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Abstract 33 

Expression of viral capsomeres in bacterial systems and subsequent in-vitro assembly into 34 

virus-like particles is a possible pathway for affordable future vaccines. However, purification 35 

is challenging as viral capsomeres show poor binding to chromatography media. In this work, 36 

the behaviour of capsomeres in crude lysate was compared with that for purified capsomeres, 37 

with or without added microbial DNA, to better understand reasons for poor bioprocess 38 

behaviour. We show that aggregates or complexes form through the interaction between viral 39 

capsomeres and DNA, especially in bacterial lysates rich in contaminating DNA. The formation 40 

of these complexes prevents the target protein capsomeres from accessing the pores of 41 

chromatography media. We find that protein-DNA interactions can be modulated by controlling 42 

the ionic strength of the buffer and that at elevated ionic strengths the protein-DNA complexes 43 

dissociate. Capsomeres thus released show enhanced bind-elute behaviour on salt-tolerant 44 

chromatography media. DNA could therefore be efficiently removed. We believe this is the 45 

first report of the use of an optimised salt concentration that dissociates capsomere-DNA 46 

complexes yet enables binding to salt-tolerant media. Post purification, assembly experiments 47 

indicate that DNA-protein interactions can play a negative role during in-vitro assembly, as 48 

DNA-protein complexes could not be assembled into virus-like particles, but formed worm-like 49 

structures. This work reveals that the control over DNA-protein interaction is a critical 50 

consideration during downstream process development for viral vaccines.  51 
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 62 

1.  Introduction 63 

Virus-like-particles (VLPs) are self-assembled ensembles of viral structural proteins, having 64 

the same size and shape as the native virus. However, as they lack viral nucleic acids, they 65 

cannot replicate and are therefore non-infectious. VLPs are able to trigger a strong immune 66 

response, due to their highly repetitive immunogenic and native structure, making them 67 

promising candidates as vaccines (Al-Barwani, Donaldson, Pelham, Young, & Ward, 2014; 68 

Bright et al., 2007; Donaldson, Lateef, Walker, Young, & Ward, 2018; Effio & Hubbuch, 69 

2015; Hume et al., 2019). Vaccines based on VLPs are commercially available against 70 

Hepatitis B (HBV), Hepatitis E (HEV) and human papillomavirus (HPV). VLPs are currently 71 

investigated as vaccines against a variety of viruses such as Influenza A (IAV), human 72 

Norovirus (HuNV) and Chikungunya virus (Donaldson et al., 2018; Frazer, 2004; VBI 73 

Vaccines Inc, 2018). 74 

By manipulating the amino acid sequence of the structural proteins, VLPs can be modified to 75 

present foreign antigens. In this way, they can trigger immune responses against others than 76 

the underlying virus. These so called modular VLPs do expand the possible applications of 77 

VLPs. Through synthetic biology, unrelated antigens can be presented in an immunogenic 78 

context, allowing multivalent and cross protective vaccines to be generated against all kind 79 

of targets. As computer-based simulation is developing, these three dimensional structures 80 

can be precisely modelled to predict and obtain the desired immunogenicity and stability of 81 

the modular VLP (Mobini et al. 2020; Hume et al., 2019; Carter et al. 2016; Zhang, et al. 82 

2015).  Modular VLPs are examined as vaccines against pathogens like Group A 83 

Streptococcus (Seth et al., 2016), Influenza (Anggraeni et al., 2013), rotavirus (Tekewe, Fan, 84 

Tan, Middelberg, & Lua, 2017), human papillomavirus (Zhai et al., 2017) and also against 85 

malaria (Pattinson et al., 2019), toxoplasmosis (Guo et al., 2019), cancer (Donaldson et al., 86 

2017), diabetes (Cavelti-Weder et al., 2016), nicotine addiction (Cornuz et al., 2008) and 87 

others.  88 
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Although VLPs are extremely promising as next-generation vaccines, large scale production 89 

is still a challenge (Hume et al., 2019; Pattenden, Middelberg, Niebert, & Lipin, 2005). Virus-90 

like-particles can be produced by expressing viral structural protein in different host systems 91 

ranging from eukaryotics such as mammalian cells, yeast and insect cells to prokaryotic cell 92 

systems. Despite the usual pros and cons of these systems, namely post-translational 93 

modifications versus expression level and cost, the in vivo VLP self-assembly pathway 94 

always bears the risk of internal contaminations, like host cell DNA, RNA and host cell 95 

protein (HCP) that co-assemble together with VLPs. Internal contaminations are hard to 96 

remove and can lead to batch to batch variations (Lua et al., 2014; Pattenden et al., 2005; 97 

Teunissen, Raad, & Mastrobattista, 2013; Wu et al., 2010). The removal of internal 98 

contaminations requires an additional disassembling-reassembling step, including for the 99 

commercial HPV vaccine, making the overall process inefficient. Another pathway is the 100 

expression and purification of unassembled structural viral protein and a subsequent 101 

controlled in vitro assembly, eradicating the presence of internal contaminations and 102 

providing for enhanced process and product quality control (Pattenden et al., 2005). 103 

Group A Streptococcus (GAS) is a human pathogen responsible for several million infections 104 

and more than 500,000 deaths every year (Carapetis, Steer, Mulholland, & Weber, 2005). 105 

An efficient vaccine has yet not been developed and only two candidates are being 106 

evaluated in human trials (Vekemans et al., 2019). As GAS is mainly a severe health 107 

problem in developing countries, an ideal future vaccine does not only have to be efficacious 108 

but also should be very affordable, as still more than 700 million people worldwide are living 109 

in extreme poverty (The World Bank, 2018; Wibowo, Chuan, Lua, & Middelberg, 2013). In 110 

this study a possible low-cost, future vaccine candidate, based on a modular polyoma virus-111 

like-particle, was studied, that displays the J8 antigen from the GAS M-protein (Middelberg 112 

et al., 2011; Rivera-Hernandez et al., 2013). 113 

The use of modified murine polyomavirus major capsid protein VP1 is a promising platform 114 

technology for fast, cheap and efficient modular VLP vaccines. It can be expressed in gram-115 
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per-litre levels in E. coli, and produced within days, rather than months as most vaccines 116 

nowadays, enabling possible costs of cents per dose and potential for a fast reaction on 117 

pandemic outbreaks (Chuan, Wibowo, Lua, & Middelberg, 2014; Liew, Rajendran, & 118 

Middelberg, 2010; Middelberg et al., 2011). VP1 and VP1-derived proteins are highly 119 

examined to study self-assembling processes and the use of VLPs as drug carriers and 120 

vaccines (Chuan, Fan, Lua, & Middelberg, 2010; Li et al., 2003; Ou et al., 1999; Zhou et al., 121 

2019). Like other viral proteins, the purification of VP1 capsomeres and VLPs presents 122 

challenges and no industrial scale process has yet been described (Buch et al., 2015; 123 

Gillock et al., 1997; Johne & Müller, 2004; Pattinson et al., 2019).  124 

The main challenges during the purification of VP1 capsomeres and VLPs are low 125 

recoveries using chromatographic techniques (<40% on GSTrapTM HP affinity 126 

chromatography resins, 54% on CIMmultusTM QA monolith chromatography) and the 127 

formation of soluble aggregates during processing and assembling (Zayeckas et al. 2018; 128 

