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Abstract

The origin of quark confinement from the theory of Quantum Chromodynamics (QCD)
is a subject of great interest. The centre vortex model has been proposed as a possible
explanation for this property, with remarkable success having been demonstrated over
the past 40 years. In this work, we push this model in two new directions. The first is
an exploration of the geometric structure of centre vortices as they appear in lattice
simulations. This allows for a detailed examination of the correlation between centre
vortices and topological charge, as well as an exploration of vortex branching and
percolation in QCD.

The second direction explored is the transition from pure-gauge theory to full
QCD, where gluons transition to dynamical quark-antiquark pairs. The effect of the
introduction of dynamical quarks is explored in the context of the static quark potential,
gluon propagator and Euclidean correlator. These calculations reveal the remarkable
impact of dynamical fermions on the structure of centre vortices, and for the first time
finds quantitative agreement between the vortex-only and original gauge fields. These
results reveal the important connection between dynamical fermions and centre vortices,
further reinforcing the crucial role centre vortices play in generating confinement in
QCD.
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Chapter 1

Introduction

Of the four forces of nature, it is the strong force that poses some of the most challenging
problems present in modern physics. Despite the development of the theory of quantum
chromodynamics (QCD), a full understanding of the emergent properties of the strong
force that governs the behaviour of quarks and gluons remains elusive. This is primarily
a result of the mathematical intractability of the theory. This arises from the complex
self-interactions of gluons resulting in highly non-trivial vacuum structure. This same
vacuum structure also gives rise to two of the defining features of QCD: the confinement
of quarks and gluons and the dynamical generation of mass.

Confinement is expressed experimentally by the inability to observe quarks in
isolation. Instead, quarks are always bound together into hadrons; composite particles
that carry net-zero colour, the QCD equivalent of electric charge. Dynamical generation
of mass results in the mass of these hadrons being greater than the sum of their
elementary constituents. A famous consequence of this property is the fact that the
sum of the bare masses of the three quarks comprising a proton can only account for
approximately 1% of the observed mass of the proton [1]. These two properties are
fundamental to the behaviour of quarks and gluons, however their origin within the
theoretical understanding of QCD remains an open question to this day.

The most successful theoretical technique used to probe the nature of QCD is
known as the lattice. Lattice QCD attempts to resolve the mathematical difficulties of
QCD by considering a region of spacetime in terms of a discrete grid of points. The
lattice provides a nonperturbative regulator for the theory, introducing a maximum
momentum governed by the spacing of the lattice. By reducing computations to a
finite number of points in a periodic volume, it is possible to gain tangible insight into
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the behaviour of QCD. This of course comes at the cost of the introduction of lattice
artifacts arising from this discretisation, but one of the most important properties
of the lattice QCD method is that it can be systematically improved to reduce the
impact of these systematic errors. Thus, it provides the only known first-principles
systematically-improvable approach to performing QCD calculations.

With the advent of modern supercomputers, lattice QCD has provided a wealth of
insight into the dynamics of QCD. It has also enabled researchers to explore a wide
variety of theories that seek to explain the properties of confinement and dynamical
generation of mass. One of the most promising theories is known as the centre vortex
model [2–12]. Centre vortices are remarkably simple structures that can be identified
within the ground-state gluon fields. Despite their simplicity, centre vortices are able
to reproduce a wide range of properties consistent with both confinement and the
dynamical generation of mass [13–20]. Furthermore, removal of centre vortices has
shown a corresponding loss of these properties. As such, there is much interest in
further elucidating the impact of centre vortices on QCD.

Expanding upon this body of work forms the motivation for this research. In
particular, no previous work has explored the impact of dynamical fermions on the
centre vortex structure of QCD. Inclusion of dynamical fermions allows us to observe
how centre vortices behave in the presence of these new physical degrees of freedom, and
provides new insight into the fascinating interplay between QCD and centre vortices.
These effects will be studied herein by performing calculations of the static quark
potential, gluon propagator and Euclidean correlator, each of which can be used to
observe indicators of confinement.

Building on these results, we also employ novel visualisation techniques to explore
the geometry of centre vortices. These techniques allow us to search for correlations
between centre vortices and other topological objects present in the QCD vacuum.
They allow us to quantitatively examine changes in vortex structure induced by the
introduction of dynamical fermions. Such explorations have never been done in the
QCD gauge group of SU(3), which permits additional complexity in the centre vortex
structure. This analysis reveals for the first time the significance of structures known as
vortex branching points. These methods provide valuable insight into determining the
geometric response of centre vortices to the inclusion of dynamical fermions, and the
relationship between this geometry and the presence of confinement. The consequence
of this body of research is a greater understanding of the complex interrelationship
between QCD ground-state fields, dynamical fermions, and centre vortices.
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This thesis is structured as follows: Chapter 2 will introduce the theory of QCD in
more detail and outline how calculations are conducted on the lattice. Chapter 3 will
introduce the centre vortex model and how centre vortices are identified on the lattice.
Chapter 4 reports the results published in Ref. [21], outlining the understanding of
the centre-vortex picture in pure Yang-Mills QCD. This chapter also introduces the
visualisation techniques that allow for a detailed understanding of the pure-gauge
vortex structure. Chapter 5 reports the results published in Ref. [22], beginning the
exploration of the impact of dynamical fermions with the calculation of the static
quark potential on vortex-modified ensembles. Chapter 6 reports the results published
in Ref. [23] and continues the exploration of the impact of dynamical fermions by
presenting calculations of the gluon propagator and Euclidean correlator. Chapter 7
reports the results published in Ref. [24], returning to the visualisation techniques of
Chapter 4 to observe how vortex structure changes upon the introduction of dynamical
fermions. Chapter 8 summarises the findings of this research.





Chapter 2

Lattice QCD

Quantum chromodynamics, like all theories encompassed by the Standard Model, is
a gauge field theory, wherein the fermion degrees of freedom transform under the
fundamental representation of the group and the force-carrying gauge boson transforms
under the adjoint representation. The gauge group of QCD is the non-Abelian group
SU(3). The non-Abelian nature gives rise to many of the unique complexities associated
with QCD and leads to the necessity for lattice QCD to be able to calculate quantities of
interest. In this chapter, we discuss the formulation of continuum QCD, then transition
to the lattice. We will also highlight the differences between so-called pure-gauge lattice
calculations and those involving dynamical fermions, as comparisons between these
two types of lattice calculations will recur throughout this thesis.

2.1 Continuum QCD

Like all gauge field theories, QCD is formulated via a Lagrangian that describes the
interactions between a fermion field and a corresponding gauge field. In the case
of QCD, the fermion field describes the quarks, and the gauge field describes the
gluons. The symmetry group of the Lagrangian is SU(3), which in the fundamental
representation is the group of 3 × 3 unitary matrices with unit determinant. The QCD
Lagrangian density is

L(x) = ψ̄(x)
(
i /D −m

)
ψ(x) − 1

2 Tr (Fµν(x)F µν(x)) . (2.1)
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It is worth expanding upon the implications of each term in the Lagrangian. ψ(x) is
the quark field triplet in colour space, with ψ̄ the corresponding antiquark field. /D is
the covariant derivative

γµDµ = γµ (∂µ + igAµ) , (2.2)

with Aµ being the gluon field, γµ the gamma matrices, and g the gauge coupling. We
adopt the Dirac gamma matrix convention described in Appendix A.1. Hence, the first
term of Eq. (2.1) gives rise to quark-gluon interactions. The second term in Eq. (2.1)
describes gluon-gluon interactions through the field strength tensor

Fµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] . (2.3)

It is the 3-point and 4-point gluon interactions arising from the last term in Eq. (2.3)
that are responsible for the highly nontrivial QCD ground-state fields, as gluons are
permitted to not only interact with quarks but also with themselves.

These two terms of the Lagrangian are referred to as the fermionic (LF ) and gluonic
(LG) terms respectively, such that

LF (x) = ψ̄(x)
(
i /D −m

)
ψ(x) (2.4)

LG(x) = −1
2 Tr (Fµν(x)F µν(x)) (2.5)

Under a local gauge transformation, Ω(x), the QCD fields transform like

ψ(x) → Ω(x)ψ(x) , (2.6)
ψ̄(x) → ψ̄(x) Ω†(x) , (2.7)

Aµ(x) → Ω(x)Aµ(x) Ω† + i

g
(∂µΩ(x)) Ω†(x) . (2.8)

The result of these transformation properties is that the QCD Lagrangian is locally
gauge invariant.

The action corresponding to the Lagrangian is obtained by integrating over all
spacetime, such that

S =
∫
d4xL(x) (2.9)

The gluon and fermion actions, SG and SF , are obtained by integrating the correspond-
ing components of the Lagrangian. Expectation values of operators are calculated via
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path-integral expressions of the form

〈
O[ψ, ψ̄, Aµ]

〉
= 1

Z

∫
D[ψ, ψ̄] D[Aµ]O[ψ, ψ̄, Aµ] eiS[ψ, ψ̄, Aµ] , (2.10)

where Z is the generating functional

Z =
∫

D[ψ, ψ̄] D[Aµ] eiS[ψ, ψ̄, Aµ] . (2.11)

It is the goal of QCD to evaluate expressions of the form given in Eq. (2.10). In
practice, this is impossible to perform analytically at low energies. Thus it is essential
to seek an alternative approach.

There are a number of interesting properties that can be observed in Eq. (2.10).
First is the close similarity that this expression bears to the evaluation of expectation
values in statistical mechanics. In statistical mechanics, the partition function acts
as a probability normalisation, whilst a term like e−β H weights each state. A crucial
difference is the presence of the factor of i in the exponential, which defies interpretation
as a probability weight. To account for this, it is possible to formulate the theory in
Euclidean space via

t → −it , A0 → iA0 . (2.12)

This has the effect of taking
iS → −S , (2.13)

which results in operator expectation values taking the form

〈
O[ψ, ψ̄, Aµ]

〉
= 1

Z

∫
D[ψ, ψ̄] D[Aµ]O[ψ, ψ̄, Aµ] e− S[ψ, ψ̄, Aµ] . (2.14)

Eq. (2.14) motivates lattice QCD. To evaluate an operator, one needs to integrate over
all possible quark, antiquark and gluon fields, with each field weighted by exp (−S).
In general, this integral remains impossible to compute exactly. However, it highlights
the fact that if one can effectively sample the relevant QCD fields according to the
probability distribution given by the action, then it would be possible to estimate the
operator expectation values. This is precisely the aim of lattice QCD.
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2.2 Lattice QCD

Lattice QCD seeks to calculate operators of the form presented in Eq. (2.14) by
discretising spacetime into a hypercubic grid. This is done by considering a finite set
of points in each of the three spatial and one temporal directions, with the spacing
between each point denoted as the lattice spacing, a. This results in a total lattice
volume of V = (Ns a)3 ×Nt a, where Ns and Nt are the number of points in the spatial
and temporal directions respectively. For the purposes of this work, periodic boundary
conditions are also imposed upon the lattice.

We will now discuss the formulation of gluon and fermion fields on the lattice. An
immediate effect of discretisation is that derivatives and integrals now become finite
differences and sums, such that for a test function f(x), we have

∂µ f(x) → f(x+ µ̂) − f(x− µ̂)
2a , (2.15)∫

d4x f(x) → a4 ∑
x∈Λ

f(x) , (2.16)

where Λ simply refers to the set of all points in the lattice, and µ̂ is the unit vector in
the µ direction multiplied by the lattice spacing. For example, SF in the absence of
gauge fields would, under this prescription, read

SF = a4 ∑
x∈Λ

ψ̄(x)
 4∑
µ=1

γµ
ψ(x+ µ̂) − ψ(x− µ̂)

2a +mψ(x)
 . (2.17)

However, reintroducing the gauge fields requires some care. The expression in
Eq. (2.17) is not gauge invariant, and in fact each term now has reference to points
separated by a finite distance. An important part of local gauge invariance is that the
gauge fields account for the change in the underlying gauge of the fermion fields over
infinitesimal separations. This situation changes on the lattice, as we now want to
account for the change in gauge over finite separations. To do this, the gauge fields are
reintroduced in the form of gauge links, Uµ(x).

The gauge links are introduced to resolve the fact that terms such as ψ̄(x)ψ(x+ µ̂)
present in Eq. (2.17) are not gauge invariant under transformations of the form presented
in Eqs. (2.6) and (2.7). The gauge links Uµ(x) have the transformation property,

Uµ(x) → Ω(x)Uµ(x) Ω(x+ µ̂) (2.18)
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x
x+ µ̂x− µ̂

x+ ν̂

x− ν̂

a

Uν(x) Pµν(x)

Fig. 2.1 An example of a 2D lattice with lattice spacing a. From site x we define
x+ aµ̂ to refer to the next lattice site in the µ̂ direction. The gauge links Uµ(x) are
defined on the links between sites. The plaquette Pµν(x) is the product of the four
gauge links around a 1 × 1 loop.

Given this transformation property, it is easy to see why Uµ(x) are referred to as links.
They exist as a link between the lattice sites x and x+ µ̂. Indeed, on the lattice they
are typically visualised as connections between neighbouring sites, as seen in Fig. 2.1.
The gauge links are connected to the continuum gluon fields by the expression,

Uµ(x) = P exp
(

−iag
∫ 1

0
dλAµ(x+ λµ̂)

)
, (2.19)

where P denotes a path-ordered integral. This is often approximated on the lattice by
using a midpoint estimation of the integral in Eq. (2.19) such that,

Uµ(x) = exp
(

−iagAµ
(
x+ µ̂

2

))
. (2.20)

Based on Eq. (2.19), we note that we can also express the reverse link from x+ µ̂ to x
as U †

µ(x). The introduction of the gauge links allows us to write a gauge-invariant SF
as,

SF = a4 ∑
x∈Λ

ψ̄(x)
 4∑
µ=1

γµ
Uµ(x)ψ(x+ µ̂) − Uµ(x− µ̂)† ψ(x− µ̂)

2a +mψ(x)
 . (2.21)
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Eq. (2.21) can also be rewritten as a matrix expression

SF = a4 ∑
x,y

ψ̄(x)D(x|y)ψ(y) , (2.22)

where D(x|y) is known as the position-space Dirac operator,

D(x|y) =
4∑

µ=1
γµ
Uµ(x) δx+µ̂,y − U †

µ(x− µ̂) δx−µ̂,y

2a +mδx,y . (2.23)

The inverse of the Dirac operator, D−1(x|y), is the quark propagator and is also
essential for the calculation of lattice n-point functions.

The form of the Dirac operator given in Eq. (2.23) appears at first glance to
be a sufficient discretisation of the continuum fermion action. However, there is an
unintentional consequence of this discretisation process that is best revealed by taking
the Dirac operator to momentum space. After a Fourier transform, the momentum-
space Dirac operator is given by,

D̃(p) = m+ i

a

∑
µ

γµ sin(pµa) . (2.24)

The problem arises when one considers massless fermions by setting m = 0. In this
case, we find that the the inverse Dirac operator in momentum space yields,

D̃−1(p) =
−ia−1 ∑

µ γµ sin(pµ a)
a−2∑

µ sin2(pµ a) . (2.25)

The continuum form of Eq. (2.25) has a single pole at p2 = 0, indicating the presence
of a single massless fermion. However, noting that pµ ∈

(
−π
a
, π
a

]
, it is clear that the

lattice form of the propagator has 15 additional poles, one for each combination of
pµ where the components are either π

a
or 0. This is the famous problem of fermion

doubling [25]. These so-called doublers appear purely as a result of lattice discretisation,
and are completely unphysical. The problem is manifest in Eq. (2.21) for m = 0 as the
derivative form splits the lattice into odd and even sites in each direction.

To remove the doublers, an additional term first proposed by Wilson is introduced
to Eq. (2.24) such that it now has the form,

D̃(p) = m+ i

a

∑
µ

γµ sin(pµa) + 1
a

∑
µ

(1 − cos(pµa)) . (2.26)
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Now when pµ has l components that equal π/a, this new term contributes a factor of
2l/a to the mass of the doubler, suppressing the doublers in the limit as a → 0. The
position-space Dirac operator corresponding to Eq. (2.26) is

DWilson(x|y) =
(
m+ 4

a

)
δx,y −

4∑
µ=1

(1 − γµ)Uµ(x) δx+µ̂,y + (1 + γµ)U †
µ(x− µ̂) δx−µ̂,y

2a .

(2.27)
This expression is frequently rewritten in terms of the hopping parameter κ = 1/(2(am+
4)), such that,

DWilson(x|y) = δx,y − κ
4∑

µ=1

(1 − γµ)Uµ(x) δx+µ̂,y + (1 + γµ)U †
µ(x− µ̂) δx−µ̂,y

2a . (2.28)

Note that in Eq. (2.28) we have absorbed an overall factor of C = m+ 4/a into the
definition of the quark fields by taking ψ →

√
C ψ and ψ̄ →

√
C ψ̄. As we shall later

see, it is the hopping parameter that is set to determine the mass of the bare quarks in
the lattice generation procedure. The Wilson Dirac operator is the basis of the lattice
form of the fermion action used in this work. So far we have considered only a single
flavour of quark, however the extension to multiple flavours is straightforward. We
simply introduce fermion fields, ψf , and corresponding masses, mf , for each of the Nf

flavours and sum over them, such that the fermion action reads

SF = a4
Nf∑
f

∑
x,y

ψ̄f (x)Df (x|y)ψf (y) . (2.29)

It is worth noting that the Wilson Dirac operator is not the only method by
which the Dirac operator may be discretised. Alternative fermion formulations such as
staggered [26], overlap [27] and domain-wall [28] fermions have been devised.

Analysis of SG proceeds in a similar manner. First we wish define Fµν in terms of
the gauge links. To do this, it is necessary to introduce the concept of a Wilson loop
on the lattice. Wilson loops are the simplest gluonic gauge-invariant quantity that can
be constructed on the lattice. They are formed by taking the trace of the product of
gauge links around a closed path C, such that

W (C) = Tr
( ∏
x∈C

Uµ(x)
)
. (2.30)
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The 1 × 1 Wilson loop is given by the trace of the plaquette,

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x) . (2.31)

An example plaquette is shown in Fig. 2.1. The relevance of the plaquette can be seen
upon taking its Taylor expansion,

Pµν = I − ia2g Fµν − a4g2

2 F 2
µν + O(a6) . (2.32)

Utilising this expansion to O(a2), we determine that,

a4

2 Tr (Fµν F µν) =
∑
µ, ν

1
g2 Tr

(
I − 1

2
(
Pµν + P †

µν

))
. (2.33)

Eq. (2.33) is thus sufficient to define a lattice gauge action accurate to O(a2), known
as the Wilson gauge action,

SWilson = β
∑
x

∑
µ<ν

1
3 Tr

(
I − 1

2
(
Pµν + P †

µν

))
, (2.34)

where β = 2Nc/g
2 is the lattice coupling constant, and Nc is the number of colours. A

factor of 2 is encountered in restricting µ < ν. This brings us to the point where we
have defined the simplest useful forms of the lattice fermion and gluon actions.

2.3 Systematic Improvement

The lattice forms of SF (Eq. (2.29)) and SG (Eq. (2.34)) we have arrived at serve as
a launching point for further improvement. Although the actions introduced so far
have the correct continuum limit as a → 0, any lattice calculation will necessarily be
impacted by finite-spacing errors. It is therefore desirable to modify the action to
eliminate errors at higher orders of the lattice spacing. This is achieved by the process
first introduced by Symanzik [29–31] and involves introducing terms of increasingly
higher order in the lattice spacing. These terms are selected such that they cancel the
errors introduced by the existing terms to a desired order.
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In this work, we employ the improved Wilson fermion action implemented through
the introduction of the term

−κf cSW
∑
x

∑
µν

i

2 ψ̄f σµν Fµν(x)ψf (x) , (2.35)

to Eq. (2.28), where κf is the hopping parameter for a quark with flavour f and cSW is
a coefficient that may be determined by a variety of methods to best make contact with
physical results. At tree level, cSW = 1. For our purposes, we use the coefficient as
determined in Ref. [32] via renormalisation group arguments, cSW = 1.715. Rather than
being determined by a single plaquette, as was done in Eq. (2.32), Fµν is constructed
from the four plaquettes around the point x as shown in Fig. 2.2, such that

Fµν = 1
4

4∑
i=1

1
2i
(
P (i)
µν (x) − P (i)†

µν (x)
)
, (2.36)

The shape of this combination of links leads to this definition of Fµν often being referred
to as the ‘clover’ definition. Hence the full fermion action is

Simproved =
Nf∑
f

∑
x

[
ψ̄f (x)ψf (x) − κf cSW

∑
µ,ν

i

2 ψ̄f (x)σµν Fµν(x)ψf (x)

− κf
∑
µ

{
ψ̄f (x) (1 − γµ)Uµ(x)ψf (x+ µ̂)

+ψ̄f (x) (1 + γµ)U(x− µ̂)†ψf (x− µ̂)
}]
. (2.37)

This improved action serves to remove O(a) errors from the fermion action introduced
by the Wilson term and is used for the generation of all dynamical ensembles utilised
in this work. While the quark mass also encounters O(a) improvement, we refer to the
pion mass, mπ, as a measure of the quark mass considered in the simulation.

Turning to the gluon action, we make use of two improved actions in this work.
The first, used in Chapter 4, is known as the Lüscher-Weisz action [33], and is given by,

SLW =
∑
x

β

3

5
3
∑
µ<ν

Tr
(
I − 1

2
(
Pµν + P †

µν

))

− 1
12u2

0

∑
rectangles

Tr
(
I − 1

2
(
Rµν +R†

µν

)) , (2.38)
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P (1)
µνP (2)

µν

P (3)
µν P (4)

µν

µ̂

ν̂

Fig. 2.2 The four plaquettes that compose the clover combination.

where Rµν is the 1 × 2 rectangular Wilson loop, the sum over rectangles include two
orientations and µ < ν, and u0 is the tadpole improvement factor [34]

u0 =
(1

3 Re Tr(Pµν)
) 1

4
. (2.39)

Tadpole improvement is an alternative method used to determine improvement coeffi-
cients such that O(a2) errors are suppressed, leading to better contact with continuum
physics.

The second of the gauge actions employed in this work is the Iwasaki gauge
action [35],

SI =β6

c0
∑
µ<ν

Tr
(
I − 1

2
(
Pµν + P †

µν

))

+ c1
∑

rectangles
Tr
(
I − 1

2
(
Rµν +R†

µν

)) , (2.40)

where c1 = −0.331 and c0 = 1 − 8 c1 = 3.648 are numerical coefficients calculated via
renormalisation group arguments. Both of these gluon actions aim to eliminate errors
at O(a2).
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2.4 Gauge Field Generation

Once a gluon and fermion action have been selected, one can then generate lattice
configurations by producing gauge links Uµ(x) that are drawn from the probability
distribution, exp(−S). This sampling can be performed via a number of Monte-Carlo
techniques. If SF is omitted from the action, one can generate so-called ‘pure gauge’
or ‘pure Yang-Mills’ configurations. Even in pure gauge, it is not trivial to sample
the desired SU(3) probability distribution. However, it is simple to directly sample
the same distribution for SU(2), which is the motivation behind the famous Cabbibo-
Marinari heatbath method [36]. This method samples the three SU(2) subgroups that
compose SU(3) and uses the resultant SU(2) links to construct a thermalised SU(3)
ensemble.

The addition of dynamical fermions adds significant complexity to the lattice
generation process. To understand why, it is necessary to briefly diverge and discuss
how integration over the fermionic degrees of freedom is performed. Recall that the
goal of the lattice is to evaluate operator expectation values, ⟨O⟩, of the form given
in Eq. (2.14). These expectation values can be divided into a gluonic and fermionic
expectation value, such that

⟨O⟩ = ⟨⟨O⟩F ⟩G , (2.41)

where
⟨O⟩F = 1

Zf [U ]

∫
D[ψ, ψ̄] e−SF [ψ, ψ̄, U ] O[ψ, ψ̄, U ] , (2.42)

is the fermionic expectation value and

⟨O′⟩G = 1
Z

∫
D[U ] e−SG[U ] ZF [U ]O′[U ] , (2.43)

is the gluonic expectation value. For the purposes of this discussion, the focus will be
on the fermionic expectation value, Eq. (2.42). The fermionic partition function,

ZF [U ] =
∫

D[ψ, ψ̄]e−SF [ψ, ψ̄, U ] , (2.44)

that appears in the integrand of Eq. (2.43) will play a crucial role in the difficulty of
including dynamical fermions in lattice simulations, as we shall soon see.
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To integrate over fermionic variables, one must account for fermi statistics. Fermi
statistics appear as an antisymmetry between fermionic degrees of freedom, such that

ψ ψ′ = −ψ′ ψ , ψ̄ ψ′ = −ψ′ ψ̄ , ψ̄ ψ̄′ = −ψ̄′ ψ̄ , (2.45)

where the primed variables indicate different quantum numbers in the fermion field. To
encode this property, fermionic degrees of freedom are considered to be anticommuting
Grassmann numbers [37].

