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ABSTRACT 

In ecology, process-explicit models represent the dynamics of ecological systems as explicit 

functions of the mechanisms and drivers that produced them. Process-explicit models are therefore 

able to link observed ecological patterns, such as species spatial abundance patterns, directly to 

their causes, such as climate and environmental change. In this PhD thesis, I show how process-

explicit models can be used to establish determinants of range collapses and extinction by 

unpacking complex interactions between ecological lifestyles, biological traits, climate change, and 

human-driven threats. By providing a more complete understanding of the ecological mechanisms 

that regulate species’ responses to climate and environmental change, my PhD research provides 

information needed to better predict vulnerability to future climate and environmental change.  

In Chapter I, I reviewed and interpreted the techniques used to unlock ecological and 

evolutionary mechanisms responsible for spatial and temporal patterns of biodiversity ranging 

from the gene to the ecosystem. By revealing how models can codify the generalisable mechanisms 

responsible for the distributions of life on Earth, this review will help to enable important advances 

in macroecology, evolutionary biogeography and conservation biology, strengthening both basic 

and applied science. 

Chapter II is a sensitivity analysis of the Climate Informed Spatial Genetic Model (CISGeM), a 

process-explicit model of human migration out of Africa. While it is well-known that correlative 

models of species ranges, such as environmental niche models, are highly sensitive to the climate 

dataset used for parameterisation, the sensitivity of process-explicit models of human migration to 

climate data and other model parameters has never been tested. I found that the outputs of 

CISGeM are robust to the choice of palaeoclimate simulation data, but sensitive to the values for 

key demographic processes. 

In Chapter III, I used process-explicit models to reconstruct the late Quaternary range dynamics 

of the steppe bison (Bison priscus) using a new R package, paleopop, that I co-developed. The 

approach linked spatially explicit population models with inferences of demographic change from 

fossils and ancient DNA to continuously simulate 45,000 years of steppe bison extinction 

dynamics. The models included dispersal and demographic processes responding to human 
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harvesting and rapid deglacial warming. I found that deglacial warming interacted with hunting 

pressure from humans to cause the range of the steppe bison to contract to refugial highland 

populations, which became extinct in the early Holocene. 

Chapter IV used a related approach to reconstruct the range dynamics of the European bison 

(Bison bonasus) from the last ice age to the year 1500. The European bison became extinct in the 

wild in 1927 and has been bred back from captive animals. It is a goal of European Union policy to 

reintroduce the bison more broadly, but there is a debate about the optimal locations and habitats 

for reintroduction. I inform this debate by showing where bison became extinct due to hunting, 

land use change, and climate change. 

General findings from my PhD will help macroecologists to better model and understand species 

range and extinction dynamics, providing important theoretical and applied insights for 

conserving vulnerable species in the Anthropocene. 
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RESUMÉ 

I økologi er de økologiske systemers dynamikker repræsenterede ved processpecifikke modeller i 

form af specifikke funktioner af de mekanismer og drivkræfter som står bag disse dynamikker. 

Derfor er processpecifikke modeller i stand til at kæde observerede økologiske mønstre, som f.eks. 

arters rummelige hyppighed, direkte sammen med deres årsager som f.eks. klima- og 

miljøforandringer mv. I denne ph.d.-afhandling viser jeg, hvordan processpecifikke modeller kan 

anvendes til at fastslå de bestemmende indvirkninger på udbredelseskollaps og en arts udryddelse 

ved at udrede indviklede vekselvirkninger mellem økologiske livstile, biologiske træk, 

klimaforandringer, og menneskedrevne trusler. Ved at fremsætte en større forståelse for de 

økologiske mekanismer som regulerer en arts reaktioner til klima- og miljøforandringer, indeholder 

min ph.d.-forskning oplysninger som er nødvendige for bedre at forudse en arts sårbarhed ved 

fremtidige klima- og miljøforandringer. 

I Kapitel 1 gennemgår og analyserer jeg de teknikker som anvendes til at afdække de økologiske og 

evolutionære mekanismer som er ansvarlige for rummelige og tidsmæssige biodiversitetsmønstre, 

som spænder fra genet til økosystemet. Ved at afdække hvordan modeller kan kodificere de 

generaliserbare mekanismer som er ansvarlige for udbredelserne af liv på jorden, vil denne 

gennemgang hjælpe med at muliggøre vigtige fremskridt i makroøkologi, evolutionær biogeografi 

og fredningsbiologi, og derved styrke både grundforskning og anvendt forskning inden for disse 

emner. 

Kapitel 2 består af en følsomhedsanalyse af Climate Informed Spatial Genetic Model (CISGeM), 

som er en processpecifik model af menneskevandring fra Afrika. Mens det er velkendt at indbyrdes 

relaterede modeller af en arts udbredelsesområder, som f.eks. miljømæssige niche modeller, er 

meget følsomme over for det klimadatasæt som anvendes til at bestemme parametrene, er 

følsomheden af processpecifikke modeller for menneskevandring overfor klimadata og andre 

modelparametre aldrig blevet afprøvet. Jeg fandt at resultaterne fra CISGeM er robuste ift. valget 

af paleoklima simulationsdata, men følsomme ift. værdierne for nøgle demografiske processer. 

I Kapitel 3 anvender jeg procesbestemte modeller til at rekonstruere de sene Kvartærtidens 

udbredelsesdynamikker hos steppebisonen (Bison priscus) ved at anvende en ny R pakke, paleopop, 
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som jeg er medudvikler af. Denne tilgang kæder rummeligspecifikke bestandsmodeller med 

følgeslutninger baseret på demografiske forandringer som er baseret på fossiler og forhistorisk 

DNA samt løbende simulering af 45.000 års udryddelsesdynamikker ift. steppebisonen. 

Modellerne indeholder både spredningsprocesser og demografiske processer som reaktion på 

menneskets høst af afgrøder og i øvrigt den hurtige smeltning af gletsjere, forårsaget af 

klimaforandringer, som førte til, at steppebisonens udbredelsesområde skrumpede ind til 

tilflugtssteder med højlandsbestande som uddøde i den tidlige Holocæn. 

Kapitel 4 anvender en lignende tilgang til at rekonstruere den europæiske bisons (Bison bonasus) 

udbredelsesområdedynamik fra den sidste istid til året 1500 e.Kr. Den europæiske bison uddøde i 

naturen i 1927, og er blevet genavlet fra dyr i fangeskab. Det er et af den Europæiske Unions mål at 

genindføre den europæiske bison mere bredt, men der er debat om, hvor de mest velegnede 

områder og habitater til genindføringen er. Jeg præger denne debat ved at vise, hvor bisonen blev 

udryddet pga. jagt, ændringer i brugen af naturarealer, og klimaforandringer. 

De mere brede resultater fra mit ph.d.-studie vil kunne hjælpe makroøkologer til bedre at modellere 

og forstå arters udbredelsesområder og udryddelsesdynamikker, og derved bidrage med væsentlige 

teoretiske og anvendte indsigter i beskyttelse af sårbare arter i Antropocenen.  
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INTRODUCTION 

Macroecology is the study of interactions among organisms and the environment on large spatial 

and temporal scales (J. H. Brown & Maurer, 1989). Macroecology describes and explains the 

distribution of life on our planet: how it came to be the way it is now, and how it will respond to 

global change drivers such as anthropogenic climate change. Because macroecology can be very 

difficult to study using experimental methods due to its scale, ecological modelling is crucial to the 

discipline (Fordham et al., 2020). 

Process-explicit models 

In ecology, process-explicit models represent the dynamics of an ecological system as explicit 

functions of the processes that drive change in that system (Connolly, Keith, Colwell, & Rahbek, 

2017). They are able to causally link ecological patterns to the processes, drivers, and interactions 

that generated them. By contrast, correlative models represent the dynamics of an ecological system 

as a set of statistical relationships between ecologically relevant variables. Here, ecological processes 

are implicit in the relationships between the variables. Correlative models are more often used in 

ecology than process-explicit models because they require fewer data and are more appropriate for 

study systems that are still poorly understood. However, when they can be implemented, process-

explicit models have key advantages over correlative models. 

Process-explicit models are better able to describe the dynamics of an ecological system, as well as 

predict its future dynamics, than correlative models. Process-explicit models are more descriptive of 

ecological systems because they can make inferences about causal drivers of ecological dynamics, 

e.g., the minimum human population density and hunting rate required to cause megafaunal 

extinction in North America (Alroy, 2001). Process-explicit models can also make better 

predictions about ecological systems (Fordham, Bertelsmeier, et al., 2018) because they can make 

predictions under novel future conditions, while correlative models are limited by the conditions 

that produced past data and the correlations among them (Fordham et al., 2020).  

However, process-explicit models are limited in their applications by data availability and the 

problem of equifinality. Process-explicit models are often data-intensive because each ecological 
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process and driver must be parameterised, while correlative models require only, at minimum, a 

response variable and a predictor variable. Process-explicit models also face the problem of 

equifinality (Beven, 2006), whereby multiple combinations of processes and drivers can produce 

the same empirically observed pattern, making it difficult to determine which one accurately 

describes the ecological system.  

Process-explicit models hold great promise for the field of macroecology because they enable 

virtual experiments over spatial extents and timescales that are not possible in the lab or the field 

and make inferences about the processes that produce large-scale ecological patterns. In Chapter I, 

my co-authors and I review the applications of process-explicit models for conserving biodiversity 

and indicate promising avenues of research. 

 

Modelling the past to understand range dynamics 

Many of the classic ecological studies on extinction, establishing proximate mechanisms of 

extinction such as demographic stochasticity, inbreeding depression, and genetic drift that occur in 

small populations; however, extinction processes such as habitat fragmentation and loss of 

mutualistic partners often begin long before the population has become small. These two 

paradigms of extinction are known as the small and declining population paradigms (Caughley, 



3 
 

1994). The small population paradigm can be developed in real time studies of rapid population 

collapses. The declining population paradigm, however, requires a longer timescale. Studies must 

begin well before the proximate mechanisms of extinction begin. 

Another important reason to model biodiversity in the past is that there are regions where past 

climates resemble our predictions of future climates (Fordham et al., 2020). By modelling 

biodiversity under past conditions, we can learn about the biodiversity changes that can be 

expected under future climates, on a larger scale than is possible with temperature manipulations 

in laboratory experiments.  

During the deglaciation period from the last ice age, 20,000 to 10,000 years before present (BP), 

there were regions, mostly in the Northern Hemisphere, where warming was as rapid as it is 

projected to become under the most extreme forecasts of future warming (Fordham et al., 2020). 

During this period, the loss of many Arctic megaherbivores drove a shift from the “mammoth 

steppe” biome in the Northern Hemisphere to a tundra-taiga ecotone (Zimov et al., 1995). 

Modelling biodiversity changes in the transition from the last ice age to the warmer Holocene is 

our best analogue from the past for the magnitude of change we can expect under future climate 

scenarios. Further, the last deglaciation is well within the window for accurate radiocarbon dating, 

which makes this time period tractable to study.  

In Chapters II, III, and IV, I present three process-explicit modelling studies examining changes 

in biodiversity over the last deglaciation in the Northern Hemisphere. My co-authors and I model 

the range dynamics of steppe bison, humans, and European bison, respectively. 

Modelling the future for conservation biogeography 

One of the oldest and most established techniques for modelling species extinction risk is 

population viability analysis (PVA), which projects time to quasi-extinction and minimum viable 

population for long-term survival using deterministic functions or stochastic probability draws 

(Boyce, 1992). However, PVA is limited because it does not include climate data or spatial 

dynamics. Environmental niche models (ENMs) address these shortfalls: they are spatially explicit 

and account for changes in climate in their forecasts of species ranges. However, as noted above, 
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correlative models like ENMs struggle to make accurate predictions under novel conditions that 

were not present in the data used to train the model, and under anthropogenic global change, 

novel conditions are very likely to occur. 

In Chapter IV, my co-authors and I address the shortfalls of PVA and ENMs as forecasting tools 

for threatened species by forecasting the potential range of the European bison using spatially 

explicit population models (SEPMs) and pattern-oriented validation (POV). SEPMs are spatially 

explicit, process-explicit models of populations on an interconnected lattice of possible habitats. 

POV is a validation procedure that optimises parameters in a process-explicit model by converging 

summary metrics from these models toward multiple observed patterns. By combining SEPMs 

with POV, the demographic and ecological parameters in a SEPM can be optimised to accurately 

reconstruct real-world patterns of population dynamics. These optimised parameters can be used 

to make forecasts under future conditions, including novel ecological conditions. 

Spatially explicit population models optimised with POV can do more than simply predict the 

future range of a species. They can explicitly link changes in the range to their causes, such as 

human harvesting or land-use change. They can predict abundance and population growth across 

the range, indicating which populations may persist or become extinct. From a conservation policy 

perspective, forecasts from SEPMs and POV can be used to propose reintroduction sites as well as 

stocking rates needed to ensure a viable population at the proposed sites. 

Objectives and aims 

My objective in this PhD dissertation is to show how process-explicit models can be used to better 

understand the range dynamics of species under threat from human harvesting and land use 

change as well as rapid climatic change. First, I review the use of process-explicit models in ecology 

to conserve biodiversity, identifying key types of process-explicit models and indicating promising 

future avenues of research (Chapter I). I then apply spatially explicit population models to 

reconstruct the range dynamics of three species in the late Pleistocene and Holocene periods: 

humans (Chapter II), steppe bison (Chapter III), and European bison (Chapter IV).  
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Reconstructions of prehistoric human migration patterns are important to studies of human-

driven biodiversity change over long timescales. It is well-established that correlative models of 

species distribution are highly sensitive to the choice of climate data used (L. J. Beaumont, Pitman, 

Poulsen, & Hughes, 2007; Tuck, Glendining, Smith, House, & Wattenbach, 2006), but process-

explicit models of human migration have not yet been tested for their sensitivity to climate dataset 

and other model parameters. Chapter II is a sensitivity analysis of a process-explicit model of 

human migration, to determine which parameters in these models have the greatest impact on the 

accuracy of their reconstructions.  

My study of the steppe bison (Bison priscus), once a widespread species, provides important insight 

into the declining species paradigm. The steppe bison had a vast circumpolar distribution in the 

Northern Hemisphere, until it disappeared from Europe, Asia, and finally North America. In 

Chapter III I use SEPMs and POV to reconstruct the extinction of the steppe bison in Siberia 

from 50,000 years BP to 5,000 years BP, demonstrating the utility of these techniques for 

simulating range collapses that match observed fossil evidence.  

The European bison (Bison bonasus) is a closely related species to the steppe bison which was once 

widespread in Eurasia, then became extinct in the wild in 1927. Since then, an extensive 

conservation effort has brought back the species from captive populations, but it is still threatened. 

In Chapter IV, I use SEPMs and POV to uncover the role of environmental change, land use 

transformation, and human hunting in the extinction of the bison in space and time, clarifying the 

regions and time periods where humans and climate have had the greatest impact on the species’ 

decline.   

In this thesis, I show concrete ways that process-explicit models can identify causes of extinction in 

action well before the extinction occurs, as well as inform policy for the conservation of threatened 

species into the future. 
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CHAPTER I: PROCESS-EXPLICIT MODELS REVEAL 

THE STRUCTURE AND DYNAMICS OF 

BIODIVERSITY PATTERNS 
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Abstract 
With ever-growing data availability and computational power at our disposal, we now have the 

capacity to use process-explicit models more widely to reveal the ecological and evolutionary 

mechanisms responsible for spatiotemporal patterns of biodiversity. Most research questions 

focused on the distribution of diversity cannot be answered experimentally, because many 

important environmental drivers and biological constraints operate at large spatiotemporal scales. 

However, we can encode proposed mechanisms into models, observe the patterns they produce in 

virtual environments, and validate these patterns against real-world data or theoretical 

expectations. This approach can advance understanding of generalisable mechanisms responsible 

for the distributions of organisms, communities, and ecosystems in space and time, advancing 

basic and applied science. We review recent developments in process-explicit models and how they 

have improved knowledge of the distribution and dynamics of life on Earth, enabling biodiversity 

to be better understood and managed through a deeper recognition of the processes that shape 

genetic, species, and ecosystem diversity. 

Teaser 

Process-explicit models can help explain the distribution of life on Earth. 
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Introduction 
The patterns of biodiversity we observe at different temporal and spatial scales result from the key 

evolutionary and ecological processes of speciation, ecological interaction, adaptation, movement, 

and extinction, acting separately or in concert (Holt, 2003). These processes can be stochastic, or 

forced by natural drivers of environmental change (e.g., plate tectonics, palaeoclimate change) or 

by human drivers, such as invasive species, land use, pollution, and harvesting (Brook, Sodhi, & 

Bradshaw, 2008). However, the interplay among these processes and their drivers is complex 

(Davidson, Hamilton, Boyer, Brown, & Ceballos, 2009), and different sets of circumstances can 

produce similar patterns. This ambiguity has made it difficult to discern which ecological and 

evolutionary processes and drivers have shaped current-day patterns of biodiversity based on 

empirical data alone (Beven, 2006). Fortunately, key advances in process-explicit models over the 

last 50 years are now enabling the processes and drivers responsible for contemporary patterns of 

biodiversity to be disentangled in space and time. Here we show how these advances in biodiversity 

modelling are revealing the generalisable mechanisms responsible for the distributions, 

abundances, and diversity of life on Earth; and how they are strengthening basic and applied 

science, resulting in improved guidelines for the management of nature. 

Process-explicit models in ecology and evolution represent the dynamics of a biological system as 

explicit functions of the events that drive change in that system (Connolly et al., 2017). By causally 

linking current patterns to the past events that produced them (Figure 1), process-explicit models 

help achieve a deeper understanding of the chain of causality leading to current-day spatial patterns 

of biodiversity, including human diversity (Eriksson et al., 2012). These models allow contested 

ecological and evolutionary theories to be assessed, enabling biodiversity to be understood and 

managed more effectively through a deeper recognition of the processes of genetic-, species- and 

ecosystem-level endangerment and collapse (Fordham et al., 2020). 

Models that are process-explicit provide platforms for directly integrating ecological and 

evolutionary theory into conservation and environmental science (Fordham et al., 2016), 

enhancing knowledge of the effects of biodiversity and its drivers on the functioning of species and 

ecosystems (Bonan, 2008), and strengthening projections of biodiversity in a changing world 
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(Briscoe et al., 2019), resulting in improvements to conservation management and policy (Ferrier, 

Ninan, Leadley, & Alkemade, 2016). For example, process-explicit models derived from the neutral 

theory of biodiversity (Hubbell, 2001) were some of the first models to show that rare species are 

less frequent in island communities than in adjacent mainland communities (Mangel, 2002), 

providing important new information to conservation policy makers regarding vulnerability to 

human-driven environmental change (Halley & Iwasa, 2011). Process-explicit models of the 

neutral theory of molecular evolution, which simulate rates of genetic drift as products of effective 

population size and generation length (Kimura, 1979), enabled conservation geneticists to study 

the behaviour of neutral alleles to better understand why extinction risk increases for species with 

small population sizes (Yoder, Poelstra, Tiley, & Williams, 2018). A stronger integration of 

ecological and evolutionary theory in conservation science using process-explicit modelling 

promises to further link the evolution of species traits at the individual level to the dynamics of 

communities and the overall functioning of ecosystems (Loreau, 2010). Together, these advances 

are improving knowledge of how climatic and environmental changes have shaped species 

assemblages in the past, strengthening confidence in projections of biodiversity’s future (Fordham 

et al., 2020). 

Recent reviews have established important benefits of process-explicit modelling approaches in 

macroecology (Cabral, Valente, & Hartig, 2017; Connolly et al., 2017), ecosystem ecology 

(Loreau, 2010), conservation science (Briscoe et al., 2019), and related disciplines. These studies 

highlight a need to use process-explicit models for managing ecosystems (Loreau, 2010), improving 

theory (Cabral et al., 2017; Connolly et al., 2017), and predicting species’ range shifts under 

ongoing and future climate change (Briscoe et al., 2019). However, there has been no synthesis of 

the broader uses of process-explicit models for unravelling the biological mechanisms responsible 

for shaping patterns of biodiversity in space and time in response to Earth system drivers of 

environmental change. Here we identify key properties of the structure and dynamics of 

biodiversity first uncovered by process-explicit models, many of which are now guiding the future 

management of biodiversity. 

The application of process-explicit models of spatiotemporal diversity in ecology and evolution can 

be traced back to MacArthur and Wilson’s model of island biogeography (Figure 1), which linked 
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patterns of biodiversity on islands to processes of movement (colonisation) and local extinction 

(MacArthur & Wilson, 1967). Early process-explicit models include metapopulation models 

(Levins, 1969), which are used frequently today for conservation planning (Hanski, Pakkala, 

Kuussaari, & Lei, 1995) and for informing species’ extinction risk (Pearson et al., 2014). These 

models, which were initially limited to interactions and movements of subpopulations of a species, 

have now been expanded to include demographic and environmental stochasticity (Hanski, 1989), 

species interactions, and community-level dynamics (Wilson, 1992), allowing interlinked patches 

with different community compositions to be simulated and their dynamics understood. The first 

individual-based models followed shortly after the development of metapopulation models, 

permitting the inclusion of individual variation in dispersal behaviour, genotype, competitive 

ability, and life history traits in simulations of population change (DeAngelis & Mooij, 2005). 

Today, individual-based models are used frequently not only for the management of specific 

populations, including fisheries stocks (Rice et al., 2003), but also to answer paradigmatic 

questions about community assembly, food web ecology, and zoonotic disease (DeAngelis & 

Grimm, 2014). 

In the 1980s, development of coalescent models of simulated genealogies (Kingman, 1982) enabled 

the diversification of lineages to be studied in space and time (Avise, 2000), giving rise to the field 

of phylogeography. These early models showed how lineages can diverge without geographic 

isolation, illustrating potential mechanisms of sympatric speciation. More recently, they have been 

used to show how pathogens can rapidly evolve as they spread through a network of hosts 

(Knowles, 2009), enriching fundamental understanding of past, current, and future disease 

dynamics (Prohaska et al., 2019). The latest generation of coalescent models can reconstruct 

genomic erosion in endangered species (Díez-del-Molino, Sánchez-Barreiro, Barnes, Gilbert, & 

Dalén, 2018) and rapid directional selection (Bi et al., 2019) in response to sub-centennial periods 

of environmental change. 

The 1990s saw the advent of dynamic global vegetation models (DGVMs): process-explicit models 

that replicate global patterns of vegetation by simulating the growth and mortality of plant 

functional groups under different climatic conditions (Foley et al., 1996). This development 

enabled predictions of the capacity of the biosphere to store carbon (A. White, Cannell, & Friend, 
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2000) and produce crops (Boit et al., 2019) under future climate conditions. Today DGVMs are 

being used to inform regional-to-global policies on food security, greenhouse gas emission 

scenarios and the maintenance of ecosystem services (Kim et al., 2018). They can account for the 

effects of herbivory on vegetation structure and fire regimes (Zhu et al., 2018), allowing the 

impacts of competing land management strategies to be compared (Contreras et al., 2019; Ferrier 

et al., 2016). 

In the early 2000s, models began to be developed that integrate the evolutionary processes of 

speciation and adaptation with the ecological processes of movement, extinction, and interaction. 

By providing a mechanistic understanding of the physical and biological processes that shape 

Earth’s biodiversity, these models have aimed to illuminate the origins of biodiversity through 

direct tests of competing scenarios (May, Wiegand, Lehmann, & Huth, 2016). Many of these 

theories, established long ago by early naturalists (Brenner, 1921; Humboldt, 1877; Wallace, 1863), 

could not be directly tested with simpler process-explicit models or phenomenological approaches. 

Today, eco-evolutionary simulators provide opportunities to achieve new levels of realism in 

projections of assemblage dynamics under past and future global change (Hagen et al., 2021). 

The most recent developments in process-explicit modelling, which simulate multiple processes 

and patterns of biodiversity using complex mathematical components and logical algorithms, have 

resulted from a rapid rise in computational power following the turn of the 21st century (Hagen et 

al., 2021; Rangel, Diniz‐Filho, & Colwell, 2007; Rangel et al., 2018). This advance, coupled with 

wider access to large ecological, genomics, and satellite-based remote sensing datasets, has enabled 

the generation and increasingly frequent application of a broad variety of process-explicit models 

in ecological and evolutionary studies, parameterised or validated with more data and based on 

more-realistic assumptions than previously possible. Despite this accelerated expansion, the 

development and application of process-explicit models has followed an opportunistic path, with 

little strategy or coordination (M. C. Urban et al., 2016). 

To address this current shortfall, we provide here a much-needed review of recent developments in 

process-explicit models, outlining considerations for researchers who contemplate building 

process-explicit models to evaluate the mechanisms that govern the structure and dynamics of past, 
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present, and future biodiversity. We scrutinise the processes of codifying theory into models, 

identify key scientific advances from simulation outputs, and illustrate with examples how process-

explicit models can safeguard future biodiversity. 

Process versus pattern 
Narrative accounts (Wallace, 1863), correlative studies (R. D. Guthrie, 2006), and experiments 

(Yoshida, Jones, Ellner, Fussmann, & Hairston, 2003) lead to hypotheses about the underlying 

causes of biodiversity change, and theoretical models demonstrate possible mechanisms (Doebeli & 

Dieckmann, 2003). In comparison, spatiotemporal process-explicit models can directly assess and 

disentangle competing theories for drivers of biodiversity, helping to elucidate interactions among 

underlying ecological and evolutionary mechanisms and drivers (Connolly et al., 2017). An 

example of competing theories for biodiversity dynamics and resultant patterns is the contrast 

between niche (Chase & Leibold, 2003) and neutral theory (Hubbell, 2001). The former focuses 

on the role of environmental determinism, while the latter focuses on contingent and stochastic 

determinants of biodiversity dynamics. 

Process-explicit models differ from pattern-based models by generating predictions based on 

explicit causal relationships between environmental drivers and ecological and evolutionary 

responses, rather than inferring implicit causal relationships based on correlations between 

observed and modelled patterns (Gotelli et al., 2009). A physiological model, for example, is 

process-explicit if it characterises the occurrence of a tree species in a landscape based on where the 

tree can minimise water stress. In contrast, a model is phenomenological (or correlative) if it maps 

the tree’s occurrence based on the statistical relationship between annual precipitation and 

observations of occurrence, because no processes linking precipitation and fitness are specified. 

The process-explicit model allows patterns (e.g., a contraction of the tree species’ range) to be 

connected to processes that cause them (e.g., an increase in seedling mortality in a drought), while 

the phenomenological model cannot explicitly link a changing pattern to a causative agent 

(Kearney & Porter, 2009). Similarly, a phenomenological model that hindcasts plant functional 

types on the landscape based on correlations between climate and pollen records cannot link 
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pattern and process in the same way as a DGVM that hindcasts plant nutrient cycling and 

competition over the same period (Gritti et al., 2010). 

 

Phenomenological models and experimental observations sometimes find strong or unexpected 

correlations that can suggest the mechanisms that produce them. Proposed mechanisms can be 

used to build process-explicit models that can then be tested against observed patterns (Fordham et 

al., 2020). Studies of the effect of biodiversity on ecosystem function offer an example of this 

ontology (Figure 2). Effects of depauperate plant richness on ecosystem function were first 

observed empirically in experimental chambers and plots, which led to the proposed mechanism of 

niche complementarity, which in turn became the basis for mechanistic models of ecosystem 

function (Naeem, 2002). In this way, phenomenological and experimental analysis can provide 

important insights into the workings of nature that can be tested using process-explicit models. 

Revealing structure and dynamics 
Process-explicit models can operate at diverse levels of biological organisation, ranging from the 

gene to the ecosystem (Figure 3). The level of biological organisation that is simulated—genetic, 

species, or ecosystem diversity—has, to date, dictated the number and combination of possible 

biotic processes that are modelled (Fordham et al., 2020). The five primary processes responsible 

for the origin, structure, and dynamics of biodiversity are speciation, ecological interaction, 

adaptation, movement, and extinction (including population extirpation). In this context, 

ecological interactions encompass both interspecific species interactions (competition, predation, 

herbivory, parasitism, and mutualism), and ecosystem processes (nutrient cycling, photosynthesis, 

stability, etc.). 

Ecosystem- and population-level models were the earliest process-explicit models. They generally 

include ecological interaction and local- to range-wide extinction processes (Figure 3), but not 

movement, speciation or adaptation. In contrast, more recently developed community level 

models simulate all five primary biotic processes (Rangel et al., 2018). These and individual-based 

models are becoming more frequently used to unravel biological mechanisms that underpin 
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spatiotemporal patterns of biodiversity (Figure 3). These advances promise to lead to a greater 

awareness of the importance of eco-evolutionary processes in shaping biodiversity (Gotelli et al., 

2009). 

Genetic diversity 

Although coalescent models have simulated genetic diversity—trait inheritance within species—

for 40 years (Kingman, 1982), early approaches did not model differences in DNA among 

individuals in space and time. This advance was not made until the beginning of the 21st century 

(Figure 3) with the advent of a spatially explicit simulation framework for population genetics: the 

serial-genetic simulator SPLATCHE (SPatial and Temporal Coalescent in a Heterogeneous 

Environment). The first studies to use SPLATCHE found that range expansions in heterogeneous 

environments produce genetic diversity patterns contingent on the geographical origin of the 

expansion, allowing spatially explicit genetic models to trace back the origin points of range 

expansions (Ray, Currat, Berthier, & Excoffier, 2005). Subsequently, coalescent-based process-

explicit models have been frequently used to infer the effects of species’ range expansions, 

contractions, and shifts on patterns of genetic diversity, using ancient and modern DNA. They 

have revealed that genetic diversity declines toward the leading edge of a species range more steeply 

than predicted by neutral theory (T. A. White, Perkins, Heckel, & Searle, 2013) and that rapid 

range contractions conserve more genetic diversity in refugial populations than slow range 

contractions (Arenas, Ray, Currat, & Excoffier, 2012). These models have also shown that present-

day isolation of a population is a poor indicator of the past diversity of the lineage and historical 

barriers to gene flow (J. L. Brown & Knowles, 2012), and that rapid warming events can 

reconfigure species assemblages (Bemmels, Knowles, & Dick, 2019). Together, these 

reconstructions of past patterns of genetic diversity using process-explicit models are helping to 

improve projections of future patterns of genetic diversity by parameterising known responses to 

environmental shifts (J. L. Brown et al., 2016). 

Virtual genomes can be simulated to test and refine theories of genetic diversity. These genomes are 

simulated with mutation, migration, and divergence on computer-generated landscapes using a 

priori mutation rates and dispersal patterns. This approach has been used to simulate species’ range 
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expansions, revealing that introgression (transfer of genetic information from one species to 

another as a result of hybridisation (E. Anderson & Hubricht, 1938)) is likely to occur from the 

resident population to the invading population, regardless of the relative densities of the resident 

and invader populations (Currat, Ruedi, Petit, & Excoffier, 2008). Simulations of virtual genomes 

have also shown that new mutations near the leading edge of an expanding range have a higher 

frequency and wider spatial distribution than in a stationary population (Klopfstein, Currat, & 

Excoffier, 2006). This result suggests that spatially expanding populations have an increased rate of 

evolution at their frontier (Klopfstein et al., 2006), with important implications for the 

management of invasive populations and range-shifting native species. 

Species Diversity 

Process-explicit models used to decipher patterns of species diversity can focus on the individual, 

species, or community level of biological organisation, and findings about the operation of 

biological processes at different levels of species diversity can reinforce or amplify one another. For 

example, an individual-level model can elucidate the evolution of optimal dispersal strategies 

within a single habitat island (Dytham, 2009), a population-level model can reveal species diversity 

patterns across a chain of islands shaped by different dispersal strategies (Hovestadt & Poethke, 

2005), and a community-level model can infer dispersal strategies in different functional groups, 

based on diversity across an entire region (Sukumaran, Economo, & Knowles, 2016). In this way, 

process-explicit models at these three levels of organisation allow us to investigate and potentially 

to integrate the impact of movement on species diversity patterns at multiple biological scales. 

Processes can be modelled at the level of the individual organism with agent-based models (Welch, 

Kwan, & Sajeev, 2014) and physiological approaches (Yue Wang et al., 2018). The former can 

potentially capture any of the five fundamental biotic processes responsible for biodiversity and 

can generate complex population- and community-level phenomena that arise from ecological 

interactions among individuals (Grimm et al., 2005). For example, individual-based models of 

initial colonisation in a range expansion or shift have shown that the interaction of local adaptation 

with timing (Mark C. Urban & De Meester, 2009) and speed (Phillips, 2012) of colonisation can 

alter the expected distribution of a species along an environmental gradient.  
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However, models built at the individual level can be computationally intensive, particularly if they 

simulate complex eco-evolutionary processes for many populations of individuals. Moreover, they 

can be difficult to parameterise and validate (Figure 4), because data on biotic processes like 

movement and other attributes are often unavailable at the level of the individual. The 

computational demands of these models have led some researchers to use machine learning 

techniques (as emulators) to generalise process-explicit model behaviour post-hoc at small scales 

and apply those generalisations to larger scales (Vahdati, Weissmann, Timmermann, Ponce de 

León, & Zollikofer, 2019). Others have used virtual landscapes to simulate and explore the 

population-level effects of different movement strategies, requiring neither biotic nor 

environmental data for parameterisation (Mark C. Urban & De Meester, 2009). This approach, 

which allows for the simulation of data-poor processes at the individual level, has shown that range 

shifts can be accelerated by the evolution of greater dispersal ability in marginal habitats (Dytham, 

2009). 

Physiological models, such as NicheMapper (United States Patent No. US7155377B2, 2006), and 

forest gap models, such as ForClim (Risch, Heiri, & Bugmann, 2005) and PHENOFIT (Chuine & 

Beaubien, 2001), simulate only local- to range-wide extinction in animals and trees, respectively, 

making them computationally less intensive than individual-level models at large spatial scales. 

These approaches assume that if environmental conditions are suitable given an organism’s 

physiological traits, it will persist; otherwise, it will die. These models are built on physiology and 

thermal tolerances, which are used to predict where individuals can survive. Physiological models 

can refine projections from phenomenological models of species distribution by identifying locales 

where heat stress will cause local extinction, informing conservation management (Kearney & 

Porter, 2009; Mathewson et al., 2017). 

Individual-level models are, nevertheless, often constrained to ecological and evolutionary 

processes at local extents, often failing to account for potentially important coarser-scale processes 

that can affect species diversity. Population models, which find their roots in simple logistic 

growth equations or matrix population models (Caswell, 2001), can simulate movement and 

mortality in a network of populations extending across a species range (Fordham et al., 2022, 

2013). They can simulate trait values and genes, thus incorporating adaptation or speciation 
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among populations over time, uncovering interactive effects of adaptation and dispersal on 

distributions of phenotypes (Cheptou & Massol, 2009). Although these models usually feature 

one or a few focal species, they can be used to simulate many populations of interacting species, 

capturing ecological interactions and community dynamics (Hovestadt & Poethke, 2005). For 

example, a model of competing and evolving populations has shown that certain syndromes of life 

history traits (mating system and dispersal ability) outcompete others—a mechanistic prediction 

that fits with empirical observations in plants (Cheptou & Massol, 2009). 

Pathways to extinction are difficult to detect and disentangle phenomenologically (Cardillo & 

Bromham, 2001) because they are complex, often starting long before the extinction event, 

resulting from biological responses to natural and human-induced factors that operate at multiple 

spatiotemporal scales (Fordham et al., 2022). Linking population models to correlative species 

distribution models to address well-recognised limitations of pattern-based approaches (Fordham, 

Bertelsmeier, et al., 2018) is allowing the processes of movement, extinction, and—most recently—

adaptation to be simulated over multiple millennia (Diniz‐Filho et al., 2019). This approach is 

revealing how ecological strategies, and demographic and evolutionary traits, interact dynamically 

with past environmental change and human-driven factors to cause the decline and eventual 

extinction of species (Fordham et al., 2022). 

Biodiversity loss can be modelled for groups of interacting species using community-level models. 

Process-explicit models at the community level simulate biogeographical dynamics with species as 

functional units within the simulation (Gotelli et al., 2009). Unlike population models, which 

typically have species or population distributions as their outputs, or ecosystem models, which 

generally produce maps of ecosystem function or plant functional guilds (see below), these 

community-level biogeographical models usually generate species richness maps and range size 

frequencies (Rangel et al., 2018). 

Most community-level process-explicit models encompass all of the five biotic processes that drive 

biodiversity, making them aptly suited for testing differing hypotheses about the underlying causes 

of patterns of biodiversity, including how lineages diversify over space and time. For example, 

community-level process-explicit models have been used to determine if neutral theory can explain 
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empirical patterns of reef community dynamics, finding support for the theoretical expectation 

that range size should increase with dispersal ability (Alzate, Janzen, Bonte, Rosindell, & Etienne, 

2019). However, models of community-level processes are not only used to answer theoretical 

questions about biodiversity—they can also be applied directly to real-world ecological systems to 

understand patterns of species richness (Leprieur et al., 2016), community assembly (Stegen, Lin, 

Fredrickson, & Konopka, 2015), and diversity loss (Halley, Sgardeli, & Triantis, 2014) in a 

changing world. Diversification models with simple parameterisation have applications in 

conservation biology, including identifying the effects of environmental change on biodiversity 

hotspots (Descombes et al., 2018) and predicting the loss of species in a community after habitat 

destruction (Halley et al., 2014). Despite their complexity, these process-explicit models of 

biogeographical dynamics can be validated (Figure 4) using targets of current-day range size 

frequency distributions (Rangel et al., 2007).  

Ecosystem Diversity 

Ecosystem diversity models simulate the structure of functional groups of terrestrial and marine 

organisms. The coexistence and interactions of these groups are used to map the distribution of 

ecosystems (Kutzbach et al., 1998). Interactions among terrestrial autotrophs and the abiotic 

environment are modelled with DGVMs (Foley et al., 1996), while fisheries management models 

(Collie et al., 2016) and general ecosystem models (GEMs) (Harfoot et al., 2014) also include 

primary and secondary consumer dynamics, enabling simulation of energy transfer through food 

webs. These ecosystem diversity models are being used to forecast and manage ecosystem services, 

including carbon storage (Bondeau et al., 2007), clean water supply (Rieb et al., 2017), and food 

security (Fulton et al., 2011) in a changing world. They have shown that freshwater supply will be 

reduced under future warming to the detriment of terrestrial ecosystem functioning (Cramer et al., 

2001), that increased hurricane frequency threatens the structure and productivity of reef-fish 

communities (Mumby, 2006), and that habitat fragmentation affects the trophic structure of 

ecosystems (Bartlett, Newbold, Purves, Tittensor, & Harfoot, 2016). Furthermore, process-explicit 

ecosystem models have shown that forest function is more resilient to warming events in high than 

in low diversity forests (Sakschewski et al., 2016), illustrating causative mechanisms for 

experimental observations (Naeem, 2002). 
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DGVMs simulate the distribution of plant functional types as well as their fluxes of carbon, water, 

and nutrients through the environment (Foley et al., 1996), enabling them to simulate dynamic 

feedbacks between the biosphere and the climate when coupled to climate models (Houghton et 

al., 2001). This coupling of models has uncovered important interactions between climate, CO2, 

and ecosystem function, including evidence that a positive interaction between plant productivity 

and elevated levels of CO2 can potentially offset the negative effects that climate change and, more 

specifically, increased aridification can have on productivity (Sitch et al., 2008). Moreover, by 

hindcasting ecosystem diversity dynamics over glacial-interglacial cycles, DGVMs have 

disentangled many of the effects of climate on ecosystem structure (Kaplan et al., 2003). For 

example, modelling the interaction between deglacial warming and megaherbivore die-off 

following the last glacial maximum reveals how high-latitude mammoth steppe—the earth’s most 

extensive biome at the time—was converted to a taiga-tundra ecotone (Zhu et al., 2018). 

While GEMs can simulate the entire ecosphere, from phyto- and zooplankton to apex carnivores, 

capturing complex food web dynamics, they do not as yet include two-way interactions with 

climate (Bartlett et al., 2016; Harfoot et al., 2014). Consequently, they are frequently used to test 

theories regarding ecosystem structure, including relationships between heterotroph biomass and 

net primary productivity (Harfoot et al., 2014), and to determine the impact of recent land-use 

change on ecosystem function (Bartlett et al., 2016). The application of ecosystem-level models in 

fisheries management has uncovered the crucial ecosystem services provided by coral reefs, 

including calcium carbonate deposition and coastal protection, showing how overfishing disrupts 

these services to nature and people (McClanahan, 1995). 

Relationship to data and theory 
Process-explicit models have a variety of relationships with data and theory (Figure S1). Some 

process-explicit models are theory-driven: their purpose is to explore the implications or 

applications of an ecological theory, such as the neutral theory of biodiversity (Hubbell, 2001), the 

species-area relationship (Connor & McCoy, 1979) or the general dynamic theory of island 

biogeography (Whittaker, Triantis, & Ladle, 2008). Others are theory-scaffolded: their purpose is to 
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understand an ecological system empirically, and to use theory as a scaffold by which to structure 

the model and interpret its outputs (Sitch et al., 2008). 

