B.W. WILLIAMS Dip. Eng., B.Sc., B.E. (Hons.).

Being a thesis submitted
for the

Degree of Master of Engineering Science
in the

Department of Electrical Engineering

The University of Adelaide

THE UNIVERSITY OF ADELAIDE
September 1978

This thesis embodies the results of supervised project work which made up All of the work for the degree.

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university, and to the best of the author's knowledge and belief contains no material previously published or written by another person, except where due reference is made in the text of the thesis.
B.W.Williams

1. "Impulse Commutated Thyristor Chopper."

IEE Proc., Vol. 124 No. 9 September 1977 pp 793-795
2. "State-Space Thyristor Computer Model."

IEE Proc., Vol. 124 No. 9 September 1977 pp 743-746
3. "State-Space Computer Triac Model."

IEE Proc., Vol. 125 No. 5 May 1978 pp 413-415
4. "Complete State-Space Digital Computer Simulation of

Chopper Fed DC Motors."

IEEE Trans. Vol. IECI-25 No. 3 Aug. 1978 pp
5. "Asymmetrically Modulated AC Cnopper."
to be published, IEEE Trans. Vol. IECI
6. \& A.M. Parker "The Modelling of Thyristor Drives."

IEA Electric Energy Conference 1978 No. 78/3 pp 249-251
7. \& A.L. Davis "Microprocessor Control of Inverter Drives."

IEA Microprocessor Systems Conference 1978 Pub. No. 78/
8. "Current-Impulse Commutated Thyristor Chopper."
to be published, IEE Proc.

ACKNOWLEDGEMENTS

The author is grateful to Dr. A.M. Parker of the University of Adelaide for his guidance and helpful discussions and suggestions during the research period and in the preparation of this thesis.

Thanks are also due to the Papua-New Guinea University of Technology, The University of Adelaide and The South Australian Institute of Technology for making available computing and experimental facilities during the research period.

The financial support of General Motors-Holden and the Electric Research Board is also gratefully acknowledged.

The thesis analyses and examines the theoretical and practical design aspects of a simple and efficient current-impulse displacement thyristor commutation technique of original design.

This commutation technique results in a thyristor chopper circuit which is inherently self priming, reliable and allows commutation after an "un-commutatable" overload current is reduced. The basic circuit is employed in different thyristor applications where forced thyristor turn-off is required, using both silicon controlled rectifiers and triacs. In each case, analytical results from the resulting circuits are shown to be in excellent agreement with experimental performance.

A three-phase inverter employing the above technique is shown to be an ideal vehicle for a microprocessor-based controlled-slip drive for an induction motor, and programming details for such a scheme are presented.
List of Symbols i
1 INTRODUCTION page 1
References 5
2 A d.c. THYRISTOR CHOPPER page 6
2.1 Basic Circuit and Operation 7
2.2 Circuit Component Values and Ratings 11
2.3 General Circuit Properties 13
2.4 Improved Commutation Performance 15
2.5 Performance Results 17
2.6 Conclusions on Current Commutation 18
References 18
Appendix 19
Figures

```
contents :- continued
```

3 An a.c. TRIAC CHOPPER page 26
3.1 The a.c. Chopper and Circuit Operation 27
3.2 Circuit Properties and Component Ratings 28
3.3 Waveform Analysis 30
3.4 Comparison of Characteristics 34
3.5 Performance, Applications and Conclusions 35
References 37
Appendix 38
Figures
4 A d.c.-30 INVERTER page 48
4.1 The Directed Bridge Inverter 49
4.2 The Controlled-Slip Drive 51
4.3 Program and Features of the uP Controller 53
4.4 uP Performance and Strategy Criteria 54
4.5 System Performance and Conclusions 57
References 58
Appendix 59
Figures

Chapter 2
damping coefficient, seconds ${ }^{-1}$
commutation capacitance, $u F$
commutation diode
freewheeling diode
energy return diode
direct current supply voltage, V
time constant, seconds
instantaneous load current, A
instantaneous capacitor current, A
maximum load current, A
commutation inductance, $u H$
commutation cycle interval
representative of circuit losses, ohms
auxiliary bypass element
commutation circuit thyristor
main bypass circuit thyristor
instantaneous time, seconds
thyristor circuit turn-off time, us
load voltage, V
capacitor voltage, V
boost voltage, V
damped frequency, rad/sec
natural resonant frequency, rad/sec
capacitive reactance, ohms
inductive reactance, ohms
characteristic impedance, ohms
phase delay angle
pi, 3.14159

a	phase turn-on delay angle
b	phase turn-off angle before T
Em	peak supply voltage, V
Es	rms supply voltage, V
Ia , Ib	boundary load current levels, A
Iai, Ibi	ith Fourier load current component, A
Io	maximum load current, A
Is	supply current, A
i	instantaneous load current, A
Isa 1, Isb 1	fundamental supply current Fourier components, A
Isrms	rms supply current, A
Q	load Q
Tc	commutation triac
Tf	freewheeling triac
Tm	main bypass triac
TS	circuit set triac
Z	fundamental load impedance, ohms
ZL	harmonic load impedance, ohms
Vai,Vbi	ith Fourier load voltage component, V
Vo	load voltage, V
$\cos u$	supply displacement factor
k	supply power factor
η	load efficiency
y	supply distortion factor
R, L	load circuit, ohms \& Henries
n	integer
w	supply frequency, rad/sec
tq	Triac circuit turn-off time, us
$\emptyset i$	phase angle of ith harmonic

Tci	ith commutating bridge thyristor
Tc, even	commutation thyristor, for i even
Tc,odd	commutation thyristor for i odd
Tmi	ithmain bridge thyristor
$T s$	commutation circuit set thyristor
t	thme, seconds
tq	line to neutral output voltage, V
Vrn	line to line output voltage, V.
Vry	fundamental frequency

INTRODUCTION

Alternating current sources allow natural cormutation of a conducting thyristor when the principal anode current decreases to zero each half cycle. In direct current applications, a conducting thyristor must be force commutated and it is in the method of commutation that the distinguishing features exist between the various power thyristor direct current chopper or inverter circuits.

Two basic thyristor commutation techniques [1] exist for circuits operating from direct current sources:
i. applied reverse voltage commutation, and
ii. current impulse displacement commutation.

In both methods an inductor-capacitor auxiliary circuit - called the commutation circuit - supplies load energy bypassing the main conducting thyristor thereby allowing it to regain a high impedance blocking state after reverse recovery.

Current impulse displacement commutation occurs if a conducting thyristor's principal current is reduced to zero by a bypassing current pulse of sufficient magnitude and duration to allow turn-off.

Applied reverse voltage commutation occurs if a conducting thyristor is reverse biased by a voltage pulse of sufficient duration to allow reverse recovery and then turn-off.

Both commutation techniques exhibit certain inherent electrical features.

Features of current impulse displacement commutation include a short and efficient commutating cycle, allowing a high operating frequency and wide control on the output, voltage range. The use of feedback diodes yields circuits which provide inherently good output voltage regulation and the ability to handle wide variation in load magnitude and frequency. These diodes increase efficiency, enabling reverse power flow when the load is overhauled.

The frequency of the current pulse used for commutation is the same over the full load range, thereby allowing accurate specification of commutating component requirements. Characteristically, the commutating capacitor voltage is increased in proportion to the load current and the value of this capacitor and the commutating inductor may be chosen to optimise a given set of rating and cost constraints.

The mean current imposed on the commutation circuit semiconductors is low in comparison with the maximun load current, and current rating selection need only be based on peak current ability.

A penalty incurred by current impulse displacement commutation is high thyristor dv/dt dynamic stress. Immediately after thyristor turn-off, imposed re-applied dv/dt levels can cause false turn-on, unless controlled by snubber circuits.

One of the inherent features of applied reverse voltage conmutation is the control of imposed rewapplied $d v / d t$ stress levels. The high reverse voltage applied to achieve turn-off is conducive to shorter circuit turn-off time, at the sacrifice of large uncontrolled reverse recovery current.
Undoubtedly, the applied reverse voltage
commutation technique is unsurpassed in low supply voltage
applications [2], where smaller capacitance values are required.
No capacitor voltage boosting is produced by these circuits and no
power reversal is possible as would be required for motor
regeneration.

Both commutation methods share the disadvantage of high initial di/dt stressing at main thyristor turn-on, but this can be remedied by one or more of the following techniques:
i. employing a hard, low impedance gate drive:
ii. using fast recovery diodes in the commutation circuit and for the freewheeling diodes.
iii. adding a saturable reactor j.n series wi.th the stressed device.

Methods have been proposed to reduce disadvantages or incorporate desirable features of both basic techniques. Jones [3] uses an applied reverse voltage commutation technique which facilitates capacitor voltage boosting dependent on load current magnitude; and Humphrey [4] combines various inverter circuit techniques in order to incorporate wanted features.

The author has not attempted to define which is the better basic approach but has developed a novel current impulse displacement commutation technique [5], which is presented in Chapter 2. This commutation technique developed as a result of an investigation seeking a thyristor commutation method that would be suitable to both triacs and silicon controlled rectifiers, and yet be adaptable to any general application where forced thyristor commutation was required. The commatation technique forms the basis and linking element of the chapters to follow.

The basic commutation circuit is suitable for implementation in silicon controlled rectifier circuits as developed in Chapter 2 on the direct current silicon controlled rectifier chopper and Chapter 4 on the variable frequency silicon controlled rectifier inverter. The same commutation technique is implemented in a triac circuit as presented in Chapter 3 on the alternating current triac chopper.

In the case of the variable frequency inverter, the relevant chapter also includes details of its use in a microprocessor-controlled induction motor drive.

Each chapter in this thesis is based on a seperately published paper by the author. This natural segmentation allows the following chapter format to be used:firstly the main text, then the references, followed by the appendix and finally all diagrams as lift-out figures at the end of that chapter. This format affords the convenience of direct observation of all figures while reading any section of that chapter. For the sake of continuity, the reading of the appendix to each chapter can be omitted.

REFERENCES

1 G.E. "SCR Manual" 5th. Edition 1972
Chapter 13, pp 351-408.

2 MAZDA F.F., "Thyristor Control" 1973
Newnes-Butterworths. Chapter 5, pp 94-105.

3 G.E. "SCK Manual" 5th. Edition 1972

Chapter 13, pp 369-382.

4 HUMPHREY A.J., "Inverter Commutation Circuits" IEEE Trans. Vol. IGA-4, pp 104-110, Jan. /Feb. 1968.

5 WILLIAMS B.W., "Impulse-commutated Thyristor Chopper", IEE Proc. Vol. 124 No. 9 Sept. 1977 pp 793-795.

A d.c. THYRISTOR CHOPPER

This chapter discusses a direct current thyristor chopper [1], which employs an L-C series resonant circuit in parallel with the load to provide a current impulse which will force commutate the main conducting thyristor. The circuit exhibits the usual features associated with current impulse displacement commutation, as well as the unusual inherent properties of self-priming and commutation after an "un-commutatable" overload current is reduced.

The rigorous mathematical derivation of all equations of this chapter is presented in the appendix at the end of the chapter.

2.1 BASIC CIRCUIT and OPERATION

The basic circuit of a current impulse commutated d.c. thyristor chopper is shown in the lift-out figure 2.1 at the end of this chapter, and the associated commutation capacitor voltage and current waveforms revealing three distinct cycle intervals are given in figure'2.2.

In the analysis of this chapter, the following electrical assumptions are made:
i. The load current is constant during commutation; this implies that the commutation period is small compared with the electrical load time constant.
ii. Source impedance is neglected and therefore does not affect the $L-C$ circuit resonant frequency or time constant.
iii. Commutation circuit losses can be accounted for by including resistance R into the $L-C$ circuit analysis.
iv. Thyristor turn-on is instantaneous.
v. Current flow through the voltage source is reversible.

The first comratation cycle occurs without capacitor voltage boosting and is therefore analysed separately from the subsequent voltage boosted cycles.
2.1(a) First Cycle Operation

The main thyristor Tm is conducting a load current Ia with the supply voltage E applied across the load. The commutation capacitor C holds no charge.