Lipin et al. 2008). Purification requires additional hard-to-scale unit operations, including size 129 

exclusion chromatography, enzymatic affinity tag removal or costly monoliths and membrane 130 

adsorbers (Zayeckas et al. 2018; Ladd Effio et al. 2016; Lipin et al. 2008). Also, DNA 131 

removal often requires additional enzymatic treatment (Simon et al. 2013). Aggregation and 132 

low recovery can influence each other as shown by Lipin et al. (2008), where low recovery 133 

on affinity chromatographic media could be attributed to the existence of aggregates unable 134 

to enter the pores of chromatographic resins.. Several mechanisms are proposed in the 135 

literature to cause aggregation, such as polymerisation by the used GST-tag, hydrophobic 136 

interactions, formation of disulphide bonds and a competitive pathway during assembly. 137 

Furthermore, the stability is highly dependent on the inserted antigen (Abidin, Lua, 138 

Middelberg, & Sainsbury, 2015; Ding, Chuan, He, & Middelberg, 2010; Lipin, Raj, Lua, & 139 

Middelberg, 2009; Tekewe, Connors, Middelberg, & Lua, 2016). It could be shown that 140 

capsomere stability can be increased by the addition of non-ionic detergents, sorbitol and 141 

polysorbate 20, and high-throughput methods have been developed to optimise buffer 142 



6 
 

composition (Abidin et al., 2015; Mohr, Chuan, Wu, Lua, & Middelberg, 2013; Tekewe et al., 143 

2015). 144 

Although the strong DNA binding properties of VP1 are a well-known fact and described 145 

decades ago (Chang, Cai, & Consigli, 1993; Moreland, Montross, & Garcea, 1991), the 146 

influence on aggregation and chromatographic purification has never been examined in 147 

detail. This study therefore explores the influence of VP1’s DNA affinity on aggregation, 148 

chromatographic purification, protein stability and assembly. It is shown that VP1 149 

aggregation (or complex formation), which hinders VP1 from accessing chromatography 150 

pores leading to poor binding capacities, can be caused by non-specific DNA-protein 151 

complexation, which can be eliminated by increasing salt concentration. Also, efficient 152 

strategies for chromatographic capture and the removal of nucleic acids are developed to 153 

overcome the bottleneck of producing VP1 based virus-like-particles. Furthermore, it was 154 

shown, that VP1-DNA complexes cannot be assembled into VLPs as they form worm like 155 

structures during assembly. The findings in this research are of high importance for the 156 

production of VP1 based virus-like-particles and will help to develop cheap and reliable 157 

industrial purification protocols.  158 

2. Materials and methods 159 

2.1  Chemicals and buffers  160 

Cultivation was done with terrific broth (TB) medium containing 12 g l-1 tryptone (Thermo 161 

Fisher Scientific, USA), 24 g l-1 yeast extract (Thermo Fisher Scientific, USA), 5g l-1 glycerol 162 

(Chem-Supply, Australia), 2.31 g l-1 potassium dihydrogen phosphate (Chem-Supply, 163 

Australia) and 12.5 g l-1 dipotassium hydrogen phosphate (Chem-Supply, Australia). 164 

Chloramphenicol (Thermo Fisher Scientific, USA) and ampicillin (Thermo Fisher Scientific, 165 

USA) were added to final concentrations of 35 µg ml-1 and 100 µg ml-1, respectively. IPTG 166 

for induction was obtained from Thermo Fisher Scientific, USA. Saline for cell resuspension 167 



7 
 

consisted of 9 g l-1 sodium chloride (Chem-Supply, Australia). Ultra-pure water was obtained 168 

with a Milli Q water (MQW) system and used for all experiments.    169 

Lysis buffer comprised 40mM Tris buffer, 2mM EDTA, 5 % w w-1 glycerol and 5mM 170 

dithiothreitol (DTT) (all Chem-Supply, Australia) at pH 8. Lysis buffer without DTT was 171 

prepared as a 5X stock and prior use was filtered (0.22 µm), vacuum degassed for 5 min 172 

and DTT was added. For chromatographic experiments, lysis buffer containing different 173 

concentrations of NaCl were used. VLP assembling buffer consisted of 0.5 M ammonium 174 

sulphate, 20 mM Tris, 1mM calcium chloride and 5 % w w-1 glycerol (all Chem-Supply, 175 

Australia) at pH 7.4. Elution buffer at pH 12 was 40mM Sodium hydrogen orthophosphate, 176 

2mM EDTA, 5 % w w-1 glycerol and 5mM DTT. Lysis buffer with added NaCl (0 – 0.5 M 177 

NaCl) was used as running buffer for size exclusion experiments and polishing. 178 

SDS gel electrophoresis used 12 % w v-1 self-casted acrylamide gels (per 10 ml: 2ml MQW, 179 

4ml 30 % w v-1 acrylamid/bis solution, 3.8 ml 1 M Tris pH 8.8, 0.1 ml 10 % w w-1 SDS, 0.1 ml 180 

10 % w w-1 ammonium persulphate, 0.04 ml TEMED (all except Tris from BIO RAD 181 

Laboratories, USA) with a 4% w v-1 stacking layer (per 2 ml: 1.4 ml MQW, 0.33 ml 30 % w v-1 182 

acrylamid/bis solution, 0.25 ml 1 M Tris pH 6.8, 0.02 ml 10 % w w-1 SDS, 0.02 ml 10 % w w-1 183 

ammonium persulphate, 0.002 ml TEMED), using 5X loading buffer composed of 1.9 ml 184 

MQW, 0.6 ml 1 M Tris pH 6.8, 5 ml 50 % w w-1 glycerol, 10 mg bromphenol blue (BIO RAD 185 

Laboratories, USA), 2 ml 10 % w w-1 SDS, 0.5 ml beta-mercaptoethanol (BIO RAD 186 

Laboratories, USA) and 10X running buffer consisting of 30 g l-1 Tris, 144 g l-1 glycine 187 

(Chem-Supply, Australia), 10 g l-1 SDS, pH 8.3. Coomassie Brilliant Blue R-250 staining 188 

solution was obtained from BIO RAD Laboratories, USA. A solution of 80 % v v-1 MWQ, 10 189 

% v v-1 ethanol (Chem-Supply, Australia) and 10 % v v-1 acetic acid (Chem-Supply, 190 

Australia) was used for destaining.   191 

PEG-6000 was obtained by Chem-Supply, Australia. Lyophilised Unsheared E.coli DNA was 192 

obtained from Sigma (D4889) and dissolved in MQW.  193 
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2.2 Instrumentation 194 

A 5920R centrifuge (Eppendorf, Germany) was used for solid-liquid separation of cell 195 

harvest, removal of cell debris and separation of precipitate. Cell disruption was done using 196 

a Scientz-IID Ultrasonic homogeniser (Ningbo Scientz Biotechnology, China) with a 6 mm 197 

diameter horn. Dynamic light scattering was conducted with a Zetasizer NanoZS (Malvern 198 

Panalytical/Spectric, UK). Chromatographic experiments were done using an AKTApure® 199 

system equipped with a F9-R fraction collector (GE Healthcare Life Science, Sweden). 200 

SuperoseTM 6 Increase, CaptoTM Q and CaptoTM MMC columns were obtained from GE 201 

Healthcare Life Science, Sweden.  Absorbance at 595 nm for Bradford protein assay was 202 

measured on an ELx808 microplate absorbance reader (BioTek Instruments, US), UV 203 

spectrophotometry for DNA quantification was done on a 2300 Victor X5 multilabel reader 204 

