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Abstract
Towards Effective and Efficient Semantic Segmentation

by Bowen Zhang

Semantic segmentation, a crucial per-pixel dense prediction task, requires both
accuracy and efficiency for effective application in real-world scenarios. This thesis
introduces a series of novel methods that address the challenges of semantic seg-
mentation, focusing on achieving high performance while considering computational
efficiency.

First, we propose a dynamic neural representational decoder (NRD) to address the
heavy computational costs associated with the decoder’s upsampling process. Tradi-
tional approaches rely on feature pyramid networks or dilated backbones to obtain
high-resolution feature maps for semantic segmentation using convolutional network
backbones. Instead, we leverage the smoothness prior in the semantic label space
and utilize compact neural networks to represent semantic predictions at a patch-
level granularity. This significantly reduces computational costs while maintaining
competitive performance.

Second, considering the recent advancements in vision transformer networks (ViT),
which demonstrate superior performance compared to traditional fully convolution-
based networks, this thesis introduces a state-of-the-art decoder framework called
Attention-to-Mask (ATM). The ATM leverages attention mechanisms to generate bi-
nary masks for semantic segmentation. This decoder not only achieves high perfor-
mance but also exhibits lightweight characteristics. Additionally, to address the com-
putational cost and redundancy associated with ViT backbones, a Shrunk structure
is proposed to enhance efficiency while maintaining the effectiveness of the ATM.

Finally, despite Vision transformers achieving leading performance in various vi-
sual tasks, they still suffer from high computational complexity. This issue becomes
more pronounced in dense prediction tasks like semantic segmentation, where high-
resolution inputs and outputs entail a larger number of tokens involved in computa-
tions. While direct token removal has been discussed for image classification tasks, it
cannot be extended to semantic segmentation due to the requirement of dense pre-
dictions for every patch. To address this challenge, we propose a novel method called
Dynamic Token Pruning (DToP) for semantic segmentation, based on the early exit
of tokens. Inspired by the human coarse-to-fine segmentation process, we naturally
partition the widely adopted auxiliary-loss-based network architecture into multiple
stages, with each auxiliary block grading the difficulty level of each token. By lever-
aging this approach, we can make early predictions for easy tokens, eliminating the
need to complete the entire forward pass. Experimental evaluations reveal that the
proposed DToP architecture reduces, on average, 20%-35% of the computational cost
for current semantic segmentation methods based on plain vision transformers, all
while maintaining accuracy.

The effectiveness of the proposed methods is extensively evaluated on benchmark
datasets, demonstrating their efficiency and accuracy in achieving state-of-the-art se-
mantic segmentation results.

http://www.adelaide.edu.au
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Chapter 1

Introduction

Semantic segmentation is a critical computer vision task that focuses on predicting
object categories for each pixel in an image. While the concept behind this task
is straightforward, its dense prediction nature poses a challenge in achieving both
accurate predictions and computational efficiency.

The pioneering work of Fully Convolutional Networks (FCN) [Long et al., 2015a]
introduced a widely adopted framework for semantic segmentation. This framework
revolutionized the field by combining a deep convolutional neural network (CNN) as
the encoder with a segmentation-oriented decoder, enabling the production of dense
predictions. One key advantage of this architecture is the utilization of pre-trained
classification models as encoders. These models, trained on large-scale datasets for
image classification tasks, possess powerful feature extraction capabilities. By incor-
porating these pre-trained encoders into semantic segmentation methods, the encoder
component effectively performs the bulk of semantic interpretation. Consequently,
the segmentation-oriented decoder requires fewer computational resources, leading to
improved computational efficiency. The effectiveness of semantic segmentation meth-
ods is largely dependent on the ability to adapt the encoder structure in a robust and
efficient manner. By fine-tuning the encoder, we can achieve improved alignment with
the specific requirements of semantic segmentation, thereby leveraging the valuable
knowledge and representations acquired from pre-trained classification models. This
adaptation process plays a pivotal role in attaining precise and meaningful predictions
in various semantic segmentation tasks.

The primary objective of this thesis is to concentrate on the development of de-
coder structures that can be seamlessly integrated with different types of backbones
for the semantic segmentation task. Additionally, we aim to explore the subsequent
tasks that arise as a result of the semantic segmentation process. By addressing the
design of the decoder structures, we seek to enhance the overall performance and
efficiency of semantic segmentation models across diverse applications and datasets.

1.1 Semantic segmentation decoder for pyramid backbone

Classic classification models like ResNet [He et al., 2016b] have a pyramid structure,
where the feature map resolution decreases as the model goes deeper to achieve a
larger receptive field, essential for classification. However, this downsized feature map
is not suitable for semantic segmentation, which requires pixel-level prediction. To ad-
dress this challenge, previous methods [Chen et al., 2017a,b, 2018a; Zhao et al., 2017a]
adopt dilation convolution in the encoder to acquire a higher-resolution feature map
while maintaining a large receptive field. Alternatively, other methods [Kirillov et al.,
2019; Li et al., 2020b; Lin et al., 2017a; Yuan et al., 2020] employ a structure similar to
Feature Pyramid Network (FPN) [Lin et al., 2017b], gradually upsampling, stacking,
and merging feature maps from multiple levels to obtain a larger and semantically-rich
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feature map. However, the dilation convolution approach significantly increases the
computational cost, often doubling or tripling it. On the other hand, FPN-related
methods generally have weaker performance and complex structures compared to di-
lation convolution methods. As a result, the necessity arises to create a decoder that
efficiently leverages the feature maps produced by pyramid-structured encoders, all
while maintaining a balance between performance and computational efficiency. More
precisely, there’s a requirement for an upsampling algorithm capable of closing the dis-
tance between high-level, semantically dense yet small-resolution feature maps, and
low-level, semantically lacking but large-resolution feature maps. In Chapter 3, we
leverage the expressive power of dynamic neural networks and propose a lightweight
decoder head that can perform efficient upsampling while maintaining good perfor-
mance. Our approach aims to address the challenges associated with feature map
fusion and resolution enhancement in semantic segmentation models.

1.2 Semantic segmentation decoder for plain backbone

The emergence of the Transformer structure has revolutionized the field of computer
vision, particularly with the introduction of the Vision Transformer (ViT) [Dosovitskiy
et al., 2021b]. ViT distinguishes itself from CNN-based encoders in two fundamental
ways. Firstly, ViT incorporates global attention at every token, enabling a global re-
ceptive field that encompasses every location in the feature map. This global attention
mechanism allows ViT to capture long-range dependencies effectively. Secondly, ViT’s
global attention eliminates the need for downsampling in the feature map, thereby
preserving a high resolution throughout the network. In contrast, pyramid-structured
encoders heavily rely on downsampling to expand the receptive field. The unique com-
bination of global attention and absence of downsampling has contributed to ViT’s
widespread popularity and improved performance, establishing it as a "plain" struc-
tured model. However, the introduction of new encoder structures like ViT brings
forth new challenges. There is a pressing need to develop a decoder specifically tai-
lored to the ViT encoder structure, capable of effectively harnessing its unique global
attention and plain structure.

There are existing works that targeted solving this problem in Lin et al. [2022];
Ranftl et al. [2021]; Strudel et al. [2021]; Zheng et al. [2021a]. In Chapter 4, we propose
a simple yet highly effective mechanism to directly convert the global attention in
transformer layers into per-category binary masks. This innovative approach allows
the decoder to efficiently utilize the global attention information from ViT and produce
accurate per-category predictions. By leveraging this mechanism, we achieve a decoder
that strikes a balance between computational efficiency and performance, enabling
effective semantic segmentation with ViT-based models.

1.3 Efficient pruning for semantic segmentation

Dense prediction tasks like semantic segmentation often face efficiency challenges as
they require predictions for each input pixel location. This makes real-time inference
for semantic segmentation more challenging compared to classification tasks. Conse-
quently, achieving efficient semantic segmentation has been a persistent issue in the
field. Although the introduction of ViT backbones has improved the semantic in-
terpolation capabilities, ViT structures tend to have redundancy and require more
computational resources compared to pyramid counterparts. In the realm of classifi-
cation tasks, there exist various methods [Liang et al., 2022b; Rao et al., 2021; Yin
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et al., 2022] that employ different strategies to reduce the number of tokens as the
network goes deeper. These methods are plausible in classification tasks since only the
class token is necessary for classification purposes. However, in the context of dense
prediction, it is not feasible to simply discard patch tokens, as semantic segmentation
requires per-pixel predictions. Hence, there is still ample room for exploration in de-
veloping efficient structures on ViT backbones specifically for semantic segmentation
tasks.

In Chapter 5, we introduce a novel pruning routine aimed at significantly reduc-
ing the computational cost during inference. Inspired by the human coarse-to-fine
segmentation process, we divide the commonly used auxiliary-loss-based network ar-
chitecture into multiple stages, where each auxiliary block assesses the difficulty level
of each token. By doing so, we can make early predictions for easy tokens, avoiding the
need to complete the entire forward pass. This approach allows us to reduce the com-
putational cost of existing trained semantic segmentation methods by an impressive
20%-35% without compromising performance.

To summarize, this thesis presents two innovative decoder methods for semantic
segmentation, specifically addressing the major concerns in the most commonly used
encoders (pyramid and plain). Additionally, we thoroughly explore both structural
improvements and pruning techniques to enhance inference efficiency and achieve su-
perior results.
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Chapter 2

Literature review

2.1 Semantic Segmentation on pyramid encoders

2.1.1 Encoder-decoder Framework

The encoder-decoder architecture is widely used to solve the semantic segmentation
task, and almost all the mainstream semantic segmentation methods can be cate-
gorized into this family. Typically, the encoder gradually reduces the resolution of
feature maps and extracts semantic features, while the decoder is applied to the out-
put features of the encoder to decode the desired semantic labels and recover the
spatial resolution. This thesis focuses on the decoder.

2.1.2 Neural network representations

Recently, many works [Mescheder et al., 2019; Peng et al., 2020; Sitzmann et al., 2020]
exploit neural networks to represent 3D shapes, which follow the idea that a 3D shape
can be represented with a classification model and the 3D shape can be restored by
forwarding the 3D coordinates through the classification network. These methods can
be viewed as representing the point cloud data with the neural network’s parameters.

2.1.3 Dynamic filter networks

Different from traditional convolutions whose filters are fixed during inference once
learned, the filters are dynamically generated by another network (namely, the con-
troller). This idea was proposed by [Jia et al., 2016], which enlarges the capacity
of the network and captures more content-dependent information such as contextual
information. Recently, CondInst [Tian et al., 2022] makes use of dynamic convolu-
tions to implement the dynamic mask heads, which are used to predict the masks
of individual instances. In this thesis, we follow in this vein for a different purpose,
which is to dynamically generate the parameters of the networks representing local
label masks so as to produce high-resolution semantic segmentation results.

2.1.4 upsampling for semantic segmentation

The most commonly used bilinear upsampling can be viewed as the simplest decoder,
which assumes that the semantic label maps are smooth to a large extent and the
linear interpolation is sufficient to approximate them. Thus, using bilinear upsampling
here is effective when the semantic label maps are simple, but the performance is
not satisfactory if the label maps are complicated. DeconvNet [Noh et al., 2015]
introduces deconvolutional layers in its decoder to step-by-step recover the resolution
of the prediction, which can result in much better performance. UPerNet [Xiao et al.,
2018] uses an FPN-like structure to fuse feature maps of different scales, and obtains
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high-resolution feature maps. DeepLabv3+ [Chen et al., 2018a] designs an effective
decoder module that makes use of both encoder-decoder structure and dilation/atrous
convolution, which is still one of the most competitive segmentation methods to date,
especially in the trade-off between accuracy and computation complexity. CARAFE
[Wang et al., 2019] first upsamples feature maps with parameter-free methods and
then applies a learnable content-aware kernel mask to the upsampled feature maps.
Thus far, despite achieving some success, we believe that there is much room for
improvement in terms of taking full advantage of label space prior and designing
highly effective and compact decoders for semantic segmentation. The proposed NRD
attempts to narrow this gap.

2.2 Semantic Segmentation on ViT encoders

2.2.1 Transformer for Vision

Attention-based transformer models have emerged as powerful alternatives to standard
convolution-based networks in the realm of image classification tasks. The original
ViT [Dosovitskiy et al., 2021b] represents a plain, non-hierarchical architecture. How-
ever, there have been several advancements in the field of hierarchical transformers,
such as PVT [Wang et al., 2021a], Swin Transformer [Liu et al., 2021], TWINS [Chu
et al., 2021], SegFormer [Xie et al., 2021], and P2T [Wu et al., 2022b]. These hier-
archical transformer models inherit certain design elements from convolution-based
networks, including hierarchical structures, pooling, and downsampling with convo-
lutions. Consequently, they can be seamlessly employed as direct replacements for
convolutional-based networks and can be coupled with existing decoder heads for
tasks such as semantic segmentation.

2.2.2 Decoders for ViT encoders

In dense prediction tasks like semantic segmentation, high-resolution feature maps
generated by the backbone play a crucial role. In typical hierarchical transformer
models, techniques such as FPN [Lin et al., 2017b] or dilated backbone are employed
to generate high-resolution feature maps by merging features from different levels.
However, when it comes to a plain, non-hierarchical transformer backbone, the res-
olution remains the same across all layers. SETR [Zheng et al., 2021a] proposed a
straightforward approach to address segmentation tasks by treating transformer out-
puts from the base model in a sequence-to-sequence perspective. Segmenter [Strudel
et al., 2021] combines class embeddings and transformer patch embeddings and ap-
plies several self-attention layers on the combined tokens to learn discriminative em-
beddings. In their approach, the class tokens are used as input to the ViT backbone,
resulting in increased computational complexity. In contrast, our SegViT introduces
the class tokens as input to the ATM, the Attention-to-Mask module, thereby reducing
computational costs while still benefiting from the integration of class tokens.

2.2.3 Continual Learning for semantic segmentation

Continual learning (CL) aims to address the issue of forgetting and maintaining the
performance on previously learned classes while continuously learning new classes [Chen
and Liu, 2016]. Most CL methods propose regularization techniques for convolution-
based networks [Douillard et al., 2020; Kang et al., 2022; Li and Hoiem, 2018; Peng
et al., 2021] or expand the network architectures to accommodate new tasks [Yan
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et al., 2021], thereby avoiding the need to store and replay old data. In recent years,
efforts have also emerged to prevent forgetting in Transformer models. Dytox [Douil-
lard et al., 2022] dynamically learns new task tokens, which are then utilized to make
the learned embeddings more relevant to the specific task. Lifelong ViT [Wang et al.,
2022a] and contrastive ViT [Wang et al., 2022b] introduce cross-attention mechanisms
between tasks through external key vectors, and they slow down the changes to these
keys to mitigate forgetting. Despite the use of complex mechanisms to prevent for-
getting, these methods still require fine-tuning of the network for new classes, which
can result in interference with previously learned knowledge.

In the field of semantic segmentation, recent research has been devoted to ad-
dressing the forgetting issue in continual learning. However, in addition to forgetting,
continual semantic segmentation (CSS) also encounters the problem of ‘background
shift.’ This refers to the situation where foreground object classes from previous tasks
are mistakenly classified as background in the current task [Cermelli et al., 2020].
REMINDER [Phan et al., 2022] tackles forgetting in CSS by utilizing class similarity
to identify the classes that are more likely to be forgotten. It then focuses on revising
those specific classes to mitigate the forgetting problem. RCIL [Zhang et al., 2022b]
introduces a two-branch convolutional network, with one branch frozen and the other
trained to prevent forgetting. At the end of each learning step, the trainable branch is
merged with the frozen branch, which can introduce model interference. However, it is
worth noting that existing CSS and CL techniques typically involve fine-tuning certain
parts of the network dedicated to the old tasks. Unfortunately, this fine-tuning process
can lead to forgetting as the model diverges from the previously learned solution.

2.3 Pruning for Semantic segmentation

2.3.1 Token Reduction

Given that the computational complexity of vision transformers roughly scales quadrat-
ically with the length of input sequences, reducing the number of tokens appears to
be a direct method for lowering computation expenses. DynamicViT [Rao et al.,
2021] observes that an accurate image classification can be obtained by a subset
of most informative tokens and proposes a dynamic token specification framework.
EViT [Liang et al., 2022b] demonstrates that not all tokens are attentive in multi-
head self-attention and reorganizes them based on the attentiveness score with the
[cls] token. A-ViT [Yin et al., 2022] computes a halting score for each token using the
original network parameter and reserves computing for only discriminative tokens.

These token reduction approaches are carefully designed for image classification
based on the intuition that removing uninformative tokens (e.g . backgrounds) yields a
minor negative impact on the final recognition. However, things changed in semantic
segmentation as we are supposed to make predictions on all image patches. Liang et
al . [Liang et al., 2022a] develop token clustering/reconstruction layers to decrease the
number of tokens at middle layers and increase the number before the final predic-
tion. Lu et al . [Lu et al., 2023] introduced an auxiliary PolicyNet before transformer
layers to guide the token merging operation in regions with similar content. Sparse-
ViT [Chen et al., 2023] introduced a pruning routine on Swin Transformer for dense
prediction tasks. Differently, we perform token reduction by finalizing the prediction
of easy tokens at intermediate layers and reserving computing only for hard tokens in
a dynamic manner.
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2.3.2 Efficient semantic segmentation methods

In image classification, DVT [Wang et al., 2021b] determines the patch embedding
granularity and generates different token numbers based on varying recognition dif-
ficulties at the image level. Easy images can be accurately predicted with a mere
number of tokens, and hard ones need a finer representation. Going one step further,
we base DToP on the assumption that image patches with varying contents repre-
sented by tokens are of dissimilar recognition difficulties in semantic segmentation.
We can halt easy tokens and reserve only hard tokens for subsequent computing by
making early predictions via auxiliary blocks at intermediate layers. As we directly
combine the early predictions for easy tokens to form the final recognition results,
DToP yields no information loss during token reduction and thus requires no token
reconstruction operation, compared with the method proposed by Liang et al . [Liang
et al., 2022a].