To familiarise ourselves with some of the properties of Grassmann numbers, consider
N Grassmann numbers, ηi, i = 1, . . . , N , that obey

ηi ηj = −ηj ηi , (2.46)

for all i, j ∈ 1, . . . , N . This naturally implies that η2
i = 0. Thus, any power series of

Grassmann numbers must have only a finite number of terms as one cannot have terms
containing the same Grassmann number. For example, if N = 2, the highest order
polynomial one can have is

f(η1, η2) = a0 + a1 η1 + a2 η2 + a12η1 η2 , (2.47)

where the ai and a12 are complex Grassmann coefficients. Integrals over Grassmann
numbers also satisfy the normalisation conditions

∫ N∏
i=1

dηi η1 η2 . . . ηN = 1 , (2.48)

and ∫ N∏
i=1

dηi 1 = 0 . (2.49)

As we have already seen in Eq. (2.29), it is possible to write the fermion action in
a matrix bilinear form. We are therefore motivated to consider integrals of the form

ZF =
∫ N∏

i=1
dηi dη̄i exp

 N∑
i,j=1

η̄iMij ηj

 , (2.50)

where the η̄i are another set of N Grassmann numbers. To solve this integral, we
observe that η′

i = Mij ηj is a linear change of integration variables. Such a change of
integration variables introduces a factor of det[M ] (see Appendix A.2 for a derivation),
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which allows us to rewrite Eq. (2.50) as

ZF = det[M ]
N∏
i=1

∫
dη′

i dη̄i exp η̄i η′
i (2.51)

= det[M ]
N∏
i=1

∫
dη′

i dη̄i (1 + η̄iη
′
i) (2.52)

= det[M ] , (2.53)

where in the second line we expanded the exponential as a power series and made use
of Eq. (2.46) to limit the polynomial to first order. In the final line we made use of
Eq. (2.48) and Eq. (2.49) to resolve the integral.

Another valuable result that can be derived from Eq. (2.51) is known as Wick’s
theorem, which states that an expectation value over Grassmann numbers can be
exactly solved as

⟨ηi1 η̄j1 . . . ηiN η̄jN ⟩F = (−1)n
∑

P (1,2,...,N)
sign(P ) (M−1)i1jP1

. . . (M−1)iN jPN
, (2.54)

where the sum runs over permutation of 1, . . . , N and sign(P ) is the sign of the
permutation.

The significance of the combination of Eq. (2.51) and Eq. (2.54) is immediately
apparent. It is clear that the fermion generating functional ZF [U ] is actually the
determinant of the Dirac operator D(x|y), and that Fermion expectation values can be
explicitly calculated from the inverse of the Dirac operator. Ignoring for the moment
the computational complexity of such a calculation, this means that in the process of
generating lattice ensembles one only needs to be concerned with sampling the gluon
fields, as the fermionic degrees of freedom can be integrated out. Thus, the probability
distribution one is attempting to sample when accounting for Nf flavours of dynamical
fermions simply reads

1
Z
e−SG[U ]

Nf∏
f=1

det[Df ] . (2.55)

The simplicity of Eq. (2.55) belies the increased complexity required to sample from
this distribution. The sources of this complexity are twofold. Firstly is the fact that
computing an N ×N matrix determinant is of O(N !) complexity. Recalling that N is
governed by the lattice volume, this is prohibitively expensive even for moderate lattice
sizes. To ameliorate this issue, an analogy is drawn between Grassmann integration
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and integrals over complex bosonic fields, ϕ. These fields are known as pseudofermion
fields. The analogy arises from the fact that the Gaussian integral over Grassmann
fields, ψ and ψ̄, given in Eq. (2.50), can be related to the integral over bosonic fields,
ϕ, such that ∫

D[ψ, ψ̄] e−ψ̄ D ψ = det[D] =
∫

D[ϕ, ϕ†] e−ϕ† D−1 ϕ , (2.56)

where the bilinear indices are implied and we adopt the simplified notation D[ψ, ψ̄] =∏N
i=1 dψi dψ̄i and D[ϕ, ϕ†] = π−N ∏N

i=1 dϕi dϕ
†
i . Thus the full effective action is written

as
Seff [U, ϕ, ϕ†] = SG[U ] + ϕ† D−1 ϕ . (2.57)

With respect to this action, the partition function becomes

Z =
∫

D[U, ϕ, ϕ†] e−Seff [U, ϕ, ϕ†] . (2.58)

We therefore seek to sample both the gauge and pseudofermion fields to generate gauge
field samples from the distribution P (U) = exp (−Seff). It must be emphasised that
because the pseudofermion fields may always be integrated out to a function of the
gauge fields, the objective of the sampling procedure is still to obtain only the gauge
fields, with the understanding that an integral over gauge fields distributed according
to P (U) will implicitly contain the integral over the pseudofermion fields as well.

The second issue with sampling the fermionic contribution arises from the highly
non-local nature of the fermion determinant. The general method that we wish to
employ is as follows:

1. Propose a random gauge field, Uµ with action S.

2. Update one or multiple gauge links in a micro-reversible manner to obtain a new
gauge field, U ′

µ. This updated field has action S ′.

3. Accept the new configuration with probability min
(
1, exp

(
−S′

S

))
.

In pure gauge theory, determining the acceptance probability is computationally cheap,
as the ratio of the new action to the old only depends on the local neighbourhood of the
updated link(s). The introduction of the fermion determinant removes this locality, an
hence requires a resampling of the pseudofermion fields for every update step. Despite
the computational improvement brought about through the use of pseudofermions, this
is still an expensive proposition. To resolve this, one may try updating many links at
a time to reduce the number of samples. However, this leads to larger changes in the
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action at each update step, resulting in a lowered acceptance probability and hence
more iterations. Thus one finds themselves in a bind. Either option will require a large
number of expensive calculations with the whole process scaling with the square of the
lattice volume.

To resolve this computational inefficiency, the hybrid Monte Carlo (HMC) method [38,
39] was devised. The key idea is that one wishes to perform larger changes to the gauge
field but retain a reasonable acceptance probability by following a physically motivated
update trajectory. This is done by introducing ficticious momenta P ∈ SU(3) which
are conjugate to the gauge field U , then evolving P and U along the trajectory defined
to preserve the fictitious Hamiltonian,

H[U, P ] = 1
2P

2 + S[U ] . (2.59)

Hamilton’s equations for this system are

∂P

∂τ
= −∂S

∂U
, (2.60)

∂U

∂τ
= P , (2.61)

where τ is the computer-time evolution of the system. These equations are known as
the molecular dynamics equations due to their origins in describing the evolution of a
classical system. If U were to be evolved exactly along this path, the new configuration
would always be accepted, although in reality numerical errors will result in deviations
from this exact trajectory.

The general steps for a HMC update algorithm are as follows:

1. Sample pseudofermion fields ϕ distributed according to the distribution P (ϕ) =
exp

(
−ϕ† D−1 ϕ

)
.

2. For a given initial gauge field, U , sample conjugate momenta, P , according to
the distribution exp (− Tr[P 2]).

3. Evolve U and P according to the molecular dynamics equations to obtain U ′ and
P ′.

4. Accept/reject U ′ with probability min (1, exp (−S ′
eff/Seff)). Note that in calcu-

lating S ′
eff , ϕ is reused from step 1.
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Table 2.1 A summary of the lattice ensembles used in this work [38]. The dynamical
ensembles both use the improved fermion action described in Eq. (2.37) and have a
heavy strange quark mass given by κs = 0.13640.

Type N3
s ×Nt SG a (fm) β κu,d mπ (MeV) Nconfig

Pure gauge 203 × 40 SLW 0.125 4.52 − − 100
Pure gauge 323 × 64 SI 0.100 2.58 − − 200
Dynamical 323 × 64 SI 0.102 1.90 0.13700 701 200
Dynamical 323 × 64 SI 0.093 1.90 0.13781 156 200

This process results in gauge fields U that are sampled according to the effective action,
and thus incorporate the effect of dynamical fermions on the gauge fields.

For this work, we make use of four lattice ensembles. Two are pure gauge and two
are (2 + 1) flavour ensembles generated with the full QCD action from the PACS-CS
collaboration [38]. These dynamical ensembles used the improved fermion action given
in Eq. (2.37) and the improved gluon action given in Eq. (2.40). The parameters for
the lattice ensembles used in this work are summarised in Table. 2.1.

Once one has generated lattice configurations, it is then possible to analyse the
resultant ensemble to extract a wide range of QCD properties by evaluating operators
via the method outlined in Eq. (2.10). This is the foundation of all lattice analyses,
and brings us to a position where we can introduce the core concept underlying the
majority of this work; the centre vortex model of QCD.



Chapter 3

Centre Vortices on the Lattice

An essential feature of Quantum Chromodynamics is the fact that it admits a highly
non-trivial vacuum structure. The consequences of this property are far-reaching and
lead to the distinctive properties of QCD mentioned in Chapter 1: confinement and
dynamical chiral symmetry breaking (χSB) resulting in the dynamical generation of
mass. Determining the origin of these properties is a topic of great interest, as it is
currently unknown how the QCD Lagrangian shown in Eq. (2.1) gives rise to this
behaviour.

The topology of the QCD vacuum is thought to capture the origin of both confine-
ment and DχSB. Many theories have emerged over the years to explain this relationship
between vacuum structure and the properties of QCD, resulting in a range of topo-
logical theories, including Abelian monopoles [40–48], instantons [49–60] and, most
significantly to this work, centre vortices [2–20, 54, 61–74].

Abelian monopoles are the oldest topological explanation for confinement [40, 44].
The theory arises from an analogy to type II superconductors, in which magnetic flux is
confined into tubes of quantised flux amongst a medium of electrically charged bosons.
Abelian monopole theory postulates that confinement of quarks arises in a similar
manner, except with the magnetic and electric charge roles reversed [65]. The magnetic
monopoles are the medium, and the confinement of electrically charged particles, the
quarks, is the result. This role-reversal of electric and magnetic charges is why this
mechanism of confinement is known as dual-superconductivity [40, 44], brought about
via the presence of Abelian magnetic monopoles. Despite the appealing analogy to
superconductivity, this theory has fallen out of favour due to the incorrect scaling
behaviour of the static quark potential found in lattice studies [75, 76].
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Instantons are regions of non-trivial topological charge density that have shown
promise in explaining the dynamical generation of mass due to their association with
zero-modes of the Dirac operator [77]. The relationship between centre vortices and
instantons will be explored in Section 4.3.

Of these theories, centre vortices have emerged as the leading and most funda-
mental explanation for the unique properties of QCD [5–12, 14–20, 61–69, 72, 74].
Lattice calculations have demonstrated that centre vortices are connected to both
confinement [13–17] and DχSB [18–20]. However, as shall be discussed in greater detail
later in this chapter, there remain persistent quantitative discrepancies between the
centre vortex model and QCD predictions. Explanation of this tension presents an
open question, and motivates much of the work developed here.

This chapter will first present a description of centre vortices and briefly motivate
how they can give rise to confinement through a simple example. We will then describe
how centre vortices are identified on the lattice, as well as some of the properties they
possess. With this understanding developed, we will review the literature regarding
centre vortices and their phenomenology prior to the undertaking of this original
research. Finally, we shall describe a number of lattice smoothing algorithms that are
used throughout this work. This will build the necessary foundation to understand the
new results presented in the following chapters.

3.1 What are Centre Vortices?

Centre vortices were originally theorised as a method by which quarks are confined [2,
3]. The general postulate is that the QCD vacuum is dominated by regions of randomly
distributed quantised flux that is sufficient to result in confinement of quarks [78, 79].
Centre vortices in four dimensions are 4D volumes of the SU(N) gauge field that carry
charge corresponding to the centre of the group, ZN . ZN is the group of elements that
commute with all elements of SU(N), and is given by,

ZN =
{

exp
(2πim

N

)
I |m = 0, 1, . . . , N − 1

}
. (3.1)



3.1 What are Centre Vortices? 23

Hence for SU(N) there are N − 1 non-trivial centre elements. In the case of QCD, we
are of course considering SU(3), and hence frequently refer to Z3, where

Z3 =
{

exp
(2πim

3

)
I |m = −1, 0,+1

}
. (3.2)

In 3D, these centre vortices appear as tubes of finite radius carrying this chromo-
magnetic centre charge. Due to the Bianchi identity,

ϵµνρσ ∂ν Fρσ = 0 , (3.3)

these centre vortex tubes are required to be closed to ensure conservation of chromo-
magnetic flux [12].

We do not identify the so-called extended thick vortices. Instead, picturing the
tubes of centre flux as a rotating vortex, we identify structures analogous to the axis
of this tube, known as a thin vortex. Hence, on the lattice, we refer to the identified
vortices as thin or projected P-vortices. These thin vortices appear as lines rather than
tubes in three dimensions, or as 2D sheets in four dimensions. Moreover, it has been
shown that thin vortices identified on the lattice are correlated with the location of
physical thick vortices [10, 80]. For the remainder of this work we will focus on the
properties of thin centre vortices.

The ability of centre vortices to give rise to confinement is the result of their
interaction with Wilson loops (see Eq. 2.30). A centre vortex that intersects a Wilson
loop results in the Wilson loop acquiring the vortex’s centre phase, z, such that

W (C) → z W (C) . (3.4)

A visualisation of a centre vortex piercing a Wilson loop in 3D is shown in Fig. 3.1.
The simple property presented in Eq. (3.4) leads to the remarkable predictions of the
centre vortex model. To illustrate this, it is necessary to first detail the connection
between Wilson loops and the calculation of the static quark potential.

The static quark potential is the potential energy between two infinitely heavy,
stationary quarks as a function of their separation, r. This can be calculated on the
lattice by considering the expectation value of a Wilson loop of spatial extent r and
temporal extent t,

⟨W (r, t)⟩ =
∑
α

λα(r) exp (−V α(r) t) . (3.5)
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Fig. 3.1 A Wilson loop (solid black line) pierced by a thick centre vortex (blue torus)
in 3D.

Here, V α(r) are the static quark potential eigenstates and the λα(r) are the couplings
to these states. As the temporal extent grows, it is clear that the higher-energy states
will decay until only the ground state potential V 0 remains. Greater detail of the
calculation of the static quark potential will be provided in Chapter 5.

The confinement of quarks can be studied by considering the long-range behaviour
of the static quark potential. For particles with perturbative gluon exchange, this
potential is Coulomb-like, decaying to a constant value at large r. However, if quarks
are confined, the potential is expected to become linear in the pure-gauge theory as
the separation of the quarks increases. If this occurs, the slope of this linear region is
known as the string tension, σ.

To understand the relationship between centre vortices and confinement, we consider
the situation in which centre vortices are randomly distributed throughout the vacuum,
a property hereafter referred to as vortex percolation. Consider a two-dimensional plane
of area L2, with 2N vortices piercing the plane. Assuming an even distribution of
vortices, the total vortex density is ρ = 2N/L2. As there are two SU(3) vortex types,
corresponding to the two non-trivial phases, z = exp (±2πi/3), we assume that there
is an equal distribution of vortex phases, i.e. there are N vortices of each type. The
probability of finding n vortices of a given phase in some region of the plane A ⊂ L2 is
equal to,

PN(n) =
(
N

n

)(
A

L2

)n (
1 − A

L2

)N−n
. (3.6)
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The expectation value of the Wilson loop around the perimeter of A can therefore be
written as,

⟨W (∂A)⟩ =
N∑

m,n=0

(
exp

(2πi
3

))n
PN(n)

(
exp

(
−2πi

3

))m
PN(m) . (3.7)

As the vortex phases are uncorrelated, we may separate the sum to write,

⟨W (∂A)⟩ =
N∑
n=0

(
exp

(2πi
3

))n
PN(n)

N∑
m=0

(
exp

(2πi
3

))m
PN(m) . (3.8)

Consider the first sum in Eq. (3.8),

N∑
n=0

(
exp

(2πi
3

))n
PN(n) =

(
1 − A

L2

)N N∑
n=0

(
N

n

)(
exp

(2πi
3

)
A

L2

(
1 − A

L2

)−1)n

=
(

1 +
(

exp
(2πi

3

)
− 1

)
A

L2

)N
, (3.9)

where we have made use of the binomial series to evaluate the sum. The second term
in Eq. (3.8) may be calculated similarly. Hence the total expectation value is,

⟨W (∂A)⟩ =
(

1 +
(

exp
(2πi

3

)
− 1

)
A

L2

)N (
1 +

(
exp

(−2πi
3

)
− 1

)
A

L2

)N

=
(

1 − 3 A
L2 + 3

(
A

L2

)2)N

=
((

A

L2

)3
+
(

1 − A

L2

)3)N
. (3.10)

Rewriting Eq. (3.10) in terms of the vortex density ρ = 2N/L2, we have,

⟨W (∂A)⟩ =
((

Aρ

2N

)3
+
(

1 − Aρ

2N

)3)N
. (3.11)

Now we take the limit as N,L2 → ∞ whilst keeping ρ constant to arrive at,

lim
N,L2→∞

⟨W (∂A)⟩ = exp
(

−3
2ρA

)
. (3.12)

Letting A = r×t be the area of the Wilson loop as in Eq. (3.5), we see that V 0(r) = 3
2 ρ r,

so the static quark potential rises linearly with string tension σ = 3
2 ρ, exactly as it

should in a confining theory. Eq. (3.12) demonstrates an area law behaviour of the
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Wilson loop; this is often taken as a requirement for confinement [7, 81]. We see then
that we have, from a set of simple assumptions, constructed a model that exhibits
confinement.

An interesting corollary of this result arises if the vortices are instead not permitted
to percolate [63], meaning that there is a correlation between the location of vortices of
opposite sign. This can be viewed as imposing the condition that the maximum vortex
size is limited to some finite separation, d. In this case, the vortex phases will cancel
out everywhere except for the area of width d around the perimeter of A. Thus the
Wilson loop instead has expectation value,

⟨W (r, t)⟩ = exp
(

−3
2 ρV 2(r + t) d

)
. (3.13)

Clearly V 0(r) is no longer linear, and instead Eq. (3.13) goes like the perimeter of
the Wilson loop, instead of the area. Hence an upper bound on the size of vortices
results in a loss of confinement. This result has lead to the percolation of vortices
being viewed as an order parameter for confinement. Indeed, it has been shown in
SU(2) lattice studies that as the temperature increases and the theory tends towards
the high-temperature deconfining phase, vortices indeed cease to percolate [8, 63].

These simple calculations motivate the significant power of the centre vortex theory.
To be able to reproduce confining behaviour from a group containing only three elements
(in the case of QCD) is a remarkable property. Of course the static quark potential is
far from the full picture of QCD, and the vortices considered so far have not arisen
from the QCD Lagrangian. What we wish to do now is discuss how we can identify
the centre vortices present in lattice gauge field configurations generated according to
the methods outlined in Chapter 2. From there, we may begin to explore their ability
to explain the key properties of QCD.

3.2 Identifying Centre Vortices

To identity thin centre vortices on the lattice, we wish to bring every gauge link
as close as possible to an element of Z3. This is done by transforming each gauge
field configuration to maximal centre gauge (MCG). To do this, we find the gauge
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transformation Ω(x) that serves to maximise the functional [13, 17],

R = 1
V Ndim n2

c

∑
x,µ

∣∣∣TrUΩ
µ (x)

∣∣∣2 . (3.14)

After fixing to maximal centre gauge, the nearest centre element is defined by
finding the minimum difference in phase between TrUµ(x) and one of the elements
of Z3. Uµ(x) is then mapped to this nearest centre element to obtain the vortex-only
configurations, Zµ(x). As each link is now an element of Z3, the plaquettes also belong
to the centre group. Vortices are located in this projected configuration by identifying
non-trivial plaquettes, as a non-trivial flux indicates that this plaquette is pierced by a
vortex due to the relation described in Eq. (3.4).

This definition of centre vortices allows us to write the plaquettes on the vortex-only
ensembles as [12, 67]

Pµν(x) = exp
(
πi

3 ϵµνκλmκλ(x̄)
)
, (3.15)

where mκλ(x̄) ∈ {−1, 0, 1} defines the directed vortex charge orthogonal to the
plaquette and based at the dual-lattice site x̄ = x+ a

2(µ̂+ ν̂ − κ̂− λ̂). Note also that
mκλ(x̄) is antisymmetric under index permutation. This definition of the plaquette
provides us with a natural method of considering vortex lines present on 3D spatial
slices of the lattice, as will be essential for the analysis of vortex structure presented
in Chapters 4 and 7. This is done by simply fixing the value of λ to the desired
time-oriented dimension, which results in,

Pij(x) = exp
(2πi

3 ϵijkλmkλ(x̄)
)
, (3.16)

where i, j, k denote the three spatial coordinates and there is no sum over λ. In this
interpretation, i and j then denote the plane in which the spatial plaquette is calculated,
whilst k̂ is the direction of the vortex line orthogonal to this plane.

Eq. (3.15) also allows us to make connection with the conservation of vortex flux
required by the Bianchi identity, Eq. (3.3). Firstly, recall the relationship between
the field strength tensor and the plaquette presented in Eq. (2.32). Rearranging this
expression to O(a2) we find

iga2Fµν(x) = 1 − Pµν(x) . (3.17)
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Substituting Eq. (3.17) into Eq. (3.3) and making use of the vortex plaquette definition
Eq. (3.15) we find that

ϵµνκλ ϵµνστ ∂̄κmστ (x̄) = 0, (3.18)

where ∂̄κ = ∂
∂x̄κ

. Recalling mκλ is antisymmetric and

ϵµνκλ ϵµνστ = 2 (δκσδλτ − δκτδλσ) , (3.19)

one finds
∂̄κmκλ(x̄) = 0. (3.20)

To see how Eq. (3.20) requires that the vortex flux through a given three-dimensional
cube be conserved, consider the example of setting λ = 4. Then

∂̄kmk4(x̄) = ∇⃗ · m⃗(x̄) = 0 , (3.21)

with mκ4 = mk = [m⃗]k being the spatially-oriented vortex flux piercing the spatial
plaquette Pµν(x). Recalling the divergence theorem,

∫
V
d3r ∇⃗ · m⃗(r⃗) =

∫
∂V
dS⃗ · m⃗(r⃗) = 0, (3.22)

and mk = ±1, centre-vortex flux entering a face of a spatial cube V has to leave by
another face.

Once centre projection has been performed, we may subsequently define the vortex
removed configurations as Rµ(x) = Z†

µ(x)Uµ(x). Rµ(x) should then capture the physics
remaining after vortex removal. The result of this method of vortex identification is
that we produce the two vortex-modified ensembles, Zµ(x) and Rµ(x). Hence for the
remainder of this work we will consider sets of three ensembles, known as the

• Original, untouched (UT) fields, Uµ(x),

• Vortex-only (VO) fields, Zµ(x), and

• Vortex-removed (VR) fields, Rµ(x).

3.2.1 Parallel MCG Fixing

Given the size of the larger lattices used in this work, it is necessary to implement
a parallel version of the MCG algorithm, which proceeds as follows. To construct
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the maximal centre gauge transformation Ω(x), it is sufficient to consider the nearest-
neighbour contributions from Uµ(x) and Uµ(x− µ̂) ∀µ ∈ {1, 2, 3, 4}. For each x, one
then seeks to maximise the local functional [82]

R(x) =
∑
µ

|Tr Ω(x)Uµ(x)|2 +

∑
µ

∣∣∣TrUµ(x− µ̂) Ω(x)†
∣∣∣2 (3.23)

This is achieved by considering each of the three SU(2) subgroups of SU(3). Ω(x)SU(2)

is then expressed as a linear combination of the SU(2) generators σ⃗ such that

ΩSU(2)(x) = g4I − ig⃗ · σ⃗. (3.24)

This reduces Eq. (3.23) to a quadratic in (g4, g⃗) subject to a unitarity constraint that
can then be minimised via standard Lagrangian multiplier techniques. Once each
SU(2) of the three subgroups is iterated over once and Ω(x) has been constructed, it
is then applied to the nearest-neighbour gauge links. The process is repeated for all
other values of x and then iterated until a plateau in R is reached.

As Ω(x) depends only on its nearest-neighbours, we mask the algorithm to ensure
that at any one time we consider only even or odd values of x, where even or odd
is defined by whether ∑4

µ=1 xµ is even or odd. We then distribute regular chunks of
the lattice across processors with one shadowed plane in the directions along which
the lattice has been subdivided. Once an even or odd sweep has been completed,
the updated links are copied to adjacent processors so that they are available for
the alternate sweep. A diagram illustratingthis updating scheme, for two processors
distributed along one dimension is shown in Fig. 3.2.

The processor boundary is shown with the vertical dashed line. Gauge links are
shown with solid black arrows and shadowed gauge links are shown with black dashed
arrows. Shown is the update process starting with the even sites (blue circles) followed
by the odd sites (red circles):

1. The gauge links adjacent to the even sites are updated with the gauge transfor-
mation Ω(x).

2. The updated links along the boundary are copied to the relevant shadowed
locations.

3. The gauge links adjacent to the odd sites are updated.
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3 1
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boundary

3 1

2

2

4

4

Fig. 3.2 MCG updating scheme for two processors. The update process is described in
the text.

4. The updated shadowed links are copied to the relevant locations.

This method of parallel implementation requires a slightly greater number of overall
sweeps than the serial implementation, as each update does not have the fully propa-
gated information that would be carried by a serial process starting from one corner of
the lattice. However, it has a number of advantages. Most apparent is the real-time
reduction in calculation time, as the parallel implementation scales very well thanks to
minimal cross-processor memory requirements. Additionally, there is no directionality
in this implementation as each site only sees its neighbours during each sweep. This
suppresses any inconsistency arising from choice of start point or order of iteration.
Given that each site is only affected by its nearest neighbours, this implementation
also has the desirable property of being agnostic to the number of processors used in
the calculation.