(PerkinElmer, US). SDS Gels were run in a Mini-PROTEAN tetra cell (BIO RAD 205 

Laboratories, USA).  206 

2.3 Plasmid construction, transformation and host strain 207 

The plasmid was constructed by the Protein Expression Facility of the University of 208 

Queensland. Group A Streptococcus antigen GCN4-J8 was inserted into Murine 209 

polyomavirus VP1 sequence (M34958) with flanking G4S linkers. The obtained gene VP1 210 

GCN4 J8 was cloned into pETDuet-1 at multiple cloning site 2 (MCS2) at Ndel and Pacl 211 

restriction site. The complete sequence was 212 

MAPKRKSGVSKCETKCTKACPRPAPVPKLLIKGGMEVLDLVTGPDSVTEIEAFLNPRMGQP213 

PTPESLTEGGQYYGWSRGINLATSDTEDSPGNNTLPTWSMAKLQLPMLNEDLTCDTLQM214 

WEAVSVKTEVVGSGSLLDVHGFNKPTDTVNTKGISTPVEGSQYHVFAVGGEPLDLQGLVT215 

DARTKYKEEGVVTIKTITKKDMVNKDQVLNPISKAKLDKDGMYPVEIWHPDPAKNENTRYFG216 

NYTGGTTTPPVLQFTNTLTTVLLDENGVGPLCKGEGLYLSCVDIMGWRVTRGGGGSSQAE217 

DKVKQSREAKKQVEKALKQLEDKVQAGGGGSYDVHHWRGLPRYFKITLRKRWVKNPYPM218 

ASLISSLFNNMLPQVQGQPMEGENTQVEEVRVYDGTEPVPGDPDMTRYVDRFGKTKTVFP219 
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GN* which was inserted in the plasmid as following: pT7-lacOp-pT7-lacOp-VP1 – G4S linker 220 

– GCN4 J8 – G4S linker. 221 

The sequence was verified using Abi BigDye Terminator 3.1. Sequencing, which was 222 

conducted by the Australian Genome Research Facility (AGRF).  223 

VP1-J8 was transformed into RosettaTM 2(DE3) SinglesTM competent cells (Merck KGaA, 224 

Germany) via heat shock transformation using standard procedure. Plasmid DNA was mixed 225 

with the competent cells, incubated on ice for 5 min, heat shocked for 30 secs at 42 °C, 226 

followed by 2 min cooling on ice. Cells were then mixed with TOC medium and selected on 227 

agar plates containing 100 µg ml-1 ampicillin and 35 µg ml-1 chloramphenicol. A single colony 228 

was picked, grown on 50ml TB medium in a 250 ml shake flask at 37 °C. After an optical 229 

density OD600 of 0.5 AU was reached the cell suspension was mixed with glycerol to a total 230 

concentration of 25 % w w-1 and stored in 100µl aliquots at -80 °C till further use. 231 

2.4 Protein Expression 232 

One 100 µl aliquot of transferred cells was thawed and poured into 50 ml of TB medium 233 

containing antibiotics, in a 250 ml shake flask, and grown overnight at 37 °C at 200 rpm. 234 

Next morning 5 ml of the overnight culture was transferred into 200 ml fresh TB medium in a 235 

1 l shake flask and grown at 37 °C and 200 rpm. After the optical density OD600 reached 0.5 236 

AU product expression was started by adding IPTG to a final concentration of 0.1 mmol l-1 237 

and lowering the temperature to 27 °C. Product expression lasted 16h, after which cells 238 

were harvested by centrifugation at 3200g for 10 min at 4 °C. The pellet was resuspended in 239 

0.9 % w w-1 saline and divided into 50 ml aliquots and centrifuged for 10 min at 20130 g at 4 240 

°C to obtain 1 g pellets. The supernatant was withdrawn and the pellets where then stored at 241 

-80 °C until further use.  242 

2.5 Purification of VP1-J8 protein 243 

A 1 g pellet of E. coli was resuspended in 50 ml lysis buffer and sonicated for 15 min on ice, 244 

using 10 seconds bursts at 400 W followed by 40 seconds cool down phase. After 245 
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sonication, the sample was centrifuged at 20130 g for 30 min at 4 °C to obtain clarified 246 

supernatant. The VP1-J8 was then precipitated using 3.5 g (7 % w w-1) PEG 6000 and 1.45 247 

g NaCl (0.5 M final concentration). Suspension was gently mixed until the PEG and NaCl 248 

were dissolved and incubated on ice for 10 min to form precipitates. After centrifugation at 249 

20130 g at 4 °C for 2 min, the supernatant was discharged and the pellet was gently washed 250 

3 times with 5 ml MQW to remove all residual supernatant. The pellet was then resuspended 251 

in 20 ml running buffer containing 0.4 M NaCl. The solution was further purified by an anion 252 

exchange step (CaptoTM Q) in flow through mode using a running buffer with 0.4 M NaCl at 253 

pH 8. A final polishing was achieved using size exclusion chromatography loading 0.5 ml 254 

sample on a SuperoseTM 6 increase column, collecting the peak eluting at 15 ml. If not stated 255 

otherwise, running buffer containing 0.4 M NaCl at pH 8 was used with a flowrate of 0.6 ml 256 

min-1. Desalting was conducted using a 5 ml HiTrapTM Desalting column (GE Healtcare, 257 

Sweden). All buffers and samples were cooled on ice throughout the whole process. The 258 

starting material used in the in following described experiments, are summarized in table 1. 259 

SDS-PAGE analysis of the different purification steps are provided in the supplementary 260 

data.  261 

2.6 Cation exchange experiments on CaptoTM MMC 262 

CaptoTM MMC was chosen as a cation exchanger as it provides, in contrast to CaptoTM S, 263 

high binding over a broad range of salt concentrations. Elution is therefore usually done by 264 

pH shift. Samples were pre-purified by PEG precipitation as described, and the pellet after 265 

precipitation was dissolved in lysis buffer containing 0 M NaCl, at a protein concentration of 266 

1.96 mg ml-1. NaCl was added to a final concentration of 0.5 M NaCl to half of the sample. 267 

Lysis buffer containing either 0 M NaCl or 0.5 M NaCl was used as a running buffer and for 268 

equilibration. Sample was injected into a 2 ml sample loop and loaded to a 1 ml CaptoTM 269 

MMC prepacked column at a flow rate of 0.33 ml min-1. The elution was conducted using a 1 270 

M NaCl sodium hydrogen orthophosphate buffer adjusted with NaOH to pH 12. Recovery 271 

was estimated by integrating the chromatograms at an absorbance of 280 nm and 272 
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comparing peak areas of the flow through during loading and of elution peaks containing 273 

VP1-J8. 274 

2.7 Anion exchanger experiments on CaptoTM Q 275 

Sample pellets pre-purified by PEG precipitation as described were re-dissolved in lysis 276 

buffer at pH 8 either with 0.1 M NaCl or 0.4 M NaCl. Final protein concentration was 277 

adjusted to 0.54 mg ml-1. Sample was used to fill a 100 µl sample loop. The pre packed 1 ml 278 

CaptoTM Q column was equilibrated with the corresponding buffer and loaded at 0.33 ml min-279 

1, followed by a 1 M NaCl step elution, pH 8, at a flow rate of 1 ml min-1. 280 

2.8 Assembling of Virus-like Particles 281 

Purified VP1-J8 capsomeres as described were assembled into virus-like-particles by 282 

dialysis against assembling buffer for 24h at 4 °C as described previously (Middelberg et al., 283 

2011). Capsomeres purified by multi modal cation exchange chromatography (CaptoTM 284 

