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Abstract
The Comprehensive Learning Gravitational Search Algorithm (CLGSA) has demonstrated its effectiveness in solving con-
tinuous optimization problems. In this research, we extended the CLGSA to tackle NP-hard combinatorial problems and 
introduced the Discrete Comprehensive Learning Gravitational Search Algorithm (D-CLGSA). The D-CLGSA framework 
incorporated a refined position and velocity update scheme tailored for discrete problems. To evaluate the algorithm's effi-
ciency, we conducted two sets of experiments. Firstly, we assessed its performance on a diverse range of 24 benchmarks 
encompassing unimodal, multimodal, composite, and special discrete functions. Secondly, we applied the D-CLGSA to a 
practical optimization problem involving water distribution network planning and management. The D-CLGSA model was 
coupled with the hydraulic simulation solver EPANET to identify the optimal design for the water distribution network, aim-
ing for cost-effectiveness. We evaluated the model's performance on six distribution networks, namely Two-loop network, 
Hanoi network, New-York City network, GoYang network, BakRyun network, and Balerma network. The results of our 
study were promising, surpassing previous studies in the field. Consequently, the D-CLGSA model holds great potential as 
an optimizer for economically and reliably planning and managing water networks.

Keywords  Meta-heuristic algorithm · Comprehensive learning gravitational search algorithm · Binary space · Global 
optimization benchmarks · Water network system

1  Introduction

The landscape of solving optimization problems, espe-
cially those encountered in real-world scenarios, has grown 
increasingly complex and challenging. These problems often 
exist in high-dimensional spaces where available informa-
tion might be insufficient for a straightforward mathematical 
formulation. Traditional methods have frequently struggled 
to provide effective solutions under these conditions [1]. As 
a response, a new breed of optimization approaches, known 
as metaheuristic algorithms, has gained prominence. These 

methods utilize heuristic processes to iteratively navigate the 
problem space, generating high-quality solutions.

Metaheuristic optimization algorithms are typically 
divided into two main categories: single-point search algo-
rithms and population-based search algorithms. Single-point 
search algorithms initiate with a set of random solutions, 
refining them iteratively over a specified number of itera-
tions. In contrast, population-based search algorithms start 
with multiple random solutions and use an iterative pro-
cess to converge towards sub-optimal solutions [2]. These 
approaches involve progressively improving the solutions 
within the population through nature-inspired probabilistic 
operators.

A particularly noteworthy population-based metaheuristic 
algorithm is the Gravitational Search Algorithm (GSA) [3], 
which has been widely applied across various optimization 
domains. While the original version of GSA was ground-
breaking, it faced challenges like lack of memory, premature 
convergence, and uncertainty in achieving global optima, 
along with computational inefficiency [4]. Researchers have 
thus endeavoured to enhance GSA’s capabilities to address 
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real-life optimization problems. Enhancements to GSA have 
included the introduction of a disruption operator to modify 
gravitational forces [5], the integration of chaotic [6] and 
crossover operators [7] to improve local search, the incor-
poration of niching selection operators [8], Kepler opera-
tors [9], and niche comprehensive strategy [10] for better 
exploitation.

In recent years, the field of research has been directed 
towards adapting GSA for practical optimization challenges. 
A notable advancement was the incorporation of fuzzy logic 
into GSA to enhance the accuracy of machine learning mod-
els, specifically for the early detection of breast cancer [11]. 
This improvement significantly increased the precision of 
predictive models in medical diagnostics. Further devel-
opment saw the implementation of an adaptive strategy 
within GSA to refine the velocity equation. This particular 
enhancement was applied to optimize 2D bi-level threshold-
ing in noisy image segmentation [12], demonstrating GSA's 
versatility in image processing tasks. In parallel, GSA was 
improved using aggregating learning for training artificial 
neural networks, yielding results that surpassed those of tra-
ditional back-propagation algorithms [13]. This indicates a 
substantial step forward in the field of neural network train-
ing. Additionally, the algorithm was integrated with machine 
learning techniques like support vector machines. This com-
bination aimed to balance detection rates while minimizing 
false alarms and the number of features, addressing key chal-
lenges in machine learning [14].

To address the limitations of GSA's memory-less nature, 
further improvements involved the integration of a memory 
component. This version of GSA was tested on economic 
load dispatch problems in micro-grids, focusing on opti-
mizing power generation from multiple sources at minimal 
costs [15]. Moreover, GSA was hybridized using a Rein-
forcement Learning-based control approach, incorporating 
Deep Q-Learning (DQL) for the initialization of weights 
and biases in Neural Networks [16]. This approach aimed to 
overcome the instabilities often associated with traditional 
random initializations in neural networks.

GSA also saw an expansion into multi-objective opti-
mization, incorporating various learning strategies. This 
version was applied to optimize allocation problems in 
electric enterprise distribution networks, contributing to 
more flexible and environmentally friendly power supply 
strategies [17]. Later, an improved binary version of GSA 
was employed in an echo state network for enhanced time 
series forecasting. The performance of this application, 
tested using the Lorenz and Mackey–Glass benchmark 
time-series datasets, showed promising results compared to 
conventional evolutionary methods [18], highlighting GSA's 
expanding role in diverse problem-solving scenarios.

In conclusion, while GSA has shown effectiveness in vari-
ous problem-solving contexts, improvements are continually 

being made to reduce its inherent limitations. To address 
these issues, we previously developed the Comprehensive 
Learning Gravitational Search Algorithm (CLGSA) [19] for 
optimization problems in continuous search spaces. CLGSA 
is designed to overcome stagnation in local optima, provide 
a comprehensive search in continuous search spaces, incor-
porate external memory for tracking optima, and efficiently 
locate global optima within a reasonable computational 
timeframe. The success of CLGSA in real-life continuous 
optimization problems and our desire to adapt this algorithm 
for discrete optimization challenges led to the current study. 
Hence, we introduce a discrete version of CLGSA, named 
D-CLGSA, specifically designed for computationally expen-
sive optimization problems, such as combinatorial NP-hard 
problems with discrete parameters. This version includes 
significant enhancements from the original CLGSA. The 
study makes the following contributions:

•	 Develop the Discrete Comprehensive Learning Gravi-
tational Search Algorithm (D-CLGSA) with enhanced 
position and velocity update mechanisms for effectively 
solving complex combinatorial optimization challenges.

•	 Conduct rigorous testing of D-CLGSA against a diverse 
set of 24 benchmark functions, including unimodal, 
multimodal, composite, and special discrete types, to 
comprehensively assess the algorithm’s computational 
efficiency.

•	 Apply the D-CLGSA to the practical optimization of 
water distribution networks, aiming to reduce operational 
costs and demonstrate the algorithm's effectiveness and 
global applicability across different countries' water net-
work systems.

The proposed D-CLGSA is evaluated in the context of 
water system optimization, with further details and back-
ground provided in the following section.

1.1 � Literature review of water distribution 
networks

The field of water distribution network (WDN) design is a 
classic yet dynamically evolving area within engineering. 
Traditionally, the primary focus in WDN design has been 
on selecting appropriate pipe diameters within a given net-
work topology to minimize overall design costs. However, 
the scope of WDN design has expanded over time. In the 
early stages, this complex problem was tackled using con-
ventional methods, such as Linear Programming (LP) [20], 
Linear Programming Gradient (LPG) [21], mixed-discrete 
nonlinear programming (MDNLP) [22], and nonlinear pro-
gramming [23, 24], which established the foundation for 
early WDN optimization.
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However, the field experienced a significant shift with the 
advent and increasing accessibility of stochastic approaches 
and metaheuristic algorithms. This led to the adoption of 
various stochastic methodologies, including the Genetic 
Algorithm (GA) [25], Simulated Annealing (SA) [26], Par-
ticle Swarm Optimization (PSO) [27], Hybrid Firefly & Dif-
ferential Evolution [28], Scattering Search (SS) [29], and 
Evolutionary Algorithm (EA) [30], each contributing to the 
cost optimization of WDNs in their unique ways.

In the past few years, the motivation to expand, reha-
bilitate, or resect water networks has encouraged numerous 
advancements in WDNs. In 2020, for instance, WDNs in 
Italy were enhanced to mitigate issues such as pipe bursts or 
topological changes. This improvement involved the imple-
mentation of a multi-scale approach, which partitioned the 
WDN into district metered areas for better leakage control 
[31]. Besides an enhanced version of the PSO algorithm, 
integrated with EPANET hydraulic simulation, was devel-
oped to minimize leakages and maintain optimal pressure 
in pipes, showing superior performance over Evolutionary 
Algorithm (EA) and Cultural Algorithm (CA) [32].

Further developments include the integration of a binary 
dragonfly algorithm with EPANET for reducing energy 
consumption in water networks, demonstrating efficiency 
and reliability compared to other algorithms [33]. This 
was extended by a multi-objective model that combined 
mixed discrete nonlinear programming and PSO to mini-
mize pipeline installation and pumping energy costs [34]. 
Additionally, the multi-objective Rao algorithm (MORao) 
was employed for optimizing WDNs using EPANET 2.2 for 
pressure-driven demand analysis, with its results compared 
favourably against four other heuristics [35].

Continuing in this vein, a many-objective optimization 
framework was employed to minimize total design and 
operational costs, using the EPANET model for pressure 
constraint analysis and optimizing the Apulian water net-
work using Pareto optimality [36]. To address inconsistent 
flow and pressure variation issues, hierarchical clustering 
was used to optimize algorithm parameters, thereby enhanc-
ing performance [37]. Recent efforts include implementing 
a multi-objective Ant Colony Optimization (ACO) algo-
rithm aimed at optimizing reservoir operations and water 
distribution, along with stormwater network design [38]. A 
novel hydraulically inspired complex network approach was 
also used to assess and enhance WDN resilience in case of 
single-pipe failures, using a method that eschews traditional 
hydraulic simulations in favour of quantifying failure con-
sequences of pipes based on topological attributes and flow 
redistribution [39]. Furthermore, a hybrid model integrating 
Grey Wolf Optimizer and Harris Hawk heuristic algorithms 
with EPANET was developed to optimize WDN design 
costs [40], while minimizing installation costs and enhanc-
ing water loss monitoring using graph theoretic algorithms 

and the NSGA-II multi-objective optimization strategy [41]. 
Table 1 provides a detailed overview of studies related to 
Water Distribution Networks.

The field of Water Distribution Network (WDN) remains 
a critical area of research due to its inherent complexity, 
combinatorial nature, and nonlinear constraints. These char-
acteristics present ongoing challenges but also opportunities 
for groundbreaking solutions. This study contributes to this 
dynamic field by applying the proposed algorithm to WDNs, 
effectively testing its efficiency in real-life scenarios and 
demonstrating its compatibility with the inherent features 
of the algorithm.

This research is structured into two main parts: Initially, 
the performance of the algorithm was rigorously evaluated 
using a global benchmark dataset [57]. This was followed by 
an assessment of the algorithm's effectiveness specifically 
within the Water Distribution System, utilizing six distinct 
networks: the Two Loop network, New-York City network, 
GoYang network, Hanoi network, BakRyun network, and 
Balerma network [26, 43]. The results from these experi-
ments collectively provide strong evidence supporting the 
efficacy of the proposed algorithm.