3.3 Properties of Centre Vortices

With the procedure for identifying centre vortices on the lattice established, we now
wish to discuss some of the important properties of vortices and how they are examined
on the lattice. We will then present a review of the evidence for the centre vortex
picture of confinement prior to the undertaking of this work.
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Table 3.1 A summary of the possible number of centre vortices piercing a 3D cube
centred on x̃ and the interpretation of such points.

ncube(x | µ̂) Interpretation

0 No vortices present.
1 Terminating vortex, forbidden by conservation of centre charge.
2 Vortex line flowing through the cube.
3 Simple three-way branching point.
4 Vortex self-intersection.
5 Complex five-way branching point.
6 Vortex self-intersection or double branching.

3.3.1 Vortex Branching

An important feature of SU(3) vortices is the presence of vortex branching. Due to
the periodicity of the centre phase z = exp(2πi/3), three centre vortices entering or
emerging from a 3D cube conserve vortex flux as described by Eq. (3.22). The presence
of vortex branching has significant ramifications for the vortex structure of the vacuum,
and they provide an additional order parameter for confinement [67]. They will also
be shown to have interesting correlations to other topological structures on the lattice
in Chapter 4.

It is important to highlight that there is some ambiguity in the nature of vortex
branching points [67]. Consider three m = +1 vortices emerging from an elementary
cube centred on the dual lattice site,

x⃗′ = x⃗+ a

2 (̂i+ ĵ + k̂) . (3.25)

Here i , j , k are the three spatial coordinates after one dimension has been selected for
the time dimension. Again due to the periodicity of the elements of Z3, this monopole
is indistiguishable from the case of a single m = −1 = +2 vortex entering the cube
and branching to two m = +1 vortices, as shown in Fig. 3.3. This issue is related to
an overall orientation ambiguity present in the analysis of centre vortex structure. For
the purposes of our work, we consider only the former case of m = −1, 0, +1 and thus
three vortices of identical sign emerging from or converging within an elementary cube.
In this case, m⃗(r⃗) indicates the directed flow of m = +1 centre charge.
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Vortex flux through an elementary cube may also entail additional vortices piercing
an elementary cube. To fully account for all possible cases, we define ncube(x | µ̂).
µ denotes the direction along which the lattice has been sliced and hence identifies
the remaining three coordinates, x⃗′, that describe the location within the 3D slice.
ncube(x | µ̂) therefore counts the number of vortices piercing the elementary cube centred
at x⃗′ when the lattice has been sliced along the µ direction. The interpretation of each
value of ncube(x | µ̂) is summarised in Table 3.1. Despite the fact that it is possible for
points with ncube(x | µ̂) = 6 to be triple intersection points rather than double branching
points, for the purposes of this work we consider all points with ncube(x | µ̂) = 3, 5, 6 to
be branching points. The ambiguity around ncube(x | µ̂) = 6 is insignificant, as we shall
see that cubes pierced by six vortices occur very infrequently.

3.3.2 Vortex and Branching Point Density

We briefly mentioned the notion of vortex density, ρV , when presenting the motivation
for the vortex model in Section 3.1. It is worth now returning to this quantity with our
understanding of vortices on the lattice further developed. The lattice vortex density is
an area density, i.e. it is given by the average density of vortices piercing each 2D plane
in the lattice. Fortunately, as we average over planes and the area of each plane, each
term acquires a factor of the total lattice volume, V . Thus we shall see that we can
write the area density in a very compact form. First we define the indicator function,

vµν(x) =

1, Pµν(x) = exp
(

±2π i
3

)
I

0, Pµν(x) = I .
(3.26)

−1 or + 2

+1

+1

+1

+1

+1

b b

bb

Fig. 3.3 A vortex branching point with centre charge +2 or −1 flowing into a vertex
(left) is equivalent to a branching point with charge +1 flowing out of the vertex (right).
The arrows indicate the direction of flow for the labelled charge.
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Hence, in lattice units, the vortex density PV is given by,

Pv = 1
6V

∑
µ ,ν
µ<ν

∑
x

vµν(x) . (3.27)

The physical density is then given by,

ρv = PV
a2 . (3.28)

The calculation of the branching point density, ρb, proceeds similarly. The branching
point density is given by the average volume density of branching points on a 3D slice.
Hence we similarly define an indicator function

b(x | µ̂) =

1, ncube(x | µ̂) = 3, 5, 6
0, otherwise .

(3.29)

The branching point density in lattice units is then given by,

Pb = 1
4V

∑
µ

∑
x

b(x | µ̂) . (3.30)

This results in a physical density of,

ρb = Pb
a3 . (3.31)

Finally, we also wish to define the naive branching rate, λnaive, which is a simple
estimator of the probability that a given vortex line branches as it propagates through
space-time [13, 67]. We dub it as naive in anticipation of a more detailed calculation
that will be presented in Chapter 7. In physical units, the branching rate is a probability
per unit length as it associated with the branching of a vortex line. We first define the
indicator,

c(x | µ̂) =

1, ncube(x | µ̂) ̸= 0
0, otherwise .

(3.32)

The branching rate is then given by the ratio of the number of elementary cubes
containing branching points to the number of elementary cubes pierced by a vortex, i.e.

qnaive =
∑
µ

∑
x b(x | µ̂)∑

µ

∑
x c(x | µ̂) . (3.33)
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The physical rate is then given by,

λnäive = qnaive

a
. (3.34)

These densities have been shown to scale appropriately as the physical limit is ap-
proached [13, 67]. Thus, they provide suitable measures to assist in quantifying the
vortex structure of the lattice.

3.3.3 Results from Centre Vortices

With our understanding of how centre vortices are identified on the lattice, it is now
worthwhile discussing the current lattice results that motivate the significance of the
centre vortex picture. The study of centre vortex degrees of freedom extends back to
the early days of lattice QCD. To lessen the computational cost, the gauge group was
SU(2) for the earliest centre vortex studies. In pure gauge SU(2), the vortex picture
is very clear. SU(2) centre vortices alone can fully account for the string tension [83,
84], and the vortex density scales as a physical quantity [85, 86]. Furthermore, vortex
removal has been shown to completely remove the string tension [68, 84], remove the
infrared enhancement of the gluon propagator [68] and restore chiral symmetry [84,
87]. This provides strong evidence that centre vortices are essential for the emergence
of both confinement and DχSB in SU(2) gauge theory.

Motivated by these powerful results, new lattice studies were performed in pure
Yang-Mills SU(3) theory. In SU(3), the results are less clear-cut than their SU(2)
counterparts. Vortex removal remains a potent indicator of the importance of centre
vortices, with removal of vortices still resulting in complete loss of the string tension [20]
and degeneracy in the low-lying hadron spectrum [20]. Both these results indicate
that centre vortices play a central role in QCD. However, the infrared gluon and
quark propagators still retain infrared strength after vortex removal [15, 18], despite
significant suppression. There also remains residual dynamical generation of mass in
the vortex-removed hadron spectrum [20].

The vortex-only fields provide a similar picture. Agreement between the original
and vortex-only results from the infrared gluon propagator, quark propagator, hadron
spectrum and string tension can only be achieved after the application of gauge field
smoothing [15, 17, 18, 20] (see the next section for a discussion of smoothing). However,
the vortex-only results consistently exhibit the same qualitative properties as the
original fields, displaying both confinement and DχSB, albeit to a lesser extent than
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the original gauge fields. A specific example of this is the well-known result that the
vortex-only string tension is only ∼ 62% that of the original string tension in SU(3) [13,
16, 17]. The remarkable ability of the centre vortex model to qualitatively capture the
salient properties of QCD motivates further investigation. Additionally, understanding
why the quantitative agreement that is found so readily in SU(2) is absent in SU(3)
remains an open question.

These existing results provide the driving force behind this research. Much as
the transition from SU(2) to SU(3) was a natural progession, so to is the transition
from pure gauge to full QCD that is undertaken in this work. Inclusion of dynamical
fermions in the lattice simulation provides a new setting with which to explore the
behaviour of centre vortices. This in turn provides greater context on their role in
QCD.

3.4 Smoothing

With this understanding of centre vortices developed, we will now make a slight
deviation and discuss smoothing, a common lattice technique utilised when analysing
topological objects. The topological charge field on the lattice is highly susceptible to
short-range fluctuations, making it necessary to employ algorithms that attempt to
smooth these fluctuations without damaging the underlying structure. In this work
we employ a variety of smoothing algorithms as each has their own strengths and
weaknesses. Here we shall detail the motivation and procedures underpinning these
techniques, especially in the context of their application to vortex-only configurations.

3.4.1 Cooling

Cooling is performed by replacing each link by a new link that serves to minimise the
local gluon action. To do this, we define the staples around a link as the plaquette
with the link under consideration removed, as shown in Fig. 3.4. For each link, Uµ(x),
the staples, Σµ, are defined as

Σµ(x) =
∑
ν ̸=µ

Uν(x)Uµ(x+ ν̂)U †
ν(x+ µ̂)

+U †
ν(x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂) . (3.35)
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Uµ(x)

Fig. 3.4 A single term of the staple expression given in Eq. (3.35).

Given this construction, the Wilson action (Eq. (2.34)) may be rewritten as

SWilson = β
∑
x

(
6 − Re Tr Σµ(x)U †

µ(x)
)
. (3.36)

Minimising the local action corresponds to finding a new U ′
µ(x) that maximises

Re Tr Σµ(x)U ′†
µ (x)∀x. This is performed by identifying three SU(2) matrices, ai,

corresponding to the three subgroups of SU(3), such that U ′
µ(x) = a3 a2 a1 Uµ(x) [88].

Explicit forms of these matrices are given in Ref. [89].

Cooling may also be improved by inclusion of larger staples to improve preservation
of topological objects. It has been shown that O(a4) improved three-loop improved
cooling is suitable for this purpose [90]. We therefore utilise this algorithm to cool the
configurations used in this work.

Whilst effective, cooling presents with a number of difficulties. First and foremost
is the computational inefficiency. As cooling seeks to locally minimise the action, all
links contained in the staples must be held constant for a given sweep. When the
staples are expanded to include larger loop sizes, as is necessary to preserve topological
objects, the number of links that must be held constant at each step increases, which
reduces the capacity for parallel optimisation.

Cooling is also non-analytic, meaning that there is no set of parameters that
smoothly map from Uµ(x) to U ′

µ(x). This is not an issue for this work, however it can
make cooling unsuitable for studies of certain observables that require a smoothness
condition to be satisfied. Finally, and perhaps most relevant for this work, is the
fact that cooling is susceptible to introducing floating-point errors when performed on
vortex-only configurations, as the SU(2) subgroups can have a vanishing determinant
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that results in an undefined ai matrix [89]. For these reasons, we turn our attention to
smoothing methods that do not suffer from these issues.

3.4.2 APE Smearing

Instead of locally minimising the action, APE smearing [91, 92] seeks to replace each
link with an average over its neighbours. This is done by first defining,

Vµ(x) = (1 − α)Uµ(x) + αΣµ(x) , (3.37)

where α is the smearing parameter dictating the weighting between the link in question
and its neighbours. Vµ(x) can be calculated for all links in the lattice simultaneously,
thus allowing for a far greater degree of parallelisation than cooling. However, Vµ(x)
is not necessarily in SU(3). Hence it is necessary to project it back into SU(3) via a
projection operator P such that the new link U ′

µ(x) is given by

U ′
µ(x) = P [Vµ(x)] . (3.38)

Originally this projection was performed by iteratively maximising Re TrU ′
µ(x)V †

µ (x)
to select a new link, U ′

µ(x). This is performed in a similar manner to the minimisation
of the local action described in the previous section. In fact, if α = 1 and the staples
are blocked such that they are not updated simultaneously with Uµ(x), then we recover
the cooling algorithm. This projection method shall be referred to as Max Re Tr
reunitarisation.

We also consider employing an analytic projection method known as unit circle
projection [93]. This is performed by first defining,

Wµ(x) = Vµ(x) 1√
V †
µ (x)Vµ(x)

. (3.39)

This step ensures that the eigenvalues of Wµ(x) lie on the unit circle. The determinant
is then fixed to obtain the new link,

U ′
µ(x) = 1

3
√

detWµ(x)
Wµ(x) . (3.40)

The cube root has three possible solutions, so to remove ambiguity the solution satisfying
arg 3

√
detWµ(x) ∈ (−π/3, π/3) is chosen. Unit circle projection is differentiable in the
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matrix sense with respect to the initial link, Uµ(x), and is therefore suitable for use in
situations where smoothness is an essential requirement.

Although analyticity is a desirable property for some use-cases, it presents a problem
when considering the smoothing of vortex-only configurations. Recall that vortex-
only configurations, Zµ(x), are gauge-equivalent to Z3, meaning that there is a gauge
transformation Ω(x) such that Ω(x)Zµ(x) Ω†(x + µ̂) ∈ Z3. Unit circle projection is
gauge equivariant, meaning that if Uµ(x) → U ′

µ(x), then Ω(x)Uµ(x) Ω†(x + µ̂) →
Ω(x)U ′

µ(x) Ω†(x+ µ̂). This means that for the purposes of unit circle projection, we
need only consider Zµ ∈ Z3. In this case, unit circle projection results in APE smearing
either not affecting a link, or switching its phase to one of the two other elements of
Z3. This results in a spoiling of the vortex structure and thus renders APE smearing
with unit circle projection inappropriate for use on vortex-only ensembles.

3.4.3 Stout-Link Smearing

The final smoothing technique used in this work is known as stout-link smearing [94].
Stout-link smearing seeks to remove the need for an SU(3) projection operation by
explicitly constructing an SU(3) transformation from the staples that can then be
applied to the original link. This is done by first defining,

Tµ(x) = Σµ(x)U †
µ(x) . (3.41)

Tµ(x) is then used to construct the traceless, Hermitian matrix,

Qµ(x) = i

2
(
Tµ(x) − T †

µ(x)
)

− 1
6 Tr

(
Tµ(x) − T †

µ(x)
)
. (3.42)

By construction, Qµ(x) ∈ su(3), the Lie algebra of SU(3) (see Appendix A.1) and
hence may be exponentiated to obtain an element of SU(3). Thus, the smeared link is
defined as,

U ′
µ(x) = exp(iρQµ(x))Uµ(x) , (3.43)

where ρ is the smearing fraction parameter used to tune the stout-link smearing
algorithm. We set ρ = 0.06 based on the results of Ref. [95].

It should be immediately noticed that stout-link smearing is completely unsuitable
for use on VO configurations. Much like APE smearing, stout-link smearing is gauge
equivariant, and thus we may treat the VO configurations as though every link belongs
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to Z3. Thus, for these configurations Qµ = 0 and the smearing has no effect for any
value of ρ.

Stout-link smearing may however be over-improved to provide excellent preservation
of topological objects on the original configurations. Over-improved stout-link (OISL)
smearing is performed by expanding the staples, Σµ(x), to include 2 × 1 rectangular
terms (for an explicit description of these terms see Ref. [89]). Much like the Wilson
action could be recovered from the staples as was shown in Eq. (3.36), the introduction of
the rectangular terms allows for reconstruction of the Lüscher-Weisz action (Eq. (2.38)).
A new parameter ϵ is introduced such that the action reconstructed from the staples
interpolates between the Wilson and Lüscher-Weisz action. This allows for explicit
tuning of the errors in the action to best preserve topological objects, as was done
in Ref. [95]. This work found that a value of ϵ = −0.25 optimally preserves lattice
topology, and we therefore use this value herein.

3.4.4 Centrifuge Preconditioning

So far the general trend is that applying smoothing to vortex-only configurations is
a tall order. The only method discussed so far that does not explicitly fail is APE
smearing with non-analytic Max Re Tr reuniterisation. However, even this method has
strict constraints on the smearing fraction, α, that require it to be greater than 1/3. If
α < 1/3, the APE smearing algorithm does not alter the vortex-only ensemble [89].
Even above this value, a large fraction of the links will not be affected. All these issues
stem from the fact that VO ensembles are gauge-equivalent to ensembles that are
proportional to the identity. It is therefore desirable to attempt to shift the vortex-only
ensembles away from Z3 in a way that does not disrupt the structure of the vortex
vacuum. This is the goal of centrifuge preconditioning [89].

The centrifuge smearing algorithm begins by considering the VO configurations in
MCG, such that the links all belong to Z3. This means that the links may be written
as

Zµ(x) =


eiλ

1
µ(x) 0 0
0 eiλ

2
µ(x) 0

0 0 eiλ
3
µ(x)

 , (3.44)



40 Centre Vortices on the Lattice

where initially the λiµ(x) = λµ(x) are all equal for a given x. Using this notation, the
1 × 1 staple has phase σµ(x) given by,

σµ(x) = 1
6
∑
ν ̸=µ

λν(x) + λµ(x+ ν̂) − λν(x+ µ̂)

−λν(x− ν̂) + λµ(x− ν̂) + λν(x− ν̂ + µ̂) . (3.45)

A pair of indices, (j, k) ∈ {(1, 2), (2, 3), (3, 1)}, is then randomly selected. The phases
of the original matrix phases are then updated to the new values given by,

λ′ j
µ (x) = (1 − ω)λµ(x) + ω σµ(x) (3.46)
λ′ k
µ (x) = (1 − ω)λµ(x) − ω σµ(x) , (3.47)

where ω is the centrifugal rotation angle. This procedure leaves the sum of the three
phases invariant, and for sufficiently small ω the phase of the trace remains close to
that of the original VO configuration. Thus we choose ω = 0.02 as to introduce a slight
perturbation away from Z3.

This allows us to finally apply smearing to vortex-only ensembles. First we precon-
dition the ensemble with centrifuge precoditioning before applying APE smearing with
Max Re Tr reuniterisation at α = 0.7. This method, which is used wherever relevant in
this work, ensures both an effective application of smearing and avoids any numerical
singularities.

3.5 Summary

In this chapter we have described the core theory driving this research: the centre
vortex model of QCD. We first presented a simple motivation for the vortex model
in the context of the static quark potential, which is found to be confining when one
considers an arrangement of randomly distributed percolating vortices. With this
understanding developed, we described the process with which thin centre vortices
are identified on the lattice. This is achieved through a transformation to maximal
centre gauge followed by the process of centre projection. These centre projected
vortices were connected to 3D slices of the lattice by defining the plaquette as in
Eq. (3.15). This connection will prove essential for building our understanding of centre
vortex structure in the coming chapters. We then presented the existing understanding
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of centre vortices, highlighting their remarkable ability to reproduce the qualitative
features of QCD, both in relation to confinement and DχSB.

Finally, we outlined the various lattice smoothing methods employed throughout
this work, as they are utilised for a variety of purposes. Specifically, we described the
issues associated with smoothing vortex-only configurations, and how these issues may
be ameliorated by the use of centrifuge preconditioning followed by APE smearing with
Max Re Tr projection. We also highlighted the importance of choosing the smoothing
link combination appropriately such that topological objects are preserved. This
now places us in a position to present the first set of results from this research,
centering around novel visualisations of centre vortices in SU(3) gauge theory and
their relationship to topological charge density.





Chapter 4

The Pure Gauge Picture

This chapter is based on the paper “Visualisation of Centre Vortex Structure”, Biddle,
Kamleh, and Leinweber [21].

In the previous chapter we observed how the structure of centre vortices plays
a significant role in their ability to generate confinement. The fact that one of the
defining features of the vortex model is tied so intimately to the geometry of vortices in
the vacuum indicates that visualising these structures may provide valuable insight [96,
97]. To this end, we construct visualisations of centre vortices and topological charge
density on the lattice. We then use these visualisations to investigate the dynamics of
the vortex model in an interactive and novel manner.

We begin this chapter in Sec. 4.1, where we describe in detail our convention for
plotting vortices in three dimensional space, and present the first visualisations of centre
vortices on the lattice. As projected centre vortices are inherently two dimensional
objects embedded in four dimensions, we describe the technique used to capture the
behaviour of vortices in the fourth dimension in Sec. 4.2. In Sec. 4.3 we present
visualisations of topological charge density alongside centre vortices. In Secs. 4.3.2
and 4.3.3 we describe the relationship between topological charge and two types of
vortex structures, namely singular points and branching points. Finally, in Sec. 4.3.4
we investigate the correlation these structures have with topological charge density
obtained from smoothed lattice configurations. This investigation lays the groundwork
for the development of further visualisation techniques, and emphasises the importance
of centre-vortex geometry in a full understanding of the QCD vacuum.

A number of the visualisations presented in this chapter have interactive versions
that can be found in the supplementary material of Ref. [21]. Details for interacting
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with these models can also be found in this paper. Interactive models that can be
found in this material will be marked as Interactive in the figure caption.

4.1 Spatially-Oriented Vortices

4.1.1 Visualisation Conventions

For this chapter we will utilise the 203 × 40 pure gauge lattices described in Table 2.1.
As the lattice is a four-dimensional hypercube, we visualise the centre vortices on a set
of 3D slices. The choice of dimension to take slices along is irrelevant at low temperature
in Euclidean space where our lattice calculations take place, so to maximise the volume
of each slice we introduce a coordinate system with the z axis along the long dimension,
and take slices along the t axis. This results in Nt = 20 slices each with dimensions
Nx ×Ny ×Nz = 20 × 20 × 40. Within each slice we can visualise all vortices associated
with an x–y, x–z or y–z spatial plaquette by calculating Px y(x), Py z(x) and Pz x(x) for
all x in the slice. These vortices will be referred to as the ‘spatially-oriented’ vortices,
as they are fixed in time.

We can connect this to the form of vortex-only plaquette presented in Eq. (3.15).
Setting λ = 4 which thereby restricts the remaining indices to take values i, j, k ∈
{1, 2, 3}, we have

Pij = exp
(
πi

3 ϵijkmk(x̄)
)
. (4.1)

We interpret Eq. (4.1) for nontrivial values of mk to indicate a vortex penetrating the
plaquette lying in the ı̂–ȷ̂ plane in the ±k̂ direction. We render vortices according
to the value their centre charge. For a charge mk = +1 vortex, a blue jet is plotted
piercing the centre of the plaquette, and for a charge mk = −1 vortex, a red jet is
plotted. The direction of the jet is set according to the right-hand rule of the epsilon
tensor, such that

• Px y = ±1 =⇒ ±ẑ direction.

• Py z = ±1 =⇒ ±x̂ direction.

• Pz x = ±1 =⇒ ±ŷ direction,

An example of this plotting convention is shown in Fig. 4.1. As the jet direction ±k̂ is
aligned with the sign of the centre charge mk = ±1 the vortex lines show the oriented
flow of positive unit centre charge (m = +1).
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Fig. 4.1 An example of the plotting convention for vortices located within a 3D time
slice. Left: A +1 vortex in the +ẑ direction. Right: A −1 vortex in the −ẑ direction.

Projected centre vortices are surfaces in four dimensional space-time, analogous
to the centre line of a vortex in fluid dynamics that maps out a surface as it moves
through time. Note that, as is conventional, herein "time" simply refers to the fourth
spatial dimension on the Euclidean lattice. Similarly, "time evolution" refers to change
with respect to the fourth spatial dimension, that is, variation in Euclidean time (not
real time). In this way, the visualisations presented here can be simply thought of
as a way to interpret the four-dimensional geometry. As the surface cuts through
the three-dimensional spatial volume of our visualisation, a P-vortex line is rendered
mapping the flow of centre charge.

The spatially-oriented vortices for the 3D slices with t = 1, 2 are illustrated in
Figs. 4.2, 4.3. At first glance the vortex structure appears highly complex, and it is
difficult to identify the significant features. As such, we make use of the 3D models to
hone in and isolate the important features present in these slices. We present some of
these features in Fig. 4.4. We observe that the vortices do indeed form closed lines (as
required by the Bianchi identity), highlighted in the middle panel of Fig. 4.4. We also
see that the vortex loops tend to be large. This agrees with the determination made
of SU(2) vortices in Refs. [8, 63]. We find for this ensemble that the physical vortex
density is ρV = 2.060(7) fm−2, as determined by Eq. (3.28).
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Fig. 4.2 The t = 1 slice with all spatially-oriented vortices plotted. The flow of m = +1
centre charge is illustrated by the jets as described in the text. (Interactive)

4.1.2 Branching/Monopole Points

The presence of branching points is of particular interest, as previous studies have
primarily focussed on SU(2) theory which is free from these structures. In SU(3) it
is possible to conserve centre flux at the intersection of 3, 5 or 6 vortex lines within
a 3D slice, as discussed in Section 3.3.1. An example of a branching point in our
visualisations is shown in the right panel of Fig. 4.4. In Fig. 4.5 we identify all points
with ncube(x | µ̂) > 2 present in the t = 1 time slice and display them as coloured
spheres.

As described in Section 3.3.1, we define ncube(x | µ̂) to count the number of vortices
piercing an elementary cube when the lattice is sliced along the µ̂ direction. The
distribution of ncube(x | µ̂) over our ensemble is shown in Fig. 4.6. As required, we
observe that ncube(x | µ̂) = 1 points are not present. We also see that larger values of
ncube(x | µ̂) become increasingly uncommon, with ncube(x | µ̂) = 6 points making up
just a tiny fraction of overall branching points. Thus, despite there being an ambiguity
around their assignment as branching points, the choise to include or exclude them
makes little difference. The fact that branching points are only well defined on 3D
slices can be understood by considering the implication of a branching into the fourth
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Fig. 4.3 The t = 2 slice with all spatially-oriented vortices plotted. Only a small
subset of jets are stationary between t = 1 and t = 2. Symbols are as in Fig. 4.2.
(Interactive)

dimension. In this case one would observe two vortex jets emerging from or converging
into a 3D cube. However, this situation does not occur in our visualisations as is
required for conservation of flux lines.

It is clear from our visualisations and the data in Fig. 4.6 that branching points
occur frequently in the confining phase, with an average of 109.8(6) branching points
per 3D slice. This corresponds to a physical density of ρBP = 3.51(2) fm−3, as calculated
via Eq. 3.31. Work presented in Refs. [13, 67] confirms that indeed the branching point
density possesses the correct scaling behaviour over different values of β governing the
lattice spacing such that ρBP may be considered a physical quantity. Further discussion
of branching points and their relationship with topological charge is presented in
Sec. 4.3.3.
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Fig. 4.4 Left: Vortices form directed continuous lines, highlighted with orange arrows
in this diagram. Note that because of the lattice periodicity, these lines may wrap
around to the opposite edge of the lattice. Middle: Vortices must form closed loops
to conserve the vortex flux. Right: SU(3) vortices are capable of forming monopoles
or branching points where three or five vortices emerge or converge at a single point.

Fig. 4.5 Points with two or more vortices piercing a 3D cube are shown on the t = 1
time slice. The number of vortices piercing a cube is denoted by the colour: blue = 3,
green = 4, orange = 5, red = 6. Whilst there are no red points present in this slice,
they occur rarely on other slices. (Interactive)
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Fig. 4.6 The ensemble average of the number of vortices piercing each 3D cube. As it is
necessary to preserve continuity of the vortex flux, we see that there are no cubes with
one vortex piercing them. The largest vortex contribution is from ncube = 2, arising
from vortices propagating without branching or touching. We also see that ncube = 3
branching points dominate the ncube = 5 branching points.
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4.2 Space-Time Oriented Vortices

For each link in a given 3D slice there are two additional plaquettes that lie in the xi–t
plane, pointing in the positive and negative time directions. Vortices associated with
space-time oriented plaquettes contain information about the way the line-like vortices
evolve with time, or equivalently, how the vortex surfaces appear in four dimensions.

In a given 3D slice we only have access to one link associated with a space-time
oriented vortex, and as such we plot an arrow along this link to indicate its association
with this vortex. Considering the four-dimensional Levi-Cevita tensor, we adopt the
following plotting convention for these space-time oriented vortices:

+1 vortex, forward in time, =⇒ cyan arrow, positively oriented,

+1 vortex, backward in time, =⇒ cyan arrow, negatively oriented,

−1 vortex, forward in time, =⇒ orange arrow, positively oriented,

−1 vortex, backward in time, =⇒ orange arrow, negatively oriented.

These conventions are shown diagrammatically in Fig. 4.7. Utilising these conventions,
the first time slice now contains temporal information as highlighted in Fig. 4.8. The
full 3D models are difficult to interpret as a 2D image and a therefore omitted from
this presentation, however the interactive 3D models for the first two time slices are
available in the supplementary material of Ref. [21].

As we step through time, we expect to see the positively oriented space-time vortex
indicator links retain their colour but swap direction as they transition from being
forwards in time to backwards in time, as shown in Fig. 4.9.

The space-time oriented indicator links act as predictors of vortex line motion
between slices. The simplest case of vortex motion is shown diagrammatically in
Fig. 4.10. The shaded red plaquettes indicate the location of a spatially-oriented vortex
which would be plotted in the suppressed x̂ direction, and the red line demonstrates
how the centre charge pierces between the two time slices. This figure demonstrates a
spatially-oriented vortex shifting one lattice spacing in the ŷ direction between time
slices. For a vortex located at x and pointing in the ±x̂ direction, this motion will
be indicated by an orange indicator link on the Zz(x + ŷ) link. Thus we see that
spatially-oriented vortices move in a direction perpendicular to both the jet and the
indicator link.
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x

t y

Fig. 4.7 Top: A +1 vortex in the forward (left)/backward (right) x–t plane (shaded
blue) will be plotted as a cyan arrow in the ±x̂ direction respectively. Bottom: A −1
vortex in the forward (left)/backward (right) x–t plane (shaded red) will be plotted as
an orange arrow in the ±x̂ direction respectively.
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Fig. 4.8 On the t = 1 time slice, the flow of m = +1 centre charge is illustrated by the
jets, and the spatial links indicate the presence of centre vortices in the suppressed time
direction. These indicator links show how the jets will evolve through the suppressed
Euclidean time direction. Rendering conventions are described in the text.

(a) t = 1 (b) t = 2

Fig. 4.9 Space-time oriented vortices changing as we step through time. We observe the
space-time indicator links change direction, however the phase (colour) of the vortex
remains the same.
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Fig. 4.10 An example of a spatially-oriented vortex at the space-time coordinate x
moving one plaquette between time-slices. The solid red line indicates how the flow
of vortex charge pierces between time slices. By our visualisation conventions, the
shaded red plaquettes would have a spatially-oriented jet plotted in the suppressed x̂
direction. Space-time vortices are illustrated by the orange indicator links belonging
to the space-time plaquette. We observe that spatially-oriented vortices move in the
time direction (hidden in our 3D models), perpendicular to the indicator link.

To see this predictive power in action, consider Fig. 4.11. Here we see in Fig. 4.11a
a line of three m = +1 spatially-oriented vortices each with an associated m = −1
space-time oriented vortex below them. As we step to t = 2 in Fig. 4.11b we observe
the space-time oriented arrows change direction, and the spatially-oriented vortex line
shifts one lattice spacing down in the direction perpendicular to the indicator links,
such that the space-time oriented vortices are now above them.

Another example of space-time oriented vortices predicting the motion of spatially-
oriented vortex lines is shown in Fig. 4.12. In Fig. 4.12a, we observe a line of four
m = −1 (red) spatially-oriented vortices with no space-time oriented links associated
with them, indicating that this line should remain fixed as we step through time.
Alternatively, towards the top of the red line we observe a branching point with two
associated −1 space-time indicator arrows. The forward-oriented arrow indicates that
this branching point will move. That is, the sheet piercing the t = 1 slice is generating
non-trivial space-time vortices as it proceeds to pierce the t = 2 slice. Observing the
same region at t = 2 in Fig. 4.12b, we see that this is precisely what occurs. The
vortex line has remained fixed, whereas the branching point has shifted.

The cases presented in Fig. 4.11 and Fig. 4.12 are ideal, where the spatially-oriented
vortex lines shift only one lattice spacing between time slices. However, it is frequently
the case where the spatially-oriented vortices shift multiple lattice spacings per time
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(a) t = 1 (b) t = 2

Fig. 4.11 An example of space-time oriented vortices predicting the motion of the
spatially-oriented vortices. Here we see the m = +1 (blue) vortex line transition one
lattice spacing down as we step from t = 1 to t = 2. Note that the orange space-time
vortex indicator links have changed direction.

step, as demonstrated in Fig. 4.13. In Fig. 4.13a, we observe a large sheet of space-time
oriented vortices with a line of spatially oriented vortices above them. As we transition
to t = 2 in Fig. 4.13b, the line is carried along the sheet and now appears at the
bottom.

To see how this occurs diagrammatically, consider Fig. 4.14. The conventions
in this figure are the same as in Fig. 4.10. Within each slice we would observe the
space-time oriented links shown, however the spatially-oriented vortex appears to move
three plaquettes in one time step. These multiple transitions make it difficult to track
the motion of vortices between time slices. However, the space-time oriented vortices
remain a useful tool for understanding how centre vortices evolve with time. Note that
if a spatially-oriented vortex has no associated space-time oriented vortices then it
is guaranteed to remain stationary. In this respect, the lack of space-time oriented
vortices is also a valuable indicator of vortex behaviour.
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(a) t = 1 (b) t = 2

Fig. 4.12 An second example of space-time oriented vortices predicting the motion of
the spatially-oriented vortices. We observe the −1 (red) vortex line with no associated
space-time vortex indicator links remains stationary as we transition from t = 1 to
t = 2. However, the branching point with associated space-time vortex indicator link
moves down and to the left during the transition.
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(a) t = 1 (b) t = 2

Fig. 4.13 An example of a sheet of space-time oriented vortices predicting the motion
of spatially-oriented vortices over multiple lattice sites from t = 1 to t = 2. The
highlighted line of red vortices flows along the sheet of cyan time-oriented indicator
links.

t = 1

t = 2
y

t z

Fig. 4.14 A demonstration of how spatially-oriented vortices can transition multiple
lattice spacings in a single time step. Conventions are the same as in Fig. 4.10
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4.3 Centre Vortices and Topological Charge

We now wish to explore the relationship between centre vortices and topological charge.
This relationship can be examined in terms of not only the vortices themselves, but
the substructures present in the vortex vacuum. We begin this section by first defining
topological charge and its relationship to centre vortices. We then describe singular
points and branching points in the context of generating topological charge, before
finally considering the correlations between vortex structures and topological charge
obtained from configurations that have undergone gauge field smoothing.

4.3.1 Topological Charge

The non-trivial ground state of QCD is associated with different vacua that are not
related to one another via a gauge transformation. Topological charge serves to
enumerate these distinct vacuum states, and therefore in the continuum will take
integer values. In the continuum, the topological charge, Q, is calculated as [98]

Q =
∫
d4x

1
16π2 ϵµνρσ Tr(Fµν Fρσ) (4.2)

One may also consider the topological charge density, q(x), defined as the integrand of
Eq. (4.2),

q(x) = 1
32π2 ϵ

µνρσ Tr (Fµν(x)Fρσ(x)) . (4.3)

Topological charge density is not uniformly distributed, and instead clumps into regions
of high density, known as instantons. It is therefore of interest to observe whether
regions of high topological charge density are correlated with the presence of centre
vortices.

To calculate the topological charge density on the lattice, it is common to make use of
the clover definition of Fµν presented in Eq. (2.36). As with the lattice actions discussed
in Chapter 2, it is possible to further systematically improve upon the topological
charge definition by addition of terms with higher orders of the lattice spacing. This is
done by the additional inclusion of (2 × 2), (1 × 2) + (2 × 1), (1 × 3) + (3 × 1) and
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(3 × 3) clover loop combinations to form the 5-loop improved topological charge [99]

F 5−loop
µν = − 23

36F
(1×1)
µν − 139

180F
(2×2)
µν

+ 112
45 F

(1×2)+(2×1)
µν − 7

20F
(1×3)+(3×1)
µν

+ 1
20F

(3×3)
µν . (4.4)

This definition of the topological charge density has been shown to provide better
convergence to integer values of the total topological charge [90]. In this chapter we
make use of the simple 1 × 1 topological charge definition when analysing centre-
projected configurations, as the gauge link information is highly localised around the
projected vortex locations. However, for the original and smoothed configurations we
instead employ the 5-loop improved definition.

We calculate the topological charge density on an original lattice configuration after
eight sweeps of three-loop O(a4)-improved cooling [90] (see Section 3.4.1). This smooth-
ing is necessary to remove short-range fluctuations and associated large perturbative
renormalisations, but is a sufficiently low number of sweeps so as to minimally perturb
the configuration. Topological charge density obtained after minimal over-improved
stout-link smearing is explored in Sec. 4.3.4.

We plot regions of positive topological charge density in yellow, and regions of
negative topological charge density in blue, with a colour gradient to indicate the
magnitude. Only topological charge density of sufficient magnitude is plotted to better
emphasise regions of significance. Overlaying the topological charge density visualisation
onto our previous 3D models, we obtain the visualisation shown in Fig. 4.15.

Under centre projection the topological charge changes notably, as might be expected
for a local operator. Fig. 4.16 shows a histogram of the total topological charge Q
across the ensemble obtained with the gluonic definition after 5 sweeps of over-improved
stout-link smearing. This is compared to Q obtained from the projected configurations,
calculated via the singular points defined in Section 4.3.2. Clearly, the topological
charge is not preserved. We also check in panel (c) of Fig. 4.16 whether the relative
sign of the topological charge calculated on each configuration is the same. Here we
also observe little correlation in the relative sign.

Observing the percolation of non-trivial centre vortices in the context of topological
charge density provides new insight into the instability of instanton-like objects to
centre-vortex removal [17]. We can quantitatively evaluate the correlation between the
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Fig. 4.15 Regions of high topological charge density are rendered as translucent blue
(q(x) < 0) and yellow (q(x) > 0) volumes, overlaying the t = 1 slice.

locations of centre vortices and the regions of significant topological charge density
obtained from the vortex-only configurations by using the measure

C = V

∑
x |q(x)|L(x)∑

x |q(x)| ∑x L(x) − 1 , (4.5)

where V is the lattice volume, and

L(x) =


1 , Vortex associated with any

plaquette touching x,

0 , Otherwise,
(4.6)

contains information from the full 4D volume. This method of constructing L(x) allows
for a single vortex to result in multiple non-zero L(x) locations. However, L(x) is
defined in this way so that vortex information associated with plaquettes is shifted to
the regular lattice, allowing it to be compared with the topological charge density. A
value of C = 0 indicates no correlation. C < 0 and C > 0 indicate anti-correlation or
correlation respectively.

We can also compare the results of this calculation to the maximally correlated
value for C, which can be obtained by postulating that all x for which L(x) = 1
correlate to the ∑x L(x) highest values of |q(x)|, denoted |qi|. As we are assuming
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Fig. 4.16 A histogram of total topological charge Q (a) using the gluonic definition after
5 sweeps of over-improved stout-link smearing and (b) direct centre projection from
the original gauge fields. It is apparent that singular points following centre projection
do not preserve the total topological charge (note also the scale change between (a)
and (b)). Panel (c) shows whether the sign matches between plots (a) and (b); again
it is apparent that there is little correlation.
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Fig. 4.17 The centre vortex structure and topological charge density after eight sweeps
of cooling, for t = 1. (Interactive)

perfect correlation, L(x) = 1 for all i, and hence the numerator of Eq. 4.5 reduces to a
sum over |qi|. Hence,

CIdeal = V

∑N
i=1 |qi|∑

x |q(x)| ∑x L(x) − 1 , (4.7)

where N is the number of sites with L(x) = 1. By evaluating C/CIdeal for each
configuration, we obtain a normalised measure ranging between 0 and 1 for positively
correlated quantities. Averaging over our configurations, we can make use of C/CIdeal

to quantitatively express the correlation strength between L(x) and |q(x)|.

Evaluating C/CIdeal and averaging over our ensemble of 100 configurations provides
C/CIdeal = 0.672(6). Thus, there is a significant correlation between the positions of
vortices and topological charge density. The small uncertainty also indicates that this
correlation is consistent across the ensemble.

Finally, we visualise the vortex configurations after smoothing to investigate how
the vortex structure changes. The results, presented in Fig. 4.17, follow eight sweeps
of O(a4)-improved cooling. We note that an enormous amount of the vortex matter
is removed. However, it is well established that, under smoothing, the vortex-only
configurations retain many of the salient long-range features of QCD [15, 17, 20],
suggesting that the removed vortices are in some way irrelevant to these long-range
properties.
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4.3.2 Singular Points

Given the presence of the antisymmetric tensor in the definition of topological charge
density presented in Eq. (4.3), it is clear that for there to be non-trivial topological
charge present on the projected vortex configurations, we require the vortex field
strength to span all four dimensions. This condition is met at singular points, where
the tangent vectors of the vortex surface span all four dimensions. The contribution to
the topological charge from these singular points is discussed in detail in Refs. [10, 62,
66, 69].

In our visualisations, singular points appear as a spatially-oriented vortex running
parallel to the link identifier of a space-time oriented vortex, as shown in Fig. 4.18.
Points satisfying this condition, whilst being difficult to locate by eye in our visu-
alisations of space-time oriented vortices, actually occur frequently, as illustrated
in Fig. 4.19. At these points we have vortices generating field strength in all four
space-time dimensions. An example of a singular point is shown in Fig. 4.20.

The vortex configuration in Fig. 4.18 spans all four dimensions because the jet
indicates a vortex in the x–y plane generating non-zero field strength Fxy(x) and the
z-oriented indicator link denotes a vortex in the z–t plane, giving rise to non-zero
Fzt(x). Hence, at the point x the topological charge density can be non-trivial.

Around the lattice site x in Fig. 4.18 there are four x− y and four z − t plaquettes,
allowing for a multiplicity of 16. As there are three unique combinations of orthogonal
planes in 4D (x–y and z–t, x–z and y–t, y–z and x–t), this gives a total maximum
multiplicity of 48 for each singular point. However, this maximum is highly unlikely,
and the highest multiplicity in the configuration shown in Fig. 4.19 is 12.

We can verify the relationship between singular points and topological charge by
identifying vortices satisfying the parallel condition shown in Fig. 4.18 and plotting
these points against the results of the topological charge calculation performed on the
projected vortex-only configurations. As seen in Fig. 4.21, when we apply the correct
sign to the odd index permutations we observe that there is perfect agreement between
the location of singular points and the identified topological charge.

To quantify the correlation between q(x) and singular points, we make use of a
measure similar to that defined in Eq. (4.5),

C = V

∑
x |q(x)|Ls(x)∑

x |q(x)| ∑x Ls(x) − 1 . (4.8)
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x
x

z y

Fig. 4.18 The signature of a singular point, in which the tangent vectors of the vortex
surface span all four dimensions. In this case, the blue jet is associated with field
strength in the x−y plane, and the orange space-time vortex indicator link is associated
with a vortex generating field strength in the z − t plane. Hence, the vortex surface
spans all four dimensions.

However, we redefine our identifier L(x) to be

Ls(x) =


1 , Singular point at x,

0 , Otherwise.
(4.9)

In the case of singular points and |q(x)| obtained from the projected configurations,
we expect that the obtained correlation will be identical to the ideal value, calculated
in the same manner as Eq. 4.7. This is indeed what we observe, with C/CIdeal = 1. In
Sec. 4.3.4 we will make use of this measure again to examine the correlation between
singular points and different topological charge density calculated prior to centre vortex
projection where the expected values are less apparent.

4.3.3 Branching Points

The relationship between branching points and topological charge is of particular
interest as they are important for generating regions of high topological charge density
on the projected vortex configurations. To understand why, consider a clover term
Cµν as defined in Eq. (2.36). On a projected configuration, each of the four imaginary
parts of the plaquettes in Eq. (2.36) can take one of three possible values: ±

√
3/2 or 0.

If a single vortex pierces the clover, it will contribute |q(x)| =
√

3/2. To obtain larger
values of |q(x)|, it is necessary for multiple plaquettes in at least one of the clover
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Fig. 4.19 All points on the t = 1 time slice in which a singular point occurs, i.e. a
spatially-oriented vortex jet runs parallel to a space-time oriented vortex indicator link
as shown in Fig. 4.18. The colour indicates the multiplicity M observed on this slice,
with the lowest value in blue (M = 1) and the highest in red (M = 12). (Interactive)

Fig. 4.20 A singular point (green sphere) resembling the structure of Fig. 4.18. This
singular point is generated by the red jet and the orange indicator link running in
parallel.
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Fig. 4.21 Topological charge density from singular points (shown as dots) is com-
pared with topological charge calculated from vortex-only configurations for t = 1.
(Interactive)

terms to contribute both non-trivially and with the same sign so that the magnitude
of the topological charge density increases above the lowest non-trivial value. This is
equivalent to requiring that multiple vortex jets pierce the clover parallel to each other,
such that they form a pattern like that shown in Fig. 4.22. To conserve the vortex flux,
the configuration in Fig. 4.22 is most simply achieved by placing a branching point
immediately below the two parallel vortices. Hence, there is reason to suspect that
branching points may be well-correlated with regions of high topological charge.

The argument made above by no means claims that branching points must be
associated with large values of |q(x)|, as there are most certainly alternative vortex
arrangements that will lead to the same values. For example, a branching point could
generate two parallel vortex lines that then continue parallel to one another for some
distance, generating topological charge density away from the original branching point.
Or alternatively, two separate vortex lines could come close to one another, running
parallel without the need for any local branching point. Thus, the correlation between
large values of |q(x)| and branching points is not expected to be perfect. However,
the presence of a correlation provides information on the role of branching points in
generating large topological charge density. Inspection of the 3D model in Fig. 4.23
suggests a significant correlation, as is highlighted in Fig. 4.24.
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Fig. 4.22 An example of vortex branching generating a region of high topological charge
by piercing two out of the four plaquettes that make up a clover.

Fig. 4.23 Branching points (dots) plotted alongside the topological charge density
from the projected vortex configurations. It can be observed that the branching points
are almost always neighbouring topological charge density. (Interactive)
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Fig. 4.24 An example of two branching points and their associated topological charge
density.

To evaluate the correlation numerically we again make use of the measure defined in
Eq. (4.5). As branching points exist on the dual 3D lattice of each time-slice, we denote
the dual lattice sites by x̃. For the four unique combinations of three dimensions, xyz,
xyt, xzt and yzt, we define our branching point indicator measure as

Lµ(x̃) =


1 , Branching point associated with x̃

in 3D slices of constant µ,

0 , otherwise .
(4.10)

The µ index in Eq. (4.10) indicates which dimension is playing the role of time; i.e.
which dimension is not included in the 3D cubes. Similarly, we define qµ(x̃) to be the
average of the topological charge over each 3D cube around x̃. We then have four
correlation measures for each 3D combination that can be averaged over, giving a total
correlation of

C = 1
4
∑
µ

V

∑
x̃ |qµ(x̃)|Lµ(x̃)∑

x̃ |qµ(x̃)| ∑x̃ Lµ(x̃) − 1 . (4.11)

By constructing the ideal correlation as defined in Eq. (4.7) for each choice of 3D
coordinates and averaging as done in Eq. (4.11), we can also calculate the ideal
correlation with which we can compare against.
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With this measure now suitably defined, we find that we obtain an ensemble average
of C/CIdeal = 0.518(7). This result indicates that there is a notable correlation between
branching points and topological charge density and, as expected, they are not the
only source of large topological charge. This result is interesting as it speaks to the
tendency of vortex lines to either re-combine or diverge away from branching points,
rather than remain in close proximity to one another, which provides an interesting
consideration for the construction of SU(3) vortex models such as those presented in
Refs. [12, 69].

4.3.4 Correlation with Topological Charge Density

When considering correlations between vortex matter and topological charge density, it
is natural to wonder whether the vortex structures identified on the projected vortex-
only configurations correlate to the topological charge density identified on the original
configurations. As is well established, to accurately identify topological charge density
directly from the lattice gauge links it is necessary to first perform smoothing to filter
short-range fluctuations [95, 100].

To this end, we perform 5 sweeps of over-improved stout-link smearing, with
smearing parameters ϵ = −0.25 and ρ = 0.06 (see Section 3.4.3), to minimally smooth
the configurations before extracting the topological charge density [95]. To ensure the
smoothed configurations maintain information captured in the vortex projection, we
also produce smeared configurations that are preconditioned in maximal centre gauge.

We also obtain vortices from these smoothed configurations by fixing them to
maximal centre gauge and then centre projecting, giving us in total three vortex
configurations and three topological charge configurations. The methods by which
these ensembles are obtained are summarised in Fig. 4.25.

We now repeat our correlation calculations for the singular points, branching points
and the vortices themselves for four new combinations of vortex and topological charge
density configurations. These results, as well as the correlation results from the previous
sections, are summarised in Fig. 4.26. We see that for all of the new correlations
presented, there is a soft correlation between the vortex structures and the topological
charge density. Of all the correlations of qS(x) or qPS(x) with vortex information, the
strongest correlation is with the original ZVO

µ (x). It is notable that the branching
point correlation is similar to the vortex correlation in panels (a) and (b) of Fig. 4.26.
These configurations best represent the physical gauge fields with minimal smoothing
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Random
Gauge MCG ZVO

µ (x)

qVO(x)

MCGSmearRandom
Gauge ZS

µ(x)

qS(x)

MCG SmearRandom
Gauge MCG ZPS

µ (x)

qPS(x)

Fig. 4.25 Summary of the processes used to obtain vortex and topological charge density
configurations. ‘MCG’ denotes gauge fixing to maximal centre gauge and ‘Smear’
denotes application of 5 sweeps of over-improved stout-link smearing as described
in the text. From these methods we obtain the vortex only (VO), smeared (S) and
preconditioned smeared (PS) topological charge and vortex configurations. As the
topological charge density is gauge invariant, it could equivalently be calculated
following gauge fixing to maximal centre gauge.
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Fig. 4.26 Correlation values for vortices (V), singular points (SP) and branching
points (BP) obtained from centre projected configurations, Zµ(x), with topological
charge density, q(x), obtained via various means described in the text and shown
diagrammatically in Fig. 4.25. Data points indicate results for the normalised correlation
values, C/CIdeal.

to extract the topological charge, and as such this correlation has implications for
the significance of branching points in regards to generating regions of significant
topological charge density.

Of particular interest is the fact that the correlation does not improve when
the vortex configuration is preconditioned by the same degree of smoothing as the
topological charge, as shown in Fig. 4.26 (c) and (d). This suggests that the primary
cause of the more subtle correlation is the vortex projection rather than the smoothing.
In fact, we even observe that the correlation shifts further from the ideal value of 1
when the vortex configuration is obtained following 5 sweeps of smoothing. This arises
because the number of vortex structures is reduced under smearing, as seen in Fig. 4.27,
but the overlap with topological charge has clearly not improved substantially. As
noted earlier in Fig. 4.17, under cooling this sparsity of vortices is further amplified,
indicating that as the degree of smoothing increases, vortices are increasingly removed
from the lattice.

An additional consideration for the observed correlation is the fact that projected
vortices do not perfectly correlate with the location of the physical thick vortices.
Rather, the projected vortices appear within the thick vortex core, but under different
Gribov copies of maximal centre gauge they will be identified at different specific lattice
sites [7]. This variability can contribute to the more subtle correlation observed in
Fig. 4.26.
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Fig. 4.27 The vortex structure and topological charge present after 5 sweeps of over-
improved stout-link smearing, preconditioned with maximal centre gauge (ZPS

µ (x) and
qPS(x)). (Interactive)

These findings reinforce the result that whilst centre vortices reproduce many of
the salient features of QCD, vortex-only configurations are only subtly correlated with
the topological charge density of the configurations from which they are obtained.
However, the correlation does exist and is consistent across the ensemble, indicating
that centre vortices are connected to the topological charge density of the lattice.

4.4 Conclusion

In this chapter we have presented a new way to examine the four-dimensional structure
of centre vortices on the lattice through the use of 3D visualisation techniques. These
visualisations give new insight into the geometry and Euclidean time-evolution of centre
vortices, and reveal a prevalence of singular points and branching points in the vortex
vacuum. It is especially remarkable how common branching points are in SU(3) gauge
theory.

We have also explored the connection between these vortex structures and topolog-
ical charge density. While demonstrating that the topological charge density obtained
on projected vortex configurations is generated by singular points, we discovered
an interesting correlation between branching points and topological charge; namely
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that branching points provide an important mechanism for generating large values of
topological charge density.

We explored the connection with topological charge density obtained from the
original configurations after varying degrees of smoothing. We deduced that the
topological charge density of the gauge fields is significantly affected under centre
projection, however the modification maintains a positive correlation with the original
topological charge density identified on the lattice. It is clear from the work presented
here that analysis of the vortex vacuum through the use of novel visualisations provides
new perspectives on the ground-state of QCD, and can highlight relationships that
otherwise may go unnoticed.



Chapter 5

Static Quark Potential

This chapter is based on the paper “Static quark potential from centre vortices in the
presence of dynamical fermions”, Biddle, Kamleh, and Leinweber [22].

The discussion presented in Chapters 3 and 4 demonstrate the current understanding
of the centre vortex picture in the context of pure Yang-Mills theory. A natural next
step for the vortex model is to examine how the presence of dynamical fermions
impacts the structure of centre vortices. Any subsequent shift in vortex structure can
be measured by calculating observables arising from vortex-only and vortex-removed
ensembles. In this chapter, we perform the first such analysis and present a calculation
of the static quark potential on vortex-modified ensembles in the presence of dynamical
fermions. After identifying centre vortices on the lattice, it is possible to isolate the
contribution to the static quark potential from both the vortices alone and the original
gauge field after vortex removal. This calculation reveals a significant shift in vortex
structure induced by the presence of fermion loops in the vacuum fields and further
reinforces the central role vortices play in producing the salient phenomena of QCD.

For the remainder of this thesis we shift our focus to the three 323 × 64 lattices
described in Table. 2.1. We choose two dynamical ensembles with different pion masses
to assess the dependence on the dynamical fermion mass, as well as making use of a
pure-gauge ensemble with a lattice spacing similar to that of the dynamical ensembles
to facilitate comparisons with the well-known behaviour of centre vortices in the pure
gauge sector. This set of three ensembles allows us to effectively analyse the changes
in the behaviour of centre vortices brought about by the introduction of dynamical
fermions.
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This chapter is structured as follows. Section 5.1 introduces the calculation of
the static quark potential through the use of Wilson loops. Section 5.2 describes the
variational method used to calculate the static quark potential. Section 5.3 discusses
the results of this work, introducing novel modifications to the standard Coulomb term.
Section 5.4 summarises our findings.

5.1 Static Quark Potential

As briefly mentioned in Section 3.1, the static quark potential provides a measurement
of the potential between two massive, static quarks at a separation distance r. On the
lattice, the static quark potential can be obtained by considering the Wilson loop

W (r, t) = TrR(x⃗, t0)T (y⃗, t0)R†(x⃗, t1)T †(x⃗, t0) , (5.1)

which has two spatial paths connecting points x⃗ and y⃗ satisfying |y⃗ − x⃗| = r via the
shortest set of links on the lattice. The forward spatial path R(x⃗, t0) is separated from
the backward spatial path R†(x⃗, t1) by the temporal extent of the loop, t1 − t0 = t. The
loop is closed via the static quark propagators T (y⃗, t0) and T †(x⃗, t0), which correspond
to the product of links in the positive and negative temporal directions respectively. A
diagram of this Wilson loop construction is shown in Fig. 5.1.

When the spatial separation extends off-axis to encompass displacements in more
than one spatial direction, an oblique path is chosen to reduce rotational lattice
artefacts. An integer step size vector s⃗ is initialised by taking the spatial separation r⃗

and dividing out the smallest element. If the two largest elements of s⃗ are both greater
than 1, then these are divided by the smaller of the two so that the step size vector s⃗
has at most one element that is greater than 1. The spatial link path is constructed by
cycling between the spatial directions ȷ̂ with step size sj. When the total displacement
rj in a direction ȷ̂ has been reached we set the step size sj = 0. This is perhaps most
easily understood with an example. For r⃗ = (6, 3, 2), then the initial step size vector
s⃗ = (3, 1, 1). The path r⃗ is traversed by starting at x⃗ and cycling through the steps
s⃗ = (3, 1, 1) twice, then updating s⃗ = (0, 1, 0) to the remaining displacement to reach
the end point y⃗.
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(x⃗, t0)

(x⃗, t1)

(y⃗, t1)

(y⃗, t0)

Fig. 5.1 Diagram of a Wilson loop. Shown are the forward (blue) and backward
(red) spatial paths where different levels of smearing are used to create our variational
matrix. Links in the positive temporal direction are oriented vertically upwards.

The expectation value of the Wilson loop is connected to the static quark potential
V α for state α via the expression

⟨W (r, t)⟩ =
∑
α

λα(r) exp (−V α(r) t) . (5.2)

Here, α enumerates the sum over energy eigenstates. This expectation value in Eq. (5.2)
is taken not only over the lattice ensemble, but over the range of spatial paths that
provide the same r value. In this work, we consider a maximum of 16 on-axis points,
and a range of 0 to 3 off-axis points. The temporal extent considered has a maximum
of t = 12 for the untouched and vortex-removed ensembles, and a maximum of t = 32
for the vortex-only. The larger value for the vortex-only ensemble is used because the
onset of noise occurs much later, and we find better plateau fits using this extended
range.

Due to the cubic symmetry of the lattice, when considering a link path between
two spatial points separated by a given displacement vector r⃗ = y⃗ − x⃗ it is possible to
permute the three spatial coordinates and obtain the same value for the separation
r = |r⃗|. Averaging over these permutations allows for further improvement of statistics
for the corresponding Wilson loop and better extraction of the ground state.
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5.2 Variational Analysis

The analysis of the static quark potential is susceptible to excited state contamination
and signal to noise challenges. In particular, the dynamical ensembles are typically
noisier at a given lattice spacing compared to the pure gauge case. To better extract
the ground state potential at earlier Euclidean time, we create a correlation matrix by
introducing different levels of smearing along the two spatial edges of the Wilson loops
describing the profile of the flux tube,

Wij(r, t) = TrRi(x⃗, t0)T (y⃗, t0)R†
j(x⃗, t1)T †(x⃗, t0). (5.3)

Here the forward and backwards paths Ri(x⃗, t0) and R†
j(x⃗, t1) are constructed using links

that have respectively had i and j sweeps of spatial APE smearing [91] applied, with a
smearing parameter of α = 0.7. For the untouched and vortex-removed ensembles, the
SU(3) projection component of the APE smearing algorithm is performed using the
unit-circle projection method described in Ref. [93].

As discussed in Section 3.4, the vortex-only ensembles present some difficulties
in the application of standard smearing algorithms. To account for this, we perform
centrifuge preconditioning to rotate the vortex-only ensembles away from the centre
group, Z3. APE smearing with smearing fraction α = 0.7 using Max Re Tr projection is
then applied, as this avoids the issues associated with analytic projection when applied
to VO ensembles. This procedure is suitable for generating a variational basis for the
vortex-only configurations.

For N choices of smearing sweeps, we obtain the N ×N correlation matrix

Gij(r, t) = ⟨Wij(r, t)⟩
=
∑
α

λαi λ
∗α
j exp (−V α(r) t) (5.4)

where the i, j indices enumerate the N smearing variations on the initial and final
spatial edges of the Wilson loop respectively. The complex scalars λαi and λ∗α

j represent
the coupling of each smeared leg of the Wilson loop to the static quark potential V α.
Note that in the following we choose to suppress the implied r dependence of Gij and
V for clarity.
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Presuming that the signal is dominated by the N lowest energy states, such that
α ∈ [0, N − 1], we wish to find a basis uα such that,

Gij(t)uαj = λαi z
∗α e−V α t , (5.5)

where z∗α = ∑
i λ

∗α
i uαi is now the coupling between this new basis and the energy

eigenstate |α⟩. Note that for the remainder of this paper we adopt the convention that
repeated Latin indices are to be summed over whilst repeated Greek indices are not.
Eq. (5.5) is equivalent to requiring that

λ∗α
i uβi = z∗α δαβ. (5.6)

Noting that the time dependence in Eq. (5.5) enters only through the exponential
term, we can consider stepping forward in time by some amount ∆t such that,

Gij(t0 + ∆t)uαj = λαi z
∗α e−V α (t0+∆t)

= e−V α∆tGij(t0)uαj . (5.7)

This recursive relationship is precisely a generalised eigenvalue problem, which can be
solved via standard numerical techniques to obtain the eigenvectors uα. An identical
argument can be made for the left eigenvectors vα, such that they satisfy

vαi Gij(t) = zα λ∗α
j e−V α t , (5.8)

and hence
vαi Gij(t0 + ∆t) = e−V α∆t vαi Gij(t0) . (5.9)

Making use of Eq. (5.5) and Eq. (5.9), we find that

vαi Gij(t)uβj = zα z∗β δαβ e−V α t . (5.10)

As such, we define the eigenstate-projected correlator

Gα(t) = vαi Gij(t)uαj
= zα z∗α e−V α t , (5.11)
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and extract the potential by computing the log-ratio

V α
eff(t) = ln

(
Gα(t)

Gα(t+ 1)

)
, (5.12)

to obtain the static quark potential. We then consider constant fits to the lowest energy
state, V 0

eff(r, t).

We use a 4 × 4 correlation matrix for the untouched and vortex-removed ensembles,
with a basis constructed from 6, 10, 18 and 30 sweeps of APE smearing. For the vortex-
only ensembles, even with centrifuge preconditioning and MaxRe Tr reuniterisation
applied, the configurations are still slow to vary as a function of smearing sweeps. As
a consequence of this, we choose a 2 × 2 correlation matrix with 2 and 60 sweeps of
APE smearing to provide a meaningful distinction between the basis elements.

For each calculation, we need to select fixed values for the variational parameters,
t0 and ∆t. For the original and vortex-removed ensembles, we find that increasing ∆t
has minimal effect on the level of noise, whilst providing slight improvement in ground
state identification. Thus, we choose a larger value of ∆t = 3. Selecting larger values
of t0 introduces substantial noise into the results obtained from these ensembles, so we
maintain t0 = 1 on these ensembles.

Selection of variational parameters is slightly different on the vortex-only ensembles.
For the diagonal correlators, Gii(t), where source and sink match and all states should
contribute positively, i.e. λαi λ∗α

i > 0, the effective mass approaches from below. This
is indicative of short-distance positivity violation arising in the process of centre
projection. In the context of a variational analysis, we extend t0 to the greatest feasible
degree to avoid the region of positivity violation at early times [101]. Indeed, our focus
is on understanding whether projected centre vortices can capture the long-distance,
nonperturbative features of QCD. To this end, we choose (t0, ∆t) to be (5, 4), (4, 5) and
(4, 2) for the pure gauge, mπ = 701 MeV, and mπ = 156 MeV vortex-only ensembles
respectively. The difference in variational parameters between the ensembles arises
from when the onset of noise dominates the signal.

To calculate uncertainties, we perform a third-order single-elimination jackknife
calculation [102]. Fit window selection is performed to prioritise finding the earliest
appropriate value of tmin, in a method similar to that outlined in Ref. [103]. As such, we
select an initial tmax to be the largest value maintaining V (r, tmax) > ∆V (r, tmax), where
∆V (r, tmax) is the jackknife uncertainty in V (r, tmax). An initial value of tmin = t0 + 2 is
chosen. tmax is then decreased until a covariance fit over the range [tmin, tmax] produces
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Table 5.1 The ansätze used for the three ensembles.

Type Ansatz Functional form
Untouched Cornell V (r) = V0 − α/r + σ r
Vortex-only Linear V (r) = V0 + σ r
Vortex-removed Coulomb V (r) = V0 − α/r

a χ2 per degree of freedom, χ̃2, of less than 1.3. If no such tmax is found, tmin is
increased by one lattice unit and the procedure is repeated. The on-axis results of this
fitting procedure are shown for the lightest pion mass ensemble in Fig 5.2. Once fits
have been performed for all values of r, we select a single fit window with a width
of at least two lattice units (i.e. at least three time values) such that it is typically
encompassed by the range of fit windows found for each value of r.

After the potential V (r) is determined, we then perform functional fits to the UT,
VO and VR potentials. The ansätze used for each ensemble are given in Table 5.1.
The functional fits take into account the full covariance matrix, and error regions
are constructed via repetition of the fits on the jackknife ensembles. The selection of
the range [rmin, rmax] to fit over is performed in a manner similar to the fit window
selection for the effective mass. For the UT and VR ensembles we initialise rmin to the
lowest available value, as we find that our window selection method naturally avoids
the short-range region that is plagued by lattice systematics. To explicitly avoid this
region for the vortex-only potential, we initialise rmin = 5 for these ensembles. rmax

is initialised to the largest available value on all ensembles. Over this initial range,
the functional fit is performed and the χ2 per degree of freedom, χ̃2, is calculated. If
it is greater than 1.3 then rmax is reduced by ∆r = 0.2 and the fit is repeated. If
rmax − rmin < 3, rmax is reset to its maximum extent and rmin is increased by ∆r = 0.2.
In our plots, points that are included in the fit are shown in solid colours, whereas
points excluded from the fit are shown as faded.

We also present plots of the local slope calculated from a series of linear fits taken
over a sliding r window of width 4 lattice units. Each fit window is successively shifted
in increments of ∆r = 0.4 lattice units, with the fitted slope plotted at the left-most
edge. We find that r = 5 is approximately where the onset of linearity begins, and
hence we begin our sliding windows from this value. The excluded short-distance
region is greyed out in the plots presented. This procedure for obtaining the local slope
provides a simple method for gauging the linearity of the potential over a range of
distances.
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Fig. 5.2 The on-axis projected effective mass from the original mπ = 156 MeV ensemble.
Results are shown for the original (top), vortex-only (middle) and vortex-removed
(bottom) ensembles. The selected fit window that meets the χ̃2 criteria as described
in the text is shown as the dashed lines. The shaded region shows the jackknife error
on the fit. Points at the same value of t are horizontally offset for visual clarity. Any
points with a relative error greater than 50% are excluded from the plot.
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5.3 Results

We now present the results for the static quark potential. To verify that our variational
technique is appropriate, we first calculate the vortex-only potential from the mπ =
156 MeV ensemble without a variational method to check if the results from the
variational analysis are consistent and represent an improvement. Given the similarity
of the lattice spacing on our three ensembles, summarised in Table 2.1, we will consider
r in lattice units for the remainder of this work. We find that the fitted string tension is
lower after a variational analysis, with σVO = 0.0484(4) and σVO = 0.0490(4) with and
without variational analysis respectively. Additionally, the effective mass plateau fits
occur at earlier times with the variational analysis, especially at larger r values. This
suggests that the variational analysis is appropriate and represents an improvement
over the naive method.

We show the VO potential with and without variational analysis in Fig. 5.3. Fitting
is performed via the method outlined in the previous section. We observe from the
local slope plot that the long range potential is similar across both methods. The fact
that the differences are so slight is a testament to the excellent signal-to-noise ratio
in vortex only ensembles and the subsequent access to large Euclidean times in the
Wilson loops. Nevertheless, the use of a variational method does improve the onset of
lower-lying plateaus and is thus preferred.

As we are studying gauge fields that include dynamical fermions, this gives rise to
the possibility of string breaking. However, it is well known that there is poor overlap
between the infinitely heavy static quark state and the heavy-light meson-meson state
which arises from the string breaking transition [104]. To identify string breaking, it
is instead necessary to include operators for heavy-light meson-meson states in the
correlation matrix, as done in Refs. [104, 105].

The purpose of the variational analysis employed here is to ensure accurate iden-
tification of the ground state potential to enable comparison between the original
and vortex-modified ensembles. Our basis does not include any of the appropriate
operators to directly observe string breaking in this analysis. The inclusion of these
operators requires inversion of the fermion matrix, which poses technical difficulties on
the vortex-only fields due to their rough nature. These difficulties can be ameliorated
with the use of sophisticated smoothing techniques such as those described in Ref. [89].
However, this would introduce a level of complication to the variational analysis beyond
what is necessary for this study and is left to future work.
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Fig. 5.3 A comparison of the vortex-only potential from the mπ = 156 MeV ensemble
extracted after no spatial smearing and our variational method as described in the
previous section. V0 is set to 0 for both sets of results. The functional fit for the
variational results is also plotted. We observe a similar potential for both choices,
however the linearity of the fit is improved after a variational method, with a larger
range of points meeting the fit criteria discussed in the text.

5.3.1 Standard Potential Fits

The static quark potential from the pure gauge ensemble is presented in Fig. 5.4.
Our results coincide with findings from previous studies [13, 16, 17]. The untouched
potential is Coulomb-like at short distances whilst becoming linear as r increases. We
observe that the vortex-removed and vortex-only potentials of Table 5.1 qualitatively
capture these regimes respectively. Vortex removal results in Coulomb-like behaviour
at short distances, with approximately constant behaviour at moderate to large r
indicating the absence of a linear string tension. We do note, however, that the
Coulomb term provides a poor representation of the VR results at large r. Contrasting
the vortex-removed results, we observe that the vortex-only ensemble features no 1/r
behaviour, instead displaying a linear potential with a slope of approximately 62% that
of the original ensemble.
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Fig. 5.4 The static quark potential as calculated from the pure Yang-Mills ensemble.
Points are obtained from the variational analysis and solid lines show the fitted ansatz
for each ensemble. The choice of ansatz is as described in Table 5.1. Faded points
indicate that this point was not included in fitting the ansatz, as described in the text.
The lower plot shows the fitted local slope of a forward-looking sliding linear window
from r to r + 4a.
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Table 5.2 The fitted string tensions from the vortex-only and untouched ensembles,
and their respective ratios.

mπ (MeV) a2 σVO a2 σUT σVO/σUT

Pure gauge 0.0344(9) 0.0558(3) 0.62(2)
701 0.0570(7) 0.0537(7) 1.06(2)
156 0.0484(4) 0.0386(1) 1.25(3)

The fitted string tension values from the untouched and vortex-only ensembles are
presented in Table 5.2. The ratio of the vortex-only string tension to the untouched
string tension is shown in the third column. We see that while the vortex field from
the pure gauge background is only able to recreate 62% of the untouched string
tension, in the presence of dynamical fermions there is a different story. The fitted
vortex-only string tension increases upon the introduction of dynamical fermions at the
heaviest pion mass. At mπ = 701 MeV the fitted string tension for the vortex-only and
untouched fields are nearly equal, whereas on the lightest ensemble at mπ = 156 MeV
the fitted string tension on the vortex-only field exceeds the untouched value by about
25%.

What is clear is that that the presence of dynamical fermions significantly alters
the texture of the vortex vacuum, even at an unphysically large quark mass. The
question then posed is how best to shed some light on the nature of this ‘sea change.’
Fig. 5.5 shows the static quark potential results for the heavy dynamical ensembles,
with mπ = 701 MeV. Examining the local slope as it varies with r provides some
insight. Note that the lattice spacings (as set by the Sommer scale) of the three
ensembles listed in Table 2.1 are approximately the same, so it is reasonable to make
broad comparisons in the slopes of the potentials.

As before, vortex removal captures the short-range physics while removing any linear
rise associated with a confining potential. Strikingly, the vortex-only field projected
from the dynamical ensemble now fully reproduces the long-range potential. This
is best observed in the moving local slope displayed in the lower panel of Fig. 5.5.
The more precise fitted string tension σ shows approximate agreement as reported in
Table 5.2. This will be discussed in greater detail in the next subsection.

Finally, we present the static quark potential on the ensemble with the lightest pion
mass of 156 MeV in Fig. 5.6. Here we observe the untouched and vortex-only slopes
crossover, with approximate agreement of the local slope in the region r ∈ [5.5, 7]. As
we extend to larger distances, we observe that the vortex-only string tension exceeds
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Fig. 5.5 The static quark potential as calculated from the mπ = 701 MeV ensemble,
with features as described in Fig. 5.4.



86 Static Quark Potential

r/a
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

a
V

(r
)

UT

VR

VO

0 2 4 6 8 10 12 14 16

r/a

0.000

0.025

0.050

0.075

0.100

a
2
σ

Fig. 5.6 The static quark potential as calculated from the mπ = 156 MeV ensemble,
with features as described in Fig. 5.4.



5.3 Results 87

Table 5.3 Results of the standard static quark potential fits to the three ensembles.
The fit parameters are described in Table 5.1 and χ̃2 denotes the χ2 per degree of
freedom.

Type (rmin, rmax) χ̃2 aV0 α a2σ

Pure gauge
UT (3.10, 16.55) 1.12 0.608(3) 0.286(7) 0.0558(3)
VR (3.00, 9.05) 1.23 1.010(2) 0.881(7) −
VO (5.00, 16.40) 0.97 −0.041(4) − 0.0344(9)
mπ = 701 MeV

UT (3.10, 16.55) 1.30 0.847(7) 0.42(1) 0.0537(7)
VR (3.00, 6.55) 1.30 1.092(4) 0.59(1) −
VO (5.00, 16.55) 1.03 −0.047(4) − 0.0570(7)
mπ = 156 MeV

UT (4.40, 13.25) 1.29 0.93(1) 0.61(4) 0.0386(1)
VR (3.10, 5.40) 1.28 1.106(5) 0.68(2) −
VO (5.00, 11.15) 1.28 −0.033(2) − 0.0484(4)

the original value. This overestimation is corroborated by the fit values, where the
value of σ reported in Table 5.2 is approximately 25% larger than the untouched.

The unanticipated overestimation of the VO string tension at the lightest mass
gives an indication that there is some additional physics that is not being accounted
for. A hint as to the possible answer is revealed in the vortex-removed fits. Specifically,
the standard Coulomb term retains a residual increase in strength at moderate to large
r that does not match the approximately constant behaviour of the vortex-removed
results. The slow rise present in the standard Coloumb term could also interfere with
the fitted linear term coefficient, resulting in an underestimation of the string tension
in the UT results where both the Coulomb and string-tension terms are present.

Table 5.3 shows that as pion mass decreases, the fitted value of the Coulomb
term coefficient, α, on the UT ensembles increases. This would then enhance possible
contamination of the fitted UT string tension resulting from physics absent from
the standard Coulomb term, amplifying the discrepancy between the original and
vortex-only string tensions. This motivates modifications to the Coulomb term that
we introduce in the next section in order to obtain better descriptions of the lattice
results and more accurate estimates of the string tension.
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5.3.2 Modified Coulomb Potential Fits

We have seen the difficulty in fitting the Coulomb term parameter, α, in our ansatz to
a wide range of values on the dynamical ensembles. At the shortest distances, there is a
well-known difficulty associated with fitting α for both the original and vortex-removed
ensembles [106], stemming from the small statistical errors present at short range
coupled with the presence of finite lattice-spacing systematics.

It is possible to apply a lattice correction to the Coulomb term to compensate for
these short-distance artifacts [107, 108]. However, here we are mainly concerned with
the long distance behaviour and adopt the simple solution of excluding small values of
the static quark separation r from our fits.

A more serious limitation in the fit functions used above is revealed upon vortex
removal. The standard Coulomb term is only able to describe the vortex-removed
results over a limited range. This demonstrates a need for a modified fit function in
order to describe the large r behaviour of the vortex-removed potential.

The decoupling of the static quark potential into the vortex-removed and vortex-only
components also provides us with an opportunity. Specifically, the large r behaviour of
the untouched potential is dominated by the linear string tension. The dominance of
the linear term at large r hides any subleading effects.

The vortex-only component of the potential is well described by a linear string
tension. The origin of the confining string tension is attributed to non-trivial vacuum
structure, with the centre-vortex model of course being the most pertinent to this
study. On the other hand, the vortex-removed potential does not possess a string
tension as testified by the absence of a linear slope. This provides us with a chance to
model effects that would otherwise be obscured by the rising linear string tension.

The first modified ansatz we propose is novel, with a model based on anti-screening
of the Coulomb potential,

Vas(r) = V0 − α

1 − e−ρr . (5.13)

The Laurent series of this function is dominated by the lowest order term α̃/r at short
distances providing a Coloumb-like potential, where the effective Coulomb coefficient is
α̃ = α/ρ. Anti-screening implies that the strong coupling constant αs(r) increases with
increasing separation between two test colour charges. If αs increases as r increases,
this will have the effect of counteracting decreasing behaviour of the 1/r term.