MMC) followed by SEC chromatography instead of anion exchange chromatography were 285 

also assembled into VLP’s. The influence of DNA on assembly was examined by preparing 286 

VP1-J8 solutions with and without DNA prior to assembly. Host cell DNA free VP1-J8 287 

obtained by AEX and SEC as described in section 2.5 was desalted into lysis buffer pH 8 288 

with 0.1 M NaCl or with 0.5 M NaCl and the concentration of VP1-J8 was adjusted to 0.2 mg 289 

ml-1. DNA stock solution to a final concentration of 5 µg ml-1 was added to half of the sample. 290 

Obtained VLP’s were examined by TEM.  291 

2.9 Protein analysis and SDS-PAGE 292 

Protein concentration was measured using the Bradford Protein Assay (Bradford, 1976), 293 

following the standard protocol provided by BioRad in 200 µl 96 well plates, with bovine 294 

serum albumin as a standard. BSA standard was prepared at different concentrations (0.05 295 

mg ml-1, 0.1 mg ml-1, 0.2 mg ml-1 0.4 mg ml-1) and the concentration was verified measuring 296 

the A280 absorbance on a NanoDrop. All samples were measured in triplicates.  297 
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Self-casted gels as described were used for analysis. If not stated otherwise, 10 µl of sample 298 

was mixed with 2 µl of 5X loading buffer and heated at 100 °C for 10 min before loading. A 299 

running buffer was used as described with a 200 V fixed current for the entire run. The gel 300 

was stained for 1 hour with shaking, followed by 4 h destaining using an ethanol/acetic acid 301 

destaining buffer as described. Pictures were obtained on a ChemicDoc imaging system 302 

using standard configuration for Comassie Blue gels.  Under reducing and denaturing 303 

conditions VP1-J8 is expected to be visible at a size of 46.4 kDa.  304 

2.10 DNA Analysis  305 

DNA quantification was conducted using Quant-iT™ High-Sensitivity dsDNA Assay Kit in a 306 

96 well plate, following the manual. Fluorescence was measured at 485/530 nm and all 307 

samples were measured in duplicate. Preliminary tests showed that VP1-DNA interactions 308 

and aggregates had no influence on the result of the assay.  309 

2.11  Size-exclusion chromatography of VP1-J8 clarified supernatant at different NaCl 310 

concentrations by SuperoseTM 6 Increase 311 

SEC experiments were conducted to measure the elution volume of VP1-J8 capsomeres in 312 

crude clarified supernatant at different NaCl concentrations. The larger the molecule, the 313 

faster it elutes, therefore aggregates of VP1-J8 capsomeres can be measured in the 314 

supernatant. Crude clarified supernatant after cell disruption was obtained as described. The 315 

supernatant was split into 6 ml samples and NaCl was added to obtain final concentrations 316 

of 0 M, 0.1 M, 0.2 M, 0.3 M, 0.4 M and 0.5 M. After gentle shaking until the salt was 317 

dissolved, the samples were stored on ice. A SuperoseTM 6 Increase 10/300 GL column was 318 

equilibrated for 2 column volumes with running buffer having the same NaCl concentration 319 

as the sample being examined. Samples were filtered (0.22 µm) and loaded into a 0.5 ml 320 

sample loop. Flow rate was 0.6 ml/min, samples were taken every 0.5 ml using the 321 

autosampler. Samples (10 µl) were then used for SDS-PAGE analysis.   322 

2.12 Dynamic Light Scattering of VP1-J8 capsomeres and VP1-J8-DNA complexes 323 
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To test whether the aggregation of VP1-J8 capsomeres was due to salt-induced precipitation 324 

or because of an affinity towards DNA, the hydrodynamic particle size of purified VP1-J8 325 

was measured using dynamic light scattering as this technique allows determination of the 326 

hydrodynamic particle diameter at various controlled buffer compositions and is in particular 327 

sensitive towards aggregates. SEC could not be easily used because purified VP1-J8 328 

capsomeres did bind to SuperoseTM 6 Increase and TSKgel® 3000/4000 size exclusion 329 

columns at low salt concentrations.  330 

To assess the influences of DNA and NaCl on aggregation, VP1 capsomeres were purified 331 

as described. Running buffer for SEC polishing had a NaCl concentration of 0.5 M. The 332 

protein concentration of the purified sample was adjusted to 0.01 mg ml-1 and no residual 333 

DNA could be measured in the sample. The size distribution was measured using dynamic 334 

light scattering after which the sample was desalted into 0.1 M NaCl buffer. After desalting 335 

the DNA concentration increased to 0.09 ng µl-1 which might be residual DNA in the 336 

desalting column, contaminating the sample, or may not be a significant measurement 337 

noting the assay sensitivity is 0.2 ng µl-1.The desalted sample was measured and to 1 ml of 338 

sample 100 µl of unsheared E. coli DNA solution (concentration 180 ng / µl) was added. 339 

After measurement of the light scattering NaCl was added to a final concentration of 1 M and 340 

the sample was incubated for 10 min before a subsequent measurements. As a reference, 341 

100 µl of unsheared E. coli DNA solution in 1 ml of MQW was measured.  342 

Samples were stored on ice until measurement. 1 ml of sample was equilibrated for 5 min to 343 

20 °C before starting the measurement. Each reported measurement is an average of 100 344 

individual measurements. Analysis was done using the Zetasizer software by Malvern 345 

Technologies. 346 

2.13 Transmission Electron Microscope (TEM) analysis 347 

Samples measured via dynamic light scattering were also examined in a transmission 348 

electron microscope. Carbon coated square meshed grids (ProSciTec, standard A) were 349 



14 
 

plasma cleaned for 15 s right before sample application. 5 µl sample, diluted 1:10 with the 350 

corresponding buffer, was pipetted on the mesh and incubated for 5 min. After gently 351 

removing excess liquid with a tissue, the grid was washed twice with a drop of MQW to 352 

reduce salt crystals.  The sample was subsequently stained for 2 min by negative staining 353 

using 2 % w v-1 uranyl acetate. TEM images were taken on a FEI Tecnai G2 Spirit equipped 354 

with an Olympus-SIS Veleta CCD camera at 120kV voltage. 355 

3. Results  356 

3.1  Molecular size distribution of VP1-J8 capsomeres in clarified supernatant at different 357 

salt concentrations using size exclusion chromatography 358 

Purified VP1 capsomeres elute at a volume of 15 ml on a SuperoseTM 6 Increase 10/300 GL 359 

column (Ladd Effio, Baumann et al., 2016). VP1-J8 capsomeres have a similar size to VP1 360 

capsomeres (232 kDa versus 212.3 kDa) and are therefore expected to elute at 361 

approximately the same volume. Comparing the elution profile of clarified supernatant at 362 

different salt concentrations (Fig. 1) no dedicated peak at 15 ml elution volume could be 363 

observed at salt concentrations of less than 0.3 M NaCl. However, using a salt concentration 364 

of 0.4 M NaCl a peak at 15 ml appeared, which was confirmed to be VP1-J8 by SDS PAGE 365 