While process-explicit models are diverse in structure (Bemmels et al., 2019; Diniz‐Filho et al., 

2019), they exist on two distinct continua, based on (i) their use of empirical data for 

parameterisation and (ii) how they are verified and/or validated (Figure 4). Empirical data are not 

necessary to build and run a process-explicit model. Indeed, many theory-driven models use 

arbitrary values for parameters and explore the interactions and patterns that result from the model 

(Stegen et al., 2015). These models are at one end of a parameterisation continuum. Further along 

the continuum are models that use either biotic data (such as genetic sequences or species 

occurrence) or environmental data (such as spatiotemporal climatic fluctuations or bathymetry 

change) to parameterise models, but not both (Rangel et al., 2018). The next category of models 

includes those that use biotic and static environmental data (Alroy, 2001), followed by models that 

use biotic and dynamic environmental data (Foley et al., 1996). In the last two cases, biotic data 

represent a single level of biological organisation: gene, individual, population, community, or 

ecosystem (Fordham et al., 2020). At the most extreme end of the parameterisation continuum lie 

models that use dynamic environmental data and biotic data to simulate processes across multiple 

levels of biological organisation: for example, simulating individual-level movement (based on seed 

dispersal by wind) as well as population-level mortality (based on survival across individuals) (Snell, 

2014). 

A second, distinct gradient specifies how data are used for verification and validation in process-

explicit models (Figure 4). Verification is a check to ensure that the implemented model meets the 

primary theoretical assumptions it has been built to represent. In contrast, validation evaluates the 

level of correspondence between the implemented model and the study system (Rykiel, 1996). At 

one end of the verification and validation continuum, model outputs are not verified or validated 

at all. Moving up the continuum, output patterns can be verified for congruence with theory by 

comparing model outputs with well-established theoretical relationships, such as the mid-domain 

effect (Keith & Connolly, 2013). Models can be validated through visual inspection of patterns 

based on observational data, using non-statistical procedures (Bonan, Levis, Sitch, Vertenstein, & 
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Oleson, 2003). Statistical validation allows model outputs to be evaluated with patterns of 

empirical data, by means of measures such as coefficient of determination (r2), root mean square 

error, or true skill statistic (Kaplan et al., 2003). At the most data-heavy end of the verification and 

validation continuum lies multivariate statistical validation (J. L. Brown & Knowles, 2012), in 

which models are evaluated based on their ability to simultaneously demonstrate goodness of fit to 

multiple empirical patterns. This demanding level of validation is now being applied to pattern-

oriented modelling (an emerging and powerful technique in data science), in which mechanisms 

governing the structure and dynamics of biodiversity are identified by converging model 

simulations to independent multivariate validation targets (Fordham et al., 2022; Rangel et al., 

2007). 

Figure 4 shows how process-explicit models with diverse relationships to data can be used to 

decipher the mechanisms underlying the structure of biodiversity. Models that use little or no 

empirical data can be used to test ecological and evolutionary theories, such as modes of speciation 

(Skeels & Cardillo, 2019). These primarily theory-driven models are useful even when biological 

data are not available for validation; for example, data-free process-explicit models can test the 

sensitivity of model outputs to underlying processes (Skeels & Cardillo, 2019), distinguishing 

metapopulation dynamics from neutral dynamics or random community assemblage (N. A. 

Urban & Matter, 2018). Theory-scaffolded models with complex parameterisation often have 

greater explanatory power, particularly if they use more than one level of biotic data for 

parameterisation and validation, and if they simulate dynamic drivers of global change affecting the 

spatial structure of biodiversity. These additional data inputs can allow otherwise necessary model 

assumptions to be relaxed, such as an assumption of unlimited movement (Snell, 2014) or static 

human land use (Contreras et al., 2019), while multivariate validation targets (despite being, so far, 

rarely used) provide more stringent tests of model simulations. 

Safeguarding biodiversity 
Sustainable management of biodiversity has been recognised as a policy goal for 30 years (“Text of 

Convention Treaties and Agreements,” 1992); however, progress in halting the decline and 

degradation of biodiversity has been limited (Mace et al., 2018).  Reasons for failing to reduce 
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biodiversity loss are complex, reflecting long-lasting knowledge gaps on biodiversity dynamics (M. 

C. Urban et al., 2016), as well as insufficient integration of biodiversity science in policy making 

(Young et al., 2014) and lack of motivation to deliver the required biodiversity changes (Díaz et al., 

2020). An incomplete understanding of the mechanisms that govern the structure and dynamics of 

biodiversity, and a tendency to use correlative rather than process-explicit approaches to forecast 

the future of biodiversity in a changing world (Briscoe et al., 2019), have constrained capabilities to 

set productive biodiversity targets, develop cross-cutting solutions for restoring nature, and obtain 

national commitments to biodiversity conservation. 

Process-explicit models have a diverse range of applications, including formulating and assessing 

potential solutions for mitigating future genetic-, species-, and ecosystem-level collapse. Currently, 

for example, the palaeorecord is being used to identify biological mechanisms that mediate 

responses to climate- and human-driven change using process-explicit models (Nogués-Bravo et al., 

2018). These palaeo-models can disentangle past determinants of genetic diversity, range shifts, 

species richness, and ecosystem structure and function. By specifying the causal processes that 

underpin biodiversity change, they can provide the context needed to improve confidence in 

predictions of biodiversity’s future (Fordham et al., 2020), leading to improved computational 

platforms for setting biodiversity targets and better solutions for mitigating adverse changes to 

biodiversity (Fordham et al., 2016). 

The genetic signatures of demographic responses of species to environmental changes can be 

decoded using genetic simulation models (Eriksson et al., 2012) to better manage future 

biodiversity (Fordham, Brook, Moritz, & Nogués-Bravo, 2014). For example, process-explicit 

models of gene fixation, which allow demographic trends and gene flow to be reconstructed 

(Yoder et al., 2018), are establishing the importance of intraspecific genetic diversity for resilience 

to accelerated climatic change (Frankham, 2010). There is now a push to use this technique more 

widely to improve knowledge of how rapid climatic change affects patterns of genetic diversity (J. 

L. Brown et al., 2016). In the absence of ample genetic samples, process-explicit models can still be 

used to test theories central to conservation genetics using virtual genetic sequences and landscapes 
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(Erm & Phillips, 2019) to deliver valuable information for conserving future genetic diversity 

(Theodoridis et al., 2020). 

Historical context is crucial for understanding the threat of future declines in species distributions. 

Process-explicit models constructed at the individual and population level can be used to identify 

demographic processes that cause range shifts for a species or suites of species in response to 

climatic and environmental drivers, improving species threat assessments (Mathewson et al., 2017). 

Because individual-based models often operate at a level of detail that is not necessary for 

simulating range dynamics across large extents, process-explicit population-level models are more 

commonly used to project past and future range dynamics. These population-level models can be 

used to identify ecological traits that cause species to be differentially prone to regional and range-

wide extinction (Pereira, Daily, & Roughgarden, 2004) and to evaluate the efficacy of current 

methods for identifying threatened species (Stanton, Shoemaker, Pearson, & Akçakaya, 2015). 

Population-level models that incorporate adaptation as a process have been influential and 

instructive in revealing the role of gene flow along ecological selection gradients, and its inhibiting 

effect on local adaptation to environmental change (Kirkpatrick & Barton, 1997). 

Hotspots of biodiversity are of particular conservation concern because they support high 

concentrations of species, particularly endemics (Mittermeier, Turner, Larsen, Brooks, & Gascon, 

2011). Process-explicit models built and validated at the community level to simulate geographical 

patterns of species richness and endemism can identify mechanisms central to the maintenance of 

past and contemporary hotspots of biodiversity (S. C. Brown, Wigley, Otto-Bliesner, Rahbek, & 

Fordham, 2020), providing a framework for assessing vulnerability to future climate and 

environmental change (Figure 5). If simulations can capture community-level responses to realistic 

tempos and magnitudes of future global change, these new predictive approaches will benefit 21st 

century environmental management and conservation (Fordham et al., 2020). 

To illustrate the state of the art in broad-scale modelling of biodiversity and its potential 

application for biodiversity conservation, we offer an example of a community-level, process-

explicit model that incorporates all five biological processes that govern the structure and dynamics 

of biodiversity in a temporally dynamic environment (Rangel et al., 2018). The model was 
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designed to simulate the geographic distributions and patterns of overlap of species ranges in 

response to the past 800,000 years of climate change in South America (Figure 5). In this model, 

evolutionary niche dynamics drive range expansion and fragmentation (leading to speciation), 

adaptation to climatic conditions, and extinction. Combinations of parameter settings (dispersal 

distance, evolutionary rate, time for speciation, and intensity of competition) for virtual species 

were chosen a priori, producing many different potentially plausible range maps. Although not 

directed by any empirical validation targets, the emerging maps closely resembled contemporary 

species richness of major South American taxa. Combinations of parameters that closely 

reproduced the current-day biodiversity of South American avifauna (including hotspots of species 

richness and endemism) showed that low rates of adaptation to past climatic change were required 

to reconstruct observed patterns of species richness. In the future such community-level 

simulation models (built to simulate the past and validated in the present; Figure 5) could be 

parameterised with climate forecasts to predict strongholds of species richness under future 

climates. The subsequent results could be used to guide the protection and future management of 

biodiversity. 

By identifying the biological mechanisms, drivers, and their interactions that mediate changes in 

ecosystem structure and function, process-explicit models can help safeguard the services 

ecosystems provide to nature and people. Early ecosystem models were used to investigate the 

effects of increased atmospheric carbon on vegetation communities (Cramer et al., 2001). More 

recent models have incorporated complex interactions between multiple drivers of global change 

and ecosystem-level processes, including the effects of agriculture and land-use change (Bondeau et 

al., 2007). This research has strengthened knowledge of the drivers and responses that underpin 

change in ecosystem structure and function (Boit et al., 2019; Bondeau et al., 2007), improving 

projections (Leadley, 2010) and informing protocols for assessing ecosystem threat status (IUCN-

CEM, 2016). For example, DGVMs have shown mechanistically how 20th century agriculture 

caused a 24% reduction in global vegetation and a 10% reduction in global soil carbon (Bondeau et 

al., 2007). A better understanding of processes of ecosystem change enables the simulation of the 

effects of current and future climatic and environmental change (including altered fire regimes) on 



 

29 
 

important ecosystem services, such as agricultural productivity, freshwater availability, and timber 

production (Boit et al., 2019; Contreras et al., 2019). 

Climate projections are currently made using models characterised by complex system dynamics, 

including interactions and feedbacks between the atmosphere, ocean, land and society (O’Neill et 

al., 2016). While analogous models for projecting biodiversity change have typically been simpler 

than approaches used in climate science, mechanistic general ecosystem models (Harfoot et al., 

2014) and process-based community assemblage models (Hagen et al., 2021) offer new and more 

robust methods for projecting the future distribution of life on Earth. These next generation 

biodiversity models, which explicitly capture the structure and dynamics of biodiversity, will 

strengthen our capacity to set achievable biodiversity targets that promote engagement and 

investment where change is needed. 

Looking forward 
Although phenomenological models are a crucial first step towards understanding the potential 

determinants of current and past spatial patterns of biodiversity, process-explicit models are needed 

to identify causal processes that govern the structure and dynamics of biodiversity, and to exclude 

those that do not. Increased open access to curated georeferenced occurrence records, dated fossils, 

libraries of genetic sequences, and climate simulations will continue to provide innovative 

opportunities to apply process-explicit models, especially to connect inferences of past responses of 

biodiversity to different rates and magnitudes of contemporary climate and environmental change 

(Nogués-Bravo et al., 2018). These opportunities include testing key assumptions of existing 

biodiversity models—such as the common assumption that processes driving changes in 

biodiversity are scale invariant (J. H. Brown et al., 2002)—and competing theories for large scale 

biodiversity patterns, including geographical gradients in species richness (Hagen et al., 2021).  

Continuous simulations of the transient late Quaternary climate are needed, ideally at fine spatial 

resolutions, to determine population-, species-, community-, and ecosystem-level responses to 

abrupt (as well as gradual) climatic change using process-explicit models (Fordham, Saltré, Brown, 

Mellin, & Wigley, 2018). The TRaCE21ka experiment based on the Community Climate System 

Model version 3 (Z. Liu et al., 2009) has bridged this gap, but it spans only the last 21,000 years. 
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Higher spatiotemporal resolution palaeoclimate simulations from Earth systems models prior to 

21,000 years ago that include solar flux, ice sheet extent, and sea level changes will provide a more 

thorough understanding of the mechanisms responsible for spatiotemporal patterns of biodiversity 

at evolutionary time scales (Fordham et al., 2020). Statistical emulators of climatic change will be 

useful in filling this data and knowledge gap (Holden et al., 2019), particularly in the Southern 

Hemisphere, for which there is a paucity of high-resolution simulated data before the last glacial 

maximum (Neukom & Gergis, 2012). Including better reconstructions of solar variability, volcanic 

eruptions, and land use during the Holocene in transient simulations of the earth’s climate will 

provide a more complete picture of more recent temporal change in regional climates and the 

biodiversity they support. 

Integrating palaeoecological and neoecological perspectives into process-explicit models is key to 

contextualising the present and anticipating and visualising ecological responses to future global 

change (Nogués-Bravo et al., 2018). Emerging genomic techniques are allowing genetic diversity 

and effective population size to be estimated over short periods (<100 years) of environmental 

change, providing inferences of eco-evolutionary change to recent and/or punctuated disturbance 

events (Bi et al., 2019; Díez-del-Molino et al., 2018; Roycroft et al., 2021) that can feed directly 

into process-explicit models of range collapse and population declines. Importantly, projections of 

recent climate, vegetation, and land-use change have been harmonised with ancient projections, 

allowing their effects on biodiversity to be characterised continuously in process-explicit models 

that run from as far back as 21,000 years ago to the present day (Hurtt et al., 2020) and, in some 

cases, into the future (S. C. Brown, Wigley, Otto-Bliesner, & Fordham, 2020). 

Adaptation was first incorporated into spatial process-explicit models in the early 2000s (Heino & 

Hanski, 2001) and has become more common in ecological and evolutionary models since. 

However, it remains the most infrequently modelled biological process. A more regular integration 

of adaptation into process-explicit models of climate change responses will benefit from 

taxonomically diverse datasets of historic DNA that are readily available today (Benson et al., 2012) 

and from technological advances that allow ancient DNA to be used to reconstruct shifts in 

genetic diversity and adaptations to large-magnitude and abrupt climatic change (van der Valk et 
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al., 2021). Adding community dynamics to population models and demography to community 

models will also strengthen projections of biodiversity change. Metacommunity models with 

simplified food webs can bridge this gap by modelling demographic interactions between 

populations of multiple species in a spatiotemporally explicit manner (Leibold et al., 2004). 

Community-level models can integrate a higher level of biological organisation by combining 

ecosystem-level drivers such as fire with processes of plant community assembly (Scheiter, Langan, 

& Higgins, 2013). 

Achieving more detailed mechanistic understandings of patterns of biodiversity—from the gene to 

the ecosystem level—will require a greater focus on rigorous statistical validation of process-explicit 

models using independent multivariate data that are spatiotemporally explicit. In systems where 

theory is not yet well-developed, empirical data for model parameterisation are needed to simulate 

realistic outputs. However, as the mechanisms underpinning a system’s biodiversity become better 

understood, model outputs will be simulated using theory alone. Realistic predictions generated 

from a strong theoretical framework are the pinnacle that ecologists and evolutionary biologists 

should be aiming for when wielding process-explicit models. 

Process-explicit models have been instrumental in improving knowledge of the distribution of life 

on Earth, revealing complex causal processes for contemporary patterns of biodiversity that could 

not be discerned from experimental approaches or phenomenological models. A deeper 

recognition of the structure and dynamics of organisms, communities, and ecosystems in process-

explicit models is helping to protect and restore biodiversity by formulating remedies to existing 

problems and countering undesirable future changes. 
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Figures 

 

Figure 1: Modelling the mechanisms that govern the structure and dynamics of 

biodiversity. Process-explicit models can simulate changes in species distributions, population 

abundance, phylogenies, and genomes based on evolutionary and ecological processes (movement, 

extinction, ecological interaction, adaptation, and speciation) and drivers of environmental change 

(invasive species, land use change, human exploitation, climate change, volcanism, and plate 

tectonics.) Processes and drivers are ordered clockwise according to the temporal scale at which 

they operate. The timeline shows breakthrough developments in process-explicit models of 

biodiversity up to 2001. 
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Figure 2: Pipeline from empirical observations to process-explicit models. The relationship 

between biodiversity and ecosystem functioning can be observed experimentally in mesocosms. 

Statistical analysis of experimental data can lead to proposed mechanisms of biodiversity 

functioning, such as niche complementarity (Naeem, 2002). This mechanism can be integrated 

into process-explicit models to simulate interactions between community structure and function. 
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Figure 3: Processes and levels of biological organisation. Bars show the number (#) of studies 

using process-explicit models published before 2006 and in the five-year periods from 2006 to 

2016, and from 2016 to 2021, color-coded to indicate the unit of biological organisation 

simulated. Pie charts show the biotic processes (speciation, ecological interaction, adaptation, 

movement, and extinction) modelled as fractions of the total number of processes modelled across 

all studies for each time bin. 
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Figure 4: Model structure and assessment. A shows model structure (Parameterisation) and B 

shows model assessment (Verification & Validation) for five levels of biological organisation: gene, 

individual, population, community, and ecosystem (from left to right). Data categories in A for 

model parameterisation are: multiple biotic and dynamic environmental (env.), biotic and dynamic 

env., biotic and static env., biotic or env., and not empirical. Validation categories in B are: 

multivariate (multivar.) validation (valid.), univariate (univar.) valid., non-statistical (non-stat.) 

valid., theory verification (verif.), no verif. or valid. The categories of model parameterisation and 

validation are described in detail in “Relationship to data and theory” and Supplementary 

Methods. Size of circles indicates the relative number of studies reviewed (total = 225). 
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Figure 5: Models for predicting continental species richness. Community-level 

biogeographical models (Rangel et al., 2018), driven by interactions between climate and biological 

processes, can incorporate all five biological processes that govern biodiversity: movement, 

extinction, ecological interaction, adaptation, and speciation. Model outputs can simulate maps of 

current-day and future species richness and endemism (rarity-weighted species richness). 
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Supplementary Material 
Supplementary Methods 

Literature Search 

To identify process-explicit models that simulate the structure and dynamics of biodiversity in 

space and time, we did a literature search on Web of Science on 30 Aug. 2021. We searched the 

title, abstract, and the keywords of papers using the following search: 

(mechanism OR process* OR "range dynamics" OR "population dynamics" OR dispersal OR 

diversification OR speciation OR extinction OR movement) AND  

(macroecology* OR paleoecolog* OR biogeograph* OR phylogeograph* OR "evolutionary 

ecology" or “ancient DNA”) AND  

("simulation model*" OR "mechanistic model*" OR "vegetation model*" OR "evolutionary 

model*" OR "metapopulation model*" OR "approximate bayesian computation" OR 

"demographic model*" OR "metacommunity model*" OR "evolutionary model*" OR "movement 

model*" OR "agent-based model*" OR "individual-based model*") 

We did an additional and equivalent search on Scopus to ensure that we did not miss any papers in 

the Web of Science search. We only considered papers published 2020 or earlier in our literature 

review. 

The first term in our literature search was used to identify studies that analysed key processes that 

govern biodiversity across space and time. The second term limited the literature search to papers 

in the scientific fields of biogeography (including phylogeography), evolutionary biology, and 

macroecologyfields that are pioneering the use of process-explicit models in understanding 

mechanisms governing spatiotemporal patterns of biodiversity (Connolly et al., 2017). The third 

term ensured that the literature review captured studies directly using process-explicit models—

models that simulate the dynamics of a system as explicit functions of events that drive change in 

that system. 
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The literature searches returned 734 papers from Web of Science and 662 papers from Scopus. We 

retained papers that met three primary criteria: (i) models had to be process- and spatially explicit; 

(ii) models had to simulate at least one component of biodiversity: genetic, species, or ecosystem; 

and (iii) models had to explore the biological processes and drivers responsible for biological 

diversity across space and time. These filters reduced the number of papers to 225. 

Data extraction 

From these papers we first collected data on the biological processes and drivers of global change. 

To do so, we identified classes of biological processes: speciation, ecological interaction, 

adaptation, movement, and extinction (see Main Text and Table S1). Global change drivers 

modelled included climate, environmental and land-use change, geology (e.g., ocean bathymetry 

and island formation), human harvesting, and environmental variability. 

We extracted the focal unit of biological organisation (Fordham et al., 2020) from each study 

(gene, individual, population, community, ecosystem) using a string of keywords (Table S2). We 

also considered the spatial extent being modelled as four classes: local, regional, continental, and 

global. We defined a study as local if it was at the site level, covering a region of < 200 km2, or if it 

used a virtual landscape focused on the patch/population level. Regional studies were larger than 

the local scale but did not span an entire continent (Fordham et al., 2020). 

We assessed process-explicit models along a parameterisation continuum (Table S3), based on the 

way studies used data for parameterisation (0-4). We categorised a model as: 

0. if a priori or arbitrary settings were used for the model, or if the data were generated 

procedurally; 

1. if the model was parameterised with biotic data or environmental data, but not both; 

2. if the model was parameterised with biotic data at one scale of biological organisation, as 

well as environmental data from one timepoint;  

3. if the model was parameterised with biotic data at one scale of biological organisation as 

well as environmental data over multiple timepoints; and  
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4. if the model was parameterised with dynamic environmental data as well as biotic data at 

multiple scales of biological organisation. 

We placed models along a verification and validation continuum (Table S4). This continuum was 

based on the way studies used data for verification and validation. We define verification as a check 

that the logic of the model accurately formalises a theory, and validation as a check that the model 

mimics the real world well enough for its intended purpose, after Rykiel (Rykiel, 1996). We 

categorised a paper as:  

0. if the model was not verified or validated against an external pattern;  

1. if the model was checked for conceptual consistency with a well-established theoretical 

expectation such as the latitudinal species richness gradient;  

2. if the model was validated with a non-statistical comparison to empirical data; 

3. if the model was validated by statistical comparison to empirical data one variable at a time; 

and  

4. if the model was validated by statistical congruence with multiple variables simultaneously.  

In addition to extracting information on biological processes, global change drivers, and levels of 

biological and spatial organisation, we developed new heuristics to categorise process-explicit 

models by their relationship to theory (theory-driven or theory-scaffolded). Models were classified 

as theory-driven if their primary purpose was to explore an ecological theory, such as the mid-

domain effect. Models were classified as theory-scaffolded if their primary purpose was to 

empirically explore an ecological system using theory as a scaffoldfor example, using 

metapopulation theory to study whether a particular species might become locally extinct.  

To help researchers conceptualise and build process-explicit models aimed at understanding the 

mechanisms responsible for spatiotemporal patterns of biodiversity, we developed a dichotomous 

key based on data requirements for different types of process-explicit models. The key includes 

examples of models and studies for different data types and modelling aims (Pilowsky, Colwell, 

Rahbek, & Fordham, 2022a). 
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Process Example keywords 

Speciation Diversification, allopatry, sympatry, simulated phylogeny, speciation 

Ecological 

interaction 

Carbon flux, water flux, predation, competition, facilitation, mutualism, 

ecological interaction 

Adaptation Mutation, niche evolution, trait evolution, adaptation 

Movement Dispersal, range shift, colonisation, expansion, contraction, migration, 

movement 

Extinction Mortality, life history, extirpation, demography, recruitment, extinction 

Table S1: W ords used to identify primary biological processes simulated in process-

explicit models. Note that the keywords used to identify the processes being simulated were not 

limited to the examples above. Papers could include anywhere from one to five of these processes. 
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Biological 

Organisation 

Example keywords 

Ecosystem Dynamic vegetation model, functional group, biomass, carbon cycling, 

ecosystem 

Community Diversity pattern, species richness, assemblage, biodiversity, range size 

frequency distribution, community 

Population Species range, demography, extinction pattern, species distribution, 

regional/local extinction, population 

Individual Agent, organism, gap model, individual 

Gene Coalescent, diversity, differentiation, divergence, lineage, gene 

Table S2: W ords used to identify the focal unit of biological organisation simulated. Some 

models incorporated data from multiple levels of biological organisation, but in all cases, a single 

focal level of biodiversity was modelled. Note that the keywords used to identify the focal unit 

being modelled were not limited to the examples above. 
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Parameterisation Example 

0 Random draws from a Gaussian distribution (Stegen et al., 2015) 

1 Temperature and precipitation from a palaeoclimate emulator (Rangel et al., 

2018) 

2 Species distribution data from megafauna fossils in North America and a static 

map of net primary productivity (Alroy, 2001) 

3 Dynamic climate data and data on physiological tolerances of plant functional 

types (Bonan et al., 2003) 

4 Dynamic climate data, data on physiological tolerances of plant functional 

types, individual-level data on seed dispersal (Snell, 2014) 

Table S3: Types of data used for parameterisation of process-explicit models. Examples are 

shown for different classes of parameterisation along a continuum, arranged from least data-

intensive to most data-intensive. 
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Verification/Validation Example 

0 Results are not compared to any external pattern (Pereira et al., 2004) 

1 Verified by comparison to the species-area relationship (Pereira & 

Daily, 2006) 

2 Validated by visual comparison between simulated and observed maps 

of biome distributions (Bonan et al., 2003) 

3 Validated by statistical comparison of output species richness with 

empirical fossil diversity at different timepoints (Leprieur et al., 2016) 

4 Validated by statistical convergence of simulated demography toward 

multiple genetic distances among populations (J. L. Brown & 

Knowles, 2012) 

Table S4: Types of data used for verification or validation of process-explicit models. 

Examples are shown for different classes of verification/validation along a continuum, arranged 

from least data-intensive to most data-intensive. 
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Figure S1: Diverse relationships to theory and data. Literature (225 papers) sorted along 

gradients of (A) parameterisation and (B) verification and validation for (C) theory-driven and 

theory-scaffolded models. A shows number (#) of studies in which model was parameterised using 

no empirical data [Parameterisation category (p) = 0]; environmental or biotic data, but not both 

(p = 1); biotic data and static environmental data (p = 2); biotic and dynamic environmental data 

(p = 3); and dynamic environmental data and biotic data at multiple scales of biological 

organisation (p = 4). B shows the number of studies in which models were not verified or validated 

[Verification & Validation (v) = 0]; verified by comparison to a well-established theoretical 

relationship (v = 1); validated by non-statistical comparison to empirical data (v = 2); validated by 

statistical comparison to empirical data using univariate (v = 3); and multivariate approaches (v = 

4). C shows studies that explored or tested an ecological theory (Driven) and those that explored an 

ecological system empirically using theory as a scaffold (Scaffolded). D shows the number of 

studies that fall in each possible intersection of the parameterisation and the verification and 

validation continua. Categories in A-C are described in the text. 
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Abstract 
Reconstructions of the spatiotemporal dynamics of human dispersal away from evolutionary 

origins in Africa are important for determining the ecological consequences of the arrival of 

anatomically modern humans in naïve landscapes and interpreting inferences from ancient 

genomes on indigenous population history. While efforts have been made to independently 

validate these projections against the archaeological record and contemporary measures of genetic 

diversity, there has been no comprehensive assessment of how parameter values and choice of 

palaeoclimate model affect projections of early human migration. We simulated human migration 

into North America with a process-explicit migration model using data from two different 

palaeoclimate simulations and did a sensitivity analysis on the outputs using a machine learning 

algorithm. We found that simulated human migration was more sensitive to uncertainty in 

demographic parameters than choice of palaeoclimate model. Our findings indicate that the 

accuracy of process-explicit human migration models will be improved with further research on 

the population dynamics of ancient humans, and that uncertainties in model parameters must be 

considered in estimates of the timing and rate of human colonisation and their consequence on 

biodiversity. 

Keywords 

human migration, sensitivity analysis, process-explicit model, paleoecology, macroecology
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Introduction 
Early human migration has been reconstructed indirectly (R. M. Beyer, Krapp, Eriksson, & 

Manica, 2021), correlatively (Giampoudakis et al., 2017), and process-explicitly (Timmermann & 

Friedrich, 2016), allowing pathways for the expansion of modern humans to be identified by 

inferring or modelling relationships between climatic conditions, occupancy and population 

growth (Eriksson et al., 2012; Steele, Adams, & Sluckin, 1998). Process-explicit models have 

advantages over correlative reconstructions and inferences based on climate metrics because they 

explicitly capture demographic responses to changing climatic and environmental conditions in 

model simulations (Pilowsky, Colwell, Rahbek, & Fordham, 2022b). However, they are generally 

data intensive, with complex model structures, often resulting in high variability among 

simulations of early human migration owing to large uncertainties in underlying demographic 

parameters (Timmermann & Friedrich, 2016). Furthermore, most models are fitted to a single set 

of simulated climatic reconstructions. However, it is unclear how different assumptions and biases 

in palaeoclimate simulations (Solomon et al., 2007) affect model projections, and how important 

these effects are relative to uncertainties in demographic parameters. Sensitivity analyses can help 

improve projections of human expansion from process-explicit macroecology models by 

identifying parameters that contribute the most to model output, those that are insignificant and 

can be potentially omitted from the model and those that need refining to improve model accuracy 

(Hamby, 1994). 

The Climate-Informed Spatial Genetic Model (CISGeM) is one example of a process-explicit 

model of human dispersal out of Africa, which has been validated using genetic distances between 

contemporary human populations (Eriksson et al., 2012). Its outputs include human arrival times 

on non-African continents and islands, as well as spatial maps of effective population size (a proxy 

for relative abundance; Fordham et al. 2022) from 120 kilo-years before present (ka BP). The 

simulated outputs of CISGeM have been used to parameterise and inform other models of 

phenomena including megafaunal extinctions (Fordham et al., 2022) and species range dynamics 

(Canteri et al., 2022; Pilowsky, Haythorne, Brown, et al., 2022c). However, CISGeM has never 

been subjected to a sensitivity analysis, meaning there is no knowledge of the importance of 
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demographic parameters and climatic conditions on model projections. Here we simulate human 

migration into North America in the Pleistocene using CISGeM parameterised with two widely 

used atmosphere-ocean general circulation models (AOGCMs): the Hadley Centre Coupled 

Model, version 3 (HadCM3) (Singarayer & Valdes, 2010) and the Transient Climate Evolution 

(TraCE-21ka) simulation (Z. Liu et al., 2009). We do a sensitivity analysis to determine whether 

well-established differences in these palaeoclimate models (E. Armstrong, Hopcroft, & Valdes, 

2019) strongly influence projections of human colonisation of North America when uncertainties 

in key demographic parameters are also considered.  

Material and Methods 
1. Human Expansion Model 

We modelled the peopling of North America using CISGeM (Climate-Informed Spatial Genetic 

Model), which is a process- and spatially-explicit population model of global human migration 

during the late Pleistocene and Holocene (Eriksson et al., 2012). The model is driven by 

demographic processes responding to glacial-interglacial ice-land-sea dynamics, and spatiotemporal 

variation in net primary productivity (NPP) that affects carrying capacities. The latter has been 

shown to be an important driver of population density for hunter-gatherers (Tallavaara, Eronen, & 

Luoto, 2018; Zhu et al., 2018). Previous model testing has shown that CISGeM accurately 

reconstructs global genetic diversity and human arrival times on the non-African continents 

(Eriksson et al., 2012; Raghavan et al., 2015). See Supplementary Information for more details on 

the model structure of CISGeM. 

Model parameters in CISGeM have been optimised using pattern-oriented modelling methods 

(Grimm et al., 2005) and Approximate Bayesian Computation (Csilléry, Blum, Gaggiotti, & 

François, 2010). In this study, we used the posterior ranges of optimised model parameters to 

generate 4,950 plausible CISGeM models, each with different parameter values. We used Latin 

hypercube sampling to generate a stratified random subset of parameter input values for 

simulations by specifying the posterior range for each parameter and sampling all portions of the 

distributions (Stein, 1987). We then ran each of these models using palaeoclimate data from two 
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AOGCMs, and did a global sensitivity analysis (Antoniadis, Lambert-Lacroix, & Poggi, 2021) to 

determine the influence of demographic parameters and climate model parameterisation on 

CISGeM projections of human colonisation of North America (Figure S2). 

2. Climate Data 

Plausible models (n = 4,950) were simulated using palaeoclimate AOGCM data from the 

HadCM3 model (Singarayer & Valdes, 2010) and the TraCE-21ka palaeoclimate model (Z. Liu et 

al., 2009). While projections from the HadCM3 have been shown to be congruent with those from 

the TraCE-21ka model in some regions and for some climatic parameters, key differences remain 

(E. Armstrong et al., 2019).  

Unlike the TraCE-21ka simulation, the HadCM3 is not a fully transient climate model, meaning 

that outputs from HadCM3 are climate snapshots rather than continuous projections. Climate 

snapshots from the HadCM3 outputs (separated by ≥ 1 ka) were temporally downscaled to 25 year 

timesteps to match the timestep of CISGeM simulations using a stochastic weather generator, 

which draws random values from empirical distributions adjusted to fit the temperature and 

precipitation intervals found in the climate data (Semenov & Barrow, 2002). The grid cell 

resolution of HadCM3 data is 3.75° longitude × 2.5° latitude. Forcings include orbitally forced 

insolation changes, changes in long-lived greenhouse gases, and meltwater from evolving ice sheets. 

These are the same forcings used in TraCE-21ka, with a key difference that HadCM3 does not 

account for vegetation-air-ocean interactions (Collins et al., 2006). 

The TraCE-21ka simulation (Z. Liu et al., 2009) uses the Community Climate System Model 

version 3 (CCSM3; Yeager et al. 2006) to reconstruct daily global climate conditions at a spatial 

resolution of 3.75° longitude × 3.75 latitude (over land and sea) for the last 21,000 years. It 

accurately reproduces major climatic features associated with the most recent deglaciation event, 

and predicts present-day climate patterns with verified hindcast skill (Fordham et al., 2017). 

Importantly, both HadCM3 and TRaCE-21ka model ice sheet dynamics using the ICE-5G 

reconstruction (Peltier, 2004), meaning that ice sheet barriers to human dispersal in CISGeM 

models were identical in simulations regardless of palaeoclimate model (Movie S1). We spatially 
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downscaled data from both models to the equal-area resolution of CISGeM (100 km width). See 

Supplementary Information for details. 

3. Simulations 

We ran a single replicate of CISGeM for each combination of plausible parameters and recorded 

the simulated effective population size at each hex cell and time point. Previously, it has been 

shown that running a single simulation iteration per parameter sample is optimal for sensitivity 

analysis if the parameter space is extensively sampled (Prowse et al., 2016). All simulations were 

global, began at the same starting location in East Africa at 120 ka BP, and proceeded until present 

(0 BP, 1950 C.E.) at 25-year time steps (Eriksson et al., 2012). 

We identified, a priori, time of movement out of Alaska and rate of expansion through North 

America as being sensitive to changes in demographic parameters and variation in climate model 

projections of NPP, because simulated population density depends on NPP as well as 

demographic parameters (Eriksson et al., 2012). We calculated time of movement out of Alaska 

(after 19 ka BP) and rate of expansion through North America (14.7 to 11 ka BP) for each 

projection. Movement out of Alaska was calculated as the time when the population-weighted 

centroid of the leading edge of the human range (Watts, Fordham, Akçakaya, Aiello-Lammens, & 

Brook, 2013) crossed 130°W or 51°N. Rate of expansion through North America was calculated as 

the rate of movement, in kilometres per year, of the population-weighted centroid of the leading 

edge of the human range. See Supplementary Information for more details on how these variables 

were calculated. CISGeM projections of time of movement out of Alaska were independently 

validated using inferences of the timing of arrival of Clovis culture in North America (13,250 to 

12,800 years BP; Waters and Stafford 2007). 

4. Sensitivity Analysis 

To determine which parameters contribute most to model projections of human expansion in 

North America, we did a global sensitivity analysis using our summary metrics of time of 

movement out of Alaska and rate of expansion through North America (Antoniadis et al., 2021). 

Sensitivity analyses were done in two ways: (i) using only CISGeM models simulated using 
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HadCM3 climate data; (ii) using models simulated with both HadCM3 and CCSM3 TRaCE-

21ka climate data. This two-step approach was done because CISGeM were originally optimised 

using HadCM3 climate data (Eriksson et al., 2012). We determined the sensitivity of timing of 

movement out of Alaska and expansion rate using random forest learning methods (Antoniadis et 

al., 2021) following techniques established for process-explicit macroecology models (Pearson et 

al., 2014). We assessed variable importance using unscaled permutation importance (Strobl, 

Boulesteix, Zeileis, & Hothorn, 2007). See Supplementary Information for details.  

Results 
While human range size in North America varied according to palaeoclimate model (Figure 1), 

time of movement out of Alaska and rate of human migration were most sensitive to uncertainty 

in key demographic parameters (Figure 2). The sensitivity analysis done on only HadCM3 model-

based simulations revealed: i) time of movement out of Alaska was most sensitive to colonisation 

rate, upper net primary productivity (NPP) threshold of the carrying capacity and population 

growth rate; while ii) population-weighted rate of expansion was most sensitive to population 

growth rate and colonisation rate (Figure 2). This order of relative importance remained 

unchanged when the sensitivity analysis was done on simulations from the two palaeoclimate 

models combined, indicating relatively low sensitivity of model projections to model-based 

differences in palaeoclimate conditions when compared to uncertainties in demographic model 

parameters. 

Independent tests of CISGeM projections of time of movement out from Alaska showed that 

simulations of land migration from CISGeM parametrized with TraCE21-ka climate data gave a 

median exit date from Alaska that was closer to the estimated Clovis arrival (median: 14,375 years 

BP, MAD: 482) compared to simulations parametrized with HadCM3 data (median: 15,000 years 

BP, MAD: 111). The difference for TraCE-21ka and HadCM3 was 1,144 years (95% confidence 

interval [CI] = 1,138 - 1,150 years) and 1,682 years (CI = 1,663 - 1,700 years), respectively. Model 

projections of migration patterns into North America and relative Ne for both models can be 

accessed on Figshare (Pilowsky, Manica, Brown, Rahbek, & Fordham, 2022d). 
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Conclusions 
Projections of the peopling of North America from process-explicit models vary in response to 

palaeoclimate model; however, uncertainties in key demographic parameters have a 

disproportionately larger influence on simulations of time of movement out of Alaska and rate of 

expansion through North America. Therefore, it is important to consider the uncertainty of 

demographic parameters in process-explicit projections of timing, rate and mechanisms of initial 

human expansion across continents (Raghavan et al., 2015), and the broader ecological 

consequences of human colonisation on biodiversity (Canteri et al., 2022; Fordham et al., 2022). 

While arrival times of humans in different regions have been established archaeologically with 

reasonable certainty (Goebel, Waters, & O’Rourke, 2008; Groucutt et al., 2015), and dispersal 

rates have been inferred from genomic analysis of aDNA (Rasmussen et al., 2011), the pattern of 

human growth and expansion has been more difficult to reconstruct at fine spatiotemporal scales. 

Consequently, projections of early human migration across continents are still uncertain (H. Liu, 

Prugnolle, Manica, & Balloux, 2006), owing partly to overly simplistic parametrisation of the 

relationship between NPP and population growth (Zhu, Galbraith, Reyes-García, & Ciais, 2021) 

and large uncertainties in other demographic parameters, including population growth and 

dispersal (French, Riris, Fernandéz-López de Pablo, Lozano, & Silva, 2021) 

Resolving these issues should be a priority, particularly given how sensitive the rate of human 

movement in North America is to rates of population growth and colonisation. Promising avenues 

of research that could reduce uncertainty in early human demography include Bayesian analysis of 

spatiotemporal distributions of radiocarbon dates (Price et al., 2020); phylogenetic analysis of the 

human palaeoproteome, which is more resistant to degradation over long timescales compared to 

the palaeogenome (Welker, 2018); and sampling of environmental DNA, which can detect arrival 

and movement of small populations better than the archaeological or fossil record (Yucheng Wang 

et al., 2021). 

Our finding that uncertainty in projections of human migration from process-explicit models is 

only weakly sensitive to the choice of climate model is in stark contrast to findings for correlative 
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models of species distributions (L. J. Beaumont et al., 2007; Tuck et al., 2006), which model 

demographic processes implicitly, not explicitly (Pilowsky, Colwell, Rahbek, et al., 2022b). When 

interpreting the generality of this result, it is important to recognise that CISGeM simulates 

pathways for the global expansion of modern humans. Therefore, in other regions and time 

periods, the parametrisation of palaeoclimate could have a larger effect on human migration. 

Nevertheless, our results highlight the importance of realistically capturing demographic 

mechanisms in process-explicit human migration models. 