DToP draws inspiration from the deep layer cascade (LC) [Li et al., 2017] but
stands out due to two distinct features. Firstly, unlike LC, which is applied to pyra-
mid convolutional neural networks, DToP is utilized with plain vision transformers.
The inherently flexible architecture of vision transformers allows DToP to lower com-
putation costs without the need for altering the network’s architecture or its opera-
tors, in contrast to LC which necessitates specialized region convolution. Secondly,
DToP retains the k highest confidence tokens for each semantic category for further
computation, ensuring that even categories that are typically easier do not termi-
nate prematurely. This approach aids in the more effective utilization of contextual
information.
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Chapter 3

Dynamic Neural Representational
Decoders for High-Resolution
Semantic Segmentation

3.1 Introduction

In the field of semantic segmentation, overcoming the issue of diminished spatial
resolution caused by downsampling within CNN architectures is commonly tackled
through the implementation of upsampling decoders. These solutions vary from
straightforward bilinear upsampling to elaborate designs that incorporate multi-level
features, alongside the employment of dilation convolutions for preserving feature map
resolution with a trade-off in computational load. To contend with this challenge, we
introduce our novel method. Moving forward to articulate the consequences and prac-
ticalities of these techniques, let’s explore an illustrative example involving an 8 × 8
local patch within a binary semantic label space, denoted by P ∈ {0, 1}64.

Let us consider an 8 × 8 local patch on a binary semantic label space, denoted
by P ∈ {0, 1}64. If we do not consider any structural correlations in the patch, there
would be 264 possibilities for this local patch. However, it is clear to see, for any
natural images, the vast majority of the possibilities never exist in the real label map
and only a tiny fraction of them are really possible (see Fig. 3.1). Considering the
redundancy in the labels, most existing decoders that do not explicitly take this into
account would be sub-optimal. This motivates us to design a much more effective
decoder by exploiting the prior.

A simple approach is dimensionality reduction techniques. As shown in [Tian
et al., 2019], the authors first apply principal component analysis (PCA) to the label
patches and compress them into low-dimension compact vectors. Next, the network is
required to predict these low-dimension vectors, which are eventually restored into the
semantic labels by inverting the PCA process. Their method achieves some success.
However, the simplicity and linearity assumption of PCA also limits its performance.

The semantic label masks for natural images are not random and follow some
distributions, as shown in Fig. 3.1. Therefore, a good mask representation/decoder
must exploit this prior. For computational efficiency, we also want the decoder to be
in a compact form. Thus, we require the prior to be effectively learnable from data.
Recently, many works [Mescheder et al., 2019; Peng et al., 2020; Sitzmann et al.,
2020] exploit neural networks to represent 3D shapes. The work of [Mitchell, 1997]
found that neural networks enjoy the inductive bias of smooth interpolation between
data points, which means that for two points of the same label, the neural networks
tend to assign the same label to the points between them as well. As a result, we
can conclude that the above idea of representing 3D shapes with neural networks can
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Figure 3.1. The overall concept of our neural representations. The
top row is some examples of the semantic label patches. In the neural repre-
sentations, each patch is represented with a neural network gθ(·), as shown
in the bottom of this figure. The semantic label patch can be recovered by
forwarding the coordinate maps (denoted by x and y in the figure) and the
guidance maps (i.e., m in the figure) through the network. As stated in our
text, using neural representations for these label patches can implicitly take

advantage of the smoothness prior in the semantic label patch.

implicitly leverage the local smoothness prior. Therefore, inspired by these works, we
can also represent the local patches of semantic labels with neural networks.

To be specific, as shown in Fig. 3.1, we represent each local label patch by a com-
pact neural network gθi with a few convolution layers interleaved with non-linearities.
The semantic labels of a local patch can be obtained by forwarding the correspond-
ing network with (x, y)-coordinate maps and a guidance map m (explained later)
as inputs. Furthermore, the parameters θ of these neural networks, which repre-
sent the local label patches, can be dynamically generated with the encoder network
in FCNs, and each location on the encoder’s output feature maps is responsible for
generating the parameters of the neural network representing the specific local label
patch surrounding it. The dynamic network makes it possible to incorporate the neu-
ral representations into the conventional encoder-decoder architectures and enables a
compact design of the decoder, resulting in an end-to-end trainable framework. This
avoids the separable learning process as done in [Tian et al., 2019].

Thus, our method is termed dynamic neural representation decoder (NRD) for
semantic segmentation. We summarize our main contributions as follows.

• We propose a novel decoder that is effective and compact for semantic segmen-
tation, to recover the spatial resolutions. For the first time, we represent the
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Figure 3.2. (a) Accuracy vs. computational cost on the validation set of
Cityscapes. Our proposed NRD can achieve a better trade-off. (b) Comparison
between our proposed NRD and the decoder in DeepLabV3+ [Chen et al.,
2018a]. We can see that NRD is capable of generating improved boundaries.

local label patches using neural networks and make use of dynamic convolutions
to parametrize these neural networks.

• Different from previous methods, which often neglect the redundancy in the
semantic label space, our proposed decoder NRD can better take advantage of
the redundancy, and thus it is able to achieve on par or improved accuracy with
significantly reduced computational cost. As shown in Fig. 3.2a, we achieve a
better trade-off between computational cost and accuracy compared to previous
methods.

• Compared with the decoder used in the classic encoder-decoder model DeeplabV3+
[Chen et al., 2018a], we achieve an improvement of 0.9% mIoU on the Cityscapes
dataset with less than 30% computational cost. Moreover, on the trimaps, where
only the pixels near the object boundaries are evaluated, a 1.8% improvement
can be obtained. This suggests that NRD can substantially improve the quality
of the object boundaries.

Moreover, NRD is even more significant than some methods that use dilated
encoders, which usually require 4× more computational cost than ours with
similar accuracy. For example, NRD achieves 46.09% mIoU on the competitive
ADE20K dataset, which is comparable to that of DeepLabV3+ with a dilated
encoder (46.35%) but with only 30% computational cost. We also benchmark
our method on the Pascal Context dataset and show excellent performance with
much less computational cost.

3.2 Our Method

3.2.1 Overall Architecture

Given an input image I ∈ RH×W×3, the goal of semantic segmentation is to provide
the pixel-level classification score map of the shape of H ×W × C, where C equals the
number of categories to be classified into. As mentioned above, mainstream semantic
segmentation methods are often based on encoder-decoder architectures. We also
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follow this line. Fig. 3.3 shows the overall framework of the proposed model for
semantic segmentation.

Our work focuses on the decoder part, and thus we simply make our encoder the
same as DeeplabV3+ [Chen et al., 2018a]. The encoder consists of a CNN backbone
(e.g ., ResNet) and some optional modules such as ASPP [Chen et al., 2017b], which
can enhance the output features. By forwarding an input image I ∈ RH×W×C through
the encoder, it generates feature maps with the shape of H/r × W/r ×D, where D is
the number of the channels of the feature maps and r is the downsampling ratio of
the encoder.

The downsampling ratio is determined by the down-sampling operators in the
encoder and can be adjusted by reducing the stride of these down-sampling operators.
Dilated convolutions are often used to compensate for the reduction of receptive fields
after reducing the strides, with the price of computation overhead. An encoder that
reduces the strides and uses dilation convolutions is often referred to as a dilated
encoder. For example, an encoder based on the standard ResNet backbone produces
the feature maps with r = 32. Most methods [Chen et al., 2018a; Yuan et al., 2020;
Zhang et al., 2018] dilate the encoder and reduce r to 16 or 8. By using the dilated
encoder, these methods can output higher-resolution results while the dilated encoder
would significantly increase the computational cost. In our work, we do not dilate
the encoders (e.g ., using r = 32) for faster computation and our proposed NRD is
expected to better predict the semantic mask at a high resolution.

Let us denote the encoder’s output feature maps by F ∈ R
H
32

×W
32

×D, whose res-
olution is 1/32 of the input image and the desired semantic label map (i.e., the final
results). Thus, we make each spatial location on F responsible for a 32×32 local patch
surrounding the location and predict the local label map of the patch with our pro-
posed NRD. Finally, the label maps of these patches are merged into the full-resolution
segmentation results.

3.2.2 Dynamic Neural Representational Decoders (NRD)

In this section, we provide the details of our NRD and how we generate the parameters
for it. The core idea here is to make use of a neural network to represent a local
label patch. Thus, given a ground-truth semantic label map Y ∈ {0, 1, ..., C −
1}H×W , following the convention, we first convert it to the one-hot label map Y ′ ∈
{0, 1}H×W×C , where C is the number of classes. Next, Y ′ is divided into a number
of H ′ ×W ′ local patches, and let P ∈ Rr×r×C be one of the patches, where H ′ and
W ′ are the height and width of the encoder’s outputs and r is 32 in our work. Let
us take Cityscapes as an example, and thus we have C = 19 and P ∈ R32×32×19.
Next, a compact network gθ(·) is designed to represent the local mask patch P , as
shown in Fig. 3.1. To be specific, in our experiment, gθ(·) is composed of three 1× 1
convolutions interleaved with the non-linearity ReLU. Except for the input and output
channels, all the hidden layers in gθ(·) have 16 channels. The output channels of gθ(·)
are equal to the number of classes (i.e., C).

To recover the local patch P , we apply gθ(·) to a (x, y)-coordinate map Q = [0 :
1
s : 1] × [0 : 1

s : 1] ∈ Rs×s×2, where [0 : 1
s : 1] is the range from 0 to 1 with step 1

s (s
is the desired upsampling rate, being 8 in this work ) and ‘×’ means the Cartesian
multiplication. Since gθ(·) is composed of 1×1 convolutions, the outputs of gθ(·) also
have size s × s and can be denoted as G ∈ Rs×s×19. As shown in Fig. 3.3-(b), gθ(·)
takes guidance maps m ∈ Rs×s×Cm as additional inputs. m is generated by applying
two convolutional layers to the low-level feature maps, which reduce the channels of
the feature maps to Cm, being 16 in this work. We use the same low-level feature
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maps as in DeepLabv3+, whose resolutions are 1/4 of the input image. Afterward, a
bilinear upsampling is used to upscale G by 4 times to obtain P ′ ∈ R32×32×19. Next, we
compute the loss between P ′ and P , which, through the back-propagation, adjusts the
network’s parameter θ so that P ′ is as similar to P as possible. In this way, the network
parameters θ can be viewed as the representation of the local semantic label patch
P . Although it is possible to remove the bilinear upsampling here and, by increasing
the resolution of Q and m, to make the network directly output the desired resolution
32×32, we do not adopt this because using bilinear is sufficient when the upsampling
factor is small (e.g ., being 4 here). We note that in the above case the network gθ(·) has
899 parameters in total (#weights = (2+16)·16(conv1)+16·16(conv2)+16·19(conv3)
and #biases = 16(conv1) + 16(conv2) + 19(conv3)).

As shown in previous works [Tian et al., 2019; Wang et al., 2018], each location
on the encoder’s output feature maps can encode the information of the local patch
surrounding it. Therefore, inspired by dynamic filter networks [Yu et al., 2018a], we
can use the decoder’s output features at each location to dynamically generate the
parameters of the representational network for the label patch of the location. To be
specific, given the encoder’s output feature maps F ∈ RH′×W ′×D, where H ′ = H/32,
W ′ = W/32 and D are height, width, and the number of channels of F .

Controller. We apply a 3×3 convolution with 512 channels, which is followed by
a 1×1 convolution to generate the parameters θ (shown as the ‘controller’ in Fig. 3.3).
The number of output channels of the convolution is equal to the number of parameters
in θ. The generated parameters are then split and reshaped into the weights and
biases in gθ(·), and then gθ(·) is forwarded to obtain the semantic prediction P ′.
P ′ is supervised by the ground-truth label patch P , making the whole framework
end-to-end trainable. The overall architecture is shown in Fig. 3.3.

3.3 Experiments

The proposed model is evaluated on three semantic segmentation benchmarks. The
performance is measured in terms of intersection-over-union averaged across the present
classes (mIoU). We also evaluate the performance near the object boundaries by cal-
culating mIoU on the trimap following [Chen et al., 2018a]. We evaluate our method
on the following benchmarks.

ADE20K [Zhou et al., 2017a] is a dataset that contains more than 20K images
exhaustively annotated with pixel-level annotation. It has 20, 210 images for training
and 2, 000 images for validation. The number of categories is 150.

PASCAL Context [Mottaghi et al., 2014b] is a dataset with 4, 998 images for
training and 5, 105 images for validation. We use default settings in [MMSegmen-
tation, 2020] that chose the most frequent 59 classes plus one background class (60
classes in total) as the targets.

Cityscapes [Cordts et al., 2016] is a benchmark for semantic urban scene parsing.
The training, validation, and test splits contain 2, 975, 500, and 1, 525 images with
fine annotations, respectively. All images from this dataset are 1024× 2048 pixels in
size.

Implementation details. We use ResNet-50 and ResNet-101 [He et al., 2016b]
as our backbone networks and initialize them with the ImageNet pre-trained weights.
The training and testing settings as well as data augmentations inherit the default
settings in [MMSegmentation, 2020] unless specified. Specifically, for all datasets, we
use ‘poly’ as our learning policy. The initial learning rate is set at 0.01, the weight
decay is set to 0.0005 for Cityscapes and ADE20K. For PASCAL Context, the initial
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Figure 3.3. The framework of our proposed decoder. (a) The proposed
NRD Module. (b) The details of one of the representational networks gθ(·).
As we can see, we apply the controller to the encoder’s output feature maps
and generates the parameters θ of the representational networks. Note that
each location on the encoder’s output feature maps generates a different set of
parameters, which correspond to the representational network of the local patch
surrounding the location. Thus we have H ′ × W ′ sets of parameters in total,
where H ′ and W ′ are the height and width of the encoder’s output, respectively.
Afterward, the representational networks are fed the (x, y)-coordinate maps
and guidance maps m to predict semantic label patches. The guidance maps
are generated by applying convolutions to low-level feature maps. We use the
same low-level feature maps here as in DeepLabv3+. Finally, these patches are

merged into the desired high-resolution segmentation results.

learning rate is 0.004 and the weight decay is 0.0001. We train ADE20K, PASCAL-
Context, and Cityscapes for 160k, 80k, and 80k iterations, with the crop size of
512×512, 480×480, and 512×1024, respectively. The training and testing environment
is on a workstation with four Volta 100 GPU cards. For test time augmentation, we
employ horizontal flip and multi-scale inference. The scale factors are {0.5, 0.75, 1.0,
1.25, 1.5, 1.75}.

3.3.1 Ablation Study

In this section, we conduct the ablation study to show the effectiveness of our proposed
NRD. Here, we first compare NRD with the decoder of DeeplabV3+ [Chen et al.,
2018a] since it is widely used in practice. Then, we compare it with other decoder
methods. Note that when these methods are compared, we use the same encoder for
them. Finally, we investigate the hyper-parameters of our model design.

Compared to the DeepLabV3+ decoder. Since we do not use dilation con-
volutions in our encoder, we also remove the dilation in the DeeplabV3+ encoder for
a fair comparison. The results are shown in Table 3.1. As shown in the table, with
exactly the same settings, NRD outperforms the decoder in DeeplabV3+ by 0.9%
mIoU on the Cityscpaes val. split with less than 1/3 computational cost (20.4 vs.
76.4 GFlops), and the total computational cost including the encoder and decoder
is reduced from 290.6 to 234.6 GFlops. In addition, on the trimap, NRD is 1.8%
mIoU better than the DeeplabV3+ decoder, which suggests that our method is able
to produce boundaries of higher quality.

Compared to the bilinear decoder. We also compare our method with the
simplest decoder which uses a 1 × 1 convolution to map the outputs of the encoder
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Table 3.1. Our proposed NRD vs. the DeepLabV3+ decoder and bilinear
decoder on the Cityscapes val. split. All models use the same encoder and are
trained with 84K iterations and 512× 1024 crop size. The GFlops is measured with
the original image size 1024 × 2048. All the GFlops in this paper are measured at

single-scale inference. GFlopsdec indicates the GFlops for decoders only.

Method Backbone Low-level GFlopsdec GFlops mIoU (%) Trimap mIoU (%)

Decoder ResNet-50 stage2 76.4 290.6 78.9 49.8
NRD (Ours) ResNet-50 stage2 20.4 234.6 79.8 (+0.9) 51.6 (+1.8)

Bilinear decoder ResNet-50 None 1.3 215.5 74.7 41.2
NRD (Ours) ResNet-50 None 2.6 216.8 78.2 (+3.5) 46.6 (+5.4)

Table 3.2. Comparison of different up-
sampling methods using ResNet50 as back-
bones on the Cityscapes val. split. All meth-
ods are trained for 84k iterations. The GFlops
is measured at single scale inference with a crop
size of 1024 × 2048. The proposed NRD out-

performs previous decoders.