(Fig. 2). 366 

To measure the size distribution of VP1-J8 capsomeres and to verify the formation of 367 

aggregates, samples at different elution volumes from SuperoseTM 6 Increase were analysed 368 

by SDS PAGE (Fig. 2). At salt concentrations lower than 0.3 M NaCl, the majority of VP1-J8 369 

capsomeres were eluted at 9ml (Fig. 2a, 0 M NaCl), at 11ml and 12ml (Fig. 2b, 0.1 M NaCl, 370 

and Fig. 2c, 0.2 M NaCl), at 11ml, 12ml and 14ml (Fig. 2d, 0.3 M NaCl). This result indicates 371 

the formation of VP1 complexes of several MDa size. In contrast, at salt concentrations 372 

above 0.3M NaCl, capsomeres elute at the expected retention volume of ca. 15 ml (Figs. 2e 373 

and 2f), indicating no or only minor extents of VP1 complexation. 374 
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3.2 Particle size distribution of purified VP1-J8 capsomeres and VP1-J8-DNA complexes 375 

measured by dynamic light scattering (DLS) 376 

Particle size distributions obtained by dynamic light scattering are shown in Figures 3 and 4. 377 

The particle size of purified VP1-J8 capsomeres in 0.5 M NaCl and 0.1 M NaCl buffer is 378 

nearly the same, at ca. 10 nm. At 0.1 M NaCl, a small amount of particles (<5 %) show a 379 

diameter of 20 nm. This is believed to be due to residual DNA in the desalting column that 380 

contaminated the sample, as verified by DNA content after desalting increasing from zero to 381 

0.09 ng µl-1. By adding unsheared DNA to VP1-J8 capsomeres, the signal changed 382 

drastically and particle diameters larger than 70 nm up to 1000 nm were measured. 383 

Unsheared E. coli DNA solution at 0 M NaCl, measured as a reference, showed a signal at 384 

around 20 nm diameter. The effect could also be reversed as shown in Figure 4. By adding 385 

sodium chloride to a final concentration of 1 M NaCl the aggregates broke up and the 386 

measured particle size of VP1-J8 plus DNA changed from > 90 nm to < 20 nm. 387 

3.3 TEM analysis of purified VP1-J8 capsomeres and VP1-J8-DNA complexes  388 

Samples measured by DLS were also examined by TEM to confirm the DLS results. Purified 389 

VP1-J8 capsomeres are stable in 0.1 M NaCl and do not form aggregates (Figure 5a). After 390 

the addition of unsheared E. coli DNA irregular aggregates of different sizes are formed, as 391 

can been seen in Figure 5b. After subsequent addition of NaCl to a final concentration of 1 392 

M, no aggregates could be observed, however very few spherical particles of 40-50 nm 393 

diameter could be seen (Fig. 5c). 394 

3.4 Multimodal cation exchange chromatography on CaptoTM MMC 395 

Figure 6a shows the absorbance signal of the flow-through during loading. It can be seen, 396 

that loading resolubilized VP1-J8 (after PEG precipitation) in a lysis buffer containing 0.5 M 397 

NaCl leads to a significantly lower flow through signal (P1), indicating more VP1-J8 is 398 

binding on the column, compared to loading at 0 M NaCl (P2). The peak area of the flow 399 

through peak decreased from 5366.4 mAu s-1 when loaded at 0 M NaCl (P2) to 4791.7 mAu 400 
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s-1 when loaded at 0.5 M NaCl (P1). The elution profile in Figure 6b shows two small elution 401 

peaks (P3.1 & P3.2), when loading was at 0 M NaCl, and only one large peak (P4), when 402 

loading was done at 0.5 M NaCl. Analysing the peak areas of the elution peaks containing 403 

VP1-J8 showed a peak area of 527.8 mAu s-1 if loaded at 0.5 M NaCl (P4) and only 52.6 404 

mAu s-1 if loaded at 0 M NaCl (P3.2). The elution peak area of 527.8 mAu s-1 approximates 405 

the difference in absorbance signals during loading (574.7 mAu s-1) reasonably well, 406 

indicating, that the loaded material eluted completely at the chosen conditions and no 407 

material was permanently bound to the column. Therefore, it can be concluded that the 408 

binding on CaptoTM MMC strongly increased and the recovery increased about 10 times.  409 

The SDS-PAGE analysis of the process (Fig. 7) revealed, that if loading was done at 0 M 410 

NaCl the majority of VP1-J8 did not bind to the column and remained in the flow through. In 411 

contrast, if loading was done at 0.5 M NaCl the majority of VP1-J8 did bind to the column. 412 

The first elution peak (P3.1), if loaded at 0 M NaCl, contained only trace amounts of protein, 413 

but did also contain DNA. Measured DNA concentration was 3 ng µl-1. The second peak 414 

(P3.2) did contain some VP1-J8 at low concentrations and had a DNA content of 0.34 ng µl-415 

1. On the other hand, the whole elution peak after loading at 0.5 M NaCl (P4) did contain 416 

high amounts of VP1-J8 and low levels of DNA (0.46 ng µl-1). The DNA concentration of the 417 

pre-purified sample was 110.6 ng µl-1. 418 

3.5 Anion exchange chromatography on CaptoTM Q 419 

Figures 8a and 8b show chromatograms obtained for loading CaptoTM Q at 0.1 M NaCl and 420 

0.5 M NaCl, respectively. At low salt concentrations VP1-J8 binds to CaptoTM Q, however the 421 

capacity is extremely low (<0.2 mg ml-1resin at 2 min column residence time, data not shown). 422 

High overloading of the column does not result in significant increase of bound VP1-J8. 423 

Interestingly, elution experiments with a linear gradient reveal that the majority of VP1-J8 424 

was eluted at the same salt concentration as it lost its affinity towards DNA (ca. 0.3 M NaCl) 425 

(chromatogram in supplementary data). If the loading was conducted at salt concentrations 426 

above 0.3 M NaCl, VP1-J8 remains in the flow through and DNA can be efficiently removed 427 
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as it remains bound to the matrix. The DNA content of the pre-purified sample was 75 ng µl-1 428 

and after flow through purification at 0.5 M NaCl loading condition, the DNA content was 429 

below the sensitivity of the DNA assay, with a measured value of 0.017 ng µl-1. A 430 

comparison of the binding behaviour on the two chromatographic matrixes is summarized in 431 

table 2. 432 

3.6 Assembling of virus-like-particles 433 

Both capsomeres obtained by anion exchanger and by multi modal cation exchanger could 434 

be assembled into virus-like-particles (determined by TEM, data not shown). Therefore, it 435 

can be assumed that the purification pathways do not alter protein integrity.  436 

To test the influence of the presence of DNA on the assembling host cell DNA free VP1-J8 437 

got spiked with DNA as described in section 2.8 to obtain four samples (VP1-J8 with and 438 

without DNA in lysis buffer pH 8, at low and at high salt concentrations) were dialysed 439 

against assembling buffer. TEM results are shown in figure 9.  440 

At initial NaCl concentrations of 0.5 M NaCl both samples without (figure 9a) or with DNA 441 

(figure 9b) assembled predominately into uniform capsid like structures around 45 nm in 442 

diameter. Also some smaller particles formed. The capsid like structures assembled without 443 

DNA showed a stronger internal staining compared to the one with DNA.  444 

At low initial NaCl concentrations the protein-DNA complexes could not be assembled into 445 

capsid like structures (figure 9c). Instead worm like structures of different sizes formed as 446 

well as small spherical particles < 20 nm. On the other hand, if no DNA was present at low 447 