The layout of this paper is organized as follows: Sect. 2 
offers a concise overview of CLGSA and introduces the 
proposed Discrete CLGSA. Section 3 details the experi-
mental setup and shares the results of D-CLGSA across 24 
global benchmarks. Section 4 delves into the formulation of 
the optimization problem in WDS. Section 5 conducts an 
extensive analysis of WDS performance across the six net-
works, including detailed simulation results for each. Finally, 
Sect. 6 concludes the paper and discusses potential avenues 
for future research.

2 � Methods and materials

In this section, we will delve into the CLGSA algorithm and 
elucidate the motivation driving the development of the pro-
posed D-CLGSA. This section provides an in-depth explora-
tion of the proposed algorithm's framework and highlights 
its key components.

2.1 � Comprehensive learning gravitational search 
algorithm (CLGSA)

The concept of CLGSA is inspired by the heuristic algorithm 
GSA proposed by Rashedi et al. [3]. In CLGSA [19], the 
particles are termed agents, and the stability of these agents 
is tabulated from their masses. Due to gravitational force, 
the objects are attracted to each other, and this force results 
in the mass movement of all the objects towards the objects 
with greater mass.
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Table 1   Recent studies solving optimal design problems of WDN

Algorithm Authors/year of publication Performance metrics

Genetic algorithm (GA) Johns et al. [42] The Adaptive locally constrained genetic algorithm is used to optimize pipe 
diameter

Zhang et al. [43] This approach is based on the non-dominated sorting multi-objective 
genetic algorithm (NSGA-II) to obtain the optimal schemes of China 
water networks

Shao et al. [44] Three improvements in GA aimed at achieving more efficient and expe-
dited optimization. These enhancements encompass dividing the phase of 
WNP (Water Network Problem) through preliminary hydraulic analysis, 
introducing modifications to the crossover mechanism, and incorporating 
boundary pipe grouping

Poojitha et al. [45] A hybrid GA and DE were presented to enhance the exploration stage. It 
finds an optimal set of diameters

Particle swarm optimization (PSO) Geem [46] A hybrid version of PSO and HS is proposed. The approach enhanced the 
exploration stage and presented good results

Douglas et al. [27] PSO applies real and discrete variables for avoiding premature conver-
gence. The approach evaluates an objective function with a penalty factor 
through EPANET

Bilal et al. [47] A hybrid version of the Firefly Algorithm and PSO is used to optimize the 
diameter of the pipe

Surco et al. [34] A multi-objective PSO is implemented for minimizing pumping energy 
costs and pipeline installation

Harmony search (HS) Geem et al. [48] The HS approach integrates a jazz improvisation process to discover 
enhanced solutions for networks by leveraging EPANET simulations

Simulated annealing (SA) Costa et al. [30] Optimize the pipe diameter by incorporating a mutation operator in SA
Cross entropy (CE) Perelman et al. [49] The study showcases the application of an adaptive stochastic cross-entropy 

method on two renowned benchmark examples: single-loading gravita-
tional systems and multiple loadings with pumping and storage

Shibu et al. [50] The study employs the theory of fuzzy random variables to model the 
uncertainty in future water demands. The water demand at each node is 
represented by a normal distribution with a fuzzy mean, where the stand-
ard deviation is 10% (or 20%) of the fuzzy mean. The demand is depicted 
as a triangular fuzzy number with the random demand as its core

Central force optimization (CFO) Jabbary et al. [51] A separate methodology “CFOnet “is created in MATLAB and inferred 
with the model EPANET to optimize the length of pipes

Decomposition approach (DA) Lee et al. [52] The study employed a decomposition approach technique that enables to 
decompose a real large-scale network. The obtained results were then 
integrated with an optimization algorithm to achieve an optimal cost 
design process

Gravitational search algorithm (GSA) Fallah et al. [53] Continuous GSA is used and truncates the real value into binary to opti-
mize pipe length

Whale optimization algorithm (WOA) Riham et al. [54] The whale bubble strategy was used to search for the best parameters
Ant colony optimization (ACO) Mehzad et al. [55] An algorithm having three objectives, named Clustered Non-dominated 

Archiving ACO, is presented with the objective of minimizing the pipe 
length

Bhavya et al. [38] Multi objective ACO was implemented to optimize the cost of reservoir 
operations and water network design
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According to the aspects mentioned above, the state of 
ith agent is:

The attractive force experienced by ith particle towards jth 
particle at a given time t is given as,

The value of the gravitational constant Gt at a given time 
t can be computed as follows:

where � is descending coefficient and Gt is a function of the 
initial value (Gt0 ) , iter is current iteration, and max_iter is 
the maximum number of predefined iterations. In Eq. (1), 
mt

pi
 is the passive gravitational mass of ith agent at time t  , 

mt
aj

 is an active gravitational mass of jth agent at time t, � is 
a small constant, rt

ij
 is the Euclidean distance between agents 

i and j , Xt
jd

 presents the position of agent j.
The total force of attraction can be computed as follows:

where randj is a uniform random number generated in [0, 
1]. N = Ps is particle count. Also, by Newton’s 2nd law of 
motion, the acceleration of the ith particle is calculated as:

where mii is the initial mass of ith particle.

Xi =
(
X1

i
, .......Xd

i
, ...XN

i

)
, fori = 1, 2,… ,N

(1)Ft
ijD

= Gt ×
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×
(
Xt
jd
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id

)
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−�
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iter

(3)Ft
id
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N=Ps∑

j=1,j≠i

randjF
t
ijd

(4)act
id
=

Ft
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mii

The primary objective of developing the CLGSA mecha-
nism was to improve the search process, with the position 
of each agent playing a crucial role. Specifically, an agent’s 
mass affects the stability of the best and worst values. To 
ensure efficient agent selection, the following techniques are 
employed: first, two agents are randomly selected from the 
swarm (excluding those with fixed velocity). Then, their fit-
ness is compared, and the element with the best fitness quo-
tient is selected. The first constituent of this element is docu-
mented as the first constituent of Xb . This process is repeated 
recursively, with the ith constituent of Xb being replaced by 
the ith constituent of the selected agent. Additionally, the 
CLGSA mechanism incorporates velocity update equations, 
and position update equations as:

where w is inertia weight lies between [0, 1] . It can be a user 
control parameter. Masses of agents are updated as:

where fitt
i
 is the fitness value of ith agent at t , bestt and worstt 

can be defined as (for minimization problem)

The detailed algorithm of CLGSA is presented in 
Algorithm 1.

(5)Vect+1
id

= w × Vect
id
+ act

id

(6)Xt+1
id

= Xt
id
+ Vect+1

id

(7)mt
i
=

fitt
i
− worstt

bestt − worstt

(8)bestt = min
i∈{1,2,..,N}

fitt
i

(9)worstt = max
i∈{1,2,..,N}

fitt
i

Table 1   (continued)

Algorithm Authors/year of publication Performance metrics

Targeted path search approaches Manolis et al. [56] The process is driven by two distinct subroutines that systematically and 
sequentially focus on reducing the diameters of the network pipes. This 
approach facilitates both exploration and exploitation of the search space, 
allowing for comprehensive optimization

Jain et al. [35] A multi-objective Rao algorithm is developed to optimize the cost of water 
network using EPANET simulation

Choi et al. [36] A many-objective optimization framework was employed to minimize 
total design and operational costs, using the EPANET model for pressure 
constraint analysis

Hajibabaei et al. [39] A novel hydraulically inspired complex network approach was also used to 
assess and enhance WDN resilience in case of single-pipe failures

Pham et al. [40] A hybrid model integrating Grey Wolf Optimizer and Harris Hawk heu-
ristic algorithms with EPANET was developed to optimize WDN design 
costs
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Algorithm 1. Pseudo-code of CLGSA.

Comprehensive Learning Gravitational Search Algorithm
Initialization
Generate random elements of size =  as ( 1, 2, …, ) in search range size[  , 

].
Evaluate the fitness value 1 2 )

=

    Calculate , , = 1, 

    Calculate total force 
    Calculate acceleration and velocity

=
         Set learning probability , 

<
                Choose agents 1] = ( ( ∗ ) ); &

[ 2] = ( ( ∗ ) );
                 Find fitness value of these agents

( 1] > 2])

= [ ; 1 ];

= [ ; 2( )];
end if

= ;
end if

    Update  , , 

    Calculate 
Back to step 2.

2.2 � Discrete CLGSA

2.2.1 � The motivation of designing D‑CLGSA

The key drivers behind the development of D-CLGSA 
were the need for fast convergence to global solutions, 
ease of implementation, and minimal parameter tuning. 
The discrete optimization approaches used by Tolsen et al. 
[58] and Sadollah et al. [59] to optimize water networks 
caught our attention due to their robustness. Building on 
our previous work, where CLGSA outperformed other 
heuristics, we were motivated to extend the approach to 
tackle more challenging NP-hard discrete optimization 
problems [60].

2.2.2 �  Framework of D‑CLGSA

Generally, in discrete algorithms, the data is stored in the 
form of a binary string, and the search process is performed 
by dividing the string into two halves. The middle element 
is taken as a reference, and a search key is used for search-
ing the required element. Based on the value of the search 
key (greater or less than the search value) the required ele-
ment is selected. Using binary search-based algorithms, the 
data can be accessed sequentially, whereas, in continuous 
search algorithms, the data is processed randomly, which 
requires more computational time. Binary algorithms are 
advantageous for applications such as cryptographic tech-
niques where there is a huge flow of data, cell formation, 
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dimension compression with feature selection, unit commit-
ment, opted for binary vectors as their encoding solution. 
Moreover, the issues encountered in real space can also be 
addressed in the binary space. One approach is to represent 
real numbers using binary digits. The binary search space 
can be conceptualized as a hypercube, allowing agents to 
navigate between different corners of the hypercube by flip-
ping specific bits. In this section, we introduce a discrete 
version of the CLGSA algorithm, referred to as D-CLGSA.

In discrete CLGSA, each dimension can take either 0 or 1. 
The movement of the particle through the dimension refers to the 
changes in the adjacent variable from 0 to 1 or 1 to 0. In discrete 
CLGSA, the force, acceleration, and velocity are updated as per 
the usual CLGSA concept (Acceleration and velocity update is 
evaluated according to Eqs. 4 and 5). The significant difference 
between discrete and fundamental CLGSA lies in the position 
updating procedure. The particle state is updated by switching the 
states between ‘0’ or ‘1’. The switching action is done according 
to the mass velocity and the position is updated so that the present 
value of the bit is altered with a probability that is evaluated based 
on the mass velocity. The D-CLGSA upgrades the velocity and 
contemplates the new state to be either 1 or 0 according to the 
specified probability.

The proposed D-CLGSA begins with an essential pre-
liminary stage of initialization. During this phase, particles 
representing potential solutions are randomly generated 
within the defined search space. This initial population 
serves as the foundation for the algorithm's search pro-
cess, where the fitness of each particle is meticulously 
evaluated to assess its proximity to the optimal solution. 
The evolutionary process of D-CLGSA is driven by itera-
tive cycles, aiming to reach a predefined total number of 
generations, denoted as N. Within each iteration, particles 
demonstrating higher fitness values exert influence on the 
velocity of neighbouring particles possessing lower fit-
ness scores. This dynamic is captured in Fig. 1, where the 

parameter Kbest plays a pivotal role by imparting signifi-
cant momentum to particles, thereby guiding them towards 
optimal solutions. The value of Kbest is crucial for foster-
ing a balance between exploration of the search space and 
exploitation of known solutions, is systematically reduced 
over time. This gradual decrease from the initial popula-
tion size N  to a singular best solution facilitates enhanced 
convergence towards the global optimum.