Method GFlops Params mIoU (%)

CARAFE 203.0 36.3 72.1
DUC 336.1 110.8 74.7

NRD (Ours) 203.2 36.6 75.0

Table 3.3. Ablation results on the Cityscapes
validation set. Cr is the number of channels
of the 1 × 1 convolutions in gθ(·). Cm is the
number of channels of the guidance map. The
accuracy is not very sensitive to these param-
eters and in general 16 channels for both Cr,

Cm lead to marginally better results.

NRD variants

Cr 8 16 32 16 16 16
Cm 16 16 16 8 16 32

mIoU 79.4 79.8 79.6 79.5 79.8 79.0

to the desired segmentation predictions and then simply uses the bilinear upsampling
to upscale the predictions to the desired resolutions. Again, both encoders’ output
resolutions are 1/32 of the input image. To make a fair comparison, we also remove the
guidance map in NRD (e.g ., the low-level features). Thus, only coordinate maps are
taken as the input of NRD. As shown in Table. 3.1, NRD surpasses the bilinear decoder
by a large margin (+3.5% mIoU). Note that although NRD has a higher computational
cost than the bilinear decoder (1.3 vs. 2.6 GFlops), the overall computational cost is
almost the same (215.5 vs. 216.8 GFlops) as most of the computational cost is in the
encoder. Additionally, the mIoU on the trimap is improved by 5.4%.

Compared to other decoder methods. We also compare NRD with some other
decoder methods. ResNet-50 is used as the backbone and we do not use the dilated
encoders in all these methods. The results are shown in Table 3.2. As shown in the
table, compared to CARAFE [Wang et al., 2019], we improve the mIoU on Cityscapes
from 72.1% to 75.0% with similar computational complexity (203.0 vs. 203.2 GFlops)
and the number of parameters. In addition, compared to DUC [Wang et al., 2018],
which outputs multiple channels and uses the “depth-to-space” operation to increase
the spatial resolutions, our NRD is superior to it (75.0% vs. 74.7% mIoU) with only
60% computational complexity (203.2 vs. 336.1 GFlops) and ∼33% parameters.

Ablation study of architectures of NRD. Here, we investigate the hyper-
parameters of our NRD. Table. 3.3 shows the performance as we vary the number
of channels Cr of the representational network gθ(·). As we can see in the table,
the performance is not very sensitive to the number of channels (within 0.4% mIoU).
We also experiment by varying the number of channels Cm of the guidance map m.
As shown in Table. 3.3, using Cm = 16 can result in slightly better performance
than Cm = 8 (79.8% vs. 79.5% mIoU), but increasing Cm to 32 cannot improve the
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Table 3.4. NRD results with various inputs to the representational network gθ(·).
‘Guidance map’: use of the guidance map as the inputs to the representational network
or not; ‘Coord. map’: use of the coordinate maps or not. The experimental results are
evaluated on the Cityscapes val. split. We can see that the guidance map is critical to

the segmentation accuracy at the object boundaries (see the trimap mIoU).

Method Guidance map Coord. map mIoU (%) Trimap mIoU (%)

NRD ✓ 78.2 46.6
NRD ✓ 78.3 50.5
NRD ✓ ✓ 79.8 51.5

performance further.
Table. 3.4 shows the effect of the inputs to the representational network gθ(·). As

we can see, if no guidance maps are given and gθ(·) only takes as input the coordinate
maps, NRD can already achieve decent performance (78.2% mIoU), which is already
much better than the bilinear decoder as shown in Table. 3.1. In addition, if gθ(·)
only takes the guidance map as input, NRD can achieve similar performance (78.3%
mIoU). However, it can be seen that there is a significant improvement in the trimap
mIoU (+3.9% mIoU), which suggests that the guidance map plays an important role
in preserving the details. Finally, if both the coordinate maps and the guidance maps
are used, NRD can achieve the best performance (79.8% mIoU).

3.3.2 Comparisons with state-of-the-art methods

In this section, we compare our method with other state-of-the-art methods on three
datasets: ADE20K, PASCAL-Context, and Cityscapes.

ADE20K. Table 3.9 shows the comparisons with state-of-the-art methods on
ADE20K. Our method achieves 45.62% in terms of mIoU with ResNet-101 as the
backbone. It is 0.95% better than the recent SFNet [Li et al., 2020b], with the same
ResNet-101 backbone. Besides, due to the strong ability of NRD to recover the spatial
information, we do not need to use the multi-paths complex decoder as in SFNet, and
thus our method only spends 50% computational cost of SFNet. Our method is also
better than other methods with dilated encoders, including DMNet [He et al., 2019],
ANLNet [Zhu et al., 2019], CCNet [Huang et al., 2019] and EncNet [Zhang et al.,
2018], and needs only 20% ∼ 30% computational cost of these methods. Additionally,
by using a larger backbone ResNext-101, our performance can be further improved to
46.09% mIoU. Note that even with the larger backbone, our method still has much
lower computational complexity than other methods with dilated encoders. As a
result, we can achieve competitive performance among state-of-the-art methods with
significantly less computational cost.

PASCAL-Context. Table 3.6 shows the results on the PASCAL-Context dataset.
We follow HRNet [Sun et al., 2019] to evaluate our method and report the results un-
der 59 classes (without background) and 60 classes (with background). Our methods
achieve 54.1% (59 classes) and 49.0% (60 classes) mIoU. The results are even bet-
ter than the sophisticated high-resolution network HRNet with ∼50% computational
complexity (42.9 vs. 82.7 GFlops). Note that HRNet stacks some hourglass networks
and is much more complicated than ours. Our method also achieves better results
with less computational cost than other methods, as shown in the table.

Cityscapes. Table 3.7 shows the performance of our method on the Cityscapes
test split. We train our model with the trainval split and only the fine annotations.
As we can see, the proposed method can achieve competitive performance with much
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Table 3.5. Experiment results on the ADE20K val. split. The GFlops is measured at
single-scale inference with a crop size of 512×512. ‘ms’ means that mIoU is calculated us-
ing multi-scale inference. ∗ means that results are re-implemented by [MMSegmentation,
2020]. Note that compared to the DeepLabv3+, we achieve similar performance (46.09%
vs. 46.35% mIoU) with ∼ 30% computational complexity (87.9 vs. 255.1 GFlops). Speed
(frames per second, FPS) is measured with the same input size as the single scale infer-

ence on an RTX 3090 GPU.

Method Backbone Dilated encoder GFlops mIoU (%) mIoU ‘ms’ (%) FPS

PSPNet [Zhao et al., 2017b] ResNet-50 ✓ 178.8 41.68 42.78 30.01
PSANet [Zhao et al., 2018] ResNet-50 ✓ 194.8 41.92 42.97 25.60
EncNet [Zhang et al., 2018] ResNet-50 ✓ >100 - 41.11 33.34
CFNet [Zhang et al., 2019] ResNet-50 ✓ >100 - 42.87 -

RGNet [Yu et al., 2020a] ResNet-50 ✓ >100 - 44.02 -
CPNet [Yu et al., 2020b] ResNet-50 ✓ 208.6 43.92 44.46 27.96

DeepLabv3+∗ [Chen et al., 2018a] ResNet-50 ✓ 177.5 43.95 44.93 29.23

PSPNet [Zhao et al., 2017b] ResNet-101 ✓ 256.4 41.96 43.29 20.25
PSPNet [Zhao et al., 2017b] ResNet-269 ✓ - 43.81 44.94 -
PSANet [Zhao et al., 2018] ResNet-101 ✓ 272.5 42.75 43.77 18.11
EncNet [Zhang et al., 2018] ResNet-101 ✓ >180 - 44.65 21.89
CFNet [Zhang et al., 2019] ResNet-101 ✓ >180 - 44.89 -
CCNet [Huang et al., 2019] ResNet-101 ✓ >180 - 45.22 -
ANLNet [Zhu et al., 2019] ResNet-101 ✓ >180 - 45.24 -
GFFNet [Li et al., 2020c] ResNet-101 ✓ >180 - 45.33 -
DMNet [He et al., 2019] ResNet-101 ✓ >180 - 45.5 -

RGNet [Yu et al., 2020a] ResNet-101 ✓ >180 - 45.8 -
CPNet [Yu et al., 2020b] ResNet-101 ✓ 286.3 45.39 46.27 18.25

DeepLabv3+∗ [Chen et al., 2018a] ResNet-101 ✓ 255.1 45.47 46.35 19.74
SFNet [Li et al., 2020b] ResNet-50 83.2 - 42.81 27.64
SFNet [Li et al., 2020b] ResNet-101 102.7 - 44.67 21.95

EfficientFCN [Liu et al., 2020] ResNet-101 60.5 - 45.28 53.87
OCRNet [Yuan et al., 2020] HRNetV2-W48 164.8 - 45.66 16.39

NRD (Ours) ResNet-101 49.0 44.01 45.62 54.06
NRD (Ours) ResNeXt-101 87.9 44.34 46.09 34.88

less computational complexity. Compared to the recent RGNet [Yu et al., 2020a],
our method achieves comparable performance with less than 30% computational cost
(>1500 vs. 390.0 GFlops). Our method also has competitive performance with SFNet
less than 50% computational complexity (821.2 vs. 390 GFlops). In addition, it is
worth noting that our method based on ResNet-50 can have better performance than
ResNet-18 based SFNet (79.5% vs. 80.0% mIoU) while having even less computational
complexity (234.6 vs. 243.9 GFlops). This suggests that our proposed method has a
better speed-accuracy trade-off as shown in Fig. 3.2a.

3.4 More Evaluation and Demo results

3.4.1 Additional Evaluation Results

Evaluation on Cityscapes. 3.8 shows the comparison of mIOU performance for
different methods on Cityscapes val split. The GFlops and the mIOU performance are
all measured in the same structure implemented in [MMSegmentation, 2020]. NRD
performs better in terms of accuracy-computation trade-off. NRD usually has the
best performance among methods that are of similar computational cost. Even if
compared with the methods that use dilated backbones which have 5 times of the
computational cost, NRD is still competitive in accuracy.

Evaluation on ADE20K. We further use the recent transformer-based backbone
SegFormer Xie et al. [2021] as the encoder to show the ability of the proposed method.
The experiments are conducted on the ADE20K dataset. We replace the lightweight
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Table 3.6. Semantic segmentation results on the PASCAL-Context val. split. mIoU59:
mIoU averaged over 59 classes (without background). mIoU60: mIoU averaged over 60
classes (59 classes plus background). Both metrics were used in the literature, and we
report both for thorough comparisons. Following published methods, we report the
results with multi-scale inference (denoted by ‘ms’). The GFlops is measured at single

scale inference with a crop size of 480× 480. ‘Dilated-∗’: using dilated encoders.

Method Backbone GFlops mIoU59 (ms) mIoU60 (ms) FPS

FCN-8s [Long et al., 2015a] VGG-16 - - 35.1 -
HO-CRF [Arnab et al., 2016] - - - 41.3 -

Piecewise [Lin et al., 2016] VGG-16 - - 43.3 -
DeepLab-v2 [Chen et al., 2017a] Dilated-ResNet-101 - - 45.7 -

RefineNet [Lin et al., 2017a] ResNet-152 - - 47.3 -
UNet++ [Zhou et al., 2018] ResNet-101 - 47.7 - -
PSPNet [Zhao et al., 2017b] Dilated-ResNet-101 157.0 47.8 - 22.45

Ding et al. [Ding et al., 2018] ResNet-101 - 51.6 - -
EncNet [Zhang et al., 2018] Dilated-ResNet-101 192.1 52.6 - 24.66

HRNet [Sun et al., 2019] HRNetV2-W48 82.7 54.0 48.3 19.90
GFFNet [Li et al., 2020c] Dilated-ResNet-101 - 54.3 - -

EfficientFCN [Liu et al., 2020] ResNet-101 52.8 55.3 - 47.8
OCRNet [Yuan et al., 2020] HRNetV2-W48 143.9 56.2 - 17.11

NRD (Ours) ResNet-101 42.9 54.1 49.0 49.60

Table 3.7. Experiment results on the Cityscapes test split. ‘ms’ means that mIoU is
calculated using multi-scale inference. The GFlops is measured at single scale inference

with a crop size of 1024× 2048.

Method Backbone GFlops mIoU mIoU (ms) FPS

PSPNet [Zhao et al., 2017b] Dilated-ResNet-101 2049.0 - 78.4 3.36
AAF [Ke et al., 2018] Dilated-ResNet-101 >1500 - 79.1 -

DFN [Yu et al., 2018a] Dilated-ResNet-101 >1500 - 79.3 -
PSANet [Zhao et al., 2018] Dilated-ResNet-101 2218.6 - 80.1 2.86

RGNet [Yu et al., 2020a] Dilated-ResNet-101 >1500 - 81.5 -
DeepLabV3+ [Chen et al., 2018a] Dilated-ResNet-101 2032.3 - 81.3 -

DANet [Fu et al., 2019b] Dilated-ResNet-101 2214.7 - 81.5 -
GFFNet [Li et al., 2020c] Dilated-ResNet-101 >1500 - 82.3 -

BiSeNet [Yu et al., 2018b] ResNet-101 >360 - 78.9 -
SFNet [Li et al., 2020b] ResNet-18 243.9 78.9 79.5 13.6

HRNet [Sun et al., 2019] HRNetV2-W48 748.7 - 81.6 7.86
SFNet [Li et al., 2020b] ResNet-101 821.2 - 81.8 4.62

NRD (Ours) ResNet-50 234.6 78.9 80.0 18.17
NRD (Ours) ResNet-101 390.0 79.3 80.5 12.23
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Table 3.8. Accuracy and computational costs of different networks on Cityscapes val.
split. The model mIoU is measured at single-scale inference. The GFlops is measured
at single scale inference with a crop size of 1024 × 2048. Note that comparison results
are quoted from MMSegmentation [2020] which provides a re-implementation of all the

models in the table.

Method backbone GFlops mIOU (%)

PSANet Dilated-ResNet-50 1597.15 77.24
PSANet Dilated-ResNet-101 2218.62 79.31

PSPNet Dilated-ResNet-18 434.11 74.87
PSPNet Dilated-ResNet-50 1427.47 78.55
PSPNet Dilated-ResNet-101 2048.95 79.76

DeepLabv3+ Dilated-ResNet-18 433.9 76.89
DeepLabv3+ Dilated-ResNet-50 1410.86 80.09
DeepLabv3+ Dilated-ResNet-101 2030.3 80.97

OCRNet HRNetV2p-W18-S 353.47 77.16
OCRNet HRNetV2p-W18 424.29 78.57
OCRNet HRNetV2p-W48 1296.77 80.7

NRD (Ours) ResNet-18 95.7 77.5
NRD (Ours) ResNet-50 234.6 79.8
NRD (Ours) ResNet-101 390.0 80.7

Table 3.9. Experiment results on the ADE20K val. split. The GFlops is measured at
single-scale inference using crop sizes provided in the table. ‘ms’ means that mIoU is

calculated using multi-scale inference.

Method Backbone Crop size GFlops mIoU (%) mIoU ‘ms’ (%)

SegFormer MiT-B0 512× 512 8.4 37.4 38.0
NRD MiT-B0 512× 512 7.9 38.1 40.1

SegFormer MiT-B1 512× 512 15.9 42.2 43.1
NRD MiT-B1 512× 512 14.7 42.9 44.3

SegFormer MiT-B2 512× 512 62.4 46.5 47.5
NRD MiT-B2 512× 512 24.5 46.8 48.2

SegFormer MiT-B5 640× 640 183.3 51.0 51.8
NRD MiT-B5 640× 640 124.2 51.2 51.9

all-MLP decoder proposed by Segformer with NRD and follow all training settings
in Xie et al. [2021]. The results show that using the exactly same backbone, the
performance of NRD is competitive with much lighter computation.

3.4.2 More Visualization Results

Comparison with bilinear upsampling. Figure. 3.4 shows the result comparison
between the bilinear decoder and NRD decoder. Note that, the results are generated
from feature maps that are 1/32 of the input scale. Thus, the results can represent the
effectiveness comparison between the bilinear method and NRD. From the illustration,
we can see that it is inevitable for the decoder to lose some details during a 32
times upsampling. However, NRD clearly preserves more details than the bilinear
interpolation method. These two upsampling schemes have similar computation costs.

Comparison with the DeeplabV3+ decoder. Figure. 3.5 shows more com-
parison between the DeeplabV3+ Chen et al. [2018a] decoder and NRD. The compu-
tational cost of the decoder part is 76.4 (DeeplabV3+) vs. 20.4 (NRD) GFlops. From
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Ours NRD without guidance map

Bilinear decoder

Figure 3.4. Comparison between the bilinear decoder and the NRD decoder without
guidance map on the Cityscapes dataset. We can see that there is a significant improve-

ment in the boundary region.

the figure, we can see that in various scenes, NRD shows superior segmentation results
than DeeplabV3+.

Competitive segmentation results on ADE20K and PASCAL-Context.
Figure. 3.6 shows the segmentation results on ADE20K produced by NRD using
ResNeXt101 backbone with multi-scale inference. We can see that in various scenes,
including the bedroom, the toilet, and some outdoor scenes, NRD can generate satis-
factory segmentation results. It can also perform well at boundaries such as the human
legs and the poles. Figure. 3.7 is the segmentation results on PASCAL-Context pro-
duced by NRD using Resnet101 backbone with multi-scale inference (60 classes).

Detailed illustration of the NRD module. Figure. 3.8 shows how an input
image is processed in NRD. For the NRD structure, the guidance maps that are gen-
erated from the low-level features and the coordinate maps are concatenated together.
These feature maps are served as the input to the NRD structure. We attribute each
patch of the feature maps with a representational network gθ(·) whose parameters
are dynamically generated by the controller. In Figure. 3.8 each block surrounded by
white lines represents a patch that is processed by a particular gθ(·). The result is
then directly used as the output of the decoder without the use of more convolutions
to ‘refine’ the results.