Table 5.4 Results of the functional fits to the modified ansätze described in the text. The values of ρ for the untouched
ensembles are fixed to the value obtained from the corresponding vortex-removed fit.

Type (rmin, rmax) Fit function χ̃2 a V0 α a2 σ ρ

Pure gauge
VR (2.90, 16.55) Vas 1.10 1.20(3) 0.27(3) − 0.28(2)
VR (2.90, 16.55) Vsc 1.13 0.931(5) 1.01(3) − 0.15(2)
UT (3.00, 16.55) Vas + σ r 1.16 0.652(4) 0.081(2) 0.0572(3) 0.28
UT (3.00, 16.55) Vsc + σ r 1.19 0.573(2) 0.301(7) 0.0572(3) 0.15
mπ = 701 MeV

VR (1.80, 16.55) Vas 0.97 1.42(2) 0.42(3) − 0.53(2)
VR (1.80, 16.55) Vsc 1.01 1.005(2) 0.85(2) − 0.31(2)
UT (3.00, 16.55) Vas + σ r 1.29 1.02(1) 0.259(9) 0.0588(5) 0.53
UT (3.00, 16.55) Vsc + σ r 1.30 0.761(4) 0.54(2) 0.0585(5) 0.31
mπ = 156 MeV

VR (3.00, 16.40) Vas 1.18 1.48(6) 0.48(6) − 0.51(4)
VR (3.00, 16.40) Vsc 1.18 1.009(3) 1.05(8) − 0.33(3)
UT (4.40, 9.25) Vas + σ r 1.28 1.17(4) 0.37(3) 0.0459(9) 0.51
UT (4.40, 9.25) Vsc + σ r 1.28 0.804(7) 0.84(7) 0.0457(9) 0.33
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The specific form of the ansatz we have chosen here is motivated by the observation
of the flat, constant-like behaviour of the vortex-removed potential at large distances.
Specifically, at large r the exponential in the denominator of Eq. (5.13) tends to zero,
such that a constant value Vas → V0 − α is rapidly approached as r increases. The
implication of this is that the running coupling, αs, is approximately linear in r within
the fitted region. Previous lattice studies of the running of the strong coupling do show
an increase in αs with the separation r, although they are limited in the applicable
range of scale (up to ∼0.5 fm) [107, 109, 110]. Importantly, the form of Eq. (5.13) is
controlled such that the large r behaviour cannot describe a rising linear potential
tension and hence should not interfere with a fitted string tension.

Intuitively, anti-screening can be understood by noting that at short distances
gluons carry colour charge away from a quark or anti-quark such that the effective
colour charge within a given radius is diluted, leading to asymptotic freedom at short
distances [111]. We know from previous studies of the pure-gauge vortex-removed gluon
propagator that flat behaviour consistent with asymptotic freedom is observed at large
q2 [15]. We also know that anti-screening arises from the non-Abelian nature of the
gluon field, and as the vortex-removed field remains non-Abelian it seems reasonable
to postulate that anti-screening will still be present in the absence of confinement.

Of course there are more sophisticated calculations of the running of αs [110,
112–117], but these have limited applicability here, either due to the limited range of
perturbation theory in QCD or being inspired by the string tension. It is not clear
how these apply to vortex-modified fields. Here we choose instead to simply model the
observed behaviour of the vortex-removed potential.

We also consider an alternative model to fit the vortex-removed results. The second
modified ansatz we propose is a screened Coulomb potential, commonly known as the
Yukawa potential,

Vsc(r) = V0 − α

r
e−ρr . (5.14)

Once again this has a Coulomb-like 1/r behaviour at small r. At large r the exponential
term has the effect of turning off the Coulomb interaction such that Vsc → V0 as r
increases.

One interpretation of the Yukawa model in this context is that the gluon dynamically
acquires an effective mass ρ in the infrared. As a non-zero gluon mass is forbidden
at the Lagrangian level by gauge invariance, this mechanism must be dynamical and
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Fig. 5.7 Fits to the lattice results for the potentials using the modified Coulomb
term functions Vsc and Vas described in the text. The vortex-removed results are now
described well by the modified potentials.

scale-dependent. Indeed, the dynamical generation of an effective gluon mass has been
proposed elsewehere as a possible mechanism for the gluon propagator to take a finite
value in the infrared limit [118–123].

It must be emphasised that the finiteness of the gluon propagator in the infrared limit
is distinct to the presence (or absence) of confinement. The signature of confinement
is dependent on the nature of the running of the gluon mass. Specifically, gluon
confinement is associated with an inflection point or turn-over in the gluon propagator,
which in turn implies the running gluon mass should not be constant. We know that
vortex-removed theory does not generate a string tension and hence is non-confining.
Introducing the possibility of a constant effective gluon mass at a finite scale would
model the vortex-removed potential in a way which is separate to any confinement
mechanism. It should also be noted that the relationship between gluon confinement
and quark confinement remains an open question. The former is observed through
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the inflection point in the gluon propagator and the latter through the static quark
potential.

We now turn to the results from our modified Coulomb ansätze. Table 5.4 presents
the fit parameters, with the resulting potentials illustrated in Fig. 5.7. We see that
both Vas and Vsc are able to describe the vortex-removed results well, with similar
values for the reduced χ2. At first glance it seems somewhat counter-intuitive that both
an anti-screened and screened model are able to describe the same results. Numerically,
this is possible because of the interplay between the V0 and α. Both ansätze approach
a constant value in the large r limit, with Vas → V0 − α and Vsc → V0 respectively.

We see that both modified ansätze provide a superior fit to the vortex-removed
results when compared to the standard Coulomb ansatz, allowing the fit window to
extend to the maximum available rmax. In all cases the fitted value of rmin is less than
or equal to the standard potential fits, indicating that the modifications made to the
Coulomb terms are still able to account for the short distance behaviour of the potential
up to the presence of lattice artefacts.

Having verified that our modified ansätze are successfully able to describe the
vortex-removed potential results at large r, we can then use this information to improve
our fits to the untouched results. This is accomplished by fixing ρ to be the value
obtained from the corresponding vortex-removed ensemble, then adding a linear term to
accommodate the string tension component of the untouched potential. The motivation
behind fixing ρ is that the cleanest fit value for this parameter will be obtained in the
absence of a string tension term which will dominate the large r behaviour. Indeed, we
find that if left as a free parameter ρ is poorly constrained by the untouched potential
fits due to the presence of the dominating linear term.

The fits to the untouched ensembles are of comparable range and χ̃2 to the original
Cornell fits, however when we look at the ratio of the vortex-only string tension to the
untouched, shown in Table 5.5, we see the significant impact the modified Coulomb
terms play. The untouched string tension on the pure gauge ensemble is similar to the
Cornell fit value, however on the dynamical ensembles the string tension is increased due
to cleanly removing the contamination from the slow rise in the standard Coulomb term
at moderate to large r. Remarkably, this results in agreement between the vortex-only
and untouched string tensions on both dynamical lattices, as seen by the corresponding
ratios taking values close to unity in Table 5.5.

The fits to the results are unable to distinguish between the two modified ansätze.
Indeed, the resulting improvements to the untouched potential fits result in values for
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Table 5.5 Ratios of the vortex-only to untouched string tensions from the Cornell and
modified fit functions.

mπ (MeV) σVO/σ
cornell
UT σVO/σ

as
UT σVO/σ

sc
UT

Pure gauge 0.62(2) 0.60(2) 0.60(2)
701 1.06(2) 0.97(2) 0.97(2)
156 1.25(3) 1.05(2) 1.06(2)

the string tension that are essentially identical. We also tested an n-tuple form factor,
(1 + (r/ρ)n)−1, to suppress the Coulomb term at large r, and this provided a similar
result. This gives us confidence that any systematic errors arising from the modified
Coulomb terms are minimal in the final string tensions reported.

The physical arguments provided for the two modified ansätze are simply to demon-
strate some plausible mechanisms that might underpin their empirically motivated
forms. Due to the interplay between α and V0 it is likely that more than one effect
will contribute to the fitted values. With a high-precision scaling analysis, a future
examination may be able to resolve the physics represented by these modifications. The
key result here is that by successfully modelling the observed long distance behaviour of
the vortex-removed potential, we have been able to remove a source of contamination
in the untouched potential fits and provide improved values for the fitted string tension
for the first time.

For a given ansatz, the fitted value of ρ on the two dynamical lattices are similar,
and are roughly double the fit value on the pure gauge ensemble. This indicates that
the effects contributing to the medium to long-range behaviour of the vortex-removed
potential are mainly sensitive to the presence or absence of dynamical fermions, but
are only weakly dependent on the sea quark mass.

There are indications of increased screening by the light dynamical fermions in
both the untouched and vortex-only results. Significantly, at longer distances we
observe both modified ansätze show a decrease in the fitted value of the untouched
and vortex-only string tensions when transitioning from the heavy to light pion mass.

As we have not corrected for short-distance lattice artefacts the fitted values of α
should be interpreted with some caution, but are also worth discussing. The Coulomb
term coefficients arising from the fits to the untouched potentials are summarised
in Table 5.6 (recalling that for the Vas ansatz the effective short-distance coupling is
α̃ = α/ρ). For the pure gauge ensemble, the fitted values are close to the universal
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Table 5.6 The (effective) Coulomb term coefficients from the Cornell and modified fits
to the untouched potentials.

mπ (MeV) αcornell
UT α̃as

UT αsc
UT

Pure gauge 0.286(7) 0.293(7) 0.301(7)
701 0.42(1) 0.49(2) 0.54(2)
156 0.61(4) 0.72(6) 0.84(7)

value of π/12 ≃ 0.26 derived from a thin flux tube effective field theory [124]. We
observe the Coulomb couplings increase with decreasing sea quark mass for all three
ansätze considered herein. This trend has been previously observed for the standard
potential fits in Ref. [125]. It is interesting to see that this trend is replicated in our
modified fits as well, as it suggests that the modified Coulomb terms are sensitive to
the same short-distance physics as the standard ansatz.

The crucial finding of this work is that the introduction of dynamical fermions at any
pion mass induces a measurable shift in the behaviour of centre vortices. Applying the
modified ansätze introduced herein, the pure gauge vortex-only potential remains unable
to reproduce the untouched string tension, whereas in contrast the respective dynamical
string tensions show good agreement. The vortex-removed ensembles consistently show
complete removal of the long range confining potential. This reinforces the argument
that the salient non-perturbative properties of the ground state vacuum fields are
encapsulated in the centre vortex degrees of freedom.

5.4 Conclusion

In this chapter we have presented the first calculation of the static quark potential from
centre vortices obtained in the presence of dynamical fermions in QCD. The difficulties
in fitting a standard Coulomb term to a wide range of vortex-removed values revealed
a source of systematic contamination at moderate to large separations, resulting in
the under estimation of the untouched string tension. In response we proposed two
modified Coulomb ansätze. The first modified ansatz seeks to model the effect of
anti-screening in the running coupling for QCD. The second modified ansatz takes the
form of a Yukawa potential, accomodating a dynamical effective gluon mass. Both
ansätze for the vortex-removed potential approach a constant value in the large r limit,
and are able to describe the static quark potential on the vortex-removed ensembles.
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Extending the modified Coloumb potentials with a linear string tension enables fits to
the untouched potential.

The vortex-removed ensembles lack a linear confining potential for both the large
and small pion masses considered here. Resolving the long-range behaviour of the
vortex-removed static quark potential with the fit parameter ρ enables us to remove
a source of systematic contamination in the untouched potential fits, providing an
improved determination of the untouched string tension. In doing so, we find good
agreement between the vortex-only and untouched string tensions in the presence of
dynamical fermions. The fact both modified ansätze yield fit values for the string
tension that are essentially identical suggests that any systematic errors introduced by
the modifications are minimal. Evidence of quark loop screening is seen at the light
quark mass.

These results suggest that the presence of dynamical fermions resolves the pure-
gauge discrepancy between the original and vortex-only potential at large distances,
presenting an important step in understanding the QCD vacuum. Historically, despite
remarkable qualitative results, the centre-vortex model has not agreed quantitatively
with pure Yang-Mills calculations. It is fascinating to see that with the improve-
ments presented here that good agreement is achieved for the string tension with the
introduction of dynamical fermions in full QCD.

It is important to note that the mechanism for the observed phenomenological
improvement is currently unknown. In pure gauge theory the identified centre vortex
string tension is dependent on the specific gauge fixing procedure [7, 10, 11, 126, 127].
For example, in Laplacian centre gauge the full string tension is recovered [128–133].
Future investigation into these gauge fixing dependencies with vortices derived from
dynamical gauge fields would assist in further understanding the differences that have
been observed herein.

Another avenue of improvement would be to expand the variational operator basis.
In particular, the inclusion of a heavy-light meson-meson operator may clarify the
long-range behaviour of the vortex-modified potential and reveal possible connections
to string breaking.

The concept of separation-of-charge (Sc) confinement has been proposed elsewhere
and studied in the context of the gauge-Higgs model [134–137]. Key to this concept
is the existence of an order parameter, analogous to the Edwards-Anderson order
parameter for spin-glass systems, that can be calculated to determine if a given vacuum
phase is Sc-confining. It has not yet been verified numerically if QCD is Sc-confining.
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Testing the response of the corresponding order parameter to vortex projection/removal
would also be an interesting line of future study.

Despite the scope for future improvement, these findings strengthen the evidence
that centre vortices are responsible for the long-range confining potential of QCD,
and provide a first glimpse of the interplay between centre vortices and dynamical
fermions. Motivated by these powerful results, in the next chapter we explore the gluon
propagator from vortex modified ensembles in the presence of dynamical fermions.



Chapter 6

Gluon Propagator and Positivity
Violation

This chapter is based on the paper “Impact of Dynamical Fermions on the Centre Vortex
Gluon Propagator”, Biddle, Kamleh, and Leinweber [23].

The results presented in Chapter 5 demonstrated for the first time a quantita-
tive agreement between the vortex-only static quark potential and the corresponding
untouched potential. These results motivate further exploration of the relationship
between centre vortices and dynamical fermions. Here we continue this line of investi-
gation by calculating the Landau gauge gluon propagator on the same three ensembles
utilised in the previous chapter.

We will also examine the gluon spectral density by calculating the Euclidean
correlator to determine the presence or absence of positivity violation. Positivity
violation serves as an indicator of gluon confinement [138]. It is well understood
that positivity violation in the gluon and quark propagators is a necessary condition
for light-quark confinement [139]. As such, positivity violation arising from centre
vortices serves as a strong indication that the centre vortex mechanism underpins the
confinement of physical particles.
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6.1 Gluon Propagator

6.1.1 Definition

In the continuum, the momentum-space Landau gauge gluon propagator is of the form

Dab
µν(q) =

(
δµν − qµqν

q2

)
δabD(q2) , (6.1)

where where D(q2) is the scalar gluon propagator. On the lattice, the scalar propagator
for p2 ̸= 0 is calculated by considering [15]

D(p2) = 2
3 (n2

c − 1)V
〈
TrAµ(p)Aµ(−p)

〉
. (6.2)

where nc = 3 is the number of colours, V is the lattice volume and Aµ(p) is calculated
via the discrete Fourier transform of the midpoint definition of the gauge potential [140],

Aµ(x+ µ̂/2) = 1
2i
(
Uµ(x) − U †

µ(x)
)

− 1
6i Tr

(
Uµ(x) − U †

µ(x)
)

+ O(a2) . (6.3)

As the gauge fields used in this analysis are generated using the O(a2)-improved Iwasaki
action [141], the tree-level behaviour of the gluon propagator is improved by making
the substitution [29, 142, 143]

pµ → qµ = 2
a

√
sin2

(
pµa

2

)
+ 1

3 sin4
(
pµa

2

)
, (6.4)

where pµ are the usual lattice momentum variables

pµ = 2π nµ
aNµ

, nµ ∈
(

−Nµ

2 ,
Nµ

2

]
, (6.5)

and Nµ is the lattice extent in the µ direction. The tree-level continuum scalar
propagator is then given by D(q2) = 1

q2 . This choice of momentum variables reduces the
sensitivity of the gluon propagator to finite lattice spacing effects at large momenta [144].

The perturbative scalar propagator is defined as D(q2) = Z(q2)
q2 . For the remainder

of this section we will focus on the renormalisation function Z(q2) = q2 D(q2). We
then renormalise Z(q2) in the momentum space subtraction (MOM) scheme [145, 146]
on the untouched configurations by enforcing the condition that ZUT(µ2) = 1 at the
largest available momentum on all ensembles, µ = 5.5 GeV. This is performed via



6.1 Gluon Propagator 99

determination of a constant ZUT
3 satisfying

ZUT
bare(µ2)
ZUT

3
= ZUT(µ2) = 1 . (6.6)

Renormalising the vortex-modified results requires more careful consideration, as
there is no a priori method by which it should be performed. Specifically, the problem
arises from the absence of a perturbative expectation for the vortex-only propagator.
The vortex-removed results are expected to encapsulate the high-momentum behaviour,
and as such one can reasonably expect that the MOM scheme method would apply to
these ensembles. However, the vortex-only results are dominated by infrared strength
and a decay to 0 at high momentum. Hence, a multiplicative renormalisation based on
a perturbative expectation does not apply.

To approach this renormalisation issue, we present two sets of results. The first
set will display all propagators from an ensemble divided by ZUT

3 as determined via
the MOM scheme described in Eq. (6.6). This allows us to readily compare the
vortex-modified propagators across all ensembles.

Based on the findings of Ref. [15], we also consider renormalising the vortex-modified
propagators via a best-fit approach. To do this, we consider taking a linear combination
of the vortex-only and vortex-removed bare renormalisation functions, ZVO

bare(q2) and
ZVR

bare(q2) respectively, such that the “reconstructed” propagator

Zrecon(q2) = ζVO ZVO
bare(q2) + ζVR ZVR

bare(q2)
ZUT

3
(6.7)

is fit to ZUT(q2) via a linear least-squares fit. Here, ζVO and ζVR are fit parameters
defined such that the renormalised vortex-modified propagators are

ZVO(q2) = ζVO

ZUT
3

ZVO
bare(q2) , (6.8)

ZVR(q2) = ζVR

ZUT
3

ZVR
bare(q2) . (6.9)

Fitting the reconstructed propagator is subject to the constraint

Zrecon(µ2) = ZUT(µ2) = 1 , (6.10)
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so that the MOM scheme is replicated in the fit. This reduces the fit to a single
parameter, as we can constrain e.g. ζVR to be

ζVR = ZUT
3 − ζVO ZVO

bare(µ2)
ZVR

bare(µ2) . (6.11)

Once a fit is found, the renormalisation defined in Eqs. (6.8, 6.9) is applied such that
the reconstructed propagator is simply given by the sum

Zrecon(q2) = ZVO(q2) + ZVR(q2) . (6.12)

As we shall see, this fitting approach is appealing as it produces excellent agreement
between the pure-gauge untouched propagator and the reconstructed propagator as
defined in Eq. (6.7).

To improve the lattice gluon propagator and suppress lattice cutoff artefacts, we
follow the analysis of Refs. [15, 53, 147]. A momentum half-cut and a cylinder cut
of radius 2a are performed. This removes points where one direction dominates the
off-diagonal signal. Z(3) averaging [147] is also employed, which exploits the symmetry
of the scalar propagator by averaging over values obtained from points with the same
Cartesian radius.

6.1.2 Results

We first present the pure-gauge calculation of the scalar propagator, with all results
renormalised using the untouched renormalisation constant, ZUT

3 . The results from
the three ensembles, UT, VO and VR are shown in Fig. 6.1. As expected, these results
agree with those of Ref. [15], with the untouched propagator defined by an infrared peak
and an ultraviolet plateau to tree-level. The vortex-modified counterparts qualitatively
capture these two features, with the vortex-only propagator featuring an infrared peak,
whereas the vortex-removed results retain the ultraviolet plateau. However, there
is still significant infrared strength present in the vortex-removed propagator, which
indicates that some long-range physics remains in the vortex-removed ensemble.

We now consider the dynamical ensemble with the heaviest pion mass. We plot
the gluon propagator calculated on this ensemble in Fig. 6.2. We observe that even
at this unphysically large pion mass, the impact on the propagator is significant.
Qualitatively, the propagators retain the same features as described for the pure-gauge
sector, however the untouched propagator is noticeably screened, as is to be expected



6.1 Gluon Propagator 101

0 1 2 3 4 5 6
q (GeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q2
D

(q
2
)

UT

VR

VO

Fig. 6.1 Pure-gauge gluon propagator as calculated on the untouched (green), vortex-
removed (orange) and vortex-only (purple) ensembles. All propagators a renormalised
by applying the renormalisation constant found by applying the MOM scheme to the
untouched propagator. A black line at Z(q2) = 1 is used to show the asymptotic
behaviour.
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Fig. 6.2 mπ = 701 MeV gluon propagator. The data scheme is as described in Fig. 6.1.

from the introduction of dynamical fermions [138]. The vortex-only propagator also
exhibits screening, which is a heretofore unseen effect. Furthermore, the infrared
enhancement of the vortex-removed propagator is significantly reduced when compared
to the pure-gauge results shown in Fig. 6.1, and now displays behaviour completely
consistent with the perturbative expectation. These two changes indicate a noticeable
shift in the behaviour of the centre vortices under the introduction of dynamical
fermions.

The story is similar for the results of the lightest pion mass, shown in Fig. 6.3.
Screening effects are further enhanced in the untouched propagator as the pion mass is
reduced, although it is difficult to observe any change in screening in the vortex-only
propagator. To aid in this, we plot a comparison of the vortex-only propagators across
all three ensembles in Fig. 6.4. Here we can clearly see the presence of screening
upon introduction of dynamical fermions. Between the two dynamical ensembles,
screening effects are slightly enhanced as the pion mass decreases, however the effect is
very subtle. The vortex-removed propagator also retains the suppression of infrared
enhancement found at mπ = 701 MeV. Given that the behaviour of the vortex-modified
propagators is so similar between the two pion masses, it appears that the mere presence
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Fig. 6.3 mπ = 156 MeV gluon propagator. The data scheme is as described in Fig. 6.1.

of dynamical fermions plays a substantial role in altering centre vortex structure and
the manner in which they generate the gluon propagator.

An interesting trend in the results presented in Figs. 6.1, 6.2 and 6.3 is the fact
that the vortex-removed results exceed the untouched results at high momentum
with the same renormalisation constant applied. It is well understood that a larger
renormalisation constant is necessary to account for increased roughness in an ensem-
ble [148]. Given that the vortex removal process represents a significant change in
the texture of the gauge field, it appears that such roughness has been induced in the
vortex-removed fields. This finding supports the need for more detailed consideration
of the renormalisation of the vortex-modified propagators.

We now repeat the above presentation but with the second renormalisation method
applied, as defined at the end of Sec. 6.1.1. The pure-gauge results are presented
in Fig. 6.5. The shape of the propagators is naturally the same as before, with
the interesting addition from the renormalisation method being the reconstructed
propagator. Here we observe good agreement between the untouched and reconstructed
propagators. This indicates that the additional degree of freedom in the renormalisation
method is to some extent encapsulating the manner in which the untouched propagator
is partitioned into its vortex-modified components.
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Fig. 6.4 The vortex-only propagators from all three ensembles. Screening is distinctly
visible as we transition from pure-gauge to dynamical gauge fields.

Table 6.1 The MOM scheme renormalisation constants, ZUT
3 , as well as the fitted

renormalisation constants defined in Eq. (6.7).

Ensemble ZUT
3 ζVO ζVR

Pure gauge 7.112 0.5543 0.8985
mπ = 701 MeV 9.316 0.6916 0.8251
mπ = 156 MeV 11.510 0.5834 0.8780

The dynamical ensembles with this renormalisation method applied show a reduced
agreement between the untouched and reconstructed propagators relative to the pure
gauge results. The significance of this disagreement is unknown, and represents another
interesting shift in behaviour when transitioning from pure-gauge to dynamical QCD.
The fit constants as described in Eqns. (6.6) and (6.7) are presented in Table 6.1.

When comparing the vortex-only propagators with this new renormalisation scheme
we observe that screening effects remain apparent, as is evident from Fig. 6.8. Further-
more, it is also possible to see a distinct increase in screening behaviour as we transition
from the heavy to light pion mass. This suggests that perhaps this renormalisation



6.1 Gluon Propagator 105

0 1 2 3 4 5 6
q (GeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

q2
D

(q
2
)

UT

VR

VO

recon

Fig. 6.5 Pure-gauge gluon propagator. All propagators are renormalised by applying
the renormalisation method described at the end of Sec. 6.1.1. The “recon” data (red)
is an attempted reconstruction of the original propagator by summing the vortex-only
and vortex-removed propagators.
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Fig. 6.6 mπ = 701 MeV gluon propagator. The data scheme is as described in Fig. 6.5.
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Fig. 6.7 mπ = 156 MeV gluon propagator. The data scheme is as described in Fig. 6.5.

method is more representative of the relative contributions of the vortex-only and
vortex-removed propagators to the untouched propagator.

In summary, the vortex-modified propagators undergo significant changes in be-
haviour upon the introduction of dynamical fermions. Residual infrared strength
present in the pure-gauge vortex-removed propagator is suppressed in full QCD. The
vortex-only propagators effectively capture screening effects manifesting as suppressed
infrared enhancement, indicating that the long-range behaviour of the vortex-only
fields mirrors their untouched counterparts. Best-fit renormalisation provides further
insight into the structure of these vortex fields, where we find that the sum of vortex
components reconstructs the original propagator to a fair degree. This further supports
the idea that the vortex-only and vortex-removed propagators embody a splitting of
the vacuum into long- and short-range strength respectively.
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Fig. 6.8 The vortex-only propagators from all three ensembles. The best fit renor-
malisation method produces a greater distinction between vortex-only propagators
compared to Fig. 6.4.
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6.2 Positivity Violation

6.2.1 Discussion

For an arbitrary two-point function D(x−y) to represent correlations between physical
particles in the sense of a Wightman quantum field theory [149], it is necessary by the
Osterwalder-Schrader axioms [150] for D(x− y) to satisfy∫

d4x d4y f ∗(−x0,x)D(x− y) f(y0,y) ≥ 0 , (6.13)

for a suitable complex test function f . If this axiom is satisfied, then the scalar
propagator defined in Eq. (6.2) has spectral representation

D(p2) =
∫ ∞

0
dm2 ρ(m2)

p2 +m2 , (6.14)

with ρ(m2) ≥ 0, known as the Källen-Lehmann representation.

To investigate the behaviour of the spectral representation, we consider the Eu-
clidean correlator, C(t), obtained by taking the Fourier transform of D(p0, 0) as defined
in Eq. (6.14) such that,

C(t) = 1
2π

∫ ∞

−∞
dp0

∫ ∞

0
dm2 ρ(m2)

p2
0 +m2 e

−ip0 t . (6.15)

Extending the p0 integral to the complex plane and employing the residue theorem,
one arrives at

C(t) =
∫ ∞

0
dme−mt ρ(m2) . (6.16)

Clearly if C(t) < 0 for any t then ρ(m2) is not positive definite, and we say that positivity
has been violated. This implies that there is no Källen-Lehmann representation as
defined in Eq. (6.14), and as such the propagator does not represent a correlation
between physical states. Hence, the states do not appear in the physical spectrum. In
the context of the gluon propagator, this can be taken as an indication that gluons are
confined.

On the lattice [145], the Euclidean correlator, C(t), is given by the discrete Fourier
transform of the temporal component of Eq. (6.2),

Clat(t) = 1
Nt

Nt−1∑
nt=0

e−2πin t/NtD(q4(nt)2) , (6.17)
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where Nt is the lattice extent in the temporal direction and q4 is the lattice momentum
described in Eq. (6.4) and Eq. (6.5). As D(0) is associated with the lowest frequency
mode of the propagator, it is a dominant term in Eq. (6.17). As such, it is essential to
ensure that finite volume effects are accounted for.

On the lattice, finite volume effects alter the tensor structure of the propagator
given in Eq. (6.1) such that it has the general form [145]

Dab
µν(q) =

(
δµν − hµν(q)

f (q2)

)
δabD

(
q2
)
, (6.18)

where f(q2) → q2 and hµν → qµqν for large qµ, but f−1(q2) is finite at q = 0. We define

h̃µν(q) = hµν(q)
f(q2) , (6.19)

and note that in the infinite volume limit,

h̃µµ(q) = f−1(q2)hµµ(q)

= qµqµ
q2

= q2

q2 → 1 as q2 → 0 .

However, on a finite volume lattice, f−1(q2) cannot approach infinity. Since qµ can
take the value of 0 and f−1(q2)|q2=0 is finite, h̃µµ = 0 for qµ = 0 in a finite volume.
Thus, the extraction of the scalar propagator D(0) from the lattice propagator requires
a normalisation different from that of Eq. (6.2).

This change in normalisation can be implemented by noting that the quantity(
δµν − qµqν

q2

)
, (6.20)

changes in the finite volume of the lattice to
(
δµν − h̃µν(q)

)
. (6.21)

For qµ ̸= 0, setting µ = ν and summing provides

∑
µ

(
δµµ − qµqµ

q2

)
= 4 − 1 = 3 . (6.22)
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But for qµ = 0 on the lattice, h̃µν(0) = 0 and

∑
µ

(
δµµ − h̃µµ(q)

)
= 4 . (6.23)

This results in
Daa
µµ(0) = 4 (n2

c − 1)D(0) , (6.24)

as opposed to
Daa
µµ(q) = 3 (n2

c − 1)D(q), q ̸= 0 . (6.25)

To verify the validity of this factor we explore the behaviour of the ratio of off-
diagonal to diagonal propagator components for qµ = 0, i.e. ratios of the form

Dµν(0)
Dρρ(0) = h̃µν(0)

1 − h̃ρρ(0)
, µ ̸= ν , (6.26)

where ρ is not summed. As h̃µν ≈ 0, this ratio provides direct access to h̃µν relative to
the Kronecker delta of 1.

The values of these ratios calculated on the pure-gauge untouched configurations
are shown in Fig. 6.9. It is clear that these ratios are consistent with 0 at 1σ, indicating
that both the diagonal and off-diagonal components of h̃µν are small relative to 1. These
results are corroborated by the other ensembles used in this work. This determination
justifies the use of a factor of 4 instead of 3 in calculating the scalar propagator at zero
momentum to address the impact of the finite volume.

6.2.2 Results

With this understanding developed, it is now possible to calculate C(t) as defined
in Eq. (6.17). The results for the pure-gauge ensembles are shown in Fig. 6.10. As
expected [138], the untouched correlator shows clear signs of positivity violation.
Interestingly, the vortex-only correlators also exhibit robust positivity violation. The
positivity violation present in the vortex-removed result at large distances is consistent
with the observations made in Fig. 6.1, where residual infrared strength in the vortex-
removed gluon propagator is apparent. Thus, the separation of perturbative and
non-perturbative physics through vortex modification is imperfect in the pure gauge
sector.
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Fig. 6.9 A plot of the 0-momentum ratio of the off-diagonal to diagonal tensor gluon
propagator as described in Eq. (6.26). We observe that the majority of values are
consistent with zero, indicating that the lattice correction function h̃µν → 0 as q → 0.
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Fig. 6.10 Pure-gauge Euclidean correlator. Shown are the results from the untouched
(green), vortex-removed (orange) and vortex-only (purple) ensembles. A dashed line at
C(t) = 0 is provided to aid in observing positivity violation.



112 Gluon Propagator and Positivity Violation

1.0 1.5 2.0 2.5 3.0
t (fm)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
C

(t
)

UT

VO

VR

Fig. 6.11 mπ = 701 MeV Euclidean correlator. Data is as described in Fig. 6.10.

The results from the dynamical ensembles, shown in Figs. 6.11 and 6.12 demonstrate
an interesting change in behaviour. Here we observe a similar robust violation of
positivity in the vortex-only results as observed on the pure-gauge ensemble. However,
the untouched results show a lesser degree of positivity violation, especially on the
lightest pion mass ensemble shown in Fig. 6.12. Note however that violation is still
present at large times.

As with the gluon propagator results in the previous section, the most striking
change is in the vortex-removed correlator. In this sector we now observe consistency
with positivity. This supports the interpretation of the positivity violation in the
vortex-removed pure-gauge results as being related to the residual non-perturbative
infrared strength in the gluon propagator. As this residual strength is significantly
diminished on the dynamical ensembles, we now see that the residual q2 dependence in
the VR renormalisation function may be purely perturbative in origin. In this case,
vortex modification has been successful in separating perturbative and non-perturbative
physics.

In summary, vortex-only configurations exhibit significant positivity violation, as
would be expected of a confining infrared-dominated theory. Conversely, the vortex
removed configurations show a loss of this positivity violation, admitting the possibility
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Fig. 6.12 mπ = 156 MeV Euclidean correlator. Data is as described in Fig. 6.10.

that they do support a spectral representation of the propagator constructed from
perturbative gluon interactions. These results provide additional support for the fact
that centre vortices encapsulate the confining aspects of QCD.

6.3 Conclusion

The results of this chapter build upon the results of Chapter 5, and provides further
insight into the fascinating shift that centre vortices undergo upon the introduction
of dynamical fermions. Here we have found that centre vortices in the presence of
dynamical fermions are effective in capturing the non-perturbative physics of QCD.
Moreover, vortex removal appears to also be far more effective at removing the infrared
strength of the propagator.

In regard to positivity violation, we demonstrate the known result that unmodified
lattice ensembles give rise to positivity violation in the Euclidean correlator [138]. We
then determined that both with and without the presence of dynamical fermions there
is clear evidence that vortex-only ensembles exhibit significant positivity violation.
On our pure-gauge ensemble, the vortex-removed correlator showed slight positivity
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violation at long distances, but on both dynamical ensembles this effect vanished. In full
QCD, centre-vortex modification of the ground-state vacuum fields appears to provide
an effective separation of perturbative and non-perturbative physics. These results
present evidence that centre vortices in the QCD ground-state vacuum fields provide
the origin of confinement. It is clear that there is an intimate relationship between
dynamical fermions and centre vortices, and that this relationship has significant
implications for the QCD vacuum.



Chapter 7

Vortex Structure in the Presence of
Dynamical Fermions

This chapter is based on the paper “Centre vortex structure in the presence of dynamical
fermions”, Biddle, Kamleh, and Leinweber [24]

7.1 Introduction

Given the remarkable change in vortex behaviour brought about by the introduction of
dynamical fermions, we now wish to return to the visualisation techniques introduced
in Chapter 4 and examine the changes in vortex geometry in the presence of dynamical
fermions. We seek to both expand upon and refine the previous methods to explore
new aspects of centre vortex structure.

We begin this chapter by looking for changes in the bulk properties of the lattice
configurations by analysing the norms and traces of the gauge links, as well as the
values of the maximal centre gauge functional. Bulk discrepancies between pure-gauge
and dynamical ensembles may suggest where the differences in vortex structure arise
from.

The primary new visualisation technique is the development of algorithms that
allow us to split the vortex structure into individual disconnected clusters. These
clusters may then be rendered in different colours to allow for clear observation of the
connectedness of the vacuum vortex structure. Cluster identification also allows for
quantitative determination of the degree to which vortices percolate, and whether the
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nature of vortex percolation changes under the introduction of dynamical fermions.
As with the visualisations presented in Chapter 4, there are interactive 3D models
contained in the supplementary material of Ref. [24] that are associated with figures
containing (Interactive) in the figure caption.

Following cluster identification, we present a novel perspective that considers each
cluster as a directed graph of vortex branching points, with the weight of each graph
edge corresponding to the number of vortex plaquettes between branching points. This
data structure enables us to develop quantitative measures of the size and shape of
centre vortex clusters, facilitating a detailed comparison of vortex structure between
pure-gauge and dynamical QCD.

This chapter is structured as follows. We present the analysis of the bulk gauge link
properties in Sec. 7.2. In Sec. 7.3 we discuss the cluster identification algorithm and
subsequent findings. In Sec. 7.4 we introduce the method by which vortex clusters can
be converted to a graph, and discuss the analysis performed on these graphs. Finally,
the findings of this chapter are summarised in Sec. 7.5.

7.2 Bulk Properties

In understanding the impact dynamical fermions have on the centre-vortex vacuum,
it is natural to first look for bulk changes in the SU(3) lattice gauge fields upon the
introduction of dynamical fermions. The first measure we examine is the distribution
of the local MCG functional

ϕµ(x) = 1
n2
c

∣∣∣TrUΩ
µ (x)

∣∣∣2 (7.1)

defined such that the total MCG functional given in Eq. (3.14) can be written as

Φ = 1
V Ndim

∑
x, µ

ϕµ(x) (7.2)

The distribution of ϕµ(x) values is presented for the untouched ensembles in Fig. 7.1.

We observe that the pure gauge ensemble achieves a typically larger value of ϕµ(x),
indicating that the links have been brought closer to the centre of SU(3). The two
dynamical ensembles follow each other rather closely, although the heavier pion mass
appears to achieve slightly larger Φ values than its lighter counterpart. It should be
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Fig. 7.1 Distribution of the local maximal centre gauge functional, ϕµ(x), as defined in
Eq. 7.1.

noted however that larger values of ϕµ(x) do not necessarily indicate that the MCG
algorithm has performed better on these ensembles. As was determined in Refs. [16,
126, 151], there are a number of methods that can be used to increase the typical
values of ϕµ(x) obtained from maximal centre gauge. However, these methods do not
necessarily improve the vortex-finding abilities of the procedure and in some cases
actually degrade the vortex-finding performance. As such, it should be understood that
the results presented in Fig. 7.1 are simply showing a noticeable change in behaviour as
we transition from pure gauge to dynamical ensembles, and not necessarily a worsening
of vortex identification.

Next, we wish to compare the distribution of the trace phases, arg (TrUµ(x)), from
each ensemble both before and after fixing to maximal centre gauge. These results
are presented in Fig. 7.2. As intended, the phases are tightly packed about the three
centre values after fixing to maximal centre gauge. However, the pure-gauge results
are distributed slightly closer to the centre elements than the dynamical ensembles.

In conjunction with the trace phases, we can also look at the magnitude of the
traces, | TrUµ(x)|. These values are presented in Fig. 7.3. Note that a centre element
will have | TrUµ(x)| = 3. MCG then clearly serves to not only bring the phases close to
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Fig. 7.2 Distribution of trace phases before (top) and after (bottom) fixing to MCG.
We plot the bins for the dynamical ensembles side-by-side as they are similar to one
another, with the pure gauge results overlayed.

that of a centre element, but also the magnitude. However, the effect on the magnitude
is less than that on the phase. This suggests that there is still significant off-diagonal
strength in the original ensembles after fixing to maximal centre gauge. Again, the
pure gauge values are distributed closer to the centre value of 3 when compared with
the dynamical results.

The next bulk measures we examine are two matrix norms designed to determine
the residual off-diagonal strength present in the vortex-removed fields in MCG. The
norms are

Lµ(x) =
∑
i, j

∣∣∣U ij
µ (x) − δij

∣∣∣2
 1

2

(7.3)

and

Mµ(x) =

∑
i, j
i ̸=j

∣∣∣U ij
µ (x)

∣∣∣2


1
2

(7.4)

We find for the untouched configurations that the results for both norms are identical
across all ensembles, as shown in Figs. 7.4 and 7.5. However, after vortex removal we
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Fig. 7.3 Distribution of trace magnitudes before (top) and after (bottom) fixing to
MCG.

notice that differences appear in both norms. The results for Lµ(x) and Mµ(x) on the
vortex removed ensembles are shown in Fig. 7.6 and Fig. 7.7 respectively.

We observe that the dynamical ensembles retain a greater proportion of their
off-diagonal strength. This is interesting, as it has been shown in Ref. [23] that vortex
removal results in a more significant loss of infrared strength in the Landau-gauge gluon
propagator when dynamical fermions are present. This indicates that the residual
strength as measured by our norms in MCG does not coincide with enhancement as
measured via the Landau-gauge gluon propagator.

These measures indicate that there is a substantial difference in behaviour between
the pure-gauge and dynamical ensembles when considering their MCG matrix sub-
structure. Both the trace phases and magnitudes are further from the centre elements
and the dynamical ensembles retain more off-diagonal strength.
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Fig. 7.4 The Lµ(x) norm calculated prior to fixing to MCG.
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Fig. 7.5 The Mµ(x) norm calculated prior to fixing to MCG.
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Fig. 7.6 The Lµ(x) norm calculated on the VR ensembles. Here we see the change in
behaviour after the introduction of dynamical fermions.
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Fig. 7.7 The Mµ(x) norm calculated on the VR ensembles. A trend similar to that
seen in Fig. 7.6 is observed.
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7.3 Cluster Identification

It is well known that for SU(2) gauge fields in the confining phase, percolation of
centre vortices can be used as an order parameter for the transition from the confined
phase to the deconfined phase [8, 63]. At a glance, the visualisations constructed in
Chapter 4 support this assessment, with a single large connected vortex cluster clearly
visible in each visualisation and only a handful of separate smaller secondary clusters
present. Studying the confinement phase transition at the critical temperature will
be the subject of future work. However, it is of interest to build the necessary tools
to perform such a study. This requires us to quantitatively understand the degree to
which a vortex ensemble is dominated by a primary percolating cluster, as opposed
to a collection of smaller secondary clusters. To do this, it is necessary to develop an
algorithm that can trace these vortex lines and identify disconnected clusters.

Such an analysis is quite straightforward in SU(2), as SU(2) vortices do not permit
branching points. This simplifies the algorithm, as each vortex cluster consists of a
single line that may be followed until it arrives back at its starting location. In SU(3),
vortex branching demands that the algorithm track multiple branching paths, and
only terminates when there are no continuations for every path. We describe such an
algorithm here.

The starting point for the algorithm is to have all vortices in a 3D slice stored
along with their associated tip and base coordinates. With this setup, the algorithm
proceeds as follows:

1. Choose an arbitrary vortex to start at. Mark it as visited and record it as
belonging to an incomplete line segment.

2. Considering the last vortex in each incomplete line segment, produce a list of
all unvisited vortices touching this vortex (both base and tip, accounting for
periodicity). Then mark them all as visited

3. Append one of the found vortices to the current segment. For all others, begin a
new segment.

4. If there are incomplete segments, repeat from step 2 for each incomplete segment.

5. Once there are no unvisited touching vortices, mark the segment as complete.
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6. If all segments are complete, the cluster is complete. Record all vortices in all
segments as belonging to this cluster. Return to step 1, selecting an unvisited
vortex.

7. If there are no unvisited vortices, all clusters have been identified and the
algorithm is complete.

This algorithm can then be applied to each 3D slice to isolate all independent vortex
clusters. Employing this algorithm and our visualisation conventions defined in Sec. 4.1,
the pure-gauge vortex vacuum on a single slice appears as in top-left panel of Fig. 7.8.
As our investigation takes place at zero temperature on a large volume lattice, the
choice of slice direction does not impact most intrinsic measurements, and as such
we choose to present plots obtained from slicing in the x̂ direction. The only notable
exception is the size of the percolating cluster as it fills the 3D volume and is therefore
smaller for t̂ slices. The choice of x̂ will be assumed for the remainder of this chapter
unless stated otherwise. Numerical values presented in tables will be averaged across
all slice dimensions, where applicable.

We observe that indeed the vacuum is dominated by a single primary percolating
cluster, with an assortment of small secondary clusters also present. Branching points
are readily observed within the visualisation, as can be seen in Fig. 7.9.

The transition to full QCD leads to a marked shift in the behaviour of the centre
vortices, as can be seen from the vortex vacuum of the lightest pion mass ensemble
shown in the bottom-left panel of Fig. 7.8. The total number of vortices has increased
significantly.

The dominance of a single vortex cluster is even more pronounced once it is
removed, as shown in the right-hand panels of Fig. 7.8 for the pure-gauge (top) and
dynamical-fermion (bottom) slices. Almost all the vortex matter is associated with the
percolating cluster. However, if we focus on the dynamical-fermion secondary clusters
in the bottom-right panel of Fig. 7.8, we see that the number of secondary clusters
has increased substantially when compared to the pure gauge ensemble. Moreover, an
increase in the complexity of the secondary structures through branching-point clusters
is also evident.

To gauge the relative sizes of the primary and secondary clusters, we calculate
the average total number of vortices per slice, Nslice, the average number of vortices
associated with the primary cluster, Nprimary, and the average number of vortices
associated with a secondary cluster, Nsecondary. Nslice, Nprimary, and Nsecondary for all
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Fig. 7.8 (Top left) The centre vortex structure of a pure-gauge configuration. (Top
right) The pure-gauge vortex vacuum as shown in the top left panel with the primary
percolating vortex cluster removed. (Bottom left) The centre-vortex structure of a 2+1
flavour dynamical-fermion configuration from the mπ = 156 MeV ensemble. (Bottom
Right) The dynamical vortex structure in the bottom-left panel with the primary
percolating vortex cluster removed. Note the increased abundance of elementary vortex
paths and the prevalence of branching points. In each panel, separate vortex clusters
are rendered with different colours. These 3D models are generated with AVS scientific
visualisation software [152]. (Interactive)
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Fig. 7.9 A collection of branching points (red ovals), a touching point (green circle) and
a secondary loop (red jets) as they appear in our visualisations. Each jet illustrates
the flow of m = +1 centre charge.

three ensembles are presented in Table 7.1. Note that the spatial values are obtained
by averaging across the three spatial dimensions acting as the slice dimension. When
t̂ is selected for slicing the four dimensional volume, the spatial volume is half that
when a spatial direction is selected. As such, the percolating cluster values in the t̂
column are expected to be half those in the spatial slicing column.

Interestingly, we observe that Nsecondary decreases in the presence of dynamical
fermions, indicating that the secondary clusters are smaller on average. This is due to
a proliferation of elementary plaquette vortex paths in dynamical fermion QCD, as
illustrated in the bottom-right panel of Fig. 7.8.

We also see that Nslice and Nprimary from the heavier quark-mass ensemble are larger
than the values calculated on the light ensemble. This is likely a result of the fact that
the heavier pion mass configurations have a slightly larger physical volume. We can
determine if this is the case by considering the vortex density, ρvortex.

The vortex density is calculated by considering the proportion of plaquettes that
are pierced by a vortex, Pvortex. This is best calculated by first defining an indicator
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Table 7.1 The average number of vortices associated with: the total per 3D slice (Nslice),
the primary cluster (Nprimary), and a secondary cluster (Nsecondary), as calculated on
the three ensembles. Separate averages are listed for the slicing dimension µ̂ being
temporal or spatial.

Measure t̂ x̂, ŷ, ẑ

Pure gauge
Nslice 1673(3) 3347(6)
Nprimary 1638(3) 3277(6)
Nsecondary 7.32(5) 7.40(3)
701 MeV
Nslice 3651(4) 7302(8)
Nprimary 3366(4) 6731(8)
Nsecondary 5.047(5) 5.057(3)
156 MeV
Nslice 3227(4) 6452(8)
Nprimary 2964(4) 5926(9)
Nsecondary 5.011(5) 5.018(3)

function,

vµν(x) =

1, Pµν(x) = exp
(

±2π i
3

)
I

0, Pµν(x) = I .
(7.5)

We then calculate the proportion of pierced plaquettes as,

Pvortex = 1
6V

∑
µ, ν
µ<ν

∑
x

vµν(x) , (7.6)

where the value 6 counts the number of plaquettes associated with site x in four
dimensions and V = NxNyNz Nt counts the number of sites in the sum over x. The
physical density is then given by,

ρvortex = Pvortex

a2 . (7.7)

In the case where the vortex distribution is isotropic, the density derived in four
dimensions is equal to the mean of the three-dimensional density when averaged over
slices (such as in Fig. 7.8). We can decompose the lattice coordinates into a 1 + 3-
dimensional notation, x = (w,x | µ̂), with w corresponding to the index in the slicing
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Table 7.2 The vortex density as calculated on the three ensembles. The proportion
of pierced plaquettes, Pvortex, the physical vortex density, ρvortex, the proportion of
branching points, Pbranch and the physical branching point density, ρbranch are presented.

Ensemble Pvortex ρvortex (fm−2) Pbranch ρbranch (fm−3)
Pure gauge 0.017 02(3) 1.702(3) 0.002 49(1) 2.49(1)
701 MeV 0.037 14(4) 3.556(4) 0.008 97(1) 8.41(1)
156 MeV 0.032 82(4) 3.770(5) 0.007 53(1) 9.27(2)

dimension µ̂ and x specifying the location within the corresponding hyperplane. Then
the vortex density for slice w along the dimension µ̂ is

P3(w, µ̂) = 1
3V3(µ̂)

∑
i, j

i<j, ̸=µ

∑
x
vij(w,x | µ̂) , (7.8)

where vij(w,x | µ̂) is the restriction of the indicator function in Eq. 7.5 to the relevant
slice, V3(µ̂) is the corresponding 3-volume (e.g. V3(x̂) = NyNzNt), and the division by
3 averages the number of plaquettes associated with each site in three dimensions.

Upon averaging over all w slices in a given dimension and then averaging over the
four slice directions, one finds the following for the mean density

P̄3 = 1
3V

1
4
∑
µ

∑
i, j

i<j, ̸=µ

∑
w,x

vij(w,x | µ̂) , (7.9)

Noting that each plaquette has been counted twice in the sum over i, j and µ, one
recovers Pvortex of Eq. (7.6). Of course, in both cases, the physical density is governed
by the area of the plaquette as in Eq. (7.7).

The vortex densities from the three ensembles are shown in Table. 7.2. We see that
the ρvortex is indeed larger on the ensemble with the lightest pion mass, indicating a
consistent trend of increasing vortex density as the physical pion mass is approached
from above.

Another quantity of interest is the branching point density. This is obtained
by considering the fraction of elementary cubes within each 3D slice that contain a
branching point, Pbranch. Again, this is best calculated by first considering the indicator
function

b(x | µ̂) =

1, ncube(x | µ̂) = 3, 5, 6
0, otherwise .

(7.10)
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The branching point proportion is then given by

Pbranch = 1
4V

∑
µ

∑
x

b(x | µ̂) , (7.11)

where µ sums over all four dimensions. As this density is defined as an average over
3D cubes, the associated physical density is

ρbranch = Pbranch

a3 . (7.12)

The branching point density is shown in Table 7.2. Here we observe that the branching
point density follows the same trend as the vortex density, namely that it increases
with decreasing dynamical quark mass.

To quantify the change in the behaviour of Nsecondary recorded in Table 7.1 we count
the number of clusters of a given size and average across slices and the ensemble. These
results are shown in Fig. 7.10. There are a number of interesting features present
here. Firstly, it is clear that it is not possible to have clusters containing less than four
vortices, and that it is also not possible to have five vortices in a cluster. There is an
interesting trend that the number of clusters containing an even number of vortices
is higher than the number containing an odd number of vortices, especially at small
cluster sizes. This results in the alternating comb pattern present in Fig. 7.10. This is
a result of the fact that a branching point is necessary for a cluster to contain an odd
number of vortices. Hence, this alternating pattern speaks to the presence of a ‘cost’
associated with a branching point, resulting in clusters containing branching points
being less probable than those without. This effect is mitigated as the cluster size
increases and the number of vortex arrangements leading to that cluster size increases.

Comparing the different ensembles, we find that the number of clusters at each size
on the dynamical ensembles exceed almost all of the pure gauge clusters. However,
if we normalise the histogram by the total number of clusters found in the ensemble,
as shown in Fig. 7.11, we find that the pure gauge ensembles have a comparable or
greater proportion of larger secondary clusters present, perhaps due to the low vortex
density. We observe that the dynamical ensembles still retain a larger proportion of
the smallest secondary clusters. Interestingly, the alternating even-odd size appears
more pronounced in the pure gauge clusters, and persists up to larger cluster sizes.
This is suggestive of a lower likelihood of branching in the pure gauge ensembles, which
we shall discuss further in Section 7.4.
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Fig. 7.10 Average number of clusters of a given size per slice, up to a cutoff size of 60.
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Fig. 7.11 Proportion of clusters of a given size per slice, normalised by the total number
of clusters in their respective ensemble.
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We can measure the size of a cluster by defining the cluster extent as the largest
pairwise distance between vortices belonging to the same cluster, as done in Ref. [63].
The cluster extents are binned, and the content of each bin represents the average
number of vortices in the associated cluster, relative to the total number of vortices
in the ensemble. The cluster extents are normalised by the greatest distance on a
Ny ×Nz ×Nt slice of a periodic lattice,

Lmax =
√

(Ny/2)2 + (Nz/2)2 + (Nt/2)2 . (7.13)

The results of this analysis for our three ensembles is shown in Fig. 7.12.

The cluster extents shown in Fig. 7.12 clearly demonstrate that at zero temperature
the SU(3) vortex vacuum is dominated by a single percolating vortex cluster, with
only a minority of vortices comprising smaller secondary loops. It is expected that this
situation will change as the temperature exceeds the critical temperature, as has been
observed in SU(2) gauge theory [63]. We also observe that the pure gauge secondary
clusters tend to be larger than their dynamical counterparts.

We find that the vortex and branching point density significantly increases upon the
introduction of dynamical fermions. However, relative to the total number of vortices
present, the pure gauge sector contains a greater proportion of larger secondary clusters
than the dynamical case. Aside from the primary vortex cluster, the dynamical vortex
vacuum is dominated by an excess of very small secondary clusters. The visualisations
reveal significant branching-point complexity in the large secondary clusters of the
dynamical-fermion vortex vacuum.
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Fig. 7.12 Histogram of the cluster extents relative to Lmax for all three ensembles,
as described in the text. It is clear that the vortex vacuum at zero temperature is
dominated by a single percolating cluster, as can be seen by the dominance of the bin
containing the clusters of maximal extent. Bin widths are 0.1 and are centred at the
tick marks of the x-axis.
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7.4 Branching Point Graphs

The cluster analysis presented in Sec. 7.3 enables us to gain insight into the size of the
primary and secondary vortex clusters. It is also of interest to study the relationship
between branching points, as these structures are absent in SU(2) where much of the
analysis of vortex structure has previously been performed.

Recall that branching points are examined by considering the number of vortices
entering and exiting a 3D cube, such that one can define

ncube(x | µ̂) =



0 No vortex
2 regular vortex line
3, 5, 6 branching point
4 touching point

(7.14)

We have already examined the distribution of the possible values of ncube(x | µ̂) in
Fig. 4.6, and here we repeat this calculation for the three ensembles under consideration.
The normalised distribution of values of ncube across the three ensembles is shown
in Fig. 7.13. We observe that the distribution of the higher genus values decreases
monotonically for all ensembles. The dynamical ensembles feature a greater probability
of high-multiplicity branching points. This is consistent with the greater vortex density
for these ensembles relative to the pure gauge case, as was determined in the previous
section.

To continue our investigation into the structure of centre vortices, it is helpful to
abstract the vortex clusters such that we need not be concerned with their precise 3D
coordinates. To that end, we seek to represent vortex clusters as a directed graph, with
branching points acting as vertices and the edges being given by vortex lines, with
each edge weighted by the number of vortices in the line.

The algorithm to perform this graph construction starts with an identified vortex
cluster as defined in Sec. 7.3. First, for each vortex we evaluate whether it touches a
point with ncube(x | µ̂) ≥ 3 at its tip, base, both or neither. Each branching or touching
point should also have a unique ID. The algorithm proceeds as follows:

1. Find an untraversed vortex with a branching/touching point at its base. If no
untraversed vortex can be found, then we are done. Otherwise, set the found
vortex to be the current vortex and mark it as traversed. Set the current inter-
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Fig. 7.13 The distribution of branching point genera as defined in Eq. (7.14).

branching point distance to 1 and record the ID of the branching/touching point
at the base.

2. Check if the current vortex has a branching/touching point at its tip. If it
does, create an edge between the saved branching/touching point ID and the
ID of the branching/touching point at the tip with weight equal to the current
inter-branching point distance. Return to step 1.

3. Otherwise, find the vortex with its base touching the tip of the current vortex
and mark it as traversed. Set the new vortex to be the current vortex and add 1
to the inter-branching point distance. Return to step 2.

The resulting graph encodes the separations between all branching and touching points
within a cluster without reference to the specific cluster geometry.

Applying this algorithm to the primary clusters shown in Fig. 7.8 for pure gauge
and dynamical vacuum fields, we produce the graphs shown in Figs. 7.14 and 7.15
respectively. These visualisations clearly demonstrate the significant increase in vortices
and branching points present on the dynamical configurations.
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Fig. 7.14 The pure-gauge primary vortex cluster from the slice shown in the top-left
panel of Fig. 7.8 rendered as a graph. Branching/touching points are the vertices and
connecting vortex lines are the edges. Blue vertices indicate three-way branching points
and orange vertices indicate four-way touching points. Visualisations were generated
with the Pyvis visualisation package [153].

Table 7.3 The average distance between branching points, d, the same distance in
physical units, ∆, the average number of edges per graph, nedges, and the average
number of edges per node, nedges/nnodes.

Ensemble d ∆ (fm) nedges ρedges (fm−3) nedges/nnodes

Pure gauge 13.55(2) 1.355(2) 238(1) 4.14(1) 1.538 49(8)
701 MeV 7.691(4) 0.7860(4) 970(1) 15.84(2) 1.586 67(6)
156 MeV 8.082(5) 0.7541(5) 807(1) 17.32(3) 1.583 32(7)
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Fig. 7.15 The mπ = 156 MeV primary vortex cluster from the slice shown in the
bottom-left panel of Fig. 7.8 rendered as a graph. Plotting conventions are as described
in Fig. 7.14
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B1 B2

B3

B4

T1

Fig. 7.16 An example of how the touching point T1 introduces ambiguity into the
distance between branching points, Bi. B1 can connect to either B3 or B4, with B2
then connecting to B4 or B3 respectively. This would result in either distances of 4, 2
or 3, 3 being recorded by our algorithm, depending on the order of traversal.

Utilising this new construction, we wish to determine a measure of the separation
between connected branching points. A pair of branching points may be connected via
multiple vortex lines, and these lines may also pass through touching points that we
wish to exclude from the calculation. The presence of these touching points makes it
impossible to devise a unique distance between two branching points, as this distance
will depend on the manner in which the touching point is traversed, as shown in
Fig. 7.16. Instead, we devise an algorithm for calculating the inter-branching point
distance that enables a random selection of directions with which to traverse these
touching point vertices. The algorithm proceeds as follows.

1. Randomly choose a branching point vertex with untraversed outgoing edges.
Record the vertex as the first in a path. Set the current path length to 0. If
there is no vertex with an untraversed outgoing edge then we are done.

2. Randomly choose an untraversed outgoing edge to follow to a new vertex. Mark
the chosen edge as traversed, add the new vertex to the current path and add its
length to the path length.
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3. If this edge arrives at a branching point, store the path and the current path
length and return to step 1.

4. If the edge arrives at a touching point, repeat from step 2 with the new vertex as
the starting vertex.

The end result of this algorithm is a list of paths between branching points that permit
the ability to pass through touching points. However, not all edges will be traversed
by this method, as the presence of touching points allows for cycles to emerge from
these paths. Fortunately, due to conservation of vortex flux, any cycle emerging from
a given path will return to that same path. Hence to rectify the algorithm, we simply
need to traverse all cycles on a given path and add their length to the existing length.
This is done by performing a modified depth-first search on each vertex to traverse
any cycles that were omitted from the above method. Pseudocode for this search on a
single vertex is as follows:

f unc t i on d f s ( th is_vertex , path ) :
for edge in th i s_ver tex . edges :

i f ( edge i s not t r ave r s ed
and edge i s outgoing ) :

path . l ength += edge . l ength
edge . t r ave r s ed = True
next_vertex = edge . end
i f next_vertex i s not th i s_ver tex :

d f s ( next_vertex , path )

The path lengths now accurately represent the distance between branching points.
This concludes our determination of the branching point separations. Note that
because of the inherent ambiguities in the branching point graphs, the solution is not
unique. We determine whether the impact of this randomness is significant in the
ensemble average choosing a single calculation of the distances as a reference, then
repeating the distance calculation nine further times with different random seeds. We
then use the Kolmogorov-Smirnov test [154] to determine the equality of the different
distributions. We find that the test statistic for all ensembles is of order 10−5, with
corresponding p-values consistent with 1. Thus we are satisfied that the variance in this
distance measure is negligible in the ensemble average, and we are therefore justified
in considering it a useful measure of branching point separation.
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The average separation, d, for each ensemble is presented in Table 7.3. The physical
separation ∆ = a d is also determined. Here we see that there is a consistent trend
of decreasing average separation with decreasing pion mass. This coincides with our
determination of the branching point and vortex densities, as a higher density suggests
a smaller separation between points.

We also present the average number of edges in the graphs, nedges, and the average
number of edges per node, nedges/nnodes in Table 7.3 as measures of the complexity
and structure of the graphs. We observe that, as expected, the number of edges
substantially increases upon the introduction of dynamical fermions. The number
of edges per node is close to 1.5 for all ensembles, as the majority of edges emerge
from a three-way branching point and terminate at another three-way branching point.
However, the number of edges per node is larger on the dynamical ensembles, likely due
to the increase in vortex density resulting in a higher number of vortex intersections.

The distribution of branching point separations is shown in Fig. 7.17. The results
are normalised by the total number of vortex paths considered, such that the histogram
has unit area. Apart from an enhancement of the smallest branching point separations,
the distances are exponentially distributed. This distribution is consistent with a
constant branching probability, i.e. the probability of branching at the next link of a
vortex chain is independent of the length of the vortex chain.

This supports a previous conjecture for the interpretation of vortex branching [13,
67]: that a vortex can be considered to have some fixed rate of branching as it propagates
through space-time. This interpretation allows for vortex branching on the lattice to
be considered as a binomial random variable X with some probability of branching, q.
Thus, the probability of branching after k lattice plaquettes is given by the geometric
distribution

Pk = q (1 − q)k−1 . (7.15)

Typically, one estimates the rate of a binomial random variable by evaluating
q = 1/X̄, where X̄ = ∑

k k Pk. However, due to the deviations from linearity found
at small separations in the log-distributions shown in Fig. 7.17, this measure fails to
capture the true rate of branching. To account for this, we instead fit a linear function,

f(k) = α− β k , (7.16)

to the log of the distribution of branching point separations for k > 3. The result of
this fit for each ensemble is plotted in Fig. 7.17.
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Fig. 7.17 Normalised branching point (BP) separations from all ensembles, along with
the corresponding fit to f(k) given in Eq. (7.16).
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Of course, for a normalised distribution, α is constrained by β. However, the
significant non-exponential behaviour for k ≤ 3 spoils the exponential normalisation
constraint. Thus α is introduced to accommodate for this, and we refer to β describing
the k dependence to determine the branching probability q.

The parameters of this fit are related to the log of the binomial rate

log(Pk) = log(q) − log(1 − q) + log(1 − q) k = α− β k . (7.17)

Equating the coefficients of the terms linear in k, we resolve the branching rate

q = 1 − e−β . (7.18)

Note, for small β, q = β. This rate can be converted to a physical quantity by then
considering the rate per unit length, λ = q/a. All fitted parameters are calculated on
200 bootstrap ensembles, with errors determined via the bootstrap variance.

The rate described above can then be compared to the naive rate, qnaive, calculated
by considering the number of cubes containing branching points divided by the number
of cubes pierced by two or more vortices. Defining

c(x | µ̂) =

1, ncube(x | µ̂) ̸= 0
0, otherwise ,

(7.19)

and recalling the branching point indicator defined in Eq. (7.10), we define the naive
rate to be,

qnaive =
∑
µ

∑
x b(x | µ̂)∑

µ

∑
x c(x | µ̂) . (7.20)

The associated physical quantity is the rate per unit length, λnaive = qnaive/a. The
calculated rate parameters from both methods are shown in Table 7.4. We observe
that with both measures the physical branching rate increases as the physical pion
mass is approached. We emphasise, only q contains the detailed information on the
path geometry.

The difference between the fitted and naive rates is an interesting finding. The
naive rate will include the short-range non-exponential behaviour, inconsistent with a
constant branching rate. At larger separations, vortex branching follows a constant
rate. However, there are clearly short-range effects that result in clustering of branching
points, which in turn necessitates the more sophisticated approach detailed above for
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Table 7.4 The naive and fitted branching rates, qnaive and q, and their physical coun-
terparts λnaive and λ obtained through the methods described in the text. The fit
parameter β is also presented. Only q and λ are associated with a constant branching
probability.

Ensemble qnaive λnaive (fm−1) q λ (fm−1) β

Pure gauge 0.050 10(6) 0.5010(6) 0.0690(2) 0.690(2) 0.0715(2)
701 MeV 0.085 26(5) 0.8342(5) 0.1005(3) 0.984(3) 0.1059(3)
156 MeV 0.080 62(6) 0.8641(7) 0.0952(2) 1.020(3) 0.1000(3)

q. These clustering effects appear to be amplified upon introduction of dynamical
fermions. Whether this clustering radius is a physical effect or the result of finite
lattice-spacing effects is an interesting avenue for future study.

It should be noted that whilst the distributions shown in Fig. 7.17 take into account
all primary and secondary clusters, the results are minimally affected if the secondary
clusters are removed due to the vast majority of branching points belonging to the
primary cluster.

An interesting correlation we observe is that the ratio between the pure gauge
and dynamical branching rates is similar to the corresponding ratio of the vortex-only
string tensions calculated in Chapter 5. The vortex density is naturally correlated with
the branching rate. In SU(2) at least, it has been shown through simple combinatoric
arguments that the Wilson loop area law and hence the string tension can be related
to the density of percolating random vortices [86]. It seems reasonable to infer then
that the correlation we observe between the branching rate and string tension ratios is
not simply a coincidence but a reflection of the differing structure of the vortex fields
in the pure gauge and dynamical sectors.

7.5 Conclusion

In this chapter we have explored of the impact of dynamical fermions on the centre-
vortex structure of the vacuum ground-state fields.

Examining the bulk properties of the original gauge fields, we find that dynamical
fermions lead to greater off-diagonal strength in the MCG lattice gauge links. The
presence of dynamical fermions gives rise to an increased abundance of centre vortices
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and branching points, as reflected by the increasing vortex and branching point densities
as the physical pion mass is approached.

We construct cluster identification algorithms to identify independent vortex clusters
and use this identification to construct visualisations of the vortex vacuum. These
reveal that the vacuum is dominated by a single percolating cluster. Our results show
that dynamical fermions lead to an abundance of smaller clusters as compared to their
pure-gauge counterparts.

We employ a novel method of reducing vortex clusters to directed graphs, with
vertices defined by touching points, branching points and the edges connecting them
weighted by the number of vortex links. Using this construction, we render the graphs
to illustrate the radical change in the number of vortices and branching points after the
introduction of dynamical fermions. We define a measure of branching point separation,
and observe that the distribution of separations follows an approximate geometric
distribution. We estimate the rate of this distribution and find that there is a tendency
for branching points to cluster at small separations. For moderate separations, we
find the probability of vortex branching increases by approximately 40% upon the
introduction of dynamical fermions.

Understanding the role of dynamical quarks in the QCD vacuum continues to be
an interesting area of study. The effect of matter fields on the vacuum phase structure
has been explored elsewhere within the gauge-Higgs model [134–137]. The extension of
these ideas to QCD may shed further light on the nature of confinement. In particular,
investigations that further our understanding of string breaking in terms of QCD
vacuum structure is desirable.

The findings of this chapter illustrate the substantial impact dynamical fermions
have on the geometry and structure of the centre vortex vacuum. This, in conjunction
with the results of previous chapters, reinforces the significance of dynamical fermions
in developing a complete understanding of the centre vortex picture of QCD.



Chapter 8

Conclusion

The centre vortex model has consistently proven itself capable of capturing the quali-
tative properties of the non-perturbative regime of QCD. For the first time, we have
examined the impact of dynamical fermions on the behaviour of centre vortices, and in
doing so discovered an unexpected and remarkable result. The presence of dynamical
fermions greatly alters the centre vortex structure and results in not just qualitative,
but quantitative agreement between a variety of gluonic observables calculated on the
lattice.

In Chapter 4 we constructed novel 3D visualisations of the pure-gauge centre vortex
vaccuum. These allowed for an examination of the structure of vortex lines in 3D, as
well as visualisations of how vortex lines shift as they propagate through Euclidean time.
We also observe that at zero temperature, the vortex vacuum appears to be dominated
by a single percolating cluster. We then proceeded to examine the correlation between
vortices, branching points and signular points with topological charge density. We
determined that there is a positive correlation between regions of high topological
charge density and vortex structures. We also observed that smoothing has the effect
of removing centre vortices from the lattice, however this process does not increase the
correlation with topological charge density. These visualisations also provide the basis
for further exploration of centre vortex geometry, as was performed later in this work.

We then transitioned to an entirely new domain of centre vortex exploration in
Chapter 5; the impact of dynamical fermions on centre vortices, explored in the
context of the static quark potential. Using a variational analysis and newly developed
smoothing procedures, we were able to calculate the static quark potential on untouched,
vortex-removed, and vortex-only configurations obtained from two dynamical and one
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pure gauge ensemble. The pure gauge ensemble replicated the well-established result
that centre vortices only capture approximately 62% of the original string tension.
However, the presence of dynamical fermions, even at an unphysically large quark mass,
leads to a complete shift in the centre-vortex potential. We find that it is possible to
fully reproduce the original static quark potential from vortex-only ensembles. We
also observe that centre vortices are sensitive to screening, observed as an overall
suppression in the string tension as the quark mass decreases.

Motivated by the difficulty of fitting a Coulomb function to the vortex-removed
potential, we also explore two modified ansätze that attempt to model the long-range
suppression that emerges from vortex removal. These two functions model a screened
and anti-screened potential, each with their own physical ramifications. Both are
able to model the vortex-removed potential to a greater degree of accuracy than the
Coulomb potential. We then use the results of these fits to model the untouched
potential’s short-range behaviour. In doing this, we find that we obtain excellent
agreement between the untouched and vortex-only string tension. These results for the
first time reconcile the differences between the vortex-only and untouched static quark
potential, and strongly motivate a further exploration of the impact of dynamical
fermions on centre vortices.

This investigation is continued in Chapter 6, where we consider the impact of
dynamical fermions on the gluon propagator from a centre vortex perspective. We
find that centre vortices capture the infrared behaviour of the propagator in both
the pure-gauge and dynamical case. Vortex removal shows the biggest shift, with the
dynamical vortex-removed propagator showing a complete lack of infrared strength,
contrasting the substantial residual strength found in the pure gauge propagator.
However, reconstruction of the original propagator from its vortex-modified components
is less accurate on the dynamical ensembles, although this may be in part due to the
renormalisation ambiguity in the vortex-only propagator.

Positivity violation is also explored by calculating the Euclidean correlator. We
find that vortex-only ensembles exhibit positivity violation, which is a clear indicator
of confinement. The vortex-removed correlator in the pure-gauge sector shows some
violation of positivity at large Euclidean times, however this vanishes upon the intro-
duction of dynamical fermions. This supports the notion that the vortex-removed fields
describe free particles, and coincides with the suppression of infrared enhancement of
the vortex-removed gluon propagator in full QCD.
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Finally, in Chapter 7 we revisit our visualisations in the context of full QCD, with
the intention of determining the shift in centre vortex geometry upon the introduction
of dynamical fermions. We first examine the bulk structure of the gauge fields through
a number of metrics, and determine that the dynamical ensembles retain a greater
proportion of their off-diagonal strength after vortex-removal.

To examine the centre vortex structure, we develop new algorithms to identify
independent vortex clusters. This is used to verify that the vacuum is indeed dominated
by a single percolating cluster. We find that the number of secondary clusters is greatly
enhanced upon the introduction of dynamical fermions, although these secondary
clusters tend to be smaller than their pure-gauge counterparts. We also determine
that both the vortex density and the branching point density increase substantially
upon introduction of dynamical fermions, and continues to increase as the pion mass
decreases.

We then explore a novel view of centre vortex clusters as a directed graph connecting
touching and branching points. An algorithm is developed to facilitate the construction
of these graphs, and the resulting structure is shown. We utilise this new perspective to
examine the separation of branching points and explore the rate at which centre vortices
branch. We find that whilst branching occurs at an approximately constant rate over
medium to large separations, at short distances there is a tendency for branching points
to cluster. This clustering is enhanced in the presence of dynamical fermions.

The significance of this work is twofold. Firstly, we have developed new analytical
and visualisation techniques that allow for a detailed exploration of the geometry of
SU(3) centre vortices. Secondly, we have consistently shown that the presence of
dynamical fermions radically alters the behaviour of vortex-modified ensembles. This is
reflected in the significant improvement in the ability of centre vortices to capture the
salient confinement properties of QCD, and the corresponding loss of these properties
upon vortex removal. These results reinforce the fact that centre vortices underpin the
complicated non-perturbative behaviour of QCD, and open exciting new avenues for
research into the interplay between centre vortices and dynamical fermions.
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Appendix A

Supplementary Material

A.1 Matrix Definitions

The standard form of the 2 × 2 Pauli matrices is

σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 . (A.1)

The 4 × 4 gamma matrices in the Dirac representation in Minkowski space are given by

γM0 =
I 0

0 −I

 , γMi =
 0 σi

−σi 0

 . (A.2)

In Euclidean space, the gamma matrices are defined in terms of their Minkowski
counterparts as

γi = −iγMi , γ4 = γM0 . (A.3)

The Euclidean gamma matrices satisfy the anti-commutation relationship

{γµ , γµ} = 2 δµν . (A.4)

We also define the commutator of the gamma matrices to be

σµν = 1
2[γµ, γν ] . (A.5)
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The Gell-Mann matrices λa are related to the generators of SU(3), ta, by [155]

ta = λa
2 . (A.6)

The matrices are given by

λ1 =


0 1 0
1 0 0
0 0 0

 λ2 =


0 −i 0
i 0 0
0 0 0

 λ3 =


1 0 0
0 −1 0
0 0 0



λ4 =


0 0 1
0 0 0
1 0 0

 λ5 =


0 0 −i
0 0 0
i 0 0



λ6 =


0 0 0
0 0 1
0 1 0

 λ7 =


0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 . (A.7)

Linear combinations of the Gell-Mann matrices form the Lie algebra of SU(3), denoted
su(3).

A.2 Appearance of the Fermion Determinant

We wish to derive how the fermion determinant appears in integrals over Grassmann
numbers. To do this, we consider how the Grassmann measure changes under a linear
change of variables, defined by

η′
i = Mijηj . (A.8)

For any integral the choice of variables clearly must not change the solution, so we
have ∫

dNη f(η1, . . . , ηN) =
∫
dNη′ f(η′

1, . . . , η
′
N) (A.9)

Recall that Grassmann integrals must also satisfy the normalisation equation,∫
dNη η1 η2 . . . ηN = 1 (A.10)



A.2 Appearance of the Fermion Determinant 163

To satisfy both Eq. (A.9) and Eq. (A.10), consider applying the change of variables
specified in Eq. (A.8) to Eq. (A.10),∫

dNη′ η′
1 η

′
2 . . . η

′
N =

∫
dNη′ ∑

i1,...,iN

M1i1 . . .MNiN ηi1 . . . ηiN (A.11)

=
∫
dNη′ ∑

i1,...,iN

M1i1 . . .MNiN ϵi1i2...iN η1 . . . ηN (A.12)

The introduction of the antisymmetric epsilon tensor arises from the reordering of
the Grassmann numbers. The term ∑

i1,...,iN M1i1 . . .MNiN ϵi1i2...iN is precisely the
determinant of M , and so we find that∫

dNη η1 η2 . . . ηN = det[M ]
∫
dNη′ η1 η2 . . . ηN (A.13)

This expression allows us to read off the change in the integration measure,

dNη = det[M ] dNη′ (A.14)

This relationship is responsible for the introduction of the fermion determinant in
Eq. (2.51).
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