To further refine the search process, D-CLGSA employs 
the gravitational constant Gt , which decays over time, echo-
ing the algorithm’s commitment to balancing exploration 
with exploitation. Each particle is assigned a fitness value, 
a measure of its solution quality. High-performing particles 
are identified and selected, and their gravitational mass is 
calculated, significantly impacting the algorithm's perfor-
mance. The movement of each particle, characterized by 
updates in velocity ( Vect ) and acceleration, is meticulously 
calculated to navigate the particle towards the targeted posi-
tion within the hypercube search space.

The implementation of D-CLGSA is done following the 
below-mentioned concepts.

•	 When a particle exhibits a high velocity, this is inter-
preted as a strong indication for the need to explore new 
positions within the search space. Consequently, there 
is a heightened probability that the particle will switch 
its state, transitioning from 0 to 1 or vice versa. This 
mechanism ensures that particles are not stagnant but are 
actively seeking out new possibilities, especially when 
far from optimal solutions.

•	 Conversely, a particle with minimal velocity suggests that 
its current position is already near an optimal or satisfac-
tory solution. In such cases, the likelihood of altering the 
particle's state is significantly reduced. This low prob-
ability of change means that the algorithm recognizes the 
particle's current position as being beneficial and sees no 
immediate need for drastic adjustments.

These concepts form the core of D-CLGSA's strategy for 
moving through the search space, leveraging velocity as a 
determinant of a particle's readiness to explore new solu-
tions or maintain its current course. This nuanced approach 
allows D-CLGSA to balance exploration with exploitation 
effectively, adapting its search strategy based on the evolving 
dynamics of the particle swarm.

Depending on the factors mentioned above, a suitable 
probability function is determined so that for a low value of 
||
|
Vecd

i

||
|
 , the possibility of switching state of Xd

i
 should be near 

to ‘0’ level and for a high value of ||
|
Vecd

i

||
|
 , the probability of 

switching state of Xd
i
 should be very high. The function 

P
(
Vecd

i

)
 is defined to transfer Vecd

i
 into a probability func-

tion. The function P
(
Vecd

i

)
 is defined as:

Fig. 1   Dynamics of K
best

 particle movement
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Fig. 2   Flow chart of D-CLGSA
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Once P
(
Vecd

i
(t)
)
 is evaluated, the movement of the parti-

cle will be according to (Eq. 11)

The detailed pseudo-code of D-CLGSA is presented in 
Algorithm 2.

In order to assess the efficiency of D-CLGSA compared 
to CLGSA, several observations are made:

•	 Each agent has the ability to gather information from 
other agents through two means: by studying the his-
torical performance of the best agents and by comparing 
individual components with other agents in the popula-
tion. In this context, force acts as a tool for transferring 
information.

•	 D-CLGSA efficiently explores the search space, and its 
sequential behaviors allow for exhaustive discovery of 
global optima, preventing the algorithm from getting 
trapped in local optima.

•	 During the process, if particles become stuck in local 
optima or if the global optima are located far from the 
particle's current position, the D-CLGSA strategy assists 
in guiding the particles to explore other directions, like 
CLGSA. This cooperative behavior of the swarm enables 
particles to easily escape local optima. As a result, the 
strategy effectively avoids being trapped in local optima. 
The detailed procedure of D-CLGSA is illustrated in the 
flowchart (Fig. 2).

2.2.3 � Key points of D‑CLGSA

•	 Few parameters: Sensitivity analysis is required to deter-
mine the optimal values of parameters for algorithms 
that have multiple parameters. This process can be time-
consuming as it involves finding the parameter values 
that result in the most optimal solutions. Therefore, it is 
advantageous to choose metaheuristic algorithms with 
fewer parameters. In the case of D-CLGSA, only two 
parameters need to be set: the initial gravitational con-
stant and the decay constant. However, other algorithms 

(10)P
(
Vecd

i
(t)
)
=
|
|
|
tanh(Vecd

i
(t)
|
|
|

(11)ifrand < P
(
Vecd

i
(t + 1)

)
, thenXd

i
(t + 1) = complement

(
Xd
i
(t)
)

elseXd
i
(t + 1) = Xd

i
(t)

often have more than two parameters that need to be care-
fully considered before running the optimization process

•	 Widespread Participation: In most metaheuristic algo-
rithms, only a small number of agents contribute to the 

solution update process. However, in D-CLGSA, the 
influence of all agents is taken into account, and the posi-
tion vectors are updated based on the cumulative force 
exerted by all agents.

•	 Mechanism of exploration and exploitation: In 
D-CLGSA, a comprehensive search approach explores 
the search space and exploited the global solution effi-
ciently. The algorithm is a binary search-based algo-
rithm, where the data is accessed sequentially, and hence 
requiring reasonable computational time.

2.2.4 � Potential limitations and challenges of D‑CLGSA

The D-CLGSA algorithm may encounter specific limita-
tions and challenges that need addressing. A key challenge 
is optimizing its performance through the fine-tuning of 
parameters. Unlike many population-based algorithms 
that require numerous parameters, D-CLGSA requires 
setting only two parameters before experimentation that 
is the initial gravitational constant and the decay constant. 
However, the fine-tuning of these parameters is critical, 
especially for certain types of problems. On the upside, 
the algorithm's comprehensive search capability usually 
leads to effective convergence, avoiding entrapment in 
local optima. However, this thorough search process may 
require considerable memory resources, with its efficiency 
influenced by the initial parameter settings. Therefore, a 
deep understanding of the algorithm is crucial to fully 
harness its capabilities.

Thus, adapting D-CLGSA to a variety of optimization 
problems, without compromising on its efficiency and 
effectiveness, requires meticulous consideration in the algo-
rithm's parameter settings. Addressing these challenges and 
limitations is crucial to fully realize the utility and expand 
the application scope of D-CLGSA in diverse problem-
solving contexts.
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Algorithm 2. Pseudo-code of Discrete CLGSA.

Discrete Comprehensive Learning Gravitational Search Algorithm (D-CLGSA)
Initialization

=  as ( 1, 2, …, ) in search range size [  , ].
Set Iteration Condition

 (not terminated) do:
Set Iteration Parameters
Set =
Set = + ( ∗ ))

Evaluate Fitness
Evaluate the fitness value 1 2 )

Particle Loop
=

   Calculate , , =
   Calculate gravitational mass for each agent of P:
   Calculate = ( )/(∑ )

   Generate initial velocity randomly,
   Calculate the =  [(2 + (1 – + (100 ― 2) ∗ × ∗

   Calculate total force 
   Calculate acceleration  and velocity +1

Learning Probability Loop
= 1 do 

       Set learning probability , 
<

            Calculate the probability of changing position vectors.
= ( ( )|  by equations (10) and (11)

            Choose agents [  ] = [rand * Vi (iterations)]
             Vi is the previous movement length and the rand is a random number [0,1]
             Find fitness value of these agents.

( 1] > 2])
∗ = [ ∗; 1 ];

∗ = [ ∗, 2( )];  ;

Best agent check 
 = 0 do

     Search agents, obtain new sequence π(i)
 total time TFT (π(i)) < TFT (π(i)) do

             T(i) = π(i)*; TFT (π(i)) = TFT (π(i)*)

              rand < exp {(TFT π(i) – TFT π(i)*) / T}
π(i) = π(i)*; TFT (n(i)) = TFT (π(i)*

 rand < ,  X(t π) = Xi (t)  Veci (t+1)
       Update  , , 

Generate New Sequence
 generate new sequence.

end 
end
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3 � Experimental setup and results analysis 
over global optimization

3.1 � Experimental setup

To assess the performance of the proposed algorithm, an 
experimental evaluation is conducted using the first global 
experimental set, which consists of 22 minimization and 
2 maximization benchmark functions. The 22 minimiza-
tion functions are categorized into three groups: unimodal, 
multimodal, and composite functions. Additionally, there 
are maximization special (discrete) binary functions, 
namely Max-ones and Royal Road, all are presented in 
Appendix A. The dimensions, optimum values, and search 
ranges of these benchmark functions are provided in detail 
by E. Rashedi in [57].

The performance of the proposed D-CLGSA algo-
rithm is compared with twelve other heuristic algorithms: 
Comprehensive Learning Gravitational Search Algorithm 
(CLGSA) [19], Genetic Algorithm (GA) [25], Binary 
Gravitational Search Algorithm (BGSA) [57], Harmony 
Search Algorithm (HS) [48], Binary Particle Swarm Opti-
mization (BPSO) [61], Standard Particle Swarm Optimi-
zation (SPSO) [62], Comprehensive Learning Particle 
Swarm Optimization (CLPSO) [63], Artificial Electric 
Field Algorithm (AEFA) [64], Grey Wolf Optimizer 
(GWO) [65], Comprehensive Learning Jaya algorithm 

(CLJA) [66], Sine Cosine Algorithm (SCA) [67], and Ant 
Lion Optimizer (ALO) [68].

For representing each variable in binary format, 15 
bits are used, with one bit reserved for the sign. Hence, 
the dimension of the agents for each continuous function 
is N = D × 15 , where D represents the dimension of the 
function. In this study, the dimension is fixed to 30, and 
the results are obtained from 500 runs. The algorithms are 
implemented using Matlab 2019 platform, and the initial 
values of the basic parameters for all algorithms are pro-
vided in Table 2. The numerical results are presented in 
Table 3, 4, 5, 6, showing the average and standard deviation 
(St. Dev.) of the best-obtained solutions in the last iterations.

3.1.1 � Statistically significance

In this evaluation, we statistically assess the efficiency of the 
proposed algorithm using the Wilcoxon Signed Rank Test 
[69]. A pairwise Wilcoxon test is conducted to compare the 
performance of D-CLGSA with other algorithms, consider-
ing a significance level (α) of 0.05.

The null hypothesis assumes that the samples being com-
pared are independent samples from identical continuous 
distributions with higher average values. If the null hypoth-
esis is rejected at the 5% significance level, it is denoted as 
' + ', indicating that the D-CLGSA approach demonstrates 
superior performance. Conversely, a '-' symbol indicates 

Table 2   Parameters setting

Algorithm Parameter’s value Algorithm Parameter’s value

D-CLGSA/ CLGSA No. of masses = 30
G0 = 1, � = 20,Pc = 0.9

Maximum iteration = 500
Stopping criteria = max. iter

CLJA No. of swarm = 30
k1, k2 = 0.9, �1, �2 = 0.4to0.9

Maximum iteration = 500
Stopping criteria = max. iter

BGSA No. of masses = 30
G0 = 1, � = 20

Maximum iteration = 500
Stopping criteria = max. iter

GA No. of particles = 30
Selection- Roulette wheel
Crossover prob. = one point, i.e. 0.9
Mutation prob. = uniform, i.e. 0.05
Maximum iteration = 500
Stopping criteria = max. iter

HS No. of HM solutions = 30
PAR = 0.5, HMCR = 0.5
Maximum iteration = 500
Stopping criteria = max. iter

AEFA No. of masses = 30
K0 = 1, � = 20

Maximum iteration = 500
Stopping criteria = max. iter

GWO No. of wolf = 30
a = decreasing linearly from 2 to 0
A = (1,0), C = (1,1)
Maximum iteration = 500
Stopping criteria = max. iter

SPSO/CLPSO/BPSO No. of swarm = 30
c1 = 2, c2 = 2

w = decreasing linearly from 0.9 to 0.6
Maximum iteration = 500
Stopping criteria = max. iter

SCA No. of swarm = 30
a = 3, range of sin = (1,2], range of 

cosine = [− 2, − 1]
Maximum iteration = 500
Stopping criteria = max. iter

ALO No. of swarm = 30
w = 3 when t > 0.5 T
Maximum iteration = 500
Stopping criteria = max. iter
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inferior performance, while ' = ' signifies that the perfor-
mance difference is not statistically significant.

3.1.2 � Time and space complexity

The algorithm complexity is a very good quantifier to judge 
solutions optimality. Usually, there is always more than one 
algorithm to solve an optimization problem. An algorithm 
may find a good solution, however, would take significantly 
more time as well. Furthermore, researchers prefer algo-
rithms that have less computational complexity with a good 
ability to find the optimal solution. A details description is 
given as follows:

The D-CLGSA has time complexity to initial-
ize parameters is O(1) . For evaluations of fitness value 
O(N) × Totaliterations . For calculating masses, it requires 
O(N) × Totaliterations . For computing gravitational con-
stant, it requires O(N) × Totaliterations . To calculate accel-
eration, it at most takes 2O

(
N2

)
× Totaliterations . For CL 

strategy, it takes O
(
N2

)
× Totaliterations . For updating posi-

tion, it takes O(N) × Totaliterations . For updating velocity, 
it takes O(N) × Totaliterations . For satisfying the boundary 
condition, it takes O(N) × Totaliterations.

The overall time complexity after all above mentioned 
complexities for D-CLGSA is O

(
N2

)
 which is similar to the 

swarm-based algorithms taken into account in this paper. 
The space complexity is also O

(
N2

)
 Fig. 3.

Table 3   Minimization results of unimodal benchmark functions

Algorithm/Function Parameters/ Rank test Pair-wise comparison of D-CLGSA with other algorithms (By Signed Rank Test)

F1 F2 F3 F4 F5 F6 F7

BPSO Average
St.Dev
Rank Test

5.4042
2.819
 + 

0.341
0.098
 + 

22.412
0.921
 = 

2.638
0.921
 + 

148.136
137.193
 + 

5.501
3.071
 + 

0.016
0.007
 + 

BGSA Average
St.Dev
Rank Test

2045.005
40.721
 + 

1.563
0.732
 + 

506.034
265.421
 + 

8.012
3.561
 + 

2643.454
1832.347
 + 

125.138
88.035
 + 

0.024
0.027
 + 

GA Average
St.Dev
Rank Test

10.121
24.205
 + 

0.295
0.249
 + 

549.384
249.383
 + 

1.555
1.384
 + 

369.453
340.884
 + 

6.984
7.010
 + 

0.047
0.043
 + 

HS Average
St.Dev
Rank Test

120.12
34.12
 + 

2.134
1.123
 + 

89.13
3.452
 + 

1.222
1.432
 − 

567.23
23.56
 + 

6.267
2.345
 + 

0.123
0.089
 + 

SPSO Average
St.Dev
Rank Test

22.12
22.12
 + 

1.963
1.675
 + 

48.56
5.456
 + 

3.675
1.234
 + 

176.34
45.34
 + 

51.789
22.345
 + 

1.334
1.002
 + 

CLPSO Average
St.Dev
Rank Test

12.008
3.452
 + 

1.897
1.896
 + 

26.345
24.356
 + 

1.564
1.435
 = 

198.342
23.768
 + 

5.969
2.350
 = 

2.143
1.345
 + 

AEFA Average
St.Dev
Rank Test

138.56
23.569
 + 

1.678
3.456
 + 

34.234
14.673
 + 

1.223
0.345
 − 

147.34
9.786
 + 

5.456
7.453
 = 

1.456
2.356
 + 

GWO Average
St.Dev
Rank Test

12.437
8.765
 + 

0.123
0.456
 = 

31.234
12.78
 + 

4.567
3.245
 + 

222.564
127.45
 + 

19.456
3.679
 + 

2.346
1.456
 + 

CLJA Average
St.Dev
Rank Test

0.532
0.573
 − 

0.119
0.321
 = 

26.143
34.12
 + 

1.342
0.564
 = 

210.342
123.56
 + 

12.765
5.673
 + 

0.000
0.000
 − 

SCA Average
St.Dev
Rank Test

18.24
4.560
 + 

0.122
0.121
 = 

45.123
16.342
 + 

4.352
1.200
 + 

169.340
26.453
 + 

6.124
4.231
 + 

0.560
1.100
 + 

ALO Average
St.Dev
Rank Test

22.72
18.19
 + 

1.300
1.23
 + 

19.435
23.560
 − 

7.298
4.234
 + 

132.99
8.345
 = 

18.340
6.547
 + 

2.453
1.453
 + 

CLGSA Average
St.Dev
Rank Test

6.167
8.920
 + 

0.943
1.172
 + 

29.134
12.143
 + 

2.880
3.125
 + 

140.23
16.340
 + 

6.451
3.991
 + 

0.781
1.342
 + 

D-CLGSA Average
St.Dev

0.7428
0.7434

0.1242
0.1314

22.486
38.423

1.464
1.375

134.381
3.984

5.461
3.984

0.006
0.008
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3.2 � Results and discussion

The results are discussed over four groups of functions such 
as unimodal, multimodal, composite, and binary maximiza-
tion functions presented in Table 3, 4, 5, 6 respectively. The 
corresponding numerical, statistical, and graphical results 
of each group are discussed as follows:

3.2.1 � Unimodal functions

The unimodal functions (F1 to F7) are generally examined 
for the exploitation stage of the algorithm. The minimiza-
tion results of these seven unimodal functions are reported 

in Table 3. It can be observed that D-CLGSA consistently 
achieves good results in terms of 'Average' and 'St. Dev' for 
most unimodal functions, except for BPSO in F3, CLPSO 
in F4 and F6, AEFA in F6, and GWO and SCA in F2, 
which perform equally. HS and AEFA perform better than 
D-CLGSA in F4, CLJA in F1 and F7, and ALO in F3. 
The convergence behavior of all algorithms can be seen 
through the convergence curves in Fig. 4. D-CLGSA dem-
onstrates faster convergence and achieves the best position 
in the initial iterations, indicating its superior exploita-
tion ability and convergence rate. These findings provide 
evidence that D-CLGSA is an efficient algorithm. The 

Table 4   Minimization results of Multimodal benchmark functions

Algorithm/ Function Parameters/ 
Rank Test

Pair-wise comparison of D-CLGSA with other algorithms (By Signed Rank Test)

F8 F9 F10 F11 F12 F13 F14 F15 F16

BPSO Average
St.Dev
Rank Test

 − 789.1
14.87
 − 

4.977
1.597
 + 

2.735
0.472
 + 

0.387
0.130
 + 

0.621
0.402
 + 

1.345
1.567
 + 

 − 3.74
0.429
 + 

 − 0.034
0.134
 + 

6 × 10−4

0.003
 + 

BGSA Average
St.Dev
Rank Test

 − 827.4
42.647
 − 

5.273
2.974
 + 

2.937
1.482
 + 

0.658
0.230
 + 

12.678
8.775
 + 

0.782
0.345
 + 

 − 3.56
1.126
 + 

 − 0.01
3.1e-10
 + 

2 × 10−3

9 × 10−4

 + 
GA Average

St.Dev
Rank Test

 − 90.34
27.987
 + 

2.184
0.833
 + 

1.401
1.347
 + 

0.706
0.332
 + 

0.291
0.244
 + 

0.213
0.456
 + 

 − 3.81
0.567
 = 

 − 0.583
0.724
 + 

1.5 × 10−3

8 × 10−4

 + 
HS Average

St.Dev
Rank Test

 − 11.43
43.12
 + 

3.001
2.345
 + 

2.101
1.532
 + 

1.321
1.000
 + 

5.342
2.334
 + 

1.967
1.342
 + 

0.231
1.675
 + 

0.004
0.934
 + 

0.008
1.342
 + 

SPSO Average
St.Dev
Rank Test

8.342
32.120
 + 

4.352
4.123
 + 

1.983
2.400
 + 

1.002
1.217
 + 

3.562
2.145
 + 

1.399
1.998
 + 

1.321
0.546
 + 

 − 0.100
1.345
 + 

1.001
2.400
 + 

CLPSO Average
St.Dev
Rank Test

 − 91.23
40.12
 + 

1.996
1.654
 = 

1.269
2.431
 + 

0.234
0.176
 + 

0.252
1.234
 = 

2.430
1.441
 + 

 − 1.200
1.184
 + 

0.001
1.105
 + 

0.033
0.667
 + 

AEFA Average
St.Dev
Rank Test

 − 11.13
37.12
 + 

3.214
1.251
 + 

0.932
1.324
 + 

2.170
2.100
 + 

1.001
3.201
 + 

1.000
1.200
 + 

0.003
1.892
 + 

 − 0.543
0.382
 = 

8.3 × 10−2

0.520
 + 

GWO Average
St.Dev
Rank Test

12.094
18.123
 + 

2.001
4.325
 + 

0.994
1.100
 + 

0.763
1.006
 + 

1.497
0.128
 + 

0.193
1.002
 = 

0.532
0.781
 + 

 − 0.673
1.543
 + 

0.003
0.234
 + 

CLJA Average
St.Dev
Rank Test

 − 93.56
5.67
 = 

4.025
3.214
 + 

1.123
0.453
 + 

1.20
0.456
 + 

0.199
0.342
 = 

1.211
0.342
 + 

 − 3.00
0.45
 = 

1.003
0.345
 + 

0.001
0.008
 + 

SCA Average
St.Dev
Rank Test

0.000
1.23
 + 

1.667
1.324
 − 

1.008
1.201
 + 

1.067
1.300
 + 

1.561
2.345
 + 

2.067
3.214
 + 

0.00
0.37
 + 

0.000
4.321
 + 

0.0004
0.0003
 = 

ALO Average
St.Dev
Rank Test

0.000
12.567
 + 

3.178
1.567
 + 

2.100
1.745
 + 

1.564
0.546
 + 

0.000
0.045
 − 

0.349
1.251
 + 

0.18
0.04
 + 

 − 0.150
0.456
 + 

0.98
0.003
 + 

CLGSA Average
St.Dev
Rank Test

 − 99.15
2.34
 + 

2.043
1.874
 + 

0.911
0.973
 + 

1.213
1.432
 + 

0.321
0.463
 + 

0.560
0.675
 + 

0.000
0.543
 + 

0.001
0.754
 + 

0.002
1.459
 + 

D-CLGSA Average
St.Dev

 − 103.14
24.134

1.992
1.283

0.721
0.843

0.154
0.092

0.213
0.394

0.193
0.221

 − 3.843
0.473

 − 0.543
0.346

4 × 10−4

3.9 × 10−4
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Wilcoxon rank results in Table 3 also confirm the better 
performance of the algorithm.

3.2.2 � Multimodal functions

The minimization results of the nine multimodal func-
tions (F8 to F16) are presented in Table 4. These mul-
timodal functions are commonly used to evaluate the 
algorithm's ability to avoid local optima. The original 
CLGSA algorithm is specifically designed to prevent get-
ting stuck in local optima, and its flying particle strategies 
aid in quickly reaching the global optima. The proposed 
D-CLGSA algorithm also possesses these characteristics, 

as evident from the results in Table 4. D-CLGSA demon-
strates the best minimization results for almost all func-
tions, except for the binary algorithms BPSO and BGSA 
in F8, SCA in F9, and ALO in F12. The convergence 
behavior of all algorithms with respect to iterations is 
shown in Fig. 4. It can be observed from Fig. 4 that for 
function F15, all algorithms struggle to converge, but 
D-CLGSA achieves convergence within 100 iterations. 
Additionally, D-CLGSA exhibits the fastest convergence 
in seven out of the nine multimodal functions. This evi-
dence confirms that the discrete version of CLGSA can 
effectively avoid local optima without adversely impact-
ing the convergence speed.

Table 5   Minimization results of Composite benchmark functions

Algorithm / Function Parameter/ Rank test Pair-wise comparison of D-CLGSA with other algorithms (By Signed Rank test)

F17 F18 F19 F20 F21 F22

BPSO Average
St.Dev
Rank test

196.456
60.435
 + 

146.300
40.245
 + 

445.239
50.120
 + 

462.341
32.453
 + 

170.110
64.567
 + 

600.235
138.26
 + 

BGSA Average
St.Dev
Rank test

252.883
53.456
 + 

254.786
145.230
 + 

213.450
68.234
 + 

252.120
50.382
 + 

245.367
52.456
 + 

230.455
25.467
 + 

GA Average
St.Dev
Rank test

193.279
122.350
 + 

205.677
160.256
 + 

384.761
118.452
 + 

567.677
102.345
 + 

240.890
126.546
 + 

956.234
67.677
 + 

HS Average
St.Dev
Rank test

167.23
102.34
 + 

178.203
134.287
 + 

222.178
56.342
 + 

416.234
98.123
 + 

134.760
55.34
 + 

812.002
75.301
 + 

SPSO Average
St.Dev
Rank test

134.239
68.300
 + 

167.67
98.342
 + 

306.002
113.650
 + 

404.321
103.231
 + 

189.023
69.120
 + 

634.78
78.349
 + 

CLPSO Average
St.Dev
Rank test

119.342
67.342
 + 

83.234
56.342
 − 

167.342
56.234
 + 

189.563
57.780
 + 

156.342
87.352
 + 

403.231
198.453
 + 

AEFA Average
St.Dev
Rank test

145.230
74.231
 + 

101.3424
89.453
 + 

136.954
35.462
 = 

202.341
69.301
 + 

98.342
89.342
 + 

359.478
176.453
 + 

GWO Average
St.Dev
Rank test

203.123
106.784
 + 

145.362
89.345
 + 

159.342
65.342
 + 

171.001
41.672
 = 

89.453
75.231
 + 

259.087
167.453
 + 

CLJA Average
St.Dev
Rank test

189.34
87.45
 + 

112.65
80.00
 + 

140.34
56.78
 + 

159.23
34.12
 − 

104.32
45.35
 + 

510.23
167.45
 + 

SCA Average
St.Dev
Rank test

162.67
102.34
 + 

88.23
56.12
 = 

204.00
34.67
 + 

189.99
56.12
 + 

72.56
56.89
 + 

403.67
210.56
 + 

ALO Average
St.Dev
Rank test

149.34
56.34
 + 

96.329
53.78
 + 

135.55
42.17
 = 

256.23
12.89
 + 

70.98
74.23
 = 

333.56
156.45
 + 

CLGSA Average
St.Dev
Rank test

146.23
68.43
 + 

99.37
78.34
 + 

139.23
47.128
 + 

198.40
61.13
 + 

89.34
73.56
 + 

309.12
123.89
 + 

D-CLGSA Average
St.Dev

110.234
62.123

87.234
48.671

136.876
34.256

170.345
40.408

70.235
67.123

212.342
123.670
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3.2.3 � Composite functions

The six composite functions (F17 to F22) are the most 
challenging test functions designed to examine the bench-
marking of the exploration and exploitation stage together. 
The statistical and numerical results in the form of Rank, 
Average, and Standard deviation are presented in Table 5. 
D-CLGSA presented good results although CLPSO in F18 
and CLJA in F20 out-performed. The convergence of all 
the algorithms for functions F17 to F22 can be examined 
in Fig. 4. D-CLGSA converges fast and is stable in the first 
few iterations. Furthermore, the mean CPU time of all algo-
rithms is presented in Table 7. Among twelve heuristics, 
D-CLGSA got 3rd position in terms of time computation 

which is quite reasonable for the algorithm comprising a 
comprehensive search strategy. These findings prove that 
the proposed algorithm efficiently balances exploration and 
exploitation within a reasonable time.

3.2.4 � Special discrete functions

The functions (Max-Ones and Royal-Road) are binary in 
nature; they are presented in Appendix A. These functions 
should be maximized, so the concept of best and worst in 
Eq. (8) and Eq. (9) has reversed. For instance, the worst 
value is evaluated by Eq. (8), and the best value is com-
puted by Eq. (9) for this case. The maximum value of these 
functions depends on the dimensions. The numerical and 

Table 6   Maximization results 
of Special Binary functions

Algorithm Parameter/rank 
test compari-
sion

Pair-wise comparison of D-CLGSA with other algorithms

Max-ones
D = 32

Max-ones
D = 64

Max-ones
D = 80

Royal road
D = 32

Royal road
D = 64

Royal road
D = 80

BPSO Average
St.Dev
Rank test

32
0
 = 

59.7
0.9
 + 

72.1
0.98
 + 

2.7
0.23
 + 

3.5
0.34
 = 

3.4
0.17
 + 

BGSA Average
St.Dev
Rank test

32
0
 = 

62.3
0
 + 

78.8
0.33
 + 

4
0
 + 

7.2
0.42
 + 

10
0.8
 = 

GA Average
St.Dev
Rank test

28
2.4
 + 

48.3
1.78
 + 

58.1
11.2
 + 

2.2
1.73
 + 

4.6
0.48
 + 

4.7
0.72
 + 

HS Average
St.Dev
Rank test

28
4
 + 

54.3
1.2
 + 

52.12
2.3
 + 

4.3
1.2
 + 

3.2
0.35
 + 

5.2
0.32
 + 

SPSO Average
St.Dev
Rank test

32
0
 = 

59.2
1.8
 + 

66.34
3.2
 + 

4.1
0.5
 + 

4.2
1.8
 + 

7.5
0.5
 + 

CLPSO Average
St.Dev
Rank test

32
0
 = 

59.7
0.8
 + 

67
4.5
 + 

6
0
 = 

8
0.8
 = 

7.5
1.2
 + 

AEFA Average
St.Dev
Rank test

32
0
 = 

58
2.3
 + 

72.5
0.3
 + 

6
0
 = 

6.5
1.2
 + 

7.1
1.9
 + 

GWO Average
St.Dev
Rank test

32
0
 = 

64
0
 = 

72
0.35
 + 

6
0
 = 

6.5
2.2
 + 

6.5
0.3
 + 

CLJA Average
St.Dev
Rank test

32
0
 = 

64
0
 = 

76
0.67
 + 

6
0
 = 

8
0
 = 

8
0
 + 

SCA Average
St.Dev
Rank test

32
0
 = 

54.5
1.7
 + 

70.13
0.56
 + 

6
0
 = 

6.5
0.45
 + 

7
1.2
 + 

ALO Average
St.Dev
Rank test

32
0
 = 

60
0.8
 + 

65
0.3
 + 

6
0
 = 

6.5
0.1
 + 

7.5
0.1
 + 

CLGSA Average
St.Dev
Rank test

32
0
 = 

64
0
 = 

72.5
0.5
 + 

4.3
1.5
 + 

6.5
1.2
 + 

7
0.8
 + 

D-CLGSA Average
St.Dev

32
0

64
0

80
0.5

6
0

8
0.6

10
0.7
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statistical results are presented in Table 6 for the different 
dimensions such as 32, 64, and 80, and the iterations set 
for these functions are 1000. From Table 6, D-CLGSA 
provides the optimum solution for all cases. It can be noted 
that the most significant difference in the performance of 
D-CLGSA with other algorithms occurs primarily when 

the dimension of the functions increases. In addition, the 
good convergence rate of D-CLGSA could be concluded 
in Fig. 5.

Hence, all summarized results prove that D-CLGSA is 
capable of solving unimodal, multimodal, composite, and 
discrete functions successfully.

Fig. 3   Water networks analysis using D-CLGSA
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Fig. 4   Convergence graph of unimodal (F1-F7), multimodal (F8-F16), composite (F17-F22) Functions



	 Evolutionary Intelligence

0 100 200 300 400 500
0

2

4

6

8

10
SPSO
BGSA
GA
CLPSO
GWO
SCA
D-CLGSA
BPSO
HS
AEFA
CLJA
ALO

Iteration

Av
er

ag
e 

Be
st

 S
o 

Fa
r

F7

0 100 200 300 400 500
-800

-700

-600

-500

-400

-300

-200

-100

0

100

D-CLGSA
BPSO
HS
CLPSO
GWO
SCA
BGSA
GA
SPSO
AEFA
CLJA
ALO

Iteration

A
ve

ra
ge

 B
es

t s
o 

fa
r

F8

0 100 200 300 400 500
0

20

40

60

80

100 D-CLGSA
BPSO
HS
CLPSO
GWO
SCA
BGSA
GA
SPSO
AEFA
CLJA
ALO

Iteration

A
ve

ra
ge

 B
es

t S
o 

Fa
r

F9

0 100 200 300 400 500
0

2

4

6

8

10

12

14
D-CLGSA
BPSO
HS
AEFA
GWO
SCA
BGSA
GA
SPSO
CLPSO
CLJA
ALO

Iteration

Av
er

ag
e 

Be
st

 S
o 

Fa
r

F10

0 100 200 300 400 500
0

2

4

6

8

10
D-CLGSA
BPSO
HS
AEFA
GWO
SCA
BGSA
GA
SPSO
CLPSO
CLJA
ALO

Iteration

Av
er

ag
e 

Be
st

 S
o 

fa
r

F11

0 100 200 300 400 500
0

20000

40000

60000

80000

100000
D-CLGSA
BPSO
HS
CLPSO
GWO
SCA
BGSA
GA
SPSO
AEFA
CLJA
ALO

Iteration

Av
er

ag
e 

Be
st

 S
o 

Fa
r

F12

Fig. 4   (continued)
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Fig. 4   (continued)



	 Evolutionary Intelligence

4 � Water distribution network

The D-CLGSA algorithm has proven its ability to adeptly 
navigate through discrete decision-making environments, 
effectively handling various types of optimization prob-
lems in previous section. This demonstrated effective-
ness forms the basis of our choice to apply D-CLGSA 
to Water Distribution Network (WDN) optimization chal-
lenges. WDNs, defined by their discrete variables like 

pipe diameters and valve operations, are complex systems 
requiring precise configuration for optimal functionality. 
D-CLGSA's suitability for such discrete variables and its 
proficiency in addressing complex constraints make it an 
exemplary choice for optimizing WDNs.

The algorithm's strength lies in its balanced approach 
to both exploring wide-ranging solution spaces and hon-
ing in on the most promising solutions. This balance is 
crucial for dealing with the diverse constraints that WDNs 
present. Moreover, the increasing complexity and scale of 
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Fig. 4   (continued)

Table 7   Mean CPU time of all algorithms

Algorithm BPSO BGSA GA HS SPSO CLPSO AEFA GWO CLJA SCA ALO CLGSA D-CLGSA

Mean CPU time (s) 317 139 512 414 457 402 349 389 367 234 267 408 252
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WDNs, with more variables and larger networks, highlight 
the importance of D-CLGSA's scalability. Its design, which 
leverages a binary search space and dynamic particle move-
ment, allows D-CLGSA to effectively keep pace with the 
evolving demands of WDN optimization, affirming its role 
as a powerful tool in this domain, which is explained in the 
subsequent discussion.