Period "P1" :

The comutation cycle is initiated by triggering the commutation thyristor $T c$ which allows a voltage across C to build sinusoidally. The capacitor voltage at any time t is given by

$$
\begin{equation*}
V c(w t)=E^{*}\{1-(w o / w) \exp (-a t) \cos (w t-\varnothing)\} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{a} & =\mathrm{R} / 2 * \mathrm{~L} \\
\mathrm{w} & =\operatorname{sqrt}\left(\mathrm{wo}^{2}-\mathrm{a}^{2}\right) \\
\mathrm{w} & =\operatorname{sqrt}(1 / \mathrm{L} * \mathrm{C})
\end{aligned}
$$

and

$$
\theta=\arctan (\mathrm{a} / \mathrm{w})
$$

The commutation thyristor and capacitor current is given by

$$
\begin{equation*}
I c(w t)=-\{E / X L\} \exp (-a t) \sin (w t) \tag{2.2}
\end{equation*}
$$

where $X L=w^{*} L$

When the current reduces to zero as the capacitor attains a maximum voltage of almost $2^{*} \mathrm{E}$, thyristor Tc blocks and current oscillation continues through the diode Dc into the load. the magnitude of the load current and the current through the main thyristor decreases to zero. The L-C resonant circuit current in excess of the load current I a is diverted through the return diode Dr to the supply thereby applying a reverse bias voltage across the main thyristor. The return diode must conduct this excess current for a period long enough to provide the necessary recovery time to allow the main thyristor to attain forward blocking capability.

Period "P2" :

The load, via the main thyristor, is now isolated from the supply and the capacitor maintains the constant load current. In achieving this the load is clamped to the capacitor voltage, which falls linearly to zero at a rate dependent on the magnitude of the load current.

Period "P3" :

When the capacitor voltage reaches zero the energy stored in the magnetic field of the commutation inductor L will transfer to C in the form of a voltage that will assist the next commutation cycle.
to $\quad V c(w t)=-\{I a * X c\} \exp (-a t) \sin (w t)$
and

$$
\begin{equation*}
I c(w t)=\left\{I a^{*}(\omega o / w)\right\} \exp (-a t) \cos (w t+\emptyset) \tag{2.4}
\end{equation*}
$$

```
for 0\leqwt\leq\pi/2-\emptyset
```

where
$X c=1 / w^{*} C$

As the L-C circuit current decreases from I, the load deficit is maintained through the freewheeling diode Df which clamps the load to zero volts.

Finally when wt $=(\pi / 2)-\emptyset$ the freewheeling diode conducts all the load current and the capacitor retains a voltage-

$$
V_{0}=-I_{a *} Z_{0}
$$

where $Z 0=\operatorname{sqrt}(L / C)$
-ready for the next commutation cycle. The main thyristor may now be triggered to re-apply supply voltage to the load.
2.1(b) Capacitor Voltage Boosted Cycles

The capacitor will have retained a voltage vo depending on the magnitude of the load current during the previous commutation cycie. Accordingly, subsequent circuit voltage and current magnitudes are increased, as shown in figure 2.2. The capacitor voltage and current waveforms for each of the three distinct periods are now defined by:

```
Period "P1" :
```

$$
\begin{align*}
& \operatorname{Vc}(w t)=E+(V o-E) *(w o / w) \exp (-a t) \cos (w t-\varnothing) \tag{2.5}\\
& I c(w t)=\{(V o-E) / X L\} \exp (-a t) \sin (w t) \tag{2.6}
\end{align*}
$$

Period "P2" :

$$
\begin{equation*}
V c(w t)=-I a X c^{*} w t+V c(t 1) \tag{2.7}
\end{equation*}
$$

where $t 1$ is the time of Period P1.

The voltage across the load decreases linearly according to

$$
\begin{equation*}
V a(w t)=-I a^{*}(t+f) / C+V c(t 1) \tag{2.8}
\end{equation*}
$$

where

$$
f=C * R
$$

Period "P3" : (as for the first cycle)

$$
\begin{aligned}
& V c(w t)=-\left\{I a^{*} X c\right\} \exp (-a t) \sin (w t) \\
& I c(w t)=\left\{I a^{*}(w o / w)\right\} \exp (-a t) \cos (w t+\emptyset)
\end{aligned}
$$

2.2 CIRCUIT COMPONENT VALUES and ELECTRICAL RATINGS

The optimum commutation pulse shape is that which requires least energy. This is satisfied when the peak resonant current is 1.5 times the maximum load current [2], whence wo $=0.535^{*} \pi / t q$, where tq is the main thyristor turn-off time.
2.2(a) Inductor and Capacitor Values

In satisfying the peak current requirement of equation (2.6) at $\mathrm{wt}=3^{*} \mathrm{~T} / 2$ for a maximum load current Im , the following no loss expressions and ratings for L and C result:
without boosting with boosting electrical rating

Lmin $=0.397 \mathrm{tqE} / \mathrm{Im}$
Cmax $=0.893 \mathrm{tqIm} / \mathrm{E}$
$\operatorname{Lmax}=1.188 \mathrm{tqE} / \mathrm{Im}$
Cmin $=0.297 \mathrm{tqIm} / \mathrm{E}$
$2(E / Z o+I m) A p-p$ 2 (E+ImZo) V p-p

Both L and C have a low duty cycle. The voltage waveform magnitude is reduced if resistance losses are considered. The effect of circuit resistance losses in reducing peak current levels is shown clearly on the peak capacitor current waveform

Chapter 2
d.c. Chopper
magnitudes in figure 2.2. It is therefore important to use a high Q resonant circuit in order to achieve the maximum level of current commutation ability for a given set of $L-C$ values.
2.2(b) Semiconductor Electrical Ratings

Figure 2.3 shows various circuit voltage and current waveforms and hence the necessary information for determining electrical requirements. Table 1 shows the electrical requirements of all circuit semiconductors, in particular forward and reverse voltages limits and initial di/dt stresses, peak and mean forward current.

	Voltage		di/dt	Current	
Tm	E	$\simeq 0$	- E/L+Im**๐	Im	Im
TC	E+Im* Zo	$\simeq 0$	E/L+Im* wo	Im+E/Zo	$\simeq 0$
Df	-	E	- -	Im	Im
Dc	-	E+Im* Zo	E/L+Im* wo -	Im+E/Zo	$\simeq 0$
Dr	-	E	$\mathrm{E} / \mathrm{L}+\mathrm{Im}^{*}$ WO -	Im + E/Zo	$\simeq 0$

TABLE 1

As may be seen, the actual commutating circuit semiconductors may have low mean current ratings, provided peak circuit requirements are met. Thyristor re-applied dv/dt levels are not defined and the commutation thyristor Tc experiences the higher dv/dt stress.

2.3 GENERAL CIRCUIT PROPERTIES

Current impulse displacement commutation fosters circuit turn-off conditions which are conducive to reducing the main thyristor's rated turn-off time. The necessary recovery interval is significantly reduced because the conducting current is zero when the reverse bias is applied. Also the maximum reverse di/dt is controlled and relatively low, resulting in a low recovery charge which reduces the reverse recovery interval.

Since the main thyristor forward blocking voltage requirement is modest at E volts, a much higher thyristor $d v / d t$ capability can be attained by choosing a thyristor with a higher breakdown voltage rating. This precaution, coupled with the use of a snubber circuit would provide ample protection against false turn-on due to too high a re-applied dv/dt.

The chopper circuit developed has the following inherent basic features:
i. The main thyristor:
(a) does not carry any current associated with the commutation cycle, so its current rating is determined solely by the maximum load current requirement,
(b) has low forward and reverse blocking voltage requirements,
(c) experiences controlled hole storage reverse currents,
(d) need not necessarily have a fast turn-off time.
ii. The commutation circuit thyristor has a low mean current rating, modest voltage requirements and may have a turn-off time of up to 1.866 times that of the main thyristor.
iii. Thyristor triggering requirements are simple and either a variable frequency or a fixed frequency variable mark-space ratio mode of operation is possible. The later type of control was employed for prototype evaluation, as shown in the circuit of figure 2.4 .
iv. The return diode Dr enables power reversal into the supply if the load is overhauled, as well as during the commutation cycle.
v. The capacitor voltage increases with increased load current thereby aiding commutation. Between commutation cycles the energy stored by the capacitor is minimal and varies from near zero at low load current to a maximum of $L^{*} \operatorname{Im}^{2} / 2$ at full load current. Thus

> possible capacitor losses are minimized, thereby producing a high efficiency chopper.
vi. One snubber circuit across the commutation thyristor affords maximum protection against $d v / d t$ failure for both thyristors. The initial di/dt requirement of the main thyristor is not influenced by snubber discharge, but the snubber capacitance should be negligible compared with the commutation capacitance value to avoid any significant charge transfer.

2.4 IMPROVED COMMUTATION PERFORMANCE

The single undesirable feature of the presented commutation circuit is the dependence of the commutation cycle time upon the load current magnitude. Equation 2.7 shows that the interval of period P2 is inversely proportional to the load current. That is, under very light load conditions the length of the tail of the commutation cycle is large and will reduce the output voltage regulation. This also severely limits the upper operating frequency since the main thyristor should not be triggered until period P2 is complete. Interval P3 need not be complete.

Figure 2.5 shows the effect of different load current levels on the commutation capacitor current tail waveform. Since the main thyristor will always have regained blocking capability for any load current level to Im at the time wt $=3.3^{*}$ tq , X on figure 2.5, the tail is of no consequence to successful circuit commutation operation and could be shunted by an auxiliary circuit. Then, not only will the length of the commutation cycle be fixed for all allowable load currents thus improving output regulation and upper operational frequency limit, but the capacitor voltage and hence commutating pulse can be built up to their maximum value, even under no load conditions. Thus subsequent cycles after the first, may commutate the maximum load current with maximum boosting on the capacitor, independent of the load or rate of change of load current.

One such auxiliary circuit appears in reference [1], but a simpler method exists as shown in figure 2.6. Here the transistor (or thyristor Ta) is turned-on for $0.933^{*} \mathrm{tq}$. seconds, $3.3^{*} t q$ seconds after the commutation cycle has commenced, thus allowing the capacitor voltage to oscillate and reverse through the L-C resonant circuit formed. Under such conditions the capacitor voltage boost is theoretically, neglecting losses, $\mathrm{E}^{*}(3-\mathrm{sqr} t(5)) /(3+\mathrm{sqrt}(5))$ volts.

Commutation is continuously attempted into open circuits and during overloads, with the current pulse at a maximum until the load is reduced and the commutation circuit regains control of the main thyristor.

2.5 PERFORMANCE RESULTS

The basic commutation technique presented has been incorporated in d.c. choppers, controlling loads in excess of 1.6kW. Typical load voltage and current oscillograms for an $R-L$ load are shown in figure 2.7.

All circuit diodes need to be a fast recovery type. This significantly reduces commutation losses during diode recovery since with normal rectifying diodes the reverse recovery current may be high in relation to the magnitude of the load current and the recovery time may represent a significant portion of the commutation cycle. A fast recovery freewheeling diode also reduces initial di/dt stressing at main thyristor turn-on.

A . main objective, while investigating the current-impulse displacement commuatation technique in d.c. chopper applications, was to assess its adaptability for direct current to three phase variable frequency inverter implementation. The basic features presented in this chapter are demonstrated by a successful 50 kVA inverter, which uses the modified commutation technique, as detailed in chapter 4.

2.6 CONCLUSIONS O CURRENT IMPULSE COMMUTATION

The basic features of a current impulse displacement commutated thyristor chopper have been considered. The modified version of the basic chopper enhances these basic features as discussed.

Since the commutation circuit components have relatively low mean current ratings in comparison to the maximum load current to be commutated, and modest voltage ratings, the resultant chopper is cheap, small and light. The basic chopper is simple, efficient, reliable and extremely versatile.

Any imposed high dynamic stresses on semiconductors can be simply and effectively eliminated and the problems often associated with current impulse commutation in this area thereby removed.