3.5 Conclusion

We have proposed a compact yet very effective decoder, termed Neural Representa-
tional Decoders (NRD), for the semantic segmentation task. For the first time, we use
the idea of neural representations for designing the segmentation decoder, which is
able to better exploit the structure in the semantic segmentation label space. To im-
plement this idea, we dynamically generate the neural representations with dynamic
convolution filter networks so that the neural representations can be incorporated into
the standard encoder-decoder segmentation architectures, enabling end-to-end train-
ing. We show on a number of semantic segmentation benchmarks that our method
is highly efficient and achieves state-of-the-art accuracy. We believe that our method
can be a strong decoder in high-resolution semantic segmentation and may inspire
other dense prediction tasks such as depth estimation and super-resolution. Last but
not least, our method still has some limitations. One of the limitations is that the
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Figure 3.5. Visualization results on Cityscapes. From top to bottom: Input image;
results of DeeplabV3+; and results of NRD. The single scale GFlops of these two methods
are 293.6 (DeeplabV3+) vs. 234.6 (NRD). Our NRD requires less computation, yet the

segmentation accuracy is superior.

dynamic filter networks have not been well-supported in some mobile devices, which
might restrict the applicability of this method.
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Figure 3.6. Competitive segmentation results on the ADE20K dataset. Our method
performs well in various scenes and can capture detailed boundary information.

Figure 3.7. Competitive segmentation results on the PASCAL-Context dataset. The
proposed method performs well on various shapes of objects.
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Figure 3.8. Detailed Illustration of the NRD module. Guidance maps from low-level
feature maps and coordinate maps are concatenated together and pass through the rep-

resentational networks gθ(·).
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Chapter 4

Segvit: Exploring Efficient and
Continual Semantic Segmentation
with Plain Vision Transformers

4.1 Introduction

Semantic segmentation, a pivotal task in computer vision, demands precise pixel-level
classification of input images. Traditional methods, such as Fully Convolutional Net-
works (FCN) [Long et al., 2015a], which are widely used in state-of-the-art techniques,
employ deep convolutional neural networks (ConvNet) as encoders or base models
and a segmentation decoder to generate dense predictions. Prior works [Chen et al.,
2018b; Wang et al., 2020; Yuan et al., 2020] have aimed to enhance performance by
augmenting context information or incorporating multi-scale information, leveraging
the inherent multi-scale and hierarchical attributes of the ConvNet architectures.
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Figure 4.1. Comparison with previous methods in terms of performance and
efficiency on ADE20K dataset. The orange and purple bubbles in the accompanying
graph represent the ViT Base and ViT Large models, respectively, with the size of each
bubble corresponding to the FLOPs of the variant segmentation methods. SegViT-
BEiT Large achieves state-of-the-art performance with a 58.0% mIoU on the ADE20K
validation set. Additionally, our efficient, optimized version, SegViT-Shrunk-BEiT Large,
saves half of the GFLOPs compared to UPerNet, significantly reducing computational

overhead while maintaining a competitive performance of 55.7%.
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The advent of the Vision Transformer (ViT) [Dosovitskiy et al., 2021b] has offered
a paradigm shift, serving as a robust backbone for numerous computer vision tasks.
ViT, distinct from ConvNet base models, retains a plain and non-hierarchical archi-
tecture while preserving the resolution of the feature maps. To conveniently leverage
existing segmentation decoders for dense prediction, recent Transformer-based ap-
proaches, including Swin Transformer [Liu et al., 2021] and PVT [Wang et al., 2021a],
have developed hierarchical structures for feature representations. However, modi-
fying the original ViT structures requires training the networks from scratch rather
than using off-the-shelf plain ViT checkpoints that are pre-trained with large-scale
datasets [Caron et al., 2021; Dehghani et al., 2023; Oquab et al., 2023]. Changing
the plain ViT structure eliminates the potential for leveraging rich representations
acquired from vision-language pre-training methods such as CLIP [Radford et al.,
2021], BEiT [Bao et al., 2022], BEiT-v2 [Peng et al., 2022], MVP [Wei et al., 2022],
and COTS [Lu et al., 2022]. Hence, there is a clear advantage to developing effective
decoders for the original ViT structures in order to leverage those powerful repre-
sentations. Previous works, such as UPerNet [Xiao et al., 2018] and DPT [Ranftl
et al., 2021], have primarily focused on hierarchical feature maps and neglected the
distinctive characteristics of the plain Vision Transformer. Consequently, these ap-
proaches result in computationally demanding operations with limited performance
improvement, as illustrated in Figure 1. A recent trend in several works, such as
SETR [Zheng et al., 2021a] or Segmenter [Strudel et al., 2021], aims to develop de-
coders specifically tailored for the Plain ViT architecture. However, these designs
often represent a simplistic extension of per-pixel classification techniques derived
from traditional convolution-based decoders. For example, SETR’s decoder [Zheng
et al., 2021a] uses a sequence of convolutions and bilinear up-sampling to increase the
ViT’s extracted feature maps gradually. It then applies a naive MLP to the extracted
features to perform pixel-wise classification, which isolates the neighboring contexts
surrounding the pixel. Current pixel-wise classification decoder designs overlook the
importance of contextual learning when assigning labels to each pixel.

Another prevalent issue in deep networks, including Transformer, is ‘catastrophic
forgetting’ [French, 1999; Kirkpatrick et al., 2017], where the model’s performance on
previously learned tasks deteriorates as it learns new ones [Phan et al., 2022; Shao
and Feng, 2022; Wang et al., 2022c,d]. This limitation poses significant challenges for
the application of deep segmentation models in dynamic real-world environments. Re-
cently, the rapid development of the foundation model pre-trained on large-scale data
has sparked interest among researchers in studying its transferability across various
downstream tasks [Ostapenko et al., 2022]. These models are capable of extract-
ing powerful and generalized representations, which has led to a growing interest in
exploring their extensibility to new classes and tasks while retaining the previously
learned knowledge representations [Ramasesh et al., 2022; Wu et al., 2022a].

Motivated by these challenges, this chapter aims to explore how a plain vision
transformer can perform semantic segmentation tasks more effectively without the
need for a hierarchical backbone redesign. As self-supervision and multi-modality
pre-training continue to evolve, we anticipate that the plain vision transformer will
learn enhanced visual representations. Consequently, decoders for dense tasks are
expected to adapt more flexibly and efficiently to these representations.

In light of these research gaps, we propose SegViT — a novel, efficient segmenta-
tion network that features a plain Vision Transformer and exhibits robustness against
forgetting. We introduce a novel Attention-to-Mask (ATM) module that operates
as a lightweight component for the SegViT decoder. Leveraging the non-linearity of
cross-attention learning, our proposed ATM employs learnable class tokens as queries
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Similarity                                 Attention                                    Mask                                 GT/Image
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Figure 4.2. The overall concept of our Attention-to-Mask decoder. ATM
learns the similarity map for each category by capturing the cross-attention between
the class tokens and the spatial feature map (Left). Sigmoid is applied to produce
category-specific masks, highlighting the area with high similarity to the corresponding
class (Middle). ATM enhances the semantic representations by encouraging the feature

to be similar to the target class token and dissimilar to other tokens.

to pinpoint spatial locations that exhibit high compatibility with each class. We ad-
vocate for regions affiliated with a particular class to possess substantial similarity
values that correspond to the respective class token.

As depicted in Figure. 4.2, the ATM generates a meaningful similarity map that
accentuates regions with a strong affinity towards the ‘Table’ and ‘Chair’ categories.
By simply implementing a Sigmoid operation, we can transform these similarity maps
into mask-level predictions. The computation of the mask scales linearly with the
number of pixels, a negligible cost that can be integrated into any backbone to bolster
segmentation accuracy. Building upon this efficient ATM module, we present a novel
semantic segmentation paradigm that utilizes the cost-effective structure of plain ViT,
referred to as SegViT. Within this paradigm, multiple ATM modules are deployed at
various layers to extract segmentation masks at different scales. The final prediction
is the summation of the outputs derived from these layers.

To alleviate the computational burdens of plain Vision Transformers (ViTs), we
introduce the ‘Shrunk’ structure, which incorporates query-based downsampling (QD)
and query-based upsampling (QU). The proposed QD employs a 2x2 nearest neigh-
bor downsampling technique to obtain a sparser token mesh, reducing the number
of tokens involved in attention computations. Moreover, we extend QD to edge-
aware query-based downsampling (EQD). EQD selectively preserves tokens situated
at object edges, as they possess more discriminative information. Consequently, QU
recovers the discarded tokens within the object’s homogeneous body, reconstructing
high-resolution features crucial for accurately dense prediction. By integrating the
‘Shrunk’ structure with the ATM module as the decoder, we achieve computational
reductions of up to 50% while maintaining competitive performance levels.

We further extend the application of our SegViT framework to continual learn-
ing. With the powerful and generalized representation that the foundation model has
learned, this chapter aims to study the ability to extend the foundation model to new
classes and new tasks without forgetting the knowledge it has learned. Recent tech-
niques in continual semantic segmentation (CSS) aim to replay old data [Cha et al.,
2021; Maracani et al., 2021] or distill knowledge from the previous model to mitigate
model divergence [Cermelli et al., 2020; Phan et al., 2022; Zhang et al., 2022b]. These
methods necessitate fine-tuning parameters responsible for old tasks, which can dis-
rupt the previously learned solutions, leading to forgetting. In contrast, our proposed
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SegViT supports learning new classes without encroaching on previously acquired
knowledge. We strive to establish a forget-free SegViT framework, which incorpo-
rates a new ATM module dedicated to new tasks while keeping all old parameters
in a frozen state. Consequently, the proposed SegViT has the potential to virtually
eliminate the issue of forgetting.

Our key contributions can be summarized as follows:

• We introduce the Attention-to-Mask (ATM) decoder module, a potent and ef-
ficient tool for semantic segmentation. For the first time, we exploit spatial
information present in attention maps to generate mask predictions for each
category, proposing a new paradigm for semantic segmentation.

• We present the Shrunk structure, applicable to any plain ViT backbone, which
alleviates the intrinsically high computational expense of the non-hierarchical
ViT while maintaining competitive performance, as illustrated in Figure. 4.1.
We are the inaugural work capitalizing on edge information to decrease and
restore tokens for efficient computation. Our Shrunk version of SegViT, tested
on the ADE20K dataset, achieves a mIoU of 55.7%, with a computational cost
of 308.8 GFLOPs, marking a reduction of approximately 50% compared to the
original SegViT (637.9 GFLOPs).

• We propose a new SegViT architecture capable of continual learning devoid
of forgetting. To our knowledge, we are the first work to seek to completely
freeze all parameters for old classes, thereby nearly obliterating the issue of
catastrophic forgetting.

4.2 Our Methods

In this section, we will first introduce the overall architecture of our proposed SegViT
model. Then, we will proceed to discuss the ‘Shrunk’ architecture, which is designed
to reduce the overall computational cost of the model. Additionally, we will delve into
the continuous semantic segmentation setting and adapt our SegViT model framework
to seamlessly align with this setting.

4.2.1 Overall SegViT architecture

SegViT comprises a ViT-based encoder responsible for feature extraction and a de-
coder used to learn the segmentation map. In terms of the encoder, we have designed
the ‘Shrunk’ structure to decrease the computational costs associated with the plain
ViT. As for the decoder, we introduce a novel lightweight module called Attention-
to-Mask (ATM). This module generates class-specific masks denoted as M and class
predictions denoted as P , which determine the presence of a particular class in the
image. The mask outputs from a stack of ATM modules are combined and then mul-
tiplied with the class predictions to obtain the final segmentation output. Figure. 4.3
illustrates the overall architecture of our proposed SegViT.

4.2.1.1 Encoder

Given an input image I ∈ RH×W×3, the plain vision transformer backbone reshapes
it into a sequence of tokens F0 ∈ RL×C , where L = HW

P 2 , P is the patch size, and
C is the number of channels. To capture positional information, learnable position
embeddings of the same size as F0 are added. Subsequently, the token sequence F0
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Figure 4.3. The overall SegViT structure with the ATM module. The
Attention-to-Mask (ATM) module inherits the typical transformer decoder struc-
ture. It takes in randomly initialized class embeddings as queries and the feature
maps from the ViT backbone to generate keys and values. The outputs of the ATM
module are used as the input queries for the next layer. The ATM module is car-
ried out sequentially with inputs from different layers of the backbone as keys and
values in a cascade manner. A linear transform is then applied to the output of
the ATM module to produce the class predictions for each token. The mask for the
corresponding class is transferred from the similarities between queries and keys in
the ATM module. We have removed the self-attention mechanism in ATM decoder

layers further improve the efficiency while maintaining the performance.

undergoes m transformer layers to produce the output. The output tokens for each
layer are defined as [F1,F2, . . . ,Fm] ∈ RL×C .

In the case of a plain vision transformer such as ViT, there are no additional mod-
ules involved, and the number of tokens remains unchanged for each layer. However,
the computational costs of plain ViT can be prohibitively expensive. To address this
issue, we introduce the Shrunk structure, which enables the development of an effi-
cient ViT-based encoder. Further details regarding the Shrunk structure can be found
in Section 4.2.2.

4.2.1.2 Decoder

Attention-to-Mask (ATM).

Cross-attention can be described as the mapping between two sequences of tokens,
denoted as {v1,v2}. In our case, we define two token sequences: G ∈ RN×C with a
length N equal to the number of classes, and Fi ∈ RL×C . To enable cross-attention,
linear transformations are applied to each token sequence, resulting in the query (Q),
key (K), and value (V) representations. This process is described by Equation (4.1).

Q = ϕq(G) ∈ RN×C ,

K = ϕk(Fi) ∈ RL×C ,

V = ϕv(Fi) ∈ RL×C .

(4.1)
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The similarity map is calculated by computing the dot product between the query
and key representations. Following the scaled dot-product attention mechanism, the
similarity map and attention map are calculated as follows:

S(Q,K) =
QKT

√
dk

∈ RN×L,

Attention(G,Fi) = Softmax
(
S(Q,K)

)
V ∈ RN×C ,

(4.2)

where
√
dk is a scaling factor with dk equals to the dimension of the keys. The

shape of the similarity map S(Q,K) is determined by the lengths of the two token
sequences, N and L. The attention mechanism updates G by performing a weighted
sum of V , where the weights are derived from the similarity map after applying the
softmax function along the L dimension.

In dot-product attention, the softmax function is used to concentrate attention
exclusively on the token with the highest similarity. However, we believe that tokens
other than those with maximum similarity also carry meaningful information. Based
on this intuition, we have designed a lightweight module that generates semantic
predictions more directly. To achieve this, we assign G as the class embeddings for the
segmentation task and Fi as the output of layer i of the ViT backbone. A semantic
mask is paired with each token in G to represent the semantic prediction for each
class. The binary mask M is defined as follows:

Mask(G,Fi) = Sigmoid(S(Q,K)) ∈ RN×L. (4.3)

The masks have a shape of N×L, which can be reshaped to N× H
P ×W

P and bilinearly
upsampled to the original image size N×H×W . The ATM mechanism, as illustrated
in the right part of Figure 4.3, produces masks as its intermediate output during the
cross-attention process.

The final output tokens Z ∈ RL×C from the ATM module are utilized for classi-
fication. A fully connected layer (FC) parameterized by W ∈ RC×2 followed by the
Softmax function is used to predict whether the object class is present in the image
or not. The class predictions P ∈ RN×2 are formally defined as:

P = Softmax(WZ). (4.4)

Here, Pc,1 indicates the likelihood of class c appearing in the image. For simplicity,
we refer to Pc as the probability score for class c.

The output segmentation map for class Os ∈ RH×W is obtained by element-wise
multiplication of the reshaped class-specific mask Mc and its corresponding prediction
score Pc: Oc = Pc ⊙ Mc. During inference, the label is assigned to each pixel i by
selecting the class with the highest score using argmaxcOi,c.

Indeed, plain base models like ViT do not inherently possess multiple stages with
features of different scales. Consequently, structures such as Feature Pyramid Net-
works (FPN) that merge features from multiple scales are not applicable to them.

Nevertheless, features from layers other than the last one in ViT contain valuable
low-level semantic information, which can contribute to improving performance. In
SegViT, we have developed a structure that leverages feature maps from different
layers of ViT to enrich the feature representations. This allows us to incorporate and
benefit from the rich low-level semantic information present in those feature maps.

SegViT is trained via the classification loss and the binary mask loss. The classifi-
cation loss (Lcls) minimizes cross-entropy between the class prediction and the actual
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target. The mask loss (Lmask) consists of a focal loss [Lin et al., 2017c] and a dice
loss [Milletari et al., 2016] for optimizing the segmentation accuracy and addressing
sample imbalance issues in mask prediction. The dice loss and focal loss respectively
minimize the dice and focal scores between the predicted masks and the ground-truth
segmentation. The final loss is the combination of each loss, formally defined as:

L = Lcls + λfocalLfocal + λdiceLdice (4.5)

where λfocal and λdice are hyperparameters that control the strength of each loss func-
tion. Previous mask transformer methods such as MaskFormer [Cheng et al., 2021b]
and DETR [Carion et al., 2020b] have adopted the binary mask loss and fine-tuned
their hyperparameters through empirical experiments. Hence, for consistency, we di-
rectly use the same values as MaskFormer and DETR for the loss hyperparameters:
λfocal = 20.0 and λdice = 1.0.

