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ABSTRACT
Abdominal aortic calcification (AAC), a recognizedmeasure of advanced vascular disease, is associated with higher cardiovascular risk
and poorer long-term prognosis. AAC can be assessed on dual-energy X-ray absorptiometry (DXA)-derived lateral spine images used
for vertebral fracture assessment at the time of bone density screening using a validated 24-point scoring method (AAC-24). Previous
studies have identified robust associations between AAC-24 score, incident falls, and fractures. However, a major limitation of manual
AAC assessment is that it requires a trained expert. Hence, we have developed an automated machine-learning algorithm for asses-
sing AAC-24 scores (ML-AAC24). In this prospective study, we evaluated the association between ML-AAC24 and long-term incident
falls and fractures in 1023 community-dwelling older women (mean age, 75 � 3 years) from the Perth Longitudinal Study of Ageing
Women. Over 10 years of follow-up, 253 (24.7%) women experienced a clinical fracture identified via self-report every 4–6 months
and verified by X-ray, and 169 (16.5%) women had a fracture hospitalization identified from linked hospital discharge data. Over
14.5 years, 393 (38.4%) women experienced an injurious fall requiring hospitalization identified from linked hospital discharge data.
After adjusting for baseline fracture risk, women with moderate to extensive AAC (ML-AAC24 ≥ 2) had a greater risk of clinical frac-
tures (hazard ratio [HR] 1.42; 95% confidence interval [CI], 1.10–1.85) and fall-related hospitalization (HR 1.35; 95% CI, 1.09–1.66), com-
pared to those with low AAC (ML-AAC24 ≤ 1). Similar to manually assessed AAC-24, ML-AAC24 was not associated with fracture
hospitalizations. The relative hazard estimates obtained using machine learning were similar to those using manually assessed
AAC-24 scores. In conclusion, this novel automatedmethod for assessing AAC, that can be easily and seamlessly captured at the time
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of bone density testing, has robust associations with long-term incident clinical fractures and injurious falls. However, the perfor-
mance of the ML-AAC24 algorithm needs to be verified in independent cohorts. © 2023 The Authors. Journal of Bone and Mineral
Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
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Introduction

Dual-energy X-ray absorptiometry (DXA) machines measure
bone mineral density (BMD) to assess osteoporosis and risk

of fracture, with very low radiation. DXA machines are also
increasingly being used to perform vertebral fracture assessment
(VFA) to visually identify asymptomatic, clinically unrecognized ver-
tebral fractures at the time of bone density screening.[1] This
involves obtaining lateral images of the thoracolumbar spine. These
lateral spine images can also be used to identify abdominal aortic
calcification (AAC), a marker of advanced atherosclerotic vascular
disease, most commonly assessed using a semiquantitative
24-point scale (AAC-24).[2,3] More extensive AAC is associated with
an increased risk of cardiovascular disease (CVD) and related events,
CVD and all-causemortality,[4-6] aswell as lower BMD, poorermuscle
strength, and increased risk for injurious falls and fracture.[7-11]

A major limitation for the clinical assessment of AAC is that it
needs to bemanually scored by a trained expert, a time-consuming
task that limits the possibility for AAC assessment to be scaled and
incorporated into routine clinical assessment, especially as part of
osteoporosis screening. To address this limitation, machine learning
(ML) approaches have been investigated to automate the identifica-
tion of AAC and AAC-24 scoring from lateral spine images.[12,13] This
builds on work to automate measurement of aortic calcification
from abdominal computed tomography (CT) scans.[14] We recently
developed and tested a ML algorithm for the automated assess-
ment of AAC (ML-AAC24) from DXA-derived lateral spine images
acquired from various major manufacturers (and models) currently
used clinically. These scores were validated against future major
adverse cardiovascular events, cardiovascular, and all-cause mortal-
ity from Hologic and GE machines.[13]

Given that extensive AAC is associated with poorer musculo-
skeletal outcomes (e.g., falls[7] and fracture[8]), determining
whether these relationships remain comparable after automa-
tion (i.e., ML-AAC24) is a critical step to enhance the clinical utility
of lateral spine images at the time of BMD measurement. There-
fore, this study examined whether ML-AAC24 is related to long-
term falls and fracture risk in community-dwelling older women,
representing a high-risk population.

Methods

We have previously reported on the relationship between
manually-assessed AAC with hospitalized fall[7] and fracture out-
comes[8] in the study population as described in the following
section. Development of the ML approach used in this study
(ML-AAC24) has also been detailed.[13] The following
section provides a brief overview.