REFERENCES

1 WILLIAMS B.W. "Impulse-Commutated Thyristor Chopper". IEE Proc. Vol. 124, No.9, Sept. 1977 pp 793-795.

2 BEDFORD B.D. and HOFT R.G. "Principles of Inverter Circuits".
J.WILEY. Chapter 7. pp 165-230.
2.7 MATHEMATICAL DERIVATION Of
(i) Commutation Cycle Waveforms
(ii) L and C Component Values and Ratings
(a) without capacitor voltage boosting
(b) with voltage boosting
(i) Commutation Cycle Waveforms

The current impulse displacement commutation cycle may be treated mathematically as three distinct periods.

Period "P1" :

The capacitor is initially charged to Vo as shown. The initial circuit current is zero. The differential equation for the circuit of Period P1 is

$$
E=L^{*} d i / d t+R^{*} i+q / C
$$

Where R represents commutation circuit losses.

The Laplace Transform of this differential equation is

$$
E / s=L^{*}\left\{s^{2 *} q(s)-s^{*} Q O-Q^{\prime} o\right\}+R^{*}\left\{s^{*} q(s)-Q o\right\}+q(s) / C
$$

solving for $q(s)$ yields:

$$
q(s)=\frac{E^{*} C}{s}+\left[Q O-E^{*} C\right] \frac{\left(s+2^{*} a\right)}{\left((s+a)^{2}+w^{2}\right)}
$$

where

$$
\begin{aligned}
& \mathrm{w}=\operatorname{sqrt}\left(w o^{2}-a^{2}\right) \\
& \mathrm{wo}=\operatorname{sqrt}(1 / L * \mathrm{C}) \\
& \mathrm{a}=\mathrm{R} / 2^{*} \mathrm{~L}
\end{aligned}
$$

The inverse Laplace Transform of $q(s)$ yields the capacitor charge equation $Q(t)$,

$$
Q(t)=E^{*} C+\left[Q 0-E^{*} C\right]^{*}(w o / w) \exp (-a t) \cos (w t-\varnothing)
$$

where $\emptyset=\arctan (\mathrm{a} / \mathrm{w})$
dividing $Q(t)$ by capacitance C gives the capacitor voltage

$$
\begin{equation*}
V c(w t)=E+[V o-E] *(w o / w) \exp (-a t) \cos (w t-\emptyset) \tag{2.5}
\end{equation*}
$$

For the first cycle when $V o=0$ for no voltage boosting

$$
\begin{equation*}
V c(w t)=E^{*}\{1-(w o / w) \exp (-a t) \cos (w t-\varnothing)\} \tag{2.1}
\end{equation*}
$$

The differential of $Q(t)$ gives the capacitor current

$$
\begin{equation*}
I c(w t)=\{(V o-E) / X L\} \exp (-a t) \sin (w t) \tag{2.6}
\end{equation*}
$$

where

$$
X L=W^{*} L
$$

and the capacitor current for the first cycle is

$$
\begin{equation*}
\operatorname{Ic}(w t)=-\{E / X L\} \exp (-a t) \sin (w t) \tag{2.2}
\end{equation*}
$$

Period "P2" :

During this period of the
commutation cycle, the
capacitor maintains a
constant load current,
therefore the inductor
supports no voltage, i.e.

$$
I c(w t)=I a
$$

Integrating the capacitor current gives the charge:

$$
Q(t)=-I a^{*} t+Q(t 1)
$$

hence the capacitor voltage is

$$
\begin{equation*}
\operatorname{Vc}(w t)=-I a X c^{*} w t+\operatorname{Vc}(t .1) \tag{2.7}
\end{equation*}
$$

where

$$
X c=1 / W^{*} C
$$

where t1 is the time of Period P1. The load voltage is given by

$$
V a(w t)=V c(w t)+I a * R
$$

hence

$$
\begin{equation*}
\mathrm{Va}(w t)=-I a^{*}(t+f) / C+\operatorname{Vc}(t 1) \tag{2.8}
\end{equation*}
$$

where

$$
f=R^{*} C
$$

Period "P3" :

During this interval, the energy stored by the inductor is transferred to the capacitor. The inductor carries the load current Ia as an initial current. The capacitor holds no initial charge.

The differential equation for Period P3 is

$$
0=\mathrm{L} * \mathrm{di} / \mathrm{dt}+\mathrm{R}^{*} \mathrm{i}+\mathrm{q} / \mathrm{C}
$$

The Laplace Transform of this differential equation yields $q(s)$:

$$
q(s)=-(I a / w) \frac{w}{\left.(s+a)^{2}+w^{2}\right)}
$$

The inverse Laplace Transform of $q(s)$ gives the capacitor charge

$$
Q(t)=-(I a / w) \exp (-a t) \sin (w t)
$$

The capacitor voltage is given by dividing $Q(t)$ by capacitance
i.e. $\quad \operatorname{Vc}(w t)=-\{I a * X c\} \exp (-a t) \sin (w t)$
where

$$
X c=1 / W^{*} C
$$

The capacitor current is given by the differential of $Q(t)$,
i..e. $\quad I c(w t)=I a^{*}(w o / w) \exp (-a t) \cos (w t+\varnothing)$
where

$$
\theta=\arctan (a / w)
$$

The commutation capacitor waveforms are completely specified by equations 2.1 to 2.8

(ii) Determination of L and C values

The first commutation cycle occurs without any capacitor voltage boosting, hence the maximum load current that can be commutated during the first cycle will be less than subsequent cycles, as shown on figure 2.2. Hence distinct sets of commutating inductor L and capacitor C values will exist; without voltage boosting through to the case of maximum boosting.
(a) Assuming

$$
\begin{align*}
& \text { i. Ipeak }=1.5^{*} \operatorname{Im}[2] \text { then } \\
& \pi^{*} \operatorname{sqrt}\left(L^{*} \mathrm{C}\right)=1.866^{*} \mathrm{tq} \tag{1}\\
& \text { ii. } R=0 \text {, hence } \exp (-a t)=1 \text { and } X c=X L=Z o
\end{align*}
$$

The capacitor current waveform given by equation 2.2 becomes:

$$
\begin{aligned}
\operatorname{Ic}(w t) & =-(E / Z 0) \text { sinwt } \\
\text { where } \quad Z o & =\operatorname{sqrt}(L / C)
\end{aligned}
$$

This equation for capacitor current must satisfy Ipeak $=1.5^{*}$ Im at $w t=3^{*} \pi / 2$
i.e. $\quad 1.5^{*} \operatorname{Im}=E^{*} \operatorname{sqrt}(\mathrm{C} / \mathrm{L})$

Solving (1) and (2) for L and C in terms of E, Im and $t q$ yields:

$$
\begin{aligned}
& \operatorname{Lmin}=0.397 * t q^{*} E / I m \\
& C \max =0.893 * t q^{*} \operatorname{Im} / E
\end{aligned}
$$

(b) The maximum value of capacitor voltage boosting, ignoring losses, is $-\mathrm{Im}^{*} Z o$ as given by equation 2.3 when $w t=0.5^{*} \pi$.

Substituting the boosting voltage value into equation 2.6 when $\mathrm{wt}=1.5^{*} \mathrm{Tr}$ and $\mathrm{Ic}=1.5^{*} \mathrm{Im}$ yields:
i.e. $\quad 0.5^{*} \mathrm{Im}=\mathrm{E}^{*} \operatorname{sqrt}(\mathrm{C} / \mathrm{L})$

Solving equations (1) and (3) for L and C again in terms of E, Im and tq yields:

$$
\begin{aligned}
& \operatorname{Lmax}=1.188 * t q * E / I m \\
& C m i n=0.297 * t q * I m / E
\end{aligned}
$$

which completes the set of L and C equations presented in section 2.2.

The maximum inductor current flows when $w t=0.5 * \pi$ in equation 2.6. i.e. $I p e a k=I m+E / Z o$

The maximum capacitor voltage swing is from the maximum voltage boosting level, given by equation 2.3 when $w t=0.5 \% \pi$, to the maximum voltage during commutation, given by equation 2.5 when $\mathrm{wt}=\pi:$

$$
\left\{\operatorname{Im}^{*} Z O\right\}+\left\{E+\left(E+\operatorname{Im}^{*} Z O\right)\right\}
$$

Chapter 2 :- appendix
d.c. Chopper
i.e. Vc rating $=2^{*}\left\{E+\operatorname{Im}{ }^{*} Z o\right\}$

The maximum commutation circuit di/dt stressing occurs when the differential of the commutation circuit current, equation 2.6 , is evaluated at wt $=0$, which gives:
di/dt max $=E / L+I^{*}$ wo

FIGURE 2.1 Basic Circuit

FIGURE 2.2
Commutation Capacitor voltage and current waveforms.

FIGURE 2.3
Chopper Circuit Waveforms

FIGURE 2.5 Load Dependent, Capacitor Current Tail

FIGURE 2.6 Commutation Speed-up circuit modification.

FIGURE 2.7

Chopper load oscillograms

This chapter describes the adaptation of the current impulse displacement commutation technique to a triac forced turn-off alternating current application. Commutation requirements of triacs are similar to those of silicon controlled rectifiers, except that triacs generally have lower static and dynamic electrical stress limits.

An alternating current triac chopper is employed to attain optimum supply power factor correction for any given reactive load, by selective chopping of the alternating current supply voltage waveform. This can result in improved displacement and distortion factors of the supply and also better load efficiency than conventional alternating current phase control techniques [1] [2] [3].

3.1 The ALTERNATING CURRENT CHOPPER and CIRCUIT OPERATION

The basic alternating current triac chopper circuit is shown in figure 3.1 and is employed to achieve an output voltage and hence current waveform as in figure 3.2. The L-C resonant circuit provides a current impulse which force commutates both the main triac Tm and the freewheeling triac Tf . For analysis, the 50 Hertz supply voltage Es is assumed a constant direct current voltage source during the relatively short commutation period. Circuit operation is similar to that of the previously analysed d.c. chopper and is as follows:

The main triac Tm is conducting a load current i, with the supply voltage Es applied across the load. The set triac Ts is triggered at the a.c. supply voltage peak value, Em, allowing the commutation capacitor C to charge to a maximum voltage $2 * E m$, then $T s$ blocks and turns-off.

To isolate the load from the supply, the commutating triac $T C$ is triggered, allowing C to discharge into the load. Gradually the sinusoidal capacitor current displaces the load current through the main triac, eventually reverse biasing Tm as C discharges at a constant rate into the load.

The freewheeling triac Tf is triggered $0.75 * \mathrm{H}^{*} \mathrm{sqrt}(\mathrm{L} * \mathrm{C})$ seconds after Tc , which allows C to discharge independent of the load current. With the capacitor current oscillation complete, Tc blocks and continuous triggering of Tf allows the load current to freewheel through Tf.

Triac $T s$ is fired to reset the commutating capacitor to a polarity that will enable the freewheeling triac to be force commutated by triggering Tc. Tc is fired π^{*} sqrt($\mathrm{L}^{*} \mathrm{C}$) seconds before the main triac $T m$ is triggered to commence the next cycle.

Figure 3.3 shows typical circuit voltage and current oscillograms at various circuit nodes.

3.2 CIRCUIT PROPERTIES and COMPONENT ELECTRICAL RATINGS

The typical inherent features of current impulse displacement commutation as described in the previous chapters, are displayed by the basic circuit of figure 3.1. These included the properties of self-priming and no need of any special starting sequence. The commutation cycle current does not flow through the main triac, thus the current rating of Tm is determined and thus selected solely based on the maximum load current requirement.

The electrical requirements and ratings of the various circuit elements are primarily determined by the maximum load current level and the maximum capacitor voltage attained. The peak and hence maximum possible load current Io is Em/Z where Z is the load impedance at the fundamental supply frequency, while the maximum capacitor voltage attained is almost $2^{*} \mathrm{Em}$.

3.2.1 Capacitor and Inductor ratings.

It has been shown in chapter 2.7 that the
commutation components L and C, considering voltage boosting
effects, are given by
Lmax $\leq 1.188^{*} \mathrm{tq}^{*} \mathrm{Z}$
$\mathrm{Cmin} \geq 0.293^{*} \mathrm{tq} / \mathrm{Z}$
where tq is the circuit turn-off time of the main triac Tm , such that $1.866^{*} t q=\pi^{*} \operatorname{sqrt}\left(L^{*} \mathrm{C}\right)$.

3.2 .2 triac electrical ratings

The main triac Tm must have an rms current rating of at least 0.7071^{*} Io and a breakdown voltage rating in excess of $2^{*} E m$. The initial di/dt and re-applied dv/dt conditions are uncontrolled.

The freewheeling triac $T f$ requirements are similar to those imposed on the main triac. Both require snubber circuit protection against false dv/dt triggering effects.

The commutating triacs T s and Tc both have a low rms current requirement and a voltage rating in excess of $2^{*} \mathrm{Em}$, depending on the magnitude of the voltage across the commutating capacitor. Both triacs have a controlled initial di/dt condition of less than $E m / L+$ Io/sqrt $\left(L^{*} C\right)$.

3.3 WAVEF'ORM ANALYSIS

Typical load and supply current and voltage waveforms are shown in figure 3.2. Since the load voltage waveform is not sinusoidal, load current harmonics result which reduce the load efficiency. Both load efficiency and resultant supply power factor can be determined mathematically, as outined below. Consider the case of a delay turn-on phase angle "a" and delay turn-off phase angle " π - b ". Firstly, the output voltage waveform is analysed to determine load efficiency and then the input current waveform is considered in calculating supply power factor.

The derivation of the mathematical expressions to follow are presented in the appendix at the end of this chapter.

3.3.1 Output Waveforms

The output voltage of the asymmetrical alternating current chopper shown in figure 3.2 is defined by

$$
\begin{align*}
\text { Vo }= & \text { for } \quad \text { for } \quad a \leq w t \leq \pi-b \\
& \pi+a \leq w t \leq 2^{*} \pi-b \\
=0 \quad & \text { elsewhere }: \quad \text { wt }<2^{*} \pi \tag{1}
\end{align*}
$$

The Fourier co-efficients of the output voltage are

$$
\begin{align*}
& \mathrm{Va} 1=\left(E m / 2^{*} \pi\right) *\left(\cos 2^{*} \mathrm{a}-\cos 2^{*} \mathrm{~b}\right) \tag{2}\\
& \mathrm{Vb} 1=\left(E m / 2^{*} \pi\right) *\left\{2^{*}(\pi-\mathrm{b}-\mathrm{a})+\sin 2^{*} \mathrm{a}+\sin 2^{*} \mathrm{~b}\right\} \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \text { Chapter 3 } \\
& \text { a.c. Chopper } \\
& \operatorname{Van}=\frac{E^{*}}{\pi}\left\{\frac{\cos (n+1) a-\cos (n+1) b}{n+1}+\frac{\cos (n-1) a-\cos (n-1) b\}}{n-1}\right. \tag{4}\\
& \operatorname{Vbn}=\frac{E m^{*}}{\pi}\left\{\frac{\sin (n+1) a+\sin (n+1) b}{n+1}-\frac{\sin (n-1) a+\sin (n-1) b}{n-1}\right. \tag{5}
\end{align*}
$$

where $n=3,5,7 \ldots$

The load current i, for a simple R-L load, may be evaluated by solving:

```
    R*i +L*di/dt = Em* sinwt for fram
    =0 for }\pi-b<wt<\pi+
with initial conditions i(a) = Ia and i(m-b) = Ib
Equations (6) and (7) yield the solution
\[
i=\left\{I a-I o^{*} \sin (a-\varnothing)\right\} * \exp ((a-w t) / Q)+I o^{*} \sin (w t-\varnothing)
\]
\[
=I b^{*} \exp ((\pi-b-w t) / Q)
\]
\[
\begin{equation*}
\text { for } \pi-b \leq w t \leq \pi+a \tag{8b}
\end{equation*}
\]
where
\[
\emptyset=\arctan (Q)
\]
\[
Q=W^{*} L / R
\]
\[
I_{0}=\mathrm{Em} / \mathrm{Z}
\]
\[
Z=\operatorname{sqrt}\left(R^{2}+w^{2} L 2\right)
\]
```

The boundary currents $I a$ and $I b$ may be solved, yielding

$$
\begin{equation*}
I a=I o *\left[\frac{\exp (-\pi / Q) \sin (a-\varnothing)-\exp (-(a+b) / Q) \sin (b+\varnothing)]}{1+\exp (-\pi / Q)}\right. \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
I b=-I a^{*} \exp ((a+b) / Q) \tag{10}
\end{equation*}
$$

The Fourier co-efficients for the load current harmonics are given by:

$$
\begin{equation*}
\operatorname{Ian}=(\operatorname{Van} / R) * \cos \varnothing n \text { and } \operatorname{Ibn}=(V b n / R) * \cos \varnothing n \tag{11}
\end{equation*}
$$

where

$$
\emptyset_{n}=\arctan (n * Q)
$$

The load current is thus given by:

$$
\begin{equation*}
i=\sum_{n}\left[\operatorname{Ian}{ }^{*} \cos \left(n^{*} w t-\emptyset n\right)+I b n^{*} \sin \left(n^{*} w t-\emptyset n\right)\right] \tag{12}
\end{equation*}
$$

where $n=1,3,5$,

The load efficiency h can be defined as the ratio of the fundamental active power to the total active power, that is:

$$
\begin{equation*}
h=\left(\operatorname{Ia} 1^{2}+\operatorname{Ib} 1^{2}\right) / \sum_{n}^{\sum}\left(\operatorname{Ian}^{2}+\operatorname{Ibn}^{2}\right) \tag{13}
\end{equation*}
$$

where $n=1,3,5$,

For the case of a symmetrical load voltage waveform, $a=b$, the cosine term co-efficients become identically zero, whence

$$
h=\operatorname{Ib} 1^{2} / \sum_{n} I b n^{2}
$$

3.3.2 Supply Waveforms

The supply voltage waveform is assumed sinusoidal. The supply current waveform shown in figure 3.2 is defined by:

$$
I s=[I a-I o * \sin (a-\varnothing)] * \exp ((a-w t) / Q)+I o * \sin (w t-\varnothing)
$$

$$
\text { for } \quad a \leq w t \leq \pi-b
$$

$=0 \quad$ for	$0 \leq w t<a$
	$\pi-b$

The fundamental Fourier co-efficients of the supply current are given by:

$$
\begin{align*}
\text { Isa1 }= & (2 / \pi)[A 1 *\{\exp (-a / Q) \cos (\varnothing+a)+\exp ((-\pi+b) / Q) \cos (\phi \sim b)\} \\
& -(I .0 / 2) *[(\pi-b-a) * \sin \phi+(1 / 2) *\{\cos (\varnothing+2 b)-\cos (\varnothing-2 a)\}]] \tag{15}
\end{align*}
$$

$$
\begin{align*}
I s b 1= & (2 / \pi)[A 1 *\{\exp (-a / Q) \sin (\phi+a)+\exp ((-\pi+b) / Q) \sin (\emptyset-b)\} \\
& +(I o / 2) *[(\pi-b-a) * \cos (+(1 / 2) *\{\sin (\phi+2 b)-\sin (\emptyset-2 a)\}]] \tag{16}
\end{align*}
$$

where

$$
A 1=\left[I a-I 0^{*} \sin (a-\varnothing)\right] * \exp (a / Q) / \operatorname{sqrt}\left(1+1 / Q^{2}\right)
$$

The supply displacement factor, distortion factor and power factor can be expressed in terms of the fundamental Fourier co-efficients of the supply. The displacement factor, cosu is the fundamental power factor, that is

$$
\begin{equation*}
\operatorname{cosu}=\cos (-\arctan (\operatorname{Isa} 1 / I s b 1)) \tag{17}
\end{equation*}
$$

The ratio of real to apparent power is called total power factor, k

$$
\mathrm{k}=\left[\operatorname{sqrt}\left\{\left(\operatorname{Isa} 1^{2}+I s b 1^{2}\right) / 2\right\} / I s r m s\right] * \operatorname{cosu}
$$

$$
\begin{equation*}
=y^{*} \cos u \tag{18}
\end{equation*}
$$

where y is called the distortion factor and is the ratio of the fundamental rms current to the total rms current, Isrms. The total rms current is given by:

$$
\begin{align*}
\operatorname{Isrms}^{2}= & (1 / \pi)\left[-A 1^{2} *\left(\left(Q^{2}+1\right) /\left(2^{*} Q\right)\right) *\left(\exp \left(-2^{*}(\pi-b) / Q\right)-\exp \left(-2^{*} a / Q\right)\right)\right. \\
& +2^{*} A 1^{*} I o^{*}[\exp (((-\pi+b) / Q) \operatorname{sinb}+\exp (-a / Q) \sin a] \\
& \left.+\left(I 0^{2} / 2\right) *\left[\pi-b-a+(1 / 2) *\left\{\sin 2^{*}(a-\varnothing)+\sin 2^{*}(b+\varnothing)\right\}\right]\right] \tag{19}
\end{align*}
$$

These equations were used to derive the theoretical results to follow, and their complete mathematical derivation is given in the appendix 3.6 at the end of this chapter.

3.4 COMPARISON Of CHARACTERISTICS

Digital computer analysis of the supply current results in the supply power factor characteristics shown in figure 3.4a. In particular, this figure enables a comparison between the resultant supply power factor attained for the a.c. phase control ($b=0$) and symmetrical a.c. chopping $(a=b)$. It is seen that input power factor levels in excess of the load fundamental power factor ($a=b=0$) can be attained if symmetrical a.c. chopping is employed. Figure 3.4 b shows the corresponding resultant improvement in load efficiency resulting from symmetrical chopping.

Generally, the supply power factor increases to a maximum with increasing phase angle "a" and then drops away. It would therefore be feasible that $a \operatorname{set}(a, b)$ exists that maximises the input power factor for a given load Q. To this end, iterative computer analysis yields figure 3.5, which for a given load Q gives maximum possible supply power factor for the computed optimum value set of "a" and "b".

The optimal set (a, b) produces only a slight improvement in maximum supply power factor when compared to the corresponding maximum power factor attained with symmetrical chopping (a $=\mathrm{b}$). This small improvement in maximum supply power factor would not generally warrant the introduction of an asymmetrical a.c. chopper over the symmetrical a.c. chopper.
3.5 PERFORMANCE, APPLICATIONS and CONCLUSIONS.

A 1 kVA control capability version of the basic a.c. chopper was used to control a 400W R-L load. The triggering and control circuitry is shown in figure 3.6. Load efficiency and supply power factor were measured for two different symmetrical chopping angles, and results correlated excellently with theoretically predicted values, as shown in table 2 to follow.
a.c. Chopper

ANGLE	POWER	INPUT	POWER FACTOR	EFFICIENCY			
$\mathrm{a}=\mathrm{b}$	input output	Esrms Isrms	k		h		
degrees	Watts	Volts	Amps	pract	theor	pract theor	
45	280	262.5	120	3.1	0.75	0.76	0.94
60	114	102.5	120	1.5	0.64	0.66	0.90

TABLE 2

RESULTS COMPARISON

A limitation of reliable operation is normally
found in high power triac applications and can be due to poor triac dynamic electrical characteristics, in particular low re-applied dv/dt rating. Most other types of a.c. triac choppers [2] have been limited to low power applications, of the order of 20W. The presented commutating technique coupled with two antiparallel SCR's back to back instead of triacs would be most suitable for high power a.c. chopper applications of over 1 kVA .

Such a chopper could then be employed industrially for adjustable supply power factor correction and improvement where electricity authorities imposed penalty rates for low power factor conditions. This power factor improvement would be traded for induced source harmonics.
improved load power factor condition compared to an uncorrected load condition, while a symmetrical a.c. chopper gives improved load efficiency and supply power factor characteristics over conventional phase control. Marginal improvement in supply power factor is attained by employing an asymmetrical triggering version of the basic a.c. chopper. Load efficiency is not significantly reduced.

REFERENCES

1. WILLIAMS B.W., "Asymmetrically Modulated A.C. Chopper", to be published, IEEE Trans. Vol. IECI /

2 REVANKAR G.N., et al. "Symmetrically Pulse Width Modulated A.C. Chopper" IEEE trans. Vol. IECI-24, No. 1. Feb. 1977. pp 39-44.

3 KRISHNAMURTHY K.A. et al. "A.C. Power Control of an R-L load." IEEE trans. Vol. IECI-24 No. 1 Feb. 1977. pp 138-141.
3.6 MATHEMATICAL DERIVATION of
(i) LOAD EFFICIENCY
(ii) SUPPLY POWER FACTOR

The Fourier co-efficients for any function $f(w t)$ can be determined by evaluating the following integrals

$$
\text { Vo }=(1 / T) \int_{0}^{T} f(w t) d w t
$$

The cosine harmonic co-efficient terms are given by

$$
\operatorname{Van}=(2 / T) \int_{0}^{T} \mathrm{f}(w t) \cos \left(n^{*} w t\right) d w t
$$

while the sine harmonic co-efficients are

$$
V b n=(2 / T) \int_{0}^{T} f(w t) \sin \left(n^{*} w t\right) d w t
$$

where T is the period of the function $f(w t)$. These equations are used and evaluated extensively in the analysis to follow, where $f(w t)=\sin (w t)$ and $T=2 * \pi$.
3.6(i) Determination of load efficiency.

The output voltage applied across the load, as shown in figure 3.2, is defined by

$$
\begin{aligned}
& \text { Vo }=E m^{*} \sin w t \quad \text { for } \quad a \leq w t \leq m-b \\
& \pi+a \leq w t \leq 2^{*} \pi-b \\
& =0
\end{aligned}
$$

The offset term V is given by evaluating

$$
\begin{aligned}
& V o=(1 / 2 * \pi) \quad \int_{\mathrm{Em}} \mathrm{~J} \cdot \mathrm{~b} \sin (w t) \mathrm{dwt} \\
& \text { a } \\
& =(E m / 2 * \Pi) *[-\operatorname{coswt}]_{a}^{\Pi-b} \\
& =(E m / 2 * T) *[\cos (a)+\cos (\pi+a)-\cos (\pi-b)-\cos (2 * \pi-b)] \\
& =0
\end{aligned}
$$

The co-sine Fourier co-efficients result by evaluating

$$
\begin{aligned}
& \operatorname{Van}=(E m / \pi) f \cos \left(n^{*} w t\right) \sin (w t) d w t \\
&=\left(E m / 2^{*} \pi\right) \rho\{\sin ((n+1) w t)+\sin ((n-1) w t)\} \text { dwt } n \neq 1 \\
&=-\left(E m / 2^{*} \pi\right) *\left[\frac{\cos ((n+1) w t)}{n+1}+\frac{\cos ((n-1) w t)]}{n-1} \mathrm{I}-\mathrm{b}\right. \\
& a \\
&= \\
& \frac{E m^{*}\left\{1-\cos \left(\pi^{*} n\right)\right\} *\left[\frac{\cos (n+1) a-\cos (n+1) b}{2 \pi}+\frac{\cos (n-1) a-\cos (n-1) b]}{n-1}\right.}{}
\end{aligned}
$$

when n is even, $\left\{1-\cos \left(\pi^{*} n\right)\right\}$ is identically zero thus

$$
\operatorname{Van}=0
$$

for $\quad n=2,4,6 \ldots \ldots$

$$
\operatorname{Van}=(E m / \pi) *\left\{\frac{\cos (n+1) a-\cos (n+1) b}{n+1}+\frac{\cos (n-1) a-\cos (n-1) b}{n-1}\right.
$$

for

$$
\begin{equation*}
n=3,5,7 \ldots \ldots \tag{4}
\end{equation*}
$$

The case $n=1$ is treated separately:

$$
\begin{aligned}
\mathrm{Va} 1 & =(E m / \pi) \int \operatorname{coswt} \sin (w t) d w t \\
& =\left(E m / 2^{*} \pi\right) \int \sin \left(2^{*} w t\right) d w t
\end{aligned}
$$

Chapter 3 :- appendix

$$
\begin{align*}
& =\left(E m / 4^{*} \Pi\right) *\left[\cos \left(2^{*} w t\right)\right]_{a}^{\Pi-b} \\
& =\left(E m / 2^{*} \Pi\right) *\left[\cos \left(2^{*} b\right)-\cos \left(2^{*} a\right)\right] \tag{2}
\end{align*}
$$

The sine Fourier co-efficients result by evaluating

$$
\begin{aligned}
& \begin{aligned}
& V b n=(E m / \pi) \rho \sin (w t) \sin (n * w t) d w t \\
&=\left(E m / 2^{*} \pi\right) \rho\{\cos ((n-1) w t)-\cos ((n+1) w t)\} d w t n \neq 1 \\
&=\left(E m / 2^{*} \pi\right) *\left[\frac{\sin ((n-1) w t)}{n-1}-\frac{\sin ((n+1) w t)}{n+1}\right] a \\
&= \\
& \frac{E^{*}}{2 \pi}\left\{1-\cos \left(\pi^{*} n\right)\right\}^{*}\left[\frac{\sin (n+1) a+\sin (n+1) b}{n+1}-\frac{\sin (n-1) a+\sin (n-1) b]}{n-1}\right. \\
& \text { for } n \text { even, }\left\{1-\cos \left(r^{*} n\right)\right\}=0, \text { that is: }
\end{aligned}
\end{aligned}
$$

$$
V b n=0
$$

for $n=2,4,6 \ldots$.

$$
\operatorname{Vbn}=(E m / \pi)\left[\frac{\sin (n+1) a+\sin (n+1) b}{n+1}-\frac{\sin (n-1) a+\sin (n-1) b]}{n-1}\right.
$$

for $n=3,5,7 \ldots$
when $n=1$

$$
\begin{aligned}
\mathrm{Vb} 1 & =(E m / \pi) \int \sin (w t) \sin (w t) d w t \\
& =\left(E m / 2^{*} \pi\right) \int\left(1-\cos \left(2^{*} w t\right)\right) d w t \\
& =\left(E m / 2^{*} \pi\right) *\left[w t-(1 / 2) \sin \left(2^{*} w t\right)\right] \pi-b \\
& =\left(E m / 2^{*} \pi\right) *\left[2^{*}(\pi-b-a)+\sin 2 a+\sin 2 b\right]
\end{aligned}
$$

The load current as shown in figure 3.2 is given by solving the following differential equations.
(1) When the supply voltage is applied across the R-L load;

```
R*i + L*di/dt = Em*sin(wt) for m
```

(2) When the freewheeling triac conducts, clamping the load to zero volts,

Case (1)

Considering the first load condition and taking the Laplace transform of equation i yields:

```
        \(i 1(s)=\left\{\left(w^{*} E m / L\right) /\left(s^{2}+w^{2}\right) *(s+R / L)\right\}+I i /(s+R / L)\)
i.e. \(\quad i 1(w t)=\left(I i+w^{*} L^{*} I_{0} / Z\right)^{*} \exp (-w t / Q)+I o^{*} \sin \left(w^{\prime}-\varnothing\right)\)
where
                    \(Z=\operatorname{sqrt}\left(R^{2}+w^{2} L^{2}\right)\)
    \(Q=W^{*} L / R\)
        \(\emptyset=\arctan (Q)\)
        Io \(=\mathrm{Em} / \mathrm{Z}\)
```

and Ii is the initial current. To evaluate Ii we substitute i1(a) $=$ Ia, that is:

$$
I a=\left(I i+w^{*} L^{*} I o / Z\right) * \exp (-a / Q)+I_{0}{ }^{*} \sin (a-\varnothing)
$$

isolating Ii yields:

$$
I i=\left\{I a-I o^{*} \sin (a-\phi)\right\}^{*} \exp (a / Q)-W^{*} L * I o / Z
$$

substituting this expression for I into the equation for $i 1$ (wt) yields:

$$
i 1(w t)=\{I a-I o * \sin (a-\emptyset)\} * \exp ((-w t+a) / Q)+I o * \sin (w t-\emptyset)
$$

for $\quad a \leq w t \leq \pi-b$

Case (2)

Taking the Laplace transform of equation ii. gives

$$
i 2(s)=i o /(s+R / L)
$$

i.e.

```
i2(wt) = io* exp(-wt/Q)
```

substituting the condition $i 2(n-b)=I b$ yields:

$$
i o=I b * \exp ((-\pi+b) / Q)
$$

replacing io in the expression for i2(wt) results in

$$
\begin{equation*}
i 2(w t)=I b^{*} \exp ((\pi-b-w t) / Q) \tag{8b}
\end{equation*}
$$

Expressions are now required for the boundary conditions; namely Ia and Ib.

By load symmetry,

$$
i 2(\pi+a)=-i \upharpoonleft(a) \quad \text { i.e. }
$$

$I b^{*} \exp (-(a+b) / Q)=-\left\{\left(I a-I o^{*} \sin (a-\varnothing)\right)+I o^{*} \sin (a-\varnothing)\right\}$
and thus

$$
\begin{equation*}
I b=-I a * \exp ((a+b) / Q) \tag{10}
\end{equation*}
$$

Since the load current is continuous, at the boundary wt $=\pi-b$,

$$
i 2(\pi-b)=i 1(\pi-b)
$$

where

$$
i 2(\pi-b)=I b=-I a * \exp ((a+b) / Q) \quad \text { thus }
$$

```
-Ia* exp((a+b)/Q)= i1(m-b)
```

$$
\begin{aligned}
& =\left\{I a-I 0^{*} \sin (a-\varnothing)\right\} * \exp ((a+b-\Pi) / Q)+I 0^{*} \sin (\pi-b-\varnothing) \\
\text { yielding } \quad I a & =I 0^{*}\left\{\frac{\exp (-\pi / Q) \sin (a-\varnothing)-\exp (-(a+b) / Q) \sin (\varnothing+b)\}}{1-\exp (-\pi / Q)}\right.
\end{aligned}
$$

Thus the load current is fully specified by equations $8 \mathrm{a}, 8 \mathrm{~b}, 9$ and 10.

The load current harmonics can be derived either by Fourier analysis of the load current waveform given by equations 8 a and 8 b , or by dividing each load voltage harmonic component, as defined by equations 2 to 5, by the appropriate load impedance presented at that frequency. The later concept results in a simpler mathematical derivation, yielding:

$$
\begin{equation*}
I=\sum_{n}\left[\operatorname{Ian} n^{*} \cos \left(n^{*} w t-\emptyset n\right)+\operatorname{Ibn} n^{*} \sin \left(n^{*} w t-\emptyset n\right)\right] \tag{12}
\end{equation*}
$$

for $n=1,3,5, \ldots$

The load impedance is frequency dependent, according to

$$
Z L=R+j * W^{*} n * L
$$

that is,

$$
Z L=R / \cos \emptyset n
$$

where

$$
\tan \left(\varnothing_{n}\right)=\tan \left(n^{*} w^{*} L / R\right)
$$

$=\tan \left(n^{*} Q\right)$

Thus $\quad \operatorname{Ian}=\operatorname{Van} / Z L(n)$ and $\quad \operatorname{Ibn}=\operatorname{Vbn} / Z L(n)$

```
that is Ian = (Van/R)*\operatorname{cos\emptysetn and Ibn = (Vbn/R)* cos\emptysetn}
```

Efficiency, h is defined as the ratio of the fundamental active power to the total active power fed to the load. Real power can only be dissipated by the purely resistive component of the load. Hence

$$
\begin{align*}
\eta & \left.=\left(\operatorname{Ia} 1^{2 * R}+\operatorname{Ib} 1^{2 * R}\right) / \underset{n}{\sum(\operatorname{Ian} 2 * R}+\operatorname{Ibn}^{2 * R}\right) \\
& =\left(\operatorname{Ia} 1^{2}+\operatorname{Ib} 1^{2}\right) / \sum_{n}\left(\operatorname{Ian}{ }^{2}+\operatorname{Ibn}^{2}\right) \tag{13}
\end{align*}
$$

for $n=1,3,5, \ldots$
3.6(ii) Determination of Supply Power Factor

The supply current waveform Is, as shown in figure 3.2 is given by equation 8 a .

$$
\begin{align*}
& \operatorname{Is}(w t)=\left\{I a-I o^{*} \sin (a-\varnothing)\right\} \exp ((a-w t) / Q)+I o^{*} \sin (w t-\emptyset) \\
&= A^{*} \exp (-w t / Q)+I o^{*} \sin (w t-\varnothing) \\
& \text { for } \quad a \leq w t \leq \pi-b \\
&=0 \quad \text { elsewhere } \quad \text { wt } \quad \pi \quad \text { (14) } \tag{14}\\
& A=\left\{I a-I o^{*} \sin (a-\varnothing)\right\} * \exp (a / Q)
\end{align*}
$$

where

The non-fundamental frequency components of the supply current waveform result in waveform distortion. A measure of this distortion, called supply current distortion factor y, is defined in terms of the supply current fundamental Fourier components and the rms supply current.