4.2.2 Shrunk Structure for Efficient Plain ViT Encoder

Recent efforts, such as DynamicViT [Rao et al., 2021], TokenLearner [Ryoo et al.,
2021], and SPViT [Kong et al., 2022], propose token pruning techniques to accelerate
vision transformers. However, most of these approaches are specifically designed for
image classification tasks and, as a result, discard valuable information. When these
techniques are applied to semantic segmentation, they may fail to preserve high-
resolution features that are necessary for accurate dense prediction tasks.
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In this chapter, we propose the Shrunk structure, which utilizes query-based down-
sampling (QD) to prune the input token sequence Fi, and query up-sampling (QU)
to recover the discarded tokens, thereby preserving the fine-detailed features that
are crucial for semantic segmentation. The overall architecture of QD and QU is
illustrated in Figure 4.4.

For QD, we have re-designed the Transformer encoder block [Vaswani et al., 2017a]
and incorporated efficient down-sampling operations to specifically reduce the number
of query tokens. In a Transformer encoder layer, the computational cost is directly
influenced by the number of query tokens, and the output size is determined by the
query token size. To mitigate the computational burden while maintaining informa-
tion integrity, a feasible strategy is to selectively reduce the number of query tokens
while preserving the key and value tokens. This approach allows for an effective re-
duction in the output size of the current layer, leading to reduced computational costs
for subsequent layers.

For QU, we achieve upsampling by employing either a pre-defined or inherited
token sequence with a higher resolution as the query tokens. The key and value
tokens are taken from the token sequence obtained from the backbone, which typically
has a lower resolution. The output size is dictated by the query tokens with higher
resolution. Through the cross-attention mechanism, information from the key and
value tokens is integrated into the output. This process facilitates a non-linear merging
of information and demonstrates an upsampling behavior, effectively increasing the
resolution of the output.

Our proposed Shrunk structure incorporates the QD and QU modules. Specifi-
cally, we integrate a QD operation at the middle depth of the ViT backbone, precisely
at the 8th layer of a 24-layer backbone. The QD operation downsamples the query
tokens using a 2× 2 nearest neighbor downsampling operation, resulting in a feature
map size reduction from 1/16 to 1/32. However, such downsampling can potentially
cause information loss and performance degradation. To mitigate this issue, prior to
applying the QD operation, we employ a QU operation to the feature map. This
involves initializing a set of query tokens with a resolution of 1/16 to store the in-
formation. Subsequently, as the downsampled feature map progresses through the
remaining backbone layers, it is merged and upsampled using another QU operation
alongside the previously stored 1/16 high-resolution feature map. This iterative pro-
cess ultimately generates a 1/16 high-resolution feature map enriched with semantic
information processed by the backbone.

However, the direct application of query downsampling (QD) during the initial
stage of the encoder leads to a decline in performance. Shallow layers, responsible
for capturing low-level features before global attention updates, are highly sensitive
to nearest downsampling, resulting in significant information loss. Notably, critical
information, especially tokens containing multiple categories (decision boundaries),
can unpredictably disappear. To address this limitation, we introduce the Edged
Query Downsampling (EQD) technique to refine the QD process. In EQD, we employ
a 2×2 sparse downsampling while also retaining tokens containing multiple categories
(tokens with edges). By preserving the 2 × 2 sparse tokens, we ensure the retention
of essential semantic information, and by keeping the edge tokens, we retain detailed
spatial information. This dual preservation strategy effectively minimizes the loss
of valuable data and successfully overcomes the limitations associated with low-level
layers, resulting in improved performance and enriched representations throughout
the encoder structure.

To extract edges, we add a separate branch using a lightweight multilayer percep-
tron (MLP) edge detection head that learns to detect edges from the input image.
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Figure 4.5. Illustrations of the Shrink structure. The provided diagram showcases
the blue transformer encoder block and the orange patch embedding block. In our innovative
Shrunk structure, we strategically implement query downsampling (QD) immediately after
the patch embedding step to capture crucial information effectively. To further maximize
information retention compared to the basic nearest downsampling approach used by QD, we
introduce the Edged Query Downsampling (EQD) technique. The EQD technique consoli-
dates four adjacent tokens into one token while also incorporating tokens containing edges,
which significantly enhances the downsampling process. Notably, the EQD ensures that to-
kens preserving rich semantic information and decision boundaries are retained. Additionally,
we utilize a lightweight parallel edge detection head to extract edge information. By skillfully
incorporating these logical improvements, the Shrunk structure achieves enhanced efficiency
while retaining vital information, making it exceptionally well-suited for various applications

that demand both speed and accurate representation.

The edge detection head operates as an auxiliary branch, trained simultaneously with
the main ATM decoder. This head processes the input image, which has the same
dimensions as the backbone. Let the input image have C channels, aligned with the
backbone. The Multi-Layer Perceptron (MLP) in this head consists of three layers,
with dimensions C, C/2, and 2, respectively. Let I represent the input image, and the
output of the MLP can be defined as E = MLP(I;W1,W2,W3), where W1,W2,W3

are the weights for the three layers. The output E is then passed through a softmax
activation function, resulting in S = Softmax(E). To determine the confidence level
of a token belonging to an edge, we apply a threshold τ . In our implementation,
we set τ to 0.7. To obtain the ground-truth (GT) edge, we perform post-processing
on the GT segmentation map Y . Since the input has been tokenized with a patch
size of P , we tokenize the GT and reshape it into a sequence of tokens denoted as
Y ∈ R(HW/P 2)×P×P , where the last two dimensions correspond to the patch dimen-
sions. We consider a patch to contain an edge if there exists any edge pixel within
the patch. We define the edge mask Maski as follows:

Maski =

{
1 if

∑
j,k Yi,j,k > 0,

0 otherwise.
(4.6)

For each element si in S, we create a binary edge mask Mi: Mi = 1, if si ≥ τ . The
cross-entropy loss is computed between the generated edge mask Mi and the ground-
truth edge mask Yi: Ledge = −

∑
iYi log(Mi)+ (1−Yi) log(1−Mi). By incorporating

the Edge Detection head as an auxiliary branch, the Shrunk architecture effectively
retains detailed spatial contexts throughout the query downsampling process, forming
an Edge Query Downsampling (EQD) structure. This EQD structure allows the model
to capture and preserve edge information during spare downsampling, resulting in a
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significant reduction in computational overhead without compromising performance.
The integration of EQD enables the Shrunk architecture to strike a remarkable balance
between computational efficiency and maintaining high-performance levels.

4.2.3 Exploration on Continual Semantic Segmentation

Continual semantic segmentation aims to train a segmentation model in T steps with-
out forgetting. At step t, we are given a dataset Dt which comprises a set of pairs
(Xt, Y t), where Xt is an image of size H×W and Y t is the ground-truth segmentation
map.

Here, Y t only consists of labels in current classes Ct, while all other classes (i.e.,
old classes C1:t−1 or future classes Ct+1:T ) are assigned to the background. In continual
learning, the model at step t should be able to predict all classes C1:t in history.
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Figure 4.6. Overview of SegViT adapted for continual semantic segmentation. When
learning a new task t, we grow and train a separate ATM and fully-connected layer to produce
mask and class prediction. All the parameters dedicated to the old task t−1, including ATM,
FC layer, and the ViT encoder, are frozen. This prevents interfering with the old knowledge,

which guarantees no forgetting.

SegViT for Continual Learning. Existing continual semantic segmentation
methods [Phan et al., 2022; Zhang et al., 2022b] propose regularization algorithms to
preserve the past knowledge of a specific architecture, DeepLabV3. These methods
focus on continual semantic segmentation for DeepLabV3 with a ResNet backbone,
which has a less robust visual representation for distinguishing between different cat-
egories. Consequently, these methods require fine-tuning model parameters to learn
new classes while attempting to retain knowledge of old classes. Unfortunately, adapt-
ing the old parameters dedicated to the previous task inevitably interferes with past
knowledge, leading to catastrophic forgetting. In contrast, our method, SegViT, de-
couples class prediction from mask segmentation, making it inherently suitable for
a continual learning setting. By leveraging the powerful representation capability of
the plain vision transformer, we can learn new classes by solely fine-tuning the class
proxy (i.e., the class token) while keeping the old parameters frozen. This approach
eliminates the need for fine-tuning old parameters when learning new tasks, effectively
addressing the issue of catastrophic forgetting.

When training on a current task t, we add a new sequence of learnable tokens
Gt ∈ R|Ct|×C with the length equals to the number of classes |Ct| in the current task.
To learn new classes, we grow and train new ATM modules and a fully-connected
layer for mask prediction and mask classification. For simplicity, we ignore the parallel
structure of ATM modules. A single ATM module refers to multiple ATM modules.
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Let At and W t denote the ATM module and the weights of the fully connected (FC)
layer for task t. All parameters for a previous task, including the ViT encoder, the
ATM module, and the FC layer, are completely frozen. Fig. 4.6 illustrates the overview
of our SegViT architecture adapted for continual semantic segmentation.

Given the encoder extracted features FT and the class tokens Gt, the ATM pro-
duces the mask predictions M t and the output tokens Zt corresponding to the mask:

M t, Zt = ATM(Gt,FT ). (4.7)

Based on Eq. 4.4, the class prediction P is obtained by applying FC on the class token
Zt. The prediction score for each class St

c is multiplied with the mask M t
c to get the

segmentation map Ot
c for class c:

Ot
c = St

c ⊙M t
c , (4.8)

where ⊙ denotes the element-wise multiplication.
The segmentation Ôt is obtained by taking the class c having the highest score in

every pixel, defined as
Ôt = argmax

c∈Ct

Ot
i,c (4.9)

Based on the ground truth Y t for task t, SegViT is trained using the loss function
defined in Eq. 4.5. To produce the final segmentation for all tasks, we concatenate
the outputs Ot from all tasks.

4.3 Experiments

4.3.1 Datasets

ADE20K [Zhou et al., 2017a] is a challenging scene parsing dataset which contains
20, 210 images as the training set and 2, 000 images as the validation set with 150
semantic classes.
COCO-Stuff-10K [Caesar et al., 2018b] is a scene parsing benchmark with 9, 000
training images and 1, 000 test images. Even though the dataset contains 182 cat-
egories, not all categories exist in the test split. We follow the implementation of
mmsegmentation [MMSegmentation, 2020] with 171 categories to conduct the exper-
iments.
PASCAL-Context [Mottaghi et al., 2014b] is a dataset with 4, 996 images in the
training set and 5, 104 images in the validation set. There are 60 semantic classes in
total, including a class representing ‘background’.

4.3.2 Implementation details

Transformer backbone. We employ the naive ViT [Dosovitskiy et al., 2021b] as the
backbone for our method. Specifically, we utilize the ‘Base’ variation of ViT for most
of our ablation studies and provide results based on the ‘Large’ variation as well. It is
worth noting that different pre-trained weights can lead to significant variations in per-
formance, as suggested by Segmenter [Strudel et al., 2021]. Therefore, to ensure a fair
comparison, we adopt the pre-trained weights provided by Augreg [Steiner et al., 2021],
following the practices of counterparts such as Strudel [Strudel et al., 2021] and Struct-
Token [Lin et al., 2022]. These weights are obtained through training on ImageNet-21k
with strong data augmentation and regularization techniques [Steiner et al., 2021]. To
explore the maximum capacity and assess the upper bound of our method, we also
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Table 4.1. Experiment results on the ADE20K val. split. ‘ms’ means that mIoU is calcu-
lated using multi-scale inference. ‘†’ means the models use the backbone weights pre-trained
by AugReg [Steiner et al., 2021]. ‘*’ represents the model reproduced under the same settings
as the official repo. The GFLOPs are measured at single-scale inference with the given crop
size. We report inference speed for our SegViT and reproduce previous methods in terms of

Frame Per Second (FPS) on a single A100 device.

Method Backbone Crop Size GFLOPs mIoU (ss) mIoU (ms) Inf time (fps)

UPerNet [Xiao et al., 2018] ViT-Base 512× 512 443.9 46.6 47.5 16.07
DPT* [Ranftl et al., 2021] ViT-Base 512× 512 219.8 47.2 47.9 23.63

SETR-MLA* [Zheng et al., 2021a] ViT-Base 512× 512 113.5 48.2 49.3 -
Segmenter* [Strudel et al., 2021] ViT-Base 512× 512 129.6 49.0 50.0 20.46

StructToken [Lin et al., 2022] ViT-Base 512× 512 171.5 50.9 51.8 14.22
MaskFormer [Cheng et al., 2021c] Swin-B(21K) 640× 640 198.3 52.7 53.9 -

Mask2Former [Cheng et al., 2022a] Swin-B(21K) 640× 640 223.4 53.9 55.1 12.43

SegViT (Ours) ViT-Base 512× 512 120.9 51.3 53.0 31.52
SegViT (Shrunk, Ours) BEiTv2-Base 512× 512 74.4 52.9 53.3 25.03

SegViT (Ours) BEiTv2-Base 512× 512 120.9 54.0 54.9 23.59

DPT* [Ranftl et al., 2021] ViT-Large† 640× 640 800.0 49.2 49.5 9.38
UPerNet [Xiao et al., 2018] ViT-Large† 640× 640 1993.9 48.6 50.0 3.88

SETR-MLA [Zheng et al., 2021a] ViT-Large 512× 512 368.6 48.6 50.3 5.17
MCIBI [Jin et al., 2021a] ViT-Large 512× 512 >400 - 50.8 -

Segmenter [Strudel et al., 2021] ViT-Large† 640× 640 671.8 51.8 53.6 4.73
StructToken [Lin et al., 2022] ViT-Large† 640× 640 774.6 52.8 54.2 4.1

KNet+UPerNet [Zhang et al., 2021b] Swin-L(21K) 640× 640 659.3 52.2 53.3 11.28
MaskFormer [Cheng et al., 2021c] Swin-L(21K) 640× 640 378.1 54.1 55.6 10.21

Mask2Former [Cheng et al., 2022a] Swin-L(21K) 640× 640 402.7 56.1 57.3 8.81

SegViT (ours) ViT-Large† 640× 640 637.9 54.6 55.2 9.37
SegViT(Shrunk , ours) ViT-Large† 640× 640 209.1 53.0 54.9 10.26
SegViT (Shrunk, ours) BEiTv2-Large† 512× 512 210.3 55.1 56.1 9.82

SegViT (ours) BEiTv2-Large† 512× 512 374.0 56.5 58.0 9.39
SegViT (Shrunk, ours) BEiTv2-Large† 640× 640 308.8 55.7 57.0 9.38

SegViT (ours) BEiTv2-Large† 640× 640 637.9 58.0 58.2 6.25

conduct experiments using stronger base models such as DEiT v3 [Touvron et al.,
2022] and BEiT v2 [Peng et al., 2022].
Training settings. We use MMSegmentation [MMSegmentation, 2020] and follow
the commonly used training settings. During training, we applied data augmentation
sequentially via random horizontal flipping, random resize with the ratio between 0.5
and 2.0, and random cropping (512 × 512 for all except that we use 480 × 480 for
PASCAL-Context and 640× 640 for ViT-large on ADE20K). The batch size is 16 for
all datasets with a total iteration of 160k, 80k, and 80k for ADE20k, COCO-Stuff-10k,
and PASCAL-Context respectively.
Evaluation metric. We use the mean Intersection over Union (mIoU) as the metric
to evaluate the performance. ‘ss’ means single-scale testing and ‘ms’ test time aug-
mentation with multi-scaled (0.5, 0.75, 1.0, 1.25, 1.5, 1.75) inputs. All reported mIoU
scores are in a percentage format. All reported computational costs in GFLOPs are
measured using the fvcore1 library.

4.3.3 Comparisons with the State-of-the-art Methods

Results on ADE20K.

Table. 4.1 reports the comparison with the state-of-the-art methods on ADE20K val-
idation set using ViT backbone. The SegViT uses the ATM module with multi-layer
inputs from the original ViT backbone, while the Shrunk is the one that conducts
QD to the ViT backbone and saves 50% of the computational cost without sacrificing

1https://github.com/facebookresearch/fvcore

https://github.com/facebookresearch/fvcore
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Table 4.2. Experiment results on the COCO-Stuff-10K test. split. Following published
methods, we report the results with multi-scale inference (denoted by ‘ms’). The GFLOPs is

measured at single scale inference with a crop size of 512× 512.

Method Backbone GFLOPs mIoU (ms)

DANet [Fu et al., 2019a] Dilated-ResNet-101 289.3 39.7
MaskFormer [Cheng et al., 2021b] ResNet-101-fpn 81.7 39.8

EMANet [Li et al., 2019] Dilated-ResNet-101 247.4 39.9
SpyGR [Li et al., 2020a] ResNet-101-fpn >80 39.9

OCRNet [Yuan et al., 2020] HRNetV2-W48 167.9 40.5
GINet [Wu et al., 2020] JPU-ResNet-101 >200 40.6

RecoNet [Chen et al., 2020] Dilated-ResNet-101 >200 41.5
ISNet [Jin et al., 2021b] Dilated-ResNeSt-101 228.3 42.1

MCIBI [Jin et al., 2021a] ViT-Large >380 44.9
StructToken [Lin et al., 2022] ViT-Large >400 49.1

SenFormer [Bousselham et al., 2021] Swin-Large >400 50.1

SegViT (Shrunk, ours) ViT-Large 224.8 49.4
SegViT (ours) ViT-Large 383.9 50.3

SegViT (Shrunk, ours) BEiTv2-Large 213.3 50.54
SegViT (ours) BEiTv2-Large 388.2 53.46

Table 4.3. Experimental results on the PASCAL-Context val. split. Following published
methods, we report the results with multi-scale inference (denoted by ‘ms’). mIoU59: mIoU
averaged over 59 classes (without background). mIoU60: mIoU averaged over 60 classes (59
classes plus background). Both metrics were used in the literature, and we report for the 60
classes. The GFLOPs are measured at single scale inference with a crop size of 480× 480.