Study population

The present study drew upon participants from the Perth Longi-
tudinal Study of Ageing Women (PLSAW), which enrolled 1500
women aged 70 years or older in a 5-year, double-blind,

randomized controlled trial (RCT) to determine the effect of cal-
cium supplements on preventing osteoporotic fracture.[15] Fol-
lowing the trial, women were observed for a further 10 years.
Womenwere excluded from the original RCT that forms the basis
for our observational study analysis if they were taking any bone-
active medication.[15] Lateral spine DXA images were obtained in
1024 women at baseline and/or 1 year of the RCT (1998/99). One
participant’s scan could not be read by our algorithm, leaving
1023 women for the current analysis. All 1023 women were
included in fracture analyses and unadjusted and minimally-
adjusted falls analysis, whereas 998 women were included in
multivariable-adjusted falls analysis due to missing covariate
data. Ethics approval for the 5-year RCT and a subsequent
10-year follow up was granted by the Human Research Ethics
Committee at the University of Western Australia and the use
of linked data was approved by Western Australian Department
of Health (project number #2009/24). Written informed consent,
including explicit authorization for future access to Western
Australian Department of Health data, was obtained from all
participants.

Baseline risk assessment

Body mass index (BMI, kg/m2) was calculated from body weight
measured using digital scales and height assessed using a wall-
mounted stadiometer. Smoking status was classified as nonsmo-
ker or ever smoked, which included individuals who had smoked
at least one cigarette per day for 3 months or more, as well as
current smokers. Participants’ physical activity levels were
assessed by asking them to report any sports, recreational activ-
ities, and regular physical activities they had participated in dur-
ing the 3 months before their baseline visit. The energy
expenditure in kJ/day for each participant was calculated, taking
into account their body weight, using published energy costs for
various activities.[16] The Socioeconomic Indexes for Areas devel-
oped by the Australian Bureau of Statistics was used to deter-
mine socioeconomic status by ranking residential postcodes
based on their relative socioeconomic advantage/disadvantage.
Participants were subsequently assigned to one of six groups,
ranging from the most highly disadvantaged (top 10%) to the
least disadvantaged (top 10%).[17] Medication use, including
antihypertensives, statins, and oral hypoglycemic medications
were confirmed by their primary care physician and classified
according to the International Classification of Primary Care-Plus
system (T89001–T90009). Prevalent diabetes at baseline was
determined by insulin or oral hypoglycemic medication use.
Prevalent atherosclerotic vascular disease (ASVD) was deter-
mined using primary discharge diagnoses from hospital data
from 1980 to 1998 and retrieved from the Western Australian
Data Linkage System, as described.[4] Atherosclerotic events
were defined using primary diagnosis codes from the Interna-
tional Classification of Diseases, Ninth Revision, Clinical Modifica-
tion (ICD-9-CM).[4] Previous falls were determined by asking
participants if they had fallen in the 3 months prior to their base-
line clinical visit.
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Assessment of ACC

AAC was assessed from lateral spine images obtained at baseline
or at 1-year (1998–1999). All lateral spine images were obtained
from a Hologic 4500A bone densitometry machine, which cap-
tured digitally enhanced single-energy–derived lateral images
of the thoracolumbar region. The ML-AAC24 scores used in the
current study were obtained from our previous work focused
on automated AAC-24 assessment for CVD outcomes, and the
ML algorithm was only trained on expertly assessed AAC-24
scores.[13] A brief explanation of the training process is as fol-
lows[13]: a regression network was employed based on image
features. This was based on the Kauppila AAC 24-point semi-
quantitative scoring method (AAC-24), which is the most widely
used method to manually score AAC.[13,18] Briefly, the framework
consists of three modules: image preprocessing, feature extrac-
tion, and regression. The pretrained EfficientNet-B3 was used
for feature extraction due to its efficiency and high performance.
The last fully connected convolutional layer of the EfficientNet-
B3 model was replaced with a custom-designed regression net-
work. Regression network was used to predict total AAC score
on a continuous scale, ranging from 0 to 24, and was comprised
of two dense layers with batch normalization and rectified linear
unit activation function and a fully connected final layer with lin-
ear activation. This model was trained on the single-energy
images from the Hologic 4500A machine.[13] The ML-AAC24
scores were categorized into three groups, based on previous
work when assessed manually[4,8]: low (ML-AAC24 ≤ 1), moder-
ate (ML-AAC24 ≥ 2 to <6), and extensive (ML-AAC24 ≥ 6). A
10-fold stratified cross-validation was performed to account for
the imbalance in the different AAC categories in the training
dataset. The average performance of the model was reported
after 10 repetitions of training on nine folds, and testing on the
remaining one as described.[13] For the current study, ML-
AAC24 was categorized as low (ML-AAC24 ≤ 1) or moderate to
extensive (ML-AAC24 ≥ 2), as in our previous work considering
manually assessed AAC and fractures[8] in this cohort. As
reported, there was substantial accuracy and agreement with
the automatic ML-AAC24 scores and the manually assessed
AAC-24 scores.[13] Specifically, Sharif et al.[13] reports that the
Cohen’s weighted kappa for manual AAC-24 versus ML-AAC24
assessed from lateral spine images obtained via the Hologic
4500A machine was 0.51, with an intraclass correlation coeffi-
cient of 0.76 (95% confidence interval [CI], 0.74–0.78). Perfor-
mance of ML-AAC24 to classify individuals into the low versus
moderate to extensive ML-AAC24 groups were also
described[13]; accuracy 81.0% (79.8–82.0); sensitivity 82.9%
(81.5–84.3); specificity 78.5% (76.7 to 80.2); positive predictive
value 82.9% (81.7–84.0); and negative predictive value 78.5%
(77.0–79.9). Of note, the agreement was substantial across differ-
ent DXA makes and models (Hologic 4500A and Horizon, GE
Lunar Prodigy and iDXA), suggesting that the algorithm trained
on Hologic 4500A images is generalizable to other commonly
used bone density machines.[13]

Prevalent and incident clinical fractures

Prevalent self-reported fractures were determined at baseline by
asking the age and location of fracture sustained. Only fractures
satisfying specific criteria were considered prevalent, including
fractures that occurred after the age of 50 years and prior to par-
ticipants baseline clinical visit due to minimal trauma (defined as
falling from a height of 1 m or less), while also excluding

fractures involving the face, skull, fingers, or toes. Prevalent ver-
tebral fractures were determined from lateral single-energy
images of the thoracolumbar spine, and scored using the Genant
semiquantitative method.[19] A modification was that grade
1 fractures were considered fractures only if there was clear end-
plate depression or cortical discontinuity.[20] Any incident clinical
fracture, including vertebral fractures, coming to clinical atten-
tion over 10 years were recorded in an adverse events diary, col-
lected every 4 months during the first 5 years and every
6 months during the second 5 years. The diagnosis of all incident
clinical vertebral and nonvertebral fractures was confirmed from
radiographic records.

Fall and fracture-related hospitalization

Fall and fracture-related hospitalizations were collected from the
Western Australia Hospital Morbidity Data Collection (HMDC)
using theWestern AustralianData Linkage System, which provides
a complete validated record of every participant’s primary diagno-
sis at hospital discharge using coded data from all hospitals in
Western Australia. The HMDC records of all womenwere obtained
from their baseline clinical visit in 1998 and over the next
14.5 years for hospitalized falls and 10 years for fracture-related
hospitalization to enable comparisons to previous work in this
cohort.[7,8] Diagnosis codes were defined using the ICD-9-CM
codes 1998 to 1999[21] mapped to the ICD-10 Australian Modifica-
tion (ICD-10-AM) for 1999 to 2013.[22] Hip and fracture-related hos-
pitalizationswere identified using the following ICD-10 codes: S02,
S12, S22, S32, S42, S52, S62, S72, S82, S92, M80, T02, T08, T10, T12,
and T14.2. Fractures of the face (S02.2–S02.6), fingers (S62.5–
S62.7), and toes (S92.4–S92.5), as well as fractures caused bymotor
vehicle injuries (External Cause of Injury codes V00–V99) were
excluded. Major osteoporotic fractures included those of the hip,
spine, humerus, and wrist, as defined by the Fracture Risk Assess-
ment Tool (FRAX). Fall-related hospitalizations were identified
based on the international classification of external causes of
injury codes and ICD-coded discharge data for all public and pri-
vate inpatient admissions. Falls from standing height or less that
were not caused by an external force, were identified using the fol-
lowing ICD-10 codes: W01, W05, W06, WO7, W08, W10, W18, and
W19. The HMDS captures coded diagnosis data pertaining to all
public and private inpatient contacts inWestern Australia, it allows
ascertainment of both fall and fracture-related hospitalizations
independently of a patient report with the associated problems
such as loss to follow-up.

Bone measurements

Quantitative ultrasound (QUS) of the left calcaneal was obtained
in duplicate using a Lunar Achilles Ultrasound machine (Lunar
Corp., Madison, WI, USA) at baseline (1998) in 989 women in this
study. The average measurement of broadband ultrasound
attenuation, speed of sound, and stiffness index were recorded
as detailed.[23] Total hip and femoral neck BMD of subjects was
measured by DXA (Hologic Acclaim 4500A fan-beam densitome-
ter; Hologic Corp, Waltham, MA, USA). The coefficient of variation
at the total hip was 1.2% in our laboratory.[8]

Estimated fracture risk

Fracture risk prediction using the FRAX website (https://frax.shef.
ac.uk/FRAX/) was conducted using FRAX Australia. The estimated
10-year major osteoporotic fracture risk was calculated using
baseline data, with and without BMD. The dataset comprised
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the following clinical parameters: age, sex, weight (in kg), height
(cm), fracture history (including previous fracture and parental
history of hip fracture), current smoking status, glucocorticoid
use, history of rheumatoid arthritis or secondary osteoporosis,
and alcohol consumption (three or more units per day). Data
were inputted with and without femoral neck BMD (g/cm2).

Muscle strength and function assessment

Grip strength was assessed using an isometric Jamar hand dyna-
mometer, with the peak value recorded from three attempts
using the participants’ dominant hand. The timed-up and-go test

(TUG), involves timing the participant’s ability to rise from a chair,
walk 3 m, turn, and return to sit on the chair. Participants were
allowed to practice the test once before being timed.

Statistical analysis

Differences in baseline characteristics between the low and
moderate to extensive ML-AAC24 categories were compared
using independent t tests, the Mann–Whitney U test, or chi-
square test where appropriate. Kaplan-Meier survival analysis
was used to determine the univariate association of ML-AAC24
categories with 14.5-year fall and 10-year fracture-related

Table 1. Baseline Characteristics and Fall and Fracture Related Variables Stratified by Machine Learning Assessed Abdominal Aortic
Calcification

Demographics All participants
Low AAC

(ML-AAC24 ≤ 1)
Moderate to extensive
AAC (ML-AAC24 ≥ 2)

Number 1023 454 569
Age, years 75.0 � 2.6 74.7 � 2.6 75.2 � 2.6
Body mass index (BMI)a, kg/m2 27.1 � 4.4 27.6 � 4.6 26.7 � 4.2
Randomization

Placebo, n (%) 511 (50.0) 234 (51.5) 277 (48.7)
Calcium, n (%) 484 (47.3) 208 (45.8) 276 (48.5)
Calcium plus vitamin D, n (%) 28 (2.7) 12 (2.6) 16 (2.8)

Smoker evera, n (%) 367 (36.0) 136 (30.0) 231 (40.7)
Physical activity, kJ/day 493 (186–868) 497 (191–867) 488 (181–871)
Prevalent atherosclerotic vascular disease, n (%) 112 (10.9) 34 (7.5) 78 (13.7)
Prevalent diabetes mellitus, n (%) 57 (5.6) 22 (4.8) 35 (6.2)
Statins, n (%) 194 (19.0) 68 (15.0) 126 (22.1)
Blood pressure lowering medication, n (%) 434 (42.4) 186 (41.0) 248 (43.6)
Socioeconomic statusb

Top 10% most highly disadvantaged, n (%) 43 (4.2) 15 (3.3) 28 (5.0)
Highly disadvantaged, n (%) 115 (11.3) 56 (12.4) 59 (10.5)
Moderate-highly disadvantaged, n (%) 168 (16.6) 86 (19.1) 82 (14.5)
Low-moderately disadvantaged, n (%) 151 (14.9) 71 (15.8) 80 (14.2)
Low disadvantaged, n (%) 221 (21.8) 97 (21.6) 124 (22.0)
Top 10% least disadvantaged, n (%) 316 (31.2) 125 (27.8) 191 (33.9)

Bone
Hip

Total hip BMD, g/cm2 0.81 � 0.12 0.83 � 0.12 0.80 � 0.12
Femoral neck BMD, g/cm2 0.69 � 0.10 0.70 � 0.10 0.69 � 0.10
MOF FRAX (Aust) without FN BMD, % 11.1 � 4.7 10.4 � 4.4 11.7 � 4.9
MOF FRAX (Aust) with FN BMD, % 8.0 � 3.8 7.5 � 3.3 8.4 � 4.1

Calcanealc

Broadband ultrasound attenuation, db/Mhz 100.6 � 7.9 101.5 � 7.9 99.9 � 7.8
Speed of sound, m/sec 1513.4 � 25.3 1515.2 � 25.3 1512.0 � 25.2
Stiffness index, % 70.8 � 11.3 71.9 � 11.3 70.0 � 11.2

Fracture
Prevalent fracture from age 50 years

Any fracture, n (%) 263 (25.7) 108 (23.8) 155 (27.2)
Prevalent vertebral fracture from VFAd

None, n (%) 929 (90.9) 418 (92.1) 511 (90.0)
One, n (%) 75 (7.3) 31 (6.8) 44 (7.7)
Two or more, n (%) 18 (1.8) 5 (1.1) 13 (2.3)

Grade of vertebral fractured

None, n (%) 929 (90.9) 418 (92.1) 511 (89.8)
Grade one only, n (%) 35 (3.4) 19 (4.2) 16 (2.8)
Grade two or three, n (%) 58 (5.7) 17 (3.7) 41 (7.2)

(Continues)
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hospitalization, as well as incident self-reported clinical fractures.
Cox proportional hazards regression models were used to inves-
tigate the association between ML-AAC24 categories with fall
and fracture outcomes. To more closely align with our previous
work,[7,8] the covariates included in the models differed for the
falls and fracture analysis. For fractures, the model was adjusted
for treatment (placebo/calcium) and FRAXwith andwithout fem-
oral neck BMD. For falls, the minimally-adjusted model included
age, treatment, and BMI. The multivariable-adjusted model
included the minimally-adjusted model plus prevalent ASVD,
smoked ever, prevalent diabetes mellitus, statin use, blood pres-
sure lowering medication use, socioeconomic status, physical
activity, and self-reported prevalent falls. Treatment and FRAX
with BMD fracture models as well as the multivariable-adjusted
falls model were repeated using manually assessed AAC, to com-
pare the association of ML-AAC24 and manual AAC with fracture
and fall outcomes. No violations of the Cox proportional hazards
assumptions were detected. All analyses were performed using
IBM SPSS (Version 29; IBM Corp., Armonk, NY, USA) and STATA
version 9.2 statistical software programs (Stata Corporation, Col-
lege Station, TX, USA).

Additional analyses

To further explore the relationship between ML-AAC24 and falls
and fracture outcomes, we analyzed fracture outcomes using a
multivariable-adjusted model based on the covariates included
for falls. However, the multivariable model differed slightly to
that used for falls due to the inclusion of FRAX in the model,
which includes age, BMI, smoking status, and prevalent fractures.
Therefore, this revised multivariable fracture model included
treatment code, FRAX with femoral neck BMD, prevalent ASVD,
prevalent diabetes mellitus, statin use, blood pressure–lowering
medication use, socioeconomic status, physical activity, and
prevalent falls. We also analyzed the relationship of AAC with fall
and fracture outcomes using two alternative categorizations of
ML-AAC24 used previously.[4,7] Specifically, we compared AAC
presence (ML-AAC24 ≥ 1) and absence (ML-AAC24 = 0), as well

as across three groups of AAC extent (low [ML-AAC24 ≤ 1], mod-
erate [ML-AAC24 ≥ 2 to <6], and extensive [ML-AAC24 ≥ 6]).

Results

A total of 1023 women were included in the current study, with a
mean � standard deviation (SD) age of 75.0 � 2.6 years at base-
line. Baseline characteristics of the total sample, as well as for
those with low and moderate to extensive ML-AAC24, are pre-
sented in Table 1. Compared with women with low ML-AAC24,
women with moderate to extensive ML-AAC24 were slightly
older, had lower BMI, were more commonly current or former
smokers, and were more likely to have prevalent ASVD and be
taking lipid-lowering medication. Compared with women with
low ML-AAC24, women with moderate to extensive ML-AAC24
had lower hip BMD, lower ultrasound attenuation and stiffness
index, and higher estimated major osteoporotic fracture risk.
However, the proportion of women with any prevalent osteopo-
rotic fracture since the age of 50 years, as well as the number,
grade, or location of prevalent vertebral fractures did not differ
(Table 1). Grip strength, TUG, and the proportion of women with
a self-reported prevalent fall in the 3 months prior to baseline
did not differ between women with low or moderate to exten-
sive ML-AAC24 (Table 1).

ML-AAC24 and 10-year clinical fractures

Over 10 years of follow-up, 24.7% (253/1023) of women
experienced a clinical fracture (8124 person-years; mean � SD
follow-up 7.9 � 3.0 years), and 16.5% (169/1023) of women
had a fracture hospitalization (9111 person-years; mean � SD
follow-up 8.9 � 2.2 years). Compared with women with low
ML-AAC24, women with moderate to extensive ML-AAC24 had
an increased risk of any clinical fracture, including vertebral
and nonvertebral fractures (Table 2, Fig. 1). Hospitalization risk
due to any fracture or hip fracture did not differ between women
with low or moderate to extensive ML-AAC24. These results were
consistent across all models of adjustment.

Table 1. Continued

Demographics All participants
Low AAC

(ML-AAC24 ≤ 1)
Moderate to extensive
AAC (ML-AAC24 ≥ 2)

Location of vertebral fracture from VFAd,e

Thoracic VF, n (%) 72 (7.0) 28 (6.2) 44 (7.7)
Lumbar VF, n (%) 24 (2.3) 9 (2.0) 15 (2.6)

Physical function
Grip strengthf, kg 20.7 � 4.6 20.7 � 4.7 20.8 � 4.5
Timed-up-and-gog, sec 9.2 (8.0–10.8) 9.2 (8.1–10.7) 9.2 (8.0–10.8)

Falls
Prevalent fallsh, n (%) 108 (10.7) 43 (9.6) 65 (11.6)

Note: Data expressed as mean � SD, median (interquartile range), or number and (%). Bolded values represent significant differences (p value <0.05)
between AAC categories using t test, chi-square test, or Mann–Whitney U test where appropriate.
Abbreviations: AAC = abdominal aortic calcification; BMC = bone mineral content; BMD = bone mineral density; FN = femoral neck; FRAX = fracture

risk assessment tool; ML = machine learning; MOF = major osteoporotic fracture; VF = vertebral fracture; VFA = vertebral fracture assessment.
an = 1020.
bn = 1014.
cn = 989.
dn = 1022.
eSome participants had both thoracic and lumbar spine fractures.
fn = 1016.
gn = 1021.
hn = 1008.
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ML-AAC24 and 14.5-year fall-related hospitalizations

Over 14.5 years of follow-up (11,548 person-years; mean � SD
follow-up 11.3 � 3.9 years), 38.4% (393/1023) of women experi-
enced a fall-related hospitalization. Compared with women with
low ML-AAC24, women with moderate to extensive ML-AAC24
had between 35% and 37% increased hazard for a fall-related hos-
pitalization in the multivariable-adjusted model (Table 2, Fig. 1).

ML-AAC24 compared with manually assessed AAC24

Hazard ratios (HRs) for ML-AAC24 and 10-year incident fractures
were consistentwhen AAC groupings based onmanually assessed
AAC24 was used in the current fracture analysis (Fig. 2). Similarly,
HRs for ML-AAC24 and 14.5-year fall-related hospitalizations were
consistent when manually-assessed AAC24 was used in the
multivariable-adjusted model (Fig. 2).

Additional analyses

When additional covariates were included in the analysis, to
align with the primary multivariable-adjusted analysis for falls,
HRs for moderate to extensive compared with low ML-AAC24
for all fracture outcomes were nearly identical (Table S1). When
AAC was categorized as presence and absence (Table S2), or
into three categories of extent (Table S3), results were largely
consistent with that of the primary analysis. However, for pres-
ence versus absence of ML-AAC24, the relationship with clinical
vertebral fractures was not significant, despite the HRs being
similar to the primary analysis. Across three categories of AAC
extent, extensive but not moderate AAC was associated with
an increased risk of clinical vertebral fracture, compared
with low AAC. Despite, extensive AAC being associated with
increased risk of clinical nonvertebral fracture and hip fracture
hospitalization, neither association persisted once adjusted
for FRAX with femoral neck BMD.

Table 2. Hazard Ratios (HRs) for Fracture Outcomes Over 10 Years and Fall-Related Hospitalization Risk Over 14.5 Years By Machine
Learning Assessed Categories of Abdominal Aortic Calcification

Number of
events (%)

Unadjusted
Adjusted for treatment

and FRAX without FN BMD
Adjusted for treatment
and FRAX with FN BMD

HR (95% CI) p HR (95% CI) p HR (95% CI) p

Clinical fracturea

Low AAC 90/454 (19.8) 1 (reference) 1 (reference) 1 (reference)
Moderate to extensive
AAC

163/569 (28.6) 1.54 (1.19–1.99) 0.001 1.48 (1.14–1.91) 0.003 1.42 (1.10–1.85) 0.008

Clinical vertebral fracture
Low AAC 20/454 (4.4) 1 (reference) 1 (reference) 1 (reference)
Moderate to extensive
AAC

48/569 (8.4) 1.94 (1.15–3.28) 0.013 1.82 (1.08–3.07) 0.026 1.74 (1.03–2.95) 0.039

Clinical nonvertebral fracture
Low AAC 74/454 (16.3) 1 (reference) 1 (reference) 1 (reference)
Moderate to extensive
AAC

136/569 (23.9) 1.55 (1.17–2.06) 0.002 1.48 (1.11–1.96) 0.007 1.43 (1.08–1.90) 0.014

Fracture hospitalization
Low AAC 64/454 (14.1) 1 (reference) 1 (reference) 1 (reference)
Moderate to extensive
AAC

105/569 (18.5) 1.34 (0.98–1.82) 0.068 1.23 (0.90–1.69) 0.192 1.17 (0.85–1.60) 0.341

Hip fracture hospitalization
Low AAC 23/454 (5.1) 1 (reference) 1 (reference) 1 (reference)
Moderate to extensive
AAC

38/569 (6.7) 1.33 (0.80–2.24) 0.275 1.28 (0.76–2.16) 0.349 1.19 (0.70–2.00) 0.526

Number of
events (%)

Unadjusted
Minimally
adjustedb

Multivariable
adjustedc

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Injurious fall-related hospitalization
Low AAC 150/454 (33.0) 1 (reference) 1 (reference) 1 (reference)
Moderate to extensive AAC 243/569 (42.7) 1.44 (1.17–1.76) <0.001 1.37 (1.12–1.68) 0.003 1.35 (1.09–1.66) 0.006

Note: Bolded values represent significant differences (p < 0.05). HRs (95% CI) analyzed using Cox-proportional hazard models. AAC categorized as low
(ML-AAC24 ≤ 1) and moderate to extensive (ML-AAC24 ≥ 2). n = 1023 for all fracture models, and for unadjusted and minimally adjusted falls models,
n = 998 for multivariable adjusted falls model.
Abbreviations: AAC = abdominal aortic calcification; BMD = bone mineral density; FN = femoral neck; FRAX = fracture risk assessment tool;

HR = hazard ratio; ML = machine learning.
aClinical vertebral and nonvertebral fracture numbers do not equal total clinical fracture numbers as women may have suffered more than one frac-

ture type.
bMinimally adjusted = age, treatment code and BMI.
cMultivariable adjusted = minimally adjusted model plus prevalent atherosclerotic vascular disease, smoked ever, prevalent diabetes mellitus, statin

use, blood pressure lowering medication use, socioeconomic status, physical activity, and self-reported prevalent falls.
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Discussion

This study reports that older women with moderate to extensive
AAC, assessed using an automated ML algorithm, had an
increased risk of incident fall-related hospitalizations and clinical
fractures, compared with women with low ML-AAC24. Of note,
ML-AAC24 was not associated with incident fracture hospitaliza-
tions. These findings remained consistent after adjusting for var-
ious covariates. Women with moderate to extensive ML-AAC24
also had lower BMD compared to women with low ML-AAC24.
However, neither TUG performance nor prevalent fractures or

falls differed between ML-AAC24 groups. These findings support
the use of ML-AAC24 to routinely assess AAC on lateral spine
images in clinical practice, to provide important prognostic infor-
mation regarding clinical musculoskeletal outcomes.

The potential mechanisms underlying the observed relation-
ships between AAC and falls and fracture risk have been dis-
cussed.[7,8,11] Briefly, this may relate to impaired blood flow to
the skeleton distal to the abdominal aorta negatively influencing
BMD, which may contribute to increasing fracture risk. Vascular
disease may also contribute to increased falls propensity, and
subsequent fracture, via various mechanisms. For example, vas-
cular disease may lead to increased prescription of certain car-
diovascular medications that may increase falls risk due to side
effects such as orthostatic hypotension, confusion, or dehydra-
tion.[24] Falls may also result from transient ischemic events or
syncope, or cardiac abnormalities such as arrhythmias and
reduced cardiac output, which may be more common in individ-
uals with vascular disease.[24] There are also shared genetic and
environmental risk factors for muscle, bone, and vascular
health.[7,8,11] However, the potential mechanisms require further
investigation. Although moderate to extensive ML-AAC24 was
associated with incident self-reported clinical fractures, it was
not associated with incident fracture-related hospitalizations.
This was similar to our previous analysis[8] where manually
assessed AAC was not associated with fracture hospitalizations
after accounting for BMD. In our additional analyses, extensive
but not moderate ML-AAC24 was associated with an increased
risk of hip fracture hospitalization; however, this was attenuated
when FRAX with BMD was included in the model. These results
may be in part due to reduced statistical power because there
were fewer fracture hospitalizations, and particularly hip fracture
hospitalizations, compared with clinical fractures. The HRs for
ML-AAC24 and incident fracture and falls risk in this study were
largely consistent with those observed using manually assessed

Fig. 1. Kaplan–Meier survival curve for abdominal aortic calcification
(AAC) score categories for (A) 10-year incident self-reported fractures,
(B) 10-year incident fracture-related hospitalizations, and (C) 14.5-year
incident fall-related hospitalizations. Low AAC (ML-AAC24 ≤ 1) and mod-
erate to extensive AAC (ML-AAC24 ≥ 2) categories are represented by
black and gray lines, respectively.

Fig. 2. Hazard ratios (HRs) for fracture outcomes over 10 years and fall-
related hospitalization risk over 14.5 years using machine learning
AAC24 (ML-AAC24) andmanually assessed AAC-24. HRs are for moderate
to extensive AAC (AAC-24 ≥ 2) compared with low AAC (AAC-24 ≤ 1) as
the reference category. The fracture models (n = 1023) are adjusted for
treatment code and FRAX with femoral neck bone mineral density
(BMD). The falls model (n = 998) is adjusted for age, treatment code,
body mass index (BMI), prevalent atherosclerotic vascular disease,
smoked ever, prevalent diabetes mellitus, statin use, blood pressure–
lowering medication use, socioeconomic status, physical activity, and
self-reported prevalent falls.
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AAC in the analysis. Furthermore, the observed HRs for moderate
to extensive ML-AAC24 and incident fracture outcomes are con-
sistent with those reported in a recentmeta-analysis of 86 studies
and 61,553 participants.[11] In 28 studies (n = 33,748 partici-
pants) reporting fracture risk with any/advanced AAC compared
with no/low AAC, the higher AAC group had a pooled relative
risk of 1.51 (95% CI, 1.25–1.82) for any incident fracture.[11] In sup-
port of the current results showing poorer bone health with
moderate to extensive ML-AAC24, a meta-analysis of 30 studies
showed that those with any/advanced AAC had lower BMD at
the total hip, femoral neck, and lumbar spine.[11] Overall, falls
and fracture risk estimates using ML-AAC24 appear consistent
with manually assessed AAC, which aligns with the good levels
of agreement reported between the ML-AAC24 and AAC scored
by trained imaging specialists.[13]

We and others have shown that the presence and extent of
manually assessed AAC is associated with impaired musculoskel-
etal health,[7,8,11] increased risk for all-causemortality and cardiac
events,[6] as well as late-life dementia hospitalizations and
deaths.[25] Recently, we reported that women with higher ML-
AAC24 had increased risk of all-cause mortality and CVD-related
mortality.[13] The present study builds on this evidence, demon-
strating that higher ML-AAC24 is also associated with increased
incident falls and clinical fracture risk. Statin use has been pro-
posed to increase vascular calcification,[26,27] and there were a
higher proportion of statin users in the moderate to extensive
ML-AAC24 group of the current study. However, when statin
use was included as a covariate in multivariable adjusted falls
and fracture models, the point estimates were nearly identical
for all outcomes, suggesting the observed associations were
independent of statin use. Importantly, the predictive value of
ML-AAC24 does not appear to decrease with increasing follow-
up duration, suggesting it is a valuable measure of long-term fall
and fracture risk. However, the predictive value appears to be
lower for imminent falls and fractures. In both the previous[13]

analysis and present analyses on falls and fractures, the observed
associations with ML-AAC24 were consistent with that of
manually assessed AAC. Together, these results highlight that
ML-AAC24 provides important prognostic information about
cardiovascular and musculoskeletal health, which is similar to
that obtained when AAC is assessed manually by an experienced
imaging specialist.

Clinical guidelines increasingly recommend performing lat-
eral spine images at the time of DXA testing to identify asymp-
tomatic vertebral fractures.[1] Further, even if a lateral spine
image is obtained, AAC is not routinely assessed in clinical prac-
tice, largely due to practical considerations such as the time
taken for manual scoring and the lack of expert assessors glob-
ally who are appropriately trained to score AAC. Therefore,
methods to automate AAC assessment are needed to address
these key barriers and support more widespread and routine
use of AAC clinically at the time of osteoporosis screening. For
example, although a lateral spine DXA scan takes 2–5 min to
reposition and scan (depending on make and model), it takes
even the most experienced reader approximately 5–6 min to
obtain an AAC score from the image. In comparison, our recently
developed ML algorithm takes less than a minute to predict the
AAC score for hundreds of images. The ultimate goal of this work
is for an automated AAC assessment to be incorporated into the
software of common DXA machines. Although Hologic DXA
scanners include software that helps to more easily visualize
AAC from lateral spine images, it does not automatically detect
or quantify AAC, so still requires considerable time and expertise

to obtain an AAC-24 score. An automated algorithm would allow
AAC to be instantaneously assessed and reported on in clinical
practice for any lateral spine image captured. Importantly, our
algorithm was shown to have good levels of agreement with
AAC that was manually assessed by trained experts.[13] This is
consistent with the reported agreement between automatic
and manual scoring of aortic calcification from abdominal CT
scans.[14] The current study builds on this work demonstrating
that ML-AAC24 provides prognostic information about falls and
fracture risk in older women. Given bone density scans involve
a very low radiation dose and are routinely used for osteoporosis
screening, performed most commonly in older women, the abil-
ity of this ML approach to provide AAC readings at the time of
bone density testing is of clear clinical value, especially in the
context of opportunistic health screening for other health out-
comes including all-cause mortality and cardiovascular
events,[6] as well as late-life dementia hospitalizations and
deaths.[25]

Strengths of the present study include the large number of
older Australian women included, who are representative
of the population typically undergoing bone densitometry
for osteoporosis screening, the long-term prospective follow-
up (10 and 14.5 years for fracture and falls outcomes, respec-
tively), the capture of clinical fracture events through verified
self-report (by General Practitioner), as well as the capture of
fall- and fracture-related hospitalizations from the Western
Australian Data Linkage System independent of self-report.
There are also several limitations that should be considered.
First, as acknowledged in the original study,[13] in the absence
of an unseen hold-out separate dataset, the machine learning
algorithm to assess AAC-24 scores was trained on the same set
of images that were used in this study. However, to mitigate
this limitation, a 10-fold cross-validation approach was
employed to ensure that the algorithm was evaluated on a
data partition (fold) that it had not seen during training, as
described.[13] This process was repeated 10 times to obtain
the test AAC24 scores across the entire dataset, ensuring that
the algorithm’s performance was assessed on unseen data
with no prior knowledge of the test images. An important next
step of this work will be to verify the performance of the ML-
AAC24 algorithm in independent cohorts. Additionally, it is
important to note that the algorithm was trained only on
AAC-24 scores and has not been optimized/trained to predict
long-term fall- or fracture-related risks/hospitalizations. Sec-
ond, this was an observational study so causality cannot be
established. Third, we cannot exclude the possibility of bias
being introduced, particularly as the lateral spine scans were
only completed in approximately 70% of the larger cohort.
Finally, the cohort consisted predominantly of community-
dwelling older white women with a mean age of 75 years;
therefore, these findings may not be generalizable to younger
women, men, older women of other ethnicities, or to any clin-
ical populations.

In conclusion, we showed that higher ML-assessed AAC was
associated with poorer bone health and an increased risk of inci-
dent clinical fractures and fall-related hospitalizations. Com-
pared to manually assessed AAC, ML-AAC24 provides similar
risk estimates for incident falls and clinical fractures. This work
supports the assessment of ML-AAC24 on lateral spine images
in clinical practice to identify individuals at greatest need of
interventions to mitigate declines in musculoskeletal health to
prevent falls and fracture, independent of traditional fall and
fracture risk factors.
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