NaCl concentrations (figure 9d), capsid like structures formed as well as smaller spherical 448 

particles of different size. Compared to the samples with higher initial NaCl, the samples with 449 

lower NaCl concentrations were less uniform.  450 

4. Discussion 451 

One of the major issues of purifying viral capsomeres and viral structures, either as a wild 452 

type or presenting a foreign antigen, is the poor binding onto chromatographic media and 453 
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hence low recovery yields. That VP1 capsomeres in crude lysate form soluble aggregates of 454 

different size, is an observation that has already been made (Lipin et al., 2008). Different 455 

mechanisms have been suggested, for example polymerization because of the used GST 456 

tag or aggregation because of inserted hydrophobic antigens (Abidin et al., 2015; Lipin et al., 457 

2008). These size exclusion experiments on GST-free non-purified proteins show that non 458 

purified VP1-J8 forms aggregates below a NaCl concentration of 0.3 M. This can have 459 

various reasons, like salt dependent solubility, intermolecular attractions or the interaction 460 

with other molecules such as DNA. Polymerization because of affinity tags however, can be 461 

excluded as no affinity tag is used in these experiments. 462 

Light scattering experiments of purified VP1-J8 revealed that purified VP1-J8 capsomeres 463 

are indeed stable at low salt concentrations and aggregates are formed due to an interaction 464 

with DNA. It could also be shown that this is a reversible interaction, as the aggregates 465 

disassociate if the salt concentration is raised, indicating that the DNA VP1-J8 interaction is 466 

a non-specific electrostatic interaction. The slight increase of the measured hydrodynamic 467 

size of dissociated capsomeres compared to the starting material before the addition of DNA 468 

might be a result of overlapping signals of DNA and capsomeres, as dynamic light scattering 469 

is not capable of resolving multiple narrow species. However, as this technique is in 470 

particular sensitive towards larger particles it can be assumed no aggregates were present.   471 

The results were verified by TEM showing no aggregated VP1-J8 at low salt concentrations 472 

in the absence of DNA, and irregular shaped aggregates after the addition of DNA and the 473 

formed aggregates could be dissociated by applying a high salt concentration. Why some 474 

large, capsid-like aggregates could be observed at the TEM of capsomeres in high salt 475 

(Figure 5c) can only be speculated as there was no calcium in the solution, which is 476 

considered to be mandatory for self-assembling of VP1 capsomeres into well-formed virus-477 

like-particles (Chuan et al., 2010; Schmidt, Rudolph, & Bohm, 2000). Maybe an increase of 478 

the hydrophobic attraction due to the high salt concentration and depleted DTT due to long 479 

exposure during processing, lead to a degree of capsomeres self-assembly, an effect that 480 
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has also been observed in the past (Salunke, Caspar, & Garcea, 1986). This process might 481 

be also mediated by “right sized” DNA fragments in the solution, supporting assembly, as a 482 

similar mechanism was proposed (Ou et al., 1999; van Rosmalen, Li, Zlotnick, Wuite, & 483 

Roos, 2018). 484 

To measure the influence of these aggregates on chromatographic purification, experiments 485 

with cation and anion exchangers were conducted. The assumption was that, in an 486 

aggregated form, the capsomeres cannot access the pores of chromatographic resin which 487 

typically have a diameter of roughly 40-80 nm, and therefore can only bind to the outer 488 

surface, leading to very low binding capacitates (J. Avallin et al., 2016). This assumption was 489 

proven as only minor amounts of VP1-J8 bound on multimodal cation exchanger columns 490 

(CaptoTM MMC) when loaded at low salt concentrations. A pure cation exchanger like 491 

CaptoTM S showed comparable low binding capacities at low salt concentrations (data not 492 

shown). Using a salt-tolerant cation exchanger (CaptoTM MMC), which keeps a high binding 493 

capacity over a broad range of salt concentrations, it could be shown that the binding 494 

increased dramatically, and the majority of VP1-J8 protein was captured, if a salt 495 

concentration above the dissociation concentration was used. The enhanced binding leads 496 

to an increased recovery during the chromatographic purification.. This can be explained by 497 

the fact that now non-aggregated capsomeres, having a size of 10-15 nm, could access the 498 

pores in the resin. 499 

Another phenomenon was observed, namely that at low salt concentrations not only the 500 

capsomeres bound to a cation exchanger column, but also DNA. As DNA usually does not 501 

bind to a cation exchanger at pH 8, it likely bound to the capsomeres that were captured on 502 

the column, suggesting again the existence of DNA-protein complexes. 503 

A purification method for viral capsomeres and viral capsids, proposed in the literature, is the 504 

use of strong anion-exchange membrane columns in bind and elute mode (Ladd Effio, 505 

Baumann et al., 2016). Interestingly the capsomeres do bind to Capto Q resins, a strong 506 

anion exchanger, at the same pH value (pH 8) as they do bind to cation exchangers 507 
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(CaptoTM S, POROSTM HS and CaptoTM MMC). These experiments show that at low salt 508 

concentrations VP1-J8 binds to the column, however the capacity is extremely low, which 509 

again can be explained by poor accessibility to matrix pores, because of formed DNA-protein 510 

aggregates. The formation of aggregates also explains the comparably high reported 511 

capacities on membrane columns (Ladd Effio, Hahn et al., 2016). Another interesting fact is 512 

that the capsomeres elute from anion exchangers at the same salt concentration as the 513 

DNA-protein aggregates dissociate, opening the question of the binding mechanism. Instead 514 

of actually binding onto the column proper, the VP1 capsomeres might actually bind to DNA, 515 

which then binds to the anion exchanger in a layer-by-layer process. This might be an 516 

explanation for the strange binding isotherms described for Sf9 insect cell-derived virus-like-517 

particles, as the binding capacity would be dependent on the protein-DNA ratio (Ladd Effio, 518 

Hahn et al., 2016).   519 

Some DNA interactions with VP1 capsomere have been previously described. Early 520 

research found that VP1 capsomeres show a high affinity towards DNA, that this affinity is 521 

not sequence specific, and that VP1 capsomeres do elute from a DNA-cellulose column at 522 

salt concentrations between 0.3 and 0.4 M NaCl (Chang et al., 1993; Moreland et al., 1991). 523 

This is congruent with the observation that DNA-VP1-J8 complexes dissociate at NaCl 524 

concentrations above 0.3 M and also explains that the DNA-protein complexes can form with 525 

bacterial DNA or DNA of other sources. DNA-protein complex formation was also found by 526 

Štokrová et al. (1999) who showed that VP1 capsomeres coat circular DNA, as expected for 527 

viral packaging of nucleic acids in the native virus.  528 

Another point is that the disassembly of polyomavirus results not only in free capsomeres 529 

but also in DNA-capsomere complexes (Brady JN, Winston VD, & Consigli RA., 1978).  The 530 

reason why only some of the capsomeres form complexes, if viral capsids are dissembled, 531 

might be due the ratio of DNA to capsomeres, as there may have been insufficient DNA for 532 

all capsomeres to bind to. 533 
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The influence of DNA-capsomere interactions on production, stability, assembling and 534 

purification of VP1 capsomeres has, however, been significantly underestimated. Especially 535 

if these capsomeres are produced in bacterial systems in an environment with excess DNA. 536 

Under such conditions it is highly likely that the majority of VP1 is bound to host-cell DNA, 537 

therefore forming large aggregates. 538 

Assembling of capsomere-DNA complexes into VLPs was not possible in our experiments. 539 

Instead worm like aggregates of different sizes formed. These worm like aggregates do not 540 

form if the salt concentration is above the protein-DNA dissociation concentration and 541 

instead virus-like particle form, comparable to the assembly without DNA. The type and 542 

length of the present nucleic acid might play an important role on the shape and size of 543 

these aggregates (Ruiter et al., 2019) and comparable tubular aggregates can be found in 544 

the nucleus of infected cells (Erickson et al., 2012). Protein-DNA interactions therefore can 545 

be an explanation for at least some types of aggregates formed during assembly.  546 