Method Backbone GFLOPs mIoU59 (ms) mIoU60 (ms)

RefineNet [Lin et al., 2017a] ResNet-152 - - 47.3
UNet++ [Zhou et al., 2018] ResNet-101 - 47.7 -
PSPNet [Zhao et al., 2017a] Dilated-ResNet-101 157.0 47.8 -

Ding et al. [Ding et al., 2018] ResNet-101 - 51.6 -
EncNet [Zhang et al., 2018] Dilated-ResNet-101 192.1 52.6 -

HRNet [Sun et al., 2019] HRNetV2-W48 82.7 54.0 48.3
NRD [Zhang et al., 2021a] ResNet-101 42.9 54.1 49.0
GFFNet [Li et al., 2020c] Dilated-ResNet-101 - 54.3 -

EfficientFCN [Liu et al., 2020] ResNet-101 52.8 55.3 -
OCRNet [Yuan et al., 2020] HRNetV2-W48 143.9 56.2 -

SETR-MLA [Zheng et al., 2021a] ViT-Large 318.5 - 55.8
Segmenter [Strudel et al., 2021] ViT-Large 346.2 - 59.0

SenFormer [Bousselham et al., 2021] Swin-Large - 64.0 -

SegViT (Shurnk, ours) ViT-Large 186.9 62.3 57.4
SegViT (ours) ViT-Large 321.6 65.3 59.3

SegViT (Shurnk, ours) BEiTv2-Large 179.3 64.91 59.92
SegViT (ours) BEiTv2-Large 329.7 67.14 61.63

too much performance. Our method achieves State-of-the-art 58.2% (MS) in terms of
mIoU with the BEiTv2 Large backbone. To ensure a fair comparison, we evaluate our
SegViT module with the BEiT-v2 large backbone on a crop size of 512×512, which con-
sumes 374.0 GFlOPs. Our approach achieves a slightly better performance of 56.5%
mIoU compared to Mask2former-Swin-L, which achieves 56.1% with 402.7 GFlops on
a crop size of 640× 640. Additionally, our Shrunk version with a computational cost
reduction of around 50% (308.8 GFlops) achieves a competitive performance of 57.0%
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(a) Segmenter
ViT-Large(51.8)

(b) StructToken
ViT-Large(52.8)

(c) UperNet
BEiT-Large(56.3)

(d) SegViT V2
BEiT-2Large(58.0)

Figure 4.7. Visuals results of different segmentation networks and plain ViT backbones
on the ADE20K validation set[Zhou et al., 2017a]. It includes the following models: (a)
Segmenter [Strudel et al., 2021] with ViT large, (b) StructToken [Lin et al., 2022] with ViT
large, (c) UPerNet [Xiao et al., 2018] with BEiT large, and (d) SegViT V2 with BEiTv2 large.
The results demonstrate that our methods effectively generate accurate segmentation masks

and unlock the potential of plain ViT. Zoom in for a better view.

(MS) in terms of mIoU. Figure. 4.7 shows the visual results of different segmenta-
tion methods. In contrast to other methods that often confuse similar classes and
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misclassify related concepts, our SegViT stands out by more precise object boundary
delineation and achieving accurate segmentation of complete objects, even in cluttered
scenes.

Results on COCO-Stuff-10K.

Table. 4.2 shows the result on the COCO-Stuff-10K dataset. Our method achieves
50.3% which is higher than the previous state-to-the-art StrucToken by 1.2% with less
computational cost. Our Shrunk version achieves 49.4% with 224.8 GFLOPs, which
is similar to the computational cost of a dilated ResNet-101 backbone but with much
higher performance.

Results on PASCAL-Context.

Table. 4.3 shows the results on the PASCAL-Context dataset. We follow HRNet [Sun
et al., 2019] to evaluate our method and report the results under 59 classes (without
background) and 60 classes (with background). Using full SegViT structure without
adopting Shrunk, we reach mIoU of 67.14% and 61.63% respectively for those two
metrics, outperforming the state-of-the-art methods using the ViT backbones with
less computational cost. By applying Shrunk architecture, the computational cost
in terms of GLOPs is reduced by 42% and 45%, respectively. SegViT with Shrunk
achieves the best trade-off between accuracy and speed among all methods on the
PASCAL-Context dataset.

4.3.4 Ablation Study

In this section, we conduct extensive ablation studies to show the effectiveness of our
proposed methods.

Effect of the ATM module.

We conducted an analysis to evaluate the impact of using the proposed ATM module
as an encoder. The results are summarized in Table. 4.4. To establish a baseline
for comparison, we introduced SETR-naive, which utilizes two 1 × 1 convolutions to
directly derive per-pixel classifications from the final layer of the ViT-Base transformer
output. From the results, it is evident that applying the ATM module under the
supervision of a conventional cross-entropy loss leads to a performance improvement
of 0.5%. However, the performance gains become much more substantial when we
decouple the classification and mask prediction processes, supervising each separately.
This approach results in a significant performance boost of 3.1%, highlighting the
efficacy of the ATM module in enhancing semantic segmentation performance.

Table 4.4. Comparisons between our proposed ATM module with
SETR [Zheng et al., 2021a]. ‘CE loss’ indicates the cross-entropy loss com-
monly used in semantic segmentation. The experiments on the ADE20k

dataset are carried out using the ViT-Base backbone.

Decoder Loss mIoU (ss)

SETR CE loss 46.5
ATM CE loss 47.0 (+0.5)
ATM Lmask loss 49.6 (+3.1)
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Ablation of the feature levels.

The effects of using multiple-layer inputs from the backbone to the ATM modules are
presented in Table. 4.5. The incorporation of feature maps from lower layers leads to
a notable performance improvement of 1.3%. We further investigated the impact of
including more layers of features and observed additional gains in performance. After
empirical testing, we determined that utilizing three layers yielded optimal results,
resulting in an overall mIoU boost of 1.7%. These ablation studies confirm the effec-
tiveness of our proposed ATM decoder and highlight the advantage of incorporating
multi-layer features into the segmentation structure. This integration significantly
enhances the performance of semantic segmentation tasks.

Table 4.5. Ablation results of using different layer inputs to the SegViT
structure on ADE20K dataset using ViT-Base as the backbone. Involving

multi-layer features can bring obvious performance gains.

Used layers mIoU (ss)

Single [12] 49.6
Cascade [6, 12] 50.9 (+1.3)
Cascade [6, 8, 12] 51.3 (+1.7)
Cascade [3, 6, 9, 12] 51.2 (+1.6)

SegViT on hierarchical base models.

We conducted an analysis to evaluate the performance of SegViT on hierarchical base
models. For comparison, we selected two competitive methods, Maskformer [Cheng
et al., 2021b] and Mask2former [Cheng et al., 2022a]. The results are presented in
Table. 4.6 indicate that, even though our method was not specifically designed for hier-
archical base models, we are still able to achieve competitive performance while main-
taining computational efficiency. This demonstrates the applicability of our SegViT
approach to various types of ViT-Base models.

Table 4.6. The experiments use the Swin-Tiny [Liu et al., 2021] backbone
and are carried out on the ADE20K dataset. The GFLOPs are measured

at single-scale inference with a crop size of 512× 512.

Method mIoU (ss) GFLOPs

Maskformer [Cheng et al., 2021b] 46.7 57.3
Mask2former [Cheng et al., 2022a] 47.7 73.7

SegViT (Ours) 47.1 48.0

Ablation of Shrunk strategies.

In this section, we conduct an ablation study to assess the effectiveness of different
SegViT structures. Table. 4.7 presents the impact of various techniques employed
in each SegViT structure, including query upsampling (QU), query downsampling
(QD), Edged query downsampling (EQD) techniques, and segmentation heads. When
replacing the SETR head with the ATM head in the ’Plain’ structure, a notable
performance improvement of 3.1% is observed. This highlights the effectiveness of
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Table 4.7. Ablation results of Shrunk version on the ADE20K dataset. We explored vari-
ous shrink strategies. The GFLOPs are measured at single-scale inference with a crop size of
512× 512 on the ViT-Base backbone. QD: query-based downsampling. QU: query-based up-
sampling. QDlayer indicates which layer to apply the QD. EQD: Edged query downsampling.

QDmethod indicates the downsampling method for QD.

Structure QD QU QDlayer QDmethod Head mIoU (ss) GFLOPs

Plain - - - - SETR 46.5 107.3
Plain - - - - ATM 49.6 (+3.1) 115.8
Plain ✓ - 6 2x2 ATM 46.9 (+0.4) 74.1

Shrunk ✓ ✓ 6 2x2 ATM 50.0 (+3.5) 97.1
Shrunk ✓ ✓ 0 2x2 ATM 43.3(-3.2) 46.1
Shrunk ✓ ✓ 0 2x2-EQD ATM 49.9(+3.4) 74.6

Table 4.8. Ablation results of different decoder methods with their corresponding feature
merge types and loss types. ViT-Base is employed as the backbone for all the variants.

Multi-level Features Loss Types

Decoder FPN Token Merge Pixel level Dot product Attention Mask mIoU (ss)

SETR-MLA [Zheng et al., 2021a] ✓ ✓ 48.2
Segmenter [Strudel et al., 2021] ✓ 49.0

MaskFormer [Cheng et al., 2021b] ✓ ✓ 46.7
Ours-Variant 1 ✓ 49.6
Ours-Variant 2 ✓ ✓ 50.6

Ours ✓ ✓ 51.2

Table 4.9. Ablation of the QD module in terms of the targets and
methods to down-sample. The experiments are carried out on the

ViT-Large backbone of ADE20K dataset.

Applied to Methods mIoU (ss)

Q Conv 44.5
Q, K, V Nearest 52.6
Q Nearest 53.9
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Table 4.10. Comparisons for various ViT pre-training schedules on the validation set of
ADE20K. All results are reported in single-scale inference. The default configuration for
these base models is pre-trained on ImageNet-1K with 224 * 224 resolutions. ‘*’ means the
models use the backbone weights pre-trained with 384 * 384 resolutions. ’†’ means the base
models pre-trained on imagenet-21K. The proposed SegVit head has a less computational

cost and performs better than UPerNet among all pre-training variants.

Backbone SegViT mIoU Head FLOPs UPerNet mIoU Head FLOPs ImageNet Acc

MAE Base [He et al., 2022] 49.22 (▲1.12) 6.89(▼329.73) 48.1 336.62 83.66
CLIP Base [Radford et al., 2021] 50.76 (▲1.16) 6.89(▼329.73) 49.6 336.62 80.20

CAE Base [Chen et al., 2022] 50.42 (▲0.22) 6.89(▼329.73) 50.2 336.62 83.90
iBot Base [Zhou et al., 2022] 50.58 (▲0.58) 6.89(▼329.73) 50.0 336.62 84.00

Augreg Base*†[Steiner et al., 2021] 51.30 (▲2.66) 6.89(▼329.73) 48.6 336.62 85.49
DEiT v3 Base†[Touvron et al., 2022] 52.40 (▲0.60) 6.89(▼329.73) 51.8 336.62 85.70

BEiT v2 Base†[Peng et al., 2022] 53.97 (▲0.47) 6.89(▼329.73) 53.5 336.62 86.50
Augreg Large*†[Steiner et al., 2021] 54.60 (▲2.50) 16.36(▼1,366.33) 52.1 1382.69 85.59

DEiT v3 Large*†[Touvron et al., 2022] 55.81 (▲1.21) 16.36(▼1,366.33) 54.6 1382.69 87.70
BEiT v2 Large[Touvron et al., 2022] 58.00 (▲1.3) 16.36(▼868.28) 56.7 884.64 87.30

the ATM head in enhancing the performance of the baseline structure. However,
introducing QD to the ’Plain’ structure with the ATM head leads to a performance
drop of 2.7%, indicating information loss during the downsampling process. To address
this, we utilize QU to create the ’Shrunk’ structure, which retains performance. Yet,
applying QD at the 6th layer still incurs significant computational cost. To reduce this
overhead, we move the QD application to before the initial transformer layer, resulting
in a substantial decrease in computational cost but sacrificing performance (-6.7%).
Nevertheless, by incorporating EQD, we successfully recover the lost performance
while maintaining a low computational cost. This validates the efficacy of EQD in
overcoming information loss and striking a balance between performance and efficiency
in the SegViT structures.

Ablation studies on decoder variances.

Different decoder methods are associated with specific feature merge types and loss
types. In Table 4.8, we compare the designs of various decoders on a plain ViT back-
bone. For hierarchical base models like Swin, the resolution of the feature maps in each
stage is reduced. Consequently, the adoption of the Feature Pyramid Network (FPN)
is necessary to obtain feature maps with larger resolutions and rich semantic informa-
tion. However, in Table 4.8, we observe that the FPN structure does not perform well
with plain vision transformers. In the case of plain ViT base models, the resolution
is maintained, and the feature map of the last layer contains the most comprehensive
semantic information. Hence, our proposed method, which utilizes tokens to merge
features from different levels, achieves better performance. By simply replacing the
FPN structure with the ATM-based token merge, we improve the performance from
46.7% to 50.6%. Regarding the loss type, the pixel-level loss refers to the conventional
cross-entropy loss applied to the feature map. The dot product loss corresponds to the
loss utilized in [Carion et al., 2020b] and [Cheng et al., 2021b]. Attention mask loss
indicates that mask supervision is directly applied to the similarity map generated by
the ATM during attention calculation. By adding loss supervision on the attention
mask, as in our proposed method, the performance improves by 0.6%.

Ablation for the QD module.

The motivation behind using QD is to leverage the pre-trained weights of the back-
bone. As shown in Table 4.9, if we employ a stride-2 convolution with learnable
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parameters to downsample the query, it will disrupt the pre-trained weights and re-
sult in a significant performance decrease. Applying down-sampling to both the query
and the key-value pairs would inevitably lead to information loss during the down-
sampling process, which is evident in the weaker performance observed. Through our
investigations, we have found that applying 2×2 nearest down-sampling exclusively to
the query in the QD module yields better results. This approach allows us to preserve
the pre-trained weights of the backbone while achieving the desired down-sampling
effect.

4.3.5 Application 1: A Better Indicator for Feature Representation
Learning

Background.

Semantic segmentation serves as a fundamental vision task that has been extensively
employed in previous research to assess the representation learning capabilities of
weakly, fully, and self-supervised base models [Chen et al., 2022; He et al., 2022; Peng
et al., 2022; Touvron et al., 2022]. In prior work, the UPerNet decoder structure
has been commonly used for semantic segmentation. However, the UPerNet decoder
may not be a suitable indicator for evaluating the feature representation ability of
the base model. This is primarily due to its heavier computational requirements and
slower convergence rate. Additionally, the feature representation obtained by the base
model can vary significantly due to different training strategies employed during the
fine-tuning process on semantic segmentation datasets. Consequently, the task of
semantic segmentation may not effectively evaluate the feature representation ability
of pre-trained models.

Experiment settings.

This section presents a comprehensive evaluation of our proposed SegVit on various
weakly/fully/self-supervised vision transformers, including those proposed by He et
al. [He et al., 2022], Chen et al. [Chen et al., 2022], Touvron et al. [Touvron et al.,
2022], and the BEiT model [Peng et al., 2022]. We demonstrate that our method out-
performs UPerNet [Xiao et al., 2018] in both self-supervised and multiple modality
base models, achieving state-of-the-art performance. Notably, our approach achieves
superior performance to UPerNet while utilizing only 5% of the computational cost
in terms of the decoder head. Table. 4.10 illustrates that our proposed SegViT head
consistently outperforms UPerNet on all base models. For the ViT-Base, our method
improves the performance of UPerNet on the CLIP model by 1.16% while significantly
reducing the computational cost. Similar observations can be made for ViT-Large base
models. Furthermore, compared to UPerNet, our proposed SegViT head exhibits a
better alignment between the growth trend of segmentation accuracy and the classifi-
cation accuracy on ImageNet. This clearly demonstrates the superior efficiency of our
SegViT head compared to UPerNet, making it a more suitable indicator for feature
representation learning in base models.

4.3.6 Application2: Continual Semantic Segmentation

Due to the decoupling of class prediction and mask segmentation in our proposed
SegVit decoder, we are inherently suitable for a continuous learning setting. This
characteristic allows us to learn new classes by solely fine-tuning the class proxy
(the class token), leveraging the powerful representation ability of the plain vision
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Table 4.11. CSS results on ADE20k in mIoU (%) on 100-50 and 100-10 settings. The
relative mIoU reduction (▼) compared with the joint training for each method is reported.

