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ABSTRACT Tuning range extension strategies for varactor-based frequency-reconfigurable planar patch
antennas are presented. The three tuning range optimization methods described in the paper include
co-optimization of antenna dimensions and varactor properties, exploitation of multiple radiation modes,
and reduction of parasitic capacitance. The first two strategies are emphasized by briefly reviewing two
previously reported wide tuning range frequency-agile planar antennas. Importantly, the influence of
parasitic capacitance on reducing the tuning range of the varactor-based frequency-reconfigurable antennas
is then demonstrated by examining two antennas. The three tuning range extension methods are then
combined to further expand the frequency tuning range of a reported frequency-reconfigurable antenna.
The antenna has been re-designed, fabricated and experimentally characterized to demonstrate enhanced
performance, which validates the proposed techniques, and their simultaneous application to reconfigurable
antenna designs.

INDEX TERMS Antenna efficiency, frequency-reconfigurable antenna, tuning range extension.

I. INTRODUCTION

THE PAST 15 years have witnessed substantial progress
in reconfigurable antennas. These developments have

aimed at increasing versatility in operation or at extend-
ing capability to provide multi-functionalities in a single
device [1]. Numerous advanced techniques have been
proposed for reconfigurable antennas, with the aim of
achieving reconfigurability in pattern [2], [3], [4], [5], [6],
polarization [7], [8], [9], [10], [11], operation frequency [12],
[13], [14], [15], [16] and/or the combination between several
of these agility features [17], [18], [19], [20], [21]. Among
them, frequency-reconfigurable antennas have arguably
received the most significant attention from the very early
development stages. This is due to the typical requirements
of devices operating in different wireless standards [22].
This paper examines a fundamental aspect in frequency-
reconfigurable antennas, which is the maximization of tuning

range, TR, defined as

TR = 2
fmax − fmin

fmax + fmin
× 100%, (1)

where fmin and fmax are the minimum and maximum

operation frequencies, respectively.
In the literature, the tuning range is commonly optimized

for a specific antenna structure. Among reconfigurable anten-
nas proposed in the past, slot antennas were typically found
to provide the widest reported frequency tuning, with frac-
tional ranges reaching above 50% [23], [24], [25], [26]. The
main disadvantage of this antenna type is its difficulty of inte-
gration onto platforms. By contrast, planar antennas with a
full ground plane and unidirectional patterns usually achieve
a lower tuning range of around 13−35% [27], [28], [29],
[30]. Several designs have been previously reported with
extended tuning range for reconfigurable microstrip patch
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antennas on full ground planes. In [31], a general framework
for maximizing the tuning range and efficiency of a
microstrip patch antenna was proposed. After optimization,
a wide frequency tuning range of 41.5% was achieved.
This range was among the best demonstrated for patch
antennas at the time. Then in [21] and [32], continuous
transitions between two radiation modes were exploited to
further extend the fractional frequency tuning range to 57.3%
and 70%, respectively, while keeping full ground planes and
unidirectional radiation characteristics.
This paper aims to provide a systematic view of the

tuning range extension strategies and optimization techniques
for planar varactor-based frequency-reconfigurable antennas.
Three main strategies, with the third one is the main
contribution of this paper, are identified as
1) Choosing the dimensions and number of varactors that

maximize the tuning range for a given capacitance
range.

2) Utilizing multiple radiation modes with compatible
radiation characteristics.

3) Reducing the parasitic capacitances.
The above techniques will be firstly explained by using

design examples from the literature (Sections II and III).
Then, an antenna that combines all of those techniques will
be demonstrated in Section IV, as a design example to
validate the findings. The paper is not intended to offer
a literature review, it rather aims at providing the readers,
especially designers of reconfigurable antennas, an in-depth
and systematic insight into the key approaches to maximize
the tuning range. It is noted that the featured techniques can
be used simultaneously as shown in a new proposed design
in Section IV, which is also one of the main contributions
of this work.
Since the tuning range is limited by the varactor

capacitance range, for a consistent investigation and fair
comparison, all designs presented in this paper use the
same varactor type, i.e., MA120H46 with [Cmin,Cmax] =
[0.15, 1.30] pF with internal resistance of R ≈ 2 � [33]. It
is emphasized that, the described methods can be however
applied to other varactor types, with the presented findings
remaining valid.

II. PREVIOUSLY REPORTED TUNING RANGE
EXTENSION STRATEGIES
A. OPTIMIZATION OF ANTENNA DIMENSIONS AND
VARACTOR PROPERTIES
Let us first consider a classical design of a frequency-
reconfigurable planar antenna as presented in [31] (see the
inset in Fig. 1). The antenna is excited by a probe feed
and consists of two rectangular patches, i.e., a main patch
and a tuning patch with the same length l, connected by
a varactor diode. A design procedure was detailed in [31]
and is graphically demonstrated in Fig. 1, which shows
the relation between achievable resonance frequency tuning
range and hypothetical value of varactor junction capacitance
(from 0.001 to 1000 pF) for two different values of patch

FIGURE 1. Simulated resonance frequencies of the antenna reported in [31] across
different values of patch length and varactor capacitance. Inset: The considered
classical design of a frequency-reconfigurable patch antenna.

length l. The value of l are then identified according to the
targeted frequency range (the lower the value of l, the higher
the resonance frequencies achieved, as shown in Fig. 1).
The number of parallel varactors is also part of the design,
and it allows to adjust the capacitance range for a given
commercially available varactor type. It can be observed
from Fig. 1 that, at the value of l = 18 mm, the widest
tuning range can be achieved by using three varactors.
The above method is applicable to almost all frequency-

reconfigurable antenna and it has been applied successfully
in various designs [19], [21], [30], [32], [33], leading
to large tuning ranges. In general, the starting point is
to plot the simulated resonance frequency graphs as a
function of the varactor capacitance over a wide hypothetical
range, in logarithmic scale, as illustrated in Fig. 1. This
graphical representation provides an initial idea about a
suitable varactor to be used and an estimation of the design
dimensions. In-depth explanations of the method can be
found in [31].

B. EXPLOITATION OF MULTIPLE RADIATION MODES
In the previous example, a limitation on the tuning range is
due to the appearance of parasitic resonances. This forces
the design to limit its operation to a single mode, i.e., the
fundamental mode of a patch. Interestingly, the design [32]
overcomes this issue by utilizing a continous transition
between two radiation modes, i.e., a quarter-wave planar
inverted-F antenna (PIFA) mode and a half-wave patch mode.
This can be observed in Fig. 2 where the simulated reflection
coefficients and instantaneous electric field distribution of the
antenna at two extreme frequencies within its tuning range
are illustrated. Both radiation modes at 1.86 and 3.79 GHz
are the lowest-order resonance mode of the structure (for a
particular capacitance values C), thus parasitic higher-order
resonances are avoided and a very large tuning range of 70%
was obtained.
Compared to the design in Section II, a significant

improvement in the tuning range (from 41.5% to 70%)
is observed. Nevertheless, additional investigations reveal
that such an improvement is not just due to the two-mode
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FIGURE 2. Simulated reflection coefficients of the antenna reported in [32]. Inset:
instantaneous electric field distribution at the lowest and the highest resonance
frequencies.

operation. If we optimize the antenna in [32] with the same
substrate as in the antenna in [31], the optimized tuning
range reaches only 55% with the lowest radiation efficiency
at the lowest resonance frequency of approximately 23%.
Therefore, another effect is at play here, which is related
to the fact that the antenna in [32] utilizes an air-like foam
substrate. The next section will reveal the reason behind this
apparent discrepancy.

III. REDUCTION OF PARASITIC CAPACITANCE
It is found that parasitic capacitance plays a signifi-
cant role in reducing the tuning range of varactor-based
frequency-reconfigurable antennas. In this section, two
frequency-reconfigurable antennas are examined to illustrate
the effects of parasitic capacitance on the frequency tuning
range.

A. FREQUENCY-RECONFIGURABLE WEARABLE PATCH
ANTENNA WITH VERTICAL RECONFIGURATION
MODULE
Let us first consider the frequency-reconfigurable textile
antenna previously reported in [30]. This antenna config-
uration is similar to the antenna in [32], i.e., shown as
the inset of Fig. 2, which includes a rectangular patch, a
full ground plane, a proximity-coupled feed and a vertical
reconfiguration module. In terms of operation mode, different
from [32], this antenna only radiates in its quarter-wave
mode within the tuning range. This antenna is chosen for
investigation due to its strong parasitic capacitance effect.
Two configurations of the reconfigurable module are

considered (see Fig. 3): (i) the original design in [30] and
(ii) a modified design with the bases of the male snap-on
buttons being removed. In the original design, the patch
and the ground plane are connected through the impedance
Zvar of the varactor, in parallel with Cp which is the
parasitic capacitance of the module (see equivalent circuit in
Fig. 3(a)). The parasitic capacitance Cp is mainly caused by
the two male snap-on button bases placed on two sides of
the module. In the modified design, Cp is drastically reduced
and becomes negligible.

FIGURE 3. Antenna conceptual diagram with (a) a normal reconfiguration module
and (b) an ideal module with removed male snap-on button bases.

FIGURE 4. Simulated resonance frequency across different hypothetical values of
varactor capacitance for the antenna in [30].

Due to the parasitic capacitance Cp, the range of the
actual tuning capacitance becomes [Cmin + Cp,Cmax + Cp].
This effectively reduces the ratio between the maximum and
minimum capacitance, since (Cmax + Cp)/(Cmin + Cp) <

Cmax/Cmin(Cp > 0). Thus, a large value of Cp can severely
affect the tuning range. This is confirmed by the electric
field distributions, as well as the resonance frequency curves
shown in Fig. 4. Without the parasitic capacitance, the
loading effect of the varactor is more noticeable, especially at
the higher resonance frequency. Consequently, by removing
the parasitic capacitance caused by the male snap-on button
bases, the frequency tuning range of the antenna is improved
from 32.8% up to 47.2% (Fig. 4).

B. FREQUENCY-RECONFIGURABLE PATCH ANTENNA
WITH CO-PLANAR RECONFIGURATION MODULE
As another example illustrating the severe effect of the
parasitic capacitance, the antenna with 70% tuning range
presented in [32] is re-considered. This time, a modification
has been made, which substantially increases the parasitic
capacitance: a conductive layer is added as ground plane to
the reconfiguration module as displayed in Fig. 5(a) and (b).
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FIGURE 5. Co-planar reconfiguration modules (a) without and (b) with added back
copper layer. Equivalent circuit for antenna in [32] while using the reconfiguration
module (c) without (Ant. I) and (d) with a back copper layer (Ant. II).

FIGURE 6. Frequency-reconfigurable wearable textile antenna using co-planar
reconfiguration module. Inset: Instantaneous electric field distribution of the antenna
in the two cases at the lowest, the middle and the highest resonance frequency.

The antenna equivalent circuit for the two cases are
shown in Fig. 5(c) and (d), respectively. For convenience,
these two antennas are called Ant. I (without the module’s
back copper layer) and Ant. II (with the module’s back
copper layer). The difference between these two cases arises
from the parasitic capacitance Cp3 appearing between the
bottom copper layer and the top layer of the reconfiguration
module (Fig. 5(d)). The resonance frequency obtained from
full-wave simulations for different values of capacitance
of a single (hypothetical) varactor from 0.001 to 1000 pF

is displayed in Fig. 6. The instantaneous electric field
distribution at the lowest, middle and highest resonances of
the two cases are also illustrated in the insets of Fig. 6. It can
be observed that the tuning range of Ant. II is significantly
reduced compared to the original design Ant. I.
The significant difference in the tuning range between

Ant. I and Ant. II can be explained as follows. At the
highest value of the varactor capacitance, the loading effect
is the highest, and the two antennas are operating in their
PIFA radiation mode with the similar resonance frequency
of approximately 1.0 GHz (see Fig. 6). When the varactor
capacitance is decreased, the loading effect of the module
in Ant. I is reduced accordingly while it is not decreased
as significantly for Ant. II. This is because the tuning does
not only depend on the varactor capacitance, but also on the
fixed parasitic capacitance between the two copper layers of
the module, i.e., ≈ 2Cp3 + Cg. That is, Ant. II is always
radiating in its PIFA mode at all varactor capacitance values,
as shown in the insets corresponding to the blue curve. In
contrast, since the loading effect of the varactor in Ant. I
decreases to a very low value, a nearly open-circuit condition
appears. Consequently, the continuous transition between the
PIFA and half-wave patch modes can be achieved, which
extends the tuning range significantly.

C. REMARKS
Both designs have illustrated the strong impact of parasitic
capacitance in the tuning range of frequency-reconfigurable
antennas. This effect has been often ignored in the litera-
ture, since it is inherently present in a selected structure.
Nevertheless, being aware of this effect can guide design
modifications to extend the tuning range in a particular
structure. This will be illustrated in an example shown in
Section IV.
This effect also explains why the antenna in [32] has

much wider tuning range than the antenna in [31], namely
70.0% compared to 41.5%. The increased range is not just
due to the two-mode operation but also to the fact that using
lower-permittivity substrate will yield a smaller parasitic
capacitance. It can be concluded that generally, using a
lower-permittivity substrate will provide a larger tuning range
for a same structure geometry. Thus, for a fair comparison,
the substrate permittivity should be explicitly mentioned
when comparing two frequency-reconfigurable antennas.

IV. DESIGN EXAMPLE
In this section, a design combining of all the above
mentioned tuning optimization methods is demonstrated,
aiming to further improve the tuning range of a reported
frequency-reconfigurable antenna [31]. It is noted that the
same rigid substrate with relative permittivity of 2.2 and
the same number of varactor diodes will be used for a fair
comparison. Furthermore, we also ensure that both antennas
have the same lowest radiation efficiency, i.e., chosen here as
30% without restriction to generality. It is emphasized that
such a task is very challenging as the design in [31] is among
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FIGURE 7. Structure of the proposed reconfigurable microstrip antenna. Dimension
(mm): L1 = 6.0 mm, L2 = 6.5 mm, L3 = 18.0 mm, L4 = 2.5 mm, L5 = 6.5 mm, W1 =
30.0 mm, W2 = 24.5 mm, W3 = 12.0 mm. Inset: zoomed-in bias circuit.

the best performance for planar antennas with unidirectional
broadside patterns.

A. ANTENNA STRUCTURE
The antenna geometry is based on the PIFA structure as
shown in Fig. 7, with all dimensions listed in the caption.
The antenna consists of a main patch, a shorted tuning patch,
shorting vias, a probe feed, a substrate and a full ground
plane. The substrate material and dimensions are selected
similar to the antenna reported in [31], which was Rogers
Duroid 5880. The antenna is designed and optimized using
CST Microwave Studio 2021.

B. ANTENNA DESIGN PROCEDURE
The design procedure is shown in Fig. 8, which consists
of five steps. As described in Section II-B, we can first
consider realizing one more compatible radiation mode
beside the half-wave patch mode. Therefore, as first step,
a shorting-via wall is added on the tuning patch as shown
in Fig. 8(a). In the new design, the tuning patch length is
then appropriately selected to excite the highest resonance
frequency of approximately 4.0 GHz, which is similar to that
of the original antenna [31]. By shorting the tuning patch, the
quarter-wave radiation mode is excited through introduction
of an electric wall symmetry, which also suppresses the even
modes. The parametric optimization can follow the general
method explained in Section II-A.
After adding the shorting wall with parameter optimization

at Step 1, the tuning range extends from 2.3 to 4.0 GHz
corresponding to 53.2% approximately. However, the antenna
radiation efficiency at the lowest resonance frequency is
limited to 23%. It is worth mentioning that, only the antenna
radiation efficiency at the lowest frequency needs to be
considered in the optimization process, since it corresponds
to the minimum value. This minimum occurs at the highest
varactor capacitance, which leads to maximum current
flowing through the varactors.
As the next step, the distance of the varactor is re-

optimized to achieve highest antenna radiation efficiency
(Fig. 8(b)). As discussed in [31], by varying the distance in-
between the varactors, the peak current through the varactors

FIGURE 8. Antenna design procedure for frequency tuning range extension.
(a) Initial design with shorted parasitic patch, (b) optimization of the distance between
the varactors, (c) reduction of parasitic capacitance between the patches, (d) further
parasitic capacitance reduction through corner truncation, and (e) addition of the
biasing circuit.

will change. This leads to a variation of the total varactor
loss, which is the main contributor to the radiation efficiency
reduction. The relation between the total losses in the lumped
components and their distance (dv) is illustrated in Fig. 9.
It can be observed that, at the distance of 12 mm, the
lowest total loss is obtained at approximately 0.235 W.
Here, by changing the varactor distance from 2.4 mm to
12.0 mm, the total loss is decreased from 0.280 to 0.235 W.
Correspondingly, the lowest radiation efficiency is increased
from 23% to 40%. However, the lowest resonance frequency
is increased from 2.30 to 2.69 GHz which reduces the
tuning-range to 42%.
In the two previous steps, the multi-radiation mode and

the varactor distance optimization have been implemented.
In the third step, the reduction of the parasitic capacitance is
considered. To this end, the gap in-between the main patch
and the tuning patch is varied, as shown in Fig. 8(c), with
the aim to reduce the parasitic capacitance between theses
patches. However, a wider gap in-between the two patches
reduces the minimum antenna radiation efficiency, as shown
in Fig. 10. It can be observed from Fig. 10 that, the wider
frequency tuning range corresponds to the lower radiation
efficiency. The widest tuning range of approximately 80% is
achievable at the cost of 7% radiation efficiency. Limiting the
lowest antenna radiation efficiency to 30% as chosen design
target, the distance between the two patches can be selected
at 2.5 mm. This corresponds to the frequency tuning range of
51.2%. The two corners of each patch are truncated in Step
4 (see Fig. 8(d)) to further reduce the parasitic capacitance
in-between the patches. By doing so, the frequency tuning
range of the antenna is slightly increased to 52.7% while
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FIGURE 9. Simulated total losses in the three varactors for different distances
between varactors for an input power of 0.5 W.

FIGURE 10. Simulated frequency tuning range and antenna radiation efficiency (at
the lowest resonance frequency) for different distances between patches.

FIGURE 11. Instantaneous electric field distribution of the final design for the
proposed frequency-reconfigurable antenna.

FIGURE 12. Simulated (dashed lines) and measured (solid lines) reflection
coefficient of the proposed reconfigurable microstrip antenna. Inset: the fabricated
antenna.

maintaining the radiation efficiency at 30%. The bias voltage
circuit is then designed at the last step as shown in Fig. 8(e).

The instantaneous electric field distributions of the
proposed antenna at four different resonance frequencies are
shown in Fig. 11. The transition between the PIFA mode to
the half-wave patch mode can be observed.

FIGURE 13. Simulated and measured normalized radiation patterns of the proposed
reconfigurable microstrip antenna at 2.31, 2.96, 3.42 and 4.08 GHz.

FIGURE 14. Simulated and measured gain of the proposed reconfigurable
microstrip antenna at 2.31, 2.96, 3.42 and 4.08 GHz.

C. EXPERIMENTAL RESULTS
Fig. 12 shows the simulated and measured reflection
coefficients of the proposed antenna, where a good agree-
ment is obtained. The measured resonance frequency of the
proposed antenna is varying from 2.31 to 4.08 GHz when
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the bias voltage is tuned from 0 to 18 V, which corresponds
to a 55.8% fractional tuning range. Compared to the antenna
presented in [31], the fractional tuning range is improved by
approximately 14% for the same level of efficiency.
The normalized radiation patterns are displayed in Fig. 13.

Across the frequency tuning range, stable broadside radiation
patterns are obtained. The antenna realized gain is increasing
from 0.52 to 6.29 dBi with increasing frequency within
the tuning range, as illustrated in Fig. 14. The measured
antenna radiation efficiency is estimated from the simulated
one to range from 31.3% to 81.2% across the tuning
range.

V. CONCLUSION
A procedure to extend the tuning range of a planar varactor-
based frequency-reconfigurable antenna with consideration
of radiation efficiency has been presented. The tuning-
range extension strategies consist of two previously reported
methods: (i) optimization of antenna dimensions and varactor
properties, (ii) exploitation of multiple radiation modes,
and one new method: (iii) minimization of parasitic capac-
itance at the varactor locations. The study particularly
reveals one important feature that is often overlooked in
frequency-reconfigurable antennas, namely that the parasitic
capacitance can strongly affect the tuning range and thus the
substrate permittivity can play a considerable role as well.
The proposed approaches have been experimentally validated
on a particular design, and show a generic pathway to
optimize the tuning range of varactor-based planar antennas
while considering the radiation efficiency. In comparison
with a previously reported high-performing antenna [31],
the re-optimized design exhibits approximately 14% wider
tuning range while maintaining the same lowest radiation
efficiency.
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