The supply current cosine fundamental Fourier co-efficient magnitude is given from

```
Isa1 = (2/m) { {A* exp(-wt/Q) + Io*sin(wt-\emptyset } coswt dwt
```


$$
\begin{align*}
= & (2 / n)[A 1 *\{\exp (-a / Q) \cos (\eta+a)+\exp ((-\Pi+b) / Q) \cos (\theta-b)\} \\
& -(\operatorname{Io} / 2)[(\pi-b-a) \sin \emptyset+(1 / 2)\{\cos (\eta+2 b)-\cos (\varnothing-2 a)\}] \tag{15}
\end{align*}
$$

where

$$
A 1=A / \operatorname{sqrt}\left(1+1 / Q^{2}\right)
$$

The fundamental sine Fourier co-efficient is given by

$$
\begin{align*}
& \text { Isb1 }=(2 / \pi) \int\left\{A^{*} \exp (-w t / Q)+I o^{*} \sin (w t-\varnothing)\right\} \text { sinwt dwt } \\
& =\frac{2^{*}}{\pi}\left[A 1^{*} \exp (-w t / Q) \sin (w t+\varnothing)+\frac{I 0}{2}\left\{w t * \cos \varnothing-\frac{1}{2} \sin ((2 * w t)-\varnothing)\right\}\right]_{a}^{\Pi-b} \\
& =(2 / \pi)\left[A 1^{*}\{\exp (-a / Q) \sin (a+\varnothing)+\exp ((-\pi+b) / Q) \sin (\varnothing-b)\}\right. \\
& +(I 0 / 2) *[(\pi-b-a) \cos \varnothing+(1 / 2)\{\sin (\varnothing+2 b)-\sin (\theta-2 a)\}] \tag{16}
\end{align*}
$$

The fundamental Fourier co-efficients define the fundamental supply power factor, cosu, that is

$$
\operatorname{cosu}=\cos (-\arctan (\operatorname{Isa} 1 / I s b 1))
$$

The rms supply current is found by solving:

$$
\begin{align*}
\operatorname{Isrms}= & (1 / \pi) \int I s(w t)^{2} d w t \\
= & (1 / \pi) \int\left\{A^{*} \exp (-w t / Q)+I o^{*} \sin (w t-\emptyset)\right\}^{2} d w t \\
= & (1 / \pi) \int\left(A^{2} \exp \left(-\left(2^{*} w t\right) / Q\right)+2^{*} A^{*} I o^{*} \exp (-w t / Q) \sin (w t-\emptyset)\right. \\
& \left.+I o^{2 *} \sin ^{2}(w t-\emptyset)\right\} \text { dwt } \\
& \left.+\left(I o^{2} / 2\right)\{w t-(1 / 2) \sin (2(w t-\emptyset))\}\right]^{I T-b} \\
= & (1 / \pi)\left[-\left(A^{2} Q / 2\right) \exp \left(-\left(2^{*} w t\right) / Q\right)-2^{*} A 1^{*} I o^{* *} \exp (-w t / Q) \sin (w t)\right. \\
= & (1 / \pi)\left[-\left(A^{2} Q / 2\right)\{\exp (-2(\pi-b) / Q)-\exp (-2 a / Q\}\right. \\
& +2^{*} A 1^{*} I o^{*}\{\exp (-(\pi-b) / Q) \sin (b)+\exp (-a / Q) \sin (a)\} \\
& \left.\left(I o^{2} / 2\right)\{(\pi-b-a)+(1 / 2)[\sin (2(b+\emptyset))+\sin (2(a-\emptyset))]\}\right] \tag{19}
\end{align*}
$$

The current distortion factor is defined as the ratio of the fundamental rms current to the total rms current that is $\quad y=\operatorname{sqrt}\left\{\left(\operatorname{Isa} 1^{2}+\operatorname{Isb} 1^{2}\right) / 2\right\} /$ Isrms

The fundamental real power is given by

$$
\text { Es* sqrt }\left\{\left(\operatorname{Isa} 1^{2}+\operatorname{Isb} 1^{2}\right) / 2\right\}^{*} \operatorname{cosu}
$$

while the total apparent power is given by

Es*Isrms

The ratio of real to apparent power is called total power factor k, that is

$$
\begin{align*}
k & =\left[E s^{*} \operatorname{sqrt}\left\{\left(I s a 1^{2}+I s b 1^{2}\right) / 2\right\}^{*} \operatorname{cosu}\right] /(E s * \text { Isrms }) \\
& =y^{*} \operatorname{cosu} \tag{18}
\end{align*}
$$

FIGURE 3.1 A.C. Chopper Circuit

FIGURE 3.2 Asymmetrical A.C. chopper supply and load waveforms

$$
\text { load: } \begin{aligned}
Z=43 \Omega, Q= & 1 \text { at } 50 \mathrm{~Hz} \\
& I: 50 \mathrm{mV} \equiv 1 \mathrm{~A}
\end{aligned}
$$

(a)

(b)

FIGURE 3.3

Experimental waveforms of
(a) load voltage and current
(b) capacitor voltage and supply current

(a)

(b)

FIGURE 3.4

Load Characteristics Comparison

- a.c. phase control ($b=0$)
--- symmetrical a.c. chopping ($\mathrm{a}=\mathrm{b}$)

FIGURE 3.5
Optimised asymmetrical A.C. chopper characteristics

Symmetrical A.C. Chopper triggering circuit

CHAPTER 4

A d.c. - THREE-PHASE INVERTER

This chapter discusses the adaptation of the current impulse displacement thyristor commutation technique of Chapter 2, to a direct current to three phase variable frequency thyristor inverter. A novel feature of the implementation is the use of only one inductor-capacitor bridge resonant circuit for commutation, instead of three as normally required to commutate the six main bridge thyristors. This is achieved by using a directed bridge commutation technique.

A microprocessor is used to derive thyristor triggering signals and to facilitate all feedback, input and output signal control [1],[2]. A squirrel cage induction machine load is used in a programmed controlled-slip mode of operation. In this dedicated application, the use of the microprocessor reduces the chip count to less than half that required for conventionally used analogue and digital circuitry and provides a more versatile system for no extra cost. Other electrical machine
control modes can be incorporated by different software.

The features of the microprocessor program used will be discussed, and the actual program is presented in the appendix at the end of this chapter.

4.1 The DIRECTED BRIDGE INVERTER

The thyristor inverter circuit and associated thyristor commutation bridge are shown in figure 4.1. By sequentially turning the main thyristors Tm numbers one to six on and off according to the timing diagram of figure 4.2, a six step quasi-square three phase waveform is generated at the output terminals $\mathrm{R}-\mathrm{B}-\mathrm{Y}$ on figure 4.1.

The output line to line voltage waveform is defined by

$$
\operatorname{Vry}=\frac{\left\{2^{*} \operatorname{sqr} t(3) * E\right\}}{\pi}\left(\sin w t-\frac{1^{*}}{5} \sin 5 w t-\frac{1}{7} \sin 7 w t+\frac{1 *}{11} \sin 11 w t+.\right.
$$

while the line to neutral voltage is given by

$$
\operatorname{Vrn}=\frac{\left\{3^{*} E\right\}}{\pi}\left(\sin w t+\frac{1}{5}^{*} \sin 5 w t+\frac{1}{7}^{*} \sin 7 w t+\frac{1}{11}^{*} \sin 11 w t+\ldots\right.
$$

This operation of the main bridge is familiar and well documented; a more detailed discussion on the waveforms along with related effects on motor performance due to the non-fundamental supply voltage components is found in reference [3].

In this application each thyristor in the main bridge, for example Tm1, has an associated commutating bridge thyristor Tc1.

Consider the case when main thyristor $\operatorname{Tm} 1$ is to be force commutated. This is achieved as follows:

Initially the commutation capacitor C holds an assisting charge, resulting from voltage boosting during the last commutating cycle. The capacitor set thyristors Ts are triggered which allows C to charge to a voltage of over $2 * E$ due to L-C resonant circuit action. This complete, the commutation thyristors Tc1 and Tc,odd are triggered, which allows a sinusoidal current impulse to displace the load current through Tm1. Provided the displacement current in excess of the load current Ia, flows through bridge diode D1 for a time in excess of the circuit turn-off time tq of thyristor Tm 1 , it will regain forward voltage blocking ability.

Once the commutation circuit displacement current has ceased, the complementary main bridge thyristor Tmly may be triggered. The thyristor $\operatorname{Tm} 4$ is commutated by triggering thyristors T's, followed by Tc4 and Te, even simultaneously.

The circuit modification of section 2.4 can be incorporated to make the commutation cycle interval load current magnitude independent. This modification will allow an operating frequency of up to $100 / \mathrm{tq} \mathrm{kHz}$, which would be suitable for pulse width modulation applications.

All the equations and formulae as well as basic operating principles of Chapter 2 are applicable to the circuit operation discussed above.

4.2 The CONTROLLED-SLIP DRIVE

A squirrel cage induction machine is said to be operating in a controlled-slip mode if, independent of the rotor speed, the rotor slip frequency is maintained and controlled at less than the breakdown value.

If the actual rotor speed is less than the required speed, a calculated stator frequency slightly greater than the rotating frequency is applied, and the machine develops a motor torque which accelerates the rotor to the desired speed. When the actual rotor speed is greater than the required speed, the stator is fed with a calculated frequency less than the rotational frequency. Now, the machine operates as an induction generator, returning energy to the supply, thus regeneratively decelerating the machine.

The difference between the rotor and stator speed is limited and can never exceed the breakdown slip value in the motoring or generating regions. As a first order approximation, this maximum slip frequency variation limit is a constant frequency over the usable stator frequency range [3]. This feature is shown on the torque-slip curves of figure 4.3.

Abstract

Line current magnitude may be taken into account and, if the current is to be reduced, the stator frequency is brought closer to the rotating frequency thereby reducing the developed torque level and hence current.

The house-keeping of required speed, rotor speed and line current can be dedicated to a microprocessor, which can perform all slip control calculations based on the various input parameter magnitudes.

4.3 The PROGRAM and FEATURES of the MICROPROCESSOR CONTROLLER

All input and output functions are assigned and controlled by software execution, which provides a sophisticated and comprehensive primary building block upon which control strategies can be developed and modified without hardware changes.

The basic linear system flow chart for the slip-control algorithm is shown in figure 4.4. The actual program appears in the appendix at the end of this chapter. The main features of the program algorithm, as shown on the flow chart, are as follows:

The required commutation bridge and main bridge triggering sequence is stored in non-volatile memory, and stepping through this sequence at a defined rate varies the bridge output frequency. The output logic sequence is shown in figure 4.5 .

A program cycle commences with the input of the various feedback and control signals, such as required speed, rotor speed and line current. These values are stored and used in calculations as determined by the control strategy. A conversion from period to frequency is performed, by division or repeated subtraction, to give a delay related to the output frequency requirement. This delay complete, a commutation cycle occurs, and if a continuation is required the next sequence set is transmitted. This output sequence is then incremented by one set. Machine reversing is achieved by stepping in the opposite direction through the stored output sequence.

An important application limitation occurs because all operations, i.e. input, calculations and output, must be performed in real time. The operation time around the closed loop of the flow chart, except the division process, is fixed. The time delay by repeated subtraction is shortened by a factor equivalent to this time, thus all operations are performed and adjusted for in real time. Naturally the highest possible bridge output frequency will be restricted to the reciprocal of the loop time. Therefore the more complicated the control strategy, the lower the possible bridge output frequency for a given microprocessor.

The use of a fixed operation cycle loop time is only possible because the commutation cycle of the proposed directed bridged is load current independent, thus taking a known and accountable length of time.

4.4 MICROPROCESSOR PERFORMANCE and STRATEGY CRITERIA

An Intel 8085 8-bit general purpose N-MOS
microprocessor was employed to perform all input and output control supervision and calculations. A controlled-slip strategy program was developed which allowed a maximum possible bridge frequency in excess of 660 Hz . This upper frequency limit can be extended by using a microprocessor with a faster clock frequency and/or instruction cycle time. Programmed application features include:

Note:- The parameters below evolved from the requirements of the a.c. motor being used in this application.
i. Simple motor direction changing. This is achieved by stepping through the stored output sequence in the opposite direction. A change in direction will not be executed until the rotor speed falls below an adjustable limit. Default is set at 60 rpm .
ii. Stop/start frequency hysteresis. The minimum starting frequency is adjustable and set to 4 Hz by default. The minimum frequency for circuit shutdown is adjustable down to 0.8 Hz and is set to this value by default. That is, motor regeneration is possible down to 48 rpm for a 2 -pole squirrel cage induction machine.
iii. Programmable output frequency range of over two decades. The default range is 0.8 Hz to 88 Hz .
iv. Current limiting band and absolute upper limit current turn-off priority control. At a value less than the designed maximum commutation current, the stator frequency is made equal to the rotational Erequency. This reduces the line current to zero. The default current limit value is 30 A and the cut in point is adjustable or set to 20 A by default. That is, as the line current increase from 20A to 30A, slip is progressively reduced from unaffected at 20A to zero at 30A.
v. Adjustable maximum slip limit. The maximum allowable slip frequency, as determined by the particular rotor characteristics is adjustable from 0 to the maximum frequency.

The maximum slip for motoring may be set differently to that for regeneration. Default is for both to be set equal to 5 Hz , i.e. slip 0.1 at 50 Hz .
vi. Programmable torque profile rate. When the difference between the required speed and the rotor speed exceeds an adjustable limit, maximum allowable slip is applied. The slip is reduced linearly from the maximum value to zero at synchronous speed. The default maximum slip is

Abstract

applied when the rotor and required speed difference equals or exceeds half the maximum speed range.

vii. Auxiliary regenerative braking. At low stator frequencies, during regeneration at low shaft speeds, only small slip can be attained because of the strategy outlined in point 6 above. Thus, to facilitate maximum braking torque down to minimum stator frequency, an override braking control, linearly increases the slip until adjusted to the maximum slip frequency. By default this facility commences at half the frequency range and operates down to 0.8 Hz .
viii. Four quadrant machine operation. From points 1 and 5 it is apparent that motoring and generating are possible both in the forward and reverse direction. Most importantly, this is acheived by static power means.
ix. Linear speed control. Linear control is made possible by the division process performed within the program. Without this linearising, interfacing to process controllers would be non-linear, in fact reciprocal controllers would be required. This would generally be unacceptable.

As is illustrated by the above list of features, the limitations lie with the programmer's imagination and not available hardware restrictions. The circuit diagram, including analog to digital interfacing and tachometer-filtering, of the microprocessor controller is shown in figure 4.6. This system can be used for 8 or 12 bit operation. With an 8 bit system the operating frequency range will have 256 discrete output frequencies, while a 12 bit system will provide a finer step controller of 4096 individual frequency levels. The only system differences will be in the control program, which does not involve any hardware changes.

4.5 SYSTEM PERFORMANCE and CONCLUSIONS

The load was a 120 V , 5 HP squirrel cage induction machine, which was controlled over the complete speed range of 0 to 3000 rpm with stable shaft rotation. Typical line to line and line to neutral voltage oscillograms are shown in figure 4.7.

In general, it was found that the controlled-slip induction machine provided a highly efficient drive with precise control of torque over a wide speed range down to standstill. A large torque can be obtained at high power factor and high efficiency by operating at rotor slip frequencies below the breakdown value. The controlled-slip strategy thus provides a stable control system from standstill to maximum speed in both the motoring and generating regions of four quadrant operation.

The overall system characteristics can be tailored and adjusted, to suit the particular application, by means of programming. Other possible modes of control strategy programming include, pulse width modulation, constant current, constant horsepower etc., where the micro-processor can control all data transfer, triggering outputs and any d.c. voltage link.

The prototype controller program does not maintain a constant V / f ratio although existing software and hardware features would facilitate a d.c. link. A pulse width modulation inverting software strategy would be employed in the final system, if control of this ratio were required.

REFERENCES

1 WILLIAMS. B.W. "Microprocessor Control of dc-3 phase Thyristor Inverter Circuits."
to be published, IEEE Trans. Vol. IECI.

2 WILLIAMS. B. et al., "Microprocessor Control of Inverter Drives." to be presented, IEA Microprocessor Systems Conference 1978

3 MURPHY. J.M.D. "Thyristor Control of A.C. Motors."

Pergamon Press. Chapters 3,5,6 and 7. 1975.

Chapter 4 :- appendix '3-PHASE VAR FREQ GEN'

PAGE 2 INTEL 8080/8085 X-ASSEMBLER V2:4

111
;

MOV	A, E
SUI	5 H
JNC	BEGIN

; CHECK REQD SPEED IS GREATER THAN
;SHYS. OTHERWISE RETURN TO 'BEGIN'.
;
MVI A,SHYS
SUB D
JNC BEGIN

; OUTPUT A WORD FROM BIT PATTERN
;INTE IS ENABLED TO ALLOW TURN-OFF
; BY SWITCH OR CURRENT OVERLOAD
;
MOV A,M
OUT 29 H ;OUTPUT A WORD
;
LOOP:
EI ; ENABLE INTE FLAG
; READ VALUE FROM PORT 00
;AND SAVE IT.
;
IN $\quad 0 \mathrm{H} \quad$;READ PORT 00
STA PTSAV ; SAVE IN LOC PTSAV

;TEST REQD \& ACTUAL DIRNS. IF SAME,
; CONT. OTHERWISE CHECK ROTOR SPEED
;IS BELOW MIN SPEED, SMIN. IF NOT
; BRANCH TO TURN-OFF.
;
MVI $\quad \mathrm{B}, 80 \mathrm{H}$
CALL TEST

; READ CURRENT.
;
IN $\quad 1 \mathrm{H} \quad$;INPUT CURRENT
RRC ; SHIFT RIGHT
ANI 7FH ;MASK OUT MSB
MOV C,A ;SAVE IN C
; RESET ROTOR SPEED A/D
;
IN $\quad 2 \mathrm{BH}$
ANI $\quad 1 F H$
OUT 2BH
;------------------------------1
; ALLOW DIRN CHANGE ONLY IF ROTOR
; SPEED IS BELOW SMIN.
;
DIRN:
IN $1 B H \quad$;READ REQD DIRN

PAGE 3 INTEL 8080/8085 X-ASSEMBLER V2:4
Chapter 4 :- appendix '3-PHASE VAR FREQ GEN'

166	OOBA	E602		ANI	2 H	
167	OOBC	OF		RRC		
168	OOBD	47		MOV	B, A	; SAVE IN B
169	OOBE	7 B		MOV	A, E	;GET ROTOR SPEED
170	OOBF	D603		SUI	3H	; SUBTRACT 03
171	00C1	D2D400		JNC	CONT	; ROTOR SPEED GREATER?
172	00C4	3 A 0028		LDA	RDIRN	;NO - GET PRESENT DIRN
173	0007	90		SUB	B	; COMPARE WITH NEW DIRN
174	00C8	C2DF00		JNZ	CHANGE	;DIRECTIONS SAME?
175	00 CB	3 E02		MVI	A, 2 H	;YES - DELAY
176	00CD	CDF802		CALL	DELAY	
177	OODO	C0		RNZ		;DUMMY INSTR.
178	00D1	C3E200		JMP	TESTOP	
179	OOD4		CONT:		- 3	
180	00D4	3E03		MVI	A,3H	; NO CHANGE OF DIRN
181	00D6	CDF802		CALL	DELAY	; DELAY
182	00D9	3AFFFF		LDA	OFFFFH	;DUMMY INSTR
183	00DC	C3E200		JMP	TESTOP	
184	OODF		CHANGE:			
185	OODF	CDE301		CALL	ADJUST	;DIRNS DIFFERENT -
186						
187						;UPDATE REQD DIRN.
188				;	-------	---------------------------
189				; CHECK	TOR \& R	QD SPEEDS ARE ABOVE SMIN.
190				; IF NOT	GO TO T	JRN-OFF SEQUENCE.
191				;		
192	OOE2		TESTOP:			
193	OOE2	7 B		MOV	A, E	;GET ROTOR SPEED
194	OOE3	D603		SUI	SMIN	; SUBTRACT MIN SPEED
195	00E5	D2F 100		JNC	GO	; ROTOR SPEED GREATER?
196	O0E8	7 A		MOV	A, D	;NO - GET REQUIRED SPEED
197	00E9	D603		SUI	SMIN	; SUBTRACT MIN SPEED
198	OOEB	D2F600		JNC	HERE	; REQUIRED SPEED GREATER?
199	OOEE	C3FD02		JMP	INT5	;NO - BEGIN TURN-OFF
200	00F1		GO:			
201	OCF1	00		NOP		; ROTOR SPEED GREATER -
202	00F2	00		NOP		; CONTINUE
203	00F3	C3F600		JMP	HERE	
204				;		
205				; START	OVV FOR	REQD- \& ROTOR-
206				; SPEED	D'S.	
207				;		
208	00F6		HERE:			
209	00F6	DB2B		IN	2BH	
210	00F8	0630	\% - - .	MVI	B, 30H	
211	00FA	B0	.	ORA	B	
212	00FB	D32B		OUT	2BH	
213	OOFD	DB2B		IN	2BH	
214	OOFF	E6EF		ANI	OEFH	
215 216	0101	D32B		OUT	2BH	;RESET REQD SPEED ;A/D START BIT
217				:--	--------	
218				; SET NUMBER K - 64B		
219				: ADJUSTMENT FOR PROG EXECUTN TIME		
220				;K DETERMINES FREQUENCY RANGE		

Chapter 4 :-- appendix '3-PHASE VAR FREQ GEN'

PAGE 5 INTEL 8080/8085 X-ASSEMBLER V2:4
Chapter 4 :- appendix '3-PHASE VAR FREQ GEN'

Chapter 4 :- appendix '3-PHASE VAR FREQ GEN'

PAGE 8 INTEL 8080/8085 X-ASSEMBLER V2:4
Chapter 4 :- appendix '3-PHASE VAR FREQ GEN'

PAGE 9 INTEL 8080/8085 X-ASSEMBLER V2:4
Chapter 4 :- appendix '3-PHASE VAR FREQ GEN'

496	0261	2EF1		MVI	L, OF1	; NO -. LOAD CORRECT
497						; ADDR IN L
498	0263	C9		RE'T		
499	0264		RIGHT:			
500	0264	00		NOP		
501	0265	C9		RET		
502				;		
503				; SUBROU	NE FREQ	
504				; DETERM	S THE	UTPU' FREQ REQUIREMT
505				; BASED	ROTOR	PEED, REQD SPEED,
506				; \& LINE	JRRENT	
507				,		
508	0266		FREQ:			
509	0266	7A		MOV	A, D	;GET REQD SPEED
510	0267	93		SUB	E	; (REQD-ROTOR) SPEED IN A
511	0268	DA7D02		JC	NEGSL	;POSITIVE SLIP?
512	026B	CD9702		CALL	SLIP	; YES
513	026E	03		INX	B	;DUMMY INSTR
514	026F	OB		DCX	B	;DUMMY INSTR
515	0270	F5		PUSH	PSW	;DUMMY INSTR
516	0271	F1		POP	PSW	;DUMIYY INSTR
517	0272	7B		\therefore MOV	A, E	; SLIP REQUIREMENT IN E
518	0273	80		ADD	B	
519	0274	47		MOV	B, A	; OUTPUT. FREQ REQUIREMT
520	0275	D27B02		JNC	RETN	; FREQ GREATER THAN MAX?
521	0278	06FF		MVI	$\mathrm{B}, 0 \mathrm{FF}$;YES-SET DEFAULT MAX=FFH
522	027A	C9		RET		
523	027B		RETN:			
524	027B	00		NOP		;DUMMY INSTR
525	027C	C9		RET		
526	027D		NEGSL:			
527	027D	7B		MOV	A, E	; NEGATIVE SLIP
528	027E	92		SUB	D	; (ROTOR-REQD) SPEED IN A
529	027F	CD9702		CALL	SLIP	;DET SLIP REQUIREMT
530	0282	90		SUB	B	
531	0283	47		MOV	B, A	; REQD FREQ, PUT IN A
532	0284	DA8A02		JC	MIN	;-VE RESULTANT FREQ?
533	0287	C38C02		JMP	NEGFR	
534	028A		MIN:			
535	028A	0603		MVI	B, 3H	;YES-ASSIGN MIN
536						; FREQ VALUE (=3)
537	028C		NEGFRE:			
538	028C	D603		SUI	3H	
539	028E	DA9402		JC	LESS	; REQD FREQ LESS
540						; THAN MIN ($=3$)?
541	0291	C39602		JMP	EXIT	(
542	0294		LESS:			
543	0294	0603		MVI	B, 3H	;YES-SET DEFAULT MIN
544	0296		EXIT:			
545	0296	C9		RET		
546				; --	------	------------
547				; SUBROUTINE SLIP		
548				; DETERMINES THE +VE OR -VE SLIP REQUIREMT		
549				,		
550	0297		SLIP:			

PAGE 10 INTEL 8080/8085 X-ASSEMBLER V2:4
Chapter 4 :- appendix '3-PHASE VAR FREQ GEN'

551	0297	47		MOV	B, A	
552	0298	E607		ANI	$\mathrm{A}, \mathrm{OCOH}$	
553	029A	CAA502		JZ	ASSIGN	; IS MAX SLIP REQD?
554	029D	3E11		MVI	A, 11H	; YES-ASSIGN MAX SLIP
555						; VALUE TO A
556	029F	CCOOOO		CZ	0000H	;DUMMY INSTR
557	02A2	C3AB02		JMP	CURREN	
558	02A5		ASSIGN:			
559	02A5	78		MOV	A, B	;ASSIGN SLIP PROPORTNAL
560	02A6	1 F		RAR		;TO THE ACCELERATN
561	02A7	1 F		RAR		; REQUIREMT SUCH THAT
562						;LESS THAN 11H.
563	02A8	E61F		ANI	1 FH	; MAX SLIP IF GREATER
564						;THAN 1/4 RANGE
565	02AA	00		NOP		;DUMMY INSTR
566	02AB		CURREN:			
567	02AB	47		MOV	B, A	; SAVE SLIP REQUIREMT IN B
568	02AC	79		MOV	A, C	; MOVE LINE CURRENT TO A
569	02AD	D62F		SUI	2 FH	; MAX CURRENT VALUE
570	02AF	D2BC02		JNC	LIMIT	; CURRENT LIMI' EXCEEDED?
571	02B2	D0		RNC		;DUMMY INSTR
572	02B3	3 EOO		- MVI	A, OOH	; DUMMY INSTR
573	02B5	3 E 17		MVI	A, 17H	;DELAY VALUE
574	02B7	CDF802		CALL	DELAY	; DELAY
575	02BA	7B		MOV	A, E	;YES - SET ZERO SLIP
576	02BB	C9		RET		
577	02BC		LIMIT:			
578	02 BC	4 F		MOV	C, A	
579	02BD	3E10		MVI	A, 10H	; CURRENT LIMIT BAND
580	02BF	91		SUB	C	
581	$02 \mathrm{C0}$	4 F		MOV	C, A	
582	02C1	E6F0		ANI	OFOH	
583	02C3	CAD102		JZ	MULTI	;CURRENT LIMITING REQD?
584	$02 \mathrm{C6}$	C8		RZ		;DUMMY INSTR
585	$02 \mathrm{C7}$	C8		RZ		;DUMMY INSTR
586	02C8	3 E 00		MVI	A,00H	;DUMMY INSTR
587	02CA	3E14		MVI	A, 14H	;DELAY VALUE
588	02CC	CDF802		CALL	DELAY	; DELAY
589	02CF	7B		MOV	A, E	;NO CURRENT LIMITING REQD
590	02D0	C9		RET		
591	02D1		MULTI:			
592	02D1	D5		PUSH	D	;SAVE REQD \& ACTUAL SPEEDS
593				;		
594				;START	TWO 4-B	IT WORD MULTIPLICATION -
595				; ACHIEV	BY REPE	ATED ADDITION PROCESS
596		-		;I.E. D	BXC	
597				;		
598	02D2	1600		MVI	D,00H	
599	02D4	1E04		MVI	E, 4H	;SET LOOP COUNT TO 4
600	02D6		M1:			
601	02D6	79		MOV	A, C	
602	02D7	OF		RRC		
603	02D8	4F		MOV	C, A	
604	02D9	DAE202		JC	M2	
605	02DC	00		NOP		;DUMMY INSTR

PAGE 11 INTEL 8080／8085 X－ASSEMBLER V2：4
Chapter 4 ：－－appendix＇3－PHASE VAR FREQ GEN＇

606	02DD	3E00		MVI	A，00H	；DUMMY INSTR
607	02DF	C3E602		JMP	M3	
608	02E2		M2：			
609	02E2	DO		RNC		
610	02E3	7A		MOV	A，D	
611	02 E 4	80		ADD	B	
612	02E5	57		MOV	D，A	
613	02E6		M3：			
614	02E6	78		MOV	A，B	
615	02 E 7	07		RLC		，
616	02E8	47		MOV	B，A	
617	$02 \mathrm{E} 9^{\circ}$	1D		DCR	E	，
618	02EA	C2D602		JNZ	M1	
619	02ED	7 A		MOV	A，D	；8－BIT RESULT OF
620						；MULTIPLICATN
621	02EE	OF		RRC		；DIVIDE RESULT BY 16
622	02EF	OF		RRC		；SO THAT ANSWER IS
623						；ALWAYS LESS THAN 11H．
624	02F0	OF		RRC		
625	02F1	OF		RRC		
626	02F2	E60F		ANI	OFH	；MASK OUT UNWANTED H－BYTE
627	02 F 4	47		MOV	B，A	；STORE ADJUSTED SLIP IN B
628	02 F 5	D1		POP	D	；RESTORE D \＆E REGISTERS
629	02F6	7B		MOV	A，E	
630	02F7	C9		RET		
631				；		
632				；SUBROUTINE DELAY		
633				；TOTAL DELAY IS GIVEN BY		
634				； $\mathrm{TD}=[46+14(\mathrm{~A}-1)]$ STATES		
635				！${ }^{\text {d }}$［46		
636	02F8		DELAY：			
637	02 F 8	3D		DCR	A	
638	02F9	C2F802		JNZ	DELAY	．
639	02FC	C9		RET		
640				；－－－	－－－－－－－－	－－－－－－－－－－－－－－－－－
641				；SERVICE ROU＇INE FOR RS＇ 5.5		
642				；		
643	02FD		INT5：			
644	02FD	0601		MVI	B，1H	
645	02FF	C37601		JMP	TOFF	
646				；SERVICE ROUTINE FOR RST 6.5		
647				．		
648	0302		INT6：			
649	0302	0600		MVI	$\mathrm{B}, 00 \mathrm{H}$	
650	0304	C37601		JMP	TOFF	
651				；		－－ーールーールー
652				；BIT PATTERN		
653				－		
654	07D0		．	ORG	7DOH	
655	07D0	－1A60584A		DB	$1 \mathrm{AH}, 60 \mathrm{H}, 58 \mathrm{H}, 4 \mathrm{AH}, 48 \mathrm{H}, 58 \mathrm{H}$	
655	07D4	4858				
656	07D6	$4 \mathrm{A846862}$		DB	$4 \mathrm{AH}, 84 \mathrm{H}, 68 \mathrm{H}, 62 \mathrm{H}, 81 \mathrm{H}, 68 \mathrm{H}$	
656	07DA	8168				
657	07DC	62426426		DB	$62 \mathrm{H}, 42 \mathrm{H}, 64 \mathrm{H}, 26 \mathrm{H}, 60 \mathrm{H}, 64 \mathrm{H}$	
657	07E0	6064				

Chapter 4 :- appendix '3-PHASE VAR FREQ GEN'

658	07 E 2	2690 A 486	DB	$26 \mathrm{H}, 90 \mathrm{H}, 0 \mathrm{~A} 4 \mathrm{H}, 86 \mathrm{H}, 84 \mathrm{H}, 0 \mathrm{~A} 4 \mathrm{H}$
658	07 E 6	84 A 4		
659	07 E 8	86489492	DB	$86 \mathrm{H}, 48 \mathrm{H}, 94 \mathrm{H}, 92 \mathrm{H}, 42 \mathrm{H}, 94 \mathrm{H}$
659	07 EC	4294		
660	07 EE	9281981 A	DB	$92 \mathrm{H}, 81 \mathrm{H}, 98 \mathrm{H}, 1 \mathrm{AH}, 90 \mathrm{H}, 98 \mathrm{H}$
660	07 F 2	9098		
661			END	

TOTAL ERRORS $=0$

SYMBOL: --VALUE		SYMBOL: -VALUE		SYMBOL:-VALUE		SYMBOL:-VALUE	
A	0007	ADDR	0242	ADJUST	01E3	ASSIGN	02A5
B	0000	BEGIN	005E	BITA	07F0	C	0001
CAUSE	01 BD	CHANGE	00DF	CHECK	0226	CONT	0014
CURREN	02AB	D	0002	DECRM	020B	DECR1	0126
DECR2	012 C	DELAY	02F8	DIRN	00B8	DONE	0118
EXIT	0296	E	0003	FORWD	01F0	FREQ	0266
GO	OOF 1	H	0004	HERE	00F6	INT5	02FD
INT6	0302	LESS	0294	LIMIT	02BC	LOOP	00A1
L	0005	MULTT	02D1	M1	02D6	M2	02E2
M	0006	MIN	028A	M3	02E6	NEGFRE	028C
NEGSL	027D	ON	01D7	PSW	0006	PTSAV	2802
RDIRN	2800	REPEAT	017 B	RETN	027B	REV	021A
RIGHT	0264	SAME	023C	SAVE	0241	SHYS	0010
SLIP	0297	SMIN	0003	SP	0006	SPA	2900
START	0040	SUBT	0257	TESTOP	00E2	TEST	01FA
TIME	011D	TOFF	0176	WAIT	0065		

FIGURE 4.1
DC-3中 variable frequency static thyristor inverter circuit

FIGURE 4.2
Gating sequence, line to line and line to neutral bridge waveforms

FIGURE 4.3
Induction motor torque characteristics at different frequencies and constant V / f ratio

FIGURE 4.4. Program flow chart

FIGURE 4.5
Bridge thyristor trigger waveforms

FIGURE 4.6

Microprocessor controller and interfacing

line to neutral voltages

line to line voltages

FIGURE 4.7
Inverter output voltage oscillograms
(uncompensated probes)

The basic thyristor commutation technique presented in this thesis has proven to be reliable, efficient and versatile. The commutating circuitry is simple, producing cheap, small and light inverter equipment. Simple circuit modifications enhance the basic features, improving output voltage regulation, operation frequency range and commutating efficiency, as discussed in Chapter 2.

The versatility and adaptability of the thyristor turn-off circuit have been illustrated by the novel a.c. triac chopper circuit of Chapter 3 and the d.c.-three-phase inverter of Chapter 4.

The unavoidable inherent problem of dynamic thyristor voj.tage stressing can not be eliminated, but only reduced below the critical level. This limitation of high and uncontrolled circuit re-applied dv/dt stressing is not critical in d.c. chopper applications, where a commutation failure may not be fatal. But in a.c. and inverter circuit applications a turn-off failure will generally result in semiconductor device destruction, since a short circuit across the supply results. In these
situations proper snubber protection is therefore essential.

The inverter circuit employing the above commutation technique has been shown to be an ideal vehicle for a microprocessor-based controlled-slip induction motor drive.