100-50 (2 tasks) 100-10 (6 tasks)
Method 0-100 101-150 all avg 0-100 101-150 all avg

ILT [Michieli and Zanuttigh, 2019] 18.29 (▼26.1) 14.40 (▼13.8) 17.00 (▼22.0) 29.42 0.11 (▼44.2) 3.06 (▼25.1) 1.09 (▼37.9) 12.56
MiB [Cermelli et al., 2020] 40.52 (▼3.9) 17.17 (▼11.0) 32.79 (▼6.2) 37.31 38.21 (▼6.1) 11.12 (▼17.1) 29.24 (▼9.8) 35.12
SDR [Michieli and Zanuttigh, 2021] 40.52 (▼3.8) 17.17 (▼11.0) 32.79 (▼6.2) 37.31 37.26 (▼7.1) 12.13 (▼16.1) 28.94 (▼10.1) 34.48
PLOP [Douillard et al., 2021] 41.76 (▼2.6) 14.52 (▼13.7) 32.74 (▼6.3) 37.73 38.59 (▼5.8) 14.21 (▼14.0) 30.52 (▼8.5) 34.48
REMINDER [Phan et al., 2022] 41.55 (▼2.8) 19.16 (▼9.0) 34.14 (▼4.9) 38.43 38.96 (▼5.4) 21.28 (▼6.9) 33.11 (▼5.9) 37.47
RCIL [Zhang et al., 2022b] 42.35 (▼2.0) 18.47 (▼9.7) 34.45 (▼4.6) 38.48 29.42 (▼15.0) 13.49 (▼14.0) 28.36 (▼10.0) 29.93
Oracle - ResNet backbone 44.34 28.21 39.00 - 44.34 28.21 39.00 -

MiB [Cermelli et al., 2020] 43.43 (▼6.65) 30.63 (▼12.24) 39.19 (▼8.32) 38.66 39.15 (▼16.04) 20.37 (▼41.63) 34.17 (▼20.07) 39.53
PLOP [Douillard et al., 2021] 43.82 (▼6.03) 26.23 (▼24.84) 37.99 (▼11.13) 38.06 43.25 (▼7.25) 24.13 (▼30.86) 36.25 (▼15.21) 40.28
REMINDER [Phan et al., 2022] 44.66 (▼4.22) 26.76 (▼23.33) 38.73 (▼9.40) 38.43 43.28 (▼7.18) 24.33 (▼30.29) 37.10 (▼13.22) 41.76
Oracle - ViT backbone 46.63 34.90 42.75 - 46.63 34.90 42.75 -

SegViT-CL (ours) 53.64 (▼0.5) 40.00 (▼5.6) 49.09 (▼2.2) 46.82 53.77 (▼0.3) 35.54 (▼10.0) 47.70 (▼3.6) 50.59
Oracle 54.11 45.60 51.28 - 54.11 45.60 51.28 -

transformer while keeping the old parameters frozen. To validate the effectiveness of
this new approach to continual learning, we conducted quick fine-tuning experiments
following previous continuous learning settings.

Experiment settings.

Continual Semantic Segmentation (CSS) has two settings [Cermelli et al., 2020]: dis-
joint and overlapped. In the disjoint setup, all pixels in the images at each step
belong to either the previous classes or the current class. In the overlapped setting,
the dataset of each step contains all the images that have pixels of at least one current
class, and all pixels from previous and future tasks are labeled as background. The
overlapped setting is more realistic and challenging, thus we evaluate the performance
of the overlapped setup on the ADE20k dataset.

Following prior published works [Cermelli et al., 2020; Douillard et al., 2021; Phan
et al., 2022], we perform three experiments: adding 50 classes after training with 100
classes (100-50 setting with 2 steps), adding 50 classes each time after training with
50 classes (50-50 setting with 3 steps), adding 10 classes each time sequentially after
training with 100 classes (100-10 setting with 6 steps).

Baselines

We conducted a comprehensive comparison of our proposed method against state-of-
the-art Continual Semantic Segmentation (CSS) techniques, including RCIL [Zhang
et al., 2022b], PLOP [Douillard et al., 2021], REMINDER [Phan et al., 2022], SDR [Michieli
and Zanuttigh, 2021], and MiB [Cermelli et al., 2020]. To ensure fair comparisons, ex-
isting methods were evaluated using DeepLabV3 [Chen et al., 2017c] with ResNet101
and ViT-Base backbones that were pre-trained on ImageNet-21k. The reported results
for PLOP, RCIL, and REMINDER were obtained based on the codebases provided
by the respective authors. Furthermore, we included the performance of the Oracle
model, which represents the upper bound achieved by jointly training on all available
data, serving as a benchmark for each method.

Metrics. We evaluate the model performance by five mIoU metrics. First, we
compute mIoU for the base classes C0, which reflects model rigidity: the model’s
resilience to catastrophic forgetting. Second, we compute mIoU for all incremented
classes C1:T , which measures plasticity: the model capacity in learning new tasks.
Third, we compute the mIoU of all classes in C0:T (all), which shows the overall
performance of models. Fourth, we report the average of mIoU (avg) measured step
after step as proposed by [Douillard et al., 2021], which evaluates performance over the
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Figure 4.8. mIoU of recent CSS methods on the first 100 base classes after incrementally
learning new tasks on 100-5 settings with 11 tasks.

Table 4.12. Performance drop (degree of forgetting) of all classes grouped by tasks in the
100-10 setting. We report the class mIoU when the model first learns the task, and the mIoU

when the model last learns it.

Tasks 101-110 111-120 121-130 131-140 141-150 avg

First Time 34.93 39.78 41.10 36.22 27.95 35.99
Last Time 34.51 39.30 40.86 35.09 27.95 35.54

Forgetting ▼0.42 ▼0.48 ▼0.24 ▼1.12 ▼0 ▼0.45

entire continual learning process. To ensure fair comparisons, we evaluate the relative
performance of each CSS method in terms of relative mIoU reduction compared with
its Oracle model jointly trained on all data.

Results and Discussion.

Table 4.11 shows the results of different CSS methods on ADE20k. Our SegViT-CL
consistently outperforms existing methods in all mIoU on both settings. In terms
of mIoU reduction, the proposed SegViT-CL only decreases the mIoU of the Oracle
model by 2.2% on the 100-50 setting, which is two times better than the second-best
method, RCIL with ResNet backbone with 4.6% reduction. This substantial enhance-
ment over existing methods underlines the effectiveness of our proposed method in
the continual semantic segmentation paradigm. On a long CL setting 100-10 with 6
tasks, ours is almost forgetting-free with a marginal mIoU reduction of 0.3%, while
recent CSS methods significantly suffer from forgetting with at least 5.4% mIoU re-
duction. Using the ViT backbone, existing methods including MiB, REMINDER and
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PLOP suffer from higher mIoU reductions than using the ResNet backbone. Com-
pared with the Oracle, MiB [Cermelli et al., 2020], PLOP [Douillard et al., 2021], and
REMINDER [Phan et al., 2022] decrease the mIoU by 20.07%, 15.21% and 13.22%
respectively in the 100-10 setting. The current CSS methods are less effective for ViT
architecture. This highlights the need for developing a specialized ViT architecture
that is robust to forgetting.

To evaluate the forgetting of every task in the 100-10 setting, we compute the
performance drop at the last step compared with its initial mIoU when the model
first learns the task. For example, the initial mIoU of task 2 is the mIoU of class
101-110 evaluated at step 2. Similarly, that of task 3 is the mIoU of class 111-120
reported at step 3. Table. 4.12 shows the performance drop at the last step compared
with the initial mIoU of each task. Averaged across 5 tasks, the mIou only drops by
0.45%, which shows that SegViT is robust to forgetting across all tasks in the 100-10
setting. Table. 4.8 shows the mIoU on the base classes after incremental training on
many tasks in 100-5, which is a long continual learning setting with 11 tasks. Overall,
our SegViT achieves nearly zero forgetting for almost all tasks at the last step. In
contrast to previous CSS methods which require partial fine-tuning, the proposed
SegViT supports completely freezing old parameters to eliminate interference with
past knowledge.

4.4 Conclusion

This chapter presents SegViT, a novel approach for semantic segmentation using plain
ViT transformer base models. The proposed method introduces a lightweight decoder
head that incorporates the Attention-to-mask (ATM) module. Additionally, a Shrunk
structure is proposed to reduce the computational cost of the ViT encoder by 50%
while maintaining competitive segmentation accuracy. Moreover, this work extends
the SegViT framework to address the challenge of continual semantic segmentation,
aiming to achieve nearly zero forgetting. By protecting the parameters of old tasks,
SegViT effectively mitigates the impact of catastrophic forgetting. Extensive experi-
mental evaluations conducted on various benchmarks demonstrate the superiority of
SegViT over UPerNet, while significantly reducing computational costs. The intro-
duced decoder head provides a robust and cost-effective solution for future research
in the field of ViT-based semantic segmentation.
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Chapter 5

Dynamic Token Pruning in Plain
Vision Transformers
for Semantic Segmentation

5.1 Introduction

The Transformer [Vaswani et al., 2017b] is a remarkable invention because of its ex-
ceptional capability to model long-range dependencies in natural language processing.
It has been extended to computer vision applications and is known as the Vision
Transformer (ViT), by treating every image patch as a token [Dosovitskiy et al.,
2021a]. Benefiting from the global multi-head self-attention, competitive results have
been achieved on various vision tasks, e.g . image classification [Dosovitskiy et al.,
2021a; Yuan et al., 2021], object detection [Carion et al., 2020a; Zhu et al., 2021]
and semantic segmentation [Cheng et al., 2021a, 2022b; Zhang et al., 2022a]. How-
ever, heavy computational overhead still impedes its broad application, especially
in resource-constrained environments. In semantic segmentation, the situation de-
teriorates since high-resolution images generate numerous input tokens. Therefore,
redesigning lightweight architectures or reducing computational costs for ViT has at-
tracted much research attention.

Since the computational complexity of vision transformers is quadratic to the token
number, decreasing its magnitude is a direct path to lessen the burden of computa-
tion. There has been a line of works studying persuasive techniques of token prun-
ing regarding the image classification task. For example, DynamicViT [Rao et al.,
2021] determines kept tokens using predicted probability by extra subnetworks, and
EViT [Liang et al., 2022b] reorganizes inattentive tokens by computing their relevance
with the [cls] token. Nevertheless, removing tokens, even if they are inattentive, can
not be directly extended to semantic segmentation since a dense prediction is required
for every image patch. Most recently, Liang et al . [Liang et al., 2022a] proposed a
token reconstruction layer that rebuilds clustered tokens to address the issue.

In this work, a fresh angle is taken and breaks out of the cycle of token clustering or
reconstruction. Motivated by humans’ coarse-to-fine and easy-to-hard segmentation
process, we progressive grade tokens by their difficulty levels at each stage. Hence for
easy tokens, their predictions can be finalized in very early layers and their forward
propagation can be halted early on. Consequently, only hard tokens are processed in
the following layers. We refer to the process as the early exit of tokens. Figure 5.1
gives an illustration. The main body of the relatively larger objects in the image is
first recognized and their process is ceased, while deeper layers progressively handle
those challenging and confusing boundary regions and smaller objects. These predic-
tions from the staged, early-exiting process can be used together with those from the
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Stage #1 Stage #2 Stage #3

Figure 5.1. Illustration of token difficulty levels by three stages using
ADE20K dataset. The network is naturally split into stages using inherent aux-
iliary blocks. Each sextuplet presents the early-exited/pruned tokens and their
corresponding predictions successively for an image, where bright areas represent
early-exited easy tokens at the current stage, while the dark ones are the kept hard

tokens for the following computing.

completed inference. Since both outputs then form the final results jointly, it requires
no token reconstruction operation and results in a simple yet effective form of efficient
ViT for segmentation.

This work introduces a novel Dynamic Token Pruning (DToP) paradigm in plain
vision transformers for semantic segmentation. Given that auxiliary losses [Zhao et al.,
2017b; Zheng et al., 2021b] are widely adopted, DToP divides a transformer into stages
using the inherent auxiliary blocks without introducing extra modules and calcula-
tions. While previous works discard auxiliary predictions irrespectively, we make good
use of them to grade all tokens’ difficulty levels. The intuition of such design lies in
the dissimilar recognition difficulties of image patches represented by individual to-
kens. Easy tokens are halted and pruned early on in the ViT, while hard ones are
kept to be computed in the following layers. We note that having this observation
and shifting from auxiliary-loss-based architecture to DToP for token reduction is a
non-trivial contribution. A possible situation exists where objects consisting of only
extremely easy tokens, e.g . sky. As a result, DToP completely discards tokens from
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easy-to-recognize categories in early layers, and this causes a severe loss of contex-
tual information for the few remaining tokens in their computations. To fully utilize
the inter-class feature dependencies and uphold representative context information,
we keep k highest confidence tokens for each semantic category during each pruning
process.

Contributions are summarized as follows:

• We introduce a dynamic token pruning paradigm based on the early exit of
easy-to-recognize tokens for semantic segmentation transformers. The finalized
easy tokens at intermediate layers are pruned from the rest of the computation,
and others are kept for continued processing.

• We uphold the context information by retaining k highest confidence tokens
for each semantic category for the following computation, which improves the
segmentation performance by guaranteeing that enough contextual information
is available even in extremely easy cases.

• We apply DToP to mainstream semantic segmentation transformers and conduct
extensive experiments on three challenging benchmarks. Results suggest that
DToP can reduce up to 35% computation costs without a notable accuracy drop.

5.2 Our Methods

This work introduces a Dynamic Token Pruning method based on the early exit of
tokens, which expedites plain vision transformers for semantic segmentation. We
detail the paradigm in this section.

5.2.1 Preliminary

A conventional vision transformer [Dosovitskiy et al., 2021a] splits an image X ∈
R3×H×W into different patches. We then obtain a sequence of HW

P 2 × C via patch
embedding. H and W represent the image resolution, P is the patch size and C is the
feature dimension. Let N = HW

P 2 be the length of the input sequence, i.e. the number
of tokens. Vision transformers are position-agnostic, and we generally add positional
encoding to represent the spatial information of each token. The resulting sequence
is denoted as Z0 ∈ RN×C , which serves as the input.

Vision transformers are usually developed from repeated units that contain a multi-
head self-attention (MHSA) module and a feed-forward network (FFN). Layer normal-
ization (LN) [Ba et al., 2016] and residual connection [He et al., 2016a] are employed
within such units. We refer to a unit as one layer indexed by l ∈ {1, 2, ..., L}, and the
output of each layer is marked as Zl.

Z ′
l = MHSA(LN(Zl−1)) + Zl−1,

Zl = FFN(LN(Z ′
l)) + Z ′

l .
(5.1)

Note that FFN includes a non-linear activation function, e.g . GeLU [Hendrycks and
Gimpel, 2016].

5.2.2 Dynamic Token Pruning

Since a token is a natural representation of an image patch, we can finalize the pre-
diction for easy tokens in advance without the need for complete forward computing
by mimicking the segmentation process of humans. We refer to it as the early exit
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Figure 5.2. Illustration of the proposed DToP framework. Given an existing
plain vision transformer, we divide it into stages using the inherent auxiliary heads.
At the final layer (indexed by lm) of the m-th stage, we use the auxiliary block Hm

to grade all token difficulty levels. We finalize the predictions of high-confidence
easy tokens at the current stage and handle other low-confidence hard tokens in
the following stages. The retained k highest confidence tokens for each semantic
category to uphold representative context information is not presented for simplicity.

Predictions from each stage jointly form the final results.

of tokens, where easy tokens are halted and pruned in the early stages while hard
ones are preserved for calculation at the latter stages. By doing so, fewer tokens are
processed in the following layers, significantly reducing the computation costs.

As shown in Figure 5.2, we divide a plain vision transformer backbone into M
stages using its inherent auxiliary blocks Hm (m ∈ {1, 2, ...,M}) at the end of each
stage. Let Pm ∈ RN×K represent the predicted results at the m-th stage, where K
is the number of semantic categories. Suppose that tokens have finished lm layers of
forward propagation at this point, then:

Pm = Hm(Zlm). (5.2)

pm,n coming from Pm is the maximum predicted probability of the n-th token. Pre-
vious works adopt Pm to calculate auxiliary losses during training and discard them
irrespectively during inference. This work highlights that easy tokens can be correctly
classified with high predictive confidence in these auxiliary outputs (i.e. Pm). The
proposed DToP expects to fully explore their potential ability to tell apart easy and
hard tokens during both training and inference.

Inspired by [Hendrycks and Gimpel, 2017], we grade all token difficulty levels using
Pm based on a simple criterion. Assume a large confidence threshold p0, e.g . 0.9. Easy
tokens are classified with higher than 90% scores, while hard ones are classified with
lower scores. Since confident predictions for easy tokens are obtained, we prune them
and halt their continued forward propagation. Hard tokens are reserved in computing
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in the following layers to achieve a reliable prediction. In other words, we prune the
n-th token in Zlm if pm,n ⩾ p0, otherwise we keep it. After propagating an image
through the whole network, we combine the predicted token labels from each stage to
form the final results. By default, the pruning process is executed twice, with each
iteration incurring a minimal computational cost due to the use of a straightforward
classifier at a 1/16 resolution. During inference, the overall computational expenses,
including those associated with the pruning process, are considered for comparison
against alternative methods.

5.2.3 Query Matching Auxiliary Block

Within the DToP framework, the auxiliary block for grading all token difficulty levels
should follow two principles: capable of accurately estimating token difficulty levels
and with a lightweight architecture. Therefore, we take the most recent attention-
to-mask module (ATM) [Zhang et al., 2022a] to achieve this goal. Specifically, a
series of learnable class tokens exchange information with the encoder features using
a transformer decoder. The output class tokens are used to get class probability
predictions. The attention score regarding each class token is used to form a mask
group. The dot product between the class probability and group masks produces the
final prediction.