4.1 � Formulation of the water distribution system

The preliminary aim of designing WDS is to obtain the 
optimal pipe diameters. The parameters of this problem are 
discrete, and the objective function calculates the minimal 
constructing cost of the WDS is expressed as:

where, Ci

(
Di

)
 = cost per unit length of pipe diameter D, 

Li = Length of pipe i, npipe = Total pipe count in a WDN. 
The objective function is conditioned by the minimum head 
requirements in the demand nodes, and conservation law of 
energy and mass.

The evaluation of residual head at every edge point or 
node is performed employing hydraulic analysis; EPANET 
2.0 adopts the Hazen–Williams (HW) mathematical relation 
defined as:

(12)Mincost =

npipe∑

i=1

Ci

(
Di

)
× Li

(13)hi = 4.727R−1.852
i

× Q1.852

i
× D−4.871

i
× Li

where, hi = The loss in reservoir head across the pipe i, and 
Ri = HW roughness coefficient.

Qi = rate of water flow, Di = pipe diameter and Li = pipe 
length.

Certain constraints are involved while determining the 
connectivity of pipe, layout, nodal demand, and minimal 
head necessities are discussed as:

4.1.1 � Minimum constraints of pressure

The ideal design of WDN should meet the minimum pres-
sure requirement at every node. The minimum pressure con-
straint is determined as:

Hj and Hmin
j

 = pressure and the minimal pressure head at 
node j , respectively.

4.1.2 � Constraints for energy conservation

In every loop present in the WDN, the constraints for con-
serving energy are given as:

where, ΔHk = loss in water head in pipe k , NL = number of 
loops present in the system.

The loss of water head in every pipe is described as the 
difference between the connected nodes and is evaluated 
employing Hazen–William’s equation as:

(14)Hmin
j

≤ Hj, j = 1, 2, 3,… , node

(15)
∑

k∈NL

ΔHk = 0
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Fig. 5   Convergence graph of binary maximization functions (Max once, Royal Road)
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Ck  = coefficient of roughness in pipe k , Qk = rate of water 
flow in the pipe, � , and � = coefficients of regressions. The 
coefficients of the HW equation, w, �, and � are 10.667, 1.852, 
and 4.871, respectively.

4.1.3 � Constraints for mass conservation

At every node, the conservation constraint for mass must be 
satisfied.

where, Qin = rate of flow into the node, Qout = rate of flow out 
of the node, Qc  = rate of external inflow at the node.

4.1.4 � Implementation procedure of D‑CLGSA on WDN

In this study, we utilize a combined simulation optimization 
computer model that integrates the D-CLGSA algorithm and 
EPANET, a hydraulic simulator tool. EPANET is powerful 
software developed by the United States Environmental Pro-
tection Agency, capable of conducting comprehensive hydrau-
lic and water quality simulations for pressurized water distri-
bution networks (WDN). It provides a dynamic link library 
(DLL) of functions that can be customized to meet specific 
user requirements. Additionally, the EPANET-MATLAB 
toolkit was developed, enabling users to access EPANET 
through a programming interface in external software. In 
this integrated model, the D-CLGSA algorithm serves as the 
external driver model, while EPANET functions as the inter-
nal model. The algorithm imports the layout and data of the 
water network from EPANET, including design parameters 
such as roughness coefficient, available pipe sizes, associated 
costs, required pressures, and flow rates for the network. The 
D-CLGSA algorithm requires certain parameters to be set by 
the user, such as the number of agents, population size, and 
dimensions. During the hydraulic simulation, each data point 
is tested against pressure constraints at different nodes using 
the EPANET toolkit [70]. The number of nodes that fall below 
the minimum required pressure is counted, and this count is 
used as a penalty multiplier (�). The fitness index of each data 
point is then computed as the sum of the cost and the penalty 
(if applicable). This process helps evaluate the performance 
of different data points and guide the optimization process 
towards finding better solutions for the water distribution net-
work design. Mathematically, the fitness index is expressed as:

(16)

ΔHk = H1,k − H2,k = w

( (
Lk
)

C�
k
D

�

k

)

Qk
|
|Qk

|
|
�−1

,∀k ∈ npipe

(17)
∑

Qin −
∑

Qout = Qc

(18)Fitnessindex = Cost + (� × penalty)

The value of � become zero if the pressures at all nodes 
are at least the minimum pressure required. The penalty 
approach is inducted to convert the constrained into uncon-
strained problems. Due to the conversion, the solution may 
fall outside the feasible region penalized, and be forced to 
fall into the feasible region after a few iterations. During this 
process, proper parameter tuning of parameters is required. 
Because, when the penalty parameters are large, the penalty 
function tends to be ill-conditioned near the boundary of 
the feasible domain and that may tend the process to local 
optima. If this situation occurs, D-CLGSA performs the 
comprehensive search described in algorithm 2 and flew out 
toward the feasible region. Some repeated runs may require 
getting satisfactory results (with no constraints violation). 
The stepwise procedure of implementation is described 
below:

1.	 Generation of initial population: First, we produce a 
set of initial solutions through random generation. For 
instance, each of the 24 bits in a string can be set to 
either 0 or 1. In the scenario of a pipe network, a binary 
value is assigned to each discrete pipe diameter. Addi-
tional bits are utilized to denote various choices for each 
pipe being evaluated. Consequently, each string signifies 
a distinct arrangement of pipe sizes and corresponds to 
a unique configuration of the pipe network. Find the fit-
ness value of each particle and choose the local best and 
global best solution by CLGSA (algorithm 1).

2.	 Computation of network cost: In the algorithm, each 
string in the population is processed one by one. The 
decoding process involves determining the pipe size 
based on the substrings, and then the cost is calculated 
using Eq. (12).

3.	 Hydraulic analysis of each network: The steady-state 
hydraulic analysis is performed for each network in the 
population, which calculates the heads and discharges 
based on the given demand patterns. The computed pres-
sures are then compared with the minimum allowable 
pressure heads to identify any discrepancies.

4.	 Computation of penalty cost: Each particle undergoes 
pressure constraint testing on various nodes using the 
EPANET toolkit. The number of nodes that have pres-
sure below the minimum required value is determined, 
and this count is used as a penalty multiplier ( �) to cal-
culate the number of violations.

5.	 Computation of total network cost: The fitness index of 
each network is computed by calculating the total cost, 
which is the sum of the network cost and the penalty, 
using Eq. (18).

6.	 Update Fitness, Local, and Global Best: The initial 
velocity vector of each individual is determined using 
Eq. (10). The particles' new positions are then calculated 
using Eq. (11). The fitness index of each particle is com-
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puted based on its new position, and the local and global 
best positions are updated accordingly.

7.	 Update Position and Velocity: The velocities of the par-
ticles are updated using Eq. (10), and subsequently, the 
new positions of the particles are determined based on 
Eq. (11).

8.	 Termination: In case the termination criterion is not met, 
Steps 2 to 7 will be repeated.

5 � Water network applications and results 
discussion

In this section, we will discuss six water networks of differ-
ent countries as Two-Loop Network, Hanoi Network, New-
York City Network, GoYang Network, BakRyun Network, 
and Balerma Water Network. The motive of the objective 
function (Eq. 12) is to minimize the cost function, which 
depends on the pipe length and diameter. So, the motive can 
be achieved by reducing the length and diameter of the pipe, 
along with satisfying all hydraulic constraints. The optimal 
route for WDN was designed using MATLAB 2019. Fur-
thermore, the performance evaluation of the pipe network 
is classified into two parts. In the first part, the proposed 
algorithm D-CLGSA is compared with the base approaches, 
which were specially designed to solve the water networks. 
These approaches provide a set of pipe lengths, which helps 
to minimize the cost function. In the 2nd approach, the pro-
posed algorithm is compared statistically with recent heu-
ristics which are multi-tasking in nature and can be able to 
solve other real-life optimization problems as well. Here, 
the results are presented in the form of the Minimum Cost, 
Maximum Cost, and Average Cost of the network. These 
metrics evaluate the performance of the proposed algorithm 
in comparison to base methods and recent heuristics.

5.1 � Two‑loop network

The Two-loop network was first proposed by Alperovits 
et al. [21]. This network consists of two loops with seven 
nodes and eight pipes, and the gravity-fed water reser-
voir has a fixed head of 210 m. The height of the pipes is 
1000 m with a Hazen-Williams coefficient (HW = 130). 
The elevation corresponding to each node is {210, 150, 
160, 155, 150, 165, 160 m}, and the demand at each node 
is {− 1120, 100, 100, 120, 270, 330, and 200 m3∕hr }. The 
unit cost of for fourteen different pipe diameters pipe and 
D-CLGSA parameter values are listed in Table 8. In the 
optimization problem, engineering expertise could be uti-
lized to choose more effective initial feasible solutions. 
However, in this study, the initial solutions are generated 
randomly, and only feasible solutions are used as starting 
points. In cases where infeasible solutions are encoun-
tered, a penalty value of 1.05 million is applied in addi-
tion to the penalty multiplier � (as detailed in Eq. (18)). 
The 1.05 million penalty value corresponds to the cost of 
implementing an 18-inch pipe network.

Table  9 presents the diameters of the pipes for the 
Two-loop network obtained using different approaches, 
along with the obtained pressure head values: {32.2, 32.4, 
31.3, 35.5, 37.5, 40, and 35.6 m}. This table compares 
the results obtained using the D-CLGSA-based model 
with those obtained using other methods, including Alp-
erovits et al. [21], Kessler et al. [22], Goulter et al. [24], 
Savic et al. [71], and the proposed D-CLGSA. Among all, 
D-CLGSA solves the Two-loop network for $406,489, 
which is the least cost among all methods. However, the 
solutions of all models except D-CLGSA deliver two seg-
ments of diameters with different discrete sizes. Accord-
ing to Savic et al., a split-pipe design should be more 
realistic if one diameter is chosen from each pipe. Hence, 

Table 8   Diameter of the pipes and value of D-CLGSA parameters

Network Pipe diameter Unit cost No of Var’s D-CLGSA Max.
Evaluations (NI)

Two-loop {1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24} 
in inches

{2,5,8,11,16,23,32,50,60,90,130,170,300,550} 
in dollar/ meter

8 5000

Hanoi {12, 16, 20, 24, 30, 40} in inches {45.73, 70.4, 98.38, 129.3, 180.8, 278.3} in 
dollar/meter

34 12,010

New York {36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 
168, 180, 192, 204} in inches

{93.5, 134, 176, 221, 267, 316, 365, 417, 469, 
522, 577, 632, 689, 746, 804}in dollar/foot

21 2100

GoYang {80, 100, 125, 150, 200, 250, 300, 350} in mil-
limeters

{37,890, 38,933, 40,563, 42,554, 47,624, 
54,125, 62,109, 71,524}, in won/meter

30 10,000

BakRyun {300, 350, 400, 450, 500, 600, 700, 800, 900, 
1000, 1100, 1200, 1350, 1500, 1600, 2000} in 
millimeters

{118,000, 129,000, 145,000, 160,000, 181,000, 
214,000, 242,000, 285,000, 325,000, 
370,000,434,000, 434,000, 434,000, 434,000, 
434,000, 4,340,000}, in won/meter

9 pipes (1–9) 5000

Balerma {113, 125, 142.6, 160.2, 175.34, 224.2, 285, 
361.8, 452.2, 581.8}, in millimeters

{7.22, 8.5, 10.53, 13.5, 17.12, 26.75, 44.12, 
76.32, 124.64, 215.85}, in EUR/meter

10 25,000
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D-CLGSA considered the best possible diameter for each 
pipe and delivered the least cost water network.

Alperovits et al. model is based on a non-split-pipe solu-
tion using up to 25,000 cost function evaluations (NI) and 10 
runs. Goulter et al. used 70,000 evaluations and 1000 runs, 
and Kessler et al. used 15,000 evaluations and 1000 runs. 
However, D-CLGSA produced better results with only 5000 
evaluations (NI) and five runs (Table 8). This method uses a 
less approving hydraulic conversion constant (ω = 10.5879) 
than the genetic algorithm (ω = 10.5088).

Furthermore, Table 10 presents a statistical analysis of 
cost optimization using different recent stochastic algorithms 
such as GA, BGSA, HS, BPSO, AEFA, GWO, CLJA, SCA, 
and ALO. The results of D-CLGSA are presented in the 
“Minimum,” “Maximum,” and “Average Network Cost” col-
umns. Table 10 shows that D-CLGSA solves networks at the 
least cost. Figure 3 presents the performance of D-CLGSA 
in graphical form.

5.2 � Hanoi network

The Hanoi WDN was first proposed by Fujiwara & Khang in 
1990 [72] in Vietnam. The network is made up of thirty-two 
nodes, thirty-four pipes, three loops, a reservoir with 100 m, 
and HW constant is 130. The basic permissive level for the 
head of the reservoir is 30 m. Moreover, the Hanoi network 
is first compared by Fujiwara et al. [72] and Savic et al. [71] 
model. The data for the optimal length of the pipe are tabu-
lated in Table 11. The demand 

(
m3∕hr

)
 for 32 nodes are 

{− 19,940, 890, 850, 130, 725, 1005, 1350, 550,525, 525, 
500,560, 940, 615, 280, 310, 865, 1345, 60, 1275, 930, 485, 
1045, 820, 170, 900, 370,290, 360,360, 105,805} respec-
tively. A penalty worth $10.5 million is applied, which is 

equivalent to the expense of constructing the network using 
pipes with a diameter of 24 inches.

Fujiwara modal solves this problem by a non-linear 
programming method with ω = 10.5088. They obtained 
$6,320,000 an optimal cost after 1,000,000 evaluations pre-
sented in Table 11. Savic et al. solve the same problem in 
1,000,000 evaluations with ω = 10.5088, and the optimal 
cost of the network was $6,073,000. However, the proposed 
D-CLGSA solves the same problem with ω = 10.5088, and 
the optimal cost is $6,056,000 using 12,010 function evalu-
ation, using an Intel(R) 1.8-GHz processor. The pressure 
obtained by D-CLGSA corresponding to 32 nodes lies 
between 30.5 and 42.8 m.

The statistical results of the Hanoi network are compared 
with recent studies presented in Table 12, which includes 
the minimum, average, and maximum costs reported by 
the considered optimizers. It can be observed that the ALO 
algorithm obtained the least cost-optimal network, while 
D-CLGSA attained the 2nd position. ALO required 31,122 
function evaluations, whereas D-CLGSA achieved the opti-
mal cost in just 12,010 function evaluations, which is the least 
among all. Figure 3 illustrates the performance of the algo-
rithm in optimizing WDN, highlighting that the D-CLGSA 
algorithm quickly reduces the Hanoi Network’s cost in the 
initial evaluations and demonstrates swift convergence to an 
optimal solution after roughly 20 evaluations.

5.3 � New‑York City WDN

The New York City water network model is constructed with 
twenty nodes, twenty-one pipes, one loop, and the gravity of 
the reservoir with a 300-ft (fixed head) [48]. The main aim 
of this model is to include additional pipes analogous to the 

Table 9   Comparative data for 
different diameters of pipes for 
two-loop network

Pipe no 1 2 3 4 5 6 7 8 Cost ($)

Alperovits et al [21] 20
18

8 18 8
6

16
16

12
10

6
6

6
4

497,525

Goulter et al [24] 20
18

10 16 6
4

16
14

12
10

10
8

2
1

435,015

Kessler et al [22] 18
18

12 12 10
16

3
2

16
14

12
10

10
8

417,500

D-CLGSA 18
18

10 16 4
4

16
16

10
10

10
10

1
1

406,489

Table 10   Statistical comparison of cost-optimization in two-loop network

Serial no 1 2 3 4 5 6 7 8 9 10
Methods GA BGSA HS BPSO AEFA GWO CLJA SCA ALO D-CLGSA

Minimum cost ($ Million) 0.419 0.432 0.414 0.465 0.422 0.499 0.513 0.567 0.487 0.406
Maximum cost ($ Million) 0.463 0.498 0.482 0.479 0.478 0.501 0.561 0.592 0.512 0.411
Average cost ($ Million) 0.442 0.486 0.458 0.472 0.458 0.493 0.537 0.579 0.491 0.408
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already inducted pipes since the actual model can’t satisfy 
the requirement of pressure at a few nodes (nodes 16–20). 
The different lengths of pipe are tabulated in Table 13. The 
model has an H-W constant of 100. Table 8 displays the 
candidate diameters and their corresponding cost values, 
while the demand values and settings remain consistent with 
those mentioned by Geem et al. [48]. The penalty value is 
set at $90.3 million which is equivalent to the expense of 
constructing the network using pipes with a diameter of 180 
inches.

The comparison results derived using the proposed 
algorithm and other mechanisms are given in Table 13; the 
third column tabulates the data obtained from (Schaake & 
Lai,1969) [20], data from the fourth column is taken from 

(Savic & Walters,1997) [71], and fifth one is from Cunha 
et al. [26]. (Schaake & Lai,1969) Used linear programming 
methodology and got $78,090,000 as the optimal cost. 
The same model solved by (Savic & Walters, 1997) got 
$37,130,000 with ω = 10.5088 using a GA model after ten 
lakh evaluations. The D-CLGSA model solved the problem 
using ω = 10.5088 and got an optimal cost of $36,660,000 
after six thousand evaluations, and this takes up to 20 min 
using an Intel(R) 1.8-GHz. Further, Statistical results of the 
New-York city network are compared with metaheuristic and 
presented in Table 14. It shows the statistical optimization 
results, including the best, average, and worst costs reported 
by considered approaches. In terms of the minimum opti-
mized cost, D-CLGSA is superior to all other methods.

Table 11   Comparative data for different diameters of pipes for the Hanoi model

Pipe number Length of 
pipe (m)

Fujiwara et al Savic et al D-CLGSA Pipe number Length of 
pipe (m)

Fujiwara et al Savic et al D-CLGSA

1 100 40 40 40 18 800 29.01 20 20
2 1350 40 40 40 19 400 29.28 20 20
3 900 40 40 40 20 2200 38.58 40 40
4 1150 40 40 40 21 1500 17.36 20 20
5 1450 40 40 40 22 500 12.65 12 12
6 450 40 40 40 23 2650 32.59 40 40
7 850 38.16 40 40 24 1230 22.06 30 30
8 850 36.74 40 40 25 1300 18.34 30 30
9 800 35.33 40 40 26 850 12.00 20 20
10 950 29.13 30 30 27 300 22.27 12 12
11 1200 26.45 24 24 28 750 24.57 12 12
12 3500 23.25 24 24 29 1500 21.29 16 16
13 800 19.57 20 20 30 2000 19.34 16 12
14 500 15.62 16 16 31 1600 16.52 12 12
15 550 12.00 12 12 32 150 12.00 12 16
16 2730 22.50 12 12 33 860 12.00 16 16
17 1750 25.24 16 16 34 950 22.43 20 24

Cost ($) – 6,320,000 6,073,000 6,056,000

Table 12   Statistical 
optimization results obtained by 
several optimizers for the Hanoi 
network

SL No Methods Minimum cost ($ 
million)

Maximum cost ($ 
million)

Average cost ($ 
million)

Maximum no. 
of evaluations

1 GA 6.173 6.956 6.573 26,450
2 HS 6.081 6.319 6.213 27,720
3 BPSO 6.134 6.333 6.301 39,510
4 BGSA 6.350 6.451 6.444 27,410
5 GWO 6.111 6.675 6.575 34,120
6 AEFA 6.453 6.516 6.404 35,450
7 CLJA 6.555 6.900 6.726 16,000
8 SCA 6.212 6.512 6.363 25,620
9 ALO 6.012 6.316 6.164 31,122
10 D-CLGSA 6.056 6.1078 6.094 12,010
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Figure  3 graphically depicts the convergence of the 
D-CLGSA algorithm applied to the New York City Net-
work, demonstrating a significant reduction in design costs 
initially. This pattern suggests the algorithm's proficiency in 
quickly approaching an optimal solution, with subsequent 
improvements becoming more incremental.

5.4 � GoYang WDN

The GoYang network, which was proposed by Kim et al. in 
1994 [23] in South Korea, consists of twenty nodes, thirty 
pipes, and nine loops. The power of the pump used in the 
network is 4.52 kW with a fixed head of 71 m. The pipe 
lengths for the network are provided in Table 15. The net-
work has an HW coefficient is 100. Table 8 provides values 
for eight commercial diameters along with cost values, and 
the specification that the minimum height from the ground 
level should be 15 m. The demand values and pipe length 
remain consistent with those mentioned by Geem et al. [48]. 
The minimum pressure values for nodes 1–20 are listed as 
{300, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 
255, 255, 255, 260, 272, 255, 255, and 255 m} in the given 
context. The penalty value is set at 350,000,000 won which 
is equivalent to the expense of constructing the network 
using pipes with a diameter of 150 mm.

The above-mentioned Table 15 gives the comparative 
analysis for the diameter evaluated using the proposed model 
and other techniques. The 3rd column provides the analysis 
from the actual design, the 4th column gives the data from 
(Kim et al.) [23] and the 5th column provides results from 
the current analysis. This model solved the problem and got 
the cost of 176,100,800 won after ten thousand mathematical 
iterations and 25 steps, which takes 11 min on an Intel(R) 
1.8-GHz processor. The pressure values obtained for each 
node using D-CLGSA are as follows: {301.1, 290.3, 285.2, 
280, 280.3, 280.3, 275.7, 275.1, 273.8, 275.1, 272.8, 273.4, 
275.7, 270.8, 273.7, 275, 273.4, 275.0, 272.3, and 282.3 m}.

Further, the statistical results of metaheuristic are 
compared with the proposed D-CLGSA are presented in 
Table 16. The D-CLGSA algorithm reached the lowest cost 
for the Goyang Network faster than any competing algo-
rithms, within just 10,000 evaluations. Figure 3 illustrates 
this efficiency, showing a quick drop to the best solution and 
then little change in cost thereafter, confirming D-CLGSA's 
superiority in achieving cost-effective solutions efficiently.

5.5 � BakRyun WDN

The BakRyun network model was first utilized by (Lee et al.) 
[52] in South Korea. The model is constructed using thirty-
five nodes, fifty-eight pipes, and seventeen loops with a water 
reservoir of a fixed length of 58 m. The purpose of this model 
is to calculate the sizes of the new pipes (pipes 1–3) and Ta
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the parallel pipes (pipes 4–9). For all the pipes in the net-
work, the coefficient C assigned is 100. The base value for 
the limitation of the water head is 15 m above the ground 
level. Table 8 displays a list of sixteen commercial diameters 
and their corresponding cost values, while the demand val-
ues and pipe parameters remain the same as those stated in 
Geem et al. [48]. The original pressure head on these nodes 
are {32.76, 26.95, 25.33, 15.13, 20.88, 27.08, 31.68, 21.01, 
and 23.44 m}. The penalty value is set at 1,050,000,000 won 
which is equivalent to the expense of constructing the net-
work using pipes with a diameter of 800 mm.

The comparative analysis of the pipe diameter is tabu-
lated in Table 17. The pressure head obtained for each node 
using D-CLGSA are as follows: {32.76, 26.96, 25.40, 15.13, 
20.88, 27.10, 31.68, 21.05, and 23.45 m}. The data was 

compared using the proposed methodology with other meth-
ods. The 3rd column consists of data derived using actual 
design, the 4th column data is taken from the literature 
[52] and the 5th column data is from the current research. 
The network solved using GA resulted in an absolute cost 
of 903,620,000won and the model based on D-CLGSA 
obtained the same minimal cost but after five thousand func-
tional evaluations, and this requires five minutes using an 
Intel(R) 1.8-GHz processor.

Table 18 also presents the statistical results of all algo-
rithms in terms of the minimum, maximum, and average 
cost of the water network. The minimum cost of GA and 
D-CLGSA are equal, but D-CLGSA attains the cost value 
in 5000 iterations and the same cost value obtained by GA 
in 10,000 iterations. The performance of D-CLGSA using 

Table 14   Statistical analysis of 
cost-optimization for New-York 
City network

Sl No Method Minimum cost ($ 
million)

Maximum cost ($ 
million)

Average cost ($ 
million)

Maximum no. 
of evaluations

1 GA 38.64 39 38.54 49,950
2 BGSA 37.12 40.67 39.94 6600
3 HS 38.64 40.21 38.12 3373
4 AEFA 37.04 40.40 39.12 17,000
5 GWO 39.14 39.99 39.82 10,000
6 BPSO 40.94 40.94 40.94 10,000
7 CLJA 37.21 39.12 38.17 19,800
8 SCA 39.67 40.12 39.99 45,870
9 ALO 37.78 42.18 39.98 37,000
10 D-CLGSA 36.66 38.36 37.65 2100

Table 15   Comparative data for diameters of pipes for the GoYang network

Pipe no Pipe 
length 
(m)[48]

Diameter 
original (mm)
[48]

Diameter 
(NLP) (mm) 
[23]

Diameter 
D-CLGSA 
(mm)

Pipe no Pipe length (m) Diameter 
(original) 
(mm)

Diameter 
(NLP) (mm) 
[23]

Diameter 
(D-CLGSA) 
(mm)

1 165.0 200 200 150 16 261.0 80 80 80
2 124.0 200 200 125 17 72.0 80 80 80
3 118.0 150 125 125 18 373.0 80 100 80
4 81.0 150 125 125 19 98.0 80 125 80
5 134.0 150 100 100 20 110.0 80 80 80
6 135.0 100 100 80 21 98.0 80 80 80
7 202.0 80 80 80 22 246.0 80 80 80
8 135.0 100 80 80 23 174.0 80 80 80
9 170.0 80 80 80 24 102.0 80 80 80
10 113.0 80 80 80 25 92.0 80 80 80
11 335.0 80 80 80 26 100.0 80 80 80
12 115.0 80 80 80 27 130.0 80 80 80
13 345.0 80 80 80 28 90.0 80 80 80
14 114.0 80 80 80 29 185.0 80 100 80
15 103.0 100 80 80 30 90.0 80 80 80

Cost (won) – 179,428,600 179,142,700 176,100,800
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Bakryun and its graphical analysis is given in Fig. 3. It dis-
plays the D-CLGSA algorithm's application to the Bakryun 
Network, showing a substantial initial drop in design cost 
followed by stabilization. This suggests that D-CLGSA rap-
idly achieves an efficient solution, after which it consistently 
upholds performance levels.

5.6 � Balerma WDN

The Balerma WDN was initially proposed by Reca et al. in 
2006 [73]. The network consists of four reservoirs, eight 
loops, four hundred fifty-four pipes, and four hundred forty-
three demand nodes. The absolute roughness coefficient, R, 
is 0.0025 mm for each pipe, and the minimum head require-
ment for each node is 20 m.

Table 8 provides the cost data for 10 different pipe diam-
eters within the range of 113.0–581.8 mm, while consider-
ing the demand values and pipe parameters suggested by 

Geem [48]. There is an overall 10454 feasible solution for the 
absolute cost designing of the Balerma WDN. Pipe diam-
eters are extracted from an auxiliary materials site of the 
American Geophysical Union (ftp://​ftp.​agu.​org/​wr/​2005w​
r0043​83/).

The penalty cost is set at 5.2 million euros for this 
network. The pressure head obtained by D-CLGSA lies 
between 24.3 and 38.9. Table 19 presents a comparison 
of the optimization results with those obtained by the pro-
posed D-CLGSA. The D-CLGSA algorithm achieves the 
second-lowest cost, taking 25,000 iterations and 18 min on 
an Intel i3 processor. The BGSA algorithm achieves the low-
est cost; however, it requires 50,000 function evaluations to 
do so. Figure 3 presents the D-CLGSA's performance on 
the Balerma network through graphical analysis, confirms 
that the algorithm efficiently reaches an optimal solution and 
then maintains consistent performance.

Table 16   Statistical analysis of cost-optimization in GoYang network

1000 won≈ 1 US dollar

Sl No Method Minimum 
cost ($ 
million)

Maximum 
cost ($ 
million)

Average 
cost ($ 
million)

Maximum 
evaluations

1 GA 1.774 1.82 179.5 60,000
2 BGSA 1.790 1.83 1.82 20,000
3 HS 1.772 1.79 1.78 40,000
4 BPSO 1.81 1.81 1.81 20,000
5 AEFA 1.84 1.84 1.84 20,000
6 GWO 1.78 1.79 1.79 20,000
7 CAJA 1.77 1.89 1.83 22,800
8 SCA 1.92 NA NA 56,500
9 ALO 1.771 1.775 1.773 15,350
10 D-CLGSA 1.76 1.765 1.76 10,000

Table 17   Comparative data 
for diameters of pipes for the 
BakRyun network

Pipe Number Pipe Length (m) 
[48]

Diameter (original) 
(mm) [48]

Diameter (GA) 
(mm) [52]

Dia. (D-CLGSA) (mm)

1 200.0 1100 1100 1100
2 470.0 1100 1100 1000
3 80.0 1100 1000 1000
4 370.0 900 900 1000
5 410.0 900 900 900
6 540.0 800 700 700
7 530.0 600 700 700
8 130.0 500 300 300
9 470.0 500 300 300
Cost (won) - 954,920,000 903,620,000 903,620,000

Table 18   Statistical analysis of cost-optimization in the BakRyun net-
work

Sl No Method Minimum 
cost ($ 
million)

Maximum 
cost ($mil-
lion)

Aver-
age cost 
($million)

Maximum 
evaluations

1 HS 0.91 0.93 0.926 20,000
2 GA 0.903 0.94 0.927 10,000
3 BGSA 1.02 1.34 1.30 10,000
4 BPSO 1.56 1.67 1.60 20,000
5 AEFA 1.99 1.99 1.99 20,000
6 GWO 0.99 0.99 0.99 20,000
7 CLJA 0.911 NA NA 22,000
8 SCA 1.20 1.23 1.22 32,500
9 ALO 0.910 1.13 1.02 7200
10 D-CLGSA 0.903 0.912 0.907 5000

ftp://ftp.agu.org/wr/2005wr004383/
ftp://ftp.agu.org/wr/2005wr004383/
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6 � Conclusion

This study introduces a discrete version of the CLGSA algo-
rithm for solving optimization problems. The experiment is 
divided into two parts. In the first part, the proposed algo-
rithm is evaluated on a standard benchmark consisting of 
unimodal, multimodal, composite, and special binary func-
tions. The robustness of the algorithm is tested by evaluating 
the results on higher dimensions. The numerical, statistical, 
and graphical ways are used to demonstrate the results and 
to compare them with 12 other heuristic algorithms. The 
results show that the proposed algorithm is more efficient 
than others and can achieve the solution in less computa-
tional time. In the second set of experimentation, the algo-
rithm is applied to minimize the cost of six different water 
distribution networks. These networks include Two-loop, 
Hanoi, New-York City, GoYang, BakRyun, and Balerma. 
The results are compared with metaheuristic algorithms 
using a performance indicator that uses minimum function 
evaluation and cost value of the network. The D-CLGSA 
algorithm was able to solve the Two-loop network with a 
cost of $0.406 million in 5000 evaluations. Similarly, the 

Hanoi network was solved with a cost of $6.05 million in 
12,010 evaluations, the New York City network was solved 
with a cost of $36.6 million in 2100 evaluations, the GoY-
ang network was solved with a cost of 176,100,800 won in 
10,000 evaluations, the BakRyun network was solved with 
a cost of 903,620,000 won in 5000 evaluations, and the 
Balerma network was solved with a cost of €2.01 million 
in 25,000 evaluations. The proposed D-CLGSA approach 
is shown to be capable of achieving the minimum cost unit 
with the minimum number of function evaluations. Among 
the six networks, the D-CLGSA approach provides the least 
cost for five networks when compared to other algorithms.

In summary, the proposed D-CLGSA algorithm exhibits 
the capacity to explore optimal solutions, particularly in 
the context of water network design. While demonstrating 
notable performance in the assessed scenarios, it holds 
potential as a valuable tool for optimizing water distribu-
tion networks, and with minor adjustments, it could be 
applied to various other network designs. Nonetheless, its 
efficiency may vary across different optimization problem 
types, prompting the need for future investigations into 
its adaptability to a broader array of problem domains. 
It is worth noting that the performance of the D-CLGSA 
approach may be influenced by parameter choices, since 
our evaluation employed finely tuned parameters. Subse-
quent research could delve into a comparative analysis of 
alternative penalty function approaches, addressing param-
eter sensitivity for a more robust application. Additionally, 
future developments for D-CLGSA include its combina-
tion with real-time data integration and multi-objective 
optimization to broaden its utility in various scientific and 
engineering domains. Furthermore, merging D-CLGSA 
with deep learning techniques could revolutionize its 
capability for intricate pattern detection and prediction 
in complex optimization scenarios. This advancement is 
anticipated to elevate the algorithm's functionality, facili-
tating smarter and self-reliant optimization solutions in a 
spectrum of high-tech arenas.

Table 19   Statistical analysis of cost-optimization in the Balerma net-
work

Sl No Method Minimum 
cost (€ 
million)

Maximum 
cost (€ 
million)

Average 
cost (€ 
million)

Maximum 
Evalua-
tions

1 GA 3.738 3.843 3.754 100,000
2 BGSA 1.777 2.675 1.977 50,000
3 HS 2.201 2.721 2.653 100,000
4 BPSO 4.777 4.777 4.777 50,000
5 AEFA 4.329 4.678 4.456 25,000
6 GWO 4.342 4.342 4.342 50,000
7 CLJA 4.122 NA NA 72,000
8 SCA 3.120 3.981 3.552 42,700
9 ALO 3.864 3.952 3.910 37,420
10 D-CLGSA 2.0189 2.0196 2.0191 25,000
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Appendix A

Functions: Uni-modal (F1- F7), Multimodal (F8-F16), Composite (F17-F22).
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