A recent study proposed that DNA can influence the assembly process beneficially, as less 547 

wrong size particles are formed (van Rosmalen et al., 2018). This phenomenon however, 548 

could not be observed in our experiments as assembly products at high salt concentration, 549 

with or without DNA, showed well defined capsid like structures. Nevertheless, the presence 550 

of DNA seems to influence the assembly process and therefore the DNA-protein interaction 551 

needs to be tightly controlled to obtain reliable results. However, this topic still needs further 552 

investigation to understand the underlying mechanism.   553 

Knowing that VP1 forms complexes with DNA at low salt concentrations, a few conclusions 554 

for purification can be made. At low salt concentrations VP1 or VP1 based vaccine 555 

candidates will bind onto conventional chromatographic media at low efficiency, as the 556 

complexes cannot enter the pores of the resin. An alternative is the use of membrane 557 

columns, monoliths or resins with large pores like POROSTM as shown in the literature (Ladd 558 

Effio, Baumann et al., 2016). Another and preferable option is the use of conventional salt 559 

tolerant media like CaptoTM MMC together with buffers having a salt concentration above the 560 
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DNA-capsomere dissociation concentration, as they are widely available, cheap and easy to 561 

scale. This approach leads to highly efficient binding and eradicates one of the main 562 

bottlenecks during purification. 563 

DNA can only be efficiently removed if a salt concentration above the dissociation 564 

concentration is used during the process, as otherwise DNA and capsomeres will co-elute. 565 

Until complete removal of DNA, the capsomeres will be not stable in low salt concentration 566 

buffers. This is particularly important for alternative purification strategies like precipitation 567 

and extraction in which DNA is usually incompletely removed. The binding on anion 568 

exchangers might be mediated by DNA and therefore the ratio of DNA to VP1 in the lysate 569 

will affect the binding capacity and overall process behaviour. It is furthermore not possible 570 

to assemble DNA-VP1 complexes into virus-like particles. Above the dissociating salt 571 

concentration however, the presence of DNA seems not to affect the assembly negatively. 572 

5. Conclusion 573 

Murine polyomavirus major capsid protein VP1 forms DNA-protein complexes of different 574 

sizes in buffers having low salt concentrations. It was shown that these aggregates have a 575 

significant impact on the bioprocessing of VP1 pentamers, as it was not possible to 576 

assemble these complexes into VLPs. Instead of spherical particles, tubular aggregates 577 

formed. Furthermore, the DNA-protein complexes lead to poor chromatographic recovery 578 

due to low pore accessibility.  By increasing the salt concentration of the buffer above 0.3 M 579 

NaCl (pH 8) the DNA-protein complexes dissociate and uniform VLPs can be assembled 580 

even in the presence of DNA. The approach of processing VP1 in buffers having a NaCl 581 

concentration above the protein-DNA dissociation concentration dramatically improved the 582 

chromatographic binding behaviour and the binding capacity increased by at least an order 583 

of magnitude.  Those findings lead to the development of efficient purification strategies of 584 

VP1-J8, using salt tolerant multi modal cation exchanger, removing most of the host cell 585 

DNA and protein without significant product loss. Since DNA affinity is an inherent property 586 
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of viral proteins, similar approaches are likely applicable for other viral proteins and will help 587 

to develop efficient bioprocessing strategies for viral proteins.  588 
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Figures – Caption  850 

Table 1: Starting material used for the different experiments. 851 

 852 

Table 2. Binding behaviour of resolubilized (after PEG precipitation) VP1-J8 and DNA to a 853 

multi modal cation exchanger (CaptoTM MMC) and a strong anion exchanger (CaptoTM Q) at 854 

pH 8. At salt concentrations < 0.3 M NaCl VP1-J8 is binding to DNA and forming complexes.  855 

 856 

Figure 1. Size exclusion chromatogram of clarified supernatant containing VP1-J8 857 

capsomeres at different NaCl concentrations of the sample. Running buffer had the same 858 

composition as the sample. Vertical line indicates the volume (15 ml) at which the 859 

capsomeres are expected to elute. (· · ·) 0.1 M NaCl, (- - -) 0.2 M NaCl, (- · - ·) 0.3 M NaCl, 860 

(—) 0.4 M NaCl. 861 

 862 

 863 

Figure 2. SDS-PAGE analysis of size exclusion fractions of clarified supernatant containing 864 

VP1-J8 at different salt concentrations and pH 8. (A) 0 M NaCl, (B) 0.1 M NaCl, (C) 0.2 M 865 

NaCl, (D) 0.3 M NaCl, (E) 0.4 M NaCl, (F) 0.5 M NaCl.   866 

 867 



30 
 

Figure 3. Size distribution of VP1-J8 capsomeres with and without DNA measured by 868 

dynamic light scattering at different buffer composition. (······) VP1-J8 in 0.1 M NaCl, (-··-··) 869 

VP1-J8 in 0.5 M NaCl, (- - -) DNA in 0 M NaCl (MQW), (—) VP1-J8 + DNA in 0.1 M NaCl. 870 

 871 

Figure 4. Size distribution of VP1-J8 capsomeres containing DNA, measured by dynamic 872 

light scattering, in 0.1 M NaCl (—) and after adding NaCl to a final concentration of 1 M NaCl 873 

(- - -). 874 

 875 

Figure 5. (A) TEM image of purified VP1-J8 capsomeres in 0.1 M NaCl buffer pH 8, 876 

containing no DNA. (B) Purified VP1-J8 capsomeres plus unsheared E.coli DNA in 0.1 M 877 

NaCl buffer pH 8. (C)The same sample as in (B) after the addition of NaCl to a final 878 

concentration of 1 M. The scale bar corresponds to 100 nm distance 879 

 880 

Figure 6. (A) Column loading. Absorbance at 280 nm obtained from the flowthrough while 881 

loading 2 ml of resolubilized VP1-J8 (after PEG precipitation) at NaCl concentrations of 0.5 882 

M (—) or 0 M (- --) at pH = 8 onto a 1 ml multimodal weak cation exchanger (CaptoTM MMC), 883 

loading started at 0 ml (B) Column eluting. Elution profile after loading resolubilized VP1-J8 884 

(after PEG precipitation) at NaCl concentrations of 0.5 M (—) or 0 M (- - -) at pH = 8 onto a 1 885 

ml multimodal weak cation exchanger (CaptoTM MMC). Elution was obtained by applying a 886 

step gradient of 1 M NaCl phosphate buffer at pH 12 starting at 13.5 ml. The elution buffer 887 

had a different absorbance compared to the binding buffer, caused by the instability of DTT, 888 

resulting in a baseline shift towards the end of the chromatogram.  889 

 890 

Figure 7. SDS-PAGE analysis of the bind and elute experiments of VP1-J8 onto CaptoTM 891 

MMC (Figure 6). Lanes (1) & (4) correspond to the starting material used for loading at 0.5 M 892 
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NaCl (lane 1) and 0 M NaCl (lane 4). (2) Flow through of loading at 0.5 M NaCl, (3) Elution 893 

after loading at 0.5 M NaCl, (5) Flow through of loading at 0 M NaCl, (6) First elution peak 894 

after loading at 0 M NaCl, (7) Second elution peak after loading at 0 M NaCl.  895 