Two modifications are made to adapt ATM into the DToP framework. First, we
decrease the number of layers in ATM as we observe no significant performance per-
turbation in the DToP framework with the original setting, which also guarantees a
low computational overhead. Second, we decouple multiple cascaded ATM modules
and use them as separate auxiliary segmentation heads, each with individual learnable
class tokens. We note that we take the powerful ATM module to grade all token dif-
ficulty levels as an example, as a reliable estimation of tokens’ segmentation difficulty
may lead to a good accuracy-computation trade-off. Any other existing segmentation
heads are of the same effect (see [Xie et al., 2021; Zhao et al., 2017b; Zheng et al.,
2021b] for examples). In Section 5.3, we also provide experiments with the regular
FCN head [Long et al., 2015b] to validate the generality of DToP.

5.2.4 Upholding Context Information

Scenarios exist where all tokens of a specific semantic category are extremely easy to
recognize, e.g . sky. Such tokens may be entirely removed in early layers, resulting in a
loss of context information in the following layers of calculation. Practices [Yu et al.,
2018c, 2020c] indicate that fully exploiting the inter-category contextual information
improves the overall semantic segmentation accuracy. To this end, we keep k highest
confidence tokens for each semantic category during each pruning process. Only the
categories that appear in the current image are considered. Given a specific semantic
category, if the number of tokens with a higher than p0 score is more than k, then
the top-k of them are kept. Otherwise, we keep the actual number of them. These
category-known tokens join in the calculation along with other low-confidence ones,
so semantic information of easy category is preserved for inter-category information
exchange, leading to an accurate semantic segmentation.
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5.3 Experiments

5.3.1 Datasets and Metrics

ADE20K [Zhou et al., 2017b] is a widely adopted benchmark dataset for semantic
segmentation. It contains about 20k images for training and 2k images for validation.
All images are labeled with 150 semantic categories.

COCO-Stuff-10K [Caesar et al., 2018a] dataset contains 9k images for training
and 1k images for testing. Following [Zhang et al., 2022a], we use 171 semantic
categories for experiments.

Pascal Context [Mottaghi et al., 2014a] has a total of 10, 100 images, of which
4, 996 images are for training and 5, 104 for validation. It provides pixel-wise labeling
for 59 categories, excluding the background.

Following the common convention, we use the mean intersection over union (mIoU)
to evaluate the segmentation accuracy and the number of float-point operations (FLOPs)
to estimate the model complexity. The computation in DToP is unevenly allocated
among easy and hard samples by pruning different numbers of tokens. We thus report
the average FLOPs over the entire validation/test dataset.

5.3.2 Implementation Details

We adopt the plain vision transformer incorporating the adapted ATM module as
the baseline model, where ATM modules work as auxiliary heads. We follow the
standard training settings in mmsegmentation1 and use the same hyperparameters as
the original paper. All reported mIoU scores are based on single-scale inputs. k is set
to 5 in this work. As changing p0 within a certain range (0.90 ∼ 0.98) during training
leads to similar results, we empirically fix it to 0.95 for all training processes unless
specified.

5.3.3 Ablation Study

We first conduct extensive ablation studies with the ADE20K dataset [Zhou et al.,
2017b] using ViT-Base [Dosovitskiy et al., 2021a] as the backbone.

5.3.3.1 Necessity for Model Training

Using auxiliary heads for efficient training is a common convention in the semantic
segmentation community, see [Cheng et al., 2022b; Zhao et al., 2017b; Zheng et al.,
2021b] for examples. Generally, the auxiliary outputs are discarded at test time.
As the proposed DToP grades all token difficulty levels using the auxiliary outputs,
we can apply DToP to existing methods off-the-shelf during inference. Therefore,
we verify the necessity for model retraining or finetuning under the proposed DToP
framework. We denote DToP@Direct as directly applying DToP to the baseline model
during inference. DToP@Finetune means finetuning the segmentation heads for 40k
iterations on the baseline model using DToP, and DToP@Retrain retraining the entire
model using DToP for 160k iterations.

Results are shown in Table 5.1. We observe that all three settings reduce the
computation costs by about 20%, where DToP@Direct and DToP@Retrain lead to
a significant accuracy drop while DToP@Finetune performs slightly better. Results
suggest that the proposed DToP@Finetune requires only a little extra training time
but significantly reduces the computational complexity while maintaining accuracy.

1https://github.com/open-mmlab/mmsegmentation

https://github.com/open-mmlab/mmsegmentation
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Method GFLOPs mIoU(%)

Baseline 109.9 49.7
+ DToP@Direct (♣.0) 87.5 47.9 (-1.8)
+ DToP@Finetune (♣2.5) 86.8 49.8 (+0.1)
+ DToP@Retrain (♣12.0) 87.5 49.1 (-0.6)

Table 5.1. Comparison of training schemes. With a short finetuning scheme,
the pruned model achieves even better results than the baseline. ♣ means extra

training time in hours on 8 NVIDIA A100 cards.

p0 0.60 0.70 0.80 0.85 0.90 0.95 1.00

GFLOPs 70.2 73.4 77.8 80.7 83.6 86.8 109.9

mIoU(%) 46.8 48.0 49.0 49.3 49.5 49.8 49.7

Table 5.2. Ablation for confidence threshold p0. The results are evaluated
on ADE20K with ATM head.

We adopt the @Finetune setting in the following experiments. Note that the slight
fluctuation in FLOPs of the three training schemes comes from varied predictions of
auxiliary heads in the individual training processes.

5.3.3.2 Ablation for Confidence Threshold

The confidence threshold p0 is a crucial hyperparameter that decides the pruned token
number in each pruning process and directly affects the trade-off between computation
cost and accuracy. Quantitative results are shown in Table 5.2. When p0 = 1, the
model degenerates to the baseline architecture. As p0 decreases, more easy tokens are
pruned as well as more unreliable early predictions. We observe that the performance
saturates at p0 = 0.95 when using ATM as the segmentation head.

We also verify the value using SETR [Zheng et al., 2021b] (w/ the naive segmen-
tation head described in FCN [Long et al., 2015b]) and show the results in Table. 5.3.
We observe that for FCN head p0 = 0.98 may be a better choice. In practice, the value
can be chosen empirically with a small validation set. We also note that for SETR,
DToP@Direct has already obtained a promising mIoU score of 46.6% that is only
0.4% lower than the baseline but with significantly reduced computation (∼ 23.4%).
Some qualitative examples of how the threshold p0 affects the pruned token number
and segmentation accuracy are shown in Figure. 5.32.

5.3.3.3 Exploration on Pruning Position

The critical insight of DToP is to finalize the prediction of easy tokens in intermediate
layers and prune them in the following calculation by grading all tokens’ difficulty lev-
els. Thus the position of auxiliary heads matters. It affects the recognition accuracy
of pruned easy tokens and the trade-off between computation cost and segmentation
accuracy. We conduct explorations on the pruning position lm and show the results
in Table 5.4. Results demonstrate that dividing the backbone into three stages with

2Note that some pruned tokens change their final segmentation due to the attention-to-mask
mechanism in ATM but will remain the same in regular FCN heads.
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Method p0 GFLOPs mIoU(%)

SETR - 107.7 47.0
+ DToP@Direct 0.90 74.0 45.6 (-1.4)
+ DToP@Finetune 0.90 72.5 46.3 (-0.7)

+ DToP@Direct 0.95 78.3 46.2 (-0.8)
+ DToP@Finetune 0.95 76.5 46.8 (-0.2)

+ DToP@Direct 0.98 82.5 46.6 (-0.4)
+ DToP@Finetune 0.98 80.6 47.0 (+0.0)

Table 5.3. Ablation results based on SETR. About 25% of the
tokens can be pruned with no performance dropped.

confidence threshold 0
0.8pconfidence threshold 0
0.8p confidence threshold 0

0.95pconfidence threshold 0
0.95p

Figure 5.3. Illustration of the effects for different confidence threshold. Sam-
ples are from ADE20K dataset. For each sextuplet, we show the pruned token distribu-
tion and the ground truth (first row), as well as its corresponding segmentation results
(second row). Bright areas represent pruned tokens, and those in the dark are kept tokens
for the following computing. A small p0 value (left two examples) leads to more pruned
tokens in early stages but results in inferior segmentation results (see the red arrow).

token pruning at the 6th and 8th layers achieves an expected trade-off between compu-
tation cost and segmentation accuracy. We adopt this setting in all other experiments
and note that it may not be optimal on account of limited explorations.

5.3.3.4 Ablation for Pruning Method

After grading all token difficulty levels at the current stage, the specific pruning
method is flexible. We experiment with four token pruning methods. Following LC [Li
et al., 2017], we remove easy tokens directly without the consideration of halting easy
category information. In contrast, this work keeps k highest confidence tokens for each
appeared semantic category to uphold representative context information, marked as
top-k. An alternative to uphold context information is to average all easy token values
into one token for each semantic category. We also prune a fixed proportion of tokens
by removing the top 35% highest confidence tokens to evenly allocate computation
among images. Results are shown in Table 5.5, where the proposed top-k method
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Figure 5.4. Prediction results of three stages during the token pruning pro-
cesses. Examples from ADE20K with different image complicity: most tokens are
pruned (left group), the majority are pruned (middle group), and very few are pruned
(right group). For each sextuplet, we show the pruned token distribution and the corre-

sponding segmentation results at each stage.

Stages Position GFLOPs mIoU (%)

1 Baseline 109.9 49.7
2 {6} 85.7 49.4
2 {8} 92.1 49.4
3 {6, 8} 86.8 49.8
4 {3, 6, 8} 74.5 48.3

Table 5.4. Exploration of the pruning position. The first col-
umn indicates the number of divided stages.

outperforms others by a large margin, suggesting its effectiveness. Furthermore, we
observe that methods upholding context information, i.e. the Average and top-k, are
superior to others.

5.3.3.5 Influence of Segmentation Heads

We conduct verification of different segmentation heads in Table 5.6. Results show
that the proposed DToP works well in both ATM and FCN settings (first two parts),
suggesting the generality. Furthermore, we observe that the mIoU score incurs a sharp
drop after applying the proposed DToP in the setting of an inconsistent decoder and
auxiliary heads. We assume there is a gap when grading all token difficulty levels
using different heads. Adopting ATM as auxiliary heads and FCN as the decoder
heads lead to significantly better accuracy than that of the reverse case. We suppose
the powerful ATM provides a more accurate estimation of all tokens’ difficulty levels
and thus obtains superior results.

5.3.4 Application to Existing Methods

We apply the proposed DToP to two mainstream semantic segmentation frameworks in
plain vision transformers [Dosovitskiy et al., 2021a]. SETR [Zheng et al., 2021b] uses
the naive upsampling decoder, and SegViT [Zhang et al., 2022a] adopts our adapted
ATM module. Results are shown in Table. 5.7 using three challenging benchmarks.
With an appropriate confidence threshold p0, the proposed DToP can reduce on av-
erage 20% ∼ 35% computation cost without notable accuracy degradation. More
specifically, SETR with DToP@Finetune reduces 25.2% computation cost (FLOPs
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Method Context GFLOPs mIoU(%)

Baseline - 109.9 49.7
Remove × 82.6 48.7
Top-35% × 84.6 48.7
Average ✓ 83.5 48.9
Top-k ✓ 83.6 49.5

Table 5.5. Comparison of different pruning methods. All
models are trained with DToP@Finetune using p0 = 0.9.

Method Decode Aux GFLOPs mIoU (%)

Baseline ATM ATM 109.9 49.7
+ DToP@Finetune ATM ATM 83.6 49.5

Baseline FCN FCN 107.7 47.0
+ DToP@Finetune FCN FCN 80.6 47.0

Baseline FCN ATM 107.7 49.6
+ DToP@Finetune FCN ATM 83.4 48.4

Baseline ATM FCN 109.9 47.9
+ DToP@Finetune ATM FCN 73.3 46.9

Table 5.6. Exploration of different segmentation heads. Re-
sults in the second part uses p0 = 0.98 and others 0.9. ‘Decode’ means

the final decoder head and ‘Aux’ auxiliary head.

107.7G → 80.6G) without mIoU drop on ADE20K and even obtains a slightly better
mIoU (58.1% → 58.2%) on Pascal Context dataset. SegViT with DToP@Finetune
based on ViT-large reduced about 35% computation with only 0.5% mIoU lower on
ADE20K.

A qualitative comparison regarding the pruned token number of different images
is presented in Figure. 5.4. We see that most tokens are pruned at very early stages
for images of simple scenarios. For complex scene images, most tokens remain until
the final prediction. Consequently, the computation is unevenly allocated among
images by adjusting the pruned token number, yielding a considerable improvement
in computation efficiency. We also observe that pruned easy tokens are primarily
located at the central area of objects, while kept hard tokens are located on the
boundaries between objects, similar to the segmentation process by humans. Some
visualized predictions are juxtaposed in Figure. 5.5.

5.4 Further Discussions

5.4.1 More Visualized Results

The computation is unevenly allocated among different images when applying the pro-
posed DToP, which attributes computation cost to dissimilar recognition difficulties.
We present visualized examples for a simple illustration in Figure. 5.6. We see that
the reduction of computation cost in GFLOPs can be as high as 57.7% in simple-scene
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Method Backbone p0
ADE20K Pascal Context COCO-Stuff-10K

mIoU(%) GFLOPs mIoU(%) GFLOPs mIoU(%) GFLOPs

SETR [Zheng et al., 2021b] ViT-Base - 47.0 107.7 58.1 92.4 41.2 107.7
+ DToP@Finetune ViT-Base 0.90 46.3 72.5 57.5 61.4 40.6 77.6
+ DToP@Finetune ViT-Base 0.98 47.0 80.6 58.2 69.1 40.9 86.4

SegViT [Zhang et al., 2022a] ViT-Large - 53.3 617.0 63.0 315.4 47.4 366.9
+ DToP@Finetune ViT-Large 0.90 52.4 380.3 62.2 206.1 46.6 253.1
+ DToP@Finetune ViT-Large 0.95 52.8 412.8 62.7 224.3 47.1 276.2

Table 5.7. Main results on three semantic segmentation benchmarks. We
apply the proposed DToP with the finetuning training scheme to current state-of-the-
art semantic segmentation networks based on plain vision transformers. GFLOPs is the
average number of the whole validation dataset. We perform token pruning at {8th, 16th}

layers for ViT-Large.

Figure 5.5. Visualized results. The segmentation results are predicted on ADE20K
(first row), Pascal Context (middle row), and COCO-Stuff-10K (last row). The model is

SegViT with DToP@Finetune based on ViT-Large.

images, such as the example in the first row that contains only the building and sky.
For complex-scene images where the object number increases and the scale varies,
fewer tokens trigger the early exit, and less GFLOPs reduction is obtained. Even
though the computation cost fluctuates among images, the segmentation accuracy
remains stable compared with the baseline results.

5.4.2 Symmetrical Downsampling

DToP serves as an unsymmetrical downsampling operator by making an early exit
of easy tokens. We compare several commonly used symmetrical downsampling op-
erators, including stride convolution, average pooling, and the nearest sampling. We
apply these operators at the end of the 9th layer of ViT-Base [Dosovitskiy et al.,
2021a] backbone to ensure an approximate computation overhead. Results with the
ADE20K dataset [Zhou et al., 2017b] are shown in Table 5.8. The proposed DToP
outperforms others by a large margin.

5.5 Per-Category Results

We present in Figure 5.7 per-category scores on the Pascal Context [Mottaghi et al.,
2014a] dataset as an example. We observe that DToP yields negligible performance
impact on each category as it finalizes easy tokens’ predictions instead of discarding
then rebuilding them and making predictions at the final layer.
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Methods GFLOPs mIoU (%)

Baseline 109.9 49.7
Conv, stride = 2 88.4 44.8
2× 2 average pool 87.8 44.4
2× 2 nearest sampling 87.8 46.1
DToP (ours) 86.8 49.8

Table 5.8. Comparisons to standard symmetrical downsampling
methods under similar computation budget. All methods except base-

line follow the @Finetune training scheme.

5.6 Why Plain ViT

We focus our pruning method for semantic segmentation on the plain ViT back-
bone [Dosovitskiy et al., 2021a] as it offers several advantages over pyramid struc-
tures [Liu et al., 2021] or efficient transformers. The plain ViT structure has the
potential to unify multiple dense prediction tasks and can be improved with more
flexible self-supervised methods [He et al., 2022; Xie et al., 2022]. Additionally, it is
capable of connecting visual and language inputs, allowing zero-/few-shot and con-
tinuous learning for dense prediction tasks. The proposed dynamic pruning method
enables a new paradigm for using ViT in the future. This approach allows for a foun-
dation ViT to be trained on large-scale datasets yet still be applied to various local
datasets with flexible computational reduction.

5.7 Conclusion

This work studies the problem of reducing computation costs for existing semantic seg-
mentation based on plain vision transformers. A Dynamic Token Pruning paradigm
is proposed based on the early exit of tokens. Motivated by the coarse-to-fine seg-
mentation process by humans, we assume that different tokens representing image
regions have dissimilar recognition difficulties and grade all tokens’ difficulty levels
using the inherent auxiliary blocks. To this end, we finalize the predictions of easy
tokens at intermediate layers and halt their forward propagation, which dynamically
reduces computation. We further propose a strategy to uphold context information by
preserving extremely easy semantic categories after token pruning. Extensive experi-
mental results suggest that the proposed method achieves compelling performance.

Similar to all other dynamic networks, DToP can not take full advantage of the
calculation efficiency of a mini-batch. We will make optimization in the future and
further expedite vision transformers using the proposed DToP.
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Ground-Truth

Ground-Truth

Ground-Truth

Ground-Truth

Baseