

Y-Reg <- Z-R.:eg

No

Yes

Figure 4.16-Non-restoring division algorithm for two's complement numbers.

the following two conditions can be discerned

w =1 if W(msb)=1
2rs

w =o if w(msb)=o
2rs

82

or in general

therefore

4 = w (^ru)
2'"

l,
t-#l= p-z+w(msb)l

The right hand side of the above equation represents the content of the Z rcgister when left

shifted with the most significant bit of the W register. The above analysis implies that the

conditions to avoid overflow can be expressed as

lxl > 12
. Z + rv (msb) I for positive quotients,

lxl>-12. 2 +W (msb) | for negative quotients,

It is therefore possible to detect the division overflow right after the first cycle of shift and

add/subtract operations

The sign of the quotient is depicted in table 6 as a function of the dividend and the divisor

signs and the relative magnitude of Z and X. The overflow conditions are identified by num-

bers in square brackets. The zero flag of the processor is used to detect the condition where

lx1 = lA. The zero flag is logic one whenever the result of any 16-bit add/subtract operation is

zero. The division overflow signal (DIV-OVF) is therefore a function of signals DSR,

X(msb), Q(msb), andZF (7nro Flag).The truth table for DIV-OVF signal is based on table 6

and is depicted in table 7.

TABLE 6. Division overflow detection.

t0lt1l0z-xI14

t01t0l1Z+X103

It0l1Z+X012

tlltll0z-x00I
lA<lzrlx1>14OperationX(msb)DSRCase

Q(lnsb)

83

TABLE 7. Truth table for division overflow signal DIV-OVF.

don't. care1111

10I11

0I011

don't ca¡e00II
don't care1I0I

10I0I

1I00I
don't care000I

II1I0

00II0

01010

10010

01100

10100

I1000

00000

DTV O!T'Q(msb)X(msb)DSRZF
A four variable Karnaugh

map of table 7 gives the fol-

lowing simplified expression

for the Dry-OVF signal.

DMVF = Z.DSR +Z.X(msb)

+ DSÀ. X(msb) . QQnsb)

+ DSrR. X(^rb) 06'Ð
+¿sn.X(msb) OTnÐ
+ DSrR- X(msb) ' Q(msb)

Tlre cilcuit diagram of division ovcrflow dctcctor is displayed in Fig. 4.17 . Thc logic of this

circuit is further simplified by using a logic optimiser software.

vEM Goll DIV ovF-DrEcT:¡chem.t¡c

DSR

Q(msb

ZF

DIV OVF
X(msb

Figure 4.17--Circuit diagram of division overflow detector.

84

4.3.5 Divider Simulation Result

Fig. 4.18 shows the actual simulation of the processor during the analysis of a sampled data.

In this picture only part of the simulation is depicted in which a division operation is

involved. The processor is computing one of the predictor filter coefficients by dividing the

variable "num" by the variable "den" (see Fig. 2.1). As usual the variable "num" is of smaller

magnitude than the variable "den", therefore its value is multiplied by 4000 (Hex.) and the

result is placed in the accumulator. This way the dividend is padded by 14 zeros to the right,

and therefore the resultant quotient in register W has its radix point after digit 14.

The variable "num" is originally equal to BF6 (Hex.), and when padded with additional

zeros to the right it forms the actual dividend of this division operation, which is equal to

2FD8000 (Hex.). The most significant portion of the dividend in the Z register is FD02

(Hex.), and the least significant portion in the W register is TFFF (Hex.). Note that the proc-

essor stores the complement of the dividend into the accumulator which in this case is equal

to FD027FFF (Hex.). The variable "den" is the divisor of this simulation. It resides in the X

register and its value is equal to 24F3 (Hex.), which as depicted in Fig. 4.18 remains

unchanged during the execution of the division routine. The result of this simulation shows

that each division routine demands 100 clock cycle to generate the final result and return it to

the main routine. The quotient Q is stored in register W, which in this case is equal to

Q=0.010100101 101 1 1 (Bin.) =0.323669433

The accuracy of this division operation is equal to tþ = i0-00006 which is reasonably

enough for the application of this study. Note that the division overflow signal is checked by

the control unit only after the first shift and add/subtract operation.

85

-o
U)

o
N
o

(o
o
o
o

-(t
to
0)

(ú
o
to

o-
(ú

o

c{t
!o

o
o)

!

N
N
-oo

d
No
N

o(o
(o

No(o
(r)

o
o)o
N

(o
lo
!

N
o)
!Û{

E

o

ìt
ts

(ú

ro
E

¡
0}

(o
!
È

!,
(ú

(ú
ro
F

-sr¡
o

o)
(o
!

N
E
(ú

\f
(ú
l'l)

q
@ø
N
ô

o
oôooo

o
oo

@

q
oo
oø
@

cIo
N
@

o
oô0oo

o
o

ts
F

o
o0o
ts

o
N
N

l,!

oc
È

ôF

0)
IJ'
0)

ooo

o)
o

L
I

N
l

oo

O)
0)

É.
I

l

o
(r)
(r)

o)oo
o-

ó
0)c

I

o
!t
N

q)
0)

É.

xl

t
Ir
Na
!

o

(Dt
.o
o)

=L\-

ô
o
É.

II

o)
(o
.o
o

No
!-

ó
o
Í-

I

N

q)
o
É.

I

o)
o
tr

Iq
l
O

l¿
o
o
o

o)
0)
E

I

o
f

Øc

o)
o
É

.t(ì
0_

X
X
X

ooo
ä
(ú
!

,-t-

J-

t:

ì+-l-
't-
ìr-

----------ì-
t+
ì+
It-

-::::l-.

__________) --------'-
l-

ì-t+
---------t-
-f-

I¡-

:1

ìr .

ìr-

X
-x-
x
X

)+
X
X
X
X

)-

X-
X
X (--E-

l---.€-f-æ-
!4

X
X
X
X r

-

X.
X
X
X

.:

X
X
X
X

x
X
X
X

-..8-

X
X
X
X

X
X
X
X

X
X
X

X
Xx
X

X
X
X
X

X
Xx

X
X
X
X

l+lþ
oo

o
o

o)

o-

!o
(ú

u)
o
(ú-
0)

u)
o

o

ä

!
-_o,
N

(o

N

!-o'
t

tJ)
!
!

o)
o)o

:
!o
o)
o

o
!

o)
(ú
No

(o
_o

oo
o

Ë
!o
6

u)- (Y)'
¡d

ro
d)

(ù

- -!'-
_o
N

q,

(o

lJ)

öo
t
oz
u
.9.tt
o

f..
.9

.g
E
o

fit
¡r(¡)
È

Ø

L4

J0
(¡),

çt

(t)
I

æ

ç
o¡r
a
èD

tu

i
I

86

f,

f+
rr.j

4.4 Control Unit

The circuit design of a processor can be divided into two separate parts. The first part is the

design of the digital circuits that perform the data processing operations. The data processing

unit is a network of functional units capable of performing certain operations on data. The

second part is pertained to the design of the control circuits. The function of the control sec-

tion is to regulate the operation of the processor. It decodes the instructions and causes the

proper events to occur in the correct order. The control section of a processor consists of a

group of registers and Flip Flops and the timing circuitry necessary to make them operate

properly.

There are two kinds of informations stored in the processor; data and control information.

Control information supplies command signals that administer the operations in the data

processing section to execute the required task. The main clock signal is applied to all regis-

ters and Flip Flops in the processor, but their status remain unchanged unless they are ena-

bled by a control signal. The signals that control the load input of the registers or enable them

to write on the data bus and also the select input of the multiplexers are generated in the con-

trol subsystem. The interaction between the control unit and the data processing section is

shown in Fig. 4.19 [18].

Commands

Instructions

Figure 4.19--Relationship between control unit and data processor

The control logic is primarily a sequential circuit with both internal and external status sig-

nals. It uses the informations which it receives from the data processor to determine the flow

I

Status Signalt
Data Processing

Unit Control Unit

I 87

Ì1,

of the controlled operations. At any given time, the state of the sequential circuit determines

a set of commands to be executed. Depending on the status signals, the sequential control

goes to the next state to complete the current instruction or initiates the next operation.

4.4.1 DesignMethodologies

Historically, two general approaches to control unit design have been developed [14]. The

first of these regards the control unit as a sequential logic circuit to generate specific fixed

sequences of control signals. In this approach the control unit is implemenæd with gates and

Flip Flops. As such, the main goal is to minimize the number of components used and to

maximize their speed of operation. It has the advantage that it can be optimized to produce a

fast mode of operation. The disadvantage however is that once constructed, any change in the

operation of the circuit can be applied only through the redesigning and rewiring of the unit.

This approach is therefore known as hardwired organization of the control unil..

In contrast to the hardwired approach, the second method of control unit design is called

the microprogrammed regulation. The sequence of instructions required to perform a specific

operation comprises a microprogram fbr that particular operation. The control signals of this

microprogram are stored in the form of 0's and l's in a special memory. In micropro-

grammed control, since the signals are implemented in software rather than the hardware,

any change in the design can be made by modifying the contents of the control memory. The

disadvantage nevertheless is that microprogram control units are slower because of the extra

time required to fetch the microinstructions from the control memory.

Generally speaking, the design of the control unit can be done in a more systematic way

by using the microprogrammed approach. The control signals can be organized into words

(microinstructions) that have a well defined format. However, in VLSI design, the availabil-

þ
88

{r

ity of the automatic placement and routing softwares as well as the logic synthesizers have

made the hardwired control unit design quite flexible. A high level language can be used to

efficiently define the behaviour of the system and any further modification is a matter of soft-

ware revision and recompilation rather than redesigning and rewiring of the hardware. It is

therefore the hardwired design approach which was chosen for the design of the control unit.

4.4.2 Hardware Implementation

The block diagram of Fig. 4.20 shows the pipelined architecture of the control unit. The

machine codes of the instructions in the instruction register (IR) are interpreted by the

decoder under the supervision of the timing and control section. If the instruction requires

only one cycle for its execution, then the decoder generates the required control signals

which are transferred to the control unit register (C.U.R.). In almost all of the two cycle

instructions the processor unit must execute the no operation command (NOP). These

instructions are recognízed by the timing and control section and force the decoder to set the

register C.U.R. with no operation command variables. During the time that the processor unit

is executing one instruction, the decoder is translating the next instruction. As depicted in

Fig. 4.20, there are several control signals used by the control unit that manipulate the flow of

the stored program. The first group of these signals are initiated in the processor unit and ena-

ble the processed data to affect the control unit, allowing data-dependent decisions to be

made. These signals are comprised of "ADD-OVF", "DIV-OVF", "8G", data lines, and

RAM address lines of register 41. The status of the flag signals "Flagl" to "Flag6" and

"Jump" are functions of the content of the instruction register. The signals "Flag5", "Fla,g6"

and "Jump" are particularly responsible for providing additional cycles to complete the exe-

cution of two cycle instructions.

Along with the other flags, the following registers are part of the control unit and provide

89

co.2

co.1 Mux
C.A.R.

Comparator

Flag4Flag3Fla92Flagl

Jump

Flag6Flag5

Timing & Control Section

C.U.R. ST.

DECODER P.C.

Instruction Register Rom Address Latch

Control Signals
,)/

OVF

IV OVF

BG

Data Lines

RAM Address Lines (41)

Figure 4.20--Block diagram of the control unit

additional facilities in instruction sequencing

1. The program counter (P.C.). This is a register that holds the memory address of the next

instruction word to be executed.

2. The Stack Pointer (ST.). This register stores the return address while the processor is

executing a subroutine.

90

3. Control Address Register (C.A.R.). This register provides the required capability for

immediate addressing. It holds the second byte of the immediate address instruction to be

transferred to the memory address register 41.

4. Registers CO.l and CO.2. These registers are primarily used for data comparison and

decision making based on the acquired result, utilizing the built in comparator of the con-

trol unit.

4.4.3 Control Unit Specifications

The two formal tools for describing the behaviour of the control unit are flowcharts and

description languages [14]. The BDS language explanation of the control unit is given in

Appendix C. It provides a combinational logic implementation of the control unit, which can

be used to compose the required sequential element by providing the necessary feedback

paths and input/output registers. In the following sections the flowchart description of the

control unit provide an in-depth perception of the operation of this block.

. ROM Address Generation

Most of the instructions in our program have a unique successor, in which case it is natural to

store the next instruction in the next memory address. Hence the program counter (P.C.) is

simply increased by one to produce the address of the next instruction to be executed. How-

ever, it is sometimes necessary to select one of the several possible actions or to repeat a set

of instructions for a specific number of times. In such circumstances the current instruction

specifies the address of the next instruction and alters the flow of the program control by

moving the address of the next instruction into the program counter (P.C.). The address of the

next instruction is stored as the second byte of the cunent instruction. Therefore all the con-

ditional and unconditional branch and subroutine call instructions of the processor are two

9l

cycle instructions. The flow diagram of Fig. 4-21 indicates how the instruction register (IR)

and the 'Jump" signal affect the contents of the program counter (P.C.).

Figure 4.21--Program Counter Routine

The status of the signal "Flag6" indicates whether the content of the instruction register is an

address or a command. If "Flag6" is logic one, then IR represents an address and NOP

instruction is performed by the processor unit. If "Flag6" is logic 0, then the content of IR is

regarded as an instruction which altets the contents of the control unit register (C.U.R.). The

flow diagram of Fig. 4.22 shows which commands influence the status of the signal Flag6.

Routine

The "Jump" signal is a flag in the control unit that determines whether the required condi-

tion for the Branch instrucúons is satisfied. If "Jump" is logic one, then the content of IR is

the address of the next instruction to be executed. The flow diagram of Fig. 4.23 depicts the

PC¡*r=S1PC¡a1= IR¡PCi* 0 PC¡*1=PC¡

r=PCi+1

Jumpt=1Reset=1 Flag6¡=1
o

Flag6¡*1-0 Flag61*1-0Flag6¡*1=1

IR={ 1,2,2R3 5..37,38,40..43 } (Hex)Flag6¡=1

o

92

"Jump" routine.

Jump¡*1=1

col < co2col <co2

BG=1 CO1=CO2

IRi=2(Hex) Flagl=lI +CO16.o

Flag2=1

l(Hex)IRi=

Flag3=1

Jump¡*1=0Flag6i=1

Flag4=1

Figule 4.23--Jump Routine

The flag signals "Flagl" to "Flag4" can be set or reset according to any arbitrary condition.

They are primarily introduced for the order checking algorithm. These flags can be subse-

quently used to alter the flow of the program control according to the flow diagrams of Fig.

93

4.24

(a)Flagl Routine (b)Fla92 Routine

(c)Ftag3 Routine (d)Flag4 Routine

Figure 4.24--Routine (a)Flagl (b)Flag2 (c)Flag3 (d)Flag4

. Subroutine Call

Often it is necessary to implement a temporary transfer of control from the main program to

1i+t=FIag1

Flagl¡*1-0

FIagli*1-1

l¡*1=FlagFlag6¡=1

o

o

FIag2¡*1=0

Flag2¡*1=l

Flag6i=1

o

o

Flag3¡*1=0

Flag3i*1-1

Flag6¡=1

Flag4¡*1-0

Flag4i*1=l

Flag6¡=1

o

94

a subprogram. This control transfer is initiated by the main program and is known as subrou-

tine call. In order for the control to be transferred back to the main program, the address of

the next instruction of the main program is stored in the register (ST) of the control unit. The

last instrucúon of the subprogram should transfer the content of (ST) back to (P.C.) (see Fig.

4.2I). The flow diagram of Fig. 4.25 shows how the subroutine call instruction affects the

register (ST)

Figure 4.25--Stack Pointer Routine

. Immediate Addressing

The content of the instruction register (IR) can be interpreted either as an instruction to be

executed by the processor unit or an address. If "Flag6" is logic one, then IR is an address to

be transferred either to program counter (P.C.) or to the memory address register (Al). Fur-

thermore, the status of "Flag5" determines whether IR contains the second byte of the

"Immediate Address" instruction. If "Flag5" is logic one, then the content of IR is transferred

to register C.A.R. and subsequently to the address register (41). The flow diagram of Fig

4.26 descúbes how these operations are performed.

S1*r=STt

Sl+t=PCi+2

S1*r=SlFlag6¡=1

95

Flag5i*1-lFlag5¡*1-0

FIag5¡*1-0Flag6¡=l

(a)

CAR¡*1=CAR¡

CAR¡*1=IR¡Flag5¡=1

(b)

Figure 4.26--(a)Flag5 Routine (b) Immediate Address Routine

There are a number of occasions in which the data processing unit must perform the no oper-

ation command (NOP). These situations are depicted in the flow diagram of Fig. 4.27 along

\À/ith the influence of status flags "Flag5" and "Flag6" on the control unit register (C.U.R.)

Figure 4.27--Next Command Routine

C.U.R.=Next Command

IR={0..3,2E..3 1,34..43 } (Hex)

C.U.R.=NOPFlag6i=1

A1=IRFlag5i=1

Yes

No

. Processor Status Signals

96

The outgoing signals "Ready" and "OVF" indicate the status of the processor to the outside

world. The "Reset" line is a signal which is received from a supervisory controller and can be

used to synchronize the operation of the processor with other devices of the system. The flow

diagrams of Fig. 4.28 shows how these signals are manipulated by the content of the instruc-

tion register and the computational results of data processing unit.

OVF=1

OVF=0OVF=

OVF=0Reset=1

Figure 4.28-- Halt RoutineFigure

4.5 Random Access Memory Design

Random access memories are storage elements in which the access time is independent of

the physical location of data. They can be classified into static and dynamic [27] groups

depend on the structure used in the design of the memory cells [20]. Both types of memory

may be further divided into synchronous and asynchronous categories. Synchronous RAMs

are those which need a clock signal for their operation. However, asynchronous structures

reflect upon the change of the logic level of their address lines. Due to its design simplicity

and reliability, the static synchronous structure is the most commonly used technique in the

Ready=g

Ready=l

Ready=QFlag6¡=1

No

No

97

design of random access memories and also the one which was adopted for this study.

4.5.1 HardwareDescription

The RAM of the processor is capable to accommodate up to 256 words of 16-bit length data.

Figure 4.29 shows the transistor level circuit diagram of a typical RAM cell l42l together

with the required supporting circuits in block diagram form. The floor plan of the RAM is

depicted in Fig. 4.30. The RAM has separate data inputs and outputs which are tied together

by using tri-state output signals in order to realize a single data bus arrangement. The column

decoder is a one of four decoder which controls the operation of multiplexers. Multiplexers

are designed by using n-channel pass transistors, therefore they can operate both as multi-

plexer and demultiplexer. At any time, one of z6 = 64 rows can be selected for either read or

write operation through the row decoder. The least significant bits ag and a1 of the address

lines determine the selected column and the rest most significant bit lines, â,2fo 17, are used

by the row decoder to access the determined row. Associated with the row decoder are row

drivers. They are designed in such a way that each block of row driver buffers two outputs of

the row decoder. The precharge circuits on the top prepare the bit lines of the RAM cell at the

beginning of each read or write cycle by pulling them up to logic one. Each read or write

operation requires only one clock cycle to complete, during which the bit lines normally run

as complementary signals. The transistor circuit diagram of the RAM cell in Fig 4-29 forms

two cross-coupled inverters that are accessible via two n-channel pass transistors [37]. Sense

amplifiers reflect upon small changes of the voltage on bit lines that results when a particular

ccll is sclected for read operation, and therefore speed up the read operation of the RAM. The

control section of the RAM regulates all the operations within the RAM by generating the

required control signals and using the following inputs which are accessible to the user.

1. The "CS" signal enables the RAM for active operation when it is logic one, otherwise the

98

Input
Latch

Output
Latch

Sense
Amplifier

A
D
D
R
E
S
S
L
A
T
C
H

A
D
D
R
E
s
S
L
A
T
C
H

A
D
D
R
E
S
S
L
A
T
C
H

A
D
D
R
E
S
S
L
A
T
C
H

Column
DriverMUX Column

Decoder

Row
Driver

Decoder

Row

BIT EIT_vdd vdd

Precharge
Tri State

Buffer
Precharge Circuit

1

EB

\ry8

REN WEN

EB

EB

EB

VOE di aO ÍI1 12
+
4,3 a7

WEN

REN cs

RN/W

CLOCK

RAM
Control
Section

Figure 4.29--Block diagram and supporting circuits for a typical RAM cell.

RAM is disabled and the data outputs are tri-stated.

2. The "RN/ÌV" signal determines whether a read or write operation is to be performed. The

polarity of this signal is compatible with VOE signal so that whenever a write operation is

initiated, the data output is tri-stated.

99

3. The CLOCK signal synchronizes the RAM operation with the rest of the system.

The simulation result of Fig. 4.31 shows how the output signals of control section affect the

operation of the RAM.

4.5.2 Read Operation

To increase the density, the transistors of the RAM cell are of minimum size. Due to the logic

degradation of n-channel transistors in passing logic one, and because the p-channel transis-

tors in the RAM cell are very small, this structure is not good enough to pull up the bit lines.

Therefore the scheme for reading a RAM cell is pulling up the bit lines through a more effi-

cient precharge circuit. Depend on the datum stored in a RAM cell, one of the bit lines will

be pulled down during the read operation while the other remains high. This variation in the

voltage level is sensed and amplified by the corresponding sense amplifier and will be

reflected to the output latch. The control signal "AOE" is logic one during the write opera-

tion, allowing the data to be put on the data bus. The precharge circuits use n-channel transis-

tors to pull up the bit lines. This results in bit lines being charged to a voltage which is less

than "Vdd" by threshold voltage level of the n-channel transistors. This subsequently results

in dramatic increase of speed [37] as the logic levels of the bit lines are closer to the thresh-

old voltage of the sense amplifiers, and therefore it takes less time for the sense amplifiers to

detect the voltage drop on the bit lines.

4.5.3 Write Operation

The basic goal of a RAM write operation is to insert two complement signals into the RAM

cell through the bit lines so that to modify the internal logic levels of the cell to the new ones.

As in the read operation, the write operation also starts with precharging the bit lines to logic

one when the clock signal is low. The write enable transistors of Fig. 4.29 are manipulaæd by

100

mu

RC

RC

RC

RC

KU

KL

PCH

Mux
Seæ

ñq
Input
OuÞot
Lâlch

?CH

Mux

fi€r
InF¡t

Sns

Lelrh

PCH

IRC

Mux
seE
Anpti-

fi6
Ing¡t

OúÞn
Lsh

?qH

Mux

Lùh

fi6
Iurt

sens

PCH PCH

Mux
ùew
A¡trpli-

ñs
InF¡t

OrQut
L*h

RC

rcH PCË

Mux

fid
Input

OutFtt
Larch

Sen*

lcH

Mux

Lúh

ñer
h¡¡t

Señ

rcH

ncl

RC

rcH

RC

lnc

Dl.

RC

Mux

ñ6
lnptrt

Ot¡qt¡t
Labh

*E

KOW Lmver

rrændge bwer

Ro\ry l)flver

KOW Dnver

Row ljnvef

Kow l)nver

Ro$' -Llnver

KOW LmVef,

KOW t-rfiver

Kow l,flver

Kow lÌiver
Row l)nver

KO\ry t lver

Kow Ltf,ver

Row Dnver

Row lrnver

Row Llnver

KOW rrlver
Row lhvef
Kow l,lnver

Row Dnver

l(o\il ljflvef

KOW t fiver

Row lÌlver

(¡lw
fþcn¡t¿r

Kow -l-rnver

KO\ì' UnVef,

Row ljrlver

Row l)rivef,

Koìr' I)nver

Itow ljnver

Row Dnver

Kow lrnver

R

o

w

D

E

C

o

D

E

R

KOW Lrfiver

Row l)rrver

Row lliver
Row l'rftver

Kow l-rrrver

Row l)flver

KOW rrflver

KOW Lnrvef

Row l)nvef

Row lÌrver
KOW lrnvet

Row l-nrvef

Kow .Lrfivef

Rorr l)ftver

Row -Lrrrver

Row l)rrver

KOW Lnrver

KOW Lrfiver

KOW Lrnver

Kow l-rrrvef

KOW -t lvef

Kow Lrrrvef

KOW l-rÍtver

PEchdBe búer

Row Lrrivef

Row l)rtve¡

Row -Llrrver

Kow l)ftvef

Kow Lrfiver

Row lÌiver
Kow Lrrrver

RAM
Control
Section

Collm
Drivd

RCI

o1

RC

ù1

?CH

lnc

KU

ñe
Input

OoQol
L.bh

*N

]CH

Mux

íLõ

sen*
Anpli-

ñer
h¡¡t

Oûlpol
Lsh

PCHI

Mux

,cHl

æE

ñer
Input
O¡tr¡t
L¿bh

RC

ù1

t Ltl

Mux

PCH

Lâþh

ùenæ
Anpli-

6er
IÍFt

PCH

Mux

PCH

Lúh

ñq

Input

æE

Mux

RCI

)a

fer
I¡rpot

SeN

L.bh

Mux

PCH

SEE
A¡trdi.

fi6
InFn

OnÞul
Labh

PCH

Mux

PCH

senæ

ñq
Ir¡puû

OmFr
Lsh

rcH

RC

RC

RC

RC

Mux

RC

RC

RC

Êr

ã1

Ìt

H

rtttr

IIIII

Itt

I¡IIIII

IIIIIIIrtrrrlrl

IlITIT

H

H

trll¡rItlIlre

i.t'i
Figure 4.30--Floor plan of the Random Access Memory (RAM), the cells marked as "RC'show the boundary the matrix of memory cells.

the control signal "'W8". This signal is logic high during the write operation, allowing the

data and its complement to move to the bit lines. Subsequently, one of the bit lines is driven

to ground level while the other remains high. This results in the change of status of the

selected cell when the row select signal is activated.

4.5.4 RAM Simulation Result

The diagram of Fig. 4.31 shows the result of simulation of the random access memory. The

simulation consists of two write operations, followed by two read operations of the same

locations of the memory. The first wdte operation stores the number 0000 (Hex) in address

00 (Hex) of the RAM, whereas the second one stores the number 1111 (Hex) in location FC

(Hex). Note thatthe two leastsignificantbits of the address are always zercin this simula-

tion, therefore the bit lines "BIT" and "BITN" show how the other bit lines are affected by

read and write operations. The result of simulation shows that the required time for memory

read operation is about 16.5 ns from the rising edge of the clock signal. This time is less for

memory write operation and is about 8.5 ns.

result for typical read and write operations

qo

xvxtl1
t1:omoooæ

BIT

BITN

REN

WEN

EB

toE

dala

Figure 4.31--Static RAM- Simulation

toz

4.6 Read Only Memory Design

Read only memories or ROMs are storage elements in which the information can be read out,

but can not be written in as readily as in RAMs. Depend on the technique used to manipulate

the information in the memory, ROMs can be divided into the following categories [20]

. Mask Programmable ROM

. PROM

. EPROM

. EEPROM

The packing density of a mask programmable ROM, or simply ROM, can be at least several

times more than that of a static RAM. The employed ROM for our processor is of mask pro-

grammable type and has the capacity of storing 512 words of 9 bits length. It can be pro-

grammed with contact mask, thcrcforc it is called "contact" ROM in contrast with "active"

ROM.

4.6.1 Structure Of The ROM

The implementation of the ROM requires one transistor per storage bit. The structure is static

(in a sense that decoders, sense amplifiers, etc. are static circuits) and usually carried out by

using NOR arrays [37], as shown in Fig. 4.32.The stored information can be held constantly

even when the power is off. The address information is stored in duplicate into the address

latches provided on the left and right side of the ROM (see Fig. 4.32). The left and right col-

umn decoders are one of four decoder and each of them controls four select lines of the mul-

tiplexers. The least significant bits ag, Ít1,ând a2 of the address lines ascertain the selected

column and the rest of the address lines are used by the row decoders to determine one of the

103

26 = 64 accessible rows. The left row decoder decodes the even lines, whereas the right one

decodes the odd lines. The control block generates the required control signals which syn-

chronize the operation of the ROM. As the ROM must be always in active operation mode,

the input control signals "CS" and "OEN|' are permanently connected to the Vdd line. This

results in output tri_state buffers being always enabled and one set of data being written on

the output data lines Ci on each rising edge of the clock signal. The floor plan of the ROM is

depicted in Fig. 4.33.

02 21 30138 8

Output Latch
&

MUXColumn
Decoder

Column
Decoder

rv rü

rÞ-

v

rts

r
'F

r
,Þ-

'lr
rl-rl-

R
o
w

D
E
C
o
D
E
R

o
w
D
R
I
V
E
R

,tsrl-r]-

R
o
w

D
E
c
o
D
E
R

o
w
D
R
I
V
E
R

Precharge
Tri State

Buffer

Precharge
Tri State

Buffer
Precharge Circuit

EB EB

EB

EBN

a1 ao ci aO 1 3
+
r4

EB

EBN OEN
CLOCK

ROM
Control
Section

Figure 4.32--Block diagram and supporting circuits of the ROM; (AL = Address Latch)

104

--L

ROM

Control Address

LatchSecl.ion
L

(,
L

SROM

Control

Section

Address

Latch

oLo-o-

SSS

Row
Decoder_H

Mux
Row

Decoder
t,rtH

R

o

w

D

E

C

o

D

E

R
Row

Driver

MAIN-ROM-CORE

MAIN-ROM-CORE-O

Row
Driver

R

o

w

D

E

C

o

D

E

R

Row
Driver

Row
Driver

Kow
Driver

Row
Driver

Row
Driver

Row
Driver

Row
Driver

Row
Driver

Row
Driver

Row
Driver

Row
Driver

Row
Driver

Row
Driver

Row
Driver

Tri State
Buffer

PRECHARGE
CIRCUIT

Tri Staæ
Buffer

Figure 4.33--Floor plan of the Read Only Memory (ROM); (SA&OL=Sense Amplifrer & Output Latch)

4.6.2 ROM Simulation Result

The ROM is programmed to store the machine codes of the algorithm of Fig. 2.1. The con-

tent of the ROM is depicted in table 8. In this table the first column shows the starting

address for the data on each row in decimal format. Consecutive data is continued on a new

row and in this case a plus sign is placed in the first column. The data are shown in Hexadec-

imal fbrmat. The locations which are not specified in table 8 (locations 340 to 495) are filled

by pattern 00 (Hex.), and therefore initiate a no operation (NOP) command.

The simulation result of Fig. 4.34 shows the read operation of the first four locations of the

105

TABLE 8. Machine codes in Hexadecimal format stored in the ROM.

03+

1F9020511t4t2112E13t211OA0605M496

3F251805t710r480218L7+

l0050505t2t7t6l01A1C2B2AL7101A+

2l16OA1A05043A3532062tOA1A2T04+

t2c43tt70229r825t722llOFODOF1E06+

2lMl6OC060525292Al716OAIA0504+

10IA2l043A3732IA2lOA06M1D2l04+

111F00110062t04OFODOF1B201A0431+

1F00l101A05uF136EA4011OFODOF1B+

08IBDB02081B1F1A013EOBt716IA05+

04l01A2t041D2l041F001101A050430+

CA36C32FOFODOF1B08B6021E080601+

3E1BOE1BAC02OE1BOCIA013EOBt716+

1A05M101A2t04810229t9t722l1OF+

ODOF1B1A761F1825L72211OFODOF1E+

062l04160c0625OBt710IA2tt226l6+

1A05102406M0706Mø352826t227+

25071A332B26100604t2t7241óOA1A+

05M1825241A05ll1111l111111111+

1111OFODOFOD1F062I04182610IA16+

06M9E361C2tM18t9t'll609290218+

t9t716091809t71609OA090504151F0+

01100905uOFODOFODOEODOEODOD02+

OEODOC05OA0905043C1E1E0706040000

ROM.'When the clock signal is logic zero, the precharge circuits are turned on and pull up

the bit lines to logic one. At this time the word select lines are disabled in order to prevent

Figure 4.34--Static Rom-Read operation of the address locations 00

106

(IIex) to 03 (IIex.)

any DC power loss. At the rising edge of the clock signal the pull-up circuits are turned off

and one word line is active, allowing the data of the specified row to be transferred to the out-

put latches. The status of the bit lines depend on the existence of the polysilicon contacts on

the gate of the corresponding transistors. If a contact exists then the transistor is on which

consequently pulls down the corresponding bit line, otherwise the bit line remains high. The

additional signals shown in Fig. 4.34 are control lines of input/output latches and precharge

circuits. The result of the simulation shows that the maximum required time for reading an

arbitrary location of the ROM is about 12.5 ns from the rising edge of the clock signal'

. Sumfirâry

In this chapter the mathematical backgrounds required for understanding the operation of

basic blocks of the processor were discussed, and the algorithm based on which each unit

operates was developed. The hardware design and specifications of each segment are mainly

governed by the developed algorithm. Furthermore, the performance of each element is influ-

enced by the floor plan design of that particular element. In order to improve the overall per-

formance of the processor, the layout of each unit designed in such a way to be consistent

with other elements of the processor, so that the placement and routing of different blocks

can be done easier and the employed area can be minimized. The speed of operation of each

component is also an important factor, which of course is not independent of other features

such as the shape and size of the block, and considered to be in agreement with the basic

principle of high speed DSP hardware design while maintaining the required physical har-

mony.

Additionally, the employed methodologies for the simulation of individual units were dis-

cussed and the simulation results were depicted. The overall performance of the processor is

examined in the next chapter along with the performance of the maximum entropy algorithm,

by introducing a synthetic data generated by a computer program-

to7

Chapter 5

CONCLUSIONS AND THE FUTURE

DEVELOPMEI{TS

Recent advances in the VLSI technology has made possible the design of handy medical

equipments which can provide crucial informations about the patient condition, primarily by

replacing some of the traditional diagnostic instruments with more efficient and reliable

tools. In this study a special purpose DSP processor with an application in the spectral analy-

sis of the heart sounds was designed and simulated. The algorithm based on which the proc-

essor works, was devised by Andersen [1] from the university of Copenhagen, and

constructed upon the Burg method of estimating the AR parameters. The architecture of the

processor takes advantage of available DSP techniques in processor design such as parallel-

t08

ism and pipelining

In order to verify the hardware of the processor as well as the employed maximum

entropy algorithm, trials with synthetic data were carried out. The synthetic data was simply

generated by a computer program so that it looked similar to the third heart sound in the time

domain [11]. This was achieved by the summing of three sinusoids with frequencies of 10,

20, and 40IJz and relative amplitudes of 1.0,0.5 and 0.25 respectively. Normally distributed

random noise was added to simulate the actual data more realistically. The length of the data

was 100 samples which can comfortably be accommodated in the built in RAM of the proc-

essor. The graph of Fig.5.1(a) shows the sketch of the synthetic data in the time domain,

whereas the one in Fig. 5.1(b) presents the augmented normal noise.

SYNTHETIC DATA NORMALLY DISTRIBUTED RANDOM NOISE

0.01

05

-l

{.01

{.015

4.42

100 2w 300 400 500 600 700 800 900 1000 20 40 60 100 120

Figure 5.1--(a) The synthetic data (b) The added normally distributed random noise

The filter coefficients generated by the processor were taken to the Matlab package where the

F.F.T. was applied to them and the final graph of Fig. 5.2 was developed. From the above and

similar experiments it is obvious that "Maximum Entropy" method offers superior resolution

compared to F.F.T. specially with short observation lengths of simulated data. As it is depict-

80

I

t

r't
rl,t

:

109

SPECTRUM OF THE SYNTHETIC DATA

01

100

1o'1

-t
10-

10-3

10-4

-Ã
10-

.+
r.[J

I

1 5101520253035404550
Figure 5.2--spectrum of the synthetic data of Fig. 5.1(a)

ed in Fig. 5-2 the F.F.T. did not resolve the 10 Hz peak, whereas the maximum entropy

approach produced two sharp peaks at 10 and 20H2.

With 16-bit data length and provision of handling 32-bit intermediate results in case of

successive multiply/divide operations, the processor provides the desired high level of accu-

racy in almost all phases of the processing. The potential danger however is when it comes to

reforming the original stored data as proposed by the following two equations in the main

loop of the flow diagram of Fig. 2.1.

bm@) = bn,-r(n) -a^(m) 'b'^-t(n-r)

b'^(n) = b'*_t (¿- 1) + a^(m) 'b^-r(n)

/'F.F.T.

MAXIMUM ENTROPY

f
I

,

ï
ll0

ì
Ì[l

Since a multiply operation is involved in the calculation of the above equations, the results

are 32-bitin length with the most significant bits stored in register Z and the least significant

bits retained in register W. The current program of the processor discards the least significant

part in the W register which is always less than one, assuming that the absolute value of the

most significant part is much larger than one. This is however only true for the prescaled ini-

tial data with which the processor starts, and there is no guarantee that the intermediaæ

results comply with the above assumption.

One way to overcome this problem is to modify the software so that to rescale the inter-

mediate results before the next step, considering that the resultant filter coefficients are inde-

pendent of the amplitude of the sampled signal. The other solution is to provide the processor

with double precision handling of the results. This however demands some extra memory

locations as well as modification of the software. Furthermore, it increases the total process-

ing time of the data. The best solution is to modify the architecture of the ALU from fixed

point to floating point. This scheme not only increases the overall accuracy of the processing,

but also provides the required facility for incorporating F.F.T. algorithm with maximum

entropy method which gives the final spectrum as proposed by the following equation of

chapter two, rewritten here for reference.

s (<o) =

L- \ ao'e
k=I

The performance of the ALU can be further improved by introducing a reciprocator. A recip-

rocator is fairly inexpensive hardware, which provides a fast divider if combined with a fast

multiplier.

In the design of the processor the following CAD tools were used

l
111

1. MAGIC layout editor was the main editor used in the hierarchical design of different

blocks of the processor.

2. OCTTOOLS is a package of variety of tools. It is mainly used for gate and transistor level

design and functional simulation of sub-modules and random logics, as well as the optimi-

zation of logic circuits. The possibility of changing the OCTTOOLS layouts to MAGIC

format makes it an extremely useful tool to be used in conjunction with MAGIC.

3. Detailed simulation of the fairly small but usually substantial submodules which affect the

entire performance of the processor was carried out by using the HSPICE simulator.

4. IRSIM is an event driven switch level simulator which provides a fast and efficient tool

for the simulation of larger blocks. Furthermore, it yields a fairly accurate perception of

the system's timing and is the simulator which was used to test the performance of the

whole chip.

I
I

I

I
tt2

Appendix A

Instruction Set

The control unit of the processor is capable to distinguish 69 different instructions- The

instruction set is grouped in order under four different functional headings as

. Data Transfer Group

This group of instructions transfers clata to and from registers and memory. Unless indicated

otherwise, all instructions in this group are one cycle commands as they need only one

machine cycle for their execution.

MOV Y, Z (Move Register)
(Y) <- (z)

The content of register Z is moved to register Y

MOV X, Z (Move Register)
(x) <- (z)

The content of register Z is moved to register X

MOV COI,Z (Move Register)
(col) <- (z)

The content of register Z is moved to register COl

MOV COz,Z (Move Register')
(co2) <- (z)

The content of legister Z is moved to register CO2

MOV Al,Z (Move Register)

il3

(41) <- (z)
The content of register Z is moved to register A1-

MOV A2,Z (Move Register)
(A2) <- (z)

The content of register Z is moved to register 42.

MOV llÍUI,Z (Move Registet)
(MUi) .- ø> &. (tutuzl <- (MUl) &. (MU3) <- (MUI)*(MU2) &'

((z) (w)) <- 0

The content of register Z is moved to register MUl. The content of regisær MUl is moved to

register MU2. Register MU3 is loacled with MU1+MU2. Accumulator is reset to zeÍo-

MOV1 MUl, TEMP (Move Register)
(MUli <- (rEMÈ) &. 0úuz)'<- (MUl) & (MU3) <- (MUI)+(MU2) &'

Load ((z) (w))
1.ne content àf îeìgiiíer TEMP is moved to register MUl. The content of register MU1 is

moved to register MU2. Register MU3 is loaded with MU1+Mu2. Accumulator is loaded

with the outputs of 32-bit adder.

MOV X, W (Move Register)
(x) <- (w)

The content of register W is moved to register X.

MOV2 MUl, TEMP (Move Register)
(MUl) <- (rEMP) & (MU2) <- (MUl)

The coitent ôf register iEtrrtp is movecl tò register MUl. The content of register MUl is
moved to register MU2.

MOV MUl, W (Move Register)
(MUl).- (w) &' (MU2) i- Ct"tÛtl &. @u_3)<- MUl*MU2 &. ((z) (w)).<- 0

in.
"ónt"tìt

of regisÈr W ís mòved tô register MU1. The content of register MUl is moved

to register MU2. Register MU3 is loaded with MU1*MU2. Accumulator is reset to zeto-

MOV AI, AZ (Move Register)
(41) <- (42)

The content of register A2 is moved to legister 41.

MOV1 M, Z (Move to memorY)
(0A1) <- (z) 8. (41) <- (41) + 1

the coùient'of regíster Z iì môved to íh" memory location (page 0), whose address is in reg-

ister 41. Register Al is incremented by one.

MOV1 M, TEMP (Move to memorY)
(041) <- (rEMP) &. (41) <- (41) + I

The coÀient'of registet iBtr¿p iì môved'to íhe tnemory location (page 0), whose address is in

register 41. Register A1 is incremented by one.

MOV2 M, TEMP (Move to rnemorY)
(141) <- (rEMP) &. (41) <- (41) + 1

Tne coÀientîf register ÍpVp iò môved'to íhe *e*ory location (page 1), whose address is in

register 41. Register A1 is incremented by one.

MOV1 M, W (Move to memory)

tt4

(041) <- (w)
The content of register W is moved to the memory location (page 0), whose address is in reg-

ister 41.

MOV2 M, W (Move to memory)
(1A1) <- (w)

The content of register'W is moved to the memory location (page 1), whose address is in reg-

ister 41.

i0i{OYzM.,Z (Move to memory)
(141) <- (Z) & (41) <- (41) + 1

Tlre content of register Zis moved to the memory location (page 1), whose address is in reg-

ister 41. Register A1 is incremented by one.

MOV TEMP, ML (Move from memory)
(TEMP) <- (ML) & (ML) <- (141)

The content of memory location (page 1), whose address is in register 41, is moved to regis-

ter ML (Memory Latch). The content of register ML is moved to register TEMP.

MOV COl, ML (Move from memoly)
(Co1) <- (ML) 8L (ML) <- (041)

The content of memory location (page 0), whose address is in register 41, is moved to regis-

ter ML (Memory Latch). The content of register ML is moved to register COl.

MOV CO2, ML (Move from memory)
(CO2) <- (ML) 8. (ML) <- (041)

The content of memory location (page 0), whose address is in register A1, is moved to regis-

ter ML (Memory Latch). The content of register ML is moved to register CO2.

MOV AZ,ML (Move from memory)
(A2) <- (ML) & (ML) <- (141)

The content of memory location (page 1), whose address is in register 41, is moved to regis-

ter ML (Memory Latch). The content of re gister ML is moved to register 42.

MOV1 MUl, ML (Move from mernory)
(ML) <- (041) & (MUl) <- (ML) 8L (MU2) <- (MU1) &'
(MU3) <- (MU1)*(MU2) &. (41) <- (41) + 7 8L ((Z) (w)) <- 0

The content of memory location (page 0), whose address is in register 41, is moved to regis-

ter ML (Mernory Latch). The content of register ML is moved to register MUl. The content

of register MUl is movecl to register MUz. Register MU3 is loaded with MUl*MU2. Regis-

ter A1 is incremented by one. Accutnulator is reset to zero.

MOV2 MUl, ML (Move from memory)
(ML) <- (1A1) & (MUl) <- (ML) & (MU2) <- (MUl) &.
(MU3) <- (MUl)*(MU2) & (41) <- (41) + I & ((Z) (w)) <- 0

The content of memory location (page 1), whose address is in register 41, is moved to regis-

ter ML (Memory Latch). The conterrt of register ML is moved to register MUl. The content

of register MUI is moved to registel MU2. Register MU3 is loaded with MUl+MU2. Regis-

ter A1 is incremented by one. Accumulator is reset to zero.

MOV3 MU1, ML (Move from memory)
(ML) <- (141) & (MUl) <- (ML) & (MU2) <- (MUl) &.
(MU3) <- (Mu1¡+(MU2) 8L (41) <- (41) + 1 & Loacl ((Z) (w))

The content of memory location (page 1), whose address is in register 41, is moved to regis-

ll5

ter ML (Memory Latch). The content of register ML is moved to register MUl. The content

of register MUl is moved to register MU2. Register MU3 is loaded with MU1*MU2' Regis-

ter Al is incremented by one. Accumulator is loaded with the outputs of 32 bit adder.

MOV4 MUl, ML (Move from memory)
(ML) <- (041) &. (MUl) <- (ML) 8. (MU2) <- (MUl) 4 -- .
(tvru:).- 1vu1)*(MU2) &. (A1) <- (41) + 1 & Load ((z) (w))

The coÀtent óf memorylocation (page 0), whose address is in register 41, is moved to regis-

ter ML (Memory Latch). The content of register ML is moved to register MUl. The content

of register MUl is moved to register MU2. Register MU3 is loaded with MUI*MUZ. Regis-

ter A1 is incremented by one. Accumulator is loaded with the outputs of 32-bit adder.

MOV5 MUl, ML (Move from memory)
(ML) <- (041) &. (MUl) <- (ML) &. (MU2) <- (MUl)

The coÀteni of memory location (page 0¡, whose address is in register 41, is moved to regis-

ter ML (Memory Latch). The content of register ML is moved to register MUl. The content

of register MUl i.s moved to register MU2.

MOV6 MU1, ML (Move from memory)
(ML) <- (141) 8. (MUl) <- (ML) & (MU2) <- (MUl)

The coùtení of memóry location (page i¡, whose address is in register 41, is moved to regis-

ter ML (Memory Latch). The content of register ML is moved to register MUl. The content

of register MUl is moved to register MU2

MOVT MUl, ML (Move fiom mernory)
(ML) <-.(041) & (MUl) .- (út-) &. (MU2) <- (MUl) & (41) <- (A1) + 1.

The còntent of memory location (page 0), whose address is in register Al, is moved to regis-

ter ML (Memory Latch). The content of register ML is moved to register MU1. The content

of register MU1 is moved to register MU2. Register A1 is incremented by one.

MOV X, ML (Move from memory)
(ML) <- (041) 8L (X) <- (ML)

The coÀteni of ttre memory location (page 0), whose address is in register 41, is moved to

register ML (Memory latch). The content of legister ML is moved to register X-

MOV Y, ML (Move from memory)
(ML) <- (0A1) &. (Y) <- (ML) &. (A1) <- (41) -1

The conteni of ttre -e*oty location (page 0), whose address is in register 41, is moved to

register ML (Memory latch). The content of register ML is moved to register Y. Regisær Al
is decremented by one.

MOV1 ML, M (Read memory)
(ML) <- (041) &. (41) <- (41) + 1

The coitent of ttre -ernoty locition (page 0), whose address is in register 41, is moved to

tegi.ster ML (Memory latch). Register A1 is incremented by one'

MOV2 ML, M (Read mernory)
(ML) <- (041)

The coàteni of the *e-oty location (page 0), whose address is in register A1, is moved to

register ML (Memory latch).

MOV3 ML, M (Read memory)
(ML) <- (141)

The conteni of the rne-ory location (page 1), whose address is in register 41, is moved to

116

register ML (Memory latch).

MVI41, data (Move Immediate)
(Al) <- (byte 2)

The content of Ùyte 2 of the instruction is moved to register 41. This is a two cycle instruc-

tion.

. Arithmetic Group

This group of instructions performs arithmetic operations on data in registers X and Y. Note

that any data transfer to register MU1 initiates a multiply-accumulate operation which is a
two cycle operation. Multipty operation has come under "Data Transfer Group". All the

other arithmetic operations are one cycle operation. All the instruction in this group affect the

registers BG, Division Overflow and AddiSubtract Overflow.

ADD (Add registers X and Y)
(z) <- (Y) + (x)

The coÀtént oi regisìei X ls adcled to the content of the register Y. The result is placed in the

rcgister Z.

SUB (Subtract register X from Y)
(z) <- (Y) - (x)

The coùtént oi regßter X is subtractecl from the content of register Y. The result is placed in

the register Z.

DIVI (Add/Subtract X and Y)
(z) <- (Y)t (x)

Depend ón ttrò contioÍ signals of the division control block, the content of the register X is
added ttr or subtrauted frorn the content clf the regisLur Y. The result is placcd in the registcrZ-

DIYZ (Add/Subtract X and Y)
(z) <- (Y)t (x)

Depenà on the conirol signals of the division control block, the content of the register X is
addecl to or subtracted from the content of the register Y The result is placed in the tegister Z.

INR A2 (Increment Register)
(A2) <- (42) + 1

The content of register A2 is incremented by one.

DCR A2 (Decrement Register)
(42) <- (42) - 1

The content of legister A2 is declemented by one.

INR A1 (Increment Register)
(41) <- (41) + 1

The content of tegister A1 is incremented by one.

DCR Al (Decrement Register)
(A1) <- (41) - 1

The content of legister Al is decremented by one

. Branch Group

This group of instructions alter normal sequential flow of the program. The two types of
branch instructions are unconclitional and conditional. Unconditional transfers simply per-

TN

form the specified operation on register PC (the program counter). Conditional transfers

examine the status of one of the four processor flags or the equivalence of register COI with
CO2 or A1 to determine if the speciûecl branch is to be executed. Unless indicaæd otherwise,

all instructions in this group are two cycle commands.

JMP addr (Jump)
(PC) <- (byte2)

Control is' transfêrred to the instruction whose address is specified rn byte2 of the current

instruction.

BNCH addr (Call Subroutine)
(PC) <- (byte 2)
(Sr) <- (PC) + 2

Control is transferred to the instruction whose address is specified in byte 2 of the cuffent
instruction. The content of register PC is incremented by 2 and moved to register ST (Stack)-

RTN (Return)
(PC) <- (Sr)

The conteñt of register ST is movecl to register PC. Control is transferred to the instruction

whose address is specified in registel ST. This is a one cycle instruction.

JNE (Conditional Jump)
If A1 is not equal to CO16.9 Then

(PC) <- byte2
If the'specilìed condition is true, control is transferred to the instruction whose address is

specifieil in byte 2 of the cur:rent instruction; otherwise, control continues sequentially.

JBG (Conditional Jump)
If register BG is equal to onc Thcn

(PC) <- byteZ
If the spócified condition is true, control is transferred to the instruction whose address is

specified in byte 2 of the cument instruction; otherwise, control continues sequentially.

JLE (Conditional Jump)
If register COl is less than or equal to register CO2 Then

(PC) <- byfe2
If the'spócified condition is true, control is transferred to the instruction whose address is

specifie{ in byte 2 of the current instruction; otherwise, control continues sequentially.

JLT (Conditional Jump)
If register COI is less than register CO2 Then

(PC) <- byte2
If the spócified condition is ttue, control is transferred to the instruction whose address is

specifled in byte 2 of the current instruction; otherwise, control continues sequentially.

JEQ (Conditional Jump)
If register CO1 is equal to register CO2 Then

(PC) <- byteZ
If the'specified conclition is true, control is transferred to the instruction whose address is

specifled in byte 2 of the cur'tent instruction; otherwise, control continues sequentially.

JFl (Conditional Jump)
If Flagl is logic one Then

(PC) <- byte2
If the'spócified condition is true, control is transferred to the instruction whose address is

118

specified in byte 2 of the clrffent instruction; otherwise, control continues sequentially.

JFz (Conditional Jump)
If Flag2 is logic one Then

(PC) <- byteZ
If the specified condition is true, control is transferred to the instruction whose address is

specified in byte 2 of the cuffent instruction; otherwise, control continues sequentially.

JF3 (Conditional Jump)
If Flag3 is logic one Then

(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is

specified in byte 2 of the cunent instruction; otherwise, control continues sequentially.

JF4 (Conditional Jump)
If Flag4 is logic one Then

(PC) <- byte2
If the'specified condition is true, control is transferred to the instruction whose address is

specified in byte 2 of the current instruction; otherwise, control continues sequentially.

. Machine Control Group

This group of instructions alters internal control flags, set registers and perform the shift
operation on the accumulator.

SET Al (Set Register)
(Al) <- (1111111)

The content of register A1 is changed to 1111111

NOP (No Operation)
No operation is performed. The registers and flags are unaffected.

HLT (Halt)
The processor is stopped. The registels and flags are unaffected. The processor remains in
this state until be reset.

SET OVF (Check Division Overflow)
Set overflow flag, if division overflow has occurred.

SET Fl (Set Flag Fl)

RST Fl (Reset Flag F1)

SET F2 (Set Flag F2)

RST F2 (Reset Flag F2)

SET F3 (Set Flag F3)

RST F3 (Reset Flag F3)

SET F4 (Set Flag F4)

RST F4 (Reset Flag F4)

119

SHL (Shift tßft With Zerc)
(Zû) <- (Wrs) ; (Wo) <- 0

The content of the accumulator is shifted left one position. The low order bit of register Z is

set to the value shifted out of the high order bit position of register W. The high order bit of
register Z is lost. The low order bit of register'W is set to zero.

SHD (Division Shift Left)
(7-ù <- (Wrs) ; CWo) <- D.C.

The content of the accumulator is shifted left one position. The low order bit of register Z is

set to the value shifted out of the high order bit position of register W. The high order bit of
register Z is lost. The low order bit of register W is set to the value determined by division

control block.

t20

Appendix B

Assembty Language Program For
Maxitnum Entropy Spectral Estimation

!C This routine finds the maximum entropy estimate of the predictor filter coefficients for
the spectral density. The algorithm is based on the Burg method, and was devised by

Andersen of the university of Copenhagen. The first column either shows a comment

(lC) or the address of the instruction in the ROM in hexadecimal base.

lC Set up routine: load registers MU1, MrIJZ, and TEMP with a one, and set flag F4,

therefore the user defines the model order (M).
NOP
SET A1
MV3 ML, M
MV TEMP, ML
MV6 MUl, ML
MV6 MUl, ML
SET F4

Calculate the mean value of the sampled data.

SET A1
INR A1
MVl ML, M
MV CO1, ML

!C

t2r

OD

!C

29

!C

INR
MV1
MV2
MV4
JNE
MV2
MV4
MV2
MV4
MV2
MV1
IÙ/4V2

MV1
SET
INR
MVl
MV
BNCH
MV

A1
MUl, ML
MU1, TEMP
MUl, ML
0D (Hex.)
MUl, TEMP
MUl, ML
MU1, TEMP
MUl, ML
MU1, TEMP
MUl, TEMP
MUl, TEMP
MUl, TEMP
A1
A1
ML, M
X, ML
1F0 (Hex.)
x,w

Generate two copies of data by subtracting the mean value from each datum and

storing the result in both pages, zero and one, of data RAM.
SET A1
INR A1
MVl ML, M
MV CO1, ML
MVI ML, M
MV Y,ML
SUB
MVl ML, M
MVl M,Z
MVl ML, M
MV Y, ML
SUB
MV2 M,Z
MVl M,Z
JNE 29 (Hex.)
MVl ML, M
MV Y, ML
SUB
MV2 M,Z
MVl M,Z

Set M=1.
SET A1
DCR A1
MVl M, TEMP

Go to address 9E (Hex.); calculatc A(M).
JMP 9E (Hex.)

!C

t22

!C
3A

M=M+1
SET
MV3
MV
MV2
MV
ADD
MVl

A1
ML, M
Y, ML
ML, M
X, ML

M,Z

!C

!C Generate another copy of predictor filter coefficients and store in page 1 of dat¿

A1
A1
ML, M
CO1, ML
Y, ML
42, ML

Y,Z
A1
ML, M
X, ML

AT,Z
coz,z

Store A(M)
SET A1
DCR A1
MV3 ML, M
MV2 MU1, ML
MV2 MUl, TEMP
MVl MUl, TEMP
MV2 MUl, TEMP
MVl MUl, TEMP
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
INR A1
MV2 ML, M
MV 42, ML
MV AI, A2
MVl M,Z

RAM
SET
INR
MV2
MV
MV
MV
SUB
MV
SET
MV3
MV
ADD
MV
MV

64

123

!C

81

}/4Y2
MV
MV
MV
MV
ADD
DCR
JLT
SET
MV3
MV

ML, M
TEMP, ML
AI, A2
M, TEMP
Y,Z

A2
64
A1
ML, M
TEMP, ML

Update the data values in pages zero and one of the data RAM, using the current

value of A(M).
SET A1
MV3 ML, M
MV AZ,ML
MV X,ML
INR A1
MV2 ML, M
MV YML
ADD
MV Y,Z
DCR A1
MV2 ML, M
MV X,ML
SUB
MV COI,Z
MV AI, A2
MV3 ML, M
MVl MUl, ML
MV Y, ML
SET A1
DCR A1
MV3 ML, M
MV6 MUI, ML
MVl MUl, TEMP
MV2 MUI, TEMP
MVl MUl, TEMP
SHL
MV X,Z
SUB
MV AI, A2
MVl M,Z
MV2 MUl, ML
MV Y, ML
MV2 ML, M
MV5 MUl, ML
MV1 MUl, TEMP
MV2 MUl, TEMP

124

AC

B6

!C

MV1
SHL
MV
SUB
MV2
INR
JNE

SET
INR
MV2
MV
SUB
MV
MVI
MV2
MV1
MV5
MV4
JNE
MV5
MV4
MV5
MVI
MV3
MV3
MV6
JNE
MV3
MV5
MV1
MV2
MV1

MUl, TEMP

x,z

M,Z
A2
81 (Hex.)

!C Calculate the value of A(M).

!C
9E

Calculate DEN.
SET A1
DCR A1
MV2 ML, M
MV X,ML

A1
A1
ML, M
Y, ML

COI,Z
A1,01 (Hex.)
ML, M
MUl, ML
MU1, ML
MUl, ML
AC (Hex.)
MUl, ML
MUl, ML
MUl, ML
41,01 (Hex.)
ML, M
MU1, ML
MU1, ML
B6 (Hex.)
MU1, ML
MUl, ML
MUl, TEMP
MUl, TEMP
MUl, TEMP

Calculate NOM.
JBG C3 (Hex.)
JMP CA (Hex.)
SET FI
SET A1
INR A1
MV2 ML, M
MV X,ML
BNCH 1F0 (Hex.)

c3

r25

CA

DB

EA

F1

SET
DCR
lù,{v2
SET
DCR
MV2
MV
SET
INR
MV2
MV
SUB
MV
MVI
MV2
MV2
MV5
MV3
JNE
MV5
MV3
MV5
MVl
MV2
MV1
SHL
JFI
JMP
SET
INR
MV2
MV
BNCH
RST
SET
MV2
MV
MV5
MV1
MV2
MV1
SET
DCR
MV3
MV
BNCH
SHL
SET
DCR
MV2

A1
A1
M,W
A1
A1
ML, M
X, ML
A1
A1
ML, M
Y, ML

COL,Z
41,01 (Hex.)
ML, M
MUl, ML
MU1, ML
MU1, ML
DB (Hex.)
MUl, ML
MUl, ML
MUl, ML
MUl, TEMP
MUl, TEMP
MUl, TEMP

EA (Hex.)
Fl (Hex.)
A1
A1
ML, M
X, ML
1F0 (Hex.)
F1
A1
ML, M
MUl, W
MUl, ML
MUl, TEMP
MUl, TEMP
MU1, TEMP
A1
A1
ML, M
X, ML
1F0 (Hex.)

A1
A1
M,W

t26

!C

!C

II7

!C

!C
IzC

SET
DCR
MV2
MV
SET
INR
MV2
MV
MV
SUB
MV
INR
MV
INR
MV3
MV1
MV
SET
DCR
MV3
MV6
MV1
MV2
MV1
SHL
MV
SUB
MV
MVl
INR
JNE

If M=1, then go to address 3A (Hex.); M=M+l.
SET A1
MV3 ML, M
MV COl, ML
DCR A1
lMVz ML, M
MV CO2, ML
JEQ 3A (Hex.)

Update the values of predictor filter coefflcients, using the current value of A(M).
A1
A1
ML, M
X, ML
A1
A1
ML, M
COl, ML
YML

A2,Z
A2
AI, A2
A1
ML, M
MUl, ML
Y, ML
A1
A1
ML, M
MUl, ML
MUl, TEMP
MUl, TEMP
MUl, TEMP

x,z

AI, A2
M,Z
A2
117 (Hex.)

If F4=1, then go to address 12C (Hex.)
JF4 12C (Hex.)

If "M is less than the desired model order", then go to address 3A (Hex.)

SET A1
DCR A1
MV2 ML, M
MV COl, ML

127

DCR A1
MV3 ML, M
MV CO2, ML
JLT 3A (Hex.)

Translate "A = the predictor filter coefficients sequence" one position forward.!c

148

!C
1F0

SET
INR
MV2
MV
MV
DCR
I0/IV2
MV
SUB
MV
MV
MV1
MV2
MV
MV
SUB
MV
INR
INR
INR
MV
SUB
MV1
JNE
MV
SUB
INR
MV1
MV
HLT

A1
A1
ML, M
COl, ML
Y, ML
A1
ML, M
X, ML

Y,Z
A1
A1
A1
X, ML

A2,Z
AL,Z
M, TEMP
ML, M
X, ML
XM

M,Z
148 (Hex.)
X, ML

A1
M,Z
A2, AI

Division routine, starts at location 1F0 (Hex.)
SET A1
INR A1
MV3 ML, M
MV COl, ML
SHL
MV Y,Z
DTVl
SET OVF
SHL
MV Y,Z
DIV2
SHL

1F9

128

INR
JNE
RTN

A1
1F9 (Hex

,!

lr

v

129

.+
r[j

:

Appendix C

BDS Language f)escription Of
The Control flnit

BDSYN is an interpreter for the harclwate description of combinational logic. The input to the

BDSYN is the descliption of the combinational logic in textual format, and the output is a

collection of logic functions which realize the specified function. It is a subset of the

functional simulation language BDS which is used for high level simulation. The output of the

BDSYN is in BLIF (Berkeley Logic Interchange Format) and is a multiple-level logic

representation of the specified function. [Chapter 6, BDSYN user's manual]

What is coming in the following is the BDS language description of the control unit of the

processor

lThis file provides the BDS language description of the control unit.
t,
I
I

¡

MODEL CONTROL UNIT

130

k

CON<3:0>,
WZ_ENABLE<1:0>,
SHIFI LOAD<I:0>,
ENABLE<5:0>,

MS<O>,
RN-\V<O>,
L-CN<O>,

UN-D<O>,

COUNT_EN<O>,
P1_0N<0>,
SN<O>,
c1'wN<0>,

COUNTl-EN<O>,
ClL_CN<O>,

C1UN-D<O>,

TEMP_REG<1:0>,

CONREG1 EN<O>,
CONREG2-EN<O>,
ADDESS_EN<O>,

ADDESS-OUT<7:0>,

STACK-OUT<8:0>,
PC_OUT<8:0>,
JUMP_OUT<O>,

FLAG6_OUT<O>,

FLAG1-OUT<O>,
FLAG2-OUT<O>,
FLAG3-OUT<O>,
FLAG4_OUT<O>,
FLAGs_OUT<O>,

OVRFOW-EN<O>,

READY<O>,
ovRFow<0>

ICONTROL LINES: CO1, CO2, 32BIT-SUB, 16BIT-SUB
ICONTROL LINES: W-ENABLE, Z-ENABLE
ICONTROL LINES: SHIFT, LOAD
IENABLE LINES: TRI_IEN, TRI-2EN, X-ENABLE'
IY_ENABLE, M ENABLE, 63 ENABLE
IMEMORY SELECT
lw/R OF THE MEMORY
ILOAD/COUNT CONTROL OF A1: LOAD IF 1, COUNT
lIF O

IUP/DOWN CONTROL OF A1: UP-COUNT IF 0,

IDOV/N COUNT IF 1

IENABLE OF THE ADDRESS REGISTER/COUNTER AI
IMEMORY (RAM) PAGE NUMBER
lIF O SET ADDRESS REGISTER/COUNTER A1
IWRITE ENABLE OF THE ADDRESS REGISTER/
ICOUNTER A2
IENABLE OF THE ADDRESS REGISTER/COUNTER A2
ILOAD/COUNT CONTROL OF A2: LOAD IF 1, COUNT
lIF O

IUP/DOWN CONTROL OF A2: UP-COUNT IF 0,

IDOWN COUNT IF 1

ICONTROL LINES OF TEMP REGISTER: TEMP-EN
!TEMPW
IENABLE OF CONTROL REGISTER ONE (COl)
IENABLE OF CONTROL REGISTER TWO (CO2)

IENABLE OF ADDRESS REGISTER OF CONTROL
IUNIT, NOTE THAT THIS SIGNAL IS DEFINED IN
IIMMEDIATE ADDRESS ROUTINE
IOUTPUT OF THE ADDRESS REGISTER OF THE
ICONTROL UNIT
IOUTPUT OF THE STACK POINTER
IPROGRAM COUNTER OUTPUT
ISTATE VARIABLE FOR JUMP/SUBROUTINE
!HANDLING
IOUTPUT STATE VARIABLE FOR TWO CYCLE
!COMMANDS
IFLAG1 OUTPUT
lFLAG2 OUTPUT
lFLAG3 OUTPUT
lFLAG4 OUTPUT
lFLAGs OUTPUT DEVOTED TO IMMEDIATE
!ADDRESSING
ICONTROLS THE CLOCK OF THE OVERFLOW
IFLIP FLOP OF CONTROL UNIT
IHALT SIGNAL OF THE PROCESSOR I
IANY KIND OF OVERFLOW

lIF ONE THEN ACCU. IS MORE THAN 16 BIT

,'}

rl,i

Þ

BIG NUM<O>

r31

I
Ì

t

DIVOVFOW<O>,
ADDOVFOW<O>,
COMMAND<8:0>,
INPUT-DATAl<15:0>,
INPUT_DATA2<15:0>,
ADDRES5<6:0>,
PC_IN<8:0>,
JUMP_IN<O>,

FLAG6-IN<O>,

FLAG1 IN<O>,
FLAG2 IN<O>,
FLAG3-IN<O>,
FLAG4_IN<O>,
FLAG5-IN<O>,

IDIVISION OVERFLOW SIGNAL
IADD/SUB OVERFLOW SIGNAL
IMACHTNE CODE FROM CONTROL MEMORY (ROM)
IINPUT DATA ONE FROM C.P.U.
IINPUT DATA TWO FROM C.P.U.
IADDRESS TO MEMORY EXCLUDING PI_ON
IPROGRAM COUNTER INPUT
IINPUT STATE VARIABLE FOR JUMP/SUBROUTINE
!HANDLING
IINPUT STATE VARIABLE FOR TWO CYCLE
!COMMANDS
lFLAGl INPUT
lFLAG2INPUT
lFLAG3INPUT
lFLAG4INPUT
lFLAGsINPUT DEVOTED TO IMMEDIATE
!ADDRESSING
ITHIS IS CONNECTED TO THE OUTPUT Q OF THE
IFLIP FLOP USED IN ROUTINE OVERFLOW
IRESET CONTROL OF P.C., TO BE CONNECTED TO
IRESET LINE OF THE PROCESSOR
IINPUT OF THE ADDRESS REGISTER OF THE
ICONTROL UNIT
IINPUT OF THE STACK POINTER

ovcoN<0>,

RESET<O>,

ADDESS_IN<7:0>,

STACK_IN<8:0>;

SYNONYM ADDRES S DATA<6 :0>-INPUT-DATA 1 <6 : 0> ;

ROUTINE PROGRAM-COUNTER;
IF RESET EQL 1 THEN

PC OUT=0
ELSE IF JUMP-IN EQL 1 THEN

PC OUT=COMMAND
ELSE IF FLAG6-IN EQL 1 THEN

PC-OUT=PC-IN+1
ELSE IF COMMAND EQL 3 THEN

PC-OUT=STACK-IN
ELSE IF COMMAND EQL 63 THEN

PC-OUT=PC-IN
ELSE

PC-OUT=PC-IN+ 1;

ENDROUTINE;

ROUTINE HLT;
IF FLAG6-IN EQL 1 THEN

READY=0
ELSE IF COMMAND EQL 63 THEN

READY=1
ELSE

I
t3z

READY=0;
ENDROUTINE;

ROUTINE OVERFLOW;
IF RESET EQL 1 THEN

OVRFOW=0
ELSE IF FLAG6_IN EQL 1 THEN

OVRFOW=0
ELSE IF (COMMAND EQL 46) AND (DIVOVFOW EQL 1) THEN

OVRFOW=l
ELSE IF ADDOVFOW EQL 1 THEN

OVRFOW=1
ELSE

OVRFOW=0;

INOTE: THE OVERFLO\ry LINE OF THIS ROUTINE WILL BE CONNECTED TO A
ID-FLIP_FLOP AND THE CLOCK OF THE FLIP_FLOP WILL BE CONTROLED
lBY RESET AND Q (OR Q) OF THE FLIP FLOP.

rF (RESET EQL 1) OR (OVCON EQL 0) THEN
OVRFOW EN=O

ELSE
OVRFO\ry-EN=1;

ENDROUTINE;

ROUTINE STACK;
IF FLAG6_IN EQL 1 THEN

STACK-OUT=STACK-IN
ELSE IF COMMAND EQL 1 THEN

STACK-OUT=PC-IN+2
ELSE

STACK-OUT=STACK-IN;
ENDROUTINE;

ROUTINE FLAG;
IF FLAG6_IN EQL 1 THEN

FLAGI-OUT=FLAGI IN
ELSE IF COMMAND EQL 48 THEN

FLAG1 OUT=1
ELSE IF COMMAND EQL 49 THEN

FLAG1 OUT=O
ELSE

FLAGI-OUT=FLAGl-IN;
IF FLAG6_IN EQL 1 THEN

FLAG2-OUT=FLAG2-IN
ELSE IF COMMAND EQL 56 THEN

FLAG2 OUT=I

133

ELSE IF COMMAND EQL 57 THEN
FLAG2 OUT=O

ELSE
FLAG2_OUT=FLAG2_IN;

IF FLAG6-IN EQL 1 THEN
FLAG3_OUT=FLAG3_IN

ELSE IF COMMAND EQL 58 THEN
FLAG3 OUT=I

ELSE IF COMMAND EQL 59 THEN
FLAG3 OUT=O

ELSE
FLAG3-OUT=FLAG3-IN;

IF FLAG6_IN EQL 1 THEN
FLAG4-OUT=FLAG4-IN

ELSE IF COMMAND EQL 60 THEN
FLAG4 OUT=I

ELSE IF COMMAND EQL 61 THEN
FLAG4 OUT=0

ELSE
FLAG4-OUT=FLAG4-IN;

ENDROUTINE;

ROUTINE JUMP;
IF FLAG6-IN EQL 1 THEN

JUMP OUT=0
ELSE IF (COMMAND EQL 1) OR (COMMAND EQL 54) TIItrN

JUMP OUT=I
ELSE IF (COMMAND EQL 2) AND (ADDRESS NEQ ADDRESS-DATA) THEN

JUMP OUT=I
ELSE IF (COMMAND EQL 47) AND (BIG-NUM EQL 1) THEN

JUMP OUT=I
ELSE IF (COMMAND EQL 52) AND (INPUT-DATAI LEQ INPUT-DATA2) THEN

JUMP OUT=I
ELSE IF (COMMAND EQL 53) AND (INPUT_DATAI LSS INPUT-DATA2) THEN

JUMP OUT=I
ELSE IF (COMMAND EQL s5) AND (INPUT_DATAI EQL INPUT-DATA2) THEN

JUMP OUT=I
ELSE rF (COMMAND EQL 64) AND (FLAGI-IN EQL 1) THEN

JUMP-OUT=1
ELSE IF (COMMAND EQL 6s) AND (FLAG2-IN EQL 1) THEN

JUMP OUT=I
ELSE IF (COMMAND EQL 66) AND (FLAG3 IN EQL 1) THEN

JUMP OUT=1
ELSE IF (COMMAND EQL 67) AND (FLAG4-IN EQL 1) THEN

JUMP OUT=I
ELSE

JUMP-OUT=O;
ENDROUTINE;

134

ROUTINE IMMEDIATE_ADDRES S ;

IF FLAG6-IN EQL 1 TFIEN
FLAG5 OUT=O

ELSE IF COMMAND EQL 62 THEN
FLAG5 OUT=I

ELSE
FLAG5-OUT=0;

IF FLAG5-IN EQL 1 THEN
ADDESS OUT=COMMAND

ELSE
ADDES S_OUT=ADDES S-IN;

IF FLAGs-IN EQL 1 THEN
ADDESS EN=O

IIMPORTANT NOTE: THIS ENABLE LINE IS IN FACT V/RITE ENABLE OF

ITHE REGISTER ADDESS

ELSE
ADDESS-EN=1;

ENDROUTINE;

ROUTNE FLAG-6;
IF FLAG6-IN EQL 1 THEN

FLAG6 OUT=O
ELSE
SELECT COMMAND FROM

11,2,47,52,53,5 4,5 5,62,6 4,6 5,66,67 I : FLAG 6_OUT= 1 ;

IOTHERWISEI :FLAG 6-OUT=0;
ENDSELECT;

ENDROUTINE;

ROUTINE NEXT_COMMAND;
IF FLAGs-IN EQL 1 THEN BEGIN

CON=DONT-CARE;
\ry7-ENABLE=ll#Z;
S HIFT-LOAD=D ONT-CARE ;

ENABLE=IIIIII#2,
MS=0;
RN_W=DONT_CARE;
L-CN=1;
UN-D=DONT-CARE;
COUNT-EN=I;
P1-0N=DONT-CARE;
SN=1;
ClWN=l;
COUNTI-EN=O;
ClL-CN=DONT-CARE;
CIUN-D=DONT-CARE;

135

TEMP-REG=I0#2;
CONREGl-EN=1;
CONREG2-EN=1;
END

ELSE IF FLAG6-IN EQL I THEN BEGIN
CON=DONT-CARE;
WZ-ENABLE=II#2;
S HIFT-LOAD =D ONT-CARE ;

ENABLE=llIlII#2;
MS=0;
RN-\W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNT1 EN=O;

C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREGl-EN=1;
CONREG2 EN=l;
END

ELSE BEGIN
SELECT COMMAND FROM

f0,r,2,3,46,47,48,49,52,53,5 4,5 5,5 6,57,58,59,60,
6r,62,63,64,65,66,67 I :B EGIN
CON=DONT-CARE;
WZ ENABLE=II#2:
SHIFT LOAD=DONT-CARE;
ENABLE=IIIITT#2;
MS=0;
RN 'W=DONT-CARE;
L CN=DONT-CARE;
UN D=DONT-CARE;
COUNT EN=O;
Pl 0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNT1 -EN=0;
ClL CN=DONT-CARE;
C1UN D=DONT-CARE;
TEMP REG=10#2;
CONREGl-EN=1;
CONREG2-EN=I;
END;
[4]:BEGIN
CON=DONT-CARE;
WZ ENABLE=LI#2;

136

SHIFT-LOAD=DONT-CARE;
ENABLE=lLIIlI#2;
MS=0;
RN-W=DONT-CARE;
L-CN=I;
UN-D=DONT-CARE;
COUNT-EN=1;
P1-0N=DONT-CARE;
SN=O;
CIWN=1;
COUNT1 EN=0;
C1L-CN=DONT-CARE;
ClUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREG1 EN=l;
CONREG2 EN=l;
END;
[5]:BEGIN
CON=DONT-CARE;
W7-ENABLE=II#2;
SHIFT-LOAD =DONT-CARE ;

ENABLE=llllll#2;
MS=0;
RN-W=DONT-CARE;
L-CN=0;
UN-D=0;
COUNT-EN=1;
P1-0N=DONT-CARE;
SN=DONT-CARE;
CIWN=1;
COUNTl-EN=0;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREGl-EN=l;
CONREG2 EN=l;
END;
[6]:BEGIN
CON=DONT-CARE;
W7-ENABLE=lI#2;
SHIFT-LOAD =D ONT-CARE ;