 896 

Figure 8. (A) Anion exchange chromatography elution of resolubilized VP1-J8 (after PEG 897 

precipitation) loaded on a 1 ml CaptoTM Q column at 0.1 M NaCl, pH8. Only a minimal flow 898 

through can be observed and most of the protein, including VP1-J8 did bind to the column. 899 

VP1-J8 does elute in a first peak at 5ml, followed by a peak of mostly impurities. (—) 900 

Absorbance A280, (- - -) Conductivity. (B) Anion exchange chromatography elution of 901 

resolubilized VP1-J8 (after PEG precipitation) loaded on a 1 ml CaptoTM Q column at 0.5 M 902 

NaCl, pH8. VP1-J8 is not binding to the column and remains in the flow through that elutes 903 

at 0.5 ml. (—) Absorbance A280, (- - -) Conductivity. 904 

 905 

Figure 9. Assembly products of VP1 with and without DNA at different initial NaCl 906 

concentrations. Scale bar represents 100 nm. (A) 0.5 M NaCl no DNA. (B) 0.5 M NaCl plus 907 

DNA. (C) 0.1 M NaCl plus DNA. (D) 0.1M NaCl no DNA.  908 
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Tables 931 

 932 

Table 1: Starting material used for the different experiments. 933 

Experiment Starting material Host cell DNA DNA spiking 

2.6 Cation exchange Resolubilized PEG 

precipitate 

Yes No 

2.7 Anion exchange Resolubilized PEG 

precipitate 

Yes No 

2.8 Assembly Purified VP1-J8 

(PEG + AEX + SEC) 

No Yes 

2.11 SEC Clarified lysate Yes No 

2.12 Light Scattering Purified VP1-J8 

(PEG + AEX + SEC) 

No Yes 
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 951 

 952 

Table 2. Binding behaviour of resolubilized (after PEG precipitation) VP1-J8 and DNA to a 953 
multi modal cation exchanger (CaptoTM MMC) and a strong anion exchanger (CaptoTM Q) at 954 
pH 8.  955 

 956 

    CaptoTM MMC   CaptoTM Q 

loading buffer   VP1-J8 binding DNA binding   VP1-J8 binding DNA binding 

pH 8                     
c(NaCl) < 0.3 

M 

 very low low   very low high 

pH 8                     
c(NaCl) > 0.3 

M 
  high none   none high 
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 978 

 979 

Figures 980 

 981 

Figure 1. Size exclusion chromatogram of clarified supernatant containing VP1-J8 982 
capsomeres at different NaCl concentrations of the sample. Running buffer had the same 983 
composition as the sample. Vertical line indicates the volume (15 ml) at which the 984 
capsomeres are expected to elute.  985 
(· · ·) 0.1 M NaCl, (- - -) 0.2 M NaCl, (- · - ·) 0.3 M NaCl, (—) 0.4 M NaCl. 986 
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 1003 

 1004 

Figure 2. SDS-PAGE analysis of size exclusion fractions of clarified supernatant containing 1005 
VP1-J8 at different salt concentrations and pH 8. (A) 0 M NaCl, (B) 0.1 M NaCl, (C) 0.2 M 1006 
NaCl, (D) 0.3 M NaCl, (E) 0.4 M NaCl, (F) 0.5 M NaCl.   1007 

 1008 

 1009 

 1010 
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 1011 

Figure 3. Size distribution of purified VP1-J8 capsomeres with and without DNA measured 1012 
by dynamic light scattering at different buffer composition. (······) VP1-J8 in 0.1 M NaCl, (-··-1013 
··) VP1-J8 in 0.5 M NaCl, (- - -) DNA in 0 M NaCl (MQW), (—) VP1-J8 + DNA in 0.1 M NaCl. 1014 

 1015 

 1016 

 1017 

 1018 

 1019 
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 1021 

 1022 

 1023 
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Figure 4. Size distribution of VP1-J8 capsomeres containing DNA, measured by dynamic 1025 
light scattering, in 0.1 M NaCl (—) and after adding NaCl to a final concentration of 1 M NaCl 1026 
(- - -). 1027 
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 1041 
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 1042 

Figure 5. (A) TEM image of purified VP1-J8 capsomeres in 0.1 M NaCl buffer pH 8, 1043 
containing no DNA. (B) Purified VP1-J8 capsomeres plus unsheared E.coli DNA in 0.1 M 1044 
NaCl buffer pH 8. (C)The same sample as in (B) after the addition of NaCl to a final 1045 
concentration of 1 M. The scale bar corresponds to 100 nm distance. 1046 
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 1063 

Figure 6. (A) Column loading. Absorbance at 280 nm obtained from the flowthrough while 1064 
loading 2 ml of resolubilized VP1-J8 (after PEG precipitation) at NaCl concentrations of 0.5 1065 
M (—) or 0 M (- --) at pH = 8 onto a 1 ml multimodal weak cation exchanger (CaptoTM MMC), 1066 
loading started at 0 ml (B) Column eluting. Elution profile after loading resolubilized VP1-J8 1067 
(after PEG precipitation) at NaCl concentrations of 0.5 M (—) or 0 M (- - -) at pH = 8 onto a 1 1068 
ml multimodal weak cation exchanger (CaptoTM MMC). Elution was obtained by applying a 1069 
step gradient of 1 M NaCl phosphate buffer at pH 12 starting at 13.5 ml. The elution buffer 1070 
had a different absorbance compared to the binding buffer, caused by the instability of DTT, 1071 
resulting in a baseline shift towards the end of the chromatogram.  1072 
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 1083 

Figure 7. SDS-PAGE analysis of the bind and elute experiments of VP1-J8 onto CaptoTM 1084 
MMC (Figure 6). Lanes (1) & (4) correspond to the starting material used for loading at 0.5 M 1085 
NaCl (lane 1) and 0 M NaCl (lane 4). (2) Flow through of loading at 0.5 M NaCl (P1 fig. 6a), 1086 
(3) Elution after loading at 0.5 M NaCl (P4 fig. 6b), (5) Flow through of loading at 0 M NaCl 1087 
(P2 fig. 6a), (6) First elution peak after loading at 0 M NaCl (P3.1 fig. 6b), (7) Second elution 1088 
peak after loading at 0 M NaCl (P3.2 fig. 6b).  1089 
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 1100 

Figure 8. (A) Anion exchange chromatography elution of resolubilized VP1-J8 (after PEG 1101 
precipitation) loaded on a 1 ml CaptoTM Q column at 0.1 M NaCl, pH8. Only a minimal flow 1102 
through can be observed and most of the protein, including VP1-J8 did bind to the column. 1103 
VP1-J8 does elute in a first peak at 5ml, followed by a peak of mostly impurities. (—) 1104 
Absorbance A280, (- - -) Conductivity. (B) Anion exchange chromatography elution of 1105 
resolubilized VP1-J8 (after PEG precipitation) loaded on a 1 ml CaptoTM Q column at 0.5 M 1106 
NaCl, pH8. VP1-J8 is not binding to the column and remains in the flow through that elutes 1107 
at 0.5 ml. (—) Absorbance A280, (- - -) Conductivity. 1108 
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 1124 

Figure 9. Assembly products of VP1 with and without DNA at different initial NaCl 1125 
concentrations. Scale bar represents 100 nm. (A) 0.5 M NaCl no DNA. (B) 0.5 M NaCl plus 1126 
DNA. (C) 0.1 M NaCl plus DNA. (D) 0.1M NaCl no DNA.  1127 
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