Figures 

 

Figure 1: Human range expansion in North America. Range size for humans in North 

America from 19,000 years ago to present according to simulations with the HadCM3 (blue) and 

TraCE-21ka (yellow) AOGCMs (thick lines). Thin lines show mean annual temperature anomaly 

for the two AOGCMs. 
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Figure 2: Sensitivity analysis of human migration model parameters. Sensitivity of 

simulations of timing of human migration out of Alaska (A, C) and rate of southward expansion 

through North America (B, D). A and B are only for simulations run on HadCM3 climate data, 

while C and D are for both HadCM3- and TraCE-21ka-based simulations. Relative importance 

scores from random forest models in B and C are shown for demographic parameters: migration 

rate, colonisation rate, carrying capacity, population growth rate, upper and lower net primary 

productivity (NPP) thresholds for occupancy. For C and D, relative importance scores also have 

choice of climate model (HadCM3 or TraCE-21ka). 

Supplementary Material 
1. Human Expansion Model 

In CISGeM, population growth and movement of anatomically modern humans are simulated 

from 120 ka BP (thousand years before present) to 0 years BP at 25-year timesteps, which is 

approximately the generation length of female hunter-gatherers (Fenner, 2005). The world is 

represented as a hexagonal grid with 100 km wide hexagons, enabling equidirectional dispersal 
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distances. The carrying capacity of each hexagon is a piecewise linear function of NPP, with a 

temporal land-sea-ice mask which designates entire cells as occupiable or unoccupiable.  

The model simulation starts with a single human population in East Africa (11°7′ S, 34°21′ E) 

which increases at the population growth rate r until it reaches its carrying capacity K (defined by a 

lower NPP threshold [x1] and upper NPP threshold [x2]). Occupied cells may exchange migrants 

at migration rate m at any population size, while cells at carrying capacity can send out emigrants at 

colonisation rate c to neighbouring unoccupied cells (Figure S1). All population abundances are 

simulated as effective population size. See Eriksson et al. (2012) for more details. 

The model was originally developed and run using simulated palaeoclimate data from the Hadley 

Centre Coupled Model, version 3 (HadCM3) coupled atmosphere-ocean-sea ice-land general 

circulation model (AOGCM) (Singarayer & Valdes, 2010). Outputs were validated and parameters 

optimised using molecular information and pattern-oriented modelling methods, a technique for 

optimising model parameters by converging model outputs toward independent validation targets 

(Grimm et al., 2005) using Approximate Bayesian Computation (Sisson, Fan, & Beaumont, 2018).  

The summary targets for model calibration were pairwise genetic distances for modern human 

populations between continents (Eriksson et al., 2012). Simulated genealogies were generated from 

each CISGeM simulation, and model parameters were selected that generated the best congruence 

between simulated and true genetic distances among populations within and across continents. In 

this way, the demography was calibrated to produce realistic global genetic differentiation patterns. 

The optimised parameter values are shown in Table S1. 

2. Climate Data 

Calculating net primary productivity 

For both AOGCMs, we estimated net primary productivity at the grid cell level through time 

using the Miami vegetation model (Lieth, 1975). In this model, NPP is estimated independently as 

an empirical function of temperature and precipitation, and the minimum of the two values is the 

predicted NPP. While the model does not account for carbon cycling, humidity, insolation, and 
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vegetation structure, it robustly estimates NPP (Figure S3), having been used elsewhere in studies 

of biodiversity patterns (Currie, 1991). 

Downscaling and harmonisation 

We spatially downscaled both sets of climate data from their native resolutions to the 100 km wide 

hexagonal grid used by CISGeM using first-order conservative remapping (Jones, 1999). This is a 

procedure that remaps fields between different grids, regardless of their shape or coordinate system. 

The interpolation from one grid to another is weighted based on the ratio of overlap between the 

source grid cells and the destination grid cells. 

Because CISGeM requires palaeoclimate data from 120 ka BP and TRaCE-21ka begins at 22 ka 

BP, we harmonised the HadCM3 and TRaCE-21ka data following Fordham et al. (2022). We did 

this using the delta method, ensuring a smooth transition between the two AOGCMs at 21 ka BP 

(R. Beyer, Krapp, & Manica, 2020). We used an additive correction for temperature and 

multiplicative correction for precipitation. This approach is identical to bias-correcting projections 

for differences between modelled and observed climate, making the fundamental assumption that 

even if there are differences in the absolute estimates of the models, changes produced by the 

models are correct (Fordham et al., 2017). 

3. Simulations 

We used Latin hypercube sampling to generate a stratified random subset of CISGeM parameter 

input values for simulations by specifying the posterior range for each parameter and sampling all 

portions of the distributions (Stein, 1987). We then ran each of these models using palaeoclimate 

data from two AOGCMs, running a single replicate of CISGeM for each combination of plausible 

parameters (Prowse et al., 2016). All simulations were global, began at the same starting location in 

East Africa at 120 ka BP, and proceeded until present (0 BP, 1950 C.E.) at 25-year time steps 

(Eriksson et al., 2012). The period of the simulation prior to 19 ka BP was treated as a burn-in 

period, ensuring model stability prior to the first extensive land colonisation of North America by 

humans. We removed all simulations with parameter combinations that did not result in human 
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colonisation of North America (n = 430 HadCM3, n = 1,699 TraCE-21ka). Figure S4 shows 

ranges of parameter values for models that were retained for this study. 

Projections of effective population size from the retained models were spatially cropped to North 

America (178.5 to 49.5°W, 6.5 to 83.5°N), temporally cropped to 19 ka BP to the present, and 

converted from the hexagonal grid of CISGeM to a 1° x 1° latitude-longitude grid using first-order 

conservative remapping (Jones, 1999). Focusing on the most recent period of deglaciation (19 ka – 

11 ka BP) and the Holocene allowed us to disentangle the influence of uncertainties in key 

CISGeM demographic and climate parameters on human migration dynamics in North America. 

4. Sensitivity Analysis 

To determine which parameters contribute most to model projections of human expansion in 

North America, we did a global sensitivity analysis (Antoniadis et al., 2021) on the response 

variables of i) time of movement out of Alaska (after 19 ka BP) and ii) rate of expansion through 

North America (14.7 to 11 ka BP). 

We calculated time of movement out of Alaska, and later expansion rate through North America, 

by calculating the population-weighted centroid of the leading edge of the range of humans 

(Fordham et al., 2022). Since overland dispersal out of Alaska proceeded in a south-easterly 

direction (Waters & Stafford, 2007), we calculated the frontier of human expansion through time 

(at 25-year time steps) as the south-eastern 90th percentile of the North American range, based on 

effective population size through time (Movie S2). We calculated time out of Alaska as the 

timepoint when the frontier of human expansion crossed 130°W or 51°N. If the south-eastern 90th 

percentile had already crossed one of these lines by 19 ka BP, the time out of Alaska was set to 19 ka 

BP.  

We calculated expansion rate through North America for the time period 14.7 to 11 ka BP because 

the Bølling-Allerød warm period from Meltwater Pulse 1a (14.7 ka BP) to the end of the 

Pleistocene epoch (11.7 ka BP) was when the bulk of freshwater melted from ice sheets during the 

most recent deglaciation (Weaver, Saenko, Clark, & Mitrovica, 2003). We calculated the great 

circle distance in kilometres between the frontier of human expansion (as described above) at each 
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timestep and the one preceding it and divided by 25 years to obtain a rate of south-easterly 

expansion in kilometres per year, then calculated the mean expansion rate during the Bølling-

Allerød warm period.  

We determined the sensitivity of timing of movement out of Alaska and expansion rate using 

random forest learning methods (Antoniadis et al., 2021) following techniques established for 

process-explicit macroecology models (Pearson et al., 2014). We used the R package randomForest 

v4.6 (Liaw & Wiener, 2002) for all analysis, including tuning the number of variables sampled at 

each split and the minimum node size by optimising the out-of-bag error and growing 1000 

regression trees (Oliveira, Oehler, San-Miguel-Ayanz, Camia, & Pereira, 2012). We assessed 

variable importance using unscaled permutation importance (Strobl et al., 2007). 
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Parameter Function Optimised Values 

x1 Minimum NPP value needed to support human 

occupancy 

0.024 (0 – 0.040) 

x2 NPP value at which the carrying capacity comes into 

effect 

0.493 (0.013 – 1.000) 

K Carrying capacity 3002 (100 – 9997) 

r Intrinsic growth rate of populations 0.317 (0.157 – 0.500) 

m Migration rate from occupied cells to other occupied 

cells 

0.045 (0.001 – 0.167) 

c Colonisation rate from occupied cells to unoccupied 

cells 

0.055 (0.0002 – 0.166) 

 

Table S1: CISGeM parameters for simulating early human migration. Parameters with 

notations used in CISGeM, a description of their function, and their optimised values based on 

Eriksson et al. (2012). Mean values are shown with minimum and maximum in brackets. x1 and x2 

are expressed as a proportion of maximum NPP, K and K0 are expressed as effective population 

size and the rates of r, m, and c are given on the natural scale. 



Supplementary Material 

 
 

64 
 

 

Figure S1: Conceptual representation of CISGeM demography. a) At the upper NPP 

threshold x2, the human population stabilises at the carrying capacity K. Meanwhile, cells become 

habitable when the NPP reaches the lower threshold x1. b) Cells at carrying capacity can send out 

colonists to neighbouring unoccupied habitable cells at colonisation rate c multiplied by K. c) 

Occupied cells grow at population growth rate r until they reach the carrying capacity. d) 

Occupied neighbouring cells exchange migrants at migration rate m multiplied by the smaller 

population size of the two neighbouring cells. 
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Figure S2: W orkflow of the analysis. The top row of the flow chart shows the previous work 

on CISGeM by Eriksson et al. (2012), and how the outputs were used in our study of the 

sensitivity of CISGeM. The blue box indicates the part of the workflow done in this study. 
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Figure S3: Comparison of net primary productivity during the deglaciation period. Mean 

net primary productivity (NPP) in Alaska for the HadCM3 and TraCE-21ka palaeoclimate 

simulations from 19,000 years BP to 11,000 years BP, with spatial variation shown as +/- 1 SD.   
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Figure S4: Parameter values used in the sensitivity analysis after filtering. Distribution of 

parameter values for colonisation rate (c), carrying capacity (K), migration rate (m), growth rate (r), 

lower net primary productivity threshold (x1), and upper net primary productivity threshold (x2) 

for the 4,950 plausible models (original); and after filtering these simulations for arrival in North 

America using the HadCM3 and TraCE-21ka palaeoclimate simulations. 
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Box.com link to Movie S1 

Movie S1: Ice sheet reconstructions used in HadCM3 and CCSM3 palaeoclimate data 

inputs. Both the HadCM3 and CCSM3 palaeoclimate data we used to parameterise CISGeM 

models of human migration in North America used the ICE-5G reconstruction (Peltier, 2004); 

the dynamics of the melting ice sheets in the deglaciation period 19 – 11 ka BP are shown. Ice 

sheets are white, ocean is light grey, coastline is dark grey, and present-day coastline is medium grey.  

Box.com link to Movie S2 

Movie S2: Effective population-weighted leading-edge centroid of human migration in 

North America. We calculated time of movement out of Alaska and colonisation rate of humans 

in North America using leading-edge centroids of the expanding human range, weighted by the 

effective population size outputs from the human migration model CISGeM. The centroid (red) 

indicates the leading 10th percentile of the expanding human population.

https://universityofadelaide.box.com/s/ag818aq5sbpfjg25r3u04pwiyvaaghpz
https://universityofadelaide.box.com/s/codne7ndlsvkggr1eclotk102eljg48a
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Abstract 
Aim: To determine the ecological processes and drivers of range collapse, population decline, and 

eventual extinction of the steppe bison in Eurasia.   

Location: Siberia 

Time period: Pleistocene and Holocene 

Major taxa studied: Steppe bison (Bison priscus) 

Methods: We configured 110,000 spatially explicit population models (SEPMs) of climate-

human-steppe bison interactions in Siberia, which we ran at generational timesteps from 50,000 

years before present. We used fossil-based inferences of distribution and demographic change and 

pattern-oriented modelling (POM) methods to identify which SEPMs adequately simulated 

important interactions between ecological processes and biological threats. These ‘best models’ 

were then used to disentangle the mechanisms that were integral in the population decline and 

later extinction of steppe bison in its last stronghold in Eurasia. 

Results: Our continuous reconstructions of the range and extinction dynamics of steppe bison 

were able to reconcile inferences of spatiotemporal occurrence and timing and location of 

extinction for steppe bison in Siberia based on hundreds of radiocarbon-dated fossils. We show 

that simulating the ecological pathway to extinction for steppe bison in Siberia in the early 

Holocene required very specific ecological niche constraints, demographic processes, and a 

constrained synergy of climate and human hunting dynamics during the Pleistocene-Holocene 

transition. 

Main conclusions: Ecological processes and drivers that caused ancient population declines of 

species can be reconstructed at high spatiotemporal resolutions using SEPMs and POM. Using this 

approach, we found that climatic change and hunting by humans are likely to have interacted with 

key ecological processes to cause the extinction of steppe bison in its last refuge in Eurasia. 

Keywords: 
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Introduction 
Several hypotheses have been proposed for how extinctions manifest in space and time (Davidson 

et al., 2009; Owens & Bennett, 2000), but generalities across landscapes and time periods have been 

difficult to formulate (Laliberte & Ripple, 2004). Theories of range shifts, population declines, 

and extinctions are now being directly tested using historic and palaeo reconstructions (Fordham 

et al., 2022; Fordham, Haythorne, Brown, Buettel, & Brook, 2021), permitting inferences of how 

biodiversity is likely to respond to future environmental change (Fordham et al., 2020). However, 

reconstructing past demographic changes at landscape scales poses unique modelling challenges, 

including reliance on indirect proxies to make inferences about range collapses and timing and 

location of extinction (Dietl et al., 2015); uncertainty in reconstructions of past climates 

(Rutherford et al., 2005) and human-driven environmental threats (Ellis et al., 2021; Pilowsky, 

Manica, Brown, Rahbek, & Fordham, 2022e); and a lack of information on the ecological lifestyles 

and traits of many species (Fordham et al., 2016). 

Some of these issues can be addressed, at least in part, using process-explicit models, particularly if 

they are combined with pattern-oriented modelling (POM) techniques (Box 1). Process-explicit 

models simulate ecological and evolutionary mechanisms responsible for spatiotemporal patterns 

of biodiversity (Pilowsky, Colwell, Rahbek, et al., 2022b). These mechanisms include extirpation, 

movement, ecological interactions, adaptation, and speciation. Unlike correlative approaches, such 

as species distribution models, process-explicit models establish causal links between process and 

pattern (M. C. Urban et al., 2016). However, high data demand and model complexity have meant 

that, to date, they have been used less frequently in studies of the structure and dynamics of 

patterns of biodiversity. This is steadily changing, owing to increased data availability, 

computational power (Pilowsky, Colwell, Rahbek, et al., 2022b), and a growing need for stronger 

inferences about the causes of contemporary and ancient changes in biodiversity (Fordham et al., 

2020; Pontarp et al., 2019; Rangel et al., 2018).  

POM methods (Grimm & Railsback, 2012) can directly address some of the problems of data 

availability, and subsequent parameter uncertainty, in process-explicit models of species 

distributions and community dynamics (Canteri et al., 2022; Fordham et al., 2022; Rangel et al., 
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2018). While POM was first used in ecology and evolution to optimise uncertain parameters in 

individual- and agent-based models (Thulke et al., 1999), it has since been used to simulate 

demographic change using spatially explicit population models (Canteri et al., 2022; Fordham et 

al., 2022), genetic diversification in lineages of species (Knowles & Alvarado‐Serrano, 2010), 

changes in community structure (Colwell & Rangel, 2010), and evolutionary shifts in populations 

(Barnes & Clark, 2017). It uses optimisation routines to determine model parameter values based 

on observed (or inferred, if operating across palaeo timeframes) empirical patterns (Grimm & 

Railsback, 2012), increasing the likelihood of capturing key biological processes in model 

simulations. This strategy assumes that observed patterns are fingerprints of underlying ecological 

and evolutionary processes, enabling models to be initially parameterised using uncertain but 

plausible information on these processes (Gallagher et al., 2021).  

Despite offering new opportunities to better understand the mechanisms that regulate biodiversity 

under past climate and environmental change, POM methods are only now being used in 

conjunction with spatially explicit population models (SEPMs) to reconstruct species’ range and 

extinction dynamics over palaeo timescales (but see Fordham et al., 2022, Canteri et al. 2022). 

SEPMs simulate movement, mortality, and reproduction in networks of populations over time (B. 

J. Anderson et al., 2009; Hanski, 1998), allowing the identification of ecological mechanisms and 

threats that caused ancient extinctions and range collapses (Canteri et al., 2022). POM 

optimisation is done using patterns inferred from the fossil record and ancient DNA (Fordham et 

al., 2022). Here, we show the utility of combining POM methods with SEPMs to reconstruct and 

disentangle the extinction dynamics of the steppe bison (Bison priscus) in Eurasia. The approach 

uses multiple rounds of SEPM optimisation to continuously reconstruct interactions between the 

ecological lifestyle and demography of steppe bison and drivers of global change (climatic change 

and human activities) over a period going back 50,000 years. We do this using the R package 

‘paleopop’ v2.1.0 (Haythorne, Pilowsky, Brown, & Fordham, 2021) that we developed as an e-

xtension to ‘poems’ (Fordham et al., 2021), adding important new functionality for modelling 

species’ range dynamics over multi-millennial timescales.  
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The steppe bison was one of the many large herbivores that dominated the “mammoth steppe” 

biome of the Ice Age (R. Dale Guthrie, 1989), all of which declined in range size as the mammoth 

steppe was replaced by a taiga-tundra ecotone during the Pleistocene-Holocene transition 

(Lorenzen et al., 2011; Markova et al., 2015). The relative abundance of steppe bison (based on 

reconstructions of effective population size) peaked during the late Pleistocene (Shapiro et al., 

2004), when the mammoth steppe was maximally distributed (P. M. Anderson & Lozhkin, 2001), 

going regionally extinct in Eurasia at ~8.7 kilo-years before present (kyr BP) (Boeskorov et al., 

2016) and globally extinct in North America some 6 to 8 kyr later (Shapiro et al., 2004). In Eurasia, 

isotopic analysis of late Pleistocene fossils shows that the steppe bison was a strict grazer that did 

not migrate seasonally (Julien et al., 2012). Here they competed with the European bison (Bison 

bonasus) for ecological dominance until climate-induced vegetation change following the Last 

Glacial Maximum (LGM; a period from 26.5 to 19 kyr BP (P. U. Clark et al., 2009)) restricted the 

less ecologically flexible steppe bison to Siberia (Soubrier et al., 2016).  

The processes leading to the megafaunal extinctions of the mammoth steppe during the late 

Pleistocene and early Holocene are uncertain, with intense debate regarding timing, location, and 

the roles of human hunting and climatic change (Mann, Groves, Gaglioti, & Shapiro, 2019; Stuart, 

2015; Yucheng Wang et al., 2021). Here we configure 110,000 SEPMs of climate-human-steppe 

bison interactions in Siberia, which we test against inferences of demographic change and range 

collapse inferred from fossils using POM methods. Our continuous reconstructions of the range 

and extinction dynamics of steppe bison from 50 kyr BP reveal the ecological processes and threats 

that led to the demise of the steppe bison in its last stronghold in Eurasia at approximately 9 kyr  

BP. 

Material and Methods
The steppe bison is an extinct species of bison which was once widespread in the steppe of the 

Northern Hemisphere (Markova et al., 2015). Its relative abundance (based on reconstructions of 

effective population size) peaked during the late Pleistocene (Shapiro et al., 2004), when the 

mammoth steppe biome was maximally distributed (P. M. Anderson & Lozhkin, 2001) becoming 
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regionally extinct in Eurasia approximately 8.7 kyr BP (Boeskorov et al., 2016). We simulated the 

ecological pathway to extinction for the steppe bison in Siberia (Shapiro et al., 2004).  

1. paleopop 

‘paleopop’ is an object-oriented R package (Haythorne et al., 2021) which we developed to 

simulate range and extinction dynamics of species over multiple millennia, enabling causal insights 

into likely past driver-state relationships. ‘paleopop’ uses a lattice-grid population model to 

simulate ecological processes (demography and ecological requirements) and their interactions 

across long temporal scales. ‘paleopop’ is an extension to the R package ‘poems’ v1.0.1 (Fordham et 

al., 2021), which implements process-explicit models and pattern-oriented methods to identify 

ecological processes of range shifts and extinctions (Figure 1). ‘paleopop’ adds three major features 

to ‘poems’: 1) the capacity to simulate long term processes of landscape change (sea level rise; 

movement of glacial ice sheets) occurring over glacial inter-glacial cycles, 2) a palaeo-population 

simulator optimised for simulating demographic change resulting from metapopulation and 

dispersal dynamics over multiple millennia, and 3) a palaeo-results object suitable for storing the 

data-heavy output from the palaeo-population simulator. 

2. Steppe bison niche 

2a. Fossil data 

We gathered radiocarbon-dated data on steppe bison fossils from the palaeontological literature 

(see Appendix S1 in the Supplementary Information for details). We regularised inconsistent and 

outdated species names, discarding any records where the species was ambiguous (e.g., “bison” 

without clear indicators whether it was the steppe bison or another bison species.) In cases where a 

site name was available, but latitude and longitude were not, we compared maps from the source 

literature against OpenStreetMap and Google Earth to geocode locations manually. The quality of 

all radiocarbon dates was assessed based on stratigraphy, association, and the material dated. We 

retained 378 records rated as “reliable” (Barnosky & Lindsey, 2010). We calibrated these 

radiocarbon dates using the OxCal v4.4 tool (Ramsey, 2017) and the IntCal13 curve (Reimer et al., 
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2013), which returned calibrated age and standard deviation (SD) estimates. The fossil record can 

be accessed from Figshare (Pilowsky et al., 2021).  

2b. Climate data 

Palaeoclimate simulations of precipitation, temperature, and latent heat flux used to model the 

ecological niche of the steppe bison (see below) are from the HadCM3B coupled ocean-ice-

atmosphere model (Valdes et al., 2017). These palaeoclimate simulations incorporate monthly and 

interannual climate variability (directly from model output) and millennial scale variability (by 

assimilating model and Greenland ice core data), and have been downscaled to 0.5° x 0.5° spatial 

resolution (E. Armstrong et al., 2019). We extracted monthly data for the study region of Siberia 

(Figure S1.1) from 50 kyr BP to 5 kyr BP and generated 30-year averages at a 12-year (generational; 

see description of the process-explicit model below) time step for: 1) total annual precipitation, 2) 

mean boreal winter (DJF) temperature, and 3) total evapotranspiration during boreal spring and 

summer (MAMJJA). Evapotranspiration was calculated by dividing the average monthly latent 

heat flux by the latent heat of vaporisation based on average monthly temperatures: 

 ET (mm/month) = �
heat flux

(2.501 - 0.00237 × temp) × 1e6
�× 86400 ×30 Eq. 1 

where heat flux and temp are the modelled monthly heat flux (W m2) and temperature (°C) for 

each month. 

Mean temperature of the coldest month, mean temperature of the warmest month, and annual 

precipitation have been used previously to model the ecological niche and distribution of high-

latitude herbivores, including the steppe bison (Lorenzen et al., 2011) and the American bison 

(Bison bison) (Metcalf et al., 2014). This is because these variables likely capture the upper and 

lower thermal limits of the species, while precipitation drives demographic rates in extant bison 

species (Koons et al., 2012). Because spring and summer evapotranspiration was correlated with 

the temperature of the warmest month (τ = 0.548), we chose to model only spring and summer 

evapotranspiration because it better captures the structure of vegetation available as forage in the 

warmer months (R. D. Guthrie, 2006). We used average temperature across all boreal winter 
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months (DJF) instead of only the coldest month, because it better captures the stressors and 

limitations created by winter conditions (DelGiudice, Moen, Singer, & Riggs, 2001; DelGiudice, 

Singer, Seal, & Bowser, 1994). None of the three variables were correlated with each other by more 

than τ = 0.51. 

2c. Niche model 

 We generated continuous habitat suitability maps (based on probability of occurrence) for 

the steppe bison in Siberia from 50 kyr BP to 5 kyr BP using ecological niche models (Nogués-

Bravo, 2009). To do this, we paired fossil occurrences with our three selected climate variables, 

accounting for dating uncertainty (Fordham et al., 2022). Climate data were paired spatially as 

determined by the grid cell where the fossil occurred, and temporally as determined by the band of 

uncertainty (±2 SD, which is commonly used for calibrated radiocarbon date distributions 

[Blaauw, 2010]) around the calibrated radiocarbon date. We removed any duplicate climate data 

created by two fossil occurrences falling within identical or overlapping spatiotemporal bins 

(Canteri et al., 2022). We used this climate dataset to create a full (multi-temporal) Gaussian 

hypervolume, optimised for appropriate bandwidth (Blonder et al., 2018), which provided an 

estimate of the fundamental niche of steppe bison (Nogués-Bravo, 2009)  

Because the realised climatic niche of steppe bison is likely to be a subset of its fundamental niche 

(Soberón & Nakamura, 2009), we thoroughly subsampled the full hypervolume of potentially 

liveable climatic conditions (Figure S1.2), and determined the realised niche using SEPMs and 

POM (see below). We did this by cutting the full hypervolume into smaller hypervolumes (n = 

1000) of different volumes and marginalities (climatic specialisation) using Outlying Mean Index 

analysis (Dolédec, Chessel, & Gimaret-Carpentier, 2000). We projected the hypervolumes back 

into geographic space, creating time series of maps of habitat suitability based on the probability 

density of the climate hypervolume at the set of environmental conditions in each grid cell (77.8 

km by 71.0 km grid cell resolution) from 50 kyr BP to 5 kyr BP. We scaled the suitability scores of 

each projection to a 0 – 1 interval based on the 95th percentile of maximum habitat suitability 

values in grid cells across time and space.  
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3. Palaeolithic humans 

The expansion of Palaeolithic humans into northern Eurasia was modelled using a process-explicit 

climate-informed spatial genetic model (‘CISGeM’) that has been shown to accurately reconstruct 

the dispersal of Homo sapiens out of Africa (Eriksson et al., 2012). ‘CISGeM’ simulates local 

effective population size (Ne) based on a cellular demographic model with carrying capacity 

modulated by net primary productivity. We ran ‘CISGeM’ from 120 kyr BP to present using the 

HadCM3B ocean-ice-atmosphere model (Valdes et al., 2017) and 4,950 parameter combinations 

that had previously been shown to robustly reconstruct patterns of human migration and growth 

(Eriksson et al., 2012). We calculated the mean and variance of the 4,950 simulation results (Figure 

S1.3) and scaled the projections of Ne between 0 and 1 (using an approach identical to the scaling 

of steppe bison habitat suitability projections). We then resampled the outputs from the timestep 

of ‘CISGeM’ (25 years) to the timestep of the bison simulations (12 years). To parameterise human 

hunting in our demographic models, we generated 50,000 potential trajectories of relative human 

density (using relative Ne as a proxy) in Siberia by sampling a lognormal distribution of relative 

effective population size (based on the mean and variance of the 4,950 simulations), accounting for 

spatially autocorrelated stochasticity (see Appendix S1 in the Supplementary Information for an 

extended version of the methods). 

4. Process-explicit model 

We generated a SEPM in ‘paleopop’ that simulated the ecological processes of movement and 

demographic change (extinction), responding to shifting climates, sea levels, ice sheets, and human 

hunting. Key ecological processes we modelled for the steppe bison included density dependent 

population growth, dispersal, and source and sink dynamics. These processes were simulated at 

generational time steps (12 years) using a spatially explicit scalar-type population model Habitat 

suitability from the potential realised niche models were used to structure the metapopulation by 

providing estimates of relative upper abundance in space and time (Fordham et al., 2022), 

assuming no adaptation to climatic or environmental change over the course of the simulation. 

Simulations were run at 12-year time steps from 50 kyr BP to 5 kyr BP. To ensure stable 

metapopulation dynamics at the beginning of the simulation (Fordham, Bertelsmeier, et al., 2018), 
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all simulations were preceded by a burn-in period of 100 generations, whereby grid cell upper 

abundance were held at 50 kyr BP values for the burn-in period. 

4a. Demography 

Demographic rates for congeneric species (B. bison and B. bonasus) were used as surrogates for the 

steppe bison (Fordham et al., 2016). We estimated maximum annual growth rate and its variance 

using time series data for B. bison and B. bonasus (see Appendix S1 for details). We scaled these 

growth rates to a generational time step based on the 12-year generation length of B. bison (Pacifici 

et al., 2013). After testing the stability of population dynamics with different density dependence 

functions, we modelled population growth with Ricker logistic density dependence (Ricker, 

1954), with the carrying capacity dependent on the habitat suitability in a given grid cell. At a 

habitat suitability of 1, the carrying capacity was equal to the maximum density (Table 1), 

reducing with lower suitability scores. We modelled a negative Allee effect, using a quasi-extinction 

threshold below which populations immediately dropped to zero (Fordham, Bertelsmeier, et al., 

2018). 

We simulated natal dispersal based on empirical estimates for B. bison (Jung, 2017). Between 5 and 

25% of the population dispersed per generation, with a maximum dispersal distance of 100 – 500 

km (Table 1). A dispersal friction landscape (Adriaensen et al., 2003) based on ice sheet 

reconstructions was used to ensure that bison dispersed only through ice-free grid cells. Human 

hunting was simulated based on relative abundance (see above). The harvest z parameter shaped 

the hunting function from a type II (z = 1) to type III (z = 2) functional response (Brook & 

Bowman, 2002) with the maximum harvest set from 0 to 35% (Fordham et al., 2022). All 

demographic parameters are described in more detail in Appendix S1. 

4b. Model simulations 

To address parameter uncertainty, which is inevitably high for extinct species (Brook & Bowman, 

2004), we created 50,000 unique SEPM parameterisations using Latin hypercube sampling (Stein, 

1987), drawing samples from uniform prior distributions for 11 model parameters (Table 1). This 

stratified sampling of the priors allowed us to generate a large suite of SEPMs, covering the 
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parameter space of demographic processes, ecological requirements (based on realised niche 

breadth and specialty), and hunting pressure. We selected realised niches to generate the carrying 

capacity landscapes in each simulation. Each sampled combination of parameters, including niche 

estimates, were integrated into an SEPM and simulated for a single replicate (Fordham et al., 2022). 

50,000 simulations took 214 hours in parallel on an eight-core Windows machine with a 3.6 GHz 

processor. 

5. Pattern-oriented modelling 

5a. Validation targets 

Pattern-oriented modelling (Grimm et al., 2005) was used to evaluate different SEPM 

parameterisations. Simulations were validated using POM methods, by comparing simulated 

estimates of spatiotemporal occurrences in Siberia, and timing and location of extinction, with 

fossil-based inferences (Appendix S1). We estimated the timing of extinction in Siberia from the 

fossil record to be 8,734 cal yr BP (95% CI: 8,810 – 8,657 cal yr BP) using a Gaussian-resampled, 

inverse-weighted method (Bradshaw, Cooper, Turney, & Brook, 2012) that accounts for the 

Signor-Lipps effect (Signor, Lipps, Silver, & Schultz, 1982). We estimated the extinction location 

to be in the Lena River basin based on the youngest fossil (Pilowsky et al., 2021). To calculate 

spatiotemporal occurrence, we set a spatiotemporal window of uncertainty around each steppe 

bison fossil in our study region (n = 31) and then quantified the agreement between simulated and 

inferred occurrence. The spatial window was based on the grid cell and its eight nearest 

neighbours, while the temporal band of uncertainty was based on ±2 × the error (SD) of the 

calibrated date. The same temporal band of uncertainty was used to quantify climatic conditions 

for the multi-temporal niche. A simulated presence of bison within the inferred window of 

occurrence was treated as a correctly simulated occurrence. 

5b. Statistical procedure 

Pattern-oriented modelling was done in the R package ‘abc’ v2.1 (Csillery, Lemaire, Francois, & 

Blum, 2015) using Approximate Bayesian Computation with the rejection algorithm to select the 

100 best models. All summary metrics for analysis were scaled based on their standard deviations 
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(van der Vaart, Beaumont, Johnston, & Sibly, 2015). The pattern-oriented modelling procedure 

was repeated using informed priors from previous model runs. This was done until Bayes factors 

indicated that the posteriors had converged (Figure S2.1). The procedure involved running four 

additional rounds of 10,000 simulations each, selecting the best 100 models each time and using 

the posterior distributions as the priors for the subsequent round. Posterior predictive checks were 

done to determine whether the posterior distributions result in good resemblance between 

simulated and observed data (Gelman, Hwang, & Vehtari, 2014). 

6. Counterfactual scenarios 

Counterfactual scenarios create possible alternatives to what historically occurred (Mondal & 

Southworth, 2010). We used counterfactual analysis to determine the consequences of rates of past 

climatic change and hunting by humans on the decline and extinction of steppe bison in Siberia 

(Fordham et al., 2022). We created an optimised ensemble based on the 100 best models selected 

from the final round of simulations, which served as a “baseline scenario” (non-counterfactual) of 

what is historically likely to have occurred in Siberia based on our POM approach. We used this 

optimised ensemble of models to simulate two counterfactual scenarios: no harvest, which 

modelled no hunting of steppe bison by humans from 50 kyr BP (i.e., steppe bison responding 

only to climate change); and constant climate, which held climatic suitability for steppe bison in 

Siberia at Last Glacial Maximum values from 21 kyr BP to the end of the simulation. For the 

constant climate scenario, the density of humans remained dynamic. Demographic and ecological 

parameters for the counterfactual scenarios were generated using random draws from the posterior 

distributions of the optimised ensemble model, using the Latin hypercube sampling approach 

described above. The counterfactual and baseline scenarios were compared using 10,000 

simulations per scenario.  

Results 
Our validated simulations show that the range of the steppe bison in Siberia contracted in a north-

easterly direction, until 33 kyr BP, when the range fragmented into smaller populations (Figure 2). 

This fragmentation continued through the Pleistocene-Holocene transition, resulting in only 
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refugial populations in north-eastern Siberia from 11 kyr BP (Supplementary Movie). Time of 

extinction in Siberia was simulated to occur at 7.4 kyr BP (± 1.5 kyr BP) based on the ABC-

weighted average of the best 100 process-explicit models. The oldest end of the window of 

uncertainty in our simulated estimate of time of extinction overlaps with the time of extinction 

based on the fossil record (8.81 – 8.66 kyr BP; see Methods). The youngest end overlaps with 

independent environmental DNA evidence of prolonged persistence of steppe bison in north-

eastern Siberia, with the youngest inference of occurrence being at 6.4 ± 0.6 kyr BP (Yucheng 

Wang et al., 2021). This ensemble of ‘best models’ projected the last surviving population to be in 

the east Siberian highlands, occurring ~500 km from the last known fossil, located at Batagaika in 

the Lena River valley (Murton et al., 2017). 

The capacity of SEPMs to simulate fossil-based inferences of timing and location of extinction was 

high after improving through five iterations of POM (Figure 3). Bayes factors showed convergence 

in prior and posterior distributions after five iterations of pattern-oriented modelling (all Bayes 

factors < 1; Figure S2.1). Posterior predictive checks showed that these posterior parameter 

distributions result in reasonable resemblance between simulated and observed data for extinction 

location and extinction time (p > 0.01) (Table S2.1). However, there was a poorer fit between the 

simulated spatiotemporal occurrence of bison at fossil sites and the observed fossil-based inference 

of spatiotemporal occurrence (p < 0.01).  

Posterior distributions of model parameters 

Comparison of posterior and prior parameters show that accurately reconstructing inferences of 

range contraction and timing and location of extinction from the fossil record required specific 

demographic and niche constraints, and hunting pressure (Figure 4). Posterior distributions show 

that specific niche requirements were needed to reconstruct the range and extinction dynamics of 

steppe bison. The posterior distributions for niche volume and outlying mean index (Table 1) 

indicate that steppe bison in Siberia fulfilled a subset of core climatic conditions available to the 

species across its entire multi-temporal range. This is shown by a small-to-medium niche volume 

(60% of the full multi-temporal niche volume) and small outlying mean index. Among 

demographic processes, the posterior distributions show that a high variance in growth rate, a 
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medium-sized Allee effect, high maximum density, and high dispersal (both in terms of maximum 

dispersal distance and dispersing fraction) are important for reconstructing range and extinction 

dynamics of the steppe bison in Siberia (Table 1). Furthermore, hitting validation targets requires 

high human densities and high rates of harvest (Table 1). 

Counterfactual scenarios 

In a no hunting scenario, the total population size of steppe bison in Siberia was higher throughout 

the simulation compared to the baseline (with hunting) and they did not go extinct before the end 

of the simulation at 5 kyr BP (Figure 5). Prior to 30 kyr BP in the no hunting scenario, the range of 

the steppe bison extended further south and west, fragmenting into smaller subpopulations only in 

the final 5000 years of the simulation (Supplementary Movie). In a constant climate scenario, 

where the climate was unvarying from 21 kyr BP, total population size stabilized at 19 kyr BP 

(Figure 5), while the range contracted to two large subpopulations that were linked by dispersal, 

both of which persisted to the end of the simulation (Supplementary Movie).  

 Neither of the counterfactual scenarios did as well as the baseline model at predicting 

timing and location of extinction (Figure S2.2). Models without human hunting (no hunting 

scenario) were generally better able to simulate spatiotemporal occurrence than the constant 

climate and baseline scenarios. This is because the absence of hunting by humans resulted in larger 

areas of occupied habitat in Siberia through time (Supplementary Movie). 

Discussion 
We were able to reconcile inferences of spatiotemporal occurrence and timing and location of 

extinction for steppe bison in Siberia based on hundreds of radiocarbon-dated fossils. Our 

ensemble of ‘best models’ projected extinction to have occurred in the east Siberian highlands at 

7.4 kyr BP, occurring on average 1,300 years after the fossil estimate. This is consistent with fossil-

based estimates of extinction often being hundreds to thousands of years earlier than the likely 

timing of the actual extinction event (Haile et al., 2009; Yucheng Wang et al., 2021), because they 

represent the last time that a species was abundant (Mann et al., 2019). We show that simulating 

the ecological pathway to extinction for steppe bison in its last refuge in Eurasia required very 
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specific ecological niche constraints, demographic processes, and hunting dynamics. It also 

required these processes to respond to climatic change, human abundance, and their interaction to 

regulate these ecological processes during the Pleistocene-Holocene transition. Counterfactual 

scenarios confirmed that human hunting and climatic change were both pivotal long-term drivers 

of regional extinction for the steppe bison in Siberia, and most likely Eurasia more generally. These 

results demonstrate how spatially explicit population models (SEPMs) and pattern-oriented 

modelling (POM) methods can be used in macroecology and palaeoecology to disentangle 

mechanisms that were integral in the decline and later extinction of species. 

The processes leading to the megafauna extinctions of the late Pleistocene and early Holocene are 

uncertain, with intense debate on the roles of human hunting and climatic change (Mann et al., 

2019; Stuart, 2015). The steppe bison was an iconic herbivore that dominated the “mammoth 

steppe” of the Ice Age Arctic (R. Dale Guthrie, 1989). While the timing, location, and causes of 

megafaunal extinctions in this biome are contested (Cooper et al., 2015; Koch & Barnosky, 2006; 

Stuart, 2015), our process-explicit models show that a synergy of climatic change and exploitation 

by humans most likely drove the steppe bison, and perhaps other herbivores of the mammoth 

steppe, extinct during the late Pleistocene and early Holocene. 

Pattern-oriented modelling revealed the ecological processes that regulated the extinction dynamics 

of steppe bison. Reconstructing fossil-based evidence of spatiotemporal occurrence and extinction 

in the northern Lena River valley requires steppe bison to have an ecological niche volume of 59 - 

74% of the size of the full multi-temporal niche (Nogués-Bravo, 2009). This reduced niche volume 

has low marginality (Dolédec et al., 2000), meaning that the ecological niche for steppe bison in 

Siberia represented the core climatic preferences of steppe bison more generally. Among 

demographic processes, dispersal and the effect of small population size on extirpation are likely to 

have influenced the range and extinction dynamics of steppe bison. Hitting our multivariate 

validation target required a pronounced Allee effect and the capacity for high dispersal, among 

other demographic constraints. Evidence for an Allee effect at low population densities has been 

found in natural populations of other temperate and polar ungulates: bighorn sheep (Ovis 

canadensis), chamois (Rupicapra rupicapra), elk (Cervus elaphus), pronghorn (Antilocapra 
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americana), and woodland caribou (Rangifer tarandus) (Kramer, Dennis, Liebhold, & Drake, 

2009). This has been attributed largely to cooperative defence and predator satiation reducing 

mortality at high densities, although mate selection at low density could also be a factor (Kramer et 

al., 2009). A high capacity for movement, including long distance dispersal, was also needed to 

reconstruct inferences of demographic change from the fossil record. Research on American bison 

has shown that they migrate seasonally in response to forage availability in winter (Gates & Larter, 

1990). They will also disperse toward unoccupied habitat when population densities become high 

(Plumb, White, Coughenour, & Wallen, 2009). 

Reconciling inferences of range collapse and extinction from the palaeo-record required hunting 

by humans. More specifically, humans needed to be found in medium-to-high regional densities 

(based on projections for Siberia) with high harvest offtake. Holding the hunting of bison constant 

to zero exploitation and then analysing the effect of this constraint on dynamic processes and 

emergent patterns revealed that human hunting was a crucial and chronic driver of extinction of 

steppe bison in Siberia. Without hunting by humans, steppe bison maintained a wider distribution 

and larger population size and did not go extinct by 5 kyr BP (the end of the simulation). Rather, 

bison persisted in two small subpopulations in the far north of Siberia with suitable climatic 

conditions. This finding aligns with archaeological evidence showing that human hunters in 

Siberia relied heavily on bison prey during the Pleistocene-Holocene transition (Vasil’ev, 2003), 

and that bison were disproportionately selected by hunters (Pushkina & Raia, 2008).  

Keeping climatic conditions constant for steppe bison (but not humans) since the Last Glacial 

Maximum in the constant climate counterfactual scenario showed that hunting alone could not 

have driven the steppe bison to extinction. Without deglacial warming negatively affecting range 

and abundance, steppe bison were projected to be at large abundances at 5 kyr BP despite hunting 

by humans. Taken together, our counterfactual hypotheses of the drivers of range collapse and 

extinction of steppe bison show that human hunting and climatic change were important 

determinants of the ecological pathway to extinction for steppe bison in Siberia. This association is 

likely to have been synergistic, with humans accelerating the range collapse of steppe bison during 

the Pleistocene-Holocene transition, hastening the extirpation of populations that had become 
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fragmented due to deglacial warming and associated shifts in vegetation. A similar mechanistic 

explanation has been proposed for the extinction of the woolly mammoth (Fordham et al., 2022). 

While we have shown that the application of POM methods to process-explicit modelling provides 

a powerful approach for continuously reconstructing range dynamics over thousands of years, the 

approach is only as accurate as the validation targets being used. Our validation targets were 

independent from the data used to parameterise the model, they captured a hierarchy of 

demographic responses (Gallagher et al., 2021), and they were estimated robustly using statistical 

techniques applied to fossil data (Bradshaw et al., 2012). Therefore, we have confidence in our 

POM and results, including the posterior distributions for model parameters and their multi-

model averaged projections of range and extinction dynamics (Grimm & Railsback, 2012). 

However, for many other species, an abundant and spatially representative fossil record will not be 

available to optimise SEPMs of species’ range dynamics using POM. Here, other types of palaeo 

validation data could be considered, including ancient DNA estimates of past population change 

(Fordham et al., 2014) and inferences of spatiotemporal occurrence from environmental DNA in 

sediments and ice cores (Yucheng Wang et al., 2021). For threatened species, or species that went 

extinct recently (such as the thylacine in Australia), historic sightings can provide important 

sources of validation data (Fordham et al., 2021). 

Posterior predictive checks of our process-explicit model showed that the posterior ranges of model 

parameters reconstruct extinction time and location reasonably well (Gelman et al., 2014). 

However, it was more difficult to reconcile fossil evidence of spatiotemporal occurrence. Indeed, 

this target was easier to reconstruct in simulations without human hunting, because in the no 

hunting scenario, steppe bison maintained larger ranges through time. Larger ranges resulted in 

occurrence not only being higher at fossil sites, but also in areas which were unlikely to have been 

habitable by steppe bison during periods in the past. It is possible that the difficulty with correctly 

simulating spatiotemporal occurrence at fossil sites could stem from the hunting dynamics in our 

process-explicit model. This was relatively simple, not accounting for technological developments 

which are likely to have occurred during the timeframe of the simulation (Goebel, 2002). The wide 

posterior range for the functional response of human hunting of steppe bison, extends from the 
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selected best models having a diverse range of hunting strategies  suggesting that a variety of 

parameter values can give a close fit to inferences of extinction dynamics from the fossil record. 

Also, the model we used to simulate the peopling of Siberia (and Eurasia more generally in 

‘CISGeM’) does not account for topography, which could have caused barriers to movement, 

particularly in the Siberian highlands (Eriksson et al., 2012), affecting spatiotemporal harvest rates.  

Our process-explicit modelling shows that climatic change and hunting by humans in Siberia 

during the late Pleistocene and early Holocene is likely to have interacted with key ecological 

requirements and demographic processes of steppe bison to cause its extinction in Eurasia during 

the early Holocene. Moreover, it shows that process-explicit models validated with pattern-

oriented modelling methods can continuously simulate the ecological processes and drivers that 

cause the population declines of species over many millennia, as well as the final extinction event. 

While synthesis of the declining and small population paradigms (Caughley, 1994) remains rare, 

the integrated computational framework used here provides new opportunities to better establish 

ecological pathways to extinction over long time periods. If applied to a diverse range of species, 

generalities in ecological processes of extinction could be identified. 
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Figures, Boxes & Tables 
Tables 

Parameter Mean Prior Mean Posterior 

Ecological niche 

Niche volume 0.5 (0 – 1) 0.438 (0.332 – 0.775) 

Niche outlier marginality index (OMI) 0.5 (0 – 1) 0.197 (0.166 – 0.237) 

Human harvesting 

Maximum harvest (percent) 17.5 (0 – 35) 25.3 (9.5 – 34.1) 

Harvest function (z) 1.5 (1 – 2) 1.46 (1.04 – 1.89) 

Human density (p) 0.5 (0 – 1)  0.782 (0.585 – 0.984) 

Dispersal 

Dispersing fraction 0.15 (0.05 – 0.25) 0.212 (0.121 – 0.249) 

Maximum dispersal distance (km) 300 (100 – 500) 419 (285 – 495) 

Population model 

Maximum growth rate (r) 2.07 (1.31 – 2.84) 2.066 (1.566 – 2.816) 

Variance of growth rate 0.123 (0 – 0.245) 0.172 (0.095 – 0.228) 

Allee effect (abundance threshold) 250 (0 – 500) 212 (126 – 298) 

Maximum density (bison per grid cell) 1875 (500 – 3250) 2542 (1840 – 3203) 

Table 1: Parameter distributions. The prior and posterior means, minima, and maxima are 

shown for parameters in the process-explicit model of steppe bison range and extinction dynamics. 

All priors are uniformly distributed. See Methods for details. 



Chapter III: Reconstructing ancient extinctions 

 
 

95 
 

Boxes 

Approximate Bayesian Computation (ABC): A statistical technique that uses Bayesian statistics 

to estimate the distributions of model parameters by comparing simulated probability 

distributions of summary statistics against the observed distribution (M. A. Beaumont, Zhang, & 

Balding, 2002).   

Correlative models: Models that statistically relate environmental variables to observation data in 

order to infer biological patterns  (Pilowsky, Colwell, Rahbek, et al., 2022b). 

Pattern-oriented modeling (POM): An approach for optimising model parameters using 

independent validation targets (Grimm et al., 2005). 

Process-explicit models: Models that represent the dynamics of an ecological system as explicit 

functions of the processes that drive change in that system. Also known as process-based and 

mechanistic models (Connolly et al., 2017). 

Spatially explicit population models (SEPMs): Process-explicit models that simulate mortality, 

reproduction, and movement in a network of populations on a landscape map (Dunning et al., 

1995). 

Box 1: Biodiversity modelling terms.  
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Figures 

 

Figure 1: Modelling species’ range dynamics over palaeo timescales. The modelled dynamic 

palaeo-region changes temporally due to climatic change and associated rising sea levels and melting 

ice sheets. Spatially explicit population models (SEPMs) are built by coupling a demographic model 

with a grid-lattice-type spatial structure of habitat suitability. Latin hypercube sampling is used to 
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exhaustively sample SEPM parameter space, resulting in tens of thousands of parameter 

combinations, each of which is used to parameterise a SEPM. The palaeo-population simulations 

include ecological processes (including dispersal and extinction) responding to key threats of 

human hunting and climatic change. These simulations reconstruct outputs of past population size 

and abundance maps. Pattern-oriented modelling (POM) is used to identify models that reconcile 

patterns of demographic change inferred from palaeo-archives. This involves optimising values of 

SEPM parameters by comparing the distributions of posterior and prior parameter ranges 

(posterior distributions) for successive iterations of model building and testing. Models that do best 

at simulating inferred patterns of range and extinction dynamics are used to generate validated 

projections. 
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Figure 2: Validated reconstruction of the extinction of the steppe bison in Siberia. The 

map (a) shows the multi-model average estimate of time of extirpation for the best models 

according to pattern-oriented modelling. The location of the site of extinction based on fossil data 

is marked with a cross. The time series (b) shows simulated total population size for steppe bison in 

Siberia. Vertical lines show extinction time as estimated from the fossil record and Greenland 

Interstadial 12, a period of climatic warming between 47.9 and 46.0 kyr BP. 
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Figure 3: Reconstructions of validation targets using pattern-oriented modelling. 

Validation targets for pattern-oriented modelling (POM) are A) Extinction location, evaluated by 

difference in kms between simulated extinction location and the location based on the youngest 

fossil; B) Extinction time, evaluated by difference in years between simulated and inferred time of 

extinction based on the fossil record; and C) fossil-based occurrence, evaluated by the number of 

sites where spatiotemporal occurrence is simulated correctly. For A) and B) the target for POM 

was 0 (no difference between simulated and target). For C) the target was 31, which is equal to the 

total number of fossil occurrence sites. Different colours show five successive iterations of pattern-

oriented modelling. See Methods for further details. 
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Figure 4: Regression-adjusted posterior distributions for parameters. Maximum dispersal 

distance and the fraction of bison that dispersed in each generation (Dispersing fraction) simulate 

dispersal. Maximum density of bison in each grid cell, Allee effect, variance (Var.) and maximum 

growth rate, all interact to simulate population growth. Human density (relative human density), 

harvest z (shape of the harvest function), and maximum (Max.) harvest (maximum proportion of 

bison hunted) determine the hunting rate. Volume and Outlying Mean Index (OMI) are measures 

of climatic niche space (the size of the climatic niche and the marginality of climatic preferences, 

respectively).  All prior distributions were uniform (black.) Parameters are described in more detail 

in the Methods. Unscaled parameter ranges are provided in Table 1. 
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Figure 5: Alternative scenarios of extirpation and population decline. Counterfactual 

scenarios simulate a) climate change but no human harvesting of bison (No hunting) and b) no 

climate change from 21 kyr BP but harvesting of bison before and after that time (Constant climate 

since LGM). Maps show when populations in each grid cell went locally extinct. Populations that 

survived to the end of the simulation are shown in bright blue (Extant). Line graphs show the 

simulated trajectories of total abundance in Siberia (± 1 SD). They include timing of Greenland 

Interstadial 12 and timing of extinction in Siberia inferred from fossils. See Figure 2 for details. 

Supplementary Material 
 1. paleopop 

‘paleopop’ is an object-oriented R package for building spatially explicit population models 

(SEPMs) that can simulate species’ range and extinction dynamics across multiple millennia with 

pattern-oriented validation (Haythorne et al., 2021). ‘paleopop’ is an extension to the package 

‘poems’ (Fordham et al., 2021). It consists of a collection of interoperable R6 (Chang, 2019) object 

classes. The package allows multiple SEPMs with different combinations of model parameters to 

be built by drawing parameters from an n-dimensional plausible space using Latin Hypercube 
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sampling (Fordham et al., 2021). ‘paleopop’ adds functionality for modelling populations over 

large temporal scales: a dynamic palaeo-region that incorporates sea-level and other changes in 

study extent, a palaeo-population simulator optimised for modelling populations over multi-

millennial time scales, and a palaeo-results object for storing the output of the simulator. 

At the core of the ‘poems’/’ paleopop’ framework are manager components for managing the 

parallel processing of multiple simulations and extracting their results. The simulation manager 

object is responsible for initiating simulation runs and storing the simulation results. For each 

combination of model parameters, the simulation manager builds and runs a SEPM. The 

simulation manager stores the results of each simulation to disk. The results manager object is 

responsible for processing the stored simulation results to produce summary metrics for each 

model (i.e., with a unique sample of the parameter space). For each simulation result, the results 

manager generates summary metrics via user-defined functions that calculate metrics using the 

saved simulation results, as well as several useful dynamically generated results, such as extinction 

locations and abundance trends. 

The approach allows parameter uncertainty to propagate through to model simulations of range 

and extinction dynamics. Their effects can be evaluated using Approximate Bayesian 

Computation (ABC) (Csilléry et al., 2010), a statistical procedure for pattern-oriented modelling 

(Grimm et al., 2005). This validation method identifies models with the structure and 

parameterisation needed to simulate the effects of past changes in climate, environment and 

human activities on species’ distributional shifts and extinction risk (Fordham et al., 2021). The 

validator object utilises the sampled model parameters, their corresponding summary metrics, and 

observed target values for each metric. The simulation models with the best congruence between 

summary metrics and observed targets are selected. Pattern-oriented modelling weights, which are 

calculated by the ABC algorithm and are indicative of model congruence with target patterns, can 

be used to generate weighted multi-model average estimates of spatiotemporal abundance, 

extinction risk, and other metrics (Fordham et al., 2022). 
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The five minimum parameters required to run ‘paleopop’ are number of timesteps, number of 

populations, initial abundance, carrying capacity, and transition rate between generations. For our 

simulations, we added five static parameters and eleven dynamic parameters (Table 1).  

2. Steppe bison niche 

2a. Fossil data 

Fossil data came from publicly available databases and from the published literature. We 

regularised inconsistent and outdated species names, discarding any records where the species 

identity was ambiguous (e.g., “bison” without clear indicators whether it was the steppe bison or 

another bison species.) In cases where a site name was available, but latitude and longitude were 

not, we geocoded locations manually using OpenStreetMap and Google Earth. Because our 

models were in a Lambert equal area projection with 77.8 km by 71.0 km resolution, we did not 

require a high degree of precision in geolocations. We assessed the quality of the radiocarbon dates 

using the approach advocated by Barnosky and Lindsey (Barnosky & Lindsey, 2010) which rates 

the quality of radiocarbon dates based on stratigraphy, association, and the material dated. We 

retained all records rated as “reliable” (score > 10) and calibrated their radiocarbon dates using the 

OxCal tool (Ramsey, 2017) and the IntCal13 curve (Reimer et al., 2013). We later recalibrated the 

radiocarbon dates with the IntCal20 curve (Reimer et al., 2020) and found that there was a mean 

difference between the IntCal13- and IntCal20-calibrated dates of 0.3%, which led us to conclude 

that a re-evaluation of the fossil dates for the analysis was not necessary. The fossil data are available 

online (Pilowsky et al., 2021). 

2b. Climate data 

We accessed palaeoclimate reconstructions from 50 kiloyears before present (kyr BP) to 5 kyr BP 

from the HadCM3B coupled ocean-ice-atmosphere model (Valdes et al., 2017), provided by 

Armstrong et al. (E. Armstrong et al., 2019). These palaeoclimate simulations incorporate monthly 

and interannual climate variability (directly from model output) and millennial scale variability (by 

assimilating model and climate proxies), and have been downscaled to 0.5° x 0.5° spatial resolution 

(E. Armstrong et al., 2019). We extracted monthly data for precipitation, temperature, and latent 
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heat flux for the study region of Siberia, defined using the present-day political boundaries of the 

Siberian provinces in Russia, with a northern buffer to account for sea level changes. From these, 

we calculated three focal climate variables: winter temperature, spring & summer 

evapotranspiration, and annual precipitation (Figure S1). The rationale for choosing these 

variables is explained in detail in the main paper. 

2c. Niche model 

We generated climate suitability for the steppe bison (Bison priscus) in Siberia from 50 kyr BP to 5 

kyr BP using ecological niche models, and more specifically an n-dimensional hypervolume 

approach (Blonder & Harris, 2019). To do this, we first paired fossil occurrences with our three 

selected climate variables by sampling the simulated palaeoclimate in a spatiotemporal bin around 

each fossil occurrence. This bin was defined spatially by the grid cell where the fossil occurred and 

temporally by a band of ±2 calibrated SD around the calibrated radiocarbon date (Fordham et al., 

2022). We removed any duplicate climate data created by two fossil occurrences falling within 

identical or overlapping spatiotemporal bins. We used this climate dataset to create a full Gaussian 

hypervolume, optimising for appropriate bandwidth (Figure S2) (Blonder et al., 2018). This 

approach is analogous to modelling the fundamental niche (Nogués-Bravo, 2009). 

We identified thousands of possible realised niches by sectioning the full hypervolume of 

potentially liveable climatic conditions (Figure S2). We did this by cutting the full hypervolume 

into smaller hypervolumes (n = 1000) of different volumes and marginalities (climatic 

specialisation) using Outlying Mean Index analysis (Dolédec et al., 2000). When sectioning the full 

hypervolume we ensured uniform distributions for volume and marginality.   

We calculated niche samples using sampling windows of different volumes, from 70% to 95% of 

the breadth of the full hypervolume, some overlapping and some non-overlapping (Fordham et al., 

2022). We created a uniform distribution of volume and marginality for the hypervolumes and 

sampled evenly across the distribution, resulting in 772 plausible realised niches once duplicates 

and edge cases with very few data points had been removed. In this way, we were able to randomly 

sample realised niches for the simulations while maintaining uniform priors for volume and 
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marginality. All the hypervolumes were centred and scaled to the same scale as the full 

hypervolume and projected into geographic space. We tuned these projections using different 

functions of Gaussian decay, selecting the weighted function that produced a wide distribution of 

suitability scores while still clearly differentiating cells with zero suitability (Blonder et al., 2018). 

We scaled the suitability scores of each projection to a 0 – 1 interval, using the 95th percentile for 

the upper bound to remove outliers. 

3. Palaeolithic humans 

The expansion of Palaeolithic humans into northern Eurasia was modelled using a process-explicit 

climate-informed spatial genetic model (CISGeM) that has been shown to accurately reconstruct 

the dispersal of humans out of Africa (Eriksson et al., 2012). CISGeM simulates local effective 

population size (Ne) based on a cellular demographic model with carrying capacity modulated by 

net primary productivity (NPP). The cellular model is on a 100 km hexagonal grid, which allows 

for equidistant dispersal in all directions. The model has been validated using pattern-oriented 

modelling and shown to have the structure and parameterisation needed to reconstruct 

spatiotemporal genetic validation targets (Eriksson et al., 2012). 

We parameterised the model using net primary productivity calculated from the HadCM3-based 

climate simulations generated by Eriksson et al. (Eriksson et al., 2012) in the original CISGeM 

study, averaged at 30-year intervals on generational time steps for humans (25 years). More 

specifically, simulations of temperature and precipitation were converted to net primary 

productivity via the Miami vegetation model (Lieth, 1975). The relationship between carrying 

capacity and NPP, as well as demographic parameters (including colonisation rate, maximum 

growth rate, and NPP extinction threshold) were treated as variable parameters. We used 4,950 

parameter combinations based on the posterior ranges of validated models (Eriksson et al., 2012). 

We ran CISGeM from 120 kya to present to produce 4,950 continuous simulations of human 

migration out of Africa and growth and spread across the world. We converted estimates of Ne to a 

latitude-longitude grid, calculated the mean and variance of Ne for each grid cell at each time step 

(Fordham et al., 2022), and resampled the outputs to the 12-year timestep of the bison simulations 
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(Figure S3). Ne was scaled between 0 and 1 and used as a proxy of relative abundance of humans in 

the bison simulation model (Fordham et al., 2022). 

4. Process-explicit model 

The potential range dynamics of Bison priscus were simulated at generational time steps from 50 

kyr BP to 5 kyr BP using a scalar lattice-grid type SEPM configured in ‘paleopop’. Life-history 

traits from congeneric species (B. bison and B. bonasus) were used as surrogates for B. priscus in our 

model (Fordham et al., 2016). These are described below and in the main paper. 

Bioclimatic envelope models of climate suitability and CISGeM estimates of human abundance 

were coupled with stochastic population models that capture extinction as well as colonisation 

dynamics by simulating landscape-level population processes, including dispersal with source-sink 

dynamics. Each grid cell was modelled with a scalar-type stochastic model, which simulates the 

finite rate of population increase “R”, its variance and the population carrying capacity (Dunham, 

Akçakaya, & Bridges, 2006). The approach has been shown to be superior at reconstructing the 

historical range dynamics of species compared to bioclimatic envelope models alone (Fordham, 

Saltré, et al., 2018). The model was run at generational time steps (12 years, see below). 

4a. Demography 

Carrying capacity 

The carrying capacity of each grid cell was based on the climate suitability (VanDerWal et al., 

2009). We converted habitat suitability to carrying capacity by multiplying the habitat suitability 

score (on a 0 – 1 scale) by the maximum density, which was one of the varying demographic 

parameters in the model. We estimated plausible bounds for maximum density using estimates 

from American bison (Bison bison) and European bison (Bison bonasus) (Fuller, Garrott, & White, 

2007; Mysterud et al., 2007). Based on the assumption that a maximum of one-quarter of each grid 

cell could be suitable habitat for the steppe bison (Fordham et al., 2013), we scaled the maximum 

density values to one-quarter of each equal-area projection grid cell, resulting in a range of 500 to 

3250 bison per grid cell. 
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Generation length and population growth 

Maximum annual growth rate and its variance were estimated using time series data on 

reintroduced bison populations in and outside reserves (Gates & Larter, 1990; Mysterud et al., 

2007; Samojlik, Fedotova, Borowik, & Kowalczyk, 2019). If the time series contained gaps, we 

estimated growth rates across the gaps by fitting splines (Petzoldt, 2019). Where possible, 

maximum annual growth rate was calculated using time series data for founding populations 

growing exponentially (Fordham et al., 2022). This provided a mean estimate of 0.179 at an annual 

time scale. To measure the annual variation in growth rate, we used time series data for stable 

populations fluctuating around the carrying capacity (Fordham et al., 2022). This provided a mean 

estimate of 0.091 at an annual time scale. 

To convert estimates of maximum growth rate and variation in growth rate to generational rates, 

we exponentiated the lower and upper bound of maximum annual growth rate to the generation 

length of the steppe bison, which is 12 years, based on its closest living relative the American bison 

(Pacifici et al., 2013), resulting in a R0 of 1.31 – 2.84 (0.27 – 1.04 on the natural scale). We 

calculated the variance in population growth rate at a generational time step by running 1000 

simulations of an annual model for 100 years and calculating the standard deviation of population 

growth rate at a generational time step (Fordham et al., 2022). The mean estimate of variance on 

the generational time scale for the highest value of annual variation was 0.06. Density dependence 

was modelled as a Ricker logistic density dependent response (Ricker, 1954), which has been 

shown to be an appropriate model for species with slow life histories like the steppe bison, 

especially when environmental variation is high (Koetke, Duarte, & Weckerly, 2020). 

Dispersal 

We used movement data from a radio-collar study of reintroduced American bison (Jung, 2017) to 

simulate natal dispersal. We modelled a mean dispersal rate of 15% of the population moving per 

generation at an average maximum distance of 300 km. We set upper and lower bounds on these 

estimates of 5 – 25% and 100 – 500 km, respectively. We did this by parameterising the following 

dispersal equation: 
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where movement (m) between cells i and j is a function of Dmax (the maximum dispersal distance), 

a, and b. The parameter a is half the total proportion of dispersers that leave a cell at each time step. 

The parameter b comes from fitting an exponential function of dispersal distance in which Dmax is 

the 95th percentile of the distribution of distances. The lambda parameter of the fitted exponential 

function is the estimate of b. 

The dispersal function was modulated by the dispersing fraction parameter, which set a ceiling on 

how many bison dispersed out of a grid cell. This approach prevents excessively large dispersal rates 

between closely neighbouring grid cells (Fordham et al., 2022). 

Human hunting 

We modelled human hunting as a function of human density (see above) and prey density in a 

given grid cell. The maximum harvest for the harvest function varied from 0 - 35% of the bison in a 

grid cell (Fordham et al., 2022). The proportion of bison harvested in a grid cell is given by the 

following equation: 

𝐻𝐻` =
�𝑁𝑁 × 𝐹𝐹 × 𝑃𝑃𝑧𝑧
𝐺𝐺 +  𝑃𝑃𝑧𝑧 �

𝑃𝑃
 

where N is the relative abundance of humans scaled between 0 – 1, F is the maximum harvest, P is 

the prey density, G is a constant equal to the prey density at which harvest is half-maximal (Alroy, 

2001; Brook & Bowman, 2004) and z shapes the harvest function from a type II to a type III 

functional response, where z = 1 corresponds to a type II response and z = 2 corresponds to a type 

III response. At z = 1, hunting is purely a function of prey density and predator satiation, resulting 

in higher hunting rates at low prey densities and lower hunting rates at high prey densities. At z = 

2, hunting rates are lower at low densities and high densities, reaching their peak at an inflection 

point, due to prey adaptation and/or prey switching at low prey densities. We did not model any 

changes in the density of humans in response to predation, as the archaeological literature suggests 
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that Eurasian hunter-gatherer populations changed largely in response to climate, and relied on a 

diverse array of food resources (Bevan et al., 2017). 

At each time step, the simulator performs four basic steps: 1) the carrying capacity and human 

density landscapes update, 2) the population growth in each grid cell adjusts according to 

stochastic variation, carrying capacity and population density (if density dependence is switched 

on), 3) bison are harvested in each grid cell according to the bison density and human density (if 

human hunting is switched on), and 4) bison disperse between grid cells according to the carrying 

capacity of target cells, distance between origin cell and target cell, and dispersal barriers on the 

landscape (i.e., ice sheets).  

4b. Model simulations 

We used Latin hypercube sampling to thoroughly explore the parameter space of the 11 dynamic 

model parameters (Table 1). Latin hypercube sampling is stratified by sectioning distributions into 

subsets of equal probability density (Stein, 1987). We sampled variable parameters using uniform 

distributions. Using this procedure, we initially generated 50,000 plausible combinations of 

parameter values. We also had 5 static parameters that were the same across all simulations: the 

palaeo-region, years per timestep (12), logistic density dependence, minimum carrying capacity for 

a cell to attract dispersers (10), and minimum number of populations required for all populations 

to persist (1). We ran each one of these combinations of parameters for a single replicate (Fordham 

et al., 2022). 

5. Pattern-oriented modelling 

5a. Validation targets 

To validate the model, we used pattern-oriented techniques, using timing and location of regional 

extinction, and fossil-based occurrence as model targets. We estimated the timing of extinction in 

Siberia from the fossil record to be 8,734 BP (95% CI: 8,810 BP – 8,657 BP) using a Gaussian-

resampled, inverse-weighted method (Bradshaw et al., 2012). The approach accounts for biases in 

estimating time of extinctions caused by the Signor-Lipps effect, which arises from the inability of 

an incomplete fossil record to accurately measure extinction time (Signor et al., 1982). 
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For each model simulation, we assigned a penalty. If the simulation of regional extinction time fell 

within the interval of uncertainty in the fossil-based estimate, the penalty was zero. The penalty 

increased in a linear fashion both forward and backward from the estimated extinction interval. 

Using the fossil record, we estimated the extinction location to be at Batagaika in the Lena River 

valley. For each model, we assigned a penalty of zero if extinction occurred in the 77.8 km by 71.0 

km grid cell of the last known steppe bison fossil in Siberia or its eight nearest neighbour grid cells. 

If the extinction location was outside this area, a linear increasing penalty with distance was 

applied. If the bison went extinct in multiple cells simultaneously, a population-weighted centroid 

of these last populations was used to calculate extinction location (B. J. Anderson et al., 2009). If 

the bison survived to the end of the simulation, the population-weighted centroid of the surviving 

population was used instead of the extinction location. We did this in order to more heavily weight 

those simulations in which the steppe bison persisted with refugial populations in the correct 

location for the last known fossil. 

We also used the spatiotemporal occurrence from the fossil record in our study region and time 

scale (n = 31) as a validation target. We added a spatiotemporal envelope around each fossil 

corresponding to the 77.8 km by 71.0 km grid cell and its eight nearest neighbours, and ±2 × the 

error of the calibrated date. Our pattern-oriented validation selected for models that were able to 

simulate 31 inferences of fossil occurrence. 

5b. Statistical procedure 

For the first round of pattern-oriented modelling, we ran 50,000 simulations based on uniform 

priors for all 11 parameters. We calculated the summary metrics detailed above, scaled them by 

their standard deviations, then did pattern-oriented modelling using the ABC rejection algorithm. 

We fitted appropriate statistical distributions (uniform, Poisson, negative binomial, beta, or 

truncated normal) to the validated posteriors, used these as informed priors for a second round of 

10,000 simulations, and again selected the best 100 models using ABC. We continued through 

three more rounds of 10,000 simulations, until the Bayes factors indicated that the posterior 

distributions had stabilised relative to the priors. 
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6b. Posterior predictive checks 

After the final round of pattern-oriented validation, we simulated 10,000 draws from the validated 

posteriors, calculated summary metrics, and evaluated model performance using posterior 

predictive checks (Crespi & Boscardin, 2009). The posterior predictive check compares the 

distance among the simulated summary metrics against the distance between the simulated and 

observed metrics. The model passes the posterior predictive check if there is high overlap (small 

difference in means) between the two sets of distances. 

Box.com link to view supplementary movie 

Supplementary Movie: Spatiotemporal abundances of steppe bison in the baseline, no 

hunting, and constant climate scenarios. 

 

Target Estimate t-value p value 

Spatiotemporal occurrence 0.985435 31.1378 < 0.01 

Extinction time 0.056049 1.769989 > 0.01 

Extinction location -0.31638 -9.99192 > 0.05 

 

Table S1: Posterior predictive checks for the three validation targets. The validation targets 

are detailed in Fig S5. Posterior predictive checks are based on 10,000 draws from posterior 

distributions of parameters (Table 1), showing the Estimate (the estimated difference between 

distances among simulated targets and distances to observed targets), t-value and p value. A model 

is considered to have good performance on a validation metric when there is little difference 

between the distances among simulated targets and the distances to observed targets. 

 

https://universityofadelaide.box.com/s/7016oimqxsw1cm0inm7wf95kkvddqqa0
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Figure S1: Time series of climate variables in the steppe bison climatic niche. The time 

series show the HadCM3B-based data (see above) used to model the climatic niche of the steppe 

bison, in the study region of Siberia, for the duration of the simulation (50 kyr BP to 5 kyr BP). 
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Figure S2: Full multi-temporal climate hypervolume. The hypervolume is estimated by the R 

package hypervolume based on the steppe bison fossil record in North America, Beringia, and 

Siberia. All climate values are centred and scaled. 
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Figure S3: Relative abundance of humans in Siberia. Relative abundance is scaled to a 0 – 1 

interval from effective population size. Upper and lower bounds are +/- 1 SD. 
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Figure S4: Convergence of informed priors. Boxplots show priors for consecutive rounds of 

pattern-oriented modelling (POM), as well as the final set of posteriors used in the final optimised 

model. The first round of POM was based on 50,000 simulations and uniform priors, while 

subsequent rounds of 10,000 simulations were based on informed priors that came from the 

posteriors selected by ABC in the previous round of POM. In each round of simulations, we 

selected the best 100 models.  
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Figure S5: Comparison of reconstructions of validation targets for the baseline and two 

counterfactual models. Validation targets are (a) Extinction location: distance in km between 

simulated extinction location and the location based on the youngest fossil; (b) Extinction time: 

years between simulated and inferred time of extinction based on the fossil record; and (c) Fossil-

based occurrence: number of fossil sites out of 31 where spatiotemporal occurrence is simulated. 

Density of simulations at different distances from validation targets are shown, with outliers (> 

90% quantile of target distances) removed. Different colours show the optimised baseline model 

and two competing counterfactual scenarios: climate change but no human harvesting of bison (no 

hunting); and (b) no climate change from 21 kyr BP but harvesting of bison before and after that 

time (constant climate).  
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Abstract 
European bison (Bison bonasus) were widespread throughout Eurasia during the late Pleistocene. 

However, the contributions of environmental change and humans on their near extinction have 

never been resolved. We reconstructed the contraction and population decline of the European 

bison at high spatiotemporal resolution using process-explicit models, fossils, and ancient DNA. 

We reveal important ecological and demographic attributes of European bison, showing that while 

a combination of climatic warming and human pressures drove population declines and regional 

extinctions of European bison, these drivers varied spatiotemporally. The population size of 

European bison declined abruptly at the termination of the Pleistocene in response to rapid 

warming, hunting by humans and their interaction. Human activities prevented populations of 

European bison from rebounding in the Holocene, despite improved environmental conditions. 

During the Holocene, hunting caused range loss in the north and east of its distribution, while 

land use change was responsible for losses in the west and south. From 1500 CE, advances in 

hunting technologies, resulting in a 30% increase in offtake, explain population estimates in 1870. 

While our findings show that humans were an important driver of the extinction of the European 

bison in the wild, vast areas of its range vanished during the Pleistocene-Holocene transition 

because of deglacial warming. These areas have been climatically unsuitable for millennia and 

should not be considered in translocation and reintroduction efforts. 

Keywords 

Extinction dynamics, European bison, mechanistic model, spatially explicit population model, 

climate change, metapopulation, megafauna, range dynamics, conservation biogeography
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Introduction 
The European bison (Bison bonasus) is a large grazer that was widely distributed in Eurasia during 

the Pleistocene (Soubrier et al., 2016), where it was hunted for food and skins (Pucek, Belousova, 

Krasinska, Krasinski, & Olech, 2004). Following the late Pleistocene, the range of European bison 

collapsed (Pucek et al., 2004), with the species going extinct in the wild in 1927 (Krasińska & 

Krasiński, 2013). Since its near extinction, enormous effort and resources have been directed 

toward restoring healthy wild populations of European bison (Krasińska & Krasiński, 2013). These 

conservation measures have been incredibly effective, resulting in a progressive downgrading of the 

threat status of European bison, from extinct in the wild to near threatened in a 93 year period 

(Plumb, Kowalczyk, & Hernandez-Blanco, 2020). However, as European bison increase in 

number and size (Plumb et al., 2020), their long-term persistence relies on knowing how and why 

it nearly went extinct in the first place. This is because there is much speculation as to whether the 

pathway to near extinction for the European bison was a recent and abrupt event, or a long and 

drawn-out process due to past climatic change, human activities and their interaction (Caughley, 

1994; Kerley, Cromsigt, & Kowalczyk, 2020). 

It has been suggested that the cause of the European bison’s near extinction was habitat loss due to 

deforestation. This is because the European bison is considered a forest specialist (Pucek et al., 

2004). However, this idea has been criticised because of its reliance on a relatively short temporal 

perspective, focusing on evidence from the Holocene, when Europe was already mostly forested 

(Kerley et al., 2020). A competing hypothesis is that the European bison are primarily grazers, 

adapted to mosaic rather than strictly forest habitats. This is supported by stable isotope data from 

modern and ancient European bison bone collagen, which shows a shift in diet from grazing to 

browsing in the early to late Holocene (Bocherens, Hofman-Kamińska, Drucker, Schmölcke, & 

Kowalczyk, 2015; Hofman-Kamińska et al., 2019). Accordingly, the species became trapped in 

suboptimal forest habitat as Eurasia emerged from the last ice age, causing a northward contraction 

of steppe vegetation and its replacement with forest (Zimov et al., 1995). Human hunting in open 

areas during the Holocene is theorised to have driven European bison into forested habitats 

(Kerley, Kowalczyk, & Cromsigt, 2012). Another view is that humans, not climate, were the 



Chapter IV: Causes of extinction in European bison 

 
 

125 
 

primary cause of the range collapse and population decline of the European bison (Faurby & 

Svenning, 2015; Sales et al., 2022). What is clear is that the contributions of environmental change 

and humans on the near extinction of European bison have never been resolved. 

Currently, there are approximately 2,750 free-ranging European bison in the European Union 

(Kajetan Perzanowski, Klich, & Olech, 2022). Efforts to re-establish and conserve the species in the 

wild are far-reaching. This is because the European bison is an ecosystem engineer with important 

roles in maintaining landscapes and facilitating biodiversity (Cromsigt, Kemp, Rodriguez, & Kivit, 

2018). By stripping bark from trees, the European bison can restore grasslands and prevent forest 

encroachment (Bakker et al., 2016; Macias-Fauria, Jepson, Zimov, & Malhi, 2020). However, the 

rewilding of landscapes with European bison has been done without a rigorously informed and 

coordinated strategy based on a strong understanding of habitats and regions where European 

bison once thrived (Kerley et al., 2020; Kajetan Perzanowski et al., 2022). This has meant that 

European bison have been released at sites as disparate as the coastal dunes of the Netherlands 

(Cromsigt et al., 2018) and the mountains of the French Alps (Ramos, Petit, Longour, 

Pasquaretta, & Sueur, 2016), with mixed success (Plumb et al., 2020). Continued efforts to 

reintroduce the European bison to prevent its extinction and restore grasslands will benefit from a 

more thorough understanding of its past range dynamics and the causes for range collapse and 

population decline. 

While correlative approaches, such as ecological niche models (ENMs), have provided reasonable 

first approximations of the range of the European bison in the Holocene (Kuemmerle, Hickler, 

Olofsson, Schurgers, & Radeloff, 2012), their range in the Pleistocene, when the steppe biome was 

widespread, is less clear. Furthermore, these same approaches have been unable to directly 

disentangle the relative roles of climatic change, human hunting, and deforestation on the decline 

and near extinction of the European bison. Recent developments in process-explicit 

macroecological modelling are revealing how effects of human hunting and climate change on 

large mammal decline can vary over space and time (Canteri et al., 2022; Fordham et al., 2022). 

This is made possible because these approaches simulate species range and extinction dynamics as 
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explicit functions of global change, ecological processes and their interactions (Pilowsky, Colwell, 

Rahbek, et al., 2022b).  

A powerful technique for modelling species range dynamics with a high degree of biological 

realism is spatially explicit population models (SEPMs) (B. J. Anderson et al., 2009) combined with 

pattern-oriented validation (Grimm et al., 2005). SEPMs are process-explicit macroecological 

models of population networks that can be used to model species range dynamics over thousands 

of years, reconstructing the spatial dynamics of extinction (Fordham et al., 2022) and identifying 

suitable areas for reintroduction (Canteri et al., 2022). Outputs from these models, such as 

minimum population densities required for persistence, can be used to directly inform 

conservation policy (Tomlinson et al., 2022). Pattern-oriented validation is an optimisation 

technique for reducing uncertainty in model parameters based on the assumption that observed 

ecological patterns are fingerprints of the underlying processes that produced them (Gallagher et 

al., 2021). Empirical patterns are used as validation targets, and model outputs are evaluated against 

these targets to determine which combinations of parameter values produce the most accurate 

results (Grimm et al., 2005).  

Here we investigate the causes of the near extinction of the European bison across space and time, 

using 55,000 SEPMs to reconstruct the range and population dynamics of the European bison at 

high spatiotemporal resolution from 21,000 years before present (21 ka BP) to 0.45 ka BP (or 1500 

CE), establishing the timing and magnitude of the range and population collapse of European 

bison and their most likely causes. Using models validated on inferences of demographic change 

from fossils, historical accounts, and ancient DNA, we identify areas where the European bison 

would be distributed today if hunting and land use change had not occurred. In doing so, we 

identify suitable areas for reintroduction. 

Materials and Methods 
 We built process-explicit macroecological models of European bison that simulate interactions 

between metapopulation dynamics, environmental variability, human hunting, and land use 

change. We used these models to continuously reconstruct 21,000 years of range dynamics across 
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Eurasia. We validated model projections of spatiotemporal abundance and refined model 

parameters using pattern-oriented modelling (POM) methods (Grimm et al., 2005) and inferences 

of demographic change from the historical record and 120 radiocarbon-dated fossils. The 

approach is described in detail in the Supplementary Methods, and the fossil record (Pilowsky, 

Brown, Llamas, et al., 2022b) and R code for running the models (Pilowsky, Brown, & Fordham, 

2022) are in public repositories. 

1. Ecological niche 

To reconstruct the ecological niche of the European bison, we intersected radiocarbon (14C) dated 

and georeferenced fossils with simulated climate and land use projections. To do this, we first 

compiled a database of 14C dated European bison fossils using published and unpublished sources 

(Pilowsky, Brown, Llamas, et al., 2022b). Dated fossils without geolocations were geocoded 

manually using the name of the fossil site and OpenStreetMap and Google Earth. The quality and 

reliability of all radiocarbon dates was assessed based on dating method, stratigraphy, association 

and material dated (Barnosky & Lindsey, 2010). Only fossils with an age quality score >10 were 

used (Pilowsky, Haythorne, Brown, et al., 2022c). This resulted in 120 high-quality 14C dates. The 

14C ages of these fossils were calibrated using the OxCal tool (Ramsey, 2017) and the IntCal13 

curve (Reimer et al., 2013). 

Occurrence records from fossils were intersected with monthly palaeoclimate data from the 

HadCM3 general circulation model (GCM). The HadCM3 GCM has a native resolution of 3.75° 

× 2.75° that incorporates monthly, interannual and millennial scale variability in climate in the 

ocean and atmosphere (Valdes et al., 2017). It has previously been shown to accurately represent 

land and sea surface temperatures, precipitation and ocean circulation (Valdes et al., 2017). The 

data have been bilinearly downscaled to 0.5° x 0.5° spatial resolution and bias-corrected to current-

day conditions (E. Armstrong et al., 2019).  

We extracted monthly data for annual precipitation, winter temperature and spring and summer 

evapotranspiration (Figure S1). These three climatic variables have been used previously to model 

the range dynamics of large vertebrates in Eurasia, including during the Pleistocene-Holocene 
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transition (Canteri et al., 2022; Lorenzen et al., 2011; Pilowsky, Haythorne, Brown, et al., 2022c). 

European bison are strongly limited by forage availability in winter and the desiccation of grass in 

summer (Krasińska & Krasiński, 2013), and these three variables capture climatic controls on these 

food sources.  

We temporally upscaled the climate data to a 10-year average (the generation length of the 

European bison; see below) using a 30-year sliding window (Fordham et al., 2022). We projected 

the climate data to an Albers Equal Area projection centred on a reference latitude of 57.5°N and a 

reference longitude of 25°E with a resolution of 86.6 by 75.6 km. 

To determine habitat and resource availability for European bison, we reconstructed the biomass 

of boreal trees, boreal shrubs, and temperate trees and shrubs using output from a dynamic 

vegetation model (LPJ-GUESS) coupled to HadCM3 palaeoclimate data (Allen et al., 2020). These 

were the plant functional types present at fossil sites when the fossil was deposited. We adjusted the 

spatiotemporal estimates of biomass of these vegetation types according to land use transformation 

data from the Hyde 3.2 dataset (Klein Goldewijk, Beusen, Doelman, & Stehfest, 2017), providing 

us with a measure of human-driven vegetation change specific to European bison. To do this we 

converted the land use change data to the same projection and spatial scale as the LPJ-GUESS 

data—a temporal resolution of 1000 years and a 0.5° x 0.5° grid-cell resolution—using linear 

interpolation. For each grid cell, we calculated the proportion of that cell that had been converted 

to unusable land use types for bison (urban, pastoral, and agricultural.) We multiplied the 

combined plant biomass in the grid cell by the proportion of land that had been converted to 

unusable types to produce a measure of land use adjusted biomass. We then converted adjusted 

biomass to the same Lambert Azimuthal Equal Area projection as the climate data and temporally 

downscaled it to a decadal timestep using linear interpolation. See Supplementary Methods for 

details. 

To model the ecological preferences of European bison through space and time, we built a 4-

dimensional multi-temporal ENM (Nogués-Bravo, 2009). This allowed us to generate a 

biologically relevant representation of the climatic and environmental conditions over which the 

European bison occurred at fossil sites. To do this we paired fossil occurrences with the three 
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climate variables and adjusted biomass by intersecting these climate and environmental data in a 

spatiotemporal bin: the spatial location of the fossil, the timing of its presence at that site 

(calibrated 14C date) and its associated uncertainty (±2 SD) (Blaauw, 2010). We removed any 

duplicate data created by two fossil occurrences falling within identical or overlapping 

spatiotemporal bins (Fordham et al., 2022). We used this dataset to create a gaussian hypervolume 

of ecological suitability, a technique for niche estimation that does not require absence data 

(Blonder & Harris, 2019). We tuned the kernel density estimation bandwidth by optimising the 

mean square error using cross-validation (Blonder et al., 2018).  

The resulting hypervolume, which approximates the fundamental niche of the European bison 

(Nogués-Bravo, 2009), was exhaustively subsampled to generate thousands of potential realised 

niches (Fordham et al., 2022). To do this, we subsampled the full multi-temporal estimate of the 

ecological niche using Outlying Mean Index (OMI) analysis (Dolédec et al., 2000) and plausible 

bounds for climatic specialisation and niche volume (Fordham et al., 2022). For each niche 

subsample (n = 549) we generated projections of habitat suitability into geographic space from 21 

ka BP to 1850 CE, creating suitability maps. We scaled the suitability scores of each projection 

between zero and one based on the 95th percentile of habitat suitability from all projections 

(Fordham et al., 2022). See Supplementary Methods for more details.  

2. Human density 

The population growth and expansion of Palaeolithic humans following the last glacial maximum 

(LGM, a period from 26.5 to 19 ka BP (P. U. Clark et al., 2009)) was modelled using a process-

explicit climate-informed spatial genetic model (CISGeM) that accurately reconstructs global 

genetic patterns and arrival times of anatomically modern humans (Pilowsky, Manica, Brown, et 

al., 2022e). This model has previously been used to disentangle the impact of humans on 

megafauna over palaeo timescales (Canteri et al., 2022; Pilowsky, Haythorne, Brown, et al., 2022c). 

CISGeM simulates effective population size (Ne) using a cellular demographic model in which 

local Ne is a function of sea level, net primary productivity, and local demography (Eriksson et al., 

2012). We ran CISGeM from 120 ka BP to present using climate data from the HadCM3 GCM 

(Valdes et al., 2017). To account for parameter uncertainty in projections of Ne, we used published 
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upper and lower confidence bounds for CISGeM parameters (Eriksson et al., 2012) to generate 

4,950 equally plausible unique models of human population growth and migration. We did this 

using Latin hypercube sampling (Stein, 1987). 

We calculated the mean and standard deviation for population size in each grid cell at each 25-year 

timestep from 21 ka BP, then reprojected the values to the same Lambert Azimuthal Equal Area 

projection we used for climate and suitability. Ne values were scaled between zero and one using 

the 95th percentile as an upper threshold (Canteri et al., 2022). We linearly interpolated the outputs 

from a 25-year to a 10-year timestep to match the generational length of the bison. We then 

generated plausible reconstructions of human abundance by sampling within ± 1 SD of Ne from a 

log-normal distribution. The centre of the sampling window within ± 1 SD of mean Ne was a 

variable model parameter in our climate-human-European bison process-explicit model. 

3. Process-explicit model 

We used spatiotemporal estimates of habitat suitability and human abundance (from our ENMs 

and CISGeM, respectively) as inputs to a SEPM that simulated landscape-level population 

processes, including metapopulation and dispersal dynamics (Fordham et al., 2022; Pilowsky, 

Haythorne, Brown, et al., 2022c). Each grid cell was modelled with a scalar-type stochastic model 

that simulates the finite rate of population increase “R”, its variance and the population carrying 

capacity (Dunham et al., 2006). The approach has been used to skilfully reconstruct inferences of 

past range dynamics of large-bodied mammals (Canteri et al., 2022), including a closely related 

species of bison (Bison priscus) (Pilowsky, Haythorne, Brown, et al., 2022c). The SEPM, which had 

11 variable parameters (Table S1), was run at generational time steps (10 years; see below) from 21 

ka BP to 100 BP (1850 CE). 

We estimated demographic rates for the European bison using current and historic field data, and a 

study of the closely related steppe bison (Pilowsky, Haythorne, Brown, et al., 2022c). We estimated 

maximum annual growth rate and its variance using time series data (see Supplementary Methods 

for details), scaling these annual growth rates for European bison to a 10-year generation length 

(calculated as the difference between reproductive life span and age at first birth (Pacifici et al., 
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2013)). Population growth was modelled with a Ricker logistic density dependence function 

(Ricker, 1954), with the carrying capacity dependent on the habitat suitability in a given grid cell 

(Pilowsky, Haythorne, Brown, et al., 2022c). At a habitat suitability of 1, the carrying capacity was 

equal to the maximum density (Table S1), reducing with lower habitat suitability. A negative Allee 

effect was simulated using an abundance threshold below which populations became locally 

extinct (Fordham et al., 2022). 

We simulated natal dispersal based on European bison in Poland (Krasińska & Krasiński, 2013). 

Between 5 and 25% of the population were allowed to disperse per generation, with a maximum 

dispersal distance of 0 – 300 km (Table S1). A dispersal friction landscape (Adriaensen et al., 2003) 

based on ice sheet reconstructions (Peltier, 2004) and land use change (see section 1c above) was 

used to ensure that bison only dispersed through ice-free grid cells, and that their dispersal was 

hindered in urban, agricultural, or pastoral environments. Harvesting was modelled as a non-linear 

function of prey density, human density, hunting rate and prey availability (Canteri et al., 2022; 

Pilowsky, Haythorne, Brown, et al., 2022c). All demographic parameters are described in more 

detail in the Supplementary Methods.   

Once we had established biologically plausible intervals for demographic processes (population 

growth rate, dispersal, Allee effect), ecological requirements (niche volume and climatic 

specialisation), and human harvesting (human abundance and hunting function), we sampled the 

parameter space of these intervals using Latin hypercube sampling (Stein, 1987). All sampling was 

done using uniform distributions. This resulted in 25,000 model parameterisations, each with a 

distinct set of values for demography, environmental preferences and exploitation by humans. 

Each model was run for a single replicate and validated using POM techniques (Fordham et al., 

2022). 

4. Model validation 

We used POM to evaluate the accuracy of model simulations and optimise parameter distributions 

(Grimm et al., 2005). Specifically, we used Approximate Bayesian Computation (ABC) to evaluate 

model projections against a multivariate target (Csilléry et al., 2010) consisting of spatiotemporal 
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occurrence, persistence in the Caucasus and number of persisting populations in 1850 CE. 

Simulations of spatiotemporal abundance were evaluated using an occurrence target consisting of 

55 different fossil sites with 14C dates and two sites with historical occurrence records. A 

simulation was considered to have successfully reconstructed occurrence if it projected occurrence 

in the grid cell with the fossil site (and/or its eight nearest neighbors) within ±2 × the error (SD) of 

the calibrated date. For the two historical records from the 19th century, there was no temporal 

band of uncertainty. To assess the capacity of models to simulate persistence in the Caucasus, we 

calculated the time of extirpation in the Caucasus Mountain region and then applied an annual 

penalty for each year that extirpation occurred before 1850 CE. The historical record shows that 

the European bison had collapsed to two refugia by 1850 CE: Białowieża Forest and the Caucasus 

(Heptner, Nasimovich, & Bannikov, 1961; Krasińska & Krasiński, 2013). We compared the 

number of simulated populations extant at 1850 CE against this validation target. 

POM was done first on 25,000 simulations. We chose the top 0.25% of models via the rejection 

algorithm in the abc package (Csillery et al., 2015). We then ran three further rounds of POM 

(each with 10,000 simulations) using informed prior distributions based on these top models 

(Pilowsky, Haythorne, Brown, et al., 2022c). We ceased POM after these three additional rounds, 

because Bayes factors indicated that the posterior distributions had converged.  

We did posterior predictive checks on the best 25 (0.25%) of models from the final round of POM. 

To do this, we generated 1,000 simulations based on the posterior distributions of parameters in 

the best models and did a goodness-of-fit test. We used the gfit function from the abc package, 

which tests goodness of fit by comparing how the observed metrics fit in the posterior 

distributions against their fit in distributions of pseudo-observed data generated from the prior 

distributions (Lemaire, Jay, Lee, Csilléry, & Blum, 2016).  

We did two additional independent tests of SEPMs using the 1000 simulations for posterior 

predictive checks. Inferences of change in population size (based on effective population size) were 

used to assess the capacity of the best SEPMs to reconstruct relative change in total population size 

(Canteri et al., 2022). Methods and data used to calculate effective population size are described in 

the Supplementary Methods. We also tested whether bison were extant in regions with historical 
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records not used in POM. These historical records were all within the study region during the time 

period 1000 to 1500 CE (Heptner et al., 1961). To do this, we checked for bison occupancy at the 

grid cell location of the historical record and its eight nearest neighbours at the time of the 

historical record. We then assessed how closely the SEPM can reconstruct historical occurrence 

records between 1000 CE and 1500 CE using a goodness-of-fit test (see above).  

5. Statistical analysis 

We used generalised additive models (GAMs) implemented in the mgcv R package (Wood, 2022) 

to investigate the drivers of bison abundance in the Pleistocene (21 – 11.7 ka BP), early-to-mid 

Holocene (11.7 – 4.25 ka BP) and Late Holocene (4.25 – 0.45 ka BP). For the best SEPMs we 

extracted total bison abundance at generational timesteps. We also calculated average annual 

temperature, human abundance, and deforestation from occupied grid cells. Abundances and the 

three covariates were then aggregated to 100-year time bins to remove the effect of short-term 

decadal variation. 

We optimised our GAMs to evaluate the effects of the three predictors on bison abundance in each 

time period. The main effects and any interactions were modelled as penalised thin-plate regression 

splines implemented for each time period. Following Marra & Wood (Marra & Wood, 2011) 

models were built using a double penalty approach whereby coefficient estimates could be reduced 

to zero for non-informative covariates. All GAMs included model ID as a random effect, with 

models optimised by maximum likelihood. Model selection was based on a chi-square test 

performed on two times the difference in the minimised smoothing parameter (i.e., maximum 

likelihood) between models with and without interactions. This approach is preferred over 

selection using AIC for models that include random effects (Wood, 2017). 

6. Model scenarios 

We ran counterfactual scenarios using our best SEPMs (available in an online repository (Pilowsky, 

Brown, Llamas, et al., 2022a)) to disentangle the roles of climate change, human hunting and land 

use change in the range collapse of the European bison. Counterfactual scenarios provide 

opportunities to explore the outcome of alternatives to what historically occurred in an ecological 
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system (Pilowsky, Haythorne, Brown, et al., 2022c). We simulated three counterfactual scenarios: 

no hunting, in which the human hunting rate was set to zero throughout the simulations; no land 

use change, in which biomass of temperate and boreal trees and shrubs was not reduced by land use 

change; and no human pressures, which combined both of the former counterfactuals. Thus, in the 

no hunting scenario, the only drivers of bison population dynamics were climate and land use 

change, in the no land use change scenario, the only drivers of bison population dynamics were 

climate and hunting, and in the no human pressures scenario, the only driver of bison population 

dynamics was climate. 

In addition to counterfactual scenarios, we also explored scenarios of increased hunting from 1500 

to 1870 CE. Based on historical records and the establishment of royal hunting reserves (Heptner 

et al., 1961), hunting pressure on European bison increased greatly after 1500 CE, due to 

technological advancements in hunting and cultural shifts in land use (Benecke, 2005). To address 

this, we ran scenarios of increased hunting from 1500 CE with maximum harvest increased at 10% 

intervals from 10 to 100% of pre-1500 CE maximum hunting rate. We validated the final 

abundance in 1870 against a historical estimate of 3,560 European bison. It is thought that in 1870 

there were 2000 bison in the Caucasus (Heptner et al., 1961) and 1,560 bison in Białowieża Forest, 

for a total of 3,560 European bison (Krasińska & Krasiński, 2013).  

Results 
Using 55,000 SEPMs, pattern-oriented validation and extensive palaeoecological and historical 

data, we found that the range collapse of the European bison from 21 ka BP to 1500 CE was 

caused by a combination of environmental change, human hunting and land use change, with 

their effects on bison abundance differing across space and time. 

Pattern-oriented validation 

Our ‘best’ 25 SEPMs (0.0005% of all models) were able to reconcile inferences of spatiotemporal 

occurrence and persistence (Figure S2). This required successive rounds of simulation and pattern-

oriented validation, with posterior parameter distributions stabilising after four iterations (all Bayes 

factors < 1). Specifically, these models correctly reconstructed the timing and place of occurrence 
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at most fossil sites. They were also able to predict persistence in the Caucasus (and Białowieża 

Forest) at the end of the simulation. However, projecting only two populations of European bison 

in 1850 CE was more difficult (Figure S2). Regardless, goodness of fit tests show reasonable 

resemblance between simulated and observed summary metrics (p > 0.05). 

Independent validation tests, using inferences of change in total population size from ancient 

DNA and historical occupancy records, confirmed the robustness of the best SEPMs. We found 

strong overlap in the confidence intervals around the trend in simulated bison abundance and the 

trend in effective population size, with good concordance in the rate of decline in population size 

during the Pleistocene-Holocene transition (Figure S3). The best models were able to correctly 

reconstruct historical records of occupancy at up to 4 of the 5 historical sites of bison occurrence 

(mean = 3.3, SD = 1.11). The goodness-of-fit test indicated a reasonable resemblance between 

simulated and observed occurrence (p > 0.05). 

Reconciling inferences of population persistence and extirpation based on palaeontological and 

historical evidence required specific constraints on habitat requirements and demography of bison 

(Figure S4). Comparisons of prior and posterior distributions revealed that the European bison is 

likely to have had a realised niche that is much smaller than its fundamental niche. This is based on 

the best models having small-to-medium niche volumes (58 – 72% of the full multi-temporal niche 

volume) and medium-to-high specialisation (based on outlying mean index). These comparisons 

also showed that a small Allee effect threshold (9 bison per 87 km × 76 km grid cell) and a low 

maximum dispersal distance (110 km) were needed to reconstruct the population dynamics of 

European bison over the late Pleistocene and Holocene. In each generation, ~5% of bison 

permanently dispersed, moving at least 76 km from their site of birth. 

Population and range dynamics 

The ensemble average total population size for European bison based on the best SEPMs showed 

that they were abundant at the LGM (Figure 1). Population numbers remained relatively stable, 

increasing slightly, during the onset of deglacial warming, falling sharply at 14.7 ka BP, in response 

to rapid warming and a corresponding reduction in bison carrying capacity at the Bølling-Allerød 
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warming event. Following 14.7 ka BP, the region-wide carrying capacity of European bison 

recovered, but abundance did not, probably because of harvesting by humans. Hunting increased 

at 14.7 ka BP as a result of higher human abundances, remaining high throughout the Holocene 

(Figure 1).  

Reconstructions of spatiotemporal abundance of the European bison show that by the mid 

Holocene it had contracted its range to central and eastern Europe and the Caucasus, going extinct 

in southern Europe at ~11 ka BP, and extinct in Western Europe and Siberia at ~7 ka BP (Figure 2). 

During the early deglaciation (21-18 ka BP), European bison were distributed in disjunct 

metapopulations in Siberia, the Caucasus, southern Europe, and western Europe. From 18 ka BP, 

metapopulations in western and southern Europe started to slowly move eastward and northward, 

merging together some 6 ka later (Movie S1). By 12 ka BP, the only remaining European bison in 

Western Asia were in the refugium in the Caucasus. The Siberian metapopulation declined in size 

from 13 ka BP, going regionally extinct at 8 ka BP. By 1500 CE, the European bison was restricted 

to north-eastern Europe and a small refugium in the Caucasus, with abundances highest in the 

Caucasus and what is now Poland and Ukraine. 

Drivers of decline 

Analysis of our continuous reconstructions of population size of European bison from our best 

SEPMs using GAMs showed that the effects of humans and climate are likely to have varied 

temporally. The GAM of abundance regressed against mean annual temperature, human 

abundance, and deforestation as fixed effects for each time period, without interactions, and model 

as a random effect explained 89% of the variance in total population size (adjusted R2 = 0.83). This 

was a significant improvement over the model with interactions between variables (ML = -123.13, 

df = 12, p < 0.001). Plots of partial effects show that European bison abundance was most strongly 

correlated with human abundance, with strong negative responses during the Pleistocene, early-to-

mid Holocene and late Holocene (Figure 3). A strong positive effect of temperature and 

abundance was detected during the Pleistocene, with a weakly positive effect in the early-mid 

Holocene. Deforestation had a slight negative effect on bison abundance throughout the 

Holocene (Table S2). 
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Removing human activities from the best SEPMs and rerunning these models as counterfactual 

scenarios revealed the spatiotemporal footprint of humans on the local persistence of European 

bison (Figure 4). In the absence of hunting and land conversion by humans, European bison are 

likely to have persisted much longer in Scandinavia, the Balkans, and present-day Germany and 

southwestern Russia (Figure S5). We show that climatic change during the Pleistocene is the 

primary determinant of range contractions in Western Europe, Anatolia, and Siberia (Figure 4). 

During the Holocene, hunting caused range loss in the north and east of the species distribution, 

and land use change was responsible for losses in the west and south.  

In the no hunting scenario, the range of the European bison in 1500 CE extended farther east into 

Russia, and the Caucasus refugium (where European bison persisted until its extinction in the 

wild) extended farther north (Figure 4). In the no land use change scenario, the range of the 

European bison extended farther west in continental Europe, and the Caucasus refugium extended 

farther west (Figure 3). In the no human pressure scenario, all of the range expansions from the 

other two counterfactual scenarios were observed. There were also areas in southern Denmark and 

France where the removal of both hunting and land use change allowed European bison to persist 

to 1500 CE.  

Our best SEPMs overestimated the population size of European bison in 1870 CE (n = 3,560). 

However, we show that a 30% increase in maximum harvest rate after 1500 CE (in response to 

cultural and technological changes in hunting, including guns (Kirby & Watkins, 2015)) is enough 

to have depleted the population size of European bison to levels estimated in 1870 (Figure 5).

Discussion 
Using spatially explicit models (SEPMs), extensive palaeontological and historical data, and 

pattern-oriented modelling methods, we were able to disentangle the effects of environmental 

change, human hunting, and land use change on European bison abundance in space and time. We 

show that the effects of natural and human drivers varied from the edge to the core of the 

European bison’s range. Humans had the most pronounced impact in the centre of its range, 

contributing heavily to the population decline and range collapse of the European bison. By 
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identifying areas where the European bison would have persisted to 1500 CE in the absence of 

human pressures, we were able to pinpoint locations that are potentially climatically suitable for 

reintroduction of European bison today. We also reveal areas that have been climatically unsuitable 

for European bison for millennia and should be excluded from translocation and reintroduction 

efforts. 

Our detailed reconstruction of the range dynamics of the European bison shows that its 

persistence was affected by biotic and abiotic stressors that varied spatiotemporally. We show that 

deglacial warming in the Pleistocene caused the European bison’s range to contract toward its core, 

where human abundances in Eurasia were generally highest (Eriksson et al., 2012). Here, European 

bison were hunted for food and skins (Kitagawa et al., 2018). Reconciling inferences of 

demographic change from the extensive fossil record of European bison required SEPMs to 

include medium levels of hunting by humans (5 – 21% max. harvest rate), which aligns with 

isotopic analysis of human fossils of from Europe during the late Pleistocene that indicate that 10% 

of protein intake came from bovines (aurochs and European bison) (Wißing et al., 2019). 

Increasing geographic overlap between areas of high bison abundance and high human abundance 

eventually led to the demise of the European bison in the wild, both directly through 

overexploitation by hunting, and indirectly through land use change.  

The abundance of European bison today is trending upward due to nearly 100 years of 

conservation intervention (Krasińska & Krasiński, 2013). However, the species still faces many 

threats and obstacles to long-term persistence (Plumb et al., 2020). Contemporary threats include 

land use change imposing barriers to dispersing bison, and poaching reducing population numbers 

(Kajetan Perzanowski et al., 2022; Plumb et al., 2020). As our modelling has shown, these threats 

are the same as those that put the European bison on a pathway to extinction many millennia ago. 

While the contemporary range of the European bison is broad, encompassing much of north-

eastern Europe, this distribution is highly fragmented, with only 23% of populations having any 

connectivity to other populations (Plumb et al., 2020). Of the 47 free-living European bison 

populations, only eight are large enough to be self-sustaining, and all of these are dependent on 

supplemental feeding (Plumb et al., 2020).  
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The European bison is considered a priority species for conservation by the European Union 

(Council of the European Union, 1992), in part because of its role in restoring grassland habitat 

(Directorate-General for Environment (European Commission), 2021). An expansion of the 

species’ range is needed. However, reintroductions of European bison have been opportunistic, 

often based on the interest of private landowners in tourism income (Root-Bernstein, Gooden, & 

Boyes, 2018) and the eagerness of governments for their ecosystem services (Brandtberg & 

Dabelsteen, 2013), despite a lack of evidence of habitat suitability or previous bison occupancy.  

To successfully rewild Europe with large herbivores such as European bison, managers need 

information that will allow them to maximise the probability of reintroduction success, including 

population establishment (e.g., the minimum number of animals that need to be released), local 

and regional population persistence (e.g., habitat conditions that contribute to persistence and 

potential connectivity) and ecosystem functioning (e.g., how the species interacts with other 

species at the reintroduction site) (D. P. Armstrong & Seddon, 2008; Taylor et al., 2017). Without 

this information, the consequences of improper management decisions can be severe. For example, 

attempted reintroductions of European bison have failed due to human-bison conflict (e.g., in 

Crimea (Parnikoza & Kaluzhna, 2009) and western Russia (Sipko, 2009)), and slow-growing 

populations in unsuitable areas succumbing to inbreeding depression (e.g., in Siberia (Sipko, 

2009)).  

Our spatial reconstructions of European bison abundance in 1500 CE, along with our maps of 

where the species would have been found in 1500 CE in the absence of human pressures, provides 

new information to guide European bison reintroductions. Pattern-oriented modelling 

techniques, palaeontological data and historical records allowed us to establish the ecological 

requirements of European bison and to identify the most likely estimate of upper abundance. 

Ukraine emerges as an area of high projected abundance, and the bordering areas of western Russia 

also show bison occupancy in the absence of human hunting. Unfortunately, this region of Europe 

is an active conflict zone where over 50% of all free-living European bison are currently at risk 

(Kajetan Perzanowski et al., 2022). We show, however, that there are other regions that had 

medium densities of European bison until at least 1500 CE. These include the Baltic countries, 
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Poland, Slovakia, Romania, and the Caucasus mountain region. Considering that land use change 

is likely to have contributed to the extirpation of European bison in Germany, Czechia, Bulgaria 

and Serbia during the late Holocene, these areas could also provide suitable reintroduction sites 

after habitat restoration. 

Our validated reconstructions of the range and population dynamics of the European bison 

provide new and important biogeographical insights. In addition to showing that the geographic 

range of the European bison began to implode in the late Pleistocene, we show that there was a 

metapopulation of European bison in Siberia, isolated from the metapopulation in Europe, that 

became extinct 7 ka BP. This result is consistent with research on European bison ancient DNA 

that has found a more cold-adapted clade of European bison that became extinct during the most 

recent deglaciation (Soubrier et al., 2016). Our model results suggest that this clade could have 

persisted into the Holocene in low abundances. We also show that in Europe at 21 ka BP there 

were two main subpopulations of European bison, one in Western Europe and one in Southern 

Europe, and these subpopulations fused together in Central Europe at the termination of the 

Pleistocene. This prediction could be directly tested using ancient DNA from Pleistocene fossils 

from the more warm-adapted clade of European bison, providing a higher-resolution 

understanding of genetic structure for European bison following the last ice age. 

Our validated simulation models show that human pressures alone were not enough to cause the 

collapse of the range of the European bison. Our findings also rule out the hypothesis that habitat 

loss due to deforestation was the primary cause of the range collapse of the European bison, as we 

found the effect of deforestation on bison abundance was minor compared to mean annual 

temperature and human abundance. Our results do not rule out the hypothesis that European 

bison are grazers that were forced by human pressures into suboptimal forest habitat; however, our 

results cannot confirm the hypothesis either, as our data on palaeovegetation in Europe did not 

have a fine enough spatial resolution to pinpoint European bison preferences for open or closed 

habitat.  

While our SEPM approach was able to reconstruct many key features of the range dynamics of the 

European bison over the last 21,000 years, the approach overestimated its population size in 1870 
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CE. This is likely to reflect a technological and cultural shift in bison hunting after 1500 CE (Kirby 

& Watkins, 2015), which we investigated further by simulating scenarios of increased hunting 

efficiency after this date. We show that a 30% increase in harvest efficiency after 1500 CE was 

enough to reconstruct this population size. Firearms began to be banned by European 

governments in 1500 CE in order to preserve game populations due to overhunting with this new 

type of weaponry (Nicholson, 2010). We found that reconstructing our validation targets required 

a short maximum dispersal distance. Dispersal in our models represents permanent relocations to 

new breeding territory, rather than the temporary movements of individuals. While research on 

European bison dispersal in Białowieza Forest has found that cow groups (equivalent to what was 

modelled here) disperse much shorter distances than individual males (Krasińska & Krasiński, 

2013), further tests of the dispersal estimates that emerged from our model are needed. 

By reconstructing past abundances and harvest rates, as well as mapping the distribution of the 

European bison in the absence of human pressures, we provide new insights into the dynamics of 

range collapse in the European bison, enabling future reintroductions and translocations to be 

guided by these biogeographic understandings. These biogeographical insights were made possible 

because our pattern-oriented modelling approach allowed us to validate the European bison’s 

realised niche, as well as its occupancy and abundance. Similar approaches could be used to 

reconstruct the causes of population declines and range collapses of other large herbivores being 

reintroduced to Eurasia (Canteri et al., 2022), improving awareness of past threats and enhancing 

current conservation measures. 
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Figures 

 

Figure 1: Bison abundance and its drivers. Total bison population size (A), carrying capacity 

(B) and harvested animals (C) projected from 21,000 BP to 450 BP (1500 CE). Mean annual 

temperature and total human population size for the study region (Figure 1) are shown in D and E, 

respectively. Shading shows +/- 1 SD. The population time series of the best 25 models are shown 

in light grey (A). Carrying capacity represents maximum potential bison population size in the 

absence of human impacts. Changes in other climate and environmental variables (including those 

used for the bison niche) are shown in Figure S1. 



Chapter IV: Causes of extinction in European bison 

 
 

143 
 

 

Figure 2: Range collapse of the European bison. Fossils and their radiocarbon dates for the 

European bison (A). Simulated bison abundance (B) for the end of the last glacial maximum 

stadial (20,000 BP), immediately prior to the Bølling-Allerød warming event (14,700 BP), the mid-

Holocene (6,000 BP) and at the end of the simulation (450 BP or 1500 CE). Abundances are 

shown only for grid cells where at least 25% of the top models agreed that there was bison 

occupancy (see Figure S6 for abundance maps where cells with low model agreement are shown.) 
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Figure 3: Predictors of population decline in European bison. Partial effects plots for general 

additive models of drivers of bison abundance, including human abundance (A), mean annual 

temperature (B), and deforestation (C). Different colours show different time periods: Pleistocene 

(light blue), early-to-mid Holocene (dark blue), and late Holocene (green). Rug plots of sampling 

density are shown along the x-axis. 
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Figure 4: Drivers of range collapse for European bison. The effect of climate (green) and 

humans (brown) on the extirpation of European bison (Panel A). Population abundance for the 

projected extant range in 1500 CE is shown in blue. Maps of abundance of European bison 

without hunting (Panel B) and without land use change (Panel C). Abundances are shown only 

for grid cells where at least 25% of the models agreed that there was bison occupancy. 
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Figure 4: Harvest increase needed to simulate population size in 1870. Population size of 

European bison in 1870 in response to increased harvesting following 1500 CE. Dashed horizontal 

line shows estimated population size of European bison in 1870 (Heptner et al., 1961; Krasińska & 

Krasiński, 2013). Estimates are based on the output from individual runs of the best 0.25% of 

SEPMs. 

Supplementary Material 
1. Ecological niche 

Land use-adjusted biomass 

We used a global run of LPJ-GUESS coupled to HadCM3 palaeoclimate data (Allen et al., 2020), 

which had a native temporal resolution of 1000 years and a native spatial resolution of 0.5 × 0.5°. 

We converted the vegetation biomass data to an Albers equal area projection (resolution: 86.6 by 

75.6 km) and temporally downscaled from a millennial to a decadal timestep by linear 

interpolation.  
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We determined which plant functional types co-occur with the European bison by intersecting the 

European bison fossil record with the LPJ-GUESS spatiotemporal simulations of vegetation types. 

Specifically, we matched each fossil in space and time to its corresponding plant functional types, 

using a window of +/- 2 SD around the radiocarbon date (Fordham et al., 2022). We assessed the 

biomass found within the spatiotemporal envelope of each European bison fossil and found that 

the four dominant plant functional types were boreal trees, boreal shrubs, temperate trees, and 

temperate shrubs. Based on this result, we generated spatiotemporal maps of plant biomass in 

European bison-suitable habitat using these plant functional types as a combined biomass raster. 

We used the Hyde 3.2 dataset (Klein Goldewijk et al., 2017) to reconstruct land use through time 

at 10-year timesteps from 21 ka BP to present. Hyde 3.2 has a native spatial resolution of 5’ × 5’ 

and a native temporal resolution of 1000-year timesteps until 2000 BP, 100-year timesteps until 

250 BP, and 10-year timesteps afterward. We identified the types of land use (urban, grazing, and 

agriculture) in Eurasia where European bison could not persist and binarised the land use data: 

zero = land use types where European bison cannot persist and 1 = land use types where they can 

persist. We transformed the spatial data for these land use types to a Lambert azimuthal equal area 

projection (resolution: 86.6 by 75.6 km), summed the hectares of transformed land across the 

types, and divided by the total area of the grid cell in hectares to obtain a proportion of each grid 

cell that had been transformed by human activity. We temporally downscaled the data to a decadal 

timestep by linear interpolation. 

Because the estimates of plant biomass from LPJ-GUESS do not account for land use 

transformation, we added the land use transformation raster as a modifier to the combined 

biomass raster. We multiplied the biomass raster by the inverse of the land use raster, so that the 

biomass of trees and shrubs was reduced by the proportion of land that had been transformed to 

grazing, agricultural, or urban land. This produced our measure of land use-adjusted biomass. 

Fundamental niche 

We developed an ecological niche model (ENM) for the European bison based on three climate 

variables and one environmental variable. We used the hypervolume R package (Blonder & Harris, 
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2019) because it is suitable for presence-only data such as a fossil record. The climate variables were 

winter temperature, annual precipitation, and spring & summer evapotranspiration. These 

variables have been shown elsewhere to influence the range dynamics of the European bison 

(Kuemmerle et al., 2012) and closely related steppe bison (Pilowsky, Haythorne, Brown, et al., 

2022c). Land use and vegetation cover are also important determinants of habitat suitability for 

the European bison (Bocherens et al., 2015; K. Perzanowski, Bleyhl, Olech, & Kuemmerle, 2020) 

which we characterised with a variable that combines vegetation and land use (see above.) In a 

preliminary analysis, we found that in +/- 2 SD spatiotemporal windows surrounding European 

bison fossil sites, there was higher vegetation cover and lower land use transformation than the 

mean for all of Eurasia in the same time windows. 

We generated spatiotemporal suitability maps for the European bison in Eurasia from 21 kya to 

present using climate suitability hypervolumes (Blonder & Harris, 2019). First, we paired fossil 

occurrences with our three climate variables and one land use/habitat variable by sampling the data 

in a spatiotemporal bin around each fossil occurrence, the spatiotemporal bin being the spatial 

location of the fossil and its radiocarbon age ±2 SD around the calibrated radiocarbon date. We 

removed any duplicate data created by two fossil occurrences falling within identical or 

overlapping spatiotemporal bins (Fordham et al., 2022). We used this dataset to create a full 

Gaussian hypervolume, optimising for bandwidth that reduced the mean square error in cross-

validation trials. 

We validated the multi-temporal hypervolume using the present-day range of B. bonasus from the 

IUCN Red List as independent validation points against background probability from the 

hypervolume and found a continuous Boyce index of B = 0.62 and a weighted AUC of 0.65. 

Realised niches 

There is high uncertainty about the climatic niche of the European bison, given that its current 

range is largely an artefact of its recent reintroduction following its extinction in the wild. We 

account for the likelihood that the multi-temporal hypervolume overestimates the realised niche of 

the European bison by subsampling it into different volumes and marginalities (distance from the 
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centroid of the full hypervolume, measured by the outlying mean index). Following previous work 

on the closely related steppe bison (Pilowsky, Haythorne, Brown, et al., 2022c), we calculated 

niche samples using sampling windows of different widths, from 70% to 100% of the breadth of 

the full hypervolume. This results in many overlapping and some non-overlapping niches. We 

created a uniform distribution of volume and marginality for the hypervolumes and sampled 

evenly across the distribution, resulting in 783 realised niches once duplicates and edge cases with 

fewer than 20 data points were removed. After some preliminary modelling, we found that all 

simulations with a niche volume less than 2.7 resulted in extinction of all European bison in the 

first timestep, regardless of other model parameters, so we discarded all realised niches with a 

volume below this threshold, resulting in a set of 549 realised niches. All the hypervolumes were 

centred and scaled to the same scale as the full hypervolume. 

We projected all of the hypervolumes back into dynamic spatiotemporal landscapes, creating maps 

of suitability scores in the equal-area projection detailed above. We tuned these projections over 

different functions of Gaussian decay from high-suitability zones to low-suitability zones, selecting 

the weighted function that produced a clear bimodal distribution of suitability, with one peak for 

less-suitable cells and another clearly differentiated peak for more-suitable cells. We scaled the 

suitability scores of each projection to a 0 – 1 interval based on the 95th percentile of habitat 

suitability from all projections. 

2. Human density 

The northward expansion of Palaeolithic humans during deglaciation was modelled using a 

process-explicit climate-informed spatial genetic model (CISGeM) that has been shown to 

accurately reconstruct the dispersal of humans after the LGM (Pilowsky, Manica, Brown, et al., 

2022e). CISGeM simulates local effective population size (Ne) based on a cellular demographic 

model with carrying capacity modulated by net primary productivity (NPP). The cellular model is 

on a 100 km hexagonal grid, which allows for equidistant dispersal in all directions. The model has 

been validated using pattern-oriented procedures and shown to have the structure and 

parameterisation needed to reconstruct spatiotemporal genetic validation targets (Eriksson et al., 

2012). 
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We parameterised the model using net primary productivity calculated from the HadCM3-based 

climate simulations generated by Eriksson et al. (2012) in the original CISGeM study, averaged at 

30-year intervals on generational time steps for humans (25 years). More specifically, simulations of 

temperature and precipitation were converted to net primary productivity via the Miami 

vegetation model (Lieth, 1975). The relationship between carrying capacity and NPP, as well as 

demographic parameters (including colonisation rate, maximum growth rate, and NPP extinction 

threshold) were treated as variable parameters. We used 4,950 parameter combinations based on 

the posterior ranges of validated models (Eriksson et al., 2012).  

We ran CISGeM from 120 ka BP to present to produce 4,950 continuous simulations of human 

migration out of Africa and growth and spread across the world. We converted estimates of Ne to a 

latitude-longitude grid, calculated the mean and variance of Ne for each grid cell at each time step 

(Fordham et al., 2022), and resampled the outputs to the 10-year timestep of the bison simulations. 

Ne was scaled between 0 and 1 using the 95th percentile as an upper threshold. We then generated 

plausible reconstructions of human abundance by sampling within ± 1 SD of Ne from a log-

normal distribution. The centre of the sampling window within ± 1 SD of mean Ne was a dynamic 

model parameter systematically sampled through thousands of process-explicit simulations 

(Fordham et al., 2022). 

3. Process-explicit model 

The range dynamics of Bison bonasus were simulated at generational time steps from 21 ka BP to 

100 BP using a scalar lattice-grid type spatially explicit population model configured in the R 

package paleopop v2.1.0 (Haythorne et al., 2021). Life-history traits from B. bonasus and its 

congener B. bison and posteriors from a previous process-explicit modelling study in the extinct 

congener B. priscus (Pilowsky, Haythorne, Brown, et al., 2022c) were used to set bounds for the 

priors of the demographic parameters in the model. These are described below and in the main 

paper. 

Abundance threshold 
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We set the lower bound of the abundance threshold parameter at 0 (no Allee effect) and the upper 

bound at 469, based on the posterior distribution of abundance threshold from modelling the 

steppe bison (Pilowsky, Haythorne, Brown, et al., 2022c), scaled up to the larger grid cells used in 

this study. After some preliminary modelling, we found that all simulations with an abundance 

threshold greater than 250 resulted in extinction of the bison in the first timestep regardless of the 

other parameter values. Subsequently, we set a new maximum abundance threshold at 250. 

Carrying capacity 

The carrying capacity of each grid cell was based on the climate suitability (VanDerWal et al., 

2009). We converted habitat suitability to carrying capacity by multiplying the habitat suitability 

score (on a 0 – 1 scale) by the maximum density, which was one of the varying demographic 

parameters in the model. We estimated plausible lower and upper bounds for maximum density by 

calculating the 50th and 99th percentiles of population density estimates from the reintroduced 

range of the European bison (Krasińska & Krasiński, 2013; Mysterud et al., 2007; Plumb et al., 

2020; Radwan et al., 2010). Based on the assumption that a maximum of one-quarter of each grid 

cell could be suitable habitat for the steppe bison (Fordham et al., 2013), we scaled the maximum 

density values to one-quarter of each equal-area projection grid cell, resulting in a range of 851 to 

4780 bison per grid cell. After some preliminary modelling, we found that this range was too high, 

resulting in unrealistic estimates of millions of bison in the present day in Europe alone 

(comparable to the number of plains bison in North America before European colonisation 

(Hedrick, 2009)). As a result, we adjusted the range of carrying capacity to 500 to 3000 bison per 

grid cell. 

Generation length and population growth 

Maximum annual growth rate and its variance were estimated using historical and modern time 

series data (Mysterud et al., 2007; Plumb et al., 2020; Samojlik et al., 2019). Maximum growth rate 

was calculated using time series data for founding populations growing exponentially (Fordham et 

al., 2022). This provided a mean estimate of 0.102 at an annual time scale. To measure the annual 

variation in growth rate, we used time series data for stable populations fluctuating around the 
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carrying capacity (Fordham et al., 2022). This provided a mean estimate of 0.022 at an annual time 

scale. 

To convert estimates of maximum growth rate and variation in growth rate to generational rates, 

we exponentiated the lower and upper bounds of maximum annual growth rate to the generation 

length of the European bison, which is 10 years (Pacifici et al., 2013). We calculated the variance in 

population growth rate at the generational time step by running 1000 simulations of an annual 

model with the upper bound of annual growth rate and the upper bound of annual variance. We 

ran each simulation for 100 years, then calculated the mean standard deviation of the growth rate 

at the generational time step across all 1000 simulations (Fordham et al., 2022). The estimated 

standard deviation on the generational time scale was 0.244. Density dependence was modelled as a 

Ricker logistic density dependent response (Ricker, 1954), which has been shown to be an 

appropriate model for species with slow life histories like the European bison, especially when 

environmental variation is high (Koetke et al., 2020). 

Dispersal 

We used data on European bison in Poland to simulate natal dispersal (Krasińska & Krasiński, 

2013). We modelled a mean dispersal rate of 15% of the population moving per generation at an 

average maximum distance of 300 km. We set upper and lower bounds on these estimates of 5 – 

25% and 0 – 300 km, respectively. We did this by parameterising the following dispersal equation: 

𝑚𝑚𝑖𝑖𝑖𝑖 = �𝑎𝑎
�
−𝐷𝐷𝑖𝑖𝑖𝑖
𝑏𝑏 �, 𝐷𝐷 < 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
0,      𝐷𝐷 ≥  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

 

where movement (m) between cells i and j is a function of Dmax (the maximum dispersal distance), 

a, and b. The parameter a is half the total proportion of dispersers that leave a cell at each time step. 

The parameter b comes from fitting an exponential function of dispersal distance in which Dmax is 

the 95th percentile of the distribution of distances. The lambda parameter of the fitted exponential 

function is the estimate of b. 
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The dispersal function was modulated by the dispersing fraction parameter, which set a ceiling on 

how many bison dispersed out of a grid cell. This approach prevents excessively large dispersal rates 

between closely neighbouring grid cells (Fordham et al., 2022). 

Human hunting 

We modelled the rate of human hunting in each grid cell as a function of relative abundance of 

humans (see above) and population density of European bison. The range of maximum harvest for 

the harvest function was 0 – 35% of the bison in a grid cell (Fordham et al., 2022). The proportion 

of bison harvested in a grid cell H is given by the following equation: 

𝐻𝐻 =
�𝑁𝑁 × 𝐹𝐹 × 𝑃𝑃𝑧𝑧
𝐺𝐺 +  𝑃𝑃𝑧𝑧 �

𝑃𝑃
 

where N is the relative abundance of humans scaled between 0 – 1, F is the maximum harvest, P is 

the prey density, G is a constant equal to the prey density at which harvest is half-maximal (Alroy, 

2001; Brook & Bowman, 2004) and z shapes the harvest function from a type II to a type III 

functional response, where z = 1 corresponds to a type II response and z = 2 corresponds to a type 

III response. At z = 1, hunting is a function of prey density and predator satiation, resulting in 

higher hunting rates at low prey densities and lower hunting rates at high prey densities. At z = 2, 

hunting rates are lower at low densities and high densities, reaching their peak at an inflection 

point, due to prey adaptation and/or prey switching at low prey densities. We did not model any 

changes in the density of humans in response to predation, as the archaeological literature suggests 

that Eurasian hunter-gatherer populations changed largely in response to climate, and relied on a 

diverse array of food resources (Bevan et al., 2017). 

At each time step, the simulator performs four basic steps: 1) the carrying capacity and human 

density landscapes update, 2) the population growth in each grid cell adjusts according to 

stochastic variation, carrying capacity and population density (if density dependence is switched 

on), 3) bison are harvested in each grid cell according to the bison density and human density (if 

humans are present in the cell), and 4) bison disperse between grid cells according to the carrying 

capacity of target cells, distance between origin cell and target cell, and dispersal barriers on the 
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landscape—that is, ice sheets and sea level as determined by the palaeoclimate data. (In the case of 

the Øresund strait between Denmark and Sweden, the spatial resolution of the land-sea-ice data 

was too coarse to include the opening of the strait, so we forced a dispersal barrier after the opening 

of the strait 8.5 ka (Andrén et al., 2011). 

We used Latin hypercube sampling to thoroughly sample the 11 dynamic model parameters in an 

unbiased manner (Table 1). Latin hypercube sampling is stratified by subdividing probability 

distributions into areas of equal probability density (Stein, 1987). In the first round of models, we 

sampled model parameters using uniform distributions, generating 25,000 plausible combinations 

of parameter values. We ran 25,000 simulations of the European bison in Eurasia from 21 ka BP to 

1850 CE. After pattern-oriented validation of the first round of models (see below), we fitted 

different distributions to the posteriors and chose the best fit by comparing AIC. For subsequent 

rounds of modelling, we sampled the informed prior distributions to generate 10,000 

combinations of parameter values. The process continued until Bayes factors indicated that the 

posterior distributions had converged. 

4. Model Validation 

To validate the model, we used pattern-oriented validation, using spatiotemporal occurrence, 

persistence in the Caucasus, and number of persisting populations as validation targets. 

Spatiotemporal occurrence 

We used spatiotemporal occurrence within our study region and time period (n = 57) as a 

validation target. We created this dataset by combining fossil records with reliable historical records 

from the 19th century (Krasińska & Krasiński, 2013; Pucek, 1991). The fossil records (n = 120) 

were highly clustered in space and time, so we thinned them with a spatial thinning algorithm 

(Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson, 2015). We divided the fossils into four 

temporal bins: the Pleistocene, lower Holocene, mid Holocene, and upper Holocene. We spatially 

thinned the fossils within each temporal bin with a thinning interval of 3,500 km. 

We added a spatiotemporal envelope around each occurrence record in the thinned dataset 

corresponding to its 86.6 km by 75.6 km grid cell and its eight nearest neighbours, and ±2 × the 
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error of the calibrated date (except for the historical records, which did not have an error around 

the date.) Our target was for models to replicate occurrence at all 57 sites. 

Persistence in the Caucasus 

In our rounds of preliminary modelling before the main study, we found that it was significantly 

more difficult to model persistence in the European bison refugium in the Caucasus Mountains 

than the refugium in Białowieża Forest. Therefore, we included a validation target for persistence 

in the Caucasus. We defined the Caucasus by drawing a bounding box around a shapefile of the 

Caucasus Mountains. A penalty was applied for each timestep before 1850 that the bison became 

extinct in this area. 

Number of persisting populations 

As noted above, only two populations of European bison persisted in the year 1850. For this 

metric, we counted the number of European bison populations extant in the final time step of the 

simulation and compared against our target of two. 

Statistical procedure 

After each round of simulations (see above), we calculated the summary metrics and scaled them 

by their standard deviations. We used the Approximate Bayesian Computation rejection algorithm 

to choose the best 25 models and estimate posterior distributions for the model parameters. We 

then fitted prior distributions for the next round of simulations by fitting a variety of probability 

distributions and choosing the best-fitting distribution by Akaike Information Criterion. 

Effective population size trend 

We calculated a total population size trend for the European bison from 21 ka BP to present using 

a Bayesian skyride plot based on 131 ancient DNA samples from European bison fossils; the 

sequences are available on GenBank (K. Clark, Karsch-Mizrachi, Lipman, Ostell, & Sayers, 2016). 

Of the 131 fossils, 102 were directly radiocarbon-dated, and 22 were dated based on well-

characterised archaeological contexts. We used the fossil dates and the uncertainty around them to 

characterise the prior distributions for the tip dates of the genealogy in BEAST v1.10.4 (Suchard et 
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al., 2018). We used the whole mtDNA sequences with the HKY substitution model and an 

uncorrelated relaxed molecular clock. We ran the Markov chain Monte Carlo algorithm with a 

chain length of 109, logging parameters every 104 simulations to avoid autocorrelation, then 

duplicated the analysis to ensure the chains had not reached a local maximum in the first run. We 

then analysed the output using Tracer v1.7.1 (Rambaut, Drummond, Xie, Baele, & Suchard, 

2018) to generate a GMRF (Gaussian Markov Random Field) Bayesian skyride plot of effective 

population size from 21 ka BP to present. 

We fitted a linear model to the GMRF Bayesian skyride plot (adjusted r2 = 0.9247) and used the 

estimated slope as an additional validation of our model results. For each simulation, we fitted a 

linear model of total population size, and scored based on the congruence between the estimated 

slope and the slope fitted to the Bayesian skyride plot. 

6. Model scenarios 

We created a validated ensemble model, a weighted mean of the 25 selected models from the final 

round of simulation, which passed our checks for parameter stabilisation and goodness of fit to 

validation targets. We stopped the validated ensemble model at 1500 CE for the purposes of 

analysis (Canteri et al., 2022). This validated ensemble represents the baseline scenario, based on 

our standard model assumptions described above. We used the posterior distributions of the model 

parameters from the validated ensemble to simulate scenarios using different model settings to 

represent different possible scenarios for the European bison. 

In the baseline scenario, the human hunting function is constant over time. The hunting rate 

differs based on the density of humans and bison in the grid cell, but the shape of the function 

does not change. However, based on historical records and the establishment of royal hunting 

reserves (Heptner et al., 1961), it is thought that hunting pressure on European bison increased 

greatly after 1500 CE, due to technological advancements in hunting and cultural shifts in land use 

(Benecke, 2005). The approximate population abundance of European bison in 1870 is known 

from historical records: there were 2000 bison in the Caucasus (Heptner et al., 1961) and 1,560 

bison in Białowieża Forest, for a total of 3,560 European bison (Krasińska & Krasiński, 2013). In 
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the baseline scenario, the European bison range is realistic at 1500 CE but unrealistically large after 

1500. To address this, we ran increased hunting scenarios: ten rounds of 25 simulations using the 

validated ‘best’ models from the baseline scenario from 1500 to 1870, increasing the maximum 

harvest rate by 10% each round, for a maximum 100% increase in maximum harvest rate. We 

validated the final abundance in 1870 against the estimated abundance from the historical record. 
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Parameter Mean Prior Mean Posterior 

Ecological niche 

Niche volume 0.5 (0 – 1) 0.421 (0.308 – 0.559) 

Niche outlier marginality index (OMI) 0.5 (0 – 1) 0.684 (0.263 – 0.924) 

Human harvesting 

Maximum harvest (percent) 17.5 (0 – 35) 13.3 (5.4 – 20.8) 

Harvest function (z) 1.5 (1 – 2) 1.383 (1.180 – 1.710) 

Human density (p) 0.5 (0 – 1)  0.386 (0.190 – 0.600) 

Dispersal 

Dispersing fraction 0.15 (0.05 – 0.25) 0.172 (0.136 – 0.211) 

Maximum dispersal distance (km) 250 (0 – 500) 103.7 (94.0 – 124.0) 

Population model 

Maximum growth rate (r) 0.5377 (0.0324 – 1.043) 0.637 (0.388 – 0.853) 

Variance of growth rate 0.122 (0 – 0.244) 0.156 (0.086 – 0.214) 

Allee effect (abundance threshold) 235 (0 – 469) 9 (3 – 18) 

Maximum density (bison per grid cell) 2816 (851 – 4780) 2023 (1015 – 2655) 

Table S2: Unscaled parameter distributions. The prior and posterior means, minima, and 

maxima are shown for parameters in the process-explicit model of European bison range and 

extinction dynamics. All priors are uniformly distributed. See section 3a of the Methods for details. 
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Model ▲ML Adjusted R2 Deviance explained 

Global model 123.1 0.85 88.5% 

Global model without interactions 0 0.83 88.6% 

Mean annual temperature only 988.2 0.76 82.3% 

Human abundance only 690.6 0.80 85% 

Deforestation only 2303.5 0.57 69.1% 

Table S2: Comparison of general additive models explaining bison abundance. Metrics 

comparing the explanatory power of general additive models with different structures in explaining 

patterns in bison abundance over time. The optimal model was the global model without 

interactions based on a test of differences between the ML scores (Wood, 2017). 

Movies 

https://universityofadelaide.box.com/s/0ned4ig5yrvofmx251te8uqkq163at12 

Movie S1: European bison abundance in Eurasia from 21 ka BP to 1500 CE. Abundance is 

shown as number of bison per 76 km by 87 km grid cell. Gray grid cells are areas where there is 

<25% model agreement on bison occupancy. Red points show radiocarbon-dated fossils of 

European bison. 

 

https://universityofadelaide.box.com/s/0ned4ig5yrvofmx251te8uqkq163at12
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Figure S1: Environmental variables used for the European bison niche.  
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Figure S2: Pattern-oriented model validation. Validation targets are A) spatiotemporal 

occurrence, showing the number of fossil and historical sites where spatiotemporal occurrence is 

simulated correctly, B) persistence in the Caucasus, showing timing of extirpation in the Caucasus 

region, and C) persisting populations, showing the number of persistent populations in 1850 CE. 

For A) the observed target was 57: the maximum number of sites with information on 

spatiotemporal occurrence. For B) the target was 0: no difference between simulated and target 

persistence time. For C) the target was 2: the number of bison populations in 1850 according to 

historical records. Different colours show four successive iterations of pattern-oriented modelling. 

See Methods for further details. 
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Figure S3: Effective population (Ne) and simulated population trends. Effective population 

size of the European bison (purple) was estimated from 21,000 ago to present using a Bayesian 

skyride plot (see Supplementary Methods for details.) The simulated population size (green) is 

from the validated ensemble of selected models. To facilitate comparison between census and 

effective population size, population trends are shown as anomalies from the abundance at the 

final timestep. The ribbons show 95% credible interval for the effective population size and 95% 

confidence interval for the simulated population size. 
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Figure S4: Posterior distributions for all variable model parameters. Shows the density of 

the posterior distribution for anthropogenic (yellow), environmental (green), and demographic 

(blue) parameters compared to a uniformly distributed prior (grey). Posterior distributions have all 

been scaled to a common axis. Variable human hunting parameters in the bison spatially explicit 

population model (SEPM) include the maximum percentage of the population hunted (Harvest 

max), the shape of the hunting function (Harvest Z), and the portion of the human abundance 

distribution sampled (Human density P). Variable parameters describing niche requirements 

include breadth of climatic conditions the species can occupy (Niche volume) and the marginality 

of the realised niche relative to the full niche (OMI). Variable demographic parameters include 

Allee effect, population density at maximum habitat suitability (Density max), maximum dispersal 

distance (Maximum dispersal), proportion of individuals dispersing at each timestep (Dispersal 

prop.), maximum population growth rate (Growth rate max), and its variance (Var. growth rate). 

Unscaled parameter values are provided in Table S1. 
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Figure S5: Extirpation times of European bison with and without human pressures. 

Extirpation times of European bison in each grid cell of the study region are shown for the best 25 

models (A) and a counterfactual scenario where human hunting and land use change did not affect 

the European bison (B).  
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Figure S6: Extended maps of the range collapse of the European bison. Simulated bison 

abundance for the end of the last glacial maximum stadial (20,000 BP), immediately prior to the 

Bølling-Allerød warming event (14,700 BP), the mid-Holocene (6,000 BP), and at the end of the 

simulation (450 BP or 1500 CE). 
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DISCUSSION 

In this thesis, I identified the crucial role that process-explicit models play in identifying causes of 

biodiversity loss and informing strategies to mitigate that loss. I found ways to improve the use of 

process-explicit models in the future. I used these models to find causes of extinction in the steppe 

bison and European bison. In doing so, I not only contributed to knowledge of these species and 

to the conservation of the European bison, but also demonstrated how process-explicit models can 

be used to investigate the causes of extinction in other species of concern. 

In Chapter I of the thesis, I did a comprehensive review of the last fifty years of ecological research 

on using process-explicit models to study patterns of biodiversity. I identified emerging trends, 

which included the use of all five ecological and evolutionary processes to model community-level 

diversity, and gaps, which included a common failure to validate process-explicit models using high 

statistical rigor. Going forward, I made the case that as a field, macroecologists should ultimately 

aim for the system approach and rigor of process-explicit climate models, particularly as the next 

generation of biodiversity models is developed.  

In Chapter II, I did the first ever sensitivity analysis of a process-explicit model of human 

expansion and found that key output metrics of the model were more sensitive to human 

demographic parameters than the choice of palaeoclimate model. This finding indicates that for 

this type of process-explicit model, more research on human demographic parameter values is 

needed to ensure accurate and precise model outputs. This is important because many downstream 

analyses (such as Chapters III and IV) rely on these outputs to parameterise human abundance in 

space and time.  

The last two chapters of the thesis focused on reconstructing the range and population dynamics 

of two bison species over thousands of years using process-explicit ecological models. In Chapter 

III, I reconstructed the range and extinction dynamics of the steppe bison (Bison priscus) in Siberia 

from 50,000 to 5,000 years before present. Based on these models, I found that a combination of 

human hunting and rapid deglacial warming drove the steppe bison to extinction in Eurasia. In 

Chapter IV, I modeled the range collapse and extinction in the wild of the European bison (Bison 

bonasus), which is intensively targeted by conservation efforts such as rewilding its former range. I 
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found that a combination of warming climate, human hunting, and land use change drove the 

collapse of the European bison in the wild, and that these pressures varied in space and time. My 

findings pinpoint ideal areas for the reintroduction of European bison and reveal areas of Europe 

that are unsuitable because their extirpation there was driven by climate change. 

Understanding biodiversity loss with process-explicit models 

This thesis contributes to the field of process-explicit models of biodiversity by incorporating 

interactions between ecological processes and global change drivers while upholding statistical 

rigor and biological realism. Statistical validation against multivariate observed ecological patterns, 

is crucial for assessing the accuracy of these models. While this level of rigor is standard among 

genetic-level process-explicit models, it is lacking in most models of higher levels of biological 

organisation. I show that a promising avenue for improving the statistical rigor of process-explicit 

models is pattern-oriented validation, which assesses models by their ability to reconstruct multiple 

observed patterns simultaneously (Grimm et al., 2005).  

While high resolution palaeoclimate models have become more widely available in recent years, 

further advances are needed to improve our ability to model biodiversity over long timescales 

(Fordham et al., 2020). First, most process-explicit models of biodiversity over palaeo timescales 

cover only the last ice age, due to a paucity of quality palaeoclimate simulations before the Last 

Glacial Maximum (Holden et al., 2019). However, I was able to go beyond this limitation in 

Chapters II and III, simulating human migration and bison range dynamics over periods of 

100,000 and 60,000 years, respectively. This has opened the future possibility of continuously 

simulating biodiversity change since the last inter-glacial period. 

In Chapter II, I demonstrated the importance of doing global sensitivity analyses of process-

explicit models. I found that estimates of migration of Homo sapiens into North America are 

highly sensitive to demographic parameters (e.g., colonisation rate), and that there is a great deal of 

uncertainty around human palaeodemography. It is likely that these parameter estimates could be 

improved through research on the relationship between human population growth rate and net 

primary productivity, as well as rates of human dispersal into previously unoccupied regions 
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(French et al., 2021). In addition, increasing the spatiotemporal coverage of genetic validation 

targets would also improve the accuracy of these models. 

My work in this thesis on modelling biodiversity dynamics and loss also shows a need to generate 

robust reconstructions of drivers of these patterns at high spatiotemporal resolutions. The process-

explicit model of human migration that I ran and evaluated in Chapter II, CISGeM, provided 

crucial inputs to drive human hunting in my models of bison range collapse in Chapters III and 

IV. Further, the inclusion of land use change as a driver in Chapter IV was made possible by the 

recent publication of HYDE v3.2, a dataset of human-driven land use change from 12,000 years 

ago to present featuring high spatial and temporal resolution (Klein Goldewijk et al., 2017).  

Drivers of range collapse and extinction 

One of the core aims of my doctoral research was to investigate how global change drivers, 

ecological processes, and their interactions cause range collapse and ultimate extinction. In 

Chapters III and IV, I investigated drivers of population in the steppe bison and European bison. 

Despite the close phylogenetic relationship between the two species, and the negative impact of 

human hunting and deglacial warming on population abundance in both species, I found different 

patterns of range collapse for each.  

Steppe bison faced multiple demographic limitations—a high Allee effect, high human abundance 

and hunting pressure—that combined with a relatively small realised niche to drive the species into 

marginal habitat in the Siberian highlands during the Pleistocene-Holocene transition. Isolated in 

this marginal habitat, the steppe bison became extinct. When I ran a counterfactual scenario that 

excluded hunting, I found that the bison were able to persist in refugia in northern Siberia. 

Meanwhile, European bison were limited by a small and specific set of ecological niche 

requirements, which combined with infrequent dispersal to trap the species in suboptimal habitat. 

Like the steppe bison, the range and abundance of European bison were strongly affected by 

climatic warming and human hunting during the Pleistocene-Holocene transition. In addition to 

these drivers, my research shows that human-driven land use change in the late Holocene excluded 

European bison from the southern and western edges of their potential range. This is the first 
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direct evidence of the effect of human land use change on megafauna abundance dating back 

thousands of years. 

My research shows that drivers of range and extinction dynamics widely vary across space and time, 

even for highly related species. For example, I show that climatic warming made the northern coast 

of Siberia suitable for steppe bison and humans at the termination of the Pleistocene. This resulted 

in humans driving them out of these northern climatic refugia into more southerly highland 

regions that could not support steppe bison populations in the long term. For the European bison, 

environmental change caused the geographic range of the species to contract inwardly from all 

directions. In the inner part of the range, humans were the most important driver of extirpation. 

Hunting restricted the bison’s range from the north and east, and land use change restricted the 

range from the south and west. These complex spatiotemporal interactions between ecological 

processes and natural and human drivers could not be disentangled correlatively, illustrating the 

importance of process-explicit models for understanding species’ range dynamics and threats to 

biodiversity in space.  

The findings of Chapters III and IV highlight the importance of modeling extinctions over long 

time scales, as pathways to extinction may start tens of thousands of years before the last individual 

dies. Most of the population decline of the steppe bison occurred more than 30,000 years ago, 

setting the time and location of extinction in Siberia some 21,000 years later. In the case of the 

European bison, I found that temperature had a significant effect on bison abundance in the 

Pleistocene and early to mid-Holocene, but had no effect on bison abundance in the late 

Holocene. Thus, investigating the European bison only in the last 4,000 years would miss a crucial 

component of the species’ decline farther back in time. 

Conservation applications 

My research has both direct and indirect applications to conservation, such as conservation policy 

suggestions and development of software to model extinctions. In Chapter III, I introduced the R 

package ‘paleopop’, which I co-developed. ‘paleopop’ is an extension to the R package poems that 

enables spatially explicit, process-explicit simulation of populations over tens of thousands of years. 
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‘paleopop’ can be used to model long-term causes of extinction for a variety of organisms and has 

utility far beyond the modelling the bison range collapse that I have presented in this thesis. While 

it is too late to save the steppe bison from extinction, there is still time to use this process-explicit 

ecological modelling approach to conserve other species of concern. For the European bison, I 

show how ‘paleopop’ can be used to identify potential causes of extinction and intervene 

appropriately. 

There is ongoing debate about where to reintroduce European bison to bolster their population 

sizes and range extent in the long term (Kerley et al., 2020). My research in Chapter IV contributes 

to this debate by providing a map of where the European bison became extinct due to 

environmental change, land use change, and/or human hunting. Attempts to reintroduce the 

European bison to Western Europe are failing (Plumb et al., 2020). My research indicates that this 

is because much of Western Europe has been climatically unsuitable for European bison for many 

millennia due to post-glacial environmental change. In contrast, areas that have become unsuitable 

because of land use change and/or hunting pressure represent prime regions for restoration efforts 

and protected nature reserves where bison will thrive if reintroduced. 

Conclusions and future directions 

My research in Chapters II, III, and IV made use of inferences from both modern and ancient 

DNA as validation targets for these process-explicit models. This genetic information was not used 

to parameterise the models, serving as crucial independent observations to evaluate model accuracy 

and refine parameter distributions. However, these data were coarse, and did not provide 

information on population changes on fine temporal scales. New genetic techniques are providing 

insight on genetic responses on human-relevant timescales (Roycroft et al., 2021) and will increase 

the utility of ancient DNA as a data source for model validation. 

My doctoral research shows the utility of process-explicit models in reconstructing past 

biodiversity dynamics and, more specifically, their capacity to integrate disparate inferences of 

demographic change from a wide variety of palaeo-archives. The increasing availability of databases 

of radiocarbon-dated fossils, ancient DNA sequences, species occurrence records, and 

palaeoclimate reconstructions will continue to aid the development of ever more complex 
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biodiversity models that will reveal biodiversity dynamics at finer spatiotemporal resolution over 

longer timescales. 

It is important to consider these longer timescales because they enable the study of biodiversity 

change under past climates that are analogous to future climates under likely emission scenarios 

(Fordham et al., 2020). In my thesis, I modelled biodiversity change in the Palearctic and Nearctic 

during the last deglaciation, a time of very rapid warming that is analogous to current Arctic 

warming (Rantanen et al., 2022). This research provides important insight into how species ranges 

shift in response to rapid warming, and how this warming can interact with other threats to 

biodiversity. One of the best past analogues to projected future warming scenarios is the Eemian 

interglacial stage that ended 115,000 years ago (Fordham et al., 2020). Modeling biodiversity on 

longer timescales back to the Eemian interglacial will contribute to knowledge about biodiversity 

patterns under future climates. 

Process-explicit models allowed me to make inferences that it would not be possible to make with 

correlative models alone. I was able to project abundances of humans, steppe bison, and European 

bison at high spatiotemporal resolution over long timescales. I could disentangle the effects of 

human hunting, land use change, and environmental change on species range dynamics. This 

thesis demonstrates the importance of process-explicit models as a tool for conserving biodiversity 

into the future. 
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E C O L O G Y

Process-explicit models reveal the structure 
and dynamics of biodiversity patterns
Julia A. Pilowsky1,2*, Robert K. Colwell2,3,4,5, Carsten Rahbek2,6,7,8, Damien A. Fordham1,2,6*

With ever-growing data availability and computational power at our disposal, we now have the capacity to use 
process-explicit models more widely to reveal the ecological and evolutionary mechanisms responsible for spa-
tiotemporal patterns of biodiversity. Most research questions focused on the distribution of diversity cannot be 
answered experimentally, because many important environmental drivers and biological constraints operate at 
large spatiotemporal scales. However, we can encode proposed mechanisms into models, observe the patterns 
they produce in virtual environments, and validate these patterns against real-world data or theoretical expectations. 
This approach can advance understanding of generalizable mechanisms responsible for the distributions of 
organisms, communities, and ecosystems in space and time, advancing basic and applied science. We review recent 
developments in process-explicit models and how they have improved knowledge of the distribution and dynamics 
of life on Earth, enabling biodiversity to be better understood and managed through a deeper recognition of the 
processes that shape genetic, species, and ecosystem diversity.

INTRODUCTION
The patterns of biodiversity we observe at different temporal and 
spatial scales result from the key evolutionary and ecological processes 
of speciation, ecological interaction, adaptation, movement, and ex-
tinction, acting separately or in concert (1). These processes can be 
stochastic or forced by natural drivers of environmental change 
(e.g., plate tectonics and paleoclimate change) or by human drivers, 
such as invasive species, land use, pollution, and harvesting (2). 
However, the interplay among these processes and their drivers is 
complex (3), and different sets of circumstances can produce simi-
lar patterns. This ambiguity has made it difficult to discern which 
ecological and evolutionary processes and drivers have shaped 
current-day patterns of biodiversity based on empirical data alone 
(4). Fortunately, key advances in process-explicit models over the 
past 50 years are now enabling the processes and drivers responsible 
for contemporary patterns of biodiversity to be disentangled in space 
and time. Here, we show how these advances in biodiversity model-
ing are revealing the generalizable mechanisms responsible for the 
distributions, abundances, and diversity of life on Earth and how 
they are strengthening basic and applied science, resulting in im-
proved guidelines for the management of nature.

Process-explicit models in ecology and evolution represent the 
dynamics of a biological system as explicit functions of the events 
that drive change in that system (5). By causally linking current patterns 
to the past events that produced them (Fig. 1), process-explicit 
models help achieve a deeper understanding of the chain of causality 
leading to current-day spatial patterns of biodiversity, including 
human diversity (6). These models allow contested ecological and 

evolutionary theories to be assessed, enabling biodiversity to be 
understood and managed more effectively through a deeper recog-
nition of the processes of genetic-, species-, and ecosystem-level 
endangerment and collapse (7).

Models that are process-explicit provide platforms for directly 
integrating ecological and evolutionary theory into conservation 
and environmental science (8), enhancing knowledge of the effects 
of biodiversity and its drivers on the functioning of species and 
ecosystems (9), and strengthening projections of biodiversity in a 
changing world (10), resulting in improvements to conservation 
management and policy (11). For example, process-explicit models 
derived from the neutral theory of biodiversity (12) were some of 
the first models to show that rare species are less frequent in island 
communities than in adjacent mainland communities (13), providing 
important new information to conservation policy-makers regard-
ing vulnerability to human-driven environmental change (14). 
Process-explicit models of the neutral theory of molecular evolution, 
which simulate rates of genetic drift as products of effective popula-
tion size and generation length (15), enabled conservation geneticists 
to study the behavior of neutral alleles to better understand why 
extinction risk increases for species with small population sizes (16). A 
stronger integration of ecological and evolutionary theory in con-
servation science using process-explicit modeling promises to fur-
ther link the evolution of species traits at the individual level to the 
dynamics of communities and the overall functioning of ecosystems 
(17). Together, these advances are improving knowledge of how cli-
matic and environmental changes have shaped species assemblages 
in the past, strengthening confidence in projections of biodiversity’s 
future (7).

Recent reviews have established important benefits of process-
explicit modeling approaches in macroecology (5, 18), ecosystem 
ecology (17), conservation science (10), and related disciplines. These 
studies highlight a need to use process-explicit models for managing 
ecosystems (17), improving theory (5, 18), and predicting species’ 
range shifts under ongoing and future climate change (10). However, 
there has been no synthesis of the broader uses of process-explicit 
models for unraveling the biological mechanisms responsible for 
shaping patterns of biodiversity in space and time in response to 
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Earth system drivers of environmental change. Here, we identify key 
properties of the structure and dynamics of biodiversity first uncov-
ered by process-explicit models, many of which are now guiding the 
future management of biodiversity.

The application of process-explicit models of spatiotemporal di-
versity in ecology and evolution can be traced back to MacArthur 
and Wilson’s model of island biogeography (Fig. 1), which linked 
patterns of biodiversity on islands to processes of movement (colo-
nization) and local extinction (19). Early process-explicit models 
include metapopulation models (20), which are used frequently 
today for conservation planning (21) and for informing species’ ex-
tinction risk (22). These models, which were initially limited to 
interactions and movements of subpopulations of a species, have 
now been expanded to include demographic and environmental 
stochasticity (23), species interactions, and community-level dynamics 
(24), allowing interlinked patches with different community com-
positions to be simulated and their dynamics understood. The first 
individual-based models followed shortly after the development 
of metapopulation models, permitting the inclusion of individual 
variation in dispersal behavior, genotype, competitive ability, and 
life history traits in simulations of population change (25). Today, 
individual-based models are used frequently not only for the manage-
ment of specific populations, including fisheries stocks (26), but also 
to answer paradigmatic questions about community assembly, food 
web ecology, and zoonotic disease (27).

In the 1980s, development of coalescent models of simulated 
genealogies (28) enabled the diversification of lineages to be studied 
in space and time (29), giving rise to the field of phylogeography. 
These early models showed how lineages can diverge without geo-
graphic isolation, illustrating potential mechanisms of sympatric spe-
ciation. More recently, they have been used to show how pathogens 

can rapidly evolve as they spread through a network of hosts (30), 
enriching fundamental understanding of past, current, and future 
disease dynamics (31). The latest generation of coalescent models 
can reconstruct genomic erosion in endangered species (32) and 
rapid directional selection (33) in response to subcentennial periods 
of environmental change.

The 1990s saw the advent of dynamic global vegetation models 
(DGVMs): process-explicit models that replicate global patterns of 
vegetation by simulating the growth and mortality of plant func-
tional groups under different climatic conditions (34). This devel-
opment enabled predictions of the capacity of the biosphere to store 
carbon (35) and produce crops (36) under current and future climate 
conditions. Today, DGVMs are being used to inform regional-to- 
global policies on food security, greenhouse gas emission scenarios, 
and the maintenance of ecosystem services (37). They can account 
for the effects of herbivory and fire regimes on vegetation structure 
(38), allowing the impacts of competing land management strate-
gies to be compared (11, 39).

In the early 2000s, models that integrate the evolutionary pro-
cesses of speciation and adaptation with the ecological processes of 
movement, extinction, and interaction began to be developed. By 
providing a mechanistic understanding of the physical and biological 
processes that shape Earth’s biodiversity, these models have aimed 
to illuminate the origins of biodiversity through direct tests of com-
peting scenarios (40). Many of these theories, established long ago 
by early naturalists (41–43), could not be directly tested with simpler 
process-explicit models or phenomenological approaches. Today, 
eco-evolutionary simulators provide opportunities to achieve new 
levels of realism in projections of assemblage dynamics under past 
and future global change (44).

The most recent developments in process-explicit modeling, 
which simulate multiple processes and patterns of biodiversity using 
complex mathematical components and logical algorithms, have 
resulted from a rapid rise in computational power following the turn 
of the 21st century (44–46). This advance, coupled with wider access 
to large ecological, genomics, and satellite-based remote sensing 
datasets, has enabled the generation and increasingly frequent ap-
plication of a broad variety of process-explicit models in ecological 
and evolutionary studies, parameterized or validated with more data 
and based on more-realistic assumptions than previously possible. 
Despite this accelerated expansion, the development and application 
of process-explicit models have followed an opportunistic path, with 
little strategy or coordination (47).

To address this current shortfall, we provide here a much-needed 
review of recent developments in process-explicit models, outlining 
considerations for researchers who contemplate building process-
explicit models to evaluate the mechanisms that govern the structure 
and dynamics of past, present, and future biodiversity. We scrutinize 
the processes of codifying theory into models, identify key scientific 
advances from simulation outputs, and illustrate with examples how 
process-explicit models can safeguard future biodiversity.

PROCESS VERSUS PATTERN
Narrative accounts (42), correlative studies (48), and experiments 
(49) lead to hypotheses about the underlying causes of biodiversity 
change, and theoretical models demonstrate possible mechanisms 
(50). In comparison, spatiotemporal process-explicit models can 
directly assess and disentangle competing theories for drivers of 

Fig. 1. Modeling the mechanisms that govern the structure and dynamics of 
biodiversity. Process-explicit models can simulate changes in species distributions, 
population abundance, phylogenies, and genomes based on evolutionary and 
ecological processes (movement, extinction, ecological interaction, adaptation, 
and speciation) and drivers of environmental change (invasive species, land-use 
change, human exploitation, climate change, volcanism, and plate tectonics). Pro-
cesses and drivers are ordered clockwise according to the temporal scale at which 
they operate. The timeline shows breakthrough developments in process-explicit 
models of biodiversity up to 2001. Image of finches adapted from Charles Darwin.
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biodiversity, helping to elucidate interactions among underlying 
ecological and evolutionary mechanisms and drivers (5). An example 
of competing theories for biodiversity dynamics and resultant pat-
terns is the contrast between niche (51) and neutral theory (12). The 
former focuses on the role of environmental determinism, while the 
latter focuses on contingent and stochastic determinants of bio-
diversity dynamics.

Process-explicit models differ from pattern-based models by 
generating predictions based on explicit causal relationships between 
environmental drivers and ecological and evolutionary responses, 
rather than inferring implicit causal relationships based on correla-
tions between observed and modeled patterns (52). A physiological 
model, for example, is process-explicit if it characterizes the occur-
rence of a tree species in a landscape based on where the tree can 
minimize water stress. In contrast, a model is phenomenological (or 
correlative) if it maps the tree’s occurrence based on the statistical 
relationship between annual precipitation and observations of oc-
currence, because no processes linking precipitation and fitness are 
specified. The process-explicit model allows patterns (e.g., a con-
traction of the tree species’ range) to be connected to processes that 
cause them (e.g., an increase in seedling mortality in a drought), 
while the phenomenological model cannot explicitly link a changing 
pattern to a causative agent (53). Similarly, a phenomenological 
model that hindcasts plant functional types on the landscape based 
on correlations between climate and pollen records cannot link pat-
tern and process in the same way as a DGVM that hindcasts plant 
nutrient cycling and competition over the same period (54).

Phenomenological models and experimental observations 
sometimes find strong or unexpected correlations that can suggest 
the mechanisms that produce them. Proposed mechanisms can be 
used to build process-explicit models that can then be tested against 
observed patterns (7). Studies of the effect of biodiversity on eco-
system function offer an example of this ontology (Fig. 2). Effects of 
depauperate plant richness on ecosystem function were first observed 
empirically in experimental chambers and plots, which led to the 
proposed mechanism of niche complementarity, which, in turn, be-
came the basis for mechanistic models of ecosystem function (55). 
In this way, phenomenological and experimental analysis can pro-
vide important insights into the workings of nature that can be tested 
using process-explicit models.

REVEALING STRUCTURE AND DYNAMICS
Process-explicit models can operate at diverse levels of biological 
organization, ranging from the gene to the ecosystem (Fig. 3). The 
level of biological organization that is simulated—genetic, species, 
or ecosystem diversity—has, to date, dictated the number and com-
bination of possible biotic processes that are modeled (7). The five 
primary processes responsible for the origin, structure, and dynamics 
of biodiversity are speciation, ecological interaction, adaptation, 
movement, and extinction (including population extirpation). In this 
context, ecological interactions encompass both interspecific species 
interactions (competition, predation, herbivory, parasitism, and 
mutualism) and ecosystem processes (nutrient cycling, photosyn-
thesis, stability, etc.).

Ecosystem- and population-level models were the earliest process-
explicit models. They generally include ecological interaction and 
local- to range-wide extinction processes (Fig. 3), but not movement, 
speciation, or adaptation. In contrast, more recently developed 

community-level models simulate all five primary biotic processes 
(46). These and individual-based models are becoming more fre-
quently used to unravel biological mechanisms that underpin 
spatiotemporal patterns of biodiversity (Fig. 3). These advances 
promise to lead to a greater awareness of the importance of eco-
evolutionary processes in shaping biodiversity (52).

Genetic diversity
Although coalescent models have simulated genetic diversity—trait 
inheritance within species—for 40 years (28), early approaches did 
not model differences in DNA among individuals in space and time. 
This advance was not made until the beginning of the 21st century 
(Fig. 3) with the advent of a spatially explicit simulation framework 

Fig. 2. Moving from empirical observations to process-explicit models. The 
relationship between biodiversity and ecosystem functioning can be observed 
experimentally in mesocosms. Statistical analysis of experimental data can lead to 
proposed mechanisms of biodiversity functioning, such as niche complementarity 
(55). This mechanism can be integrated into process-explicit models to simulate 
interactions between community structure and function. Image credits: photograph 
(top panel), Matthew Pintar; plant icons (middle panel), Andy Wilson.
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for population genetics: the serial-genetic simulator SPLATCHE 
(SPatial and Temporal Coalescent in a Heterogeneous Environment). 
The first studies to use SPLATCHE found that range expansions in 
heterogeneous environments produce genetic diversity patterns 
contingent on the geographical origin of the expansion, allowing 
spatially explicit genetic models to trace back the origin points of 
range expansions (56). Subsequently, coalescent-based process-
explicit models have been frequently used to infer the effects of species’ 
range expansions, contractions, and shifts on patterns of genetic 
diversity, using ancient and modern DNA. They have revealed that 
genetic diversity declines toward the leading edge of a species range 
more steeply than predicted by neutral theory (57) and that rapid 
range contractions conserve more genetic diversity in refugial pop-
ulations than slow range contractions (58). These models have also 
shown that present-day isolation of a population is a poor indicator 
of the past diversity of the lineage and historical barriers to gene 
flow (59) and that rapid warming events can reconfigure species 
assemblages (60). Together, these reconstructions of past patterns 
of genetic diversity using process-explicit models are helping to im-
prove projections of future patterns of genetic diversity by parameter-
izing known responses to environmental shifts (61).

Virtual genomes can be simulated to test and refine theories of 
genetic diversity. These genomes are simulated with mutation, 
migration, and divergence on computer-generated landscapes using 
a priori mutation rates and dispersal patterns. This approach has 
been used to simulate species’ range expansions, revealing that 
introgression [transfer of genetic information from one species to 
another as a result of hybridization (62)] is likely to occur from the 
resident population to the invading population, regardless of the 
relative densities of the resident and invader populations (63). Sim-
ulations of virtual genomes have also shown that new mutations 
near the leading edge of an expanding range have a higher frequency 
and wider spatial distribution than in a stationary population (64). 
This result suggests that spatially expanding populations have an 

increased rate of evolution at their frontier (64), with important 
implications for the management of invasive populations and range-
shifting native species.

Species diversity
Process-explicit models can be used to decipher patterns of species 
diversity at the level of the individual, species, or community, and 
findings underpinning the operation of biological processes at these 
different levels of species diversity can reinforce or amplify one an-
other. For example, an individual-level model can elucidate the 
evolution of optimal dispersal strategies within a single habitat island 
(65), a population-level model can reveal species diversity patterns 
across a chain of islands shaped by different dispersal strategies (66), and 
a community-level model can infer dispersal strategies in different 
functional groups, based on diversity across an entire region (67). 
In this way, process-explicit models at these three levels of organiza-
tion allow us to investigate and potentially to integrate the impact of 
movement on species diversity patterns at multiple biological scales.

Processes can be modeled at the level of the individual organism 
with agent-based models (68) and physiological approaches (69). 
The former can potentially capture any of the five fundamental 
biotic processes responsible for biodiversity and can generate 
complex population- and community-level phenomena that arise 
from ecological interactions among individuals (70). For example, 
individual-based models of initial colonization in a range expansion 
or shift have shown that the interaction of local adaptation with 
timing (71) and speed (72) of colonization can alter the expected 
distribution of a species along an environmental gradient.

However, models built at the individual level can be computation-
ally intensive, particularly if they simulate complex eco-evolutionary 
processes for many populations of individuals. Moreover, they can 
be difficult to parameterize and validate (Fig. 4), because data on 
biotic processes like movement and other attributes are often un-
available at the level of the individual. The computational demands 
of these models have led some researchers to use machine learning 
techniques (as emulators) to generalize process-explicit model 
behavior post hoc at small scales and apply those generalizations to 
larger scales (73). Others have used virtual landscapes to simulate and 
explore the population-level effects of different movement strategies, 
requiring neither biotic nor environmental data for parameterization 
(71). This approach, which allows for the simulation of data-poor 
processes at the individual level, has shown that range shifts can be 
accelerated by the evolution of greater dispersal ability in marginal 
habitats (65).

Physiological models, such as NicheMapper (74), and forest gap 
models, such as ForClim (75) and PHENOFIT (76), simulate only 
local- to range-wide extinction in animals and trees, respectively, 
making them computationally less intensive than individual-level 
models at large spatial scales. These approaches assume that if envi-
ronmental conditions are suitable given an organism’s physiological 
traits, it will persist; otherwise, it will die. These models are built on 
physiology and thermal tolerances, which are used to predict where 
individuals can survive. Physiological models can refine projections 
from phenomenological models of species distribution by identify-
ing locales where heat stress will cause local extinction, informing 
conservation management (53, 77).

Individual-level models are, nevertheless, often constrained to 
ecological and evolutionary processes at local extents, often failing 
to account for potentially important coarser-scale processes that 

Fig. 3. Processes and levels of biological organization. Bars show the number 
of studies using process-explicit models published before 2006 and in the 5-year 
periods from 2006 to 2016 and from 2016 to 2021, color-coded to indicate the unit 
of biological organization simulated. Pie charts show the biotic processes (speciation, 
ecological interaction, adaptation, movement, and extinction) modeled as fractions 
of the total number of processes modeled across all studies for each time bin.
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can affect species diversity. Population models, which find their roots 
in simple logistic growth equations or matrix population models 
(78), can simulate movement and mortality in a network of popula-
tions extending across a species range (79, 80). They can simulate 
trait values and genes, thus incorporating adaptation or speciation 
among populations over time, uncovering interactive effects of ad-
aptation and dispersal on distributions of phenotypes (81). Although 
these models usually feature one or a few focal species, they can be 
used to simulate many populations of interacting species, capturing 
ecological interactions and community dynamics (66). For example, 
a model of competing and evolving populations has shown that cer-
tain syndromes of life history traits (mating system and dispersal 
ability) outcompete others—a mechanistic prediction that fits with 
empirical observations in plants (81).

Pathways to extinction are difficult to detect and disentangle 
phenomenologically (82) because they are complex, often starting 
long before the extinction event, resulting from biological responses 
to natural and human-induced factors that operate at multiple 
spatiotemporal scales (80). Linking population models to correla-
tive species distribution models to address well-recognized limita-
tions of pattern-based approaches (83) is allowing the processes of 
movement, extinction, and—most recently—adaptation to be sim-
ulated over multiple millennia (84). This approach is revealing how 
ecological strategies, and demographic and evolutionary traits, inter-
act dynamically with past environmental change and human-driven 
factors to cause the decline and eventual extinction of species (80).

Biodiversity loss can be modeled for groups of interacting species 
using community-level models. Process-explicit models at the com-
munity level simulate biogeographical dynamics with species as 
functional units within the simulation (52). Unlike population mod-
els, which typically have species or population distributions as their 
outputs, or ecosystem models, which generally produce maps of 
ecosystem function or plant functional guilds (see below), these 
community-level biogeographical models usually generate species 
richness maps and range size frequencies (46).

Most community-level process-explicit models encompass all of 
the five biotic processes that drive biodiversity, making them aptly 
suited for testing differing hypotheses about the underlying causes 
of patterns of biodiversity, including how lineages diversify over 
space and time. For example, community-level process-explicit 
models have been used to determine whether neutral theory can 
explain empirical patterns of reef community dynamics, finding 
support for the theoretical expectation that range size should increase 
with dispersal ability (85). However, models of community-level 
processes not only are used to answer theoretical questions about 
biodiversity but also can be applied directly to real-world ecological 
systems to understand patterns of species richness (86), community 
assembly (87), and diversity loss (88) in a changing world. Diversi-
fication models with simple parameterization have applications in 
conservation biology, including identifying the effects of environ-
mental change on biodiversity hotspots (89) and predicting the loss 
of species in a community after habitat destruction (88). Despite 

Fig. 4. Model structure and assessment. (A) shows model structure (parameterization) and (B) shows model assessment (verification and validation) for five levels of 
biological organization (left to right): gene, individual, population, community, and ecosystem. Model structure categories (A) include (top to bottom) multiple biotic 
processes and  dynamic environment (env.), single biotic process and dynamic environment, single biotic process and static environment, either a biotic process or 
environmental data, and no empirical data. Model assessment categories (B) include (top to bottom): multivariate validation (Multivar. valid.), univariate (Univar.) validation, 
nonstatistical (Non-stat.) validation, verification (verif.) using theory, and no verification or validation. For additional detail, see the “Relationship to data and theory” section 
and Supplementary Methods. Size of circles indicates the relative number of studies reviewed (total = 225).
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their complexity, these process-explicit models of biogeographical 
dynamics can be validated (Fig. 4) using targets of current-day range 
size frequency distributions (45).

Ecosystem diversity
Ecosystem diversity models simulate the structure of functional groups 
of terrestrial and marine organisms. The coexistence and interactions 
of these groups are used to map the distribution of ecosystems (90). 
Interactions among terrestrial autotrophs and the abiotic environ-
ment are modeled with DGVMs (34), while fisheries management 
models (91) and general ecosystem models (92) also include primary 
and secondary consumer dynamics, enabling simulation of energy 
transfer through food webs. These ecosystem diversity models are 
being used to forecast and manage ecosystem services, including 
carbon storage (93), clean water supply (94), and food security (95) 
in a changing world. They have shown that freshwater supply will 
be reduced under future warming to the detriment of terrestrial 
ecosystem functioning (96), that increased hurricane frequency 
threatens the structure and productivity of reef-fish communities 
(97), and that habitat fragmentation affects the trophic structure of 
ecosystems (98). Furthermore, process-explicit ecosystem models 
have shown that forest function is more resilient to warming events 
in high- than in low-diversity forests (99), illustrating causative mech-
anisms for experimental observations (55).

DGVMs simulate the distribution of plant functional types as 
well as their fluxes of carbon, water, and nutrients through the envi-
ronment (34), enabling them to simulate dynamic feedbacks between 
the biosphere and the climate when coupled to climate models (100). 
This coupling of models has uncovered important interactions 
between climate, CO2, and ecosystem function, including evidence 
that a positive interaction between plant productivity and elevated 
levels of CO2 can potentially offset the negative effects that climate 
change and, more specifically, increased aridification can have on 
productivity (101). Moreover, by hindcasting ecosystem diversity 
dynamics over glacial-interglacial cycles, DGVMs have disentangled 
many of the effects of climate on ecosystem structure (102). For ex-
ample, modeling the interaction between deglacial warming and 
megaherbivore die-off following the last glacial maximum reveals 
how high-latitude mammoth steppe—Earth’s most extensive biome 
at the time—was converted to a taiga-tundra ecotone (38).

While more complex general ecosystem models can simulate the 
entire ecosphere, from phyto- and zooplankton to apex carnivores, 
capturing complex food web dynamics, they do not as yet include 
two-way interactions with climate (92, 98). Consequently, they are 
frequently used to test theories regarding ecosystem structure, in-
cluding relationships between heterotroph biomass and net primary 
productivity (92), and to determine the impact of recent land-use 
change on ecosystem function (98). The application of these ecosystem-
level models in fisheries management has uncovered crucial ecosystem 
services provided by coral reefs, including calcium carbonate depo-
sition and coastal protection, showing how overfishing disrupts these 
services to nature and people (103).

RELATIONSHIP TO DATA AND THEORY
Process-explicit models have a variety of relationships with data 
and theory (fig. S1). Some process-explicit models are theory driven: 
Their purpose is to explore the implications or applications of an 
ecological theory, such as the neutral theory of biodiversity (12), the 

species-area relationship (104), or the general dynamic theory of 
island biogeography (105). Others are theory scaffolded: Their pur-
pose is to understand an ecological system empirically and to use 
theory as a scaffold by which to structure the model and interpret its 
outputs (101).

While process-explicit models are diverse in structure (60, 84), 
they exist on two distinct continua, based on (i) their use of empir-
ical data for parameterization and (ii) how they are verified and/or 
validated (Fig. 4). Empirical data are not necessary to build and run 
a process-explicit model. Indeed, many theory-driven models use 
arbitrary values for parameters and explore the interactions and 
patterns that result from the model (87). These models are at one 
end of a parameterization continuum. Further along the continuum 
are models that use either biotic data (such as genetic sequences or 
species occurrence) or environmental data (such as spatiotemporal 
climatic fluctuations or bathymetry change) to parameterize models, 
but not both (46). The next category of models includes those that 
use biotic and static environmental data (106), followed by models 
that use biotic and dynamic environmental data (34). In the last two 
cases, biotic data represent a single level of biological organization: 
gene, individual, population, community, or ecosystem (7). At the 
most extreme end of the parameterization continuum lie models 
that use dynamic environmental data and biotic data to simulate 
processes across multiple levels of biological organization: for exam-
ple, simulating individual-level movement (based on seed dispersal 
by wind) and population-level mortality (based on survival across 
individuals) (107).

A second distinct gradient specifies how data are used for verifi-
cation and validation in process-explicit models (Fig. 4). Verification 
is a check to ensure that the implemented model meets the primary 
theoretical assumptions it has been built to represent. In contrast, 
validation evaluates the level of correspondence between the imple-
mented model and the study system (108). At one end of the verifi-
cation and validation continuum, model outputs are not verified or 
validated at all. Moving up the continuum, output patterns can be 
verified for congruence with theory by comparing model outputs 
with well-established theoretical relationships, such as the mid-
domain effect (109). Models can be validated through visual inspec-
tion of patterns based on observational data, using nonstatistical 
procedures (110). Statistical validation allows model outputs to be 
evaluated with patterns of empirical data, by means of measures 
such as coefficient of determination (r2), root mean square error, or 
true skill statistic (102). At the most data-heavy end of the verifica-
tion and validation continuum lies multivariate statistical validation 
(59), in which models are evaluated on the basis of their ability to 
simultaneously demonstrate goodness of fit to multiple empirical 
patterns. This demanding level of validation is now being applied to 
pattern-oriented modeling (an emerging and powerful technique in 
data science), in which mechanisms governing the structure and 
dynamics of biodiversity are identified by converging model simu-
lations to independent multivariate validation targets (45, 80).

Figure 4 shows how process-explicit models with diverse relation-
ships to data can be used to decipher the mechanisms underlying 
the structure of biodiversity. Models that use little or no empirical 
data can be used to test ecological and evolutionary theories, such as 
modes of speciation (111). These primarily theory-driven models 
are useful even when biological data are not available for validation; 
for example, data-free process-explicit models can test the sensitivity 
of model outputs to underlying processes (111), distinguishing 
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metapopulation dynamics from neutral dynamics or random com-
munity assemblage (112). Theory-scaffolded models with complex 
parameterization often have greater explanatory power, particularly 
if they use more than one level of biotic data for parameterization 
and validation, and if they simulate dynamic drivers of global 
change affecting the spatial structure of biodiversity. These addi-
tional data inputs can allow otherwise necessary model assumptions 
to be relaxed, such as an assumption of unlimited movement (107) 
or static human land use (39), while multivariate validation targets 
(despite being, so far, rarely used) provide more stringent tests of 
model simulations.

SAFEGUARDING BIODIVERSITY
Sustainable management of biodiversity has been recognized as a 
policy goal for 30 years (113); however, progress in halting the 
decline and degradation of biodiversity has been limited (114). 
Reasons for failing to reduce biodiversity loss are complex, reflecting 
long-lasting knowledge gaps on biodiversity dynamics (47), as well 
as insufficient integration of biodiversity science in policy making 
(115) and lack of motivation to deliver the required biodiversity 
changes (116). An incomplete understanding of the mechanisms that 
govern the structure and dynamics of biodiversity and a tendency to 
use correlative rather than process-explicit approaches to forecast 
the future of biodiversity in a changing world (10) have constrained 
capabilities to set productive biodiversity targets, develop cross-
cutting solutions for restoring nature, and obtain national commit-
ments to biodiversity conservation.

Process-explicit models have a diverse range of applications, in-
cluding formulating and assessing potential solutions for mitigating 
future genetic-, species-, and ecosystem-level collapse. Currently, for 
example, the paleorecord is being used to identify biological mech-
anisms that mediate responses to climate- and human-driven change 
using process-explicit models (117). These paleo-models can dis-
entangle past determinants of genetic diversity, range shifts, species 
richness, and ecosystem structure and function. By specifying the 
causal processes that underpin biodiversity change, they can provide 
the context needed to improve confidence in predictions of bio-
diversity’s future (7), leading to improved computational platforms 
for setting biodiversity targets and better solutions for mitigating 
adverse changes to biodiversity (8).

The genetic signatures of demographic responses of species to 
environmental changes can be decoded using genetic simulation 
models (6) to better manage future biodiversity (118). For example, 
process-explicit models of gene fixation, which allow demographic 
trends and gene flow to be reconstructed (16), are establishing the 
importance of intraspecific genetic diversity for resilience to accel-
erated climatic change (119). There is now a push to use this tech-
nique more widely to improve knowledge of how rapid climatic 
change affects patterns of genetic diversity (61). In the absence of 
ample genetic samples, process-explicit models can still be used to 
test theories central to conservation genetics using virtual genetic 
sequences and landscapes (120) to deliver valuable information for 
conserving future genetic diversity (121).

Historical context is crucial for understanding the threat of future 
declines in species distributions. Process-explicit models constructed 
at the individual and population level can be used to identify demo-
graphic processes that cause range shifts for a species or suites of 
species in response to climatic and environmental drivers, improving 

species threat assessments (77). Because individual-based models 
often operate at a level of detail that is not necessary for simulating 
range dynamics across large extents, process-explicit population-
level models are more commonly used to project past and future 
range dynamics. These population-level models can be used to 
identify ecological traits that cause species to be differentially prone 
to regional and range-wide extinction (122) and to evaluate the effi-
cacy of current methods for identifying threatened species (123). 
Population-level models that incorporate adaptation as a process 
have been influential and instructive in revealing the role of gene 
flow along ecological selection gradients, and its inhibiting effect on 
local adaptation to environmental change (124).

Hotspots of biodiversity are of particular conservation concern 
because they support high concentrations of species, particularly 
endemics (125). Process-explicit models built and validated at the 
community level to simulate geographical patterns of species richness 
and endemism can identify mechanisms central to the maintenance 
of past and contemporary hotspots of species richness (126), providing 
a framework for assessing vulnerability to future climate and envi-
ronmental change (Fig. 5). If simulations can capture community-
level responses to realistic tempos and magnitudes of future global 
change, these new predictive approaches will benefit 21st century 
environmental management and conservation (7).

To illustrate the state of the art in broad-scale modeling of bio
diversity and its potential application for biodiversity conservation, 
we offer an example of a community-level, process-explicit model 
that incorporates all five biological processes that govern the struc-
ture and dynamics of biodiversity in a temporally dynamic environ-
ment (46). The model was designed to simulate the geographic 

Fig. 5. Models for predicting continental species richness. Community-level 
biogeographical models (46), driven by interactions between climate and biological 
processes, can incorporate all five biological processes that govern biodiversity: 
movement, extinction, ecological interaction, adaptation, and speciation. Model 
outputs can simulate maps of current-day and future species richness and endemism 
(rarity-weighted species richness). Top plot shows temperature across thousands 
of years (ka). Image of finches adapted from Charles Darwin.
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distributions and patterns of overlap of species ranges in response 
to the past 800,000 years of climate change in South America (Fig. 5). 
In this model, evolutionary niche dynamics drive range expansion 
and fragmentation (leading to speciation), adaptation to climatic 
conditions, and extinction. Combinations of parameter settings 
(dispersal distance, evolutionary rate, time for speciation, and in-
tensity of competition) for virtual species were chosen a priori, pro-
ducing many different potentially plausible range maps. Although 
not directed by any empirical validation targets, the emerging maps 
closely resembled contemporary species richness of major South 
American taxa. Combinations of parameters that closely reproduced 
the current-day biodiversity of South American avifauna (including 
hotspots of species richness and endemism) showed that low rates 
of adaptation to past climatic change were required to reconstruct 
observed patterns of species richness. In the future, such community-
level simulation models (built to simulate the past and validated in 
the present; Fig. 5) could be parameterized with climate forecasts to 
predict strongholds of species richness under future climates. The 
subsequent results could be used to guide the protection and future 
management of biodiversity.

By identifying the biological mechanisms, drivers, and their in-
teractions that mediate changes in ecosystem structure and function, 
process-explicit models can help safeguard the services ecosystems 
provide to nature and people. Early ecosystem models were used to 
investigate the effects of increased atmospheric carbon on vegetation 
communities (96). More recent models have incorporated complex 
interactions between multiple drivers of global change and ecosystem-
level processes, including the effects of agriculture and land-use 
change (93). This research has strengthened knowledge of the drivers 
and responses that underpin change in ecosystem structure and 
function (36, 93), improving projections (127) and informing pro-
tocols for assessing ecosystem threat status (128). For example, 
DGVMs have shown mechanistically how 20th century agriculture 
caused a 24% reduction in global vegetation and a 10% reduction in 
global soil carbon (93). A better understanding of processes of eco-
system change enables the simulation of the effects of current and 
future climatic and environmental change (including altered fire 
regimes) on important ecosystem services, such as agricultural pro-
ductivity, freshwater availability, and timber production (36, 39).

Climate projections are currently made using models characterized 
by complex system dynamics, including interactions and feedbacks 
between the atmosphere, ocean, land, and society (129). While anal-
ogous models for projecting biodiversity change have typically been 
simpler than approaches used in climate science, general ecosystem 
models (92) and process-based community assemblage models (44) 
offer new and more robust methods for projecting the future distri-
bution of life on Earth. These next-generation biodiversity models, 
which explicitly capture the structure and dynamics of biodiversity, will 
strengthen our capacity to set achievable biodiversity targets that 
promote engagement and investment where change is needed.

LOOKING FORWARD
Although phenomenological models are a crucial first step toward 
understanding the potential determinants of current and past spa-
tial patterns of biodiversity, process-explicit models are needed to 
identify causal processes that govern the structure and dynamics of 
biodiversity, and to exclude those that do not. Increased open access 
to curated georeferenced occurrence records, dated fossils, libraries 

of genetic sequences, and climate simulations will continue to 
provide innovative opportunities to apply process-explicit models, 
especially to connect inferences of past responses of biodiversity 
to different rates and magnitudes of contemporary climate and 
environmental change (117). These opportunities include testing 
key assumptions of existing biodiversity models—such as the com-
mon assumption that processes driving changes in biodiversity 
are scale invariant (130)—and competing theories for large-scale 
biodiversity patterns, including geographical gradients in species 
richness (44).

Continuous simulations of the transient late Quaternary climate 
are needed, ideally at fine spatial resolutions, to determine population-, 
species-, community-, and ecosystem-level responses to abrupt (as well 
as gradual) climatic change using process-explicit models (131). 
The TRaCE21ka experiment based on the Community Climate System 
Model version 3 (132) has bridged this gap, but it spans only the 
past 21,000 years. Higher spatiotemporal resolution paleoclimate 
simulations from Earth systems models before 21,000 years ago that 
include solar flux, ice sheet extent, and sea level changes will provide 
a more thorough understanding of the mechanisms responsible for 
spatiotemporal patterns of biodiversity at evolutionary time scales 
(7). Statistical emulators of climatic change will be useful in filling 
this data and knowledge gap (133), particularly in the Southern 
Hemisphere, for which there is a paucity of high-resolution simu-
lated data before the last glacial maximum (134). Including better 
reconstructions of solar variability, volcanic eruptions, and land use 
during the Holocene in transient simulations of Earth’s climate will 
provide a more complete picture of more recent temporal change in 
regional climates and the biodiversity they support.

Integrating paleoecological and neoecological perspectives into 
process-explicit models is key to contextualizing the present and 
anticipating and visualizing ecological responses to future global 
change (117). Emerging genomic techniques are allowing genetic 
diversity and effective population size to be estimated over short 
periods (<100 years) of environmental change, providing inferences 
of eco-evolutionary change to recent and/or punctuated disturbance 
events (32, 33, 135) that can feed directly into process-explicit models 
of range collapse and population declines. Importantly, projections 
of recent climate, vegetation, and land-use change have been har-
monized with ancient projections, allowing their effects on biodi-
versity to be characterized continuously in process-explicit models 
that run from as far back as 21,000 years ago to the present day (136) 
and, in some cases, into the future (137).

Adaptation was first incorporated into spatial process-explicit 
models in the early 2000s (138) and has since become more common 
in ecological and evolutionary models. However, it still remains the 
most infrequently modeled biological process. A more regular inte-
gration of adaptation into process-explicit models of climate change 
responses will benefit from taxonomically diverse datasets of historic 
DNA that are readily available today (139) and from technological 
advances that allow ancient DNA to be used to reconstruct shifts in 
genetic diversity and adaptations to large-magnitude and abrupt 
climatic change (140). Adding community dynamics to population 
models and demography to community models will also strengthen 
projections of biodiversity change. Metacommunity models with 
simplified food webs can bridge this gap by modeling demographic 
interactions between populations of multiple species in a spatio-
temporally explicit manner (141). Community-level models can 
integrate a higher level of biological organization by combining 
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ecosystem-level drivers such as fire with processes of plant commu-
nity assembly (142).

Achieving more detailed mechanistic understandings of patterns 
of biodiversity—from the gene to the ecosystem level—will require 
a greater focus on rigorous statistical validation of process-explicit 
models using independent multivariate data that are spatiotemporally 
explicit. In systems where theory is not yet well developed, empirical 
data for model parameterization are needed to simulate realistic 
outputs. However, as the mechanisms underpinning a system’s bio-
diversity become better understood, model outputs will be simulated 
using theory alone. Realistic predictions generated from a strong 
theoretical framework are the pinnacle that ecologists and evolu-
tionary biologists should be aiming for when wielding process-
explicit models.

Process-explicit models have been instrumental in improving 
knowledge of the distribution of life on Earth, revealing complex 
causal processes for contemporary patterns of biodiversity that could 
not be discerned from experimental approaches or phenomenological 
models. A deeper recognition of the structure and dynamics of 
organisms, communities, and ecosystems in process-explicit models 
is helping to protect and restore biodiversity by formulating remedies 
to existing problems and countering undesirable future changes.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj2271
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Simulations of human migration into North America are more sensitive to 
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A B S T R A C T   

Reconstructions of the spatiotemporal dynamics of human dispersal away from evolutionary origins in Africa are 
important for determining the ecological consequences of the arrival of anatomically modern humans in naïve 
landscapes and interpreting inferences from ancient genomes on indigenous population history. While efforts 
have been made to independently validate these projections against the archaeological record and contemporary 
measures of genetic diversity, there has been no comprehensive assessment of how parameter values and choice 
of palaeoclimate model affect projections of early human migration. We simulated human migration into North 
America with a process-explicit migration model using simulated palaeoclimate data from two different 
atmosphere-ocean general circulation models and did a sensitivity analysis on the outputs using a machine 
learning algorithm. We found that simulated human migration into North America was more sensitive to un
certainty in demographic parameters than choice of atmosphere-ocean general circulation model used for 
simulating climate-human interactions. Our findings indicate that the accuracy of process-explicit human 
migration models will be improved with further research on the population dynamics of ancient humans, and 
that uncertainties in model parameters must be considered in estimates of the timing and rate of human colo
nisation and their consequence on biodiversity.   

1. Introduction 

Early human migration has been reconstructed indirectly (Beyer 
et al., 2021), correlatively (Giampoudakis et al., 2017) and 
process-explicitly (Timmermann and Friedrich, 2016), allowing path
ways for the expansion of modern humans to be identified by inferring 
or modelling relationships between climatic conditions, occupancy and 
population growth (Eriksson et al., 2012; Steele et al., 1998). 
Process-explicit models have advantages over correlative re
constructions and inferences based on climate metrics because they 
explicitly capture demographic responses to changing climatic and 
environmental conditions in model simulations (Pilowsky et al., 2022). 
However, they are generally data intensive, with complex model 

structures, often resulting in high variability amongst simulations of 
early human migration owing to large uncertainties in underlying de
mographic parameters (Timmermann and Friedrich, 2016). Further
more, most models are fitted to a single set of simulated climatic 
reconstructions. It is unclear how different assumptions and biases in 
paleoclimate simulations (Solomon et al., 2007) affect model projections 
of human migration, and how important these effects are relative to 
uncertainties in demographic parameters. Sensitivity analyses can help 
improve projections of human expansion from process-explicit macro
ecology models by identifying parameters that contribute the most to 
model output, those that are insignificant and can be potentially omitted 
from the model, and those that need refining to improve model accuracy 
(Hamby, 1994). 
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The Climate-Informed Spatial Genetic Model (CISGeM) is one 
example of a process-explicit model of human dispersal out of Africa, 
which has been validated using genetic distances between contemporary 
human populations (Eriksson et al., 2012). Its outputs include human 
arrival times on non-African continents and islands, as well as spatial 
maps of effective population size (a proxy for relative abundance 
(Fordham et al., 2014)) from 120 kg-years before present (ka BP). The 
simulated outputs of CISGeM have been used to parametrise and inform 
other models of phenomena including megafaunal extinctions (Ford
ham et al., 2022) and species range dynamics (Canteri et al., 2022). 
However, CISGeM has never been subjected to a sensitivity analysis, 
meaning there is no knowledge of the importance of demographic pa
rameters and climatic conditions on model projections. Here we simu
late human migration into North America in the Pleistocene using 
CISGeM parametrised with two widely used atmosphere-ocean general 
circulation models (AOGCMs): the Hadley Centre Coupled Model, 
version 3 (HadCM3) (Singarayer and Valdes, 2010) and the Community 
Climate System Model version 3 (CCSM3) (Yeager et al., 2006) Transient 
Climate Evolution (TraCE-21ka) simulation (Z. Liu et al., 2009). We do a 
sensitivity analysis to determine whether well-established structural and 
projection differences in these two palaeoclimate models (; Burke et al., 
2018; Kageyama et al., 2018) strongly influence CISGeM simulations of 
human colonisation of North America when uncertainties in key de
mographic parameters are also considered. 

2. Material and methods 

2.1. Human expansion model 

We modelled the peopling of North America using CISGeM (Climate- 
Informed Spatial Genetic Model), which is a process- and spatially- 
explicit population model of global human migration during the late 
Pleistocene and Holocene (Eriksson et al., 2012). The model is driven by 
demographic processes responding to glacial-interglacial ice-land-sea 
dynamics, and spatiotemporal variation in net primary productivity that 
affects carrying capacities. The latter has been shown to be an important 
driver of population density for hunter-gatherers (Tallavaara et al., 
2018; but see Zhu et al., 2021). Previous model testing has shown that 
CISGeM accurately reconstructs global genetic diversity and human 
arrival times on the non-African continents (Eriksson et al., 2012; 
Raghavan et al., 2015). See Supplementary Information for more details 
on the model structure of CISGeM. 

Model parameters in CISGeM have been optimised using pattern- 
orientated modelling methods (Grimm et al., 2005) and Approximate 
Bayesian Computation (Csilléry et al., 2010). In this study, we used the 
posterior ranges of optimised model parameters to generate 4950 
plausible CISGeM models, each with different parameter values 
(Table S1). These posterior ranges have been used elsewhere to recon
struct human migration rates in North America and Eurasia using CIS
GeM (Canteri et al., 2022; Fordham et al., 2022). We used Latin 
hypercube sampling to generate a stratified random subset of parameter 
input values for simulations by specifying the posterior range for each 
parameter and sampling all portions of the distributions (Stein, 1987). 
We then ran each of these models using palaeoclimate data from two 
AOGCMs, and did a global sensitivity analysis (Antoniadis et al., 2021) 
to determine the influence of demographic parameters and climate 
model parametrisation on CISGeM projections of human colonisation of 
North America (Figure S2). 

2.2. Climate data 

Plausible models (n = 4950) were simulated using palaeoclimate 
AOGCM data from HadCM3 (Singarayer and Valdes, 2010) and the 
CCSM3 TraCE-21ka simulation (Z. Liu et al., 2009). These two palae
oclimate models were chosen because their climatic outputs are most 
frequently used in macroecological models (Blois et al., 2013; 

Theodoridis et al., 2020), including approaches that simulate colonisa
tion and extinction processes (Canteri et al., 2022; Fordham et al., 2022; 
He et al., 2013). Their high usage in ecological models reflects their 
temporal coverage, which tends to be more continuous than many other 
widely accessible paleoclimate datasets (Armstrong et al., 2019; S. C. 
Brown et al., 2020; Fordham et al., 2017), many of which are limited to 
widely spaced snapshots of key climatic periods (J. L. Brown et al., 2018; 
Lima-Ribeiro et al., 2015). While projections from the HadCM3 have 
been shown to be congruent with those from the CCSM3 TraCE-21ka 
simulation for some climatic parameters in some regions and time 
points (Armstrong et al., 2019), there are important local-to-regional 
differences between projections from these AOGCMs (Burke et al., 
2018; Kageyama et al., 2018), including in North America (Fig. 1). 

Unlike the TraCE-21ka simulation, the HadCM3 is not a fully tran
sient climate model, meaning that outputs from HadCM3 are climate 
snapshots rather than continuous projections. Climate snapshots from 
the HadCM3 outputs (separated by ≥ 1 ka) were temporally downscaled 
to 25 year timesteps to match the timestep of CISGeM simulations using 
a stochastic weather generator, which draws random values from 
empirical distributions adjusted to fit the temperature and precipitation 
intervals found in the climate data (Semenov and Barrow, 2002). The 
grid cell resolution of HadCM3 data is 3.75◦ longitude × 2.5◦ latitude. 
Forcings include orbitally forced insolation changes, changes in 
long-lived greenhouse gases, and meltwater from evolving ice sheets. 
These are the same forcings used in TraCE-21ka, with a key difference 
that HadCM3 does not account for vegetation-air-ocean interactions 
(Collins et al., 2006). 

The TraCE-21ka simulation (Z. Liu et al., 2009) uses the CCSM3 ( 
Yeager et al., 2006) to reconstruct daily global climate conditions at a 
spatial resolution of 3.75◦ longitude × 3.75 latitude (over land and sea) 
for the last 21,000 years. It accurately reproduces major climatic fea
tures associated with the most recent deglaciation event (Z. Liu et al., 
2009), and predicts present-day climate patterns with verified hindcast 
skill (Fordham et al., 2017). Importantly, both HadCM3 and 
TRaCE-21ka model ice sheet dynamics using the ICE-5 G reconstruction 
(Peltier, 2004), meaning that ice sheet barriers to human dispersal in 
CISGeM models were identical in simulations regardless of palae
oclimate model (Movie S1). We spatially downscaled data from both 
models to the equal-area resolution of CISGeM (100 km width). See 
Supplementary Information for details. 

2.3. Simulations 

We ran a single replicate of CISGeM for each combination of plau
sible parameters and recorded the simulated effective population size at 
each hex cell and time point. Previously, it has been shown that running 
a single simulation iteration per parameter sample is optimal for sensi
tivity analysis if the parameter space is extensively sampled (Prowse 
et al., 2016). All simulations were global, began at the same starting 
location in East Africa at 120 ka BP, and proceeded until present (0 BP, 
1950 C.E.) at 25-year time steps (Eriksson et al., 2012). 

We identified, a priori, time of movement out of Alaska and rate of 
expansion through North America as two important metrics of regional 
human migration that are likely to be sensitive to changes in de
mographic parameters and variation in climate model projections. This 
is because climatic change facilitated the initial movement of people 
into North America (Becerra-Valdivia and Higham, 2020), and the speed 
of this movement was constrained by demographic processes and their 
interaction with climate and environmental conditions (Timmermann 
and Friedrich, 2016). We calculated time of movement out of Alaska 
(after 19 ka BP) and rate of expansion through North America (14.7 to 
11 ka BP) for each projection. Movement out of Alaska was calculated as 
the time when the population-weighted centroid of the leading edge of 
the human range (Watts et al., 2013) crossed 130◦W or 51◦N. Rate of 
expansion through North America was calculated as the rate of move
ment, in kilometres per year, of the population-weighted centroid of the 
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leading edge of the human range. See Supplementary Information for 
more details on how these variables were calculated. CISGeM pro
jections of time of movement out of Alaska were independently vali
dated using inferences of the timing of arrival of Clovis culture in North 
America (13,250 to 12,800 years BP; Waters and Stafford 2007). 

2.4. Sensitivity analysis 

To determine which parameters contribute most to model pro
jections of human expansion in North America, we did a global sensi
tivity analysis using our summary metrics of time of movement out of 
Alaska and rate of expansion through North America (Antoniadis et al., 

2021). Sensitivity analyses were done in two ways: (i) using only CIS
GeM models simulated using HadCM3 climate data (demographic-only 
sensitivity analysis); (ii) using models simulated with climate and pre
cipitation data from HadCM3 and CCSM3 TRaCE-21ka palaeoclimate 
models (demographic + climate sensitivity analysis). This two-step 
approach was done because CISGeM were originally optimised using 
HadCM3 climate data (Eriksson et al., 2012). The sensitivity analysis did 
not account for potentially important structural uncertainties in CIS
GeM, including human generation length and the simulated sequence of 
modelled demographic processes. 

We determined the sensitivity of timing of movement out of Alaska 
and expansion rate using random forest learning methods (Antoniadis 

Fig. 1. Human range expansion in North America. Range size for humans in North America from 19,000 years ago to present according to simulations with the 
HadCM3 (blue) and CCSM3 TraCE-21ka (yellow) AOGCMs (thick lines). Thin lines show mean annual temperature anomaly for the two AOGCMs. . 

Fig. 2. Sensitivity analysis of human migration model parameters. Sensitivity of simulations of timing of human migration out of Alaska (A, C) and rate of 
southward expansion through North America (B, D). A and B are only for simulations run on HadCM3 climate data (demographic-only sensitivity analysis), while C 
and D are for both HadCM3- and TraCE-21ka-based simulations (demographic + climate sensitivity analysis). Relative importance scores from random forest models 
in B and C are shown for demographic parameters: migration rate, colonisation rate, carrying capacity, population growth rate, upper and lower net primary 
productivity (NPP) thresholds for occupancy. For C and D, relative importance scores also have choice of climate model simulation (HadCM3 or TraCE-21ka). 
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et al., 2021) following techniques established for process-explicit mac
roecology models (Pearson et al., 2014). We tuned the hyperparameters 
using k-fold cross-validation, choosing number of variables sampled per 
split and minimum node size by minimizing RMSE (RMSE = 478 ± 13.6 
for exit from Alaska and RMSE = 479 ± 15.3 for expansion rate). We 
assessed variable importance using unscaled permutation importance 
(Strobl et al., 2007). See Supplementary Information for details. 

3. Results 

While range size of humans in North America varied according to 
AOGCM (Fig. 1), time of movement out of Alaska and rate of human 
migration were most sensitive to uncertainty in key demographic pa
rameters (Fig. 2). The demographic-only sensitivity analysis, done using 
HadCM3 model-based simulations only, revealed: i) time of movement 
out of Alaska was most sensitive to colonisation rate, upper net primary 
productivity threshold for carrying capacity and population growth rate; 
while ii) population-weighted rate of expansion was most sensitive to 
population growth rate and colonisation rate (Fig. 2). This order of 
relative importance remained unchanged when the sensitivity analysis 
was done on simulations with varying temperature and precipitation 
inputs from the two AOGCMs (demographic + climate sensitivity anal
ysis) (Fig. 2). This indicates a relatively low sensitivity of CISGeM pro
jections to pronounced differences in palaeoclimate conditions in North 
America according to AOGCM (Fig. 1) when compared to uncertainties 
in demographic model parameters. 

Independent tests of CISGeM projections of time of movement out 
from Alaska showed that simulations of land migration from CISGeM 
parametrised with TraCE21-ka climate data gave a median exit date 
from Alaska that was closer to the estimated Clovis arrival (median: 
14,375 years BP, MAD: 482) compared to simulations parametrised with 
HadCM3 data (median: 15,000 years BP, MAD: 111). The difference for 
TraCE-21ka and HadCM3 was 1144 years (95% confidence interval [CI] 
= 1138–1150 years) and 1682 years (CI = 1663–1700 years), respec
tively. Model projections of migration patterns into North America and 
relative Ne for both models can be accessed on Figshare (Pilowsky et al., 
2022). 

4. Conclusions 

While projections of the peopling of North America from process- 
explicit models vary in response to two choices of AOGCM, un
certainties in key demographic parameters have a disproportionately 
larger influence on simulations of time of movement out of Alaska and 
rate of expansion through North America. This shows the likely impor
tance of considering uncertainties in the demographic parameters of 
process-explicit model projections of timing, rate and mechanisms of 
initial human expansion across continents (Raghavan et al., 2015), and 
the broader ecological consequences of human colonisation on biodi
versity (Canteri et al., 2022; Fordham et al., 2022). 

While arrival times of humans in different regions have been estab
lished archaeologically with reasonable certainty (Goebel et al., 2008; 
Groucutt et al., 2015), and dispersal rates have been inferred from 
genomic analysis of aDNA (Rasmussen et al., 2011), the pattern of 
human growth and expansion has been more difficult to reconstruct at 
fine spatiotemporal scales. Consequently, projections of early human 
migration across continents are still uncertain (H. Liu et al., 2006). This 
is partly because of overly simplistic parametrisation of the relationship 
between net primary productivity and population growth (Zhu et al., 
2021) and large uncertainties in other demographic parameters, 
including dispersal (French et al., 2021) 

Resolving these issues should be a priority, given how sensitive the 
rate of human movement in North America is to rates of population 
growth and colonisation. Promising avenues of research that could 
reduce uncertainty in early human demography include Bayesian 
analysis of spatiotemporal distributions of radiocarbon dates (Price 

et al., 2020); phylogenetic analysis of the human palaeoproteome, 
which is more resistant to degradation over long timescales compared to 
the palaeogenome (Welker, 2018); and sampling of environmental DNA, 
which can detect arrival and movement of small populations better than 
the archaeological or fossil record (Wang et al., 2021). 

Our finding that uncertainty in projections of human migration from 
process-explicit models is only weakly sensitive to the choice of under
lying palaeoclimate model is in stark contrast to findings for correlative 
models of species distributions (Beaumont et al., 2007; Tuck et al., 
2006), which model demographic processes implicitly, not explicitly 
(Pilowsky et al., 2022). When interpreting the generality of this result, it 
is important to recognise that CISGeM simulates pathways for the global 
expansion of modern humans. Therefore, in other regions and time pe
riods, the parametrisation of palaeoclimate could have a larger effect on 
human migration, especially since migration occurred at different rates 
in different regions. While we tested the sensitivity of CISGeM to 
palaeoclimate uncertainty using two AOGCMs with very different 
climate sensitivities (Masson-Delmotte et al., 2013), spatiotemporal 
uncertainty could potentially be greater in North America if more 
models were considered. Nevertheless, our results highlight the impor
tance of realistically capturing demographic mechanisms in 
process-explicit human migration models. 
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Lima-Ribeiro, M.S., Varela, S., González-Hernández, J., de Oliveira, G., Diniz-Filho, J.A. 
F., Terribile, L.C., 2015. EcoClimate: a database of climate data from multiple 
models for past, present, and future for macroecologists and biogeographers. 
Biodiver. Inform. 10. 

Liu, H., Prugnolle, F., Manica, A., Balloux, F., 2006. A geographically explicit genetic 
model of worldwide human-settlement history. American J. Human Genet. 79 (2), 
230–237. https://doi.org/10.1086/505436. 

Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., 
Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., 
Cheng, J., 2009. Transient simulation of last deglaciation with a new mechanism for 

Bølling–Allerød warming. Science 325 (5938), 310–314. https://doi.org/10.1126/ 
science.1171041. 

Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González 
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Abstract
Aim: To determine the ecological processes and drivers of range collapse, population 
decline and eventual extinction of the steppe bison in Eurasia.
Location: Siberia.
Time period: Pleistocene and Holocene.
Major taxa studied: Steppe bison (Bison priscus).
Methods: We configured 110,000 spatially explicit population models (SEPMs) of 
climate–human–steppe bison interactions in Siberia, which we ran at generational 
time steps from 50,000 years before present. We used pattern-oriented modelling 
(POM) and fossil-based inferences of distribution and demographic change of steppe 
bison to identify which SEPMs adequately simulated important interactions between 
ecological processes and biological threats. These “best models” were then used to 
disentangle the mechanisms that were integral in the population decline and later 
extinction of the steppe bison in its last stronghold in Eurasia.
Results: Our continuous reconstructions of the range and extinction dynamics of 
steppe bison were able to reconcile inferences of spatio-temporal occurrence and the 
timing and location of extinction in Siberia based on hundreds of radiocarbon-dated 
steppe bison fossils. We showed that simulating the ecological pathway to extinction 
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1  |  INTRODUC TION

Several hypotheses have been proposed for how extinctions manifest 
in space and time (Davidson et al., 2009; Owens & Bennett, 2000), 
but generalities across landscapes and time periods have been diffi-
cult to formulate (Laliberte & Ripple, 2004). Theories of range shifts, 
population declines and extinctions are now being tested directly 
using historical and palaeo-reconstructions (Fordham et al.,  2021, 
2022), permitting inferences of how biodiversity is likely to respond 
to future environmental change (Fordham et al., 2020). However, re-
constructing past demographic changes at landscape scales poses 
unique modelling challenges, including the reliance on indirect prox-
ies to draw inferences about range collapses and the timing and loca-
tion of extinction (Dietl et al., 2015); uncertainty in reconstructions 
of past climates (Rutherford et al., 2005) and human-driven environ-
mental threats (Ellis et al., 2021; Pilowsky, Manica, et al., 2022); and 
a lack of information on the ecological lifestyles and traits of many 
species (Fordham et al., 2016).

Some of these issues can be addressed, at least in part, using 
process-explicit models, particularly if they are combined with 
pattern-oriented modelling (POM) techniques (Box  1). Process-
explicit models simulate ecological and evolutionary mechanisms 
responsible for spatio-temporal patterns of biodiversity (Pilowsky, 
Colwell, et al.,  2022). These mechanisms include extirpation, 
movement, ecological interactions, adaptation and speciation. 
Unlike correlative approaches, such as species distribution models, 
process-explicit models establish causal links between process and 
pattern (Urban et al., 2016). However, high data demand and model 
complexity have meant that, to date, they have been used less fre-
quently in studies of the structure and dynamics of patterns of biodi-
versity. This is steadily changing, owing to increased data availability, 
computational power (Pilowsky, Colwell, et al.,  2022) and a grow-
ing need for stronger inferences about the causes of contemporary 
and ancient changes in biodiversity (Fordham et al., 2020; Pontarp 
et al., 2019; Rangel et al., 2018).

POM methods (Grimm & Railsback, 2012) can directly address 
some of the problems of data availability and subsequent param-
eter uncertainty in process-explicit models of species distributions 

and community dynamics (Canteri et al., 2022; Fordham et al., 2022; 
Rangel et al., 2018). Although POM was first used in ecology and 
evolution to optimize uncertain parameters in individual- and agent-
based models (Thulke et al., 1999), it has since been used to simu-
late demographic change using spatially explicit population models 
(Canteri et al., 2022; Fordham et al., 2022), genetic diversification 
in lineages of species (Knowles & Alvarado-Serrano, 2010), changes 
in community structure (Colwell & Rangel, 2010) and evolutionary 
shifts in populations (Barnes & Clark, 2017). It uses optimization rou-
tines to determine model parameter values based on observed (or 
inferred, if operating across palaeo time frames) empirical patterns 
(Grimm & Railsback,  2012), increasing the likelihood of capturing 

for steppe bison in Siberia in the early Holocene required very specific ecological 
niche constraints, demographic processes and a constrained synergy of climate and 
human hunting dynamics during the Pleistocene–Holocene transition.
Main conclusions: Ecological processes and drivers that caused ancient population 
declines of species can be reconstructed at high spatio-temporal resolutions using 
SEPMs and POM. Using this approach, we found that climatic change and hunting 
by humans are likely to have interacted with key ecological processes to cause the 
extinction of the steppe bison in its last refuge in Eurasia.

K E Y W O R D S
climate change, distribution, extinction dynamics, mechanistic model, metapopulation, 
palaeoclimate, range shift, spatially explicit population model, steppe bison, synergistic threats

BOX 1 Biodiversity modelling terms

Approximate Bayesian computation (ABC): A statisti-
cal technique that uses Bayesian statistics to estimate the 
distributions of model parameters by comparing simulated 
probability distributions of summary statistics against their 
observed distributions (Beaumont et al., 2002).

Correlative models: Models that statistically relate en-
vironmental variables to observation data in order to infer 
biological patterns (Pilowsky, Colwell, et al., 2022).

Pattern-oriented modelling (POM): An approach for 
optimizing model parameters using independent validation 
targets (Grimm et al., 2005).

Process-explicit models: Models that represent the 
dynamics of an ecological system as explicit functions 
of the processes that drive change in that system. Also 
known as process-based and mechanistic models (Connolly 
et al., 2017).

Spatially explicit population models (SEPMs): Process-
explicit models that simulate mortality, reproduction and 
movement in a network of populations on a landscape map 
(Dunning Jr et al., 1995).
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key biological processes in model simulations. This strategy assumes 
that observed patterns are fingerprints of underlying ecological and 
evolutionary processes, enabling models to be parameterized ini-
tially using uncertain but plausible information on these processes 
(Gallagher et al., 2021).

Despite offering new opportunities to gain a better understand-
ing of the mechanisms that regulate biodiversity under past climate 
and environmental change, POM methods are only now being used 
in conjunction with spatially explicit population models (SEPMs) 
to reconstruct species' range and extinction dynamics over palaeo 
time-scales (but see Canteri et al.,  2022; Fordham et al.,  2022). 
SEPMs simulate movement, mortality and reproduction in networks 
of populations over time (Anderson et al., 2009; Hanski, 1998), al-
lowing the identification of ecological mechanisms and threats that 
caused ancient extinctions and range collapses (Canteri et al., 2022). 
POM optimization is done using patterns inferred from the fos-
sil record and ancient DNA (Fordham et al., 2022). Here, we show 
the utility of combining POM methods with SEPMs to reconstruct 
and disentangle the extinction dynamics of the steppe bison (Bison 
priscus) in Eurasia. The approach uses multiple rounds of SEPM op-
timization to reconstruct continuously the interactions between the 
ecological lifestyle and demography of steppe bison and drivers of 
global change (climatic change and human activities) over a period 
going back 50,000 years. We do this using the R package paleopop 
v2.1.0 (Haythorne et al., 2021) that we developed as an extension to 
poems (Fordham et al., 2021), adding important new functionality for 
modelling species range dynamics over multi-millennial time-scales.

The steppe bison was one of the many large herbivores that dom-
inated the “mammoth steppe” biome of the Ice Age (Guthrie, 1989), 
all of which declined in range size as the mammoth steppe was re-
placed by a taiga–tundra ecotone during the Pleistocene–Holocene 
transition (Lorenzen et al., 2011; Markova et al., 2015). The relative 
abundance of steppe bison (based on reconstructions of effec-
tive population size) peaked during the late Pleistocene (Shapiro 
et al., 2004), when the mammoth steppe was maximally distributed 
(Anderson & Lozhkin,  2001), with regional extinction in Eurasia 
at c. 8.7 kilo-years before present  (kyr bp) (Boeskorov et al., 2016) 
and global extinction in North America some 6–8 kyr later (Shapiro 
et al.,  2004). In Eurasia, isotopic analysis of late Pleistocene fos-
sils shows that the steppe bison was a strict grazer that did not 
migrate seasonally (Julien et al.,  2012). Here, they competed with 
the European bison (Bison bonasus) for ecological dominance until 
climate-induced vegetation change following the Last Glacial 
Maximum [LGM; a period from 26.5 to 19 kyr bp (Clark et al., 2009)] 
restricted the less ecologically flexible steppe bison to Siberia 
(Soubrier et al., 2016).

The processes leading to the megafaunal extinctions of the 
mammoth steppe during the late Pleistocene and early Holocene 
are uncertain, with intense debate regarding the timing, location and 
the roles of human hunting and climatic change (Mann et al., 2019; 
Stuart, 2015; Wang et al., 2021). Here, we configure 110,000 SEPMs 
of climate–human–steppe bison interactions in Siberia, which we 
test against inferences of demographic change and range collapse 

inferred from fossils using POM methods. Our continuous recon-
structions of the range and extinction dynamics of steppe bison 
from 50 kyr bp reveal the ecological processes and threats that led 
to the demise of the steppe bison in its last stronghold in Eurasia at 
c. 9 kyr bp.

2  |  MATERIAL S AND METHODS

The steppe bison is an extinct species of bison that was once 
widespread in the steppe of the Northern Hemisphere (Markova 
et al.,  2015). Its relative abundance (based on reconstructions 
of effective population size) peaked during the late Pleistocene 
(Shapiro et al., 2004), when the mammoth steppe biome was maxi-
mally distributed (Anderson & Lozhkin, 2001), and it became re-
gionally extinct in Eurasia c.  8.7 kyr bp (Boeskorov et al.,  2016). 
We simulated the ecological pathway to extinction for the steppe 
bison in Siberia.

2.1  |  paleopop

paleopop is an object-oriented R package (Haythorne et al.,  2021) 
that we developed to simulate range and extinction dynamics of 
species over multiple millennia, enabling causal insights into likely 
past driver–state relationships. paleopop uses a lattice-grid popu-
lation model to simulate ecological processes (demography and 
ecological requirements) and their interactions over long tempo-
ral scales. paleopop is an extension to the R package poems v.1.0.1 
(Fordham et al., 2021), which implements SEPMs and POM meth-
ods to identify ecological processes of range shifts and extinctions 
(Figure 1). paleopop adds three major features to poems: (1) the ca-
pacity to simulate long-term processes of landscape change (sea 
level rise; movement of glacial ice sheets) occurring over glacial–
interglacial cycles; (2) a palaeo-population simulator optimized for 
simulating demographic change resulting from metapopulation and 
dispersal dynamics over multiple millennia; and (3) a palaeo-results 
object suitable for storing the data-heavy output from the palaeo-
population simulator.

2.2  |  Steppe bison niche

2.2.1  |  Fossil data

We gathered radiocarbon-dated data on steppe bison fossils from the 
palaeontological literature (for details, see Supporting Information 
Appendix  S1). We regularized inconsistent and outdated species  
names, discarding any records where the species was ambiguous (e.g., 
“bison” without clear indicators of whether it was the steppe bison or 
another bison species). In cases where a site name was available but lati-
tude and longitude were not, we compared maps from the source liter-
ature against OpenStreetMap and Google Earth to geocode locations 
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2486  |    PILOWSKY et al.

manually. The quality of all radiocarbon dates was assessed based 
on stratigraphy, association and the material dated. We retained 378 
records rated as “reliable” (Barnosky & Lindsey, 2010). We calibrated 
these radiocarbon dates using the OxCal v.4.4 tool (Ramsey, 2017) and 
the IntCal13 curve (Reimer et al., 2013), which returned calibrated age 
and standard deviation estimates. The fossil record can be accessed 
from Figshare (Pilowsky et al., 2021).

2.2.2  |  Climate data

Palaeoclimate simulations of precipitation, temperature and latent 
heat flux used to model the ecological niche of the steppe bison 

(see below) are from the HadCM3B coupled ocean–ice–atmosphere 
model (Valdes et al.,  2017). These palaeoclimate simulations in-
corporate monthly and interannual climate variability (directly 
from model output) and millennial-scale variability (by assimilating 
model and Greenland ice core data) and have been downscaled to 
0.5° × 0.5° spatial resolution (Armstrong et al., 2019). We extracted 
monthly data for the study region of Siberia (Supporting Information 
Appendix S1, Figure S1.1) from 50 to 5 kyr bp and generated 30-year 
averages at a 12-year (generational; see description of the process-
explicit model below) time step for: (1) total annual precipitation; (2) 
mean boreal winter (DJF) temperature; and (3) total evapotranspira-
tion during boreal spring and summer (MAMJJA). Evapotranspiration 
(ET) was calculated by dividing the average monthly latent heat 

F I G U R E  1  Modelling species range dynamics over palaeo time-scales. The modelled dynamic palaeo-region changes temporally owing 
to climatic change and associated rising sea levels and melting ice sheets. Spatially explicit population models (SEPMs) are built by coupling 
a demographic model with a grid-lattice-type spatial structure of habitat suitability. Latin hypercube sampling is used to sample SEPM 
parameter space exhaustively, resulting in tens of thousands of parameter combinations, each of which is used to parameterize an SEPM. 
The palaeo-population simulations include ecological processes (including dispersal and extinction) responding to key threats of human 
hunting and climatic change. These simulations reconstruct outputs of past population size and abundance maps. Pattern-oriented modelling 
(POM) is used to identify models that reconcile patterns of demographic change inferred from palaeo-archives. This involves optimizing 
values of SEPM parameters by comparing the distributions of posterior and prior parameter ranges (posterior distributions) for successive 
iterations of model building and testing. Models that do best at simulating inferred patterns of range and extinction dynamics are used to 
generate validated projections.
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flux by the latent heat of vaporization based on average monthly 
temperatures:

where heat flux and temperature are the modelled monthly heat flux 
(in watts per square metre) and temperature (in degrees Celsius) for 
each month.

The mean temperature of the coldest month, mean temperature 
of the warmest month and annual precipitation have been used pre-
viously to model the ecological niche and distribution of high-latitude 
herbivores, including the steppe bison (Lorenzen et al., 2011) and the 
American bison (Bison bison) (Metcalf et al., 2014). This is because 
the temperature variables are likely to capture the upper and lower 
thermal limits of the species, and precipitation drives demographic 
rates in extant bison species (Koons et al., 2012). Given that spring 
and summer evapotranspiration was moderately correlated with the 
temperature of the warmest month (Kendall's τ  = .548), we chose 
to model only spring and summer evapotranspiration because it 
captures better the structure of vegetation available as forage in 
the warmer months (Guthrie, 2006). We used average temperature 
across all boreal winter months (DJF) instead of only the coldest 
month, because it captures better the stressors and limitations cre-
ated by winter conditions (DelGiudice et al., 1994, 2001). None of 
the three variables were correlated with each other by more than 
Kendall's τ = .5.

2.2.3  |  Niche model

We generated continuous habitat suitability maps (based on prob-
ability of occurrence) for the steppe bison in Siberia from 50 to 5 
kyr bp using ecological niche models (Nogués-Bravo, 2009). To do 
this, we paired fossil occurrences with our three selected climate 
variables, accounting for dating uncertainty (Fordham et al., 2022). 
Climate data were paired spatially, as determined by the grid cell 
where the fossil occurred, and temporally, as determined by the 
band of uncertainty [±2SD, which is commonly used for calibrated 
radiocarbon date distributions (Blaauw,  2010)] around the cali-
brated radiocarbon date. We removed any duplicate climate data 
created by two fossil occurrences falling within identical or over-
lapping spatio-temporal bins (Canteri et al.,  2022). We used this 
climate dataset to create a full (multi-temporal) Gaussian hypervol-
ume, optimized for appropriate bandwidth (Blonder et al.,  2018), 
which provided an estimate of the fundamental niche of steppe 
bison (Nogués-Bravo, 2009).

Given that the realized climatic niche of steppe bison is likely to 
be a subset of its fundamental niche (Soberón & Nakamura, 2009), 
we thoroughly subsampled the full hypervolume of potentially liv-
able climatic conditions (Supporting Information Appendix S1, Figure 
S1.2) and determined the realized niche using SEPMs and POM (see 
section 2.4 below). We did this by cutting the full hypervolume into 

smaller hypervolumes (n = 1000) of different volumes and margin-
alities (climatic specialization) using outlying mean index analysis 
(Dolédec et al.,  2000). We projected the hypervolumes back into 
geographical space, creating time series of maps of habitat suitabil-
ity based on the probability density of the climate hypervolume at 
the set of environmental conditions in each grid cell (77.8 km × 71.0 
km grid cell resolution) from 50 to 5 kyr bp. We scaled the suitability 
scores of each projection to a zero to one interval, based on the 95th 
percentile of maximum habitat suitability values in grid cells across 
time and space.

2.3  |  Palaeolithic humans

The expansion of Palaeolithic humans into northern Eurasia was 
modelled using a process-explicit climate-informed spatial genetic 
model (CISGeM) that has been shown accurately to reconstruct 
the dispersal of Homo sapiens out of Africa (Eriksson et al., 2012). 
CISGeM simulates local effective population size (Ne) based on a 
cellular demographic model, with carrying capacity modulated by 
net primary productivity. We ran CISGeM from 120 kyr bp to the 
present using the HadCM3B ocean–ice–atmosphere model (Valdes 
et al., 2017) and 4950 parameter combinations that had previously 
been shown to reconstruct patterns of human migration and growth 
robustly (Eriksson et al., 2012). We calculated the mean and variance 
of the 4950 simulation results (Supporting Information Appendix S1, 
Figure S1.3) and scaled the projections of Ne between zero and one 
(taking an approach identical to the scaling of steppe bison habitat 
suitability projections). We then resampled the outputs from the 
time step of CISGeM (25 years) to the time step of the bison simula-
tions (12 years). To parameterize human hunting in our demographic 
models, we generated 50,000 potential trajectories of relative 
human density (using relative Ne as a proxy) in Siberia by sampling 
a lognormal distribution of relative effective population size (based 
on the mean and variance of the 4950 simulations), accounting for 
spatially autocorrelated stochasticity (see Supporting Information 
Appendix  S1 for an extended description of the methods used to 
reconstruct human densities in Siberia).

2.4  |  Process-explicit model

We generated an SEPM in paleopop that simulated the ecological pro-
cesses of movement and demographic change (extinction), respond-
ing to shifting climates, sea levels, ice sheets and human hunting. 
Key ecological processes we modelled for the steppe bison included 
density-dependent population growth, dispersal and source–sink 
dynamics. These processes were simulated at generational time 
steps (12 years) using scalar-type SEPMs (Fordham et al. 2018). 
Habitat suitabilities from the potential realized niche models were 
used to structure the metapopulation by providing estimates of rela-
tive upper abundance in space and time (Fordham et al., 2022), as-
suming no adaptation to climatic or environmental change over the 

(1)

ET (mm∕month) =

(

heat flux

(2.501 − 0.00237 × temperature) × 1 × 106

)

× 86,400 × 30
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course of the simulation. Simulations were run at 12-year time steps 
from 50 to 5 kyr bp. To ensure stable metapopulation dynamics at 
the beginning of the simulation (Fordham et al., 2018), all simulations 
were preceded by a burn-in period of 100 generations, whereby grid 
cell upper abundance values were held at 50 kyr bp values for the 
burn-in period.

2.4.1  |  Demography

Demographic rates for congeneric species (B. bison and B. bonasus) 
were used as surrogates for the steppe bison (Fordham et al., 2016). 
We estimated the maximum annual growth rate and its variance 
using time series data for B.  bison and B.  bonasus (for details, see 
Supporting Information Appendix S1). We scaled these growth rates 
to a generational time step based on the 12-year generation length 
of B. bison (Pacifici et al., 2013). After testing the stability of popu-
lation dynamics with different density dependence functions, we 
modelled population growth with Ricker logistic density depend-
ence (Ricker,  1954), with the carrying capacity dependent on the 
habitat suitability in a given grid cell. At a habitat suitability of one, 
the carrying capacity was equal to the maximum density (Table 1), 
reducing with lower suitability scores. We modelled a negative Allee 
effect, using a quasi-extinction threshold below which populations 
immediately dropped to zero (Fordham et al., 2018).

We simulated natal dispersal based on empirical estimates 
for B.  bison (Jung,  2017). Between 5 and 25% of the population 
dispersed per generation, with a maximum dispersal distance of 
100–500 km (Table  1). A dispersal friction landscape (Adriaensen 
et al., 2003) based on ice sheet reconstructions was used to ensure 
that bison dispersed only through ice-free grid cells. Human hunting 
was simulated based on relative abundance (see above). The harvest 

z parameter shaped the hunting function from a type II (z  =  1) to 
type III (z = 2) functional response (Brook & Bowman, 2002), with 
the maximum harvest set from 0 to 35% (Fordham et al.,  2022). 
All demographic parameters are described in more detail in the 
Supporting Information (Appendix S1).

2.4.2  |  Model simulations

To address parameter uncertainty, which is inevitably high for extinct 
species (Brook & Bowman, 2004), we created 50,000 unique SEPM 
parameterizations using Latin hypercube sampling (Stein, 1987), draw-
ing samples from uniform prior distributions for 11 model parameters 
(Table 1). This stratified sampling of the priors allowed us to generate 
a large suite of SEPMs, covering the parameter space of demographic 
processes, ecological requirements (based on realized niche breadth 
and specialty) and hunting pressure. We selected realized niches to 
generate the carrying capacity landscapes in each simulation. Each 
sampled combination of parameters, including niche estimates, was 
integrated into an SEPM and simulated for a single replicate (Fordham 
et al., 2022). Fifty thousand simulations took 214 h in parallel on an 
eight-core Windows machine with a 3.6 GHz processor.

2.5  |  Pattern-oriented modelling

2.5.1  |  Validation targets

POM (Grimm et al.,  2005) was used to evaluate different SEPM 
parameterizations. Simulations were validated using POM meth-
ods by comparing simulated estimates of spatio-temporal occur-
rences in Siberia, and the timing and location of extinction, with 

Parameter Mean prior Mean posterior

Ecological niche

Niche volume 0.5 (0–1) 0.438 (0.332–0.775)

Niche outlier marginality index (OMI) 0.5 (0–1) 0.197 (0.166–0.237)

Human harvesting

Maximum harvest (%) 17.5 (0–35) 25.3 (9.5–34.1)

Harvest function (z) 1.5 (1–2) 1.46 (1.04–1.89)

Human density (p) 0.5 (0–1) 0.782 (0.585–0.984)

Movement

Dispersing fraction 0.15 (0.05–0.25) 0.212 (0.121–0.249)

Maximum dispersal distance (km) 300 (100–500) 419 (285–495)

Population model

Maximum growth rate (r) 2.07 (1.31–2.84) 2.066 (1.566–2.816)

Variance of growth rate 0.123 (0–0.245) 0.172 (0.095–0.228)

Allee effect (abundance threshold) 250 (0–500) 212 (126–298)

Maximum density (bison per grid cell) 1875 (500–3250) 2542 (1840–3203)

Note: All priors are uniformly distributed. For details, see Materials and Methods.

TA B L E  1  Parameter distributions: The 
prior and posterior means, minima and 
maxima are shown for parameters in the 
process-explicit model of steppe bison 
range and extinction dynamics
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fossil-based inferences (Supporting Information Appendix  S1). We 
estimated the timing of extinction in Siberia from the fossil re-
cord to be 8734 yr bp (95% confidence interval: 8810–8657 yr bp)  
using a Gaussian-resampled, inverse-weighted method (Bradshaw 
et al.,  2012) that accounts for the Signor–Lipps effect (Signor 
et al., 1982). We estimated the extinction location to be in the Lena 
River basin, based on the youngest fossil (Pilowsky et al.,  2021). To 
calculate spatio-temporal occurrence, we set a spatio-temporal win-
dow of uncertainty around each steppe bison fossil in our study re-
gion (n = 31), then quantified the agreement between simulated and 
inferred occurrence. The spatial window was based on the grid cell 
and its eight nearest neighbours, and the temporal band of uncertainty 
was based on ±2SD of the calibrated date. The same temporal band 
of uncertainty was used to quantify climatic conditions for the multi-
temporal niche. A simulated presence of bison within the inferred win-
dow of occurrence was treated as a correctly simulated occurrence.

2.5.2  |  Statistical procedure

POM was done in the R package abc v.2.1 (Csilléry et al., 2012) using 
approximate Bayesian computation with the rejection algorithm to 
select the 100 best models. All summary metrics for analysis were 
scaled based on their standard deviations (van der Vaart et al., 2015). 
The POM procedure was repeated using informed priors from pre-
vious model runs. This was done until Bayes factors indicated that 
the posteriors had converged (Supporting Information Appendix S2, 
S2.1). The procedure involved running four additional rounds of 
10,000 simulations each, selecting the best 100 models each time 
and using the posterior distributions as the priors for the subsequent 
round. Posterior predictive checks were done to determine whether 
the posterior distributions resulted in a good resemblance between 
simulated and observed data (Gelman et al., 2014).

2.6  |  Counterfactual scenarios

Counterfactual scenarios create possible alternatives to what oc-
curred historically (Mondal & Southworth,  2010). We used coun-
terfactual analysis to determine the consequences of rates of past 
climatic change and hunting by humans on the decline and extinc-
tion of steppe bison in Siberia (Fordham et al., 2022). We created an 
optimized ensemble based on the 100 best models selected from 
the final round of simulations, which served as a “baseline scenario” 
(non-counterfactual) of what is historically likely to have occurred in 
Siberia based on our POM approach. We used this optimized ensem-
ble of models to simulate two counterfactual scenarios: no harvest, 
which modelled no hunting of steppe bison by humans from 50 kyr 
bp (i.e., steppe bison responding only to climate change); and constant 
climate, which held climatic suitability for steppe bison in Siberia 
at LGM values from 21 kyr bp to the end of the simulation. For the 
constant climate scenario, the density of humans remained dynamic. 
Demographic and ecological parameters for the counterfactual 

scenarios were generated using random draws from the posterior 
distributions of the optimized ensemble model, using the Latin hy-
percube sampling approach described above. The counterfactual 
and baseline scenarios were compared using 10,000 simulations per 
scenario.

3  |  RESULTS

Our validated simulations showed that the range of the steppe bison 
in Siberia contracted in a north-easterly direction until 33 kyr bp, 
when the range fragmented into smaller populations (Figure 2). This 
fragmentation continued through the Pleistocene–Holocene transi-
tion, resulting in only refugial populations in north-eastern Siberia 
from 11 kyr bp (Supporting Information Movie S1). The time of ex-
tinction in Siberia was simulated to occur at 7.4 kyr bp (±1.5 kyr bp), 
based on the ABC-weighted average of the best 100 process-explicit 
models. The oldest end of the window of uncertainty in our simu-
lated estimate of time of extinction overlapped with the time of ex-
tinction based on the fossil record (8.81–8.66 kyr bp; see Materials 
and Methods). The youngest end overlapped with independent en-
vironmental DNA evidence of prolonged persistence of steppe bison 
in north-eastern Siberia, with the youngest inference of occurrence 
being at 6.4 ± 0.6 kyr bp (Wang et al., 2021). This ensemble of “best 
models” projected the last surviving population to be in the east 
Siberian highlands, occurring c. 500 km from the last known fossil, 
located at Batagaika in the Lena River valley (Murton et al., 2017).

The capacity of SEPMs to simulate fossil-based inferences of tim-
ing and location of extinction was high after five iterations of POM 
(Figure 3). Bayes factors showed convergence in prior and posterior 
distributions after these five iterations of POM (all Bayes factors were 
less than one; Supporting Information Appendix  S2, Figure S2.1). 
Posterior predictive checks showed that these posterior parameter 
distributions resulted in reasonable resemblance between simu-
lated and observed data for extinction location and extinction time 
(p > .01; Supporting Information Appendix S2, Table S2.1). However, 
there was a poorer fit between the simulated spatio-temporal occur-
rence of bison at fossil sites and the observed fossil-based inference 
of spatio-temporal occurrence (p < .01).

3.1  |  Posterior distributions of model parameters

Comparison of posterior and prior parameters showed that accu-
rately reconstructing inferences of range contraction and the timing 
and location of extinction from the fossil record required specific 
demographic and niche constraints and hunting pressure (Figure 4). 
Posterior distributions showed that specific niche requirements were 
needed to reconstruct the range and extinction dynamics of steppe 
bison. The posterior distributions for niche volume and outlying 
mean index (Table 1) indicated that steppe bison in Siberia fulfilled a 
subset of core climatic conditions available to the species across its 
entire multi-temporal range. This was shown by a small-to-medium 
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niche volume (60% of the full multi-temporal niche volume) and small 
outlying mean index. Among demographic processes, the posterior 
distributions showed that a high variance in growth rate, a medium-
sized Allee effect, high maximum density and high dispersal (in terms 
of both maximum dispersal distance and dispersing fraction) were 
important for reconstructing range and extinction dynamics of the 
steppe bison in Siberia (Table 1). Furthermore, hitting validation tar-
gets required high human densities and high rates of harvest (Table 1).

3.2  |  Counterfactual scenarios

In a no hunting scenario, the total population size of steppe bison in 
Siberia was higher throughout the simulation compared with the base-
line (with hunting), and they did not go extinct before the end of the 

simulation at 5 kyr bp (Figure 5). Before 30 kyr bp in the no hunting sce-
nario, the range of the steppe bison extended further south and west, 
fragmenting into smaller subpopulations only in the final 5000 years of 
the simulation (Supporting Information Movie S1). In a constant climate 
scenario, in which the climate was unvarying from 21 kyr bp, total popula-
tion size stabilized at 19 kyr bp (Figure 5), while the range contracted to 
two large subpopulations that were linked by dispersal, both of which 
persisted to the end of the simulation (Supporting Information Movie S1).

Neither of the counterfactual scenarios did as well as the 
baseline model at predicting the timing and location of extinction 
(Supporting Information Appendix  S2, Figure S2.2). Models with-
out human hunting (no hunting scenario) were generally better able 
to simulate spatio-temporal occurrence than the constant climate 
and baseline scenarios. This was because the absence of hunting 

F I G U R E  2  Validated reconstruction of the extinction of the steppe bison in Siberia. (a) The map shows the multi-model average estimate of 
the time of extirpation for the best models according to pattern-oriented modelling. The location of the site of extinction based on fossil data is 
marked with a cross. (b) The time series shows simulated total population size for steppe bison in Siberia. Vertical lines show extinction time as 
estimated from the fossil record and Greenland interstadial 12. The latter is a period of climatic warming between 47.9 and 46.0 kyr bp.
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    |  2491PILOWSKY et al.

F I G U R E  3  Reconstructions of validation targets using pattern-oriented modelling (POM). Validation targets for POM are: (a) extinction 
location, evaluated by difference (in kilometres) between simulated extinction location and the location based on the youngest fossil; (b) 
extinction time, evaluated by difference (in years) between simulated and inferred time of extinction based on the fossil record; and (c) 
fossil-based occurrence, evaluated by the number of sites where spatio-temporal occurrence is simulated correctly. For (a) and (b), the target 
for POM was zero (no difference between simulated and target value). For (c), the target was 31, which is equal to the total number of fossil 
occurrence sites. Different colours show five successive iterations of POM. For further details, see the Materials and Methods.

F I G U R E  4 Regression-adjusted posterior distributions for parameters. Maximum (max) dispersal distance and the fraction of bison that 
dispersed in each generation (dispersing fraction) combine to simulate dispersal. Maximum density of bison in each grid cell, Allee effect, variance 
(var.) and maximum growth rate all interact to simulate population growth. Human density (relative human density), harvest z (shape of the harvest 
function) and maximum harvest (maximum proportion of bison hunted) determine the hunting rate. Volume and outlying mean index (OMI) are 
measures of climatic niche space (the size of the climatic niche and the marginality of climatic preferences, respectively). All prior distributions 
were uniform. Parameters are described in more detail in the Materials and Methods. Unscaled parameter ranges are provided in Table 1.
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by humans resulted in larger areas of occupied habitat in Siberia 
through time (Supporting Information Movie S1).

4  |  DISCUSSION

We were able to reconcile inferences of spatio-temporal occur-
rence and the timing and location of extinction for steppe bison 
in Siberia based on hundreds of radiocarbon-dated fossils. Our 
ensemble of “best models” projected extinction to have occurred 
in the east Siberian highlands at 7.4 kyr bp, occurring on average 
1300 years after the fossil estimate. This is consistent with fossil-
based estimates of extinction often being hundreds to thousands 
of years earlier than the likely timing of the extinction event (Haile 
et al.,  2009; Wang et al.,  2021), because they represent the last 
time that a species was abundant (Mann et al., 2019). We show that 
simulating the ecological pathway to extinction for steppe bison 
in its last refuge in Eurasia required very specific ecological niche 
constraints, demographic processes and hunting dynamics. It also 
required these processes to respond to climatic change, human 
abundance and their interaction during the Pleistocene–Holocene 
transition. Counterfactual scenarios confirmed that human hunt-
ing and climatic change were both pivotal long-term drivers of re-
gional extinction for the steppe bison in Siberia and, most probably, 

Eurasia more generally. These results demonstrate how SEPMs and 
POM methods can be used in macroecology and palaeoecology to 
disentangle the mechanisms that were integral in the decline and 
later extinction of species.

The processes leading to the megafauna extinctions of the late 
Pleistocene and early Holocene are uncertain, with intense debate on 
the roles of human hunting and climatic change (Mann et al., 2019; 
Stuart, 2015). The steppe bison was an iconic herbivore that domi-
nated the “mammoth steppe” of the Ice Age Arctic (Guthrie, 1989). 
Although the timing, location and causes of megafaunal extinctions in 
this biome are contested (Cooper et al., 2015; Koch & Barnosky, 2006; 
Stuart, 2015), our process-explicit models show that a synergy of cli-
matic change and exploitation by humans most probably drove the 
steppe bison, and perhaps other herbivores of the mammoth steppe, 
to extinction during the late Pleistocene and early Holocene.

POM revealed the ecological processes that regulated the ex-
tinction dynamics of steppe bison. Reconstructing fossil-based evi-
dence of spatio-temporal occurrence and extinction in the northern 
Lena River valley requires steppe bison to have an ecological niche 
volume of 59–74% of the size of the full multi-temporal niche 
(Nogués-Bravo, 2009). This reduced niche volume has low margin-
ality (Dolédec et al., 2000), meaning that the ecological niche for 
steppe bison in Siberia represented the core climatic preferences 
of steppe bison more generally. Among demographic processes, 

F I G U R E  5  Alternative scenarios of extirpation and population decline. Counterfactual scenarios simulate: (a) climate change but no human 
harvesting of bison (no hunting); and (b) no climate change from 21 kyr bp, but harvesting of bison before and after that time [constant climate 
since Last Glacial Maximum (LGM)]. Maps show when populations in each grid cell went extinct locally. Populations that survived to the end of 
the simulation are shown in bright blue (extant). Line graphs show the simulated trajectories of total abundance in Siberia (±1SD). They include 
timing of Greenland interstadial 12 and timing of extinction in Siberia inferred from fossils. For details, see Figure 2.
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dispersal and the effect of small population size on extirpation 
are likely to have influenced the range and extinction dynamics of 
steppe bison. Hitting our multivariate validation target required a 
pronounced Allee effect and the capacity for high dispersal, among 
other demographic constraints. Evidence for an Allee effect at 
low population densities has been found in natural populations of 
other temperate and polar ungulates: bighorn sheep (Ovis canaden-
sis), chamois (Rupicapra rupicapra), elk (Cervus elaphus), pronghorn 
(Antilocapra americana) and woodland caribou (Rangifer tarandus) 
(Kramer et al., 2009). This has been attributed largely to coopera-
tive defence and predator satiation reducing mortality at high den-
sities, although mate selection at low density could also be a factor 
(Kramer et al., 2009). A high capacity for movement, including long-
distance dispersal, was also needed to reconstruct inferences of 
demographic change from the fossil record. Research on American 
bison has shown that they migrate seasonally in response to forage 
availability in winter (Gates & Larter, 1990). They will also disperse 
towards unoccupied habitat when population densities become 
high (Plumb et al., 2009).

Reconciling inferences of range collapse and extinction from 
the palaeo-record required hunting by humans. More specifically, 
humans needed to be found in medium to high regional densities 
(based on projections for Siberia), with high harvest offtake. Holding 
the hunting of bison constant to zero exploitation and analysing the 
effect of this constraint on dynamic processes and emergent pat-
terns revealed that human hunting was a crucial and chronic driver 
of extinction of steppe bison in Siberia. Without hunting by humans, 
steppe bison maintained a wider distribution and larger population 
size and did not go extinct by 5 kyr bp (the end of the simulation). 
Instead, bison persisted in two small subpopulations in the far north 
of Siberia with suitable climatic conditions. This finding aligns with 
archaeological evidence showing that human hunters in Siberia re-
lied heavily on bison prey during the Pleistocene–Holocene transi-
tion (Vasil'ev, 2003) and that bison were disproportionately selected 
by hunters (Pushkina & Raia, 2008).

Keeping climatic conditions constant for steppe bison (but not 
humans) since the LGM in the constant climate counterfactual sce-
nario showed that hunting alone could not have driven the steppe 
bison to extinction. Without deglacial warming negatively affecting 
range and abundance, steppe bison were projected to be at large 
abundances at 5 kyr bp despite hunting by humans. Taken together, 
our counterfactual hypotheses of the drivers of range collapse and 
extinction of steppe bison show that human hunting and climatic 
change were important determinants of the ecological pathway to 
extinction for steppe bison in Siberia. This association is likely to 
have been synergistic, with humans accelerating the range collapse 
of steppe bison during the Pleistocene–Holocene transition, has-
tening the extirpation of populations that had become fragmented 
owing to deglacial warming and associated shifts in vegetation. A 
similar mechanistic explanation has been proposed for the extinc-
tion of the woolly mammoth (Fordham et al., 2022).

Although we have shown that the application of POM meth-
ods to process-explicit modelling provides a powerful approach 

for continuously reconstructing range dynamics over thousands 
of years, the approach is only as accurate as the validation targets 
being used. Our validation targets were independent from the data 
used to parameterize the model. They captured a hierarchy of demo-
graphic responses (Gallagher et al., 2021), and they were estimated 
robustly using statistical techniques applied to fossil data (Bradshaw 
et al., 2012). Therefore, we have confidence in our POM and results, 
including the posterior distributions for model parameters and their 
multi-model averaged projections of range and extinction dynam-
ics (Grimm & Railsback,  2012). However, for many other species, 
an abundant and spatially representative fossil record will not be 
available to optimize SEPMs of species range dynamics using POM. 
Here, other types of palaeo-validation data could be considered, in-
cluding ancient DNA estimates of past population change (Fordham 
et al., 2014) and inferences of spatio-temporal occurrence from en-
vironmental DNA in sediments and ice cores (Wang et al., 2021). For 
threatened species or for species that went extinct recently (such as 
the thylacine in Australia), historical sightings can provide important 
sources of validation data (Fordham et al., 2021).

Posterior predictive checks of our process-explicit model 
showed that the posterior ranges of model parameters reconstruct 
extinction time and location reasonably well (Gelman et al., 2014). 
However, it was more difficult to reconcile fossil evidence of spatio-
temporal occurrence. Indeed, this target was easier to reconstruct 
in simulations without human hunting, because in the no hunting 
scenario, steppe bison maintained larger ranges through time. 
Larger ranges resulted in occurrence being higher not only at fossil 
sites, but also in areas that were unlikely to have been habitable by 
steppe bison during periods in the past. It is possible that the diffi-
culty with correctly simulating spatio-temporal occurrence at fossil 
sites could stem from the hunting dynamics in our process-explicit 
model. These dynamics were relatively simple, not accounting for 
technological developments that are likely to have occurred during 
the time frame of the simulation (Goebel, 2002). The wide poste-
rior range for the functional response of human hunting of steppe 
bison extends from the selected best models having a diverse 
range of hunting strategies, suggesting that a variety of parameter 
values can give a close fit to inferences of extinction dynamics from 
the fossil record. Also, the model we used to simulate the peopling 
of Siberia (and Eurasia more generally in CISGeM) does not account 
for topography, which could have caused barriers to movement, 
particularly in the Siberian highlands (Eriksson et al., 2012), affect-
ing spatio-temporal harvest rates.

Our process-explicit modelling shows that climatic change and 
hunting by humans in Siberia during the late Pleistocene and early 
Holocene is likely to have interacted with key ecological require-
ments and demographic processes of steppe bison to cause their 
extinction in Eurasia during the early Holocene. Moreover, it shows 
that process-explicit models validated with POM methods can con-
tinuously simulate the ecological processes and drivers that cause 
the population declines of species over many millennia, in addition 
to the final extinction event. Although synthesis of long- and short-
term causes of population decline (Caughley, 1994) remains rare, the 
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integrated computational framework used here provides new op-
portunities to establish ecological pathways to extinction over long 
time periods. If applied to a diverse range of species, generalities in 
ecological processes of extinction could be identified.
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