ENABLE=IllIII#2;
MS=1;
RN-W=0;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=1;
SN=DONT-CARE;
ClWN=1;

r3'l

COUNTI-EN=O;
CIL-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP_REG=I0#2;
CONREGl-EN=l;
CONREG2-EN=I;
END;
[7]:BEGIN
CON=DONT-CARE;
W7-ENABLE=II#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=lIltll#Z;
MS=1;
RN-W=0;
L-CN=DONT_CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=1;
SN=DONT-CARE;
ClWN=l;
COUNTl-EN=O;
C1L-CN=DONT_CARE;
ClUN-D=DONT_CARE;
TEMP-REG=00#2;
CONREG1 EN=l;
CONREG2-EN=I;
END;
[8]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
WZ-ENABLE=00#2;
SHIFT-LOAD=O1#2;
ENABLE=I 11100#2;
MS=1;
RN-W=0;
L-CN=0;
UN-D=0;
COUNT-EN=1;
P1-0N=1;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=0;
CIL-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREG1 EN=l;
CONREG2-EN=I;
END;

138

[9]:BEGIN
CON=DONT-CARE;
WZ-ENABLE=Il#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=lllLIl#2;
MS=1;
RN-W=0;
L-CN=0;
UN-D=0;
COUNT-EN=I;
P1-0N=0;
SN=DONT-CARE;
ClWN=l;
COUNTI-EN=O;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=L0#2;
CONREGl-EN=1;
CONREG2 EN=1;
END;
[10]:BEGIN
CON=DONT-CARE;
V/7-ENABLF=11#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=IllIII#2;
MS=1;
RN-W=0;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1_0N=0;
SN=DONT-CARE;
ClWN=l;
COUNTl-EN=0;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREGl-EN=O;
CONREG2-EN=I;
END;
[11]:BEGIN
CON=DONT-CARE;
WZ-ENABLE=ll#2;
SHIFT_LOAD=DONT-CARE;
ENABLE=0IILII#Z;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;

139

P1-0N=0;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=0;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREGl-EN=O;
CONREG2 EN=l;
END;
[12]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
WZ-ENABLE=00#2;
SHIFT-LOAD=00#2;
ENABLE=11fi00#2:
MS=1;
RN-W=0;
L-CN=0;
UN-D=0;
COUNT-EN=I;
P1-0N=0;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=O;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREGl-EN=1;
CONREG2-EN=I;
END;

[13]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
W7-ENABLE=ll#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=tttßI#2:
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
C lV/N=1;
COUNT1 EN=0;

140

CIL-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=II#2;
CONREGl-EN=1;
CONREG2-EN=I;
END;

[14]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
WZ-ENABLE=00#2:
SHIFT-LO AD=01#2;
ENABLE=I 11100#2;
MS=1,
RN-W=0;
L-CN=0;
UN-D=0;
COUNT-EN=1;
P1-0N=0;
SN=DONT-CARE;
ClWN=1;
COUNT1 EN=O;
C1L-CN=DONT_CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2:
CONREGl-EN=1;
CONREG2-EN=1;
END;
[15]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
WZ ENABLE=}O#2;
SHIFT-LOAD=O1#2;
ENABLE=I 1 1100#2;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT_CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=l;
COUNTl-EN=0;
C1L-CN=DONT_CARE;
ClUN-D=DONT-CARE;
TEMP-REG=Il#2;
CONREG1 EN=1;

l4l

CONREG2-EN=I;
END;
[16]:BEGIN
CON=DONT-CARE;
W7.-ENABLE=LI#2;
SHIFT-LOAD=D ONT-CARE ;

ENABLE=lI0lII#2;
MS=1;
RN_W=0;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=0;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=O;
CIL_CN=DONT-CARE;
ClUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREGl-EN=1;
CONREG2 EN=1;
END;
[17]:BEGIN
CON=DONT-CARE;
W7-ENABLE=00#2;
SHIFT-LOAD=10#2;
ENABLE=llIlIl#2:
MS=0;
RN-W=DONT_CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=l;
COUNTl-EN=0;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREGl-EN=1;
CONREG2 EN=l;
END;
[18]:BEGIN
CON=DONT-CARE;
W7-ENABLE=ll#2;
SHIFT-LOAD=D ONT-C ARE ;

ENABLE=O1101 1#2;
MS=O;
RN-W=DONT-CARE;
I

-CN=DONT-CARE;

142

UN-D=DONT-CARE;
COUNT-EN=O;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNT1 EN=O;
C1L-CN=DONT-CARE;
ClUN-D=DONT-CARE;
TEMP-REG=L0#2;
CONREG1 EN=l;
CONREG2-EN=I;
END;
[19]:BEGIN
CON<0>=1;
CON<1>=1;
CON<2>=DONT-CARE;
CON<3>=DONT-CARE;
WZ-ENABLF=I0#2;
SHIFT-LO AD=0I#2;
ENABLE=LllÍI#2;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=0;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREG1 EN=1;
CONREG2-EN=I;
END;
[20]:BEGIN
CON<0>=1;
CON<1>=0;
CON<2>=DONT-CARE;
CON<3>=DONT-CARE;
WZ-ENABLE=10#2;
SHIFT-LOAD=O1#2;
ENABLE=ILLÍI#2;
MS=0;
RN-'W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=O;
P1-0N=DONT-CARE;
SN=DONT-CARE;

143

ClWN=1;
COUNTl-EN=O;
C1L-CN=DONT-CARE;
ClUN-D=DONT-CARE;
TEMP-REG=IO#Z;
CONREGl-EN=1;
CONREG2-EN=I;
END;
[21]:BEGIN
CON=DONT-CARE;
WZ ENABLE=IL#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=I00III#2;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNT1 EN=O;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP_REG=t0#2;
CONREGI-EN=I;
CONREG2 EN=l;
END;
[22]:BEGIN
CON=DONT-CARE;
W7,_trNABLE=lL#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=IIL0II#Z;
MS=l;
RN-W=0;
L-CN=0;
UN-D=I;
COUNT-EN=1;
P1-0N=0;
SN=DONT-CARE;
ClWN=1;
COUNT1 EN=O;
C1L_CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREGl-EN=1;
CONREG2-EN=I;
END;

[23]:BEGIN
CON<0>=0;

t44

CON<l>=1;
CON<2>=DONT-CARE;
CON<3>=1;
\W7.-ENABLE=LO#2;

SHIFT-LOAD=01#2;
ENABLE=IILllI#2;
MS=0;
RN-W=DONT-CARE;
L-CN=O;
UN-D=I;
COUNT-EN=1;
P1-0N=DONT-CARE;
SN=DONT_CARE;
ClWN=1;
COUNTl-EN=O;
CIL-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREGl-EN=1;
CONREG2-EN=I;
END;

[24]:BEGIN
CON=DONT-CARE;
V/Z-ENABLE=ll#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=OI1111#2;
MS=1;
RN-W=I;
L_CN=0;
UN-D=0'
COUNT-EN=I;
P1-0N=0;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=O;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2:
CONREGI-EN=I;
CONREG2-EN=I;
END;
[25]:BEGIN
CON=DONT-CARE;
WZ-ENABLE=Il#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=OI 1l l1#2;
MS=1;
RN-W=I;
L-CN=0;
UN-D=0;

145

COUNT-EN=1;
P1-0N=1;
SN=DONT-CARE;
CIWN=1;
COUNTI-EN=O;
C1L_CN=DONT-CARE;
ClUN-D=DONT_CARE;
TEMP-REG=I0#2;
CONREG1 EN=l;
CONREG2 EN=l;
END;
[26]:BEGIN
CON=DONT-CARE;
WZ-ENABLE=II#Z;
SHIFT-LOAD=DONT-CARE;
ENABLE=llfiIl#2;
MS=1;
RN-W=0;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=0;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=0;
C1L-CN=DONT_CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREG1 EN=l;
CONREG2-EN=1;
END;
[27]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
WZ-ENABLE=ll#2;
SHIFT_LOAD=DONT-CARE ;

ENABLE=lllßl#2;
MS=1;
RN-W=0;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=0;
SN=DONT-CARE;
ClWN=l;
COUNT1 EN=O;
CIL-CN=DONT-CARE;
CIUN-D=DONT-CARE;

t46

TEMP-REG=10#2;
CONREGl-EN=1;
CONREG2-EN=I;
END;
[28]:BEGIN
CON=DONT-CARE;
wz_ENABLE=II#2:
SHIFT-LOAD =D ONT-C ARE ;

ENABLE=IllÍI#2;
MS=l;
RN-W=I;
L-CN=O;
UN-D=0;
COUNT-EN=1;
P1-0N=0;
SN=DONT-CARE;
CIWN=1;
COUNTI-EN=O;
CIL-CN=DONT-CARE;
C1UN D=DONT-CARE;
TEMP-REG=11#2;
CONREG1 EN=l;
CONREG2-EN=I;
END;
[29]:BEGIN
CON=DONT-CARE;
W7.-DNAIILE=II#Z:
SHIFT-LOAD=DONT-CARE ;

ENABLE=I0LllI#2;
MS=l;
RN-W=I;
I

-CN=DONT-CARE;
UN_D=DONT-CARE;
COUNT-EN=0;
P1-0N=1;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=O;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=I0#2:
CONREG1 EN=l;
CONREG2-EN=I;
END;
[30]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
W7-ENABLE=II#2;

147

SHIFT-LOAD =D ONT-CARE ;

ENABLE=IIII0I#2;
MS=l;
RN-W=0;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=1;
SN=DONT-CARE;
ClWN=1;
COUNTI-EN=O;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREGl-EN=1;
CONREG2-EN=1;
END;
[31]:BEGIN
CON<0>=0;
CON<l>=0;
CON<2>=0;
CON<3>=DONT-CARE;
WZ-ENABLE=00#2;
SHIFT-LOAD=O0#2;
ENABLE=I11100#2;
MS=1;
RN-W'=O;
L-CN=O;
UN-D=0;
COUNT-EN=1;
Pl-0N= l;
SN=DONT-CARE;
ClWN=l;
COUNTl-EN=O;
CIL-CN=DONT-CARE;
ClUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREG1 EN=l;
CONREG2-EN=I;
END;
[32]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
V/Z-ENABLE=00#2;
SHIFT-LOAD=00#2;
ENABLE=101100#2;
MS=0;
RN-W=DONT-CARE;

148

I.-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
CIWN=1;
COUNTl-EN=0;
CIL_CN=DONT_CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2:
CONREGl-EN=l;
CONREG2-EN=1;
END;
[33]:BEGIN
CON=DONT-CARE;
ÌW7-ENABLE=II#2:

SHIFT-LOAD=DONT-CARE ;

ENABLE=IIITII#2;
MS=O;
RN-W=DONT-CARE;
L-CN=O;
UN-D=I;
COUNT-EN=1;
P1-0N=DONT-CARE;
SN=DONT-CARE;
CIWN=I;
COUNTl-EN=0;
C1L-CN=DONT-CARE;
ClUN-D=DONT-CARE;
TEMP-REG=I0#2;
CONREG1 EN=l;
CONREG2-EN=I;
END;

[34]:BEGIN
CON=DONT-CARE;
WZ-ENABLE=Il#2;
SHIFT-LOAD=DONT-CARE;
ENABLE=0I0lll#2;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=l;
COUNTl-EN=0;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE,;
TEMP-REG=I0#2;

t49

CONREG1 EN=1;
CONREG2-EN=1;
END;
[35]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
w7_FNABLE=00#2;
SHIFT-LOAD=00#2;
ENABLE=O11100#2;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNT1 EN=O;
C1L-CN=DONT-CARE;
C1UN D=DONT-CARE;
TEMP-REG=10#2;
CONREGl-EN=1;
CONREG2 EN=l;
END;
[36]:BEGIN
CON=DONT-CARE;
WZ-ENABLE=lI#2:
SHIFT-LOAD=D ONT_CARE ;

ENABLE=ITITIL#2;
MS=1;
RN-W=0;
L-CN=DONT-CARE;
UN_D=DONT-CARE;
COUNT-EN=O;
P1-0N=1;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=1;
CIL-CN=1;
ClUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREGl-EN=l;
CONREG2-EN=I;
END;
[37]:BEGIN
CON=DONT-CARE;
W7_FNABLE=ll#2:
S HIFT-LOAD=D ONT_CARE ;

t
t

:

150

ENABLE=Illlll#2;
MS=0;
RN-W=DONT-CARE;
L-CN=1;
UN-D=DONT-CARE;
COUNT-EN=1;
P1-0N=DONT-CARE;
SN=l;
CIWN=O;
COUNTI EN=0;
C1L-CN=DONT-CARE;
ClUN-D=DONT-CARE;
TEMP-REG=I0#2:
CONREGl-EN=1;
CONREG2 EN=l;
END;
[38]:BEGIN
CON<0>=0;
CON<I>=1;
CON<2>=DONT-CARE;
CON<3>=0;
W7.-ENABLE=10#2;
SHIFT-LOAD=01#2;
ENABLE=llILII#2;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE,;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNT1 EN=O;
CIL-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREG1 EN=l;
CONREG2-EN=I;
END;
[39]:BEGIN
CON=DONT-CARE;
W7-ENABLE=LI#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=llIIlI#2:
MS=1;
RN-W=I;
L-CN=O;
UN-D=0;
COUNT-EN=I;
P1-0N=1;

:,1
rrj

I
I
I

I

r
151

:l
rùf

SN=DONT-CARE;
ClWN=1;
COUNTl-EN=O;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=IL#Z;
CONREGI-EN=I;
CONREG2-EN=I;
END;

[40]:BEGIN
CON=DONT-CARE;
WZ-ENABLE=LI#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=IIIIII#2;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=1;
ClL-CN=O;
CIUN-D=1;
TEMP-REG=10#2;
CONREGI EN=l;
CONREG2-EN=I;
END;
[41]:BEGIN
CON=DONT-CARE;
WZ_ENABLE=t1#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=IIllLI#2:
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClV/N=1;
COUNTI-EN=1;
C1L-CN=0;
ClUN-D=O;
TEMP-REG=10#2;
CONREGl-EN=l;
CONREG2-EN=I;
END;
[42]:BEGIN

ì
I

I

þ
152

CON=DONT-CARE;
WZ-ENABLE=Ll#2;
SHIFT-L OAD =DONT-CARE ;

ENABLE=0IIILI#2;
MS=0;
RN-W=DONT-CARE;
L_CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=DONT-CARE;
SN=DONT-CARE;
ClWN=1;
COUNT1 EN=l;
C1L-CN=1;
CIUN-D=DONT-CARE;
TEMP_REG=tM2;
CONREG1 EN=l;
CONREG2 EN=l;
END;
[43]:BEGIN
CON=DONT-CARE;
WZ_ENABLE=Il#2;
SHIFT_LOAD=D ONT_CARE ;

ENABLE=OI1111#2;
MS=0;
RN-W=DONT-CARE;

UN-D=DONT-CARE;
COUNT-EN=I;
P1-0N=DONT-CARE;
SN=1;
ClWN=1;
COUNTl-EN=0;
C1L-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREG1 EN=l;
CONREG2 EN=l;
END;
[44]:BEGIN
CON<0>=0;
CON<1>=0;
CON<2>=0;
CON<3>=DONT-CARE;
W7-ENABLE=ll#2;
SHIFT-LOAD=DONT-CARE;
ENABLE=lllßl#2;
MS=1;
RN-W=0;
L-CN=O;

;r

I
I

i

t53

UN-D=0;
COUNT-EN=1;
Pl-0N=0;
SN=DONT-CARE;
CIWN=1;
COUNTl-EN=0;
CIL-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=LO#2;
CONREG1 EN=l;
CONREG2-EN=I;
END;

[45]:BEGIN
CON=DONT-CARE;
wz_ENABLE=II#2;
SHIFT-LOAD=DONT-CARE ;

ENABLE=I0lllI#2;
MS=l;
RN-W=I;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
P1-0N=0;
SN=DONT-CARE;
ClWN=l;
COUNT1 EN=O;
elL-CN=DONF-GARE
C1UN D=DONT-CARE;
TEMP REG=10#2;
CONREG1 EN=1;
CONREG2 EN=l;
END;
[50]:BEGIN
CON=DONT-CARE;
WZ ENABLE=II#2;
SHIFT LOAD=DONT-CARE;
ENABLE=IIIIIT#2;
MS=1;
RN-W=0;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT EN=O;
P1-0N=0;
SN=DONT-CARE;
CIWN=1;
COUNTl-EN=0;
C1L CN=DONT-CARE;
C1UN D=DONT-CARE;
TEMP REG=10#2;
CONREG1 EN=l;

154

CONREG2-EN=O;
END;
[51]:BEGIN
CON=DONT-CARE;
W7-ENABLE=lI#2;
SHIFT-LOAD =D ONT-CARE ;

ENABLE=0IIIII#2;
MS=0;
RN-W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=0;
Pl-0N=0;
SN=DONT-CARE;
ClWN=1;
COUNTl-EN=O;
C1L-CN=DONT-CARE;
ClUN-D=DONT-CARE;
TEMP-REG=10#2;
CONREGl-EN=l;
CONREG2-EN=0;
END;
IOTHERWISEI:BEGIN
CON=DONT-CARE;
W7._tr NAB LE=D ONT_CARE ;

SHIFT-LOAD=DONT-CARE ;

ENABLE=DONT-CARE;
MS=DONT-CARE;
RN-\W=DONT-CARE;
L-CN=DONT-CARE;
UN-D=DONT-CARE;
COUNT-EN=DONT-CARE;
P1-0N=DONT-CARE;
SN=DONT-CARE;
CIWN=DONT-CARE;
COUNTI-EN=DONT-CARE;
CIL-CN=DONT-CARE;
CIUN-D=DONT-CARE;
TEMP-REG=DONT-CARE;
CONREG1 EN=DONT-CARE;
CONREG2 EN=DONT-CARE;
END;

ENDSELECT;
END;

ENDROUTINE;
ENDMODEL;

155

Bibliography

t1l ANDERSEN, N. - On the calculation of filter coefficients for maximum entropy spec-
tral analysis. Geophysics, Vol. 39, pp. 69-'72,Feb- I974.

t2l AKAIKE, A. - A new look at the statistical model identification. IEEE Trans. Autom
Control, Vol. AC- 19, P-P. 7 16-723, Dec. I97 4.

t3l AKAIKE, A. - Fitting autoregressive models for prediction. Ann. Inst. Statist. Math.,
1969,2L, pp.243-247 .

Í41 ANTONAKOS, J.L. - The 68000 microprocessor; hardware and software principles
and applications. 2nd ed., Menill, New York, 1993.

t5l BURG, J.P. - Maximum entropy spectral analysis. Proceedings of the 37th meeting of
the society of exploration geophysicists, Oklahoma, 1967.

t6l BURG, J.P. - A new analysis technique for time series data. NATO Advanced study
institute on signal processing with emphasis on underwater acoustics. Aug. 12-23,
1968.

tll BOOTH, A.D. - A signed binary multiplication technique. Quart. J. Mech. Appl.
Math., Vol.4, pp.236-240, 1951.

t8l CHASSIANG, R. - Digital signal processing with C and the TMS320c30. John Wiley
& Sons, Inc. 1992.

t9l COHEN, A. - Biomedical signal processing; Vol. 1, Time and frequency domains anal-
ysis. CRC Press, Florida, 1986.

t10l EWING, G., MAZUMDAR, J., VOJDAM, 8., GOLDBLATT, E., VOLLENHOVEN,
V. - A comparative study of the rnaximum entropy method and the fast fourier trans-
form for the spectral analysis of the third heart sound in children. Australian physical
& engineering sciences in medicine. Vol. 9 No. 3, 1986.

t11l EWING, G.J. - A new approach to the analysis of the third heart sound. Thesis submit-
tcd for M.Sc. degree. The univelsity of Adelaide, Australia, 1989.

156

ÍI2l HIGGINS, R.J. - Digital signal processing in VLSI. Prentice-Hall, Inc. N.J., 07632,
1990.

t13l HUTCHINS, 8.A., PARKS, T.W. - A digiøl signal processing laboratory using the
TMS320C25. Texas Instruments, Prentice-Hall, Englewood Cliffs, N.J. 07632,1990.

t14] HAYES, J.P., Computer architecture and organization. McGraw-Hill, New York, 1978.

t15l LUISADA, A.A. - The sounds of the normal heart. Warren H. Green, Inc. St. Louis,
Missouri, U.S.A., 1972, pp. 32-38.

t16l LACOSS, R.T. - Data adaptive spectral analysis methods. Geophysics, Aug. 1971

IlTl LITTLE, R.C. - Physiology of the heart and circulation. 3rd ed., Year book medical
publisher, Chicago, 1985.

t18l MANO, M.M. - Computer engineering hardware design. Prentice-Hall, Inc., N.J.
07632,1988.

t19] MANO, M.M. - Computer system architecture, Prentice-Hall,Inc., N.J., L976-

l20l MUROGA, S. - VLSI System design; when and how to design very-large-scale inte-
grated circuits. John Wiley & Sons,Inc., U.S.A.,1982.

t2ll MAZUMDAR, J. - An introduction to mathematical physiology and biology. Cam-
bridge university press, 1989.

I22l NAGAMATSU, M., TANAKA, S., MOR[, J., HIRANO, K., NOGUCHI, T., HATAN-
AKA, K. - A 15-ns ¡z x3z-b CMOS multiplier with an improved parallel structure.
IEEE JSSC, Vol. 25, No. 2, April 1990, pp. 494-497.

l23l PAPOULIS, A. - Signal analysis. McGraw-Hill, New York,1977

t24l PROAKIS, J.G., MANOLAKIS, D.G. - Digital signal processing; Principles, Algo-
rithms, and Applications. 2nded-, Macmillan, New York, 1992-

l25l PUCKNELL, D.A. - Fundamental of digital logic design with VLSI circuit applica-
tions. Prentice-Hall, Australia, 1990.

f26l PUCKNELL, D.A., ESHRAGHIAN, K. - Basic VLSI design; system and circuits. 2nd
ed., Prentice-Hall, Australia, 1988.

127) RIDEOUT V.L. - One-device cells for dynamic random-access memories. IEEE
Trans. on Electron Devices, Vol. ED-26 ,Iun. 1979, pp. 839-852.

t28l STRACKEE, J., WESTERHOF, N. - The physics of heart and circulation. Institute of
physics, Philadelphia, PA, 1993, pp. 201-219.

t29) SHORT, K.L. - Microprocessors and programmed logic. Prentice-Hall, Inc. N.J.
07632,1981.

t30l STONE, H.S., LOOMIS, H.H. - Introduction to computer architecture.2nd ed., Sci-
ence Research Associates, Inc., U.S.A., 1980, pp.63-71.

t57

t31l SMITH, J.J. - Circulatory physiology; the essentials. 2nd ed.,Williams & Wilkins,
1984.

132) SHANNON, C.8., WEAVER, W. - The mathematical theory of communication. Uni-
versity of Illinois press, 1949-

t33l TORTORA, G.J., ANAGNOSTAKOS, N.P. - Principles of anatomy and physiology.
5th ed., Harper & Row, 1987, pp- 46I-468.

l34l TILKIAN, 4.G., CONOVER, M.B. - Understanding heart sounds and murmurs with
an introduction to lung sounds. 2nd ed.,'WB. Saunders Company, 1984, pp. 35-70, 89.

t35l TRIEBEL, W.4., SINGH, A. - 16-bit Microprocessors; architecture, software, and
interface techniques. Prentice-Hall, N.J., I 985.

t36l ULRYCH, T.J., BISHOP, T.N. - Maximum entropy spectral analysis and autoregres-
sive decomposition. Review of geophysics and space physics, Feb. 1975, Vol. 13, 183-
200.

l37l WESTE, N.8., ESHRAGHIAN, K.,- Principles of CMOS VLSI design; A system per-
spective. 2nd ed., Addison-Wesley, 1993.

t38l WALLACE, C.S. - A suggestion for fast multipliers. IEEE Trans. Electron. Comput.
Vol. EC-13, Feb. 1964,pp. L4-I7.

t39l WASER, S., FLYYN, M.J. - Introduction to arithmetic for digital systems designers.
CBS college publishing, L982.

t40l YAMAUCHI, H., NIKADO, T., NAKASHIMA, T., KOBAYASHI, Y., SAKAI, T. - 10
ns 8 x s multiplier LSI using super self-aligned process technology. IEEE JSCC, Vol.
SC-18, No. 2, April 1983 , pp.204-210.

t41l YANO, K., YAMANAKA, T., MSHIDA, T., SATTO, M., SHIMOHIGASHI, K.,
SHIMIZU, A. - A 3.8-ns CMOS 16 x 16-r multiplier using complementary pass tran-
sistor logic. IEEE JSSC, Vol. 25, No. 2, April 1990, pp. 388-394.

T42] YAMAGUCHI, K., NAMBU, H., KANETANI, K., IDEI, Y., HOMMA, N.,
HIRAMOTO, T., TAMBA, N.,'WATANBE, K., ODAKA, M., IKEDA, T., OHHATA,

K., SAKURAI, Y. - A 1.5-ns access time, 78-u-2 -e-ory-cell size, 64-kb ECL-
CMOS SRAM. IEEE JSSC, Yol.27, No. 2, Feb.1992,pp.167-I74.

158

