VLSI IMPLEMENTATION
OF
HEART SOUNDS

MAXIMUM ENTROPY SPECTRAL ESTIMATION

Mohammad Saeed Tahmasbi, B.Eng.

Thesis submitted for the degree of

MASTER OF ENGINEERING SCIENCE

in the Department of Electrical Engineering
and Applied Mathematics
The University of Adelaide
Adelaide, Australia
December 1994
Nwsarded 1997

i

Contents

Chapter

1.1
1.2
1.3
1.4
1.5
1.6

1.7

Chapter

2.1

22

23

24

1 INTRODUCTION 1
General Introduction And The Outline Of The Research. 1
Physical Characteristics Of Cardiac Structurecoonenn. 3
Heart Valvesttt ier e s ten e oo rases 4
Mechanical Events Of The CardiacCycle ..o, 5
Electrical Events Of The CardiacCyclecoiviiiannn. 7
Heart Soundst 8
Heart MUIIULS . .o vvvvvsssscanssaessnasssssassssssanssssnans 10

2 MAXIMUM ENTROPY 12
SPECTRAL ESTIMATION

INtrodUCHON . . . o ottt e et e e e 12

Uncertainty, Information, And Principle.oooniainnnn 13

Of Insufficient Reason

Basic Concepts Of Estimation Theory 14
Principle Of Maximum Entropyc.ooonoiiiiinnnnn. 16
24.1 Entropy Of A Normal Processooiiinninins 20

il

2.5

Chapter

3.1
32
33
34
3.5
3.5

3.6

Chapter

4.1

42

43

2.4.2 Input Output Correlation Function.oooennnnnnn 21
Of Linear Digital Filters

243 Entropy Rate And Power Spectrumoooviinnnnnn 22
Maximum Entropy And Spectral Estimationooovunnnn 23
2.5.1 Filter Parameters And Auto-correlation. 26
Sequence
252 Selection Of Model Orderooiiriiiniiunnann. 29
3 ARCHITECTURAL MAPPING AND 32
ALGORITHM TRANSFORMATION
DSP Chip Familiesottt ees 33
Basic Features Of The Chipo oottt i e 33
Memory Organizationovuinneenneeennnaaaraaennsans 36
Architecture And Operation Of The Processor.oonann.n 37
InStruCtion Set . .. oottt e e 44
The Stack And Subroutine Execution.oiviniiiiiannn. 47
Algorithm Transformation.oooi s 48
4 PROCESSOR BUILDING BLOCKS 53
LY (VU5 o) 13 P 53
4.1.1 Generation Of The Partial Products.coovvnns 54
And Booth’s Algorithm
4.1.2 Sign Bit Extension And Add_One Method 56
4.1.3 Hardware Implementation Of The Algorithm 58
414 Multiplier Simulation Result Andcoooiaiinnn 63
Performance Estimation
32-Bit Carry_Look_Ahead Adder. oo 66
421 Algorithm And Hardware Implementation 66
4272 Carry_Look_Ahead Adder Simulation Result.............. 73
DAVIET . « v v e et e e e 73

111

4.4
4.5
4.6
Chapter
A
B
C

4.3.1 Restoring Binary Division 75

432 Non-restoring Binary Division.ociieniin.ns 76
433 Hardware Implementationovuenenninannnnnns 79
434 OverflowDetectionc.ciuiiumreneneneennanennns 81
4.3.5 Divider SimulationResult i 85
Control Unit. it e et 87
441 Design Methodologiesoooviiiiain i, 88
442 Hardware Implementationoiuneeiennrnrennns 89
4.43 Control Unit Specifications % EnaEE 91
Random Access Memory Design 97
4.5.1 Hardware Descriptionoiiiinimieiiianann 98
4.5.2 Read Operation.ousessn sesne sosoe s seseere 100
453 Write Operationc.oeveeenerncoesocanerasasssss 100
454 RAM SimulationResult.cooieiniiniiiaan.s 102
Read Only Memory Design.o oon i iaanennen 103
4.6.1 Structure Of The ROM.. . . .o iiiiiiiiiniiiieccnnerneens 103
4.6.2 ROM SimulationResult.o 105

S CONCLUSION AND THE FUTURE 108

DEVELOPMENTS

Instruction Set 113

Assembly Language Program For 121

Maximum Entropy Spectral Estimation

BDS Language Description Of The 130

Control Unit

Bibliography 156

v

List Of Figures

1.1

1.2

1.3
2.1
3.1
3.2
33
3.4
3.5
4.1
4.2
4.3
4.4
4.5
4.5
4.6
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13

Blood flow through the heart. i 4
Representative pressure pulse from aorta, left ventricle, and left 6
atrium

Mechanical and electrical events of the cardiaccycle.ooonnnn.. 9
Flow diagram of the maximum entropy spectral analysis algorithm 31
Processor pin configurationt 34
Processor block diagram 38
Multiplication simulation result. 40
Floor plan of the processorcuiieennamrierrnnneenaeaaaanns 42
Distribution of the active area withinthe chipo 43
Star representation of multiplication. il 54
Encoding scheme of the modified Booth’s algorithm 55
Partial products after applying the add_one methodoontn 58
Block diagram of the multiplier.ot 59
(a) Circuit diagram of a 4-2 COMPIESSOT v ovtivunennecnnaneeons 60
(b) Equivalent circuit of a 4-2 COMPIESSOT vvvevvennnnnnerceeneeens 61
(a) Control section of the Booth encoding block.ovnvennnn. 61
(b) Booth encoding block s 62
CPLcircuitmodulest enasanaaaaeans 62
Multiplier simulation result.o 64
Circuit diagram of 4-bitadderslice.o 68
Four group carry_look_ahead generatorooiviinnainnnn 70
Block diagram of 32-bit carry_look_ahead adder.................oonnnn 70
Floor plan of the 32-bit carry_look_ahead adderoonnnnn 71
Layout design of the 32-bit carry_look_ahead adder 72

4.14
4.15

4.16

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.24
4.24
4.24
4.25
4.26
4.26
4.27
4.28
4.28
4.29
4.30
4.31
4.32
4.33
4.34

5.1

Carry_look_ahead adder simulationresulto, 74
Divider block diagram.ttt 80
Flow diagram of the non-restoring division algorithm for 82
two’s complement numbers.

Circuit diagram of division overflow detector. iiuianaanns 84
Divider simulation result. ; o swwe s o was 55 sow o wwem are st e sosisi 5 86
Relationship between control unit and data processor 87
Block diagram of the control unitononenieiei i 90
Program COUNter FOULINEvvvvunnnnecnernmannaonarsaneonnasnnss 92
Flagé routine flow diagramoimtiiiiiiiiiiiiii i 92
Jump routine flow diagraml 93
(a) Flagl routine flow diagram it 94
(b) Flag2 routine flow diagramiiuiiinnrnnnaaneaaann. 94
(c) Flag3 routine flow diagramo it 94
(d) Flagd routine flow diagramt 94
Stack pointer routine flow diagram i 95
(a) Flag5 routine flow diagramot 96
(b) Immediate address routine flow diagram.ooiiiiiiaann 96
Next command routine flow diagramt 96
(a) Overflow detect routine flow diagramoioniiiirnaannn. 97
(b) Haltroutine flow diagram iuniiiimiirnaannnns 97
Block diagram of the RAM s 99
Floorplanof the RAM it ieeeeens 101
RAM simulation resultottt ininie e e 102
Block diagram of the ROmt 104
Floor plan of the ROM e 105
ROM simulation resultu.ceeiicvaenerasannssesesssacnssnsvas 106
(@) The synthetic dataovuniiiiirmenenianee s renennnnenns 109

vi

5.1 (b) Normally distributed randomnoiseoiiiiiiiiiiiiaannen

5.2 Spectrum of the synthetic data

vii

List Of Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

Table

Instruction set; Data transfer groupcoviii i rnnneaaaanes 45
Instruction set; Arithmetic group.civiitinenn e 46
Instruction set; Branch group.o it 46
Instruction set; Machine control group 47
Determination of the quotient bits.t 79
Division overflow detection.covniiiinniinee i 83
Truth table for division overflow signal. oiannnn 84
Machine codes storedinthe ROM.cooiiiiiiiiiiiiiinn.. 106

viil

Publications And Abstracts

During the course of my study the following paper has been presented at a learned society:
An oral presentation “Architecture And Design Of 16-Bit Processor; Maximum Entropy Spec-
tral Analyser.”

Authors: M. S. Tahmasbi, K. Eshraghian and J. Mazumdar.

Engineering And The Physical Sciences In Medicine Conference, Sept. 12-15 1994, Perth,
Australia.

Co-Sponsored By:

Australasian College Of Physical Sciences & Engineering In Medicine.

College Of Biomedical Engineers, Institution Of Engineers, Australia.

Society For Medical & Biological Engineering (WA) Inc.

b ¢

Declaration

I declare that this thesis contains no material which been accepted for the award of any other
degree or diploma in any university.

To the best of my knowledge and belief, this thesis contains no material previously pub-
lished or written by any other person, except where due reference is given in the text of the
thesis.

I consent to this thesis being made available for photocopying or loan.

SIGNED - ! DATE- - B/12/94 .

Acknowledgements

I wish to express my appreciation to my supervisors, Prof. K. Eshraghian and Prof. J.
Mazumdar for their generous encouragement and continual support which has led to this
research. I also wish to extend my sincere gratitude to my friend Mr. Alireza Moini for his
extensive co-operation and our many discussions in various stages of the design and test of
this project.

My thanks are also extended to Dr. A. Bouzerdoum from whom I learned the first princi-
ples and theories of statistical signal processing. Last but not least my thanks go to Dr. N.

Burgess for reading, correction and constructive suggestions on my project progress reports.

xi

List Of Mathematical Symbols .

HU) = entropy of partition U
P(E) = probability of event E
(X(n)) =time average of random variable X (n)

(x.x,, . =time autocorrelation sequence
E[x,] =expected value of xX(n)

Ryy(m) = autocorrelation function of X (n)
B = bias of an estimator

o; = variance of estimator ¢

H(x,, %, .., x,) = joint entropy of several random variables

f(x) = probability density function of X

f(x;,...,x,) = joint density of random variables
H, = entropy rate of stationary process X (n)
H(z) = system transfer function

Syy(®) =power spectrum of process Y (n)

FPE (m) = final prediction error criterion

AIC(m) = Akaike information criterion

xii

spectral analysis, instrumentation, and so on. The aim of this study is to provide a more effi-
cient tool for the spectral analysis of the heart sounds, the third heart sound in particular. In
recent times the stethoscope has been reinstated to its rightful important position because the
information gained from electrocardiography (ECG), phonocardiography (PCG), and
echocardiography offers solid proof of the significance of the heart sounds and murmurs,
making the discipline of cardiac ausculation even more valuable as a diagnostic tool. How-
ever, the main deficiency of using traditional stethoscope, now an integral part of medicine,
in medical diagnosis lies in the limited frequency recognition and intensity resolution of
human ear. Although human ear is capable of functioning over a broad range of frequency
variation, unfortunately the usual range of cardiac sound is too low-pitched to be easily
heard. In addition, not everyone has the same capacity to hear sounds. Some examiners will
be able to detect vibrations of extremely low frequencies, while others will not. The problem
becomes more obvious considering the addition of environmental noise and other unwanted

biological signals like breathing sound, ete.

More advanced technology can be applied to overcome these limitations. One obvious
application of technology to the heart sound analysis has been spectral analysis. Although the
Fast Fourier Transform (FFT) methods provide a good solution for the spectral analysis of
the first and second heart sounds, still when it comes to the analysis of biological signals of
short duration like third heart sound, it suffers from limitation in frequency resolution. How-
ever, the efficiency of maximum entropy spectral estimation in producing sharper and more
pronounced peaks in the power density spectrum has proved satisfactory in dealing with

short length of data records.

Due to the shortcomings of the FE.T. technique in the spectral analysis of the sampled sig-

nals of short duration, it was decided to design a special purpose processor for spectral anal-

ysis based on “Maximum Entropy” method. The processor will have application in different
areas, but it was particularly designed to work as the central processing unit of the “Biomon-
itor system”, to be used for spectral analysis of the heart sounds. Parallelism and pipelining
was the focus for the architecture of the processor. A separate multiplier/accumulator, and a
high-speed ALU speeds the program. In addition to the direct speed increase provided by fast
multiplication in hardware, using the pipelining technique, the next input can be loaded
while the previous product is being calculated. Parallelism on the other hand, helps when

more identical operations, performed at the same time, could speed progress.

This project deals with the design methodologies of the architecture of a 16-bit processor
based on “Maximum Entropy” method which provides a suitable platform for further study

in the field of spectral analysis of the heart sounds.

1.2 Physical Characteristics Of Cardiac Structure

The function of the heart is to transfer sufficient blood from the low-pressure venous sys-
tem to the arterial side of the circulation under the proper pressure to maintain the circulatory
needs of the body. The heart is an efficient force pump that few, if any, mechanical pumps
can equal without “downtime” for maintenance. In an engineering sense, the heart is made up
of two separate pump systems [28]. The right atrium and ventricle act as a single unit (the
right heart) to move venous blood from the great veins to the pulmonary circulation. The left
atrium and ventricle (the left heart) act together in a similar manner to pump blood from the
pulmonary system to the high-pressure system circulation. This directional flow of blood, as
well as some of the important structural features of the heart, are shown in Fig. 1.1. The
terms “right heart” and “left heart”, although physiologicaily correct, are not descriptive of

their position in the body. Due to the normal rotation of the heart on its longitudinal axis, the

right ventricle is in front of the left and occupies a position immediately behind the sternum,

whereas the left ventricle is rotated so that it faces toward the left side and the back of the

thorax [33].

SvC

Figure 1.1--Blood flow through the heart. SVC= superior vena cava; IVC= inferior vena cava; RA=
right atrium; LA= léft atrium; PA= pulmonary artery; PV= pulmonary veins; RV= right ventricle;
LV= left ventricle; Ao= aorta [17].

1.3 Heart Valves

The dynamic effect of cardiac contraction is surprisingly effective in moving blood through
the heart even in the absence of the competent valves. Nevertheless, these thin, delicate
valves, which guard the entrance and exit of each ventricle, greatly enharzce the efficiency of
the cardiac pump. The heart valves are mechanical devices that permit the flow of blood in
one direction only. The two cuspid (atrio-ventricular) valves are located between the atria
and ventricles, while the two semi-lunar valves are located at the entrance to the pulmonary
artery and the great aorta [21]. In spite of their fragile appearance, the cusps of these valves
are deceptively strong and resilient. Their movements are essentially passive even though

some of the leaflets have been shown to contain muscle fibres. The crescent-shaped (semilu-

nar) cusps of the pulmonic and aortic valves permit these structures to open maximally dur-

ing ventricular ejection and still provide a perfect seal when closed during diastole [33].

1.4 Mechanical Events Of The Cardiac Cycle [15]

Activation of the myocardium is followed by cardiac contraction. In the intact heart, this
leads to a series of events that are associated with its function as a pump. It is convenient to
relate these activities to the changes in pressure that take place inside the chambers of the
heart and the great vessels during the cardiac cycle. Representative pressure pulses from the
left atrium, left ventricle, and aorta are diagrammatically shown in Fig. 1.2, along with a
graphic representation of the electric activity of the heart lines. The left heart pressure rela-
tionships are discussed in the analysis of the cardiac cycle that follows. In general, the pres-
sure relationships on the right side of the heart are the same as those shown for the left side,
although the pressures will be lower. The mechanical events are also similar on both sides of

the heart [15].

Blood flows from an area of higher pressure to an area of lower pressure. The pressure
developed in a heart chamber is related primarily to the chamber’s size. For example, if the
chamber size decreases, the pressure increases. The pressure in the atria is called atrial pres-
sure, that in the ventricles is called ventricular pressure, and pressure in the aorta and pulmo-
nary trunk is referred to as arterial pressure. In a normal heartbeat, the two atria contract
while the two ventricles relax. Then, when the two ventricles contract, the two atria relax.
The term systole refers to the phase of contraction; diastole is the phase of relaxation. A car-
diac cycle, or complete heartbeat, consists of a systole and a diastole of both atria plus the

systole and diastole of both ventricles.

The cardiac cycle represents a combination of mechanical, electrical and valvular events

whose interrelationship is complex but essential to understanding of how the heart functions

and how disease processes affect it. At rest, the normal adult heart beats at a rate of about 70
to 75 per minute. Blood flows from the atria to the ventricles and from the ventricles to the
large arteries at a velocity which is determined by the pressure differences between the
chambers. Normally the valves offer no resistance and open or close as a function of the rel-

ative pressures exerted by the flowing stream and the energy imparted by the contractions of

the atrial and ventricular musculature.

TIME {seconds)

0.4 0.6 08
120 o {8 L I 1 L
. C
1004 | ff L.,
___________ Aorta
_,E’ 80- AN Y T e
€
E
W GO~
o Venlricle
-]
& 40-
18]
o
o
20- " o
o
SN e - Alrium
0 _H’;‘}‘ IR I T YTV Y PRI PRV ROTOPUR VTR ARTIOTI g
-—SYSTOLE —+|-—— DIASTOLE————+
R R
, T
/\ 3
Q . ECG a

Figure 1.2--Diagram showing a representative pressure pulse from aorta, left ventricle, and left
atrium. An ECG also is shown [31].

At a rate of 75 per minute, the complete cycle for filling and emptying of the chamber
would occupy 0.8 sec or 800 mscc (Fig. 1.2). The cardiac cycle is divided into systole and
diastole. Left ventricular systole (i.e., the contractile period of the left heart) extends from the
carly rise of the ventricular pressure and the closure of the AV valve (Fig. 1.2.A) to the clo-
sure of the aortic valve and the beginning of diastole (Fig. 1.2.C). During most of the period
from B to C, the ventricular pressure is higher than the aortic, the aortic valve is open and the

ventricle ejects blood into the arterial system. At C the aortic valve closes.

Diastole, which is the period of ventricular relaxation and filling, begins with the closing
of the aortic valve (C). When the ventricular pressure falls below the atrial, the AV valve
opens (D) and the ventricle begins to fill. Diastole ends when the ventricle again contracts

and the new cycle begins.

1.5 Electrical Events Of The Cardiac Cycle

In order for the cardiac muscle to contract, there must be a preceding action potential which
initiates the electrical and ionic events that culminate in ventricular systole. The ECG, which
is recorded at the body surface, is a graphical representation of the summed voltage changes
produced by electric depolarization and repolarization of the heart. These electrical impulses
begin at the sinoatrial (SA) node in the right atrium, spread over the entire heart and initiate
the contraction wave. The electrical phase of the cardiac cycle begins with excitation of the
atrium (i.e., atrial depolarization), denoted on the ECG by an initial upward positive deflec-

tion called the P wave (Fig. 1.2), which triggers atrial contraction.

After completion of the P wave, the ECG trace returns to base level, i.e., the isoelectric
line. About 0.16 to 0.22 seconds following the onset of the P wave, a second series of nega-
tive and positive waves are seen [33]. A negative Q wave usually precedes a positive R and a
negative S wave. This QRS complex is caused by electrical depolarization of the ventricles
and is quickly followed by ventricular contraction. After a short interval, a positive T wave
appears which corresponds to repolarization of the ventricular muscle mass. The ECG then
returns to the isoelectric line and usually there is electrical silence for the remainder of dias-
tole. The S-T segment is an important phase of the record because it is specifically distorted

in some heart diseases.

It should be emphasized that the action potential is the indispensable forerunner to cardiac

contraction. The heart has a spontaneous, intrinsic rhythmicity and automaticity, and contrac-

tion is inevitably coupled to excitation.

1.6 Heart Sounds [34]

The cardiac structure vibrations associated with cardiac mechanical events generate acoustic
waves that are transmitted to the chest. These acoustic waves are usually classified in four
different groups, known as heart sounds, and contain information of the vibratory source.
The two primary heart sounds are usually heard as a “lup-dup”, a low-pitched first sound,
followed by a quicker, higher-pitched second. The intensity of heart sounds, as heard at chest
wall, depends upon several factors, i.e., the rate of the rise of the ventricular pressure, the
physical characteristics of the ventricles and valves, the volume contained in the heart, the
position of the AV valve leaflets at the beginning of ventricular systole and the transmission
characteristics of the chest wall. The relationship of the heart sounds to other events of the
cardiac cycle is shown in Fig. 1.3. The major components of the heart sounds are associated
with the abrupt acceleration and deceleration of blood in and near the heart, but there is not

full agreement on the relative significance of valve activity and muscle vibration.

The First Heart Sound (S1) is associated with the closure of the mitral and tricuspid valves
at the start of ventricular systole and the two components can sometimes be distinguished. If

s0, the first component of S1 is mitral in origin and the second component tricuspid.

The Second Heart Sound (S2) is usually of higher frequency and shorter duration than the
first. It marks the end of ventricular systole and the beginning of diastole and is associated
with the closure of the semilunar valves. It consists of two components, aortic and pulmonic.
Normally, the aortic valve closes several milliseconds before the pulmonic and the time dif-

ference is accentuated during the inspiratory phase of respiration.

This respiratory delay in closing of the pulmonary valve produces a “physiological” split-

ting of the second heart sound and is mainly due to the sudden decrease in intrathoracic pres-
sure associated with inspiration. This in turn, causes a temporary increase in venous return,
and an increase in right heart volume resulting in increased right ventricular output, a tempo-
rary prolongation of ejection time and a delay in pulmonary valve closure. At the same time,

pulmonary venous return to the left heart is diminished so that left ventricular stroke volume

decreases and the aortic valve closes slightly earlier.

TIME (seconds)

0 0.2 0.4 0.6 0.8
120 s - 1 1 i 1 1 1
100 - ol
T, Aorta
D god
&
3
60 -
w
o Ventricle
2
7 40
w
«
(a9
20-
;'. . £ Atrium .
0 l./l’i“_. ________ FETITPRTRETILES
SYSTOLE —|— —DIASTOLE- -
120+
= / 5
E
[1]]
= 80- 9
5
-J
g
40 - |-
nfvwwf‘ M""“"}tj‘t "Ilf_
1st 2nd 3rd 4th g
A HEART SOUNDS
T
P
AN
ECG
Qs
ICP IRP

Figure 1.3--Mechanical and electrical events of the cardiac cycle showing also ventricular volume

curve and heart sounds [31].

A Third Heart Sound (S3), shown in Fig. 1.3, is associated with the passive rapid-filling

phase. Because of the thinness of their skin of the chest, a physiological third sound may be

present and audible in younger individuals; however, if it occurs after the age of 40 years, it
is generally considered abnormal. It may occur in fever, cardiac failure and certain other car-

diac disorders.

The Fourth Heart Sound (S4) is associated with the active rapid filling phase (Fig. 1.3).
While it can often be recorded by phonocardiography, it is generally not audible. When it
does occur, it is usually recorded at the peak of atrial contraction and may be associated with

increased atrial pressures.

1.7 Heart Murmurs

Disturbances of normal blood flow patterns in the heart and great vessels often result in
abnormal sound, producing vibrations in the auditory frequency range known as murmurs.
They are classified on the basis of their timing as systolic, diastolic and continuous murmurs.
If the aortic or pulmonary valve is diseased or deformed, the increased turbulence through
the narrowed or distorted orifice results in the systolic murmur characteristic of aortic or pul-

monary valve disease [34].

If the AV closure is incomplete because of disease of the mitral or tricuspid valves, the
valve will become incompetent and blood will regurgitate into the atrium producing a blow-
ing “whoosh” noise following the first heart sound. If this systolic murmur persists through-

out systole it is sometimes referred to as a pansystolic or holosystolic murmur.

Abnormal heart sounds which occur during diastole are associated either with an abnor-
mality of AV valve opening (usually mitral) or an abnormality of semilunar valve closure
(usually aortic). A murmur originating at the aortic valve and heard in early diastole may be
produced by incomplete closure of the aortic valve at the end of systole. Such an abnormality

could be due to fibrosis or stiffening of the valve in the open position or destruction of valve

10

leaflets. The defect causes regurgitation of blood back into the left ventricle at the end of sys-
tole through the incompetent valve, producing the diastolic murmur of aortic regurgitation or

aortic insufficiency.

Stenosis of the mitral valve may cause abnormal heart sounds during early or late diastole.
The early component of this murmur is often initiated with an opening snap of the mitral
valve; the late component may be associated with the atrial systole, just before the onset of

ventricular systole, and is referred to as a “presystolic” murmur.

« Summary

This chapter introduced the basic operation of the heart with a focus on the generation of
heart sounds. First the cardiac structure and its physical characteristics were presented. In
subsequent sections, mechanical and electrical events in the cardiac cycle were discussed in
detail. Finally the main heart sounds, classified in four different categories, were introduced
and their relationships with other mechanical or electrical events of the cardiac cycle were
reviewed briefly. Furthermore, this chapter gave an overview on the objectives, as well as the
significance, of this study. The mathematical approach for the spectral analysis of the heart
sounds was mentioned here and is developed in the next chapter, which results in an AR

model for the signal and a recursive algorithm.

11

Chapter 2

MAXIMUM ENTROPY
SPECTRAL ESTIMATION

2.1 Introduction

The Maximum Entropy Method (MEM) for spectral analysis was suggested by Burg (1967)
[5, 6]. Its mathematical properties have been discussed in detail by Lacoss (1971) [16], Burg
(1972), and Ulrych (1972) who found that the MEM is, in general, superior to the more con-

ventional methods of spectral estimation [36].

The application of entropy can be divided into two categories. The first deals with prob-
lems involving the determination of unknown distributions. The available information is in
the form of known expected values or other statistical functions, and the solution is based on
the principle of maximum entropy: we determine the unknown distribution so as to maxi-
mize the entropy H(U) of some partition U subject to the given constraints. In the second

category, we are given H(U) and wish to construct various random variables so as to maxi-

12

mize their expected values. The solution involves the construction of optimum mappings of

the random variables under consideration, into the given probability space.

The probability P(E) of an event E can be interpreted as a measure of our uncertainty
about the occurrence or non-occurrence of E in a single performance of the experiment s. If
P(E) is close to one, then we are almost certain that £ will occur; if P (E) is close to zero,
then we are reasonably certain that £ will not occur; our uncertainty is maximum if

P(E) =o0-5.If v is a partition of s, i.e., U is a collection of mutually exclusive events E;

whose union equals s, then the measure of uncertainty about v will be denoted by #(v) and

will be called the entropy of the partition.

The function H(U) must satisfy a certain number of conditions. The following is a typical

set of such conditions [C.E. Shannon and W. Weaver] [32]

1. H(U) is a continuous function of P, = P (E)
2. if = ... = Py = 1/N, then H (V) is an increasing [unction of N.

3. If a new partition B is formed by subdividing one of the sets of U, then H(B) 2H(U) .

It can be shown that the sum

H(U) = —PlogP,—... —PplogPy (EQ1

satisfies these conditions and it is unique within a constant faclor.

2.2 Uncertainty, Information, And Principle Of Insufficient Reason

In the heuristic interpretation of entropy, the number H(U) is a measure of our uncertainty

about the events E, of partition U prior to the performance of the experiment. If the experi-
ment is performed and the results conceming E; become known, then the uncertainty is

removed. We can therefore say that the experiments provides information about the events E;

13

equal to the entropy of their partition. Thus uncertainty equals information and both are

measured by the sum in (EQ 1).

If £, are N events of a partition v of s and nothing is known about their probabilities,

then

P(E) = 1/N

Although conceptually the maximum entropy principle is equivalent to the principle of insuf-
ficient reason, operationally the maximum entropy method simplifies the analysis drastically

when, as in the case in most applications, the constraints are phrased in terms of probabilities

in the space s" of repeated trials. In such cases the equivalence still holds, although less obvi-

ous.

The maximum entropy method is thus a valuable tool on the solution of applied problems.
It is used, in fact, even in deterministic problems involving the estimation of unknown
parameters from insufficient data. The maximum entropy principle is then accepted as a

smoothness criterion [23].

2.3 Basic Concepts Of Estimation Theory

The characterization of a random process is usually made by its averages [24]. However, it is
often necessary to estimate averages of the random process model from a single sample
sequence of the random process, i.e., a sequence X (») which is assumed to be a realization of
a random process defined by the set of random variables {Xx(n)}. The time average of a ran-

dom process is defined as

X (m)

M =

1
X(m) = lim 7575

n=-N

14

Similarly, the time autocorrelation sequence is defined as

<Xan + m> -

N
N_,mzN Z X (n) X* (n+m)

It can be shown that the above limits exist if {X(»)} is a stationary process with finite mean.
A random process is said to be stationary in the strict sense if all its probability functions or
statistical averages are independent of time. As defined above, the time averages are func-
tions of an infinite set of random variables and thus are viewed as random variables them-
selves. However, under a condition known as ergodicity, the time averages defined by above

equations are equal to statistical averages. That is
(X(n)) = E[X,] = my
and
(X(m)X*(n+m)) = E[X X*,] = Ryy(m)

In general, a random process for which time averages equal statistical averages is called an

ergodic process.

In order to make the computation of the estimates possible, we must base our estimate on a

finite segment of the sample sequence X (») . When we consider ergodic processes, it is possi-

ble to compute estimates of the various desired averages of the random variables {x } from

a finite segment of a single sample sequence. The estimate ¢ of the parameter § is thus a

function of the random variables X ,0<r<N-1;1.€.,

g = FIXy, Xy oo Xy_]

and therefore ¢ is also a random variable.

15

The bias of an estimator is defined as the true value of the parameter minus the expected

value of the estimate, i.e.,
bias =(-E[{]1=B

An unbiased estimator is the one for which the bias is 0. This then means that the expected

value of the estimate is the true value. The variance of the estimator is defined by

var(Q = E[€-EIED’] = o

An estimator is said to be consistent if as the number of observations becomes larger, the bias

and the variance both tend to zero.

2.4 Principles Of Maximum Entropy

In the literature the explanation of the method of Maximum Entropy in spectral estimation
begins usually with the assumption that it is desirable to maximize the logarithmic integral H
of the unknown spectrum S(®) of a process s(») and it leads to the conclusion that §(w)

must be an all pole rational function.
If s is a probability space, the axiomatic definition of entropy is in fact a number assigned

to each partition of s, i.e., the entropy H(4) of a partition 4 is the sum [10]

N
H(A) = - PP, where P, = P(A)

i=1

Since P, +... + Py = 1 it can be shown that H(4) is maximum if P, = 1/N for i = 1,..,N and

this maximum is equal to N, i.e.

0<H(A) <InN

16

Suppose that the random variable X is of discrete type which can take the values x; with

probabilities P,. Then the entropy H(x) of random variable X is by definition the entropy of

the partition formed by events {X =x}

H(X) = -Y P/lnP, P,=P{X=x}
Correspondingly the entropy of a continuous variable x is defined as

HX) = - f(x) - Inf(x) dx

where f(x) is the probability density function of Xx. As it is obvious from the above integral,

the entropy H(x) is in fact the expected value of random variable Inf(x) or
H(X) = -E{Inf(x)}
The joint entropy of several random variables is defined similarly

H(xy, %y, ..., %) = —E{Inf(x, x,, ...,xr)}

If A is non-singular r by r matrix and we form the random variable v as following
Y=4x where:X=(X,...X) & Y= (Y,..Y)

r

Then the joint density of these random variables is given by
F(Yp o X,) = |}11_|'f(xl"“-‘xr)

Applying (EQ 2), we obtain

H(Y,..Y) = HX, ..., X,) + 4|

(EQ2)

(EQ3)

17

In the application of the concept of entropy to the problem in spectral estimation, the

quantity of interest is the entropy rate H, of a stationary process X(n) . This quantity is
defined as

Hy = lim (;1—1-H(x0,x1,...,xr)) (EQ4)
where H(x, x,, ..., x,) is the joint entropy of the random variables X (n),X(n-1), ..., X(n—-r) .

Suppose that X (n) is the input to the stable causal system H (z) . Furthermore, suppose that
H(z) is minimum phase, i.e., H(z) and its inverse are analytic for |z]>1. If X(n) is applied at

n = 0, then the resulting response is

Y(n) = Y X(n-k)-h(k) n=01.. (EQ5)

k=0

Note that ¥(n) is not stationary. However, it tends to the stationary process Y(r) as n-—ee.
(EQ 5) is a linear transformation of the random variable x(0), X (1), ..., X(n) into the random

variable ¥(0), Y(1), ..., Y(n) obtained with the transformation matrix

oy 0 ... 0
Ao) RO ..o0 Al = 1Y ()
h-('r-f) h(:;: 1) fl.(l(:'lj
Considering (EQ 3), this results to
H(Ty ¥,) = HOXG o X)) + (n 1) - Inh(0)

And from (EQ 4), we obtain

Hy = Hy+1nh(0) (EQO6)

It is possible to write the term 1nk(0) in (EQ 6) in term of H(ej “’T) , in fact since

‘H(ejmT)|2 - H(J“‘T) : H(e_jmT)

18

it follows with ¢®” = z and jTz do = dz that
ij;01n|H(J“’T)|2dm - ﬁm(ﬂ(z) H(1/2)dz oy =1
where the integral is along the unit circle. But
frinH (2) dz = fiin(H(1/2))dz

therefore

ﬁmH(z) az =L [m|H(ef“‘T)|2dm (EQ7)

2 -,
The function InH(z) is analytic for |z/>1 by assumption, therefore, the circle of integration

can be made arbitrarily large. Based on initial value theorem

h(0) = lim H(2)

700

and it can be concluded that
§%1n (H(2))dz = 1nh(0) - §d_z§ = 2mj- Ink (0)
in which we used the result of Cauchy Residue theorem

1 f(z) _ . e e s .
Rjisz—odz = f(zg) if z, is inside circle ¢

=0 if z, is outside C

where c is a closed path in the z-plane and f(z) is a function of complex variable z. Consid-

ering (EQ 7) we obtain

Inh (0) = ﬁ;}flomh(e"‘ﬂ)lz - do o =7 (EQ8®)

19

Using (EQ 6) and (EQ 8), the entropy rate of the output of the system can be expressed in the

final form as following:

1 0 ioT)2
H, = Hx+4—070fm01n|y(e’)| do oy =7 (EQ9)
2.4.1 Entropy Of A Normal Process
If the probability density function of a random variable x is defined as

1 —nd
Er—_ 4

f(x) gl

then x is called a normal process and we have
H(x) = -E{Inf(x)} = E{x*/26°} + no./21t = Inc./2Te

Suppose that v(n) is stationary white noise with average power E{V(n)} = o’. In this

. . . . 2
case, the random variables V(n), V(n-1), ..., V(n—r) are normal independent with variance ¢” .

Hence, their joint density can be expressed as:
f(Vy, V..., V) = f(v) <)

and form (EQ 2).

H(Vy,..,V) = -E{ln[f(Vy)..f(V)]1} = (r+1) nc.f2me

dividing by r+1, it can be seen that the entropy rate of a normal white-noise process V(n) is

given by:

Hy, = Ing./2Te

20

2.4.2 Input Output Correlation Functions Of Linear Digital Filters

Suppose that a signal x(n) with known auto-correlation R, (m) is applied to a linear time

invariant system (LTI) with impulse response k (n) , producing the output signal ¥ (n) .

LTI
Input SYSTEM Output
X(n) h(n) Y(n)

Y(n) = h(n)®X(n) = Y h(k)-X(n-k)
k= —oo

The auto-correlation of the output signal ¥ (r) , can be obtained by using the above equation

and the properties of convolution. Thus we have

Y(m) ® Y (-m)

[A(m) ®X(m)] ® [h(-m) ®X(-m)]

(h(m) @ h(-m)] ® [X(m) ®X(-m)]

Ry, (m) ®R_(m) (EQ 10)

Ryy (m)

where R (m) is the auto-correlation sequence of the input signal {X(n)} , R, (m) is the auto-
correlation sequence of the output {y(m?}, R,,(m) is the auto-correlation sequence of the
impulse response {#(n)} . Since (EQ 10) involves the convolution operation, the z-transform

of this equation yields

$,, (@) = Sy (@) - 5, ()

- 1@ A7) 5,0
Evaluating s, (z) on the unit circle, we can obtain the energy density spectrum of the output

signal as

21

L

S, (@) = [H@)[* S, () EQ11)
2.4.3 Entropy Rate And Power Spectrum:
For an arbitrary normal process N (n) we have the auto-correlation function defined as

R, (m) = E{N(n+m) -N(n)}

and the power spectrum is

Sn(@ = 3 Ry, (m) 7"

m = —oo

Since N (n) is a normal process, all its statistics including H,, can be expressed in terms of its
auto-correlation R, (m) . Hence, if another process ¥ (n) has the same auto-correlation func-
tion, or equivalently, the same power spectrum as N(z) , then its entropy rate Hy will equal
H,.If H(z is a minimum phase function which specifies a system with an impulse response

equal to N (n) then Sy, (z) can be written as a product
i 2
Syy(2) = H(z) -H(1/2) Syy (@) = |H(ejm)|

Using as input to the system H(z) a white-noise process V(n) with E{V*(n)} = 1, we obtain

as output a process ¥ (r) with a spectrum
Sy (@) = [H@) Sy (@) = Syy (@)

Using (EQ 9), the entropy rate of the normal process N (n) can be expressed as

Hy =Hy = Hy+ 4—(11)—Im; lnIH(ejmT)lzdo)
0"

22

— 1 0)0
= lnA/ZTl:e + 4—0)0-"-(00 lnSNN((D) do (EQ 12)

2.5 Maximum Entropy And Spectral Estimation

Having defined the entropy rate of a random process $(») in terms of its power spectrum
[See (EQ 12)], the estimation of the spectrum of s(n) with the method of maximum entropy

involves the maximization of its entropy rate H, subject to various constraints which are usu-

ally expressed as
E{g,(x)} =n k=1,..,m

where the functions g, (x) and the numbers », are given.

The solution of the problem is based on the following inequality

—jf(x) - Inf(x) dxs—jf(x) np (x) dx

—oa

with equality iff f(x) = p(x) , where f(x) and p(x) are two density functions. The proof of the

above comes from the inequality ny<y - 1. It can be shown that the optimum density is given

by

A =
(%) = %.e 18y (%) mEm ()

where

A — v —A x
. r g 18 (%) "'g'"()dx

and the constants 1, are such that

23

[6@ p@di=n, k=1..m

In practice we are given the N +1 values R(0),R(1),...,R(n) (data) of the auto-correlation

R(m) of arandom process §(n) and we wish to estimate its power spectrum S (o) . The statis-
tics of S(m are determined in terms of the joint density of random variables
S(n),S(n-1),...,S(n—r) . Hence, to apply the principle of maximum entropy, we must deter-

mine the unknown values of R(m) so as to maximize the entropy H (S, S,, ..., 5,) of these ran-

dom variables and to find the limit as r— . This is equivalent to the maximization of the

entropy rate H of §(n) subject to the given constraints.

If we denote by 3(n) the optimum linear predictor of $(n) in terms of its N most recent

values [24]

N
§(n) = Y a,-S(n-k)

k-1
then the estimation error
e(n) = S(n)-8(n)

is the output of linear system with input s(») and system function

S(n) s O

i §(n)
. Z-l &1).... Prediction Error Filter

24

and its average power P is given by

N
E[(m] =P =R©) + Y a,-R(K) (EQ 13)
k=1

From (EQ 9) it follows that

N
1- 2 a, - e“‘rm”‘dm
k=1

1
Hg = HS+2?'

In
0" =%
The above integral depends only on the data, hence to maximize Hy, it suffices to maximize

the entropy rate H, of the error ¢,. If X(n) is a stationary process with specified average

ower E{X*(n)} = o, then its entropy rate H, is maximum iff X(n) is normal white noise.
p Py X

By the same argument e (n) is normal white noise with power spectrum

See(2) = P

It follows from the above that the process s(n) satisfies recursive equation

N
S(n) - Y a-S(n-k) = e(n) (EQ 14)

k=1

where e(n) is white noise. Therefore, s(n) is the output of the filter 1/(H(z)) with input

e (n) , hence, its power spectrum equals

s 5.
(D = g H(1/2)

substituting z = ¢°7 results

k=1

25

Therefore, it is concluded that s(n) is an auto-regressive (AR) process and since e(n) is nor-

mal, S(n) is also normal.

2.5.1 Filter Parameters And Auto-correlation Sequence

When the power spectral density of the random stationary process is rational function, there
is a basic relationship which exists between the auto-correlation sequence R(m) and the
parameters of the linear filter 1/ (#(z)) that generates the process by filtering the white noise
sequence. This relationship may be obtained by multiplying the difference equation in (EQ
14) by s*(n-m) and taking the expected value of both sides of the resulting equation. Thus

we have

N
E{S(n)S*(n—-m)] = 2 akE[S(n—k)S* (n-m)] +E[e(n)S*(n—m)]
k=1

Hence

N
R(r) = Y a,-R(r—k) +R, (1)
k=1

where R, (r) is the cross correlation sequence between e (r) and S(n) .

The cross correlation R, (r) is related to the filter impulse response. That is,

R, (r) = E[S*(m)e(n+m)]

= E[Z h(k)e*(n—k)e(n+m):|
k=0
= P-h(-m)

where, in the last step, we have used the fact that the sequence e (n) is white. Hence

R, (r) =0 for r>0

and form (EQ 13)

26

1t

N
Y, a-R(r-k) r=1,..,N
k=1

R(r)

N
P-Y a-R(k)

k=1

R(0)

Therefore, there is a lincar relationship between R (m) and the {q,} parameters. These equa-

tions, called the Yule-Walker equations [24], may be expressed in the following matrix form

R(0) R(-1) .. R(-N) 1 P
R(1) R() ..R(N+L||%|_ [0
R.(IIIV) R(N-1) R'((')) a;, 0

This correlation matrix is Toeplitz and can be efficiently inverted by use of Levinson_Durbin
algorithm. The key to the Levinson_Durbin method of solution that exploits the Toeplitz
property of the matrix is to proceed recursively, beginning with a predictor of order N = 1
and to increase the order recursively, using the lower order solution to obtain the solution to
the next higher order. An objection that can be raised at this approach becomes evident when
we remember the maximum entropy interpretation of an AR representation. Accordingly, the
AR coefficients should be estimated in such a way that we do not use any information which
is unavailable to us. The estimation of the auto-correlation function coefficients using
Yule_Walker estimation, on the other hand, assumes that s(n) = 0 for |»|>N, an assumption

that contradicts the principle of maximum entropy.

Burg suggested a method of estimating the AR parameters or equivalently the prediction
error filter coefficients that does not require prior estimates of the auto-correlation function.
The Burg method uses a recursion that is very similar to that developed for the Yule_walker
estimation. We obtain the desired recursion for the predictor coefficients in the Burg algo-

rithm as [1]

27

a, (k) =am_1(k)—am(m)-am_l(m—k) k=1,...m-1

where o (k) is the kth coefficients of the predictor of order m and «, (m) is equal to

N
-2 Y b, (m)-¥, ()
am(m) - Nn=m+1 (EQ 15)
S [+b5,_(n-D]

n=m+1

The recursion is initiated by

by(n) = b"(n) = S(n)

Therefore, the value for a, (1) equals

N
-2Y S(m)-S(n-1)
a, (1) = —2=2

Z [Sz(n) + 5 (n— 1)]

n=2

The update equations for the recursion are

b,(n) =b, _,(n)+a, (m) b, (n-1) (EQ 16)

b, (n) =b, (n-1) +a,(m)-b, _,(n) (EQ17)

The recursive formula for p,, is as follow

P, =P, (1-d(m)

where P_ is the average power of e () resulted from a filter of order m. For m = 0, P, is esti-

mated by

: 2
> Ism]
_n=1

Po= =g —

It follows from the equation for computing a, (m) that |a, (m)|<1 SO that o<p <P, _,. The

recursive procedure is summarised in the flow diagram Fig. 2.1. It is also possible by use of

28

Egs. (11), (12) and (13) to calculate all the quantities a, (m) and P, before evaluation of the

remaining filter coefficients.

2.5.2 Selection Of Model Order

One of the most important aspects of the use of the AR model is the selection of the order M
[9]. As a general rule, a model with a too low order gives a highly smoothed spectrum. On
the other hand, if M is too high, it may introduce spurious low-level peaks in the spectrum.
One indication of the performance of the AR model is the mean square value of the residual
error, which decreases as the order of the AR model is increased. The rate of the decrease can
be monitored in order to terminate the process when the rate of decrease becomes relatively

slow.

Various researchers have worked on this problem and many experimental results have
been achieved among which the papers by Gersch and Sharpe [1973], Ulrych and Bishop
[1975], Tong [1975, 19771, Jones [1976], Nuttal [1976], Berryman [1978], Kaveh and Bruz-

zone [1979] and Kashyap [1980] can be mentioned.

However, the two more known criteria for order selection have been proposed by Akaike
[1969, 1974]. The first one is called the final prediction error (FPE) criterion, and is selected

to minimize the performance index [2, 3]

N+M+1)

FPE(m) = Pm(N_M_l

where P, , the estimated variance of the linear prediction error, is monotonically decreasing,

while the term in the brackets is monotonically increasing. The second criterion, called

Akaike information criterion (AIC), is based on the minimization of the following

29

2m

AIC(m) = lonp, + N

The experimental results indicate that the model order selection criteria do not yield defini-
tive results. For example, Ulrych and Bishop [1975], Jones [1976], and Berryman [1978],
found that the FPE(m) criterion tends to underestimate the model order. Kashyap [1980]
showed that the AIC criterion is statistically inconsistent as N — . In general, experimental
results indicate that for small data lengths, the order of the AR model should be in the range
N/3 to N2 for good results. It is obvious that in the absence of any prior information about
the physical process based on which the data is resulted, one should try different model

orders and, ultimately, interpret the different results.

« Summary

In this chapter the necessary background for the statistical signal processing was presented.
In the subsequent sections, the theoretical development of the maximum entropy technique
and its application within the context of spectral analysis were discussed. Finally the result-
ant AR model for the signal under analysis, and the Burg method for the estimation of the fil-
ter parameters were introduced, which originated the recursive algorithm of the flow diagram
of Fig. 2.1. The VLSI implementation of the algorithm is presented in the next chapter along

with the basic feature of the chip developed for maximum entropy spectral estimation.

30

PO =YY sm/N

m=1
forn=1to N

b(n)=S(n)
b’(n)=S(n)

l‘ m=m-+1]

num = den = 0 T
for n=m+1 to N

num = num+b,__ (n) b, (n) 20 = alk)

den = den+ b’ (n) - b7 (n-1) for k=1tom
b, (n) =b, (n)—a, (m- b, (n-1)

b, (n) =b, (n-1)+a,(m) b, _,(n)

a(m)=-2.(num/den) forn=m+1toN
P = P 1 (m)) I
True
m=1 |
False

a(k) = a’ (k) —a(m) -a’(m-k)

for k=1 to m-1

:

order checking algorithm

False

Fig. 2.1: MESA. Algorithm

31

Chapter 3

ARCHITECTURAL MAPPING AND
ALGORITHM TRANSFORMATION

The single most significant development in digital system design in recent years has been the
advent of the microprocessor, a central processing unit integrated on a single chip of silicon.
The processing power and economics of the microprocessor have had a tremendous impact
on the way digital systems are designed and on their scope of application. Because of some
nonideal features of general purpose microprocessors, they can not be applied to DSP prob-
lems. Among their limitations, the relatively slow speed of numerical multiplications, and
limitations on data input and output can be mentioned. A DSP chip, on the other hand, does
many or most of the same things that a general-purpose microprocessor chip does. Specifi-
cally, for DSP work, the chip should be exceptionally good at the things that are necessary in

DSP networks, e.g., multiplications, summations, and data moves.

32

Digital signal processing is computationally intensive; it requires many multiplications
and additions. A range of approaches are commonly used to implement DSP algorithms.
They present various degrees of hardware-software optimization. The single-chip digital sig-
nal processor combines software flexibility with DSP hardware power. It removes the bottle-
neck constraint of conventional microprocessor architecture by high DSP throughput at

moderate cost.
3.1 DSP Chip Families

A number of methods are used in the design of the DSP processor systems [12]: Bit-Slice,

Word-Slice, and microprocessor-plus-memory systems.

Bit-Slice systems are comprised of small but fast subunits arranged in parallel to build the
required word-length. Bit-Slice offers flexibility and high performance, at the cost of high

count of components, large power consumption, and complexity of hardware development.

Word-Slice systems, on the other hand, have larger subunits than Bit-Slice ones, and are a
natural replacement for Bit-Slice, with comparable performance and far fewer components.
The deign of DSP microprocessors and microcomputers follows the Harvard architecture
[13] (a historical alternative to the Von Neumann architecture, also defined in the 1940’s)
with separate data and instruction buses, and that is basically the employed architecture in

the present study.

3.2 Basic Features Of The Chip

The processor is a single 16-bit chip, implemented with approximately 57000 transistors on

about 21.3 mm? area of chip which could be contained in a 30-pin dual-in-line package. The

possible pin layout of the processor is shown in Fig. 3.1. The employed technology in the

3

design of the processor is CMOS 1.2 micron, and its instruction set consists of 69 instruc-
tions. Its architecture allows two levels of pipelining, i.e., while an instruction is being exe-
cuted, the next instruction is being consequently fetched, decoded, and executed. Many
instructions can be executed in parallel, such as load with address generation, multiply with

add, and so on.

RESETH 1 _/f 30RVee Name Function . Type
ADG-ADO| Address/Data Bus |Bidirectional
AEND2 29NC D15-D7 DataBus |Bidirectional
L/C]3 28 B OVF READY | Job Concluded Output
SETrH 4 27 MS P1/0 Memory Page Input
o) 26 RIW UD Up/Down Count Input
P10 6 250 CLK SET Set Counter Input
READY7 24 EID15 L/C Load/Count Input
ADO 8 23 EID14 AEN Address Enable Input
ADIC9 12 HEID13 RESET SyS[elTl Reset Input
AD2d 10 21 BD12 R/W | Read/Write Control Input
AD3 11 20bDI11 MS Memory Enable Input
OVF Overflow Detector Output
AD4 12 19D10 CLK System Clock Input
AD5 13 18PD9 NC Not Connected | ...
AD6 14 17P2D8 Vee +5v Input
Vss 15 16 D7 Vs Ground Input

Figure 3.1--Processor pin configuration

The processor operates on a single 5v power supply connected at V¢c; power supply
ground is connected to V. Based on the results of simulation, the frequency of the internal

clock, which synchronizes the operation of the processor, can be up to 30 MHz. As it is
shown in Fig. 1, some of the terminals have multiple functions. For example in the pin layout

we see that the address lines A, through Ag and data lines Dy through Dg are time multi-

plexed. In fact these lines serve both as terminals through which the address register of the
internal memory (RAM) can be loaded and also as data lines. For this reason, these pins are

labelled ADg to ADg. Address information is provided on the address/data lines at the begin-

ning of each memory reference, and is latched and held during the remainder of the memory

34

reference to provide address bits Aq to Ag. A 7-bit register/counter latches the address infor-
mation from the address/data pins when clocked by the address register enable signal, AEN.
The address register can also work as counter, thus the user has the ability to point to any
location of the memory sequentially, by using the address register as a counter or randomly,
by loading the address register with the desired address.The remaining package pins provide

data, and control signals. They can be described as following (See also Fig. 1)

4. AEN - This signal enables the address register when it is logic 1, otherwise the address

register is disabled.

5. L/C - This is the load/count control of the address register. When L/C is a logic one, the

address register can be loaded by data on Dg-Dg. When L/C is a logic zero, the register

acts as a counter and the RAM can be addressed sequentially.

6. SET - A logic zero on this signal sets the address register to the binary value 1111111 pro-
vided that L/C is one. SET must be logic one, if the address register is to be loaded by a

specific data.

7. U/D - When the address register is in counting mode, a logic zero specifies up-counting

while a logic one specifies down-counting.

8. RESET - A logic one on this signal resets the program counter to zero, and this will cause
the command in location zero of the ROM to be read into the control unit, which is no
operation command (NOP). This command disables all the registers in the chip, thus the
processor is prevented to write on the data bus and the internal control lines of the RAM
and address register are tri-stated, i.e., the address register and the RAM are under the user
control. Note that the content of the program counter (PC) remains zero as long as the
RESET is logic one. When RESET is logic zero, the chip is in operating mode, the exter-

nal data bus pins D;5-Dy and ADg-ADj of the chip and external control lines of the RAM

35

and address register are tri-stated. Therefore the RAM and the address register are under

the processor control.

9. READY - when the processor is executing the HALT command, this signal is logic one
which shows that the processor is finished with the processing of the data and the results
are ready. At this time the address register is pointing to the location of the first predictor’s
coefficient which is always a one. The content of the program counter (PC) remains

unchanged until the processor will be reset.

10.0VF - A logic one on this signal shows that an overflow has occurred. It remains one until

the chip will be reset.

3.3 Memory Organization

The processor has 256 words (16-bit) of on chip data RAM and 512 words (9-bit) of ROM
for microprogram codes. Separate program and data buses enable the processor to perform
concurrent data read and write, and program fetches operations. With a clock signal of 20
MHz, the processor will have an ideal instruction cycle time of 50 ns, with most instructions
requiring only a single cycle. Thus, it is capable to execute up to 20 million instruction per
second. The data RAM can be addressed through eight address lines, seven of which are in
fact the outputs of the address register, and the MSB of the address is connected to pin pl/0
of the chip. This way, in fact the memory is divided into two pages, page zero and page one.
The user is only allowed to use memory locations one through 120 (DEC) of page zero to
store the original data set. The rest of the memory will be used by the C.P.U. during the
processing of the data.

The data RAM can be enabled for read or write operation by using the following control

signals

36

1. MS - Memory select, enables the RAM of the chip for active operation. When MS is logic
zero, the data outputs are tri-stated and the RAM is disabled. The data from the last read
operation are held in the output latches. When MS is a logic 1, the RAM is allowed to per-

form read and write operations.

2. R/W - The R/W signal specifies whether a read or write operation is to be performed. A
logic one on this signal specifies a write operation and places the output latches in a high
impedance state, while a logic zero specifies a read operation and enables the output
laiches. Note that read and write operations take place from and on the same data lines,

i.e., the RAM has a common data inputs and outputs.

3. P1/0 - A logic zero on this signal activates page zero of the RAM for write or read opera-

tion, while a logic one is equivalent to pointing to page one of the RAM.

3.4 Architecture And Operation of The Processor

A block diagram of the internal architecture of the processor is shown in Fig. 3.2. The proc-

essor contains registers with both general and dedicated purpose.

1. A 9-bit program counter (PC).

2. A 9-bit stack register (ST).

3. Eight 16-bit dedicated purpose registers: Z, W, X, Y, MU1, MU2, CO1, CO2.

4. A 63-bit register to store the final partial products in the pipelined Multiplier: MU3.
5. Two 7-bit address registers/counters: Al, A2.

6. A 16-bit temporary register: TEMP.

The 9-bit program counter fetches instructions from any one of 512 possible memory loca-

tions. When the Reset pin of the processor is made logic one, the program counter is reset to

37

r

S

¥

D

I
I
I
I
|
|
|
I
I
I

L

Bidirectiona

Booth Dcc?'
A

Booth Dec.
AN l

Yy v |

| . F/TY] [] Multiplier

M| -save-| T <=

-] Adder P- Ml
- |] U]l
2|l
I

| 512-Word

_____ ROM

Output .
MUI1 Register .
Buffers i 63-Bit Latch
= MU3
Instruction chlster
Address Reg.
oss ALUY
ROP{I Address Latch
Carry Save Adder * A
X-Register Control Unit
I PC.
Y-Register 32-Bit buffer | I’ I
Division Control Utit oL
I Ife
Temp Register: I U ?ﬁﬁ?ﬁg r&
32-Bit Adder R Control
Section
Address Reg.
Al
i
3 32-Bit Accumulator L
§ g é Data Bus
g 83 Control Lines
Memory Input Latch I | Memory Output Latch

256-Word Data Memory

RAM

Fig. 3.2- Processor Block Diagram

Output
Buffers

I‘r

38

zero; the control unit transfers the contents of the PC to the address latch, providing the
address of the first instruction to be executed. Thus, program execution in the processor
begins with the instruction in memory location zero, which is a no operation instruction and

disables all the registers in the processor unit.

The processor’s control unit controls and synchronizes all data transfers and transforma-
tions and is the key sequential subsystem in the processor [4, 35]. All the actions attributable
to the processor are actions implemented by the control unit. The basic operation of the proc-
essor is regulated by the control unit and consists of the sequential fetching and execution of
instructions. Each instruction execution cycle has two primary states: the fetch state and the
execute state. The fetch state transfers an instruction from the memory (ROM) into the con-
trol unit, and the execute state executes the instruction. Because of the pipelined nature of the
processor, it does not cycle between fetching and execution of instructions. Therefore, the
execution cycle of one instruction is in fact the fetching cycle of the next instruction. At the
falling edge of each clock cycle, a new instruction is fetched from the ROM and is processed
by the control unit. At the falling edge of the next clock cycle, the control unit updates the
contents of the control-unit-register (C.U.R), and fetches the next instruction from the ROM.
Therefore, while the control unit is processing a new instruction, the processing unit is exe-
cuting the previous instruction which can be a data transfer operation, arithmetic operation,

etc. As an example, the multiplication of two numbers is shown in Fig. 3.3.

Processor instructions are 1 or 2 bytes in length. The first byte always contains the opera-
tion code (OP code). During the instruction fetch, the first byte is transferred from the mem-
ory into the instruction register. The PC is automatically incremented so it contains the
address of the next instruction if the instruction contains only 1 byte, or the address of the

next byte of the present instruction if the instruction consists of 2 bytes. In the case of a mul-

39

tiple instruction, the timing and control section provides additional operation to read in the
additional byte. The timing and control section uses the instruction register output and exter-
nal control signals to generate the state signals. After all the bytes of an instruction have been

fetched, the instruction is executed.

chp T : _ : : : (maf ps) Sun Aug 21 2328
dala? ffc6 ﬂ[fia1 0001 . . I
P.C._Fleg-é Oel 092 0e3 Oed 0e5 0eb 0597 Oea Oeb
ﬂnslrucuﬂagé 01b oof nod 00f o1l 040 II Oea 004
clock
C.U.R_Reg 00191a2 067b022 0oiB023 06753023 WBOQS! 017e022 067e022§
A1_Reg| 93 94 14
Z_Regé it
W_Reg a647 90et !JéleS Basf 10be
Accu.é fitlaa7 ifft0e1 ﬂﬂ‘i)deS fffiB85f ffff10be
x_Reg 0001 0o 0004 0001
Y_Reg tf ffi fiffc 0014
MU1_Reg ffce fia1 0001
M2_Reg: 003a : ficé : ffat 0001
— T . : ; '. T :
1468000 1470000 1472500 1475000 177500 1480000 1462500 1484000

Fig. 3.3--Multiplication of ffc6(HEX) by ffal(HEX)

Timing description of the multiply operation depicted in Fig. 3:

1. At time 146900 ns, the first operand (ffc6) is moved to the register MU1.

2. At time 147100 ns, the second operand (ffal) is moved to the register MUL.

3. At time 147300 ns, Mul*Mu2 is moved to the MU3 and is added to the content of the accumulator,
which is ffff9deS(HEX).

4. At time 147700 ns, the final result is stored in the accumulator.

Note that the data in the accumulator is the complement of the actual result.

40

A subroutine call is mainly performed by using the stack register (ST). The 9-bit stack
register, ST, maintains a pointer to the location of the ROM to which the control of the pro-
gram has to return after the execution of the called subroutine is finished. In the current algo-

rithm, it is mainly used for the division subroutine.

The processor’s arithmetic unit performs arithmetic operations on data. Depend on which
operation is to be performed, the operands for these operations are stored in four registers
associated with the ALU: the 16-bit X register, the 16-bit Y register, the 16-bit MU1 register
and the 16-bit MU2 register. The register pair ZW is used as the accumulator and serves as
the destination register for all the arithmetic operations. The accumulator is loaded from the

outputs of the ALU and can transfer data to the internal bus.

Associated with the ALU are four flag registers, which indicate the condition associated
with the results of the arithmetic operations. The flags indicate zero, addition overflow, divi-

sion overflow, and whether the result is more than 16-bit in length.

The processor’s internal data bus is 16 bits wide and transfers data among various internal
registers, and the data memory (RAM) or to external devices through the multiplexed data
bus buffers. The bidirectional three-state data bus buffer isolates the processor internal data
bus from the external system data bus. In the output mode, the information on the internal
bus is transferred to the external bus through data bus output buffers. The output buffers are
floated during input operations. During the input mode, data from the external data bus is

transferred to the internal data bus.

The floor plan of the chip and the distribution of the active area within the chip are

depicted in Fig. 3.4 and Fig. 3.5 respectively.

41

o 1 G | -
W 1 1L Save | | [l =
L : ; | 512-Bit
28 | 11 2 1 ROM
_B ‘if! |
oL i
et |} [1
jil| J_ I = —
| - Bt I
T S LR RIG IS ate oy o UITW=54 () ' ._I'I'l;-. LR 1
3&95 B 63-Bit Latch = E
dbp) gl MU3 s
. : [GUAE Y]
-1 o
i A2 |a=s
| Register '
_6 . = 1
) o control_unit

AT ——

B SR S . R WEE
o -® o RN Sle e A ERS

s . 4 8 T yetilomityna W TN !
Lt L LS - L il % dak. -
E IR]
% -
L)
E . im
™
A .l

Reglster '. * 3%&%&% |a or

..

control_unit_0

oD

%I
i

SRR

JogZ ' Al

l%l

5.

AMC2X2_16X32 AMC2X2_16X32
AMC2X2_16X32_2 AMC2X2_16X32_3

2

N | N

Fig. 3.4-- Floor Plan of the processor

42

I3

s

e B
: 5 :
o "
v 5
X o
— k -
" "
. B ;
: 2
- p
DA
; TR
El i - 4
" E o
| . s
¥ v .'_r . = T I.- 0 ,:. [l _—
= Xn am X
LR ; 3 il 2
' e feans i g :
43 ‘*
o : G L AU D . 3
i e ha
e
LML
. ;
S
s }\.
e 3
'ﬁ
%

e Wi

R
A 8. ?
% ; > " :
¥ 3
5

e -

Figure 3.5-- Distribution of the active area within the chip.

3 L d
3 & ..i %
foot 2
1
o
0 o g
o
(=
)
3
& 3
L
-
5 iy o
e !: h :
: i]
" b 1]
3 Gl 3
T S
BRI
a

43

3.5 Instruction Set

The function of the processor is implemented by a sequence of data transfers between regis-
ters in the main memory and the processor. Each register which can be manipulated under
program control is addressable in some manner, allowing it to be designated for use in data

transfer or transformation.

The kinds of individual transfers and transformations which are possible are specified by
the processor’s instruction set. Each instruction in the set causes one or more data transfers
and/or transformations. The control section of the processor decodes the program instruc-
tions, and using the system clock, controls what register transfers or transformations take
place and when. The instruction set of the processor is grouped in order under four different

functional headings[29]

1. Data Transfer Group-- Moves data between registers or between memory locations and

registers.
2. Arithmetic Group-- Adds, subtracts, increments, or decrements data in registers.
3. Branch Group-- Initiates conditional or unconditional jumps, subroutine calls and returns.
4. Machine Control Group-- Includes instructions for setting and clearing flags, setting regis-

ters, shifting accumulator and Halt.

A summary of the processor instruction set is given in tables one to four. It shows the
machine code equivalents (Hex.) as well as assembly language mnemonics. A full descrip-

tion of the instruction set is given in appendix A.

44

TABLE 1. Instruction Set--Data Transfer Group

Machine
Code
(HEX) Mnemonic Function
12 MVY,Z) < (2) .
22 MV X, Z X) <- (Z)
0B MV CO1,Z | (COl) <- (Z)
33 MV CO2,Z (CO2) <- (2Z)
2B MV Al,Z (Al) <- (Z)
2A MV A2, Z (A2) <-(Z)
23 MVMUL Z | MUD<<(Z) & MU2)-MU1) & MU3)<-MUD*MU2) &
((Z)YW))<-0
OF MV1 MU, | MUD<«TEMP) & MU2)<-MU1) & MU3)<-MUD*MU2) &
TEMP Load ((Z)(W))
0D MV2 MUI, | MUD<~(TEMP) & (MU2)<-(MU1)
TEMP
15 MV X, W X) <- (W)
20 MVMUL W | MUD<-(W) & MU2)<-MUL) & MU)<-MUD*MU2) &
(Z)(W))<-0
25 MV Al, A2 (A1) <- (A2)
18 MV1IM,Z VA <-(Z) & (AD) <- (Al1)+1
19 MV2M, Z (1AD <- (2) & (Al)<- (AD)+1
1C MV1 M, | (0A1) <- (TEMP) & (Al) <- (A1)+1
TEMP
27 MV2 M, | (1A1) <- (TEMP) & (A1) <- (Al)+1
TEMP
2D MVIM, W (0A1) <- (W)
1D MV2M,W (1A1) <- (W)
07 MV TEMP, | (TEMP) <- ML) & (ML) <- (1A1)
ML
0A MV COl, | (CO1)<- (ML) & (ML) <- (0A1)
ML
32 MV CO2, | (CO2)<- (ML) & (ML) <- (0A1)
ML
24 MV A2, ML | (A2)<- (ML) & (ML) <- (1A1)
0C MVl MU, [ML)<-(0A1) & MUD<-(ML) & MU2)<-MUL) & MU3)<-
ML MUD*MU2) & (AD<-(AD+1 & ({(Z)(W))<-0
1F MV2 MUIL, [ML)<-(1A1) & MUD<-(ML) & MU2<-MU1) & MU3)<-
ML MUD*MU2) & (AD<-(A1+1 & ((Z)(W))<-0
08 MV3 MUI1, | ML)<-(1A1) & MUD<-ML) & MU2)-MUD) & MU3)<-
ML MUD*(MU2) & (Al)<-(Al)+1 & Load (Z)(W))
OE MV4 MUI1, | ML)<-(0A1) & MUD<-ML) & MU2)<-MUL) & MU3)<-
ML MUD*MU2) & (Al)<-(Al)+1 & Load ((Z)(W))
1B MV5 MU, | ML)<-(0A1) & MUD)<-ML) & MU2)<-MU1)

ML

45

TABLE 1. Instruction Set--Data Transfer Group

Machine
Code
(HEX) Mnemonic __Function L
1E MV6 MUL, | (ML)<-(1A1) & (MUD)<-(ML) & (MU2)<-MU1)
ML
2C MV7 MUI, | (ML)<-(0A]) & MU1)<-ML) & (MU2)<-(MU1) & (Al)<-(Al)+1
ML

10 MV X, ML (ML) <- (0A1) & (X) <- (ML)

16 MV Y, ML (ML) <- (0A1) & (X) <- (ML) & (Al)<- (Al)-1

09 MVIML,M | (ML) <- (0Al) & (Al) <- (A1) +1

1A MV2MLM | (ML) <- (0A1)

06 MV3IML,M | (ML) <- (1A1)

3E MVI Al | (Al) <- (byte2)
data

TABLE 2. Instruction Set--Arithmetic Group

Machine
Code

(HEX) Mnemonics Function -
26 ADD Z) <- (V)+(X) -
17 SUB (2)<-(Y)-(X)
13 DIV1 (Z)<-(V)x(X)
14 DIV2 (Z)<-(Y)x(X)
29 INR A2 (A2) <- (A2)+1
28 DCR A2 (A2) <- (A2)-1
05 INR Al (A1) <- (A1)+1
21 DCR Al (A1) <- (A])-1

TABLE 3. Instruction Set--Branch Group

Machine
Code
(HEX) Mnemonics Function

36 TMP addr (PC) <- (byte2)

01 BNCH addr | (PC) <- (byte2) & (ST) <- (PC)+2

03 RTN PO <- (S

02 JNE addr IF[(A1) # (COl40)] = (PC) <- byte2

2F JBG addr IF[(BG) =1] = (PC) <-byte2

34 JLE addr IF[(CO1) £ (C02)] = (PC) <- byte2

35 JLT addr IF[(C01) < (€02)] = (PC) <- byte2

46

TABLE 3. Instruction Set--Branch Group

Machine
Code
(HE)_()_ Mnemonics Function
37 | JEQaddr F[(con = (€02)] = (PC) <-byte2
40 JF1 addr IF[(F1) = 1] = (PC) <- byte2
41 JF2 addr IF[(F2) =11 = (PC)<-byte2
42 JF3 addr IF[(F3) =1] = (PC)<-byte2
43 JF4 addr IF[(F4) =1] = (PC) <-byle2

TABLE 4. Instruction Set--Machine Control Group

Machine
Code Mnemonics Function
04 SET Al (A1) <- (1111111)
00 NOP No Operation
3F HLT Halt
2E SET OVF Check Division Overflow
30 SET F1 F1) <- (1)
31 RSTF1 (F1) <- (0)
38 SETF2 (F2) <- (1)
39 RST F2 F2) <- (0)
3A SET IF3 (F3) <- (1)
3B RSTEF3 (F3) <- (0)
3C SET F4 F4) <- (1)
3D RST F4 (F4) <- (0)
11 SHL (Zp) <- (W15) ; Wo) <- (0)
44 SHD (Zg) <- W15 ; Wp) <-D.C.

3.5 The Stack And Subroutine Execution

One of the important techniques in software design for microprocessor systems is the use of
subroutines. It is in fact a task which is required to be carried out, at several points in a pro-
gram, and requires the execution of the same group of instructions. It is more cost effective in
terms of memory usage if the needed group of instructions appears only once but can be exe-

cuted from several points in a program. Central to this is a storage structure called stack,

47

which is a collection of registers organized in such a way that the last data written is the first
one available to be read. In other words, a stack is a last-in first-out memory, or LIFO mem-
ory. Depend on the level of subroutine calls, a stack located in a microprocessor is of fixed
depth, typically between four and 16 words. In case of this study, provision is made for only
one level of subroutine call, which was primarily needed for the execution of division sub-

routine.

3.6 Algorithm Transformation

The design of microprocessor system requires a knowledge of both hardware and soft-
ware. The mathematical background of the algorithm was developed in chapter two which
resulted in the flow diagram of Fig. 2.1. This flow diagram is the key solution to the question
of what are the basic requirements of the processor in order to achieve a reasonably good
performance together with the basic goal of logic design which is a system that functions as
required and is reliable, easy to maintain, and cost effective. A closer inspection of the pro-

posed algorithm reveals the following facts

e The algorithm is recursive, and because the final resul, i.e., the spectrum of the signal is
theoretically irrespective of the magnitude of the sampled signal, the initial scaling of the
data can result in better computational accuracy as well as avoiding under-flow and/or
over-flow without any penalties.

» Among the four basic required arithmetic operations (+, -, x, +), multiplication is the
most important one. That is primarily because it is encountered more frequently in the
proposed routine, and also because of the fact that some other calculations like the square
or mean value of the data can be carried out more efficiently, provided a high speed multi-

plier is available.

48

e In each recursion, one division is required that provides a result which is always less than
one. Thus, a serial non-restoring divider can meet the desired accuracy and speed specifi-
cations.

« The main block in all the arithmetic operations and also some address generations of the
memory is the 32-bit adder. A two-level, 32-bit, carry look ahead adder proved to meet the

speed demands of other blocks as well as providing an efficient area to speed ratio.

The main routine of the program can be partitioned into several smaller subroutines

1. Initialization-- To decrease the possibility of overflow, and also to speed the processing,
the processor calculates the mean value of data by successive multiply-accumulate opera-
tions. Each datum is multiplied by a one, which is already stored in TEMP register, and
the result will be added to the outcome of next multiply operation. Two copies of data are
then generated by subtracting the mean value from the original data set and will be stored
in page zero and page one of the data RAM respectively. They are shown as strings b (n)

and »’(n) in the flow diagram of Fig 2.1.

2. The Main Loop-- The two variables NomM and DEN are calculated as

DO 30 T=1 (N-M)
NOM = NOM +b(T) - b’ (T)
DEN = DEN +b(T) - b(T) +b'(T) - b’ (T)

30 CONTINUE

again through successive multiply-accumulate operations. Since for every T

(b(T) -b’ (1)) 20

then

49

b(T) - b(T) +b"(T) - b'(T) 22b(T) - b’ (T)

=>2T',b(7? ~b(T) + b’ (T) - b’ (T) >22T‘,b(T) - b*(T)

=DEN>2-NOM=A(M) <1

In order to calculate the value of A (M) accurately, the processor first calculates the value
of DEN. If DEN is more than 16-bit in length, then both DEN and NoM will be divided by
N, where N is the total number of sampled data. The result of any division operation must
not be more than 16-bit long, otherwise the OVF signal will be logic one, which shows the
sampled data are not properly scaled. The processor multiplies the value of NoM by 4000
(Hex.) and stores the result in the accumulator. Thus, the result of division of NoM by
DEN has its radix point after bit 14, i.e., it has 14 meaningful digits before radix point

which give the desired accuracy.

Multiplication of two numbers with different radix points can be simply carried out without
any pre-adjustment of radix points. However, for addition and subtraction, the operands have
to be adjusted in order to have their radix points at the same place. In updating the value of
the previously calculated filter coefficients, A(m), and the data in data RAM, using the value
of A(M), it is therefore important to consider the fact that A(M) has its radix point after bit
14. Each time, at the end of execution of the main loop, the processor adjusts the value of
A(M) so that it has only 9 digits before the radix point. It is therefore possible to assign a
broad range of values, both smaller and bigger than zero, to the filter coefficients A(m) when
the processor updates these quantities. The processor then provides two copies of filter coef-
ficients in pages zero and one of the RAM respectively. The update equation for the filter

coefficients can be written as

DO 40 T =1, (M-1)

50

A(T) = AA(T) -A(M) -AA(M-T) (EQ 18)

40 CONTINUE

To ease the addressing of the memory, the second copy of the filter coefficients in page one of
the memory is stored downward, compared to the first copy in page zero, i.e., the address of
the last filter coefficient has a value which is smaller than the address of the first one. There-
fore, in calculation of (EQ 18), the processor needs to address pages zero and one of the
memory just in one direction (Upward). Note that in each recursion one location of the mem-
ory will be released and therefore can be used to store the recently calculated filter coeffi-
cient. In most cases the addressing of the memory locations is done upward and sequentially
by using the address register Al as a counter. There are however occasions that it is neces-
sary to use counter A2 to keep track of memory locations in page one, e.g., for copying filter

coefficients in page one.

3. Division Subroutine-- The only subroutine which is used in the program is the division
subroutine. The machine codes of this routine are stored in locations 1F(Q (Hex.) to the end
of the ROM. The algorithm uses a non-restoring method and mainly consists of succes-

sive shift and add or subtract operations.

The complete program of the flow diagram of Fig. 2.1, written by using assembly language

mnemonics, is given in appendix B.

« Summary

In this chapter, the operation of the processor was described. First a general overview on the
processor was given and its pin configuration was discussed and the function of each termi-
nal was explained briefly. In subsequent paragraphs, the organization of the memory (RAM)
and the architecture of the processor were described in more details. The major parts of the

processor were listed and the function of each was clarified concisely. The floor plan of the

51

processor shows how these elements are distributed within the chip and the processor’s block
diagram depicts the interaction of these components. Particular attention was paid to the
operation of the control unit and its pipelined nature in synchronizing all the events within

the processor was explained by an example.

Finally the instruction set available in the processor was introduced. The instructions were
classified in four functional groups and presented in separate tables. Next chapter is devoted
to the design methodologies of major parts of the processor. Mathematical background
behind the operation of each block is discussed and its hardware design as well as the simula-

tion results are described in detail.

52

Chapter 4

PROCESSOR BUILDING BLOCKS

4.1 Multiplier

For a given resolution, speed is the dominant specification of a multiplier. Therefore DSP
multipliers are parallel “array” multipliers rather than the clocked “shift-and-add” of soft-
ware multiplication. The cost in chip area is reduced somewhat by employment of algorithms
(e.g. Booth’s algorithm) to eliminate redundant operations when a string of 1’s or 0’s is
encountered. The main benefit is single-cycle multiply speed to match other computational
clements and data transfers. An accumulator combined with a multiplier is desirable since it
facilitates carrying out terms like:
Zb(n)x(n~k)
which are frequently encountered in the operation of filters, Fourier analysis, and vector

operations. Intermediate pipelining registers enhance throughput because overhead on repct-

53

itive calculations is lessened. Internal feedback path can make possible, for example, single-
cycle computation of the common DSP operation MxD +B. Pipelining, on the other hand
increases the bandwidth of the system for a given latency by allowing simultaneous execu-
tion of several tasks at the cost of higher gate count due to additional latches. Fig. 1 is a con-
venient star representation of the concept of the multiplication of two 16-bit operands. The
scheme is based on simultaneous generation and reduction of partial products which takes

place in two independent steps.

sk sk o o ok sk ok sk sk ok sk sk sk skok sk

sk sk s s ok ok ok sk ke ok sk ok sk sk ok ok

Ageeeniiiniiiniiianen Qo sk sk ok sheok ok ok sksk ok sk sk ok ok
D Dot sk stk stk
Cgrenirnrnnies Cogsheskoskskokskokokoskskokok ok ok okok

1§ N Uittt sk sk koo

Cgeoeenns © gk s sksk ofe s sk sk ke sk skoke e sk ok
fs fs****************
S 8 okokokioskkokokkkokokok ok ok

Dottt sttt e

e sje s shesfe st she sk ofe ofe ol ofe ob ofe oo e ofe she e o oo o ok e ok s ok ok

FIGURE 4.1-- Star representation of multiplication of two 16-bit numbers.

4.1.1 Generation Of The Partial Products And Booth’s Algorithm

Partial products can be generated using AND gates and in this way an n-bit multiplier gener-
ates n partial products. However it is possible to reduce the number of partial products by
using encoding techniques. The modified Booth’s algorithm [7] is one of these techniques
which reduces the number of partial products by half. The original Booth’s algorithm sug-
gests to skip over any string of 1’s or 0’s. Skipping over a string of 0’s is straightforward, but
a string of 1’s is equal to a 1 followed by n 0’s less one. A more commonly used algorithm is

modified Booth which differs from original Booth in that it always generates n/2 independent

54

partial products whereas the former produces a varying number (at most n/2) of dependent

partial products.

The modified Booth’s algorithm generates 8 partial products for a 16 by 16-bit multiplier
by encoding 3-bit groups. Each multiplier is divided into groups of three bits and adjacent

groups share a common bit. In using the Booth’s algorithm for two’s complement numbers,

the most significant bit has a weight of (-2") and requires the multiplier to be padded by a 0 to
the right to form 8 complete 3-bit groups. Of course in two’s complement, the sign bit must
be extended to the full width of the final result, as shown by the repetitive terms in Fig. 4.1.

Fig. 4.2 depicts the encoding scheme of modified Booth’s algorithm [37].

Bit
21 [20 | 22 operation
Mjyy| My | Myq

0 0 0 add zero +0
0 0 1 add multiplicand +x
0 I 0 add multiplicand +x
0 1 1 add twice the multiplicand +2x
1 0 0 subtract twice the multiplicand | -2x
1 0 1 subtract multiplicand -X
1 | 0 subtract multiplicand -X
1 1 1 subtract zero -0

Figure 4.2--Encoding scheme of the modified Booth’s algorithm.

Based on this scheme, if the shared bit is 1 the subtraction indicated since we prepare for
a string of 1’s. For the lowest order action, only four actions are possible and derived from

bits m;m paddcd with a O to the right. In generating the next partial product, the participat-
ing bits are m3mym; The resulting partial product must be shifted by two with respect to the

previous one, and this is true for any partial product so generated.

55

4.1.2 Sign Bit Extension And Add_One Method

Since a modified Booth algorithm is adopted, eight 17 bits partial products are generated.
The sign bits of these partial products are located 2 bits apart from each other. Therefore, the
sign bit of partial product zero is to be extended to the sign bit position of partial product 7,
which is the most significant partial product. Obviously this operation needs a large number
of circuits. However using add_one method [40], the sign bit extension can be treated in a

simple way.
Based on this method instead of extending the sign bit (bit 17) of partial products, the fol-
lowing three steps can be adopted
4. Invert the sign bit (bit 17) of the partial products.
5. Set a “1” between the sign bit of partial product (i-1) and partial product (i).
6. Seta “1” in the partial product zero sign bit position.

It should be noted that the result of the multiplication of two 16-bit two’s complement num-

bers is always less than or equal to 31-bit long. The proof of this method is as following.

The result of the multiply operation can be found by adding the partial products as is given

by

2 4 6 8 10 12 14
PPy +PP-2 +ppy-2 4+ppy-2 +ppy-2 +pps-2 +ppg-2 +pp;-2 =

15 } \ 8 1S _
(asz2'+2ai-2'—as~21]+[bs22'+Zbi-2'—bs-22gj-22+

i=16 i=0 i=16 i=0

26 15 . ; 4 1S . D
[csz 2+ Zci'zl—%'2zj'24+ [dsz 2'+2di-2'—ds-22J-2 +
i=16 i=0

i=16 i=0

=]

(%}

g 22 15 0 15
(es 32+ Zel.-Ztnes-ZZS)-28+ [fs 2+ Zfi-Z'—fs-ZZI)-ZIO+
i i=0

i=16 i=0 i=16

56

18 15 15
i i 19 12 16 i 17 14
[gs22'+ Y g2 -g,2]Az + [hs-z + 3 b2 -h -2)2 (EQ19)

i=16 i=0 i=0

Coefficients ag to h are sign bits of partial products zero to seven. The sign extension term in

(EQ 19) can be separated and shown by a term referred to as S

30 28 26 24
S = (as v 2'—as-23l]+[bs 3 2'-bs-229J 2% [cs)y 2‘—cs~227)-24+(ds)y 2'—ds-225)-26+

i=16 i=16 i=16 i=16

22 20 18
(es Z 2:_es_223) ‘28+(fs22l_f:s' 52!)210_*(& z 2"&'219]‘212_‘_(}%_216 _hs_217).214
16

i=16 i=16

Defining new parameters

a,= (l-a) b = (1-b) ¢, = (1-¢) d, = (1-dy)
e, = (1-¢) f,=(-f) g =(-g) k= (1-h)

and considering

it is concluded that

0 0 0 0 "
S=[as22l—as-231]+(b322'—bs-231]+(cs22'-cx-231)+[ds22'-ds-2)+

i=16 i=18 i=20 i=22

30 30 30
[es Z 2‘_es.231)"’(fs 2 2'_fs.231]+ (gs 2 2'_gs.231)+(hs'230_hs'231)

i=24 i=26 i=28

=8 = (1-&9(2‘5—1)-2“’—(1—4)22+ (1-b,)(2”—1)-2“‘-(1—133 y -2

(1-¢,)Lz“—l)-220-(1—Es y -2+ (14,)(29—1)-222-(1-?1s y 20+

57

on the other hand and in spite of its difficult physical realization, is another option in reduc-
ing the propagation stages. Moreover, a 4-2 compressor unit is employed instead of conven-
tional full adders which are usually used in multiplier arrays. As is shown in the block

diagram of Fig. 4.4, the multiplier consists of three major blocks

1. Booth encoding block: generates 8 partial products according to the modified Booth’s
algorithm.

2. Compressor: reduces four lines of partial products to two. In this block the Wallace tree
structure has been applied to reduce the propagation delay.

3. 32 bits carry_look_ahead adder: Performs the final addition and generates the final result.

«— 16 Bits Data
[T6bitlatch | Y I
Booth encoding 3
Booth encoding % 3
Y g C
3 o B
—] Compressors 5 M 113 b
Booth encoding % II; > T > é
Booth encoding »]SE CLA G
N S n M
= Compressors T Y D L
" C S D A
y H E T
Booth encoding R Q
Booth encoding
— Compressors | 16
. i .‘_ 16 Bits Data
Booth encoding L]:tt:th
Booth encoding
| 16 bt latch

Figure 4.4--Block diagram of the 16 by 16 multiplier.

The circuit diagram for a 4-2 compressor [22] is shown in Fig. 4.5(a), and its equivalent
circuit is shown in Fig. 4.5(b). It has five inputs and three outputs and is capable of compress-

ing four partial products (x1, x2, x3, x4) into two new partial products (sum, co), simultane-

59

ously. Note that the generation of “Cout” is independent of the arrival of ‘cin’ therefore no
carry signal will propagate through the array. Only two stages of this compressor are needed

to sum up 8 partial products and three stages for multiply accumulator.

The Booth encoding block consists of two major parts [37]. The first part is the control
section which generates the control signals N, x1 and x2 by considering the logic levels of 3-
bit groups of the multiplier. These signals control the operation of all the other similar blocks

which act on the input multiplicand. The circuit diagram of the control section is shown in

1

VEM cell compressor:schematic

(2646, —395)

compressor: schematic

HiH2H3H4
s
o B
&Lm ‘ E:cout

!

o

V.
r fﬁf?fifiiiin
iy ' e
5= »
P/ cin
1

Figure 4.5(a)--Circuit diagram of a 4-2 compressor.

.‘.'_;-""/

60

NN
F.A.
YA ¥B ycin
EA.
co <1 foum

cin

cout —=g—

Figure 4.5(b)--Equivalent circuit of a 4-2 compressor.

Fig. 4.6(a). The second part is essentially a multiplexer which outputs one of the signals mul-
tiplicand(n), multiplicand(n-1), zero or their complements as proposed by the control signals

x1, x2 and N. The circuit diagram of the multiplexer block is depicted in Fig. 4.6(b).

J"@ - - “H

VEM cell Booth_encoder_1:schematic

Booth encoder 1:schematic (427, -219)

i \{'

C

Figure 4.6(a)--Control section of the Booth encoding block.

61

VEM cell Booth_encoder_2:schematic

Booth encoder 2:schematic (1621,

multiplicand(n) ™\
e/

Al

mutplicand(n=1)-F) | B/ H: PP(n)

e —e__/

N —

Figure 4.6(b)--The circuit diagram of the multiplexer used in Booth Encoding Block

A complementary pass transistor logic (CPL) is applied to the Booth encoding blocks [41]. It
consists of complementary inputs and outputs, NMOS pass transistor logic network and
CMOS output inverters. It is necessary to use output inverters to amplify the output of the
pass transistors which their high level is less than supply voltage by threshold voltage of the
pass transistors. To acquire better noise margin, the threshold voltage of the output inverters
has to be less than Vce/2. The basic circuit modules, shown in Fig. 4.7, are used to construct

the Booth encoding blocks shown in Fig. 5.

VEN eall CPL_GATESShumetic]

WENS
i N

AND/NAND EXOR/EXNOR OR/NOR

Figure 4.7-- CPL Circuit modules

62

4.1.4 Multiplier Simulation Result And Performance Estimation

If a system performs only one task at a time the bandwidth is defined as the inverse of the
latency. In general, bandwidth is the number of tasks that can be performed in each specific
time interval. Pipelining technique, in addition to the parallelism, can result in increasing the
bandwidth of the system while keeping the latency constant. The increased bandwidth is
achieved by dividing the combinational logic into several stages separated by latches. There-
fore increasing the bandwidth by pipelining results in higher gate count due to additional
latches.

Referring to Fig. 4.4 it can be inferred that both multiplicand and multiplier can be loaded
in two clock cycles. At clock cycle three the result is ready at the output of the 63-bit latch to
be added to the current data in the accumulator and also the second multiplicand can be
loaded into the 16-bit input latch. At clock cycle four the second multiplier can be loaded and
the final result of the first multiply accumulate operation is ready at the input of the 32-bit
accumulator. Fig. 4.8 depicts a typical simulation sequence of the multiplier circuitry. In this
simulation the multiplier is tested against the most common operation in DSP programs, as

well as the algorithm of Fig. 2.1, which is the calculation of terms like
(Al) ! (Bl) + (Az) : (Bz)
Timing description of the simulation is as follows

1. At time 8300 ns, the first number (1C) is moved to register MU1 and accumulator is reset

to zero.
2. At time 8500 ns, the second number (11) is moved to register MUL.

3. At time 8700 ns, the third number (-1C -> two’s complement -> FFE4) is moved to regis-

ter MU1 and the contents of registers MU3 and accumulator are updated.

63

9

chip : (thesis_mul.ps) Sun Oct 23 1
data - 001c 0011 flea 0011 : © 0001
P.C._Reg: 008 J 009 l 00a ' 00b © 00c ood O0e I oof 1 o0
i ¥ o : — s :
Instruc_Reg - 00c - 02c 00e 02c oof ood . oof elole}
clock
C.U.R_Reg" 067522 ' 0079122 067b122 00f9122 067b122 00f8023 ' 0672023 0018023
A1_Reg’ 7t : 00 [o1 . o2 : 03
Z Reg: XXXX : 0000 f : i
W_Reg: XXXX : 1 0600 : it 5 [fe23 I
Accu. ! XXXXXXXX 00000000 : HEFREE : | fffife23 I
x_Reg: XXXX]] aaad , 0004 \ . 0000 .| ooo04
Y_Reg: XXXX : 5557 : ffic : i H
MU1_Reg; 0001 ¢ 001c 0011 C o ffea 0011 : 0001
MU2_Reg " 0001 001c I © 0011 o4 0011 0001
reset .
time (ns) e P —— T —— b rmmr et AR A S AT A Neessesasenenrraraiiaiiiia R e i e el e el e REEREE s e SRR RN R
8009.3 8250.0 B500.0 8750.0 9000.0 9250.0 9500.0

Figure 4.8-- Simulation result of the calculation of (1C) - (11) + (-1C) - (11) , all the numbers are in Hexadecimal base.

4. At time 8900 ns, the fourth number (11) is moved to register MU1.

So far all the four numbers have been moved to the multiplier. In order to get the final result,
which is obviously zero, it is always necessary to terminate the sequence of data transfers to
register MU1 by three extra data move operations. These additional operations put the final
result in the accumulator, and prepare the multiplier for the next sequence of multiply-accu-
mulate operations by loading registers MU1 and MU2 with a 1. In this simulation the final
result is moved to the accumulator at time 9500 ns. Note that the content of the accumulator
is in fact the complement of the actual result. The sequence of instructions required for this

simulation is as following

MV1MUI, ML (Instruction Register: 0C)
MV7 MUI1, ML (Instruction Register: 2C)
MV4 MU1, ML (Instruction Register: OE)
MV7 MUI, ML (Instruction Register: 2C)

MV1 MUI1, TEMP
MV2 MU1, TEMP

MV1 MU1, TEMP

(Instruction Register:
(Instruction Register:

(Instruction Register:

OF)
0D)

OF)

NOP (Instruction Register: 00)

Note that due to the pipelined nature of the processor, the instruction register always shows

the machine code of the next instruction to be executed.

The maximum rate at which this pipeline can operate depends on the maximum and mini-
mum propagation delay of the combinational logic. The minimum clock period At required

for each stage is equal to:

At>t —t .+t
m g

ax men

65

where

tax = maximum propagation delay of the stage
tmip = Minimum propagation delay of the stage
ty = gate width or set up time required for the data to be valid at the input of the latches in

order to be stored properly.

The maximum rate is determined by the slowest block and is equal to: 174z, .

The result of the simulation shows that the minimum clock period required is about 15 ns.

4.2 32-Bit Carry_Look_Ahead Adder

4.2.1 Algorithm And Hardware Implementation

Due to the simplicity and modularity that make it particularly acceptable to integrated circuit
implementation, carry_look_ahead is one of the most popular methods of addition. To show
the hardware implementation of the algorithm the equations for a 4-bit slice can be written as

follow [25, 26]

Sum equations S, =A,®B,®C,
S, =A,®B ®C
52 =4,8B,®C,
53 = A,®B,®C,

Or in general S;=A,®B,®C,

Carry equations Cl = AyBy+ Cy(A,+B,)

C, = A,B, +C, (Al +B1)

66

Cy = A,B,+C,(A2+B2)

C, = A3B;+C45 (A, +Bj)
Or in general C,,, =AB;+C;(A;+B)

If we define the Generate term G; as G; = A; B; and propagate term P; as P; =A; @ B; then

G, +PyC,

G,+P.C,
Substitute C; into the ¢, equation we have
C, = G, +P,Gy+ P P,C,
and in the same way C3 and C4 can be expressed as follows
C, = Gy +P,C, = G,+P,G, + P,P G + PP P\C,
C, = G4+ P3G, +P,P,G, +P,P,P Gy +P,P,P P C,
Generalizing the above procedure, the carry look ahead equation can be derived as

C,,, =G+PG, +PP,_ |G, ,+...+PP, ,..P,C,

Based on this equation a carry to any bit position can be computed in two gate delays, how-
ever because of the fan in limitation it can’t be realized in practice. The solution to this prob-

lem is to have several levels of carry_look_ahead. To illustrate this concept the equation for

C4 can be rewritten as follow

e

C, = Gy+PyC,

67

where
G, =Group generate=G, + P,G, + P,P,G, + P,P,P|G,
and
P, =Group propagate=P,P,P P,C,

With a fan in of 4, one level of carry_look_ahead is enough for 16 bits. Therefore two levels

of carry_look_ahead are employed for 32-bit addition. The hardware implementation of the

adder is shown in Fig. 4.9 for a 4-bit slice [39].

"= VEM cell 4-Bit-Slice—CLA:schematic
4-Bit-S1ice-CLA: schematic

e

—2353)

(-3027.

L I
Figure 4.9--Circuit diagram of 4-bit adder slice

68

The logic equations of this circuit have been optimised by using a logic optimser software in
order to reduce the number of gates, and as a result, increasing the speed as well as reducing

the layout area of the block.

The first level of carries are generated using the following equations

G+ PG,

=G, +P G +P PC,

o
!

Cp, = Gy +P,G + PP G+ PP PC,

The second level generate and propagate terms are

G" = G4+ P3G, + PP LG + Py P,P G

Pn = Pv3P|2P|1P|O

The only second level carry in case of 32-bit adder is

Ci = G"+P'C

Figure 4.10 shows the gate implementation of the 4 group carry generator. It should be
mentioned that in the actual design of this block, the carry generator of each slice is included
in the previous slice. Although this scheme results in four different modules and reduces the
modularity of the design, but it increases the speed of the adder. This in turn affects the speed
of the whole system due to the importance of the adder in many operations of the processor.
The increase in speed is primarily because of the resultant simplicity of the placement and
routing of the four sub-modules so generated. The input carry signal of each slice is readily
available as the output carry of the previous slice. Therefore there is no demand for long

metal lines to distribute the carry signals between different blocks which can result in addi-

69

tional delay due to increasing wiring capacitance. The scheme also reduces the required area

for 32-bit adder and provides a rectangular shape block which is consistent with the rest of

the system.

G3

J_' VEM cell 4-Group—-CLA-Generator:schematic
4-Group-CLA-Generator: schematic (=3001, -509)

1

C4

Figure 4.10--Four group Carry_Look_Ahead generator

Wk

Bit 4-Bit
L_Al |C_L_A

4-Bit

CLA

4-Bit
C_ LA

4-Bit

C_LA||CLA|l|[CLA||CLA

4-Bit | | 4Bit | | 4-Bit | o

L L b i

First Level Carry Generator

First Level Carry Generator <t

IR
l

|

Second Level Carry Generator

Figure 4.11--Block diagram of 32-bit Carry_Look_Ahead adder

70

The block diagram of the final adder is depicted in Fig. 4.11. An array of 32 Exclusive-OR
gates is placed at one of the inputs of the adder which can be used to generate the two’s com-
plement of the input data. This gives the possibility to use this block as a 32-bit adder/sub-
tracter simply by using the other input of the Ex-Or gates as the control line. Fig. 4.12 shows

the floor plan of the 32-bit adder, and its layout is depicted in Fig. 4.13.

==

Clad_4

Clad_4_1

Clad_3

Clad_3_1

Clad_2

Clad_2 1

Clad_1

Clad_1_1

Clad_4

Clad_4.0

Clad_3

Clad_3_0

Clad_2

Clad 2 0

Clad_1

Clad_1_0

Figure 4.12--Floor plan of the 32-bit Carry_Look_Ahead adder.

71

LCTITT

mllaﬂbﬂ almvﬂnh

Figure 4.13--Layout design of the 32-bit Carry_Look_Ahead adder.

72

4.2.2 Carry_Look_Ahead Adder Simulation Result

The result of simulation shows that the maximum delay between inputs and outputs of the
adder is about 11 ns. From the analysis of the circuit of Fig. 4.9, it is obvious that the propa-

gate terms P, are readily available just in one gate delay. This is the arrival of the carry ¢;
that determines the final status of the sum s,. If the carry is zero, then the value of the sum

remains unchanged, however if the carry is a logic one then it inverts the value of the sum.

Among the carry signals ¢,, maximum propagation delay belongs to C; . Therefore the
worst situation occurs when this carry signal attempts to change the sum s, , i.e., when Cy
changes to one as a result of propagation of the carry signal c,. A typical situation in which
this condition occurs is the addition of 80000000 (Hex.) with 7FFFFFFF (Hex.), when the
carry C, is one. The picture of Fig. 4.14 shows the simulation result for the worst case analy-
sis of the 32-bit adder. As it was predicted, the longest delay is associated with s, which set-

tles to logic one at time 18.5 ns. The fastest output however is always s, .

4,3 Divider

Based on their iterative operator, division algorithms can be grouped into two classes. In the
first class, subtraction is the basic iterative operation and their execution time is generally
proportional to the operand (divisor) length. This group can be further partitioned into many
algorithms such as non-restoring division, which is comparatively slow but fast enough to be
a suitable candidate for this study. The second class however is the one where multiplication
is the iterative operator. This group of algorithms are faster and converge quadratically, ie.,

their execution time are proportional to log, of the divisor length.

There are usually two numbers in fixed point division, a divisor v and a dividend D. The

73

pL

N
0 L
LI
T N
h
1 L
1 I
T N
4
i L
. I
T N
% =
D 0z
T N -0 = AN

_u P‘_m

- E.ON

5_.0B25N
Y
) L
. I
T N
Y2 i ¥ G L A e S ® CcLADDER2.TRY
1 L = 273
T saics B s e s £ N S = A
TN : . . = 182

F..._-a-—..._...r-._..._..-—..-._..-_..n._..._..-h--._..m m||||||
14 . 0N 16 .0N 18 _ON 297
TIME €1 IND I .

Figure 4.14--Logic levels of signal S3; to Sj are shown from top to bottom respectively.

third number @, called the quotient, is to be calculated in such a way that
D =Q0xV+R

In the above equation, R is the remainder and required to be of smaller magnitude of v, i.e.,
0<|R| < v. Division circuits are usually designed to compute the quotient ¢ of some specific
length. In case of this study, only the quotient @ is required and the remainder R is discarded.
In division algorithms, usually dividend D is considered to be the first partial remainder and
in our case it is always smaller than the divisor v. To get the required accuracy, it is therefore
necessary to pad the dividend by a number of zeros to the right. Generally speaking, the final
remainder R may be used to generate additional quotient digits by second division operation
of R by v. In this way successive division instructions can be used to generate a more accu-

rate result.
4.3.1. Restoring Binary Division [30]

One of the simplest methods for division is the sequential shift and subtract method which is
similar to the conventional pencil-and-paper technique. To explain this approach, and for
simplicity, let’s suppose that the dividend p and the divisor v are positive integer binary
numbers. The quotient bits g, _,, ..., ¢;, ¢, are computed one bit at a time. At each step, the
divisor v is shifted one bit to the right and is compared with the dividend D or the current
partial remainder R,. If the shifted divisor is less than or equal to the partial remainder, then
the new quotient bit is set to 1; otherwise the new quotient bit will be zero. The following

partial remainder can be calculated using the relation

-
Ry < Ri—q2V

where i is the iteration number. In hardware implementation it is usually more convenient to

75

shift the partial remainder to the left rather than shifting the divisor to the right. Furthermore,

the new quotient bit ¢, is determined by subtracting v from 2r,. If the result is negative then
g, = 0; otherwise g; = 1. It should be noted that whenever g; = 0, then the result of the sub-
traction is 2®,- v, however the new partial remainder R;,, must be equal to 2r;. It is there-

fore necessary to add the divisor v to the result of subtraction in order to restore the result

back to its original value 2r,.

4.3.2 Non-restoring Binary Division [30]

In restoring algorithm, the machine may need up to 2n-1 cycle to compute all the quotient
bits, i.e., there are » cycles for the trial subtractions, and there may be additional »-1 cycle
for the restoration. Non-restoring division is a faster algorithm which effectively eliminates
the restoring phase. To explain this method, consider that in restoring method in every step

the operation
R, < 2R,V

is performed. When the result of this subtraction is negative, a restoring addition is per-

formed as follows

R,,, <R, ,+V therefore =R, = 2R,

14

To calculate the partial remainder &, ,, again we have

Ry« (2R, -V) = (4R;-V)

However the non-restoring algorithm suggests that before the restoring addition is performed

the resultant partial remainder be shifted and then the restoring addition takes place, that is

76

R;,, = 2R~V
and
R, ,«< [2(2R,~V) +V] = 4R,-V

Apparently the result of non-restoring method is exactly the same as restoring algorithm with

the difference that one subtraction operation is saved, and hence results in a faster algorithm.

Similar to restoring method, in non-restoring algorithm the quotient bit ¢; at each step

determines the next operation to be performed. However, unlike restoring method, in non-

restoring algorithm the quotient digits are selected from the set {-1,1} [39]. If ¢, = 1 then the

next operation will be subtraction; otherwise the next operation is addition. Once the quotient

bits ¢, i=1,..,n-1 are computed, the result of the division operation can be represented in

signed digit format as following
n—1 .
0=Ygq 2 g; = {1,-1} (EQ20)
i=0

Based on the fact that -1 can not be represented in the binary system used by processors, the

following scheme is adopted
(g;=-1)=0
(q,' =1 =1

However this arises another problem since the result will be interpreted as a different number
by a standard binary machine. Fortunately, the signed digit numbers generated by non-restor-
ing algorithm can be converted to standard binary format by using a very simple algorithm

and considering that

77

1 1

1-2"-1.2"" " =0.2"+1-2""

Based on this algorithm the next three steps should be followed
1. Shift the result left one bit position.
2. Complement the most significant bit (MSB) of the result.

3. Set a 1 into the least significant bit (LSB) of the result.

If the ith bit of the extracted number k is represented as X, , then there is a basic relationship

between X, and ¢, as

K, =1 K, = {01}
q,=2K, ,-1 if i=0..,n-2 EQ21)
g;=1-2K,,, if i=n-1

It is important to note that in practice the bit length of ¥ and ¢ must be the same. This
implies that the shift operation of step one will cause the MSB of the result to be lost, there-

fore step two is redundant. It still gives the correct result if

otherwise an overflow signal detects the case. In order to prove that the algorithm is valid for
two’s complement numbers, we have to show that kx is in fact the two’s complement repre-

sentation of the quotient @. If we replace ¢, in (EQ 20) by its equivalent value in (EQ 21) we

get

n-1 n-2
. . .
0=Ygq-2'= (1-2K)) -2" +2(2K,.+1—1)-2’
i=0 i=0

78

Since

then

or

The last equation shows that the binary two’s complement number X is equal to the quotient

@ . The basic rule in calculation of quotient bits ¢, is to bring the partial remainder as close to

zero as possible. If the dividend is considered to be the first partial remainder, then ¢; can be

n-2
n i+1
Q=—2~Kn+EK,.+1-2 +1
i=0

n—-1
n i
0=-2""K,+Y K;-2+K,

i=1

determined by using table five.

TABLE 5. Quotient bits determination

Sign of

Partial Sign of Next
Remainder | Divisor Operation 9;

F —
+ + Subtraction 1
+ - Addition 0
- + Addition 0
- - Subtraction 1

Table five [39] implies that the next quotient bit can be generated by following relation

4., = (SIGN OF DIVISOR) o (SIGN OF R;)

where R; is the current partial remainder.

4.3.3 Hardware Implementation

79

The block diagram of the 32 by 16-bit divider is shown in Fig. 4.15. The 32-bit carry look
ahead adder/subtracter designed for the multiplier is modified so that this block can be shared
between multiplier and divider. The employed multiplexer enables the system to use the
adder as a 32-bit or 16-bit adder/subtracter, or as part of the divider in which case the 16-bit
adder is governed by the control circuitry of the divider that determines whether an addition

or a subtraction is to be performed.

tliv.lirsl] div.next

* * 16-bit add/sub

1 X-Reg Y-Reg

B T

16-Bit Adder = —|

6
< — 16-Bit Adder

u

Mux
= Over ! + +
DW_“‘OVI Flow ' Control l
Detect
Unit Z-Reg e W-Reg g
Q Tri-State Tri-State
DSR Inverter-Buffer Inverter-Buffer

16-bit data

Figure 4.15--Block diagram of 32 by 16-bit non-restoring divider

At the beginning of the division operation the 32-bit dividend is stored in accumulator
which is composed of registers Z and W. The most significant portion of the dividend is in
the Z register, and the least significant portion is in the W register. Register X is loaded with

16-bit divisor and the quotient bits ¢, are generated one at a time and are left shifted into reg-

ister W. It should be noted that the output carry of add/subtract unit is used to generate the

80

next quotient bit. It is legitimate because in two’s complement addition/subtraction the carry
out is always of opposite sign to the sign bit of the result, provided that no overflow has
occurred. Therefore it is possible to merge the left shift operation of the dividend and the left
shift operation of the new quotient bit into one shift operation. The result of division is
always of 16-bit length and will be stored in W register. The flow diagram of the algorithm is
shown in Fig. 4.16 [14]. The microprogram of the non-restoring division is given in Appen-

dix B.

4.3.4 Overflow Detection [39]

For our 16-bit processor, the dividend is 32 bits, and the divisor is 16 bits. The quotient ¢
must be at most of 16 bits length [19], otherwise an overflow flag will be set which shows a
division overflow has occurred. Using two’s complement representation for the quotient @,

the below restrictions should be imposed in order to avoid overflow.
lol<2"” for positive quotients,

loi<2” for negative quotients,

replacing ¢ by its equivalent value
lo| = ‘“ifl‘” <2'
X

=>|Z-216+W|<215~|X|=>‘Z-2+% <X
2

where w is the least significant portion of the dividend and is always positive. Considering

that in fixed point division the remainder R must satisfy the following relation

0 <|R| <divisor

81

Start

Accu. « Dividend
X-Reg. « Divisor
Counter « 0

v

Left-shift Accu.
g6 = DSR ® X (msb)

Y

Y-Reg « Z-Reg

Y

Check overflow

Y

q;5 = Cout ® X(msb)

Left-shift Accu.
W-Reg(0) « ¢,

Y

Y-Reg « Z-Reg =

v

q; = Cout ® X (msbh)
Left-shift Accu.
W-Reg(0) « g, No

Y

Counter «- Counter+1 | g

Counter

15

Figure 4.16--Non-restoring division algorithm for two’s complement numbers.

the following two conditions can be discerned

!
—

if W(msb)

Il
—

]
<

v 0 if W(mnsh)

82

L/

or in general = = W(msb)
2
therefore ‘2~Z+% = [2-Z+ W (msh)|
2

The right hand side of the above equation represents the content of the Z register when left
shifted with the most significant bit of the W register. The above analysis implies that the

conditions to avoid overflow can be expressed as

[X|>]2-Z+W(msb)| for positive quotients,

IX|2|2-Z+W(msb)| for negative quotients,

It is therefore possible to detect the division overflow right after the first cycle of shift and

add/subtract operations.

The sign of the quotient is depicted in table 6 as a function of the dividend and the divisor
signs and the relative magnitude of Z and X. The overflow conditions are identified by num-
bers in square brackets. The zero flag of the processor is used to detect the condition where
Ix| = |zI. The zero flag is logic one whenever the result of any 16-bit add/subtract operation is
zero. The division overflow signal (DIV_OVF) is therefore a function of signals DSR,
X(msb), Q(msb), and ZF (Zero Flag). The truth table for DIV_OVF signal is based on table 6

and is depicted in table 7.

TABLE 6. Division overflow detection.

Q(msb)
Case DSR X(msb) [Operation | [x]>|Z |X <17 Xl = |7
1 0 0 Z-X 0 1] (1]
2 1 0 Z+X 1 (0] 1
3 0 1 Z+X 1 [0] (0]
4 1 1 Z-X 0 [1] (0]

83

TABLE 7. Truth table for division overflow signal DIV_OVF.

ZF DSR X(msb) Q(msb) DIV_OVF

0 0 0 0 0 A four variable Karnaugh
g g (1) (1) i map of table 7 gives the fol-
g 0 L . v lowing simplified expression
0 1 0 0 1

0 1 0 1 0 for the DIV_OVF signal.

0 1 1 0 0

0 1 1 ! . DIV _OVF = Z-DSR +Z- X (msb)
z g 0 Y oniicns + DSR - X (msb) - Q (msb)

1 0 0 1 1 + DSR. XGmsb) - 0 (msb)

: 0 L J L +DSR- X (msb) - Z(msb)

1 0 1 1 don’t care +DSR . X0msh) - O (msb)

1 1 0 0 don’t care

1 1 0 1 0

1 1 1 0 1

1 1 1 1 don’t care

The circuit diagram of division overflow detector is displayed in Fig. 4.17. The logic of this

circuit is further simplified by using a logic optimiser software.

1= VEM cell DIV_OVF_DETECT:schematic "l
[EERITY] DI VE DETRCT 2 etivat i iy ==}

DSR >
>

e
o -y
= ——————

aml [SUEEE e

ZF }
. L Foivove
Xl e — 1 . y |
—p G = \uo-——l>o—

Ly ol
Figure 4.17--Circuit diagram of division overflow detector.

84

4.3.5 Divider Simulation Result

Fig. 4.18 shows the actual simulation of the processor during the analysis of a sampled data.
In this picture only part of the simulation is depicted in which a division operation is
involved. The processor is computing one of the predictor filter coefficients by dividing the
variable “num” by the variable “den” (see Fig. 2.1). As usual the variable “num” is of smaller
magnitude than the variable “den”, therefore its value is multiplied by 4000 (Hex.) and the
result is placed in the accumulator. This way the dividend is padded by 14 zeros to the right,

and therefore the resultant quotient in register W has its radix point after digit 14.

The variable “num” is originally equal to BF6 (Hex.), and when padded with additional
zeros to the right it forms the actual dividend of this division operation, which is equal to
2FD8000 (Hex.). The most significant portion of the dividend in the Z register is FD02
(Hex.), and the least significant portion in the W register is 7FFF (Hex.). Note that the proc-
essor stores the complement of the dividend into the accumulator which in this case is equal
to FDO27FFF (Hex.). The variable “den” is the divisor of this simulation. It resides in the X
register and its value is equal to 24F3 (Hex.), which as depicted in Fig. 4.18 remains
unchanged during the execution of the division routine. The result of this simulation shows
that each division routine demands 100 clock cycle to generate the final result and return it to

the main routine. The quotient Q is stored in register W, which in this case is equal to

Q=0.01010010110111 (Bin.) =0.323669433

The accuracy of this division operation is equal to :t% = +0-00006 which is reasonably
2

enough for the application of this study. Note that the division overflow signal is checked by

the control unit only after the first shift and add/subtract operation.

85

‘uoje1ddo UOISIAIP J0] J[NSal Uonje[nuUIS--] H 3In31

Qo0si8}) ooooset o'coseel 0°000081 0005241 0'000S L} 0'00s2L L
desnsnnnnmensssnsns L assssmmessacncsssssess e s s ms s smmassnnssssasdassmannssanssnmsnnes Lesssomss anonmssnnssa R R R I P R Leccssscsnnssssscnsnnss Tassnss nramnnasansssedens AvaWCL_u
L __ __
: ‘Josal
, 1000 ‘Bor 2NN

‘1000 ‘Bad ™ LN
oElE g6vvy || 9SP) 26E2 zo9e 299} |. ®BC2OZ zeqe - 1 960P ZvPo | @ele — BoG1 AL 9080 oleo ,— Qso | 6000 -BegA
_mm:& 1Bay™x
BreeBeny | IveSHo0 1Peqqy |lespise2O | [PGelLeop ”T%.mmo Tfmmo SPHSPIP| | [aelippyL mEE_N(_‘TE“u@ IITAR=CTE e WZ20P) ('NooY
‘8¥ae| ves) ‘zPe} 69P} ¥aey esy pey opry qay S By} Pl ay - WL BeHTM
- 6990 1202 pP9qq 6eco | ||: L9op PE62 Le60 SPIp PPY L Leje pgzy IseL sees poelL 6ILE | ||guaii el 2opy BedZ
: : : ! : : | B _
T TN Ko Telele [Xe]8 .Soioor EoiF Lo Eoco_oropcooo Fooaacoooorcnco_r b EO@Q+F 100000{10L000000 L0000 - LODOOGO(0 LOCCO00 woooooom_ 00000000 Bay LY
: : m m m | ipeuwrno
; ifl H l—‘ ITH_V m_ﬂ_ : Tﬁ m__,_ , T* wmmmlo:.:mc_

i

—F—

i

W p i PIPIL

|

BayTO'd

©OXXIX XXXX XXX

,— XXX :XXXX

=

suslalalealdl

XIXX i 1600 ErEp

5:G0 ¥ AON W4 (siseyizoid)

diys

86

[t

4.4 Control Unit

The circuit design of a processor can be divided into two separate parts. The first part is the
design of the digital circuits that perform the data processing operations. The data processing
unit is a network of functional units capable of performing certain operations on data. The
second part is pertained to the design of the control circuits. The function of the control sec-
tion is to regulate the operation of the processor. It decodes the instructions and causes the
proper events to occur in the correct order. The control section of a processor consists of a

group of registers and Flip Flops and the timing circuitry necessary to make them operate

properly.

There are two kinds of informations stored in the processor; data and control information.
Control information supplies command signals that administer the operations in the data
processing section to execute the required task. The main clock signal is applied to all regis-
ters and Flip Flops in the processor, but their status remain unchanged unless they are ena-
bled by a control signal. The signals that control the load input of the registers or enable them
to write on the data bus and also the select input of the multiplexers are generated in the con-
trol subsystem. The interaction between the control unit and the data processing section is

shown in Fig. 4.19 [18].

Commands
Data Processing . | Instructions
Unit Status Signals Control Unit
— =

Figure 4.19--Relationship between control unit and data processor

The control logic is primarily a sequential circuit with both internal and external status sig-

nals. It uses the informations which it receives from the data processor to determine the flow

87

of the controlled operations. At any given time, the state of the sequential circuit determines
a set of commands to be executed. Depending on the status signals, the sequential control

goes to the next state to complete the current instruction or initiates the next operation.

4.4.1 Design Methodologies

Historically, two general approaches to control unit design have been developed [14]. The
first of these regards the control unit as a sequential logic circuit to generate specific fixed
sequences of control signals. In this approach the control unit is implemented with gates and
Flip Flops. As such, the main goal is to minimize the number of components used and to
maximize their speed of operation. It has the advantage that it can be optimized to produce a
fast mode of operation. The disadvantage however is that once constructed, any change in the
operation of the circuit can be applied only through the redesigning and rewiring of the unit.

This approach is therefore known as hardwired organization of the control unit.

In contrast to the hardwired approach, the second method of control unit design is called
the microprogrammed regulation. The sequence of instructions required to perform a specific
operation comprises a microprogram for that particular operation. The control signals of this
microprogram are stored in the form of 0’s and 1’s in a special memory. In micropro-
grammed control, since the signals are implemented in software rather than the hardware,
any change in the design can be made by modifying the contents of the control memory. The
disadvantage nevertheless is that microprogram control units are slower because of the extra

time required to fetch the microinstructions from the control memory.

Generally speaking, the design of the control unit can be done in a more systematic way
by using the microprogrammed approach. The control signals can be organized into words

(microinstructions) that have a well defined format. However, in VLSI design, the availabil-

88

ity of the automatic placement and routing softwares as well as the logic synthesizers have
made the hardwired control unit design quite flexible. A high level language can be used to
efficiently define the behaviour of the system and any further modification is a matter of soft-
ware revision and recompilation rather than redesigning and rewiring of the hardware. It is

therefore the hardwired design approach which was chosen for the design of the control unit.

4.4.2 Hardware Implementation

The block diagram of Fig. 4.20 shows the pipelined architecture of the control unit. The
machine codes of the instructions in the instruction register (IR) are interpreted by the
decoder under the supervision of the timing and control section. If the instruction requires
only one cycle for its execution, then the decoder generates the required control signals
which are transferred to the control unit register (C.U.R.). In almost all of the two cycle
instructions the processor unit must execute the no operation command (NOP). These
instructions are recognized by the timing and control section and force the decoder to set the
register C.U.R. with no operation command variables. During the time that the processor unit
is executing one instruction, the decoder is translating the next instruction. As depicted in
Fig. 4.20, there are several control signals used by the control unit that manipulate the flow of
the stored program. The first group of these signals are initiated in the processor unit and ena-
ble the processed data to affect the control unit, allowing data-dependent decisions to be
made. These signals are comprised of “ADD_OVF”, “DIV_OVF”, “BG”, data lines, and
RAM address lines of register Al. The status of the flag signals “Flagl” to “Flag6” and
“Jump” are functions of the content of the instruction register. The signals “Flag5”, “Flag6”
and “Jump” are particularly responsible for providing additional cycles to complete the exe-

cution of two cycle instructions.

Along with the other flags, the following registers are part of the control unit and provide

89

Control Signals

Instruction Register Rom Address Latch
¥ !
DECODER -y > PC.
< C.UR. ST.
y
Timing & Control Section Jump ADD_OVF
DIV_OVF
Flagl | Flag2 | Flag3 | Flag4 Flag5 | Flag6 -
i Te
TX<Y TX:Y TX>Y
OVE Ready Reset Comparator

Yy Y | 1

C.AR. ~ CO.1 ‘ /&‘ii\
A A

| CO.2

Data Lines *

RAM Address Lines (Al)

Figure 4.20--Block diagram of the control unit

additional facilities in instruction sequencing

1. The program counter (P.C.). This is a register that holds the memory address of the next

instruction word to be executed.

2. The Stack Pointer (ST.). This register stores the return address while the processor is

executing a subroutine.

90

3. Control Address Register (C.A.R.). This register provides the required capability for
immediate addressing. It holds the second byte of the immediate address instruction to be

transferred to the memory address register Al.

4. Registers CO.1 and CO.2. These registers are primarily used for data comparison and
decision making based on the acquired result, utilizing the built in comparator of the con-

trol unit.

4.4.3 Control Unit Specifications

The two formal tools for describing the behaviour of the control unit are flowcharts and
description languages [14]. The BDS language explanation of the control unit is given in
Appendix C. It provides a combinational logic implementation of the control unit, which can
be used to compose the required sequential element by providing the necessary feedback
paths and input/output registers. In the following sections the flowchart description of the

control unit provide an in-depth perception of the operation of this block.

« ROM Address Generation

Most of the instructions in our program have a unique successor, in which case it is natural to
store the next instruction in the next memory address. Hence the program counter (P.C.) is
simply increased by one to produce the address of the next instruction to be executed. How-
ever, it is sometimes necessary to select one of the several possible actions or to repeat a set
of instructions for a specific number of times. In such circumstances the current instruction
specifies the address of the next instruction and alters the flow of the program control by
moving the address of the next instruction into the program counter (P.C.). The address of the
next instruction is stored as the second byte of the current instruction. Therefore all the con-

ditional and unconditional branch and subroutine call instructions of the processor are two

91

cycle instructions. The flow diagram of Fig. 4.21 indicates how the instruction register (IR)

and the “jump” signal affect the contents of the program counter (P.C.).

PCiy=0 PCi1=1R; PC;,1=8T; PCy1=PC;

Figure 4.21--Program Counter Routine

The status of the signal “Flag6” indicates whether the content of the instruction register is an
address or a command. If “Flag6” is logic one, then IR represents an address and NOP
instruction is performed by the processor unit. If “Flag6” is logic 0, then the content of IR is
regarded as an instruction which alters the contents of the control unit register (C.U.R.). The

flow diagram of Fig. 4.22 shows which commands influence the status of the signal Flag6.

IR={1,2,2F,35..37,3E,40..43} (Hex)

Yes No
Flag6;,,=0 Flag6;,1=1 Flag6,,,=0

Figure 4.22--Flag6 Routine

The “Jump” signal is a flag in the control unit that determines whether the required condi-
tion for the Branch instructions is satisfied. If “Jump” is logic one, then the content of IR is

the address of the next instruction to be executed. The flow diagram of Fig. 4.23 depicts the

92

“Jump” routine.

No No
Yes
Yes
Y
No No

Yes

Y
b

z

No

&

No No

oeIR=40(Hex)

No

Z
c

Eﬁ
2

No No
Yes
Yes
Y
Jump;, =1

Figure 4.23--Jump Routine

The flag signals “Flagl” to “Flag4” can be set or reset according to any arbitrary condition.
They are primarily introduced for the order checking algorithm. These flags can be subse-

quently used to alter the flow of the program control according to the flow diagrams of Fig.

93

4.24.

Flagl;,,=Flagl; Flag2,,=Flag2;
Flagl;,;=1 Flag2;,,=1
Flagl;,,=0 Flag2;,,=0
Flagl;,,=Flagl; Flag2;,,=Flag
(a)Flagl Routine (b)Flag2 Routine
Flag3,, ,=Flag3; Flagd;, =Flag4,
Flag3;,;=1 Flag4;,;=1
Flag3;,,=0 Flagd;,,=0
Flag3,=Flag3; Flagd;, =Flagd;
(c)Flag3 Routine (d)Flag4 Routine

Figure 4.24--Routine (a)Flagl (b)Flag2 (c)Flag3 (d)Flag4

« Subroutine Call

Often it is necessary to implement a temporary transfer of control from the main program to

94

a subprogram. This control transfer is initiated by the main program and is known as subrou-
tine call. In order for the control to be transferred back to the main program, the address of
the next instruction of the main program is stored in the register (ST) of the control unit. The
last instruction of the subprogram should transfer the content of (ST) back to (P.C.) (see Fig.
4.21). The flow diagram of Fig. 4.25 shows how the subroutine call instruction affects the

register (ST).

S§T;1=ST;

STi+1=PCi+2

ST,y =8T;

Figure 4.25--Stack Pointer Routine

« Immediate Addressing

The content of the instruction register (IR) can be interpreted either as an instruction to be
executed by the processor unit or an address. If “Flag6” is logic one, then IR is an address to
be transferred either to program counter (P.C.) or to the memory address register (Al). Fur-
thermore, the status of “Flag5” determines whether TR contains the second byte of the
“Immediate Address” instruction. If “Flag5” is logic one, then the content of IR is transferred
to register C.A.R. and subsequently to the address register (A1). The flow diagram of Fig.

4.26 describes how these operations are performed.

95

Yes
Flag5i+1=0 CARi+1=IRi

No

Flag5;,=0 Flag5;,1=1 CAR;4;=CAR;
(a) (b)
Figure 4.26--(a)Flag5 Routine (b) Inmediate Address Routine

There are a number of occasions in which the data processing unit must perform the no oper-
ation command (NOP). These situations are depicted in the flow diagram of Fig. 4.27 along

with the influence of status flags “Flag5” and “Flag6” on the control unit register (C.U.R.).

Al=IR

C.U.R.=NOP

Yes
IR={0..3,2E..31,34..43} (Hex)

¢N0

C.U.R.=Next Command

Figure 4.27--Next Command Routine

 Processor Status Signals

96

The outgoing signals “Ready” and “OVF” indicate the status of the processor to the outside
world. The “Reset” line is a signal which is received from a supervisory controller and can be
used to synchronize the operation of the processor with other devices of the system. The flow
diagrams of Fig. 4.28 shows how these signals are manipulated by the content of the instruc-

tion register and the computational results of data processing unit.

Ready=0
Ready=1
Ready=0
OVF=1 |[=
Figure 4.28--(a)Overflow Detect Routine Figure 4.28--(b)Halt Routine

4.5 Random Access Memory Design

Random access memories are storage elements in which the access time is independent of
the physical location of data. They can be classified into static and dynamic [27] groups
depend on the structure used in the design of the memory cells [20]. Both types of memory
may be further divided into synchronous and asynchronous categories. Synchronous RAMs
arc those which need a clock signal for their operation. However, asynchronous structures
reflect upon the change of the logic level of their address lines. Due to its design simplicity

and reliability, the static synchronous structure is the most commonly used technique in the

97

design of random access memories and also the one which was adopted for this study.

4.5.1 Hardware Description

The RAM of the processor is capable to accommodate up to 256 words of 16-bit length data.
Figure 4.29 shows the transistor level circuit diagram of a typical RAM cell [42] together
with the required supporting circuits in block diagram form. The floor plan of the RAM is
depicted in Fig. 4.30. The RAM has separate data inputs and outputs which are tied together
by using tri-state output signals in order to realize a single data bus arrangement. The column
decoder is a one of four decoder which controls the operation of multiplexers. Multiplexers

are designed by using n-channel pass transistors, therefore they can operate both as multi-

plexer and demultiplexer. At any time, one of 2° = 64 rows can be selected for either read or
write operation through the row decoder. The least significant bits ag and a; of the address
lines determine the selected column and the rest most significant bit lines, a, to a7, are used
by the row decoder to access the determined row. Associated with the row decoder are row
drivers. They are designed in such a way that each block of row driver buffers two outputs of
the row decoder. The precharge circuits on the top prepare the bit lines of the RAM cell at the
beginning of each read or write cycle by pulling them up to logic one. Each read or write
operation requires only one clock cycle to complete, during which the bit lines normally run
as complementary signals. The transistor circuit diagram of the RAM cell in Fig 4.29 forms
two cross-coupled inverters that are accessible via two n-channel pass transistors [37]. Sense
amplifiers reflect upon small changes of the voltage on bit lines that results when a particular
cell is sclected for read operation, and therefore speed up the read operation of the RAM. The
control section of the RAM regulates all the operations within the RAM by generating the

required control signals and using the following inputs which are accessible to the user.

1. The “CS” signal enables the RAM for active operation when it is logic one, otherwise the

98

Precharge
Precharge Circuit g-| Tri_State
Buffer
‘s
1
Row
Decoder
n-1
Row [
Driver |
AA A
ITITIT Tos
< coal < col
(- olumn - olumn | | |.......
MUX d Driver il Decoder
| el
= f, & K
k Y EB TA]l [A Al [A]
D D
Dens WE g g D D
Amplifier R R R R
* E E E E
S S) S
REN WEN (S| S S| s S
= e ol Sl)2 Ll |L
A A|EB A A
T T [T T
EBic| |c| —ic|ERlC
H H EB|H H
I/OE di EO 1a_l ?a; a3 E;
WEN —sf—
WE —-s— Cont_rol -t—RN/W
EB-<¢—] Section | «— CLOCK
I/OE ~g—]

Figure 4.29--Block diagram and supporting circuits for a typical RAM cell.

RAM is disabled and the data outputs are tri-stated.

2. The “RN/W” signal determines whether a read or write operation is to be performed. The

polarity of this signal is compatible with I/OE signal so that whenever a write operation is

initiated, the data output is tri-stated.

99

3. The CLOCK signal synchronizes the RAM operation with the rest of the system.

The simulation result of Fig. 4.31 shows how the output signals of control section affect the

operation of the RAM.

4.5.2 Read Operation

To increase the density, the transistors of the RAM cell are of minimum size. Due to the logic
degradation of n-channel transistors in passing logic one, and because the p-channel transis-
tors in the RAM cell are very small, this structure is not good enough to pull up the bit lines.
Therefore the scheme for reading a RAM cell is pulling up the bit lines through a more effi-
cient precharge circuit. Depend on the datum stored in a RAM cell, one of the bit lines will
be pulled down during the read operation while the other remains high. This variation in the
voltage level is sensed and amplified by the corresponding sense amplifier and will be
reflected to the output latch. The control signal “I/OE” is logic one during the write opera-
tion, allowing the data to be put on the data bus. The precharge circuits use n-channel transis-
tors to pull up the bit lines. This results in bit lines being charged to a voltage which is less
than “Vdd” by threshold voltage level of the n-channel transistors. This subsequently results
in dramatic increase of speed [37] as the logic levels of the bit lines are closer to the thresh-
old voltage of the sense amplifiers, and therefore it takes less time for the sense amplifiers to

detect the voltage drop on the bit lines.

4.5.3 Write Operation

The basic goal of a RAM write operation is to insert two complement signals into the RAM
cell through the bit lines so that to modify the internal logic levels of the cell to the new ones.
As in the read operation, the write operation also starts with precharging the bit lines to logic

one when the clock signal is low. The write enable transistors of Fig. 4.29 are manipulated by

100

101

PCH[PCH[PCH [PCH [PCH H cH[pcEJpCHPCHJPCH[PCHJPCHJPCHJ Precharge Butfer] ** [Prectares Butie [oCH [PCHPCHJPCH PCH|PCH|pCH[PCH[PCH |PCH|PCH|PCH|PCE[PCH|PCH =
RC RC RC RURSow Orver HRC RC RC RC
Kow Drniver
i
R [Row Driver | B
Row Dnver - Row Dnver o
RC RCH Row Drver : [iEv_J)r_wer_ _Q_RC RC
H Row Driver O !
W Kow Driver H
Row Dnver Row Driver ;
ow Driver W E_v;'—'Drwer‘;
RC RC H Row Driver Row Driver ;RC RC
H Row Dniver 8 Row Driver b
H Row Driver D ¥ l}_ﬁw J..)r'lver
HRow_Dnver Row Driver
H Row Driver E Iiovﬂ_')rwer
RC ch Row Driver Row bniver | [RC RC
ow Driver : Row Driver
H Kow Driver C H Row Driver
H Row Driver Row Driver
W Kow Dnver Row Driver
RC RC H Row Driver O Row Driver RC RC
ow Driver Row Driver
i Row Driver Row Driver
Row Dniver D Row Driver
Row Driver Tow Driver 1
RC RC jf Row Driver E “Row Driver .RC RC
ow Dnver H Row Driver
Row Dnver Row 'D'nv;E;
Row Driver R Row Driver |
ow Driver Row Driver | %
Row Driver ow Driver r
RC RC) RC RC Jf Row Dniver J—Eow Driver {RC RC RC RC
Coumn 4 Mux { Mux | Mux | Mux | Mux | Mux | Mux } Mux
RAM [efd el
Control | mm |- oo
Section {tan| | Tah]

Figure 4. 30--Floor plan of the Random Access Memory (RAM),' -fhe cells marked as “RC’’ show the boundary of the matrlx of memory cells.

the control signal “WE”. This signal is logic high during the write operation, allowing the
data and its complement to move to the bit lines. Subsequently, one of the bit lines is driven
to ground level while the other remains high. This results in the change of status of the

selected cell when the row select signal is activated.

4.5.4 RAM Simulation Result

The diagram of Fig. 4.31 shows the result of simulation of the random access memory. The
simulation consists of two write operations, followed by two read operations of the same
locations of the memory. The first write operation stores the number 0000 (Hex) in address
00 (Hex) of the RAM, whereas the second one stores the number 1111 (Hex) in location FC
(Hex). Note that the two least significant bits of the address are always zero in this simula-
tion, therefore the bit lines “BIT” and “BITN” show how the other bit lines are affected by
read and write operations. The result of simulation shows that the required time for memory
read operation is about 16.5 ns from the rising edge of the clock signal. This time is less for

memory write operation and is about 8.5 ns.

st _fivm iy Tue Nov 16 28:00.03 1004

dala[0000 il XXXX i éOOOO : HiH

0o e o L 000 whn = asho #oh o 0o b 10008

Figure 4.31--Static RAM- Simulation result for typical read and write operations

102

4.6 Read Only Memory Design

Read only memories or ROMs are storage elements in which the information can be read out,
but can not be written in as readily as in RAMs. Depend on the technique used to manipulate

the information in the memory, ROMs can be divided into the following categories [20]

Mask Programmable ROM

PROM

EPROM

EEPROM

The packing density of a mask programmable ROM, or simply ROM, can be at least several
times more than that of a static RAM. The employed ROM for our processor is of mask pro-
grammable type and has the capacity of storing 512 words of 9 bits length. It can be pro-
grammed with contact mask, therefore it is called “contact” ROM in contrast with “active”

ROM.

4.6.1 Structure Of The ROM

The implementation of the ROM requires one transistor per storage bit. The structure is static
(in a sense that decoders, sense amplifiers, etc. are static circuits) and usually carried out by
using NOR arrays [37], as shown in Fig. 4.32. The stored information can be held constantly
even when the power is off. The address information is stored in duplicate into the address
latches provided on the left and right side of the ROM (see Fig. 4.32). The left and right col-
umn decoders are one of four decoder and each of them controls four select lines of the mul-

tiplexers. The least significant bits ag, a;,and a, of the address lines ascertain the selected

column and the rest of the address lines are used by the row decoders to determine one of the

103

2% = 64 accessible rows. The left row decoder decodes the even lines, whereas the right one
decodes the odd lines. The control block generates the required control signals which syn-
chronize the operation of the ROM. As the ROM must be always in active operation mode,
the input control signals “CS” and “OEN” are permanently connected to the Vdd line. This
results in output tri_state buffers being always enabled and one set of data being written on

the output data lines C; on each rising edge of the clock signal. The floor plan of the ROM is

depicted in Fig. 4.33.

Precharge Precharge
Tri_State = Precharge Circuit < Tri_State
Buffer Buffer
TEB Y v] v ¥ ¥]] EBT
- —i-

R ™ <{ R
O .. O
w w
D P R | -4 | — {I‘—‘ %I'—‘ _}I'—‘ _=I'—‘ R D
E |9 AT IR
w w
C C
9 D D O
D R :l‘—‘ _}l'—' =I‘—‘ _}l'—‘ :I‘—‘ R |l D
IR TR T T R NS
R A\ Vv R
E E
R R

\ARAARA
Column > = Column
Decoder > MUX b Decoder
] Y L N
EB
A A Al |Al |A Output Latch |<— Al |A] Al A Al
L .. L L| |[L| |L & EBN L| (L] |L L
8 3 2l (1] |0 Sense Amplifier|e— ol |1 |2 3 8
- & - —tet— [4 [3 ER—e {1 - =
F A T T ¥ T T4 T
ag d4a3 41 3 G 9 a1 4 d3a4 ag
EBN-=—] Control <—QEN
/OB <— Section <—CLOCK

Figure 4.32--Block diagram and supporting circuits of the ROM; (AL = Address Latch)

104

; Tri_State PRECHARGE Tri_State |
g »| Buffer CIRCUIT Buffer |usss
R RF)W Rf)w R
Driver Driver
0 Row Row 0]
W Driver Driver W
Row Row
Driver MAIN_ROM_CORE Driver
D Row Row .
E Driver Driver E
Row Row
C Driver Driver C
0 Row MAIN_ROM_CORE_0 Row o)
Driver - - - Driver
D Row Row D
E Driver Driver E
Row Row
R Driver Driver R
'.-T:' T Row T HOHCOWCROROH M M om H Row i
I | Juiii Decoder ;:Mux: Mux;; MuxE Mux Efux ng_dux flf_ux EEMurF fux‘;;- Decoder 1 i
ROM IS SIS IS[S[=={S|-~{S|--IS|--[S}'| ROM
Al AT A AR APBIARA AR
Address | Control |g| [af lel o l&]-|a| |a]]&]]e| | Control | ~Address
Latch : Of=~[OF O] Of = |OF OO0 0] % 10 o Latch
Section L. I:‘.'I Ll===|L 1L :.-::...'--' L. L L | D L :.: Se(.«l,l()l'l

'_;T
|

4.6.2 ROM Simulation Result

The ROM is programmed to store the machine codes of the algorithm of Fig. 2.1. The con-
tent of the ROM is depicted in table 8. In this table the first column shows the starting
address for the data on each row in decimal format. Consecutive data is continued on a new
row and in this case a plus sign is placed in the first column. The data are shown in Hexadec-

imal format. The locations which are not specified in table 8 (locations 340 to 495) are filled

by pattern 00 (Hex.), and therefore initiate a no operation (NOP) command.

The simulation result of Fig. 4.34 shows the read operation of the first four locations of the

Figure 4.33--Floor plan of the Read Only Memory (ROM); (SA&OL=Sense Amplifier & Output Latch)

105

TABLE 8. Machine codes in Hexadecimal format stored in the ROM.

00 | 00 | 04 [06 | 07 | IE| IE| 3C | 04 | 05| 09 |OA| 05 | OC | OD | OE
02 (oD | OD| OE |OD | OE | OD | OF [OD | OF | 04 | 05 | 09 | 10 | O1
10| 15 | 04 | 05 | 09 |OA [09 | 16 | 17 | 09 [18 [09 | 16 | 17 19

1802|2010 |16|17| 19|18 |04 |21 |1C|36 |9 | 04 | 06
16 |1A| 10| 26 | 18 [04 | 21 | 06 | 1IF | OD [OF | OD | OF | 11 11
1|11 |12 1 1) 1n |11 |05|1A| 24|25 | 18 | 04 | 05
1AloAa|16| 24 |17 | 12|04 |06 | 10| 26| 2B |33 | 1A | 07 | 25
27 | 12|26 | 28 [35| 64| 04 | 06|07 |04 |06]| 24| 10| 05 | 1A
17 06 | OC
1F | 16

16 | 26 | 12 | 21 [1A | 10 0B | 25 16 | 04 | 21 06
IE|OF |OD| OF | 11 | 22 | 17 | 25 | 18 1A | 1B | OF | OD
OF [11 | 22| 17 |19 | 20| 02 | 8 | 04 |21 |1A]| 10 | 04 | O5 | 1A
16 |17 |0B|[3E |01 |1A|OC|1B|OE| 02 |AC| 1B | OE | 1B | 3E
01 | o6 |08 | 1E|[02|B6| 08 |1B|OF |OD|OF | 2F | C3 | 36 | CA
30 | 04 | 05| 1A | 10|01 |1FO|[04 | 21 [1D | 04| 21 [1A | 10 | 04
05 |[1A| 16| 17 |[O0B|3E | 01 |[1A| 1IF | 1B (08 | 02 | DB [1B | 08
1B |OF|OD| OF [11 | 40 | EA| 36 | F1 | 04 [05| 1A | 10 [O1 | 1FO

31 |04 |1A| 20 | 1B | OF | OD [OF [04 [21 | 06 | 10 | O1 | 1FO | 11
04 |21 | 1D]| 04 |06 |0A| 21 |[1A]| 32|37 [3A]| 04|21 [1A]| 10
04 |05 |1A|0A |16 | 17| 2A |29 [25| 05|06 |0C| 16 | 04 | 21
06 | IE|OF | oD [OF | 11 | 22 | 17 | 25| 18 [29 | 02 | 117 | 43 | 12C
04 |21 |1A]o0A |21 | 06| 32|35 |3A| 04|05 |1A|0A]| 16 | 21

1A 10 17 | 2A | 2B 1C 1A 10 16 17 12 05 05 05 10
17 | 18 | 02 | 148 | 10| 17 | 05 | 18 | 25 | 3F
96| 04 |os o6 | oA | 11 12| 13 |2E| 11| 12| 14| 11 | 05| 02 | 1F9
+ 03

+ 4|4+l +|+]+] 4|+ +|+|+]+|[+|+|+[+|+][+]+

ROM. When the clock signal is logic zero, the precharge circuits are turned on and pull up

the bit lines to logic one. At this time the word select lines are disabled in order to prevent

s g
T o B fow S0 1S Gn:Ea 1 wea

oo7

oaTal oo ; oo : oos : os

e oo0 op1 opz ops

=====

EBN

Figure 4.34--Static Rom-Read operation of the address locations 00 (Hex.) to 03 (Hex.)

106

any DC power loss. At the rising edge of the clock signal the pull-up circuits are turned off
and one word line is active, allowing the data of the specified row to be transferred to the out-
put latches. The status of the bit lines depend on the existence of the polysilicon contacts on
the gate of the corresponding transistors. If a contact exists then the transistor is on which
consequently pulls down the corresponding bit line, otherwise the bit line remains high. The
additional signals shown in Fig. 4.34 are control lines of input/output latches and precharge
circuits. The result of the simulation shows that the maximum required time for reading an

arbitrary location of the ROM is about 12.5 ns from the rising edge of the clock signal.

e Summary

In this chapter the mathematical backgrounds required for understanding the operation of
basic blocks of the processor were discussed, and the algorithm based on which each unit
operates was developed. The hardware design and specifications of each segment are mainly
governed by the developed algorithm. Furthermore, the performance of each element is influ-
enced by the floor plan design of that particular element. In order to improve the overall per-
formance of the processor, the layout of each unit designed in such a way to be consistent
with other elements of the processor, so that the placement and routing of different blocks
can be done easier and the employed area can be minimized. The speed of operation of each
component is also an important factor, which of course is not independent of other features
such as the shape and size of the block, and considered to be in agreement with the basic
principle of high speed DSP hardware design while maintaining the required physical har-

mony.

Additionally, the employed methodologies for the simulation of individual units were dis-
cussed and the simulation results were depicted. The overall performance of the processor is
examined in the next chapter along with the performance of the maximum entropy algorithm,

by introducing a synthetic data generated by a computer program.

107

Chapter 5

CONCLUSIONS AND THE FUTURE
DEVELOPMENTS

Recent advances in the VLSI technology has made possible the design of handy medical
equipments which can provide crucial informations about the patient condition, primarily by
replacing some of the traditional diagnostic instruments with more efficient and reliable
tools. In this study a special purpose DSP processor with an application in the spectral analy-
sis of the heart sounds was designed and simulated. The algorithm based on which the proc-
essor works, was devised by Andersen [1] from the university of Copenhagen, and
constructed upon the Burg method of estimating the AR parameters. The architecture of the

processor takes advantage of available DSP techniques in processor design such as parallel-

108

ism and pipelining.

In order to verify the hardware of the processor as well as the employed maximum
entropy algorithm, trials with synthetic data were carried out. The synthetic data was simply
generated by a computer program so that it looked similar to the third heart sound in the time
domain [11]. This was achieved by the summing of three sinusoids with frequencies of 10,
20, and 40 Hz and relative amplitudes of 1.0, 0.5 and 0.25 respectively. Normally distributed
random noise was added to simulate the actual data more realistically. The length of the data
was 100 samples which can comfortably be accommodated in the built in RAM of the proc-
essor. The graph of Fig. 5.1(a) shows the sketch of the synthetic data in the time domain,

whereas the one in Fig. 5.1(b) presents the augmented normal noise.

SYNTHETIC DATA NORMALLY DISTRIBUTED RANDOM NOISE

0.025

0.02f
1 !
0,015}

0.01f
05p

i | ¥ P m

001} H U
0,015} U
.1 b -
o0t
(a) (b)
A5 i I s s i i i 4 1 0,005 i 1 i ' L
0 100 200 30 400 500 600 700 800 90 1000 0 2)) 80 100 120

Figure 5.1--(a) The synthetic data (b) The added normally distributed random noise

The filter coefficients generated by the processor were taken to the Matlab package where the
EFE.T. was applied to them and the final graph of Fig. 5.2 was developed. From the above and
similar experiments it is obvious that “Maximum Entropy” method offers superior resolution

compared to FE.T. specially with short observation lengths of simulated data. As it is depict-

109

i

SPECTRUM OF THE SYNTHETIC DATA

I 1 I I] I J I I
1
10°¢ MAXIMUM ENTROPY
5| [\ a \
107k /F.F.T. \ / N E
i ; \ _/' &
[| \ 4 Yo]
10'G L | | I I VI ! 1 ! I \';
0 5 10 15 20 25 30 35 40 45 50

Figure 5.2--Spectrum of the synthetic data of Fig. 5.1(a)

ed in Fig. 5.2 the EET. did not resolve the 10 Hz peak, whereas the maximum entropy

approach produced two sharp peaks at 10 and 20 Hz.

With 16-bit data length and provision of handling 32-bit intermediate results in case of
successive multiply/divide operations, the processor provides the desired high level of accu-
racy in almost all phases of the processing. The potential danger however is when it comes to
reforming the original stored data as proposed by the following two equations in the main

loop of the flow diagram of Fig. 2.1.

b, (n) = b, _(n) -a, (m) b (n-1)

b (ny =0 (n-1) +a, (m) b, ()

110

Since a multiply operation is involved in the calculation of the above equations, the results
are 32-bit in length with the most significant bits stored in register Z and the least significant
bits retained in register W. The current program of the processor discards the least significant
part in the W register which is always less than one, assuming that the absolute value of the
most significant part is much larger than one. This is however only true for the prescaled ini-
tial data with which the processor starts, and there is no guarantee that the intermediate

results comply with the above assumption.

One way to overcome this problem is to modify the software so that to rescale the inter-
mediate results before the next step, considering that the resultant filter coefficients are inde-
pendent of the amplitude of the sampled signal. The other solution is to provide the processor
with double precision handling of the results. This however demands some extra memory
locations as well as modification of the software. Furthermore, it increases the total process-
ing time of the data. The best solution is to modify the architecture of the ALU from fixed
point to floating point. This scheme not only increases the overall accuracy of the processing,
but also provides the required facility for incorporating FET. algorithm with maximum
entropy method which gives the final spectrum as proposed by the following equation of

chapter two, rewritten here for reference.

S(@) = P

N -
1- Zak-eﬂ"
k=1

The performance of the ALU can be further improved by introducing a reciprocator. A recip-
rocator is fairly inexpensive hardware, which provides a fast divider if combined with a fast

multiplier.

In the design of the processor the following CAD tools were used

111

. MAGIC layout editor was the main editor used in the hierarchical design of different

blocks of the processor.

. OCTTOOLS is a package of variety of tools. It is mainly used for gate and transistor level

design and functional simulation of sub-modules and random logics, as well as the optimi-
zation of logic circuits. The possibility of changing the OCTTOOLS layouts to MAGIC

format makes it an extremely useful tool to be used in conjunction with MAGIC.

. Detailed simulation of the fairly small but usually substantial submodules which affect the

entire performance of the processor was carried out by using the HSPICE simulator.

. IRSIM is an event driven switch level simulator which provides a fast and efficient tool

for the simulation of larger blocks. Furthermore, it yields a fairly accurate perception of
the system’s timing and is the simulator which was used to test the performance of the

whole chip.

112

Appendix A

Instruction Set

The control unit of the processor is capable to distinguish 69 different instructions. The
instruction set is grouped in order under four different functional headings as

« Data Transfer Group

This group of instructions transfers data to and from registers and memory. Unless indicated
otherwise, all instructions in this group are one cycle commands as they need only one
machine cycle for their execution.

MOV Y,Z (Move Register)
V<@
The content of register Z is moved to register Y

MOV X,Z (Move Register)
X <@ |
The content of register Z is moved to register X

MOV CO1,Z (Move Register)
(CO1) <-(Z)
The content of register Z is moved to register CO1

MOV CO2,Z (Move Register)
(CO2)<- (2)
The content of register Z is moved to register CO2

MOV Al,Z (Move Register)

113

(Al) <-(Z)
The content of register Z is moved to register Al.

MOV A2,Z (Move Register)
(A2) <- (Z)
The content of register Z is moved to register A2.

MOV MU1,Z (Move Register)
MUD < (Z) & MU2)<-MUL) & MU3)<- MUD*(MU2) &
(Z) W) <-0

The content of register Z is moved to register MU1. The content of register MU is moved to
register MU2. Register MU3 is loaded with MU1*MU2. Accumulator is reset to zero.

MOV1MUI, TEMP (Move Register)
(MU1) <- (TEMP) & (MU2)<-(MUl) & (MU3)<- (MUD*MU2) &

Load ((Z) (W)) _ , ,
The content of register TEMP is moved to register MU1. The content of register MU1 is

moved to register MU2. Register MU3 is loaded with MU1*Mu2. Accumulator is loaded
with the outputs of 32-bit adder.

MOV X, W (Move Register)
(X) <- (W)

The content of register W is moved to register X.

MOV2 MU1, TEMP (Move Register)

MU1) <- (TEMP) & (MU2)<- (MUI)
The content of register TEMP is moved to register MUL. The content of register MU is
moved to register MU2.

MOV MU1, W (Move Register)

MU1) <- (W) & MU2)<-MU1) & (MU3)<-MUI*MU2 & (Z)y W) <-0
The content of register W is moved to register MU1. The content of register MU1 is moved
to register MU?2. Register MU3 is loaded with MU1*MU?2. Accumulator is reset to zero.

MOV Al, A2 (Move Register)
(Al) <- (A2)
The content of register A2 is moved to register Al.

MOV1IM,Z (Move to memory)

0AD) <-(Z) & (Al)<-(Al)+1
The content of register Z is moved to the memory location (page 0), whose address is in reg-
ister Al. Register Al is incremented by one.

MOV1M, TEMP (Move to memory)

(0A1) <- (TEMP) & (Al)<-(Al)+1
The content of register TEMP is moved to the memory location (page 0), whose address is in
register Al. Register Al is incremented by one.

MOV2M, TEMP (Move to memory)

(1A1) <- (TEMP) & (Al)<-(ADl)+1
The content of register TEMP is moved to the memory location (page 1), whose address is in
register Al. Register Al is incremented by one.

MOV1IM, W (Move to memory)

114

(0A1) <- (W)

The content of register W is moved to the memory location (page 0), whose address is in reg-
ister Al.

MOV2M,W (Move to memory)
(1A1) <- (W)

The content of register W is moved to the memory location (page 1), whose address is in reg-
ister Al.

MOV2M,Z (Move to memory)

(1AD)<-(Z) & (Al)<-(Al)+1
The content of register Z is moved to the memory location (page 1), whose address is in reg-
ister Al. Register Al is incremented by one.

MOV TEMP, ML (Move from memory)

(TEMP) <- ML) & (ML) <-(1A1)
The content of memory location (page 1), whose address is in register Al, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register TEMP.

MOV CO1, ML (Move from memory)

(COl)<-(ML) & (ML) <-(0A1)
The content of memory location (page 0), whose address is in register Al, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register COL.

MOV CO2, ML (Move from memory)

(CO2)<- (ML) & (ML)<-(0AI)
The content of memory location (page 0), whose address is in register A1, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register CO2.

MOV A2, ML (Move from memory)

(A2)<-(ML) & ML) <-(1A1)
The content of memory location (page 1), whose address is in register Al, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register A2.

MOV1 MU1, ML (Move from memory)

(ML) <- (0A1) & MUl)<-(ML) & (MU2)<-MUl) &

MU3) <- MUD*(MU2) & (Al<-(AD+1 & (Z)(W)<-0
The content of memory location (page 0), whose address is in register Al, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register MU1. The content
of register MU is moved to register MU2. Register MU3 is loaded with MU1*MU2. Regis-
ter Al is incremented by one. Accumulator is reset to zero.

MOV2 MU1, ML (Move from memory)

(ML) <- (1A1) & MUl)<-(ML) & MU2)< MU1) &

(MU3) <- MUD*(MU2) & (A< (AD+1 & ((Z)(W)<-0
The content of memory location (page 1), whose address is in register Al, is moved to regis-
ter ML, (Memory Latch). The content of register ML is moved to register MU1. The content
of register MU is moved to register MU2. Register MU3 is loaded with MU1*MU2. Regis-

ter Al is incremented by one. Accumulator is reset to zero.

MOV3 MU1, ML (Move from memory)
(ML) <- (1A1) & MUl)<-(ML) & (MU2)<-(MUl) &
(MU3) <- MUD*MU2) & (Al)<-(Al)+1 & Load ((Z) (W))
The content of memory location (page 1), whose address is in register Al, is moved to regis-

115

ter ML (Memory Latch). The content of register ML is moved to register MU1. The content
of register MU1 is moved to register MU2. Register MU3 is loaded with MU1*MU2. Regis-
ter Al is incremented by one. Accumulator is loaded with the outputs of 32 bit adder.

MOV4 MU1, ML (Move from memory)

(ML) <- (0A1) & (MUI)<- (ML) & (MU2)<-MU1) &

(MU3) <- MUD*(MU2) & (Al)<-(Al)+1 & Load ((Z) (W))
The content of memory location (page 0), whose address is in register Al, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register MU1. The content
of register MU is moved to register MU2. Register MU3 is loaded with MU1*MU2. Regis-

ter Al is incremented by one. Accumulator is loaded with the outputs of 32-bit adder.

MOV5 MU1, ML (Move from memory)

(ML) <- (A1) & (MUIl)<- (ML) & MU2)<-MUI)
The content of memory location (page 0), whose address is in register Al, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register MU1. The content

of register MU is moved to register MU2.

MOV6 MU1, ML (Move from memory)

(ML) <- (1A1) & (MUI)<- (ML) & (MU2)<-(MU1)
The content of memory location (page 1), whose address is in register A1, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register MU1. The content

of register MU1 is moved to register MUZ2.

MOV7 MU1, ML (Move from memory)

(ML) <- (0A1) & MU <- (ML) & MU2)<- MU1) & (Al <-(AD)+1
The content of memory location (page 0), whose address is in register Al, is moved to regis-
ter ML (Memory Latch). The content of register ML is moved to register MU1. The content
of register MU1 is moved to register MU2. Register Al is incremented by one.

MOV X, ML (Move from memory)

(ML) <- (0A]l) & (X)<-(ML)
The content of the memory location (page 0), whose address is in register Al, is moved to
register ML (Memory latch). The content of register ML is moved to register X.

MOV Y, ML (Move from memory)

(ML) <- (0A1) & (Y)<-(ML) & (Al)<-(Al)-1
The content of the memory location (page 0), whose address is in register Al, is moved to
register ML (Memory latch). The content of register ML is moved to register Y. Register Al
is decremented by one.

MOV1 ML, M (Read memory)

(ML) <- (0A1) & (Al)<-(Al)+1
The content of the memory location (page 0), whose address is in register Al, is moved to
register ML (Memory latch). Register Al is incremented by one.

MOV2 ML, M (Read memory)

(ML) <- (0A1)
The content of the memory location (page 0), whose address is in register Al, is moved to
register ML (Memory latch).

MOV3 ML, M (Read memory)
(ML) <- (1A1)
The content of the memory location (page 1), whose address is in register Al, is moved to

116

register ML (Memory latch).

MVI Al,data (Move Immediate)

(Al) <- (byte 2)
The content of byte 2 of the instruction is moved to register Al. This is a two cycle instruc-
tion.

« Arithmetic Group

This group of instructions performs arithmetic operations on data in registers X and Y. Note
that any data transfer to register MU1 initiates a multiply-accumulate operation which is a
two cycle operation. Multiply operation has come under “Data Transfer Group™. All the
other arithmetic operations are one cycle operation. All the instruction in this group affect the
registers BG, Division Overflow and Add/Subtract Overflow.

ADD (Add registers X and Y)

)<~ +X) , . :
The content of register X is added to the content of the register Y. The result is placed in the
register Z.

SUB (Subtract register X from Y)

@) < (V) - (X) _ , _
The content of register X is subtracted from the content of register Y. The result is placed in
the register Z.

DIV1 (Add/Subtract X and Y)

Z) <- ()t (X) _ _
Depend on the control signals of the division control block, the content of the register X is
added (0 or subtracted [rom the content of the register Y. The result is placed in the register Z.

DIV2 (Add/Subtract X and Y)

@) < (V) (X) -
Depend on the control signals of the division control block, the content of the register X is
added to or subtracted from the content of the register Y. The result is placed in the register Z.

INR A2 (Increment Register)
(A2)<- (A2) +1
The content of register A2 is incremented by one.

DCR A2 (Decrement Register)
(A2)<- (A2)-1
The content of register A2 is decremented by one.

INR A1 (Increment Register)
Al <-(AD)+1
The content of register Al is incremented by one.

DCR Al (Decrement Register)
(Al <-(Al1)-1
The content of register Al is decremented by one.

 Branch Group

This group of instructions alter normal sequential flow of the program. The two types of
branch instructions are unconditional and conditional. Unconditional transfers simply per-

117

form the specified operation on register PC (the program counter). Conditional transfers
examine the status of one of the four processor flags or the equivalence of register CO1 with
CO2 or Al to determine if the specified branch is to be executed. Unless indicated otherwise,
all instructions in this group are two cycle commands.

JMP addr (Jump)

(PC) <- (byte 2)
Control is transferred to the instruction whose address is specified in byte2 of the current
instruction.

BNCH addr (Call Subroutine)

(PC) <- (byte 2)

(ST) <- (PC) + 2
Control is transferred to the instruction whose address is specified in byte 2 of the current
instruction. The content of register PC is incremented by 2 and moved to register ST (Stack).

RTN (Return)

(PC) <- (ST)
The content of register ST is moved to register PC. Control is transferred to the instruction
whose address is specified in register ST. This is a one cycle instruction.

JNE (Conditional Jump)
If Al is not equal to COlg. Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is
specified in byte 2 of the current instruction; otherwise, control continues sequentially.

IBG (Conditional Jump)
If register BG is equal o one Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is
specified in byte 2 of the current instruction; otherwise, control continues sequentially.

JLE (Conditional Jump)
If register COL1 is less than or equal to register CO2 Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is
specified in byte 2 of the current instruction; otherwise, control continues sequentially.

JLT (Conditional Jump)
If register COL1 is less than register CO2 Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is
specified in byte 2 of the current instruction; otherwise, control continues sequentially.

JEQ (Conditional Jump)
If register COLl is equal to register CO2 Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is
specified in byte 2 of the current instruction; otherwise, control continues sequentially.

JF1 (Conditional Jump)
If Flagl is logic one Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is

118

specified in byte 2 of the current instruction; otherwise, control continues sequentially.

JF2 (Conditional Jump)
If Flag?2 is logic one Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is
specified in byte 2 of the current instruction; otherwise, control continues sequentially.

JF3 (Conditional Jump)
If Flag3 is logic one Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is
specified in byte 2 of the current instruction; otherwise, control continues sequentially.

JF4 (Conditional Jump)
If Flag4 is logic one Then
(PC) <- byte2
If the specified condition is true, control is transferred to the instruction whose address is
specified in byte 2 of the current instruction; otherwise, control continues sequentially.

« Machine Control Group

This group of instructions alters internal control flags, set registers and perform the shift
operation on the accumulator.

SET A1 (Set Register)
(Al) <- (1111111)
The content of register Al is changed to 1111111.

NOP (No Operation)
No operation is performed. The registers and flags are unaffected.

HLT (Halt)
The processor is stopped. The registers and flags are unaffected. The processor remains in
this state until be reset.

SET OVF (Check Division Overflow)
Set overflow flag, if division overflow has occurred.

SETF1 (Set Flag F1)
RST F1 (Reset Flag F1)
SET F2 (Set Flag F2)
RST F2 (Reset Flag F2)
SET F3 (Set Flag F3)
RST F3 (Reset Flag F3)
SET F4 (Set Flag F4)

RST F4 (Reset Flag F4)

119

SHL (Shift Left With Zero)

(Zp) <- (W15) s (Wp) <-0
The content of the accumulator is shifted left one position. The low order bit of register Z is
set to the value shifted out of the high order bit position of register W. The high order bit of
register Z is lost. The low order bit of register W is set to zero.

SHD (Division Shift Left)

(Zo) <- (W1s) ; (W) <- D.C.
The content of the accumulator is shifted left one position. The low order bit of register Z is
set to the value shifted out of the high order bit position of register W. The high order bit of
register Z is lost. The low order bit of register W is set to the value determined by division
control block.

120

Appendix B

Assembly Language Program For
Maximum Entropy Spectral Estimation

IC This routine finds the maximum entropy estimate of the predictor filter coefficients for
the spectral density. The algorithm is based on the Burg method, and was devised by
Andersen of the university of Copenhagen. The first column either shows a comment
(!C) or the address of the instruction in the ROM in hexadecimal base.

IC Set up routine: load registers MU1, MU2, and TEMP with a one, and set flag F4,
therefore the user defines the model order (M).

NOP
SET Al
MV3d ML,M

MV TEMP, ML
MV6 MUI, ML
MV6 MUIL, ML

SET F4
IC Calculate the mean value of the sampled data.
SET Al
INR Al
MVl ML,M

MV CO1, ML

121

0D

29

INR
MV1
MV2
MV4
INE
MV2
MV4
MV2
MV4
MV2
MV1
MV2
MV1
SET
INR
MV1
MV
BNCH
MV

Generate two copies of data by subtracting the mean value from each datum and
storing the result in both pages, zero and one, of data RAM.

SET
INR
MV1
MV
MV1
MV
SUB
MV1
MV1
MV1
MV
SUB
MV2
MV1
INE
MV1
MV
SUB
MV?2
MV1

Al

MU1, ML
MU1, TEMP
MU1, ML
0D (Hex.)
MU1, TEMP
MU1, ML
MU1, TEMP
MU1, ML
MU1, TEMP
MU1, TEMP
MU1, TEMP
MU1, TEMP
Al

Al

ML, M

X, ML

1FO (Hex.)
X, W

Al

Al

ML, M
CO1, ML
ML, M
Y.ML

ML, M
M, Z

ML, M
Y, ML

M, Z

M, Z

29 (Hex.)
ML, M
Y, ML

M,Z
M, Z

Set M=].

SET
DCR
MV1

Al
Al
M, TEMP

Go to address 9E (Hex.); calculate A(M).

JMP

9E (Hex.)

122

IC
3A

64

M=M+1

SET Al
MV3 ML,M
MV Y, ML
MV2 ML,M
MV X, ML
ADD

MVI M, Z
Store AM)
SET Al
DCR Al
MV3 ML,M

MV2 MUIL, ML
MV2 MU, TEMP
MV1 MU1, TEMP
MV2 MUIL, TEMP
MVl MUI, TEMP
SHL

SHL

SHL

SHL

SHL

SHL

SHL

SHL

SHL

SHL

INR Al

Mv2 MLM

MV A2, ML

MV Al, A2
MVl M, Z

Generate another copy of predictor filter coefficients and store in page 1 of data

RAM.

SET Al

INR Al
MV2 ML,M
MV CO1, ML
MV Y, ML
MV A2, ML
SUB

MV Y, Z
SET Al
MV3 ML,M
MV X, ML
ADD

MV Al,Z

MV CO2,Z

81

Update the data values in pages zero and one of the data RAM, using the current

MV2 ML,M
MV TEMP, ML
MV Al, A2
MV M, TEMP
MV Y,Z

ADD

DCR A2

JLT 64

SET Al

MV3i ML,M
MV TEMP, ML
value of AM).

SET Al

MV3 ML,M
MV A2, ML
MV X, ML
INR Al

MV2 ML,M
MV Y, ML
ADD

MV Y,Z

DCR Al

MV2 ML,M
MV X, ML
SUB

MV COl1,Z
MV Al, A2
MV3 ML,M
MVl MU, ML
MV Y, ML
SET Al

DCR Al

MV3 ML,M
MV6 MUI1, ML
MV1 MUI, TEMP
MV2 MU1, TEMP
MV1 MUI, TEMP
SHL

MV X,Z

SUB

MV Al, A2
MVl M,Z

MV2 MUI1, ML
MV Y, ML
MV2 ML,M
MVS5 MUIL, ML
MV1 MUI, TEMP

MV2

MU1, TEMP

124

IC
9E

AC

B6

C3

MVl MUI, TEMP

SHL

MV X,Z
SUB

MV2 M, Z
INR A2

JNE 81 (Hex.)

Calculate the value of A(M).

Calculate DEN.
SET Al
DCR Al
MV2 ML,M
MV X, ML
SET Al
INR Al
MV2 ML,M
MV Y, ML
SUB

MV CO1,Z
MVI Al, 01 (Hex.)
MV2 ML,M

MVl MUL, ML
MV5 MUIL, ML
MV4 MUI, ML
JNE AC (Hex.)
MV5 MU1, ML
MV4 MUL, ML
MV5 MUL, ML
MVI Al, 01 (Hex.)
MV3 ML,M

MV3 MUI, ML
MV6 MUL, ML
JNE B6 (Hex.)
MV3 MU, ML
MV5 MUI, ML
MV1 MUL, TEMP
MV2 MUIL, TEMP
MV1 MUIL, TEMP

Calculate NOM.
IBG C3 (Hex.)
IMP CA (Hex))

SET Fl
SET Al
INR Al
MV2 ML/M
MV X, ML

BNCH 1F0 (Hex.)

125

CA

DB

EA

F1

SET
DCR
MV2
SET
DCR
MV2
MV
SET
INR
MV?2
MV
SUB
MV
MVI
MV2
MV2
MV5
MV3
INE
MV5
MV3
MV5
MV1
MV2
MV1
SHL
JF1
IMP
SET
INR
MV2
MV
BNCH
RST
SET
MV2
MV
MV5
MV1
MV2
MV1
SET
DCR
MV3
MV
BNCH
SHL
SET
DCR
MV2

Al

Al

M, W
Al

Al
ML, M
X, ML
Al

Al
ML, M
Y, ML

CO01,Z

Al, 01 (Hex.)
ML, M
MU1, ML
MU1, ML
MU1, ML
DB (Hex.)
MU1, ML
MU1, ML
MU1, ML
MU1, TEMP
MU1, TEMP
MU1, TEMP

EA (Hex.)
F1 (Hex.)
Al

Al

ML, M

X, ML

1F0 (Hex.)
F1

Al

ML, M
MU1, W
MU1, ML
MU1, TEMP
MU1, TEMP
MU1, TEMP
Al

Al

ML, M

X, ML

1FO (Hex.)

Al
Al
M, W

126

1IC If M=1, then go to address 3A (Hex.); M=M+1.

SET Al

MV3d ML,M
MV CO1,ML
DCR Al

MV2 ML,M

MV CO2, ML
JEQ 3A (Hex.)

IC Update the values of predictor filter coefficients, using the current value of A(M).
SET Al
DCR Al
MV2 MLM
MV X, ML
SET Al
INR Al
MV2 ML,M
MV CO1, ML
MV Y, ML
SUB
MV A2, Z
INR A2
MV Al, A2

117 INR Al
MvV3d ML,M
MVl MUI, ML
MV Y, ML
SET Al
DCR Al
MV3 ML,M

MVé6 MUI, ML

MV1 MUI, TEMP
MV2 MUI, TEMP
MV1 MUI, TEMP

SHL

MV X,Z
SUB

MV Al, A2
MVl M, Z
INR A2

JNE 117 (Hex.)

IC If F4=1, then go to address 12C (Hex.).
JF4 12C (Hex.)

IC If “M is less than the desired model order”, then go to address 3A (Hex.).
12C SET Al

DCR Al

MV2 ML,M

MV CO1, ML

127

DCR Al

MV3 ML,M
MV CO2, ML
JLT 3A (Hex.)

IC Translate “A = the predictor filter coefficients sequence” one position forward.
SET Al
INR Al
MV2 ML,M
MV COl1, ML
MV Y, ML
DCR Al
MV2 ML,M
MV X, ML
SUB
MV A2, Z
MV Al,Z
MV1 M, TEMP
MV2 ML,M
MV X, ML
MV Y,M
SUB
MV Y,Z
INR Al
INR Al

148 INR Al
MV X, ML
SUB
MVl M, Z
JNE 148 (Hex.)
MV X, ML
SUB
INR Al
MVl M, Z
MV A2, Al
HLT

IC Division routine, starts at location 1F0 (Hex.)

1FO SET Al
INR Al
MV ML,M
MV CO1, ML
SHL
MV Y,Z
DIV1
SET OVF
SHL

1F9 MV Y.Z
DIV2

SHL

128

INR
INE
RTN

Al
1F9 (Hex.)

129

Appendix C

BDS Language Description Of
The Control Unit

BDSYN is an interpreter for the hardware description of combinational logic. The input to the
BDSYN is the description of the combinational logic in textual format, and the output is a
collection of logic functions which realize the specified function. It is a subset of the
functional simulation language BDS which is used for high level simulation. The output of the
BDSYN is in BLIF (Berkeley Logic Interchange Format) and is a multiple-level logic

representation of the specified function. [Chapter 6, BDSYN user’s manual]

What is coming in the following is the BDS language description of the control unit of the

Processor.

I'This file provides the BDS language description of the control unit.

MODEL CONTROL_UNIT

130

CON<3:0>,
WZ_ENABLE<1:0>,
SHIFT_LOAD<1:0>,
ENABLE<5:0>,

MS<0>,
RN_W<0>,
L _CN<O>,

UN_D<0>,
COUNT _EN<0O>,
P1_ON<O>,
SN<0>,
CIWN<0>,

COUNTI1_EN<0O>,
C1L_CN<0>,

CI1UN_D<0>,
TEMP_REG<]1:0>,
CONREGI1_EN<0>,

CONREG2_EN<0>,
ADDESS_EN<0>,

ADDESS_OUT<7:0>,

STACK_OUT<S8:0>,
PC_OUT<8:0>,
JUMP_OUT<0>,

FLAG6_OUT<0>,

FLAG1_OUT<0>,
FLAG2_OUT<0>,
FLAG3_OUT<0>,
FLAG4_OUT<0>,
FLAGS5_OUT<0>,

OVRFOW_EN<0>,

READY<0>,
OVRFOW<0>

BIG_NUM<0>

ICONTROL LINES: CO1, CO2, 32BIT_SUB, 16BIT_SUB
ICONTROL LINES: W_ENABLE, Z_ENABLE
ICONTROL LINES: SHIFT, LOAD

IENABLE LINES: TRI_1EN, TRI_2EN, X_ENABLE,
'Y_ENABLE, M_ENABLE, 63_ENABLE

'MEMORY SELECT

'W/R OF THE MEMORY

ILOAD/COUNT CONTROL OF Al: LOAD IF 1, COUNT
HEF O

ITUP/DOWN CONTROL OF Al: UP_COUNT IF 0,
'DOWN_COUNT IF 1

IENABLE OF THE ADDRESS REGISTER/COUNTER Al
IMEMORY (RAM) PAGE NUMBER

ITF 0 SET ADDRESS REGISTER/COUNTER Al

IWRITE ENABLE OF THE ADDRESS REGISTER/
ICOUNTER A2

IENABLE OF THE ADDRESS REGISTER/COUNTER A2
ILOAD/COUNT CONTROL OF A2: LOAD IF 1, COUNT
MF 0

'TUP/DOWN CONTROL OF A2: UP_COUNT IF 0,
'DOWN_COUNTIF 1

ICONTROL LINES OF TEMP REGISTER: TEMP_EN
ITEMPW

IENABLE OF CONTROL REGISTER ONE (CO1)
IENABLE OF CONTROL REGISTER TWO (CO2)
'ENABLE OF ADDRESS REGISTER OF CONTROL
IUNIT, NOTE THAT THIS SIGNAL IS DEFINED IN
IMMEDIATE_ADDRESS ROUTINE

IOUTPUT OF THE ADDRESS REGISTER OF THE
ICONTROL UNIT

'OUTPUT OF THE STACK POINTER

'PROGRAM COUNTER OUTPUT

ISTATE VARIABLE FOR JUMP/SUBROUTINE
'HANDLING

IOUTPUT STATE VARIABLE FOR TWO CYCLE
ICOMMANDS

'FLAG1 OUTPUT

'FLAG2 OUTPUT

'FLAG3_OUTPUT

'FLAG4_OUTPUT

IFLAGS5_OUTPUT DEVOTED TO IMMEDIATE
'ADDRESSING

ICONTROLS THE CLOCK OF THE OVERFLOW
IFLIP_FLOP OF CONTROL UNIT

'HALT SIGNAL OF THE PROCESSOR I

'ANY KIND OF OVERFLOW

'IF ONE THEN ACCU. IS MORE THAN 16 BIT

131

DIVOVFOW<0>,
ADDOVFOW<0>,
COMMAND<8:0>,
INPUT_DATA1<15:0>,
INPUT_DATA2<15:0>,
ADDRESS<6:0>,
PC_IN<8:0>,
JUMP_IN<O>,

FLAG6_IN<O>,
FLAGI1_IN<O>,
FLAG2_IN<0>,
FLAG3_IN<0>,
FLAG4_IN<0>,
FLAGS_IN<O>,
OVCON<0>,
RESET<0>,
ADDESS_IN<7:0>,

STACK_IN<8:0>;

IDIVISION OVERFLOW SIGNAL

'ADD/SUB OVERFLOW SIGNAL

'MACHINE CODE FROM CONTROL MEMORY (ROM)
IINPUT DATA ONE FROM C.P.U.

INPUT DATA TWO FROM C.P.U.

IADDRESS TO MEMORY EXCLUDING P1_ON
'PROGRAM COUNTER INPUT

IINPUT STATE VARIABLE FOR JUMP/SUBROUTINE
'HANDLING

IINPUT STATE VARIABLE FOR TWO CYCLE
ICOMMANDS

'FLAGI1 INPUT

'FLAG2 INPUT

'FLAG3 INPUT

'FLAG4 INPUT

IFLAGS INPUT DEVOTED TO IMMEDIATE
'ADDRESSING

ITHIS IS CONNECTED TO THE OUTPUT Q OF THE
IFLIP_FLOP USED IN ROUTINE OVERFLOW
IRESET CONTROL OF P.C., TO BE CONNECTED TO
IRESET LINE OF THE PROCESSOR

IINPUT OF THE ADDRESS REGISTER OF THE
'CONTROL UNIT

'INPUT OF THE STACK POINTER

SYNONYM ADDRESS_DATA<6:0->—INPUT_DATA1<6:0>;

ROUTINE PROGRAM_COUNTER;
IF RESET EQL 1 THEN

PC_OUT=0

ELSE IF JUMP_IN EQL 1 THEN

PC_OUT=COMMAND

ELSE IF FLAG6_IN EQL 1 THEN
PC_OUT=PC_IN+1

ELSE IF COMMAND EQL 3 THEN
PC_OUT=STACK_IN

ELSE IF COMMAND EQL 63 THEN
PC_OUT=PC_IN

ELSE
PC_OUT=PC_IN+1;

ENDROUTINE;

ROUTINE HLT;
IF FLAG6_IN EQL 1 THEN
READY=0
ELSE IF COMMAND EQL 63 THEN
READY=1
ELSE

132

READY=0;
ENDROUTINE;

ROUTINE OVERFLOW;

IF RESET EQL 1 THEN
OVRFOW=0

ELSE IF FLAG6_IN EQL 1 THEN
OVRFOW=0

ELSE IF (COMMAND EQL 46) AND (DIVOVFOW EQL 1) THEN
OVRFOW=1

ELSE IF ADDOVFOW EQL 1 THEN
OVRFOW=1

ELSE
OVRFOW=0);

INOTE: THE OVERFLOW LINE OF THIS ROUTINE WILL BE CONNECTED TO A
'D_FLIP_FLOP AND THE CLOCK OF THE FLIP_FLOP WILL BE CONTROLED
IBY RESET AND Q (OR Q) OF THE FLIP_FLOP.

IF (RESET EQL 1) OR (OVCON EQL 0) THEN
OVRFOW_EN=0
ELSE
OVRFOW_EN=1;
ENDROUTINE;

ROUTINE STACK;
IF FLAG6_IN EQL 1 THEN
STACK_OUT=STACK_IN
ELSE IF COMMAND EQL 1 THEN
STACK_OUT=PC_IN+2
ELSE
STACK_OUT=STACK_IN;
ENDROUTINE;

ROUTINE FLAG;
IF FLAG6_IN EQL 1 THEN
FLAG1_OUT=FLAGI_IN
ELSE IF COMMAND EQL 48 THEN
FLAG1_OUT=1

ELSE IF COMMAND EQL 49 THEN
FLAG1_OUT=0

ELSE
FLAG1_OUT=FLAGI_IN;

IF FLAG6_IN EQL 1 THEN
FLAG2_OUT=FLAG2_IN
ELSE IF COMMAND EQL 56 THEN

FLAG2_OUT=1

133

ELSE IF COMMAND EQL 57 THEN
FLAG2_OUT=0

ELSE
FLAG2_OUT=FLAGZ2_IN;
IF FLAG6_IN EQL 1 THEN
FLAG3_OUT=FLAG3_IN
ELSE IF COMMAND EQL 58 THEN
FLAG3_OUT=1

ELSE IF COMMAND EQL 59 THEN
FLAG3_OUT=0

ELSE
FLAG3_OUT=FLAG3_IN;

IF FLAG6_IN EQL 1 THEN
FLAG4_OUT=FLAG4_IN
ELSE IF COMMAND EQL 60 THEN

FLAG4_OUT=1
ELSE IF COMMAND EQL 61 THEN
FLAG4_OUT=0
ELSE
FLAG4_OUT=FLAG4_IN;
ENDROUTINE;

ROUTINE JUMP;

IF FLAG6_IN EQL 1 THEN
JUMP_OUT=0

ELSE IF (COMMAND EQL 1) OR (COMMAND EQL 54) TIIEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 2) AND (ADDRESS NEQ ADDRESS_DATA) THEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 47) AND (BIG_NUM EQL 1) THEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 52) AND (INPUT_DATA1 LEQ INPUT_DATAZ2) THEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 53) AND (INPUT_DATA1 LSS INPUT_DATAZ2) THEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 55) AND (INPUT_DATA1 EQL INPUT_DATAZ2) THEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 64) AND (FLAGI1_IN EQL 1) THEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 65) AND (FLAG2_IN EQL 1) THEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 66) AND (FLAG3_IN EQL 1) THEN
JUMP_OUT=1

ELSE IF (COMMAND EQL 67) AND (FLAG4_IN EQL 1) THEN
JUMP_OUT=1

ELSE
JUMP_OUT=0;

ENDROUTINE;

134

ROUTINE IMMEDIATE_ADDRESS;

IF FLAG6_IN EQL 1 THEN
FLAG5_OUT=0

ELSE IF COMMAND EQL 62 THEN
FLAG5_OUT=1

ELSE
FLAGS5_OUT=0;

IF FLAGS5_IN EQL 1 THEN
ADDESS_OUT=COMMAND

ELSE
ADDESS_OUT=ADDESS_IN;

IF FLAGS_IN EQL 1 THEN
ADDESS_EN=0

'IMPORTANT NOTE: THIS ENABLE LINE IS IN FACT WRITE ENABLE OF
'THE REGISTER ADDESS

ELSE
ADDESS_EN=1;
ENDROUTINE;

ROUTINE FLAG_6;
IF FLAG6_IN EQL 1 THEN
FLAG6_OUT=0
ELSE
SELECT COMMAND FROM
[1,2,47,52,53,54,55,62,64,65,66,67]:FLAG6_OUT=1;
[OTHERWISE]:FLAG6_OUT=0;
ENDSELECT;
ENDROUTINE;

ROUTINE NEXT_COMMAND;

IF FLAGS_IN EQL 1 THEN BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;

MS=0;
RN_W=DONT_CARE;
L_CN=1;
UN_D=DONT_CARE;
COUNT_EN=1;
P1_ON=DONT_CARE;
SN=1;

C1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;

135

TEMP_REG=10#2;

CONREGI1_EN=1;

CONREG2_EN=1;

END

ELSE IF FLAG6_IN EQL 1 THEN BEGIN

CON=DONT_CARE;

WZ_ENABLE=11#2;

SHIFT_LOAD=DONT_CARE;

ENABLE=111111#2;

MS=0;

RN_W=DONT_CARE,

L_CN=DONT_CARE;

UN_D=DONT_CARE;

COUNT_EN=0;

P1_ON=DONT_CARE;

SN=DONT_CARE;

C1WN=l1,;

COUNT1_EN=0;

C1L_CN=DONT_CARE;

C1UN_D=DONT_CARE;

TEMP_REG=10#2;

CONREGI1_EN=1;

CONREG2_EN=1;

END

ELSE BEGIN

SELECT COMMAND FROM
[0,1,2,3,46,47,48,49,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CIWN=1;
COUNT1_EN=0;
CIL_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;
END;
[4]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;

136

SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=1;
UN_D=DONT_CARE;
COUNT_EN=1,;
P1_ON=DONT_CARE;
SN=0;

CIWN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[S]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[6]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=0;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=1;
SN=DONT_CARE;
C1WN=1;

137

COUNTI1_EN=0;
CI1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[7]1:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=0;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=1;
SN=DONT_CARE;
CIWN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=00#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[8]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=00#2;
SHIFT _LOAD=01#2;
ENABLE=111100#2;
MS=1;

RN_W=0;

L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_ON=1;
SN=DONT_CARE;
CIWN=1;
COUNTI1_EN=0;
CI1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

138

[9]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=0;

L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_ON=0;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;

END;

[10]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=0,
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=0;
SN=DONT_CARE;
CIWN=I;
COUNTI1_EN=0;
CIL_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=0;
CONREG2_EN=1;

END;

[11]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=011111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;

139

P1_ON=0;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=0;
CONREG2_EN=1;

END;

[12]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=00#2;
SHIFT_LOAD=00#2;
ENABLE=111100#2;
MS=1;

RN_W=0;

L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_ON=0;
SN=DONT_CARE;
CI1WN=1;
COUNTI1_EN=0;
CIL_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[13]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=(0;
CON<3>=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111101#2;
MS=0;
RN_W=DONT_CARE;
L. CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;

140

C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=11#2;
CONREGI1_EN=1;
CONREG?2_EN=1;

END;

[14]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=00#2;
SHIFT_LOAD=01#2;
ENABLE=111100#2;
MS=1;

RN_W=0;

L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_ON=0;
SN=DONT_CARE;
CIWN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1,;
CONREG2_EN=1;

END;

[15]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=00#2;
SHIFT_LOAD=01#2;
ENABLE=111100#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=0;
CI1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=11#2;
CONREGI1_EN=1;

141

CONREG2_EN=1;

END;

[16]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=110111#2;
MS=1;

RN_W=0;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=0;
SN=DONT_CARE;
CI1WN=1;
COUNTI1_EN=0;
CI1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;

END;

[17]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=00#2;
SHIFT_LOAD=10#2;
ENABLE=111111#2,
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CIWN=1;
COUNTI1_EN=0;
CI1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[18]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=011011#2;
MS=0;
RN_W=DONT_CARE;

L CN=DONT_CARE;

142

UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CIWN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[19]:BEGIN

CON<0>=1;

CON<l1>=1;
CON<2>=DONT_CARE;
CON<3>=DONT_CARE;
WZ_ENABLE=10#2;
SHIFT_LOAD=01#2;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CIWN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[20]:BEGIN

CON<0>=1;

CON<1>=0;
CON<2>=DONT_CARE;
CON<3>=DONT_CARE;
WZ_ENABLE=10#2;
SHIFT_LOAD=01#2;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;

143

CI1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[21]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=100111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG?2_EN=1;

END;

[22]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111011#2;
MS=1;

RN_W=0;

L_CN=0;

UN_D=1;

COUNT _EN=1,;
P1_ON=0;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[23]:BEGIN

CON<0>=0;

144

CON<l1>=1,;
CON<2>=DONT_CARE;
CON<3>=1;
WZ_ENABLE=10#2;
SHIFT_LOAD=01#2;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=0;

UN_D=1;
COUNT_EN=1;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=0;
CIL_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[24):BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=011111#2;
MS=1;

RN_W=1;

L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_ON=0;
SN=DONT_CARE;
CIWN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;

END;

[25]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=011111#2;
MS=1;

RN_W=1;

L_CN=0;

UN_D=0;

145

COUNT_EN=1;
P1_ON=1;
SN=DONT_CARE;
C1WN=1,
COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[26]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=0;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=0;
SN=DONT_CARE;
CI1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;

END;

[27]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111101#2;
MS=1;

RN _W=0;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=0;
SN=DONT_CARE;
C1WN=l1,
COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;

146

TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;

END:;

[28]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=1;

L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_ON=0;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;
CIL_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=11#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[29]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=101111#2;
MS=1;

RN_W=l1;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=1;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;
CIL_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[30]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=11#2;

147

SHIFT_LOAD=DONT_CARE;
ENABLE=111101#2;
MS=1;

RN_W=0;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=1;
SN=DONT_CARE;
CIWN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=104#2;
CONREG1_EN=1;
CONREG2_EN=1;

END;

[31]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=00#2;
SHIFT_LOAD=00#2;
ENABLE=111100#2;
MS=1;

RN_W=0;

L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_ON=1;
SN=DONT_CARE;
CIWN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[32]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=00#2;
SHIFT_LOAD=00#2;
ENABLE=101100#2;
MS=0;
RN_W=DONT_CARE;

148

L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[33]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L._CN=0;

UN_D=1;
COUNT_EN=1;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CI1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
CIUN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;

END;

[34]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=010111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;
CI1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;

149

CONREG1_EN=1;
CONREG2_EN=1;

END;

[35]1:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=00#2;
SHIFT_LOAD=00#2;
ENABLE=011100#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[36]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=0;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=1;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=1;
ClL_CN=1;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;

END;

[37]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;

150

ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=1;
UN_D=DONT_CARE;
COUNT_EN=1;
P1_ON=DONT_CARE;
SN=1;

C1WN=0;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[38]:BEGIN

CON<0>=0;

CON<l1>=1;
CON<2>=DONT_CARE;
CON<3>=0;
WZ_ENABLE=10#2;
SHIFT_LOAD=01#2;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CAREL;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CI1WN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;

END;

[39]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=1;

L_CN=0;

UN_D=0;
COUNT_EN=1;
P1_0ON=1;

151

SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=11#2;
CONREGI1_EN=1;
CONREG2_EN=1;
END;

[40]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CIWN=1;
COUNTI1_EN=1;
CI1L_CN=0;
CI1UN_D=1;
TEMP_REG=10#2;
CONREGI_EN=1;
CONREG2_EN=1;
END;

[41]1:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=1,;
C1L_CN=0;
CI1UN_D=0;
TEMP_REG=10#2;
CONREG1_EN=1;
CONREG2_EN=1;
END;

[42]:BEGIN

152

CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=011111#2;
MS=0;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CIWN=1;
COUNTI1_EN=1,;
Cl1L_CN=1;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[43]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=011111#2;
MS=0;
RN_W=DONT_CARE;

L CN=1:
UN_D=DONT_CARE;
COUNT_EN=1,;
P1_ON=DONT_CARE;
SN=1;

C1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[44]:BEGIN

CON<0>=0;

CON<1>=0;

CON<2>=0;
CON<3>=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111101#2;
MS=1;

RN_W=0;

L_CN=0;

153

UN_D=0;
COUNT_EN=1;
P1_ON=0;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[45]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=101111#2;
MS=1;

RN_W=];
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=0;
SN=DONT_CARE;
C1WN=1;
COUNTI1_EN=0;
CIL_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=1;

END;

[50]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=111111#2;
MS=1;

RN_W=0;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;
P1_ON=0;
SN=DONT_CARE;
C1WN=1;
COUNT1_EN=0;
C1L_CN=DONT_CARE;
CI1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;

154

ENDSELECT;
END;
ENDROUTINE,;
ENDMODEL;

CONREG2_EN=0;

END;

[51]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=11#2;
SHIFT_LOAD=DONT_CARE;
ENABLE=011111#2;

MS=0;

RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=0;

P1_ON=0;

SN=DONT_CARE;

CIWN=1;

COUNT1_EN=0;
C1L_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=10#2;
CONREGI1_EN=1;
CONREG2_EN=0;

END;

[OTHERWISE]:BEGIN
CON=DONT_CARE;
WZ_ENABLE=DONT_CARE;
SHIFT_LOAD=DONT_CARE;
ENABLE=DONT_CARE;
MS=DONT_CARE;
RN_W=DONT_CARE;
L_CN=DONT_CARE;
UN_D=DONT_CARE;
COUNT_EN=DONT_CARE;
P1_ON=DONT_CARE;
SN=DONT_CARE;
CIWN=DONT_CARE;
COUNTI1_EN=DONT_CARE;
CIL_CN=DONT_CARE;
C1UN_D=DONT_CARE;
TEMP_REG=DONT_CARE,;
CONREGI1_EN=DONT_CARE,;
CONREG2_EN=DONT_CARE,;
END;

155

Bibliography

(1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

(10]

[11]

ANDERSEN, N. - On the calculation of filter coefficients for maximum entropy spec-
tral analysis. Geophysics, Vol. 39, pp. 69-72, Feb. 1974.

AKAIKE, A. - A new look at the statistical model identification. IEEE Trans. Autom.,
Control, Vol. AC-19, P.P. 716-723, Dec. 1974.

AKAIKE, A. - Fitting autoregressive models for prediction. Ann. Inst. Statist. Math.,
1969, 21, pp. 243-247.

ANTONAKOS, J.L. - The 68000 microprocessor; hardware and software principles
and applications. 2nd ed., Merrill, New York, 1993.

BURG, J.P. - Maximum entropy spectral analysis. Proceedings of the 37th meeting of
the society of exploration geophysicists, Oklahoma, 1967.

BURG, J.P. - A new analysis technique for time series data. NATO Advanced study

institute on signal processing with emphasis on underwater acoustics. Aug. 12-23,
1968.

BOOTH, A.D. - A signed binary multiplication technique. Quart. J. Mech. Appl.
Math., Vol. 4, pp. 236-240, 1951.

CHASSIANG, R. - Digital signal processing with C and the TMS320c30. John Wiley
& Sons, Inc. 1992.

COHEN, A. - Biomedical signal processing; Vol. 1, Time and frequency domains anal-
ysis. CRC Press, Florida, 1986.

EWING, G., MAZUMDAR, J., VOIDANI, B., GOLDBLATT, E., VOLLENHOVEN,
V. - A comparative study of the maximum entropy method and the fast fourier trans-
form for the spectral analysis of the third heart sound in children. Australian physical
& engineering sciences in medicine. Vol. 9 No. 3, 1986.

EWING, G.J. - A new approach to the analysis of the third heart sound. Thesis submit-
tcd for M.Sc. degree. The university of Adelaide, Australia, 1989.

156

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

HIGGINS, R.J. - Digital signal processing in VLSL Prentice-Hall, Inc. N.J., 07632,
1990.

HUTCHINS, B.A., PARKS, T.W. - A digital signal processing laboratory using the
TMS320C25. Texas Instruments, Prentice-Hall, Englewood Cliffs, N.J. 07632, 1990.

HAYES, J.P., Computer architecture and organization. McGraw-Hill, New York, 1978.

LUISADA, A A. - The sounds of the normal heart. Warren H. Green, Inc. St. Louis,
Missouri, U.S.A., 1972, pp. 32-38.

LACOSS, R.T. - Data adaptive spectral analysis methods. Geophysics, Aug. 1971.

LITTLE, R.C. - Physiology of the heart and circulation. 3rd ed., Year book medical
publisher, Chicago, 1985.

MANO, M.M. - Computer engineering hardware design. Prentice-Hall, Inc., N.J.
07632, 1988.

MANO, M.M. - Computer system architecture, Prentice-Hall, Inc., N.J., 1976.

MUROGA, S. - VLSI System design; when and how to design very-large-scale inte-
grated circuits. John Wiley & Sons, Inc., U.S.A., 1982.

MAZUMDAR, J. - An introduction to mathematical physiology and biology. Cam-
bridge university press, 1989.

NAGAMATSU, M., TANAKA, S., MOR], J., HIRANO, K., NOGUCHI, T., HATAN-
AKA, K. - A 15-ns 32x32-» CMOS multiplier with an improved parallel structure.
IEEE JSSC, Vol. 25, No. 2, April 1990, pp. 494-497.

PAPOULIS, A. - Signal analysis. McGraw-Hill, New York, 1977.

PROAKIS, J.G., MANOLAKIS, D.G. - Digital signal processing; Principles, Algo-
rithms, and Applications. 2nd ed., Macmillan, New York, 1992.

PUCKNELL, D.A. - Fundamental of digital logic design with VLSI circuit applica-
tions. Prentice-Hall, Australia, 1990.

PUCKNELL, D.A., ESHRAGHIAN, K. - Basic VLSI design; system and circuits. 2nd
ed., Prentice-Hall, Australia, 1988.

RIDEOUT, V.L. - One-device cells for dynamic random-access memories. IEEE
Trans. on Electron Devices, Vol. ED-26, Jun. 1979, pp. 839-852.

STRACKEE, J., WESTERHOF, N. - The physics of heart and circulation. Institute of
physics, Philadelphia, PA, 1993, pp. 207-219.

SHORT, K.L. - Microprocessors and programmed logic. Prentice-Hall, Inc. N.J.
07632, 1981.

STONE, H.S., LOOMIS, H.H. - Introduction to computer architecture. 2nd ed., Sci-
ence Research Associates, Inc., U.S.A., 1980, pp. 63-71.

157

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

SMITH, J.J. - Circulatory physiology; the essentials. 2nd ed.,Williams & Wilkins,
1984.

SHANNON, C.E., WEAVER, W. - The mathematical theory of communication. Uni-
versity of Illinois press, 1949.

TORTORA, G.J., ANAGNOSTAKOS, N.P. - Principles of anatomy and physiology.
Sth ed., Harper & Row, 1987, pp. 461-468.

TILKTIAN, A.G., CONOVER, M.B. - Understanding heart sounds and murmurs with
an introduction to lung sounds. 2nd ed., W.B. Saunders Company, 1984, pp. 35-70, 89.

TRIEBEL, W.A., SINGH, A. - 16-bit Microprocessors; architecture, software, and
interface techniques. Prentice-Hall, N.J., 1985.

ULRYCH, T.J., BISHOP, T.N. - Maximum entropy spectral analysis and autoregres-
sive decomposition. Review of geophysics and space physics, Feb. 1975, Vol. 13, 183-
200.

WESTE, N.E., ESHRAGHIAN, K., - Principles of CMOS VLSI design; A system per-
spective. 2nd ed., Addison-Wesley, 1993.

WALLACE, C.S. - A suggestion for fast multipliers. IEEE Trans. Electron. Comput.
Vol. EC-13, Feb. 1964, pp. 14-17.

WASER, S., FLYYN, M.J. - Introduction to arithmetic for digital systems designers.
CBS college publishing, 1982.

YAMAUCHI, H., NIKADO, T.,, NAKASHIMA, T., KOBAYASH]I, Y., SAKAL T. - 10
ns 8 x8 multiplier LSI using super self-aligned process technology. IEEE JSCC, Vol.
SC-18, No. 2, April 1983, pp. 204-210.

YANO, K., YAMANAKA, T., NISHIDA, T., SAITO, M., SHIMOHIGASHI, K.,
SHIMIZU, A. - A 3.8-ns CMOS 16 x16-» multiplier using complementary pass tran-
sistor logic. IEEE JSSC, Vol. 25, No. 2, April 1990, pp. 388-394.

YAMAGUCHI, K., NAMBU, H., KANETANI, K., IDEI, Y., HOMMA, N.,
HIRAMOTO, T., TAMBA, N., WATANBE, K., ODAKA, M., IKEDA, T., OHHATA,
K., SAKURAIL Y. - A 1.5-ns access time, 78-um? memory-cell size, 64-kb ECL-
CMOS SRAM. IEEE JSSC, Vol. 27, No. 2, Feb. 1992, pp. 167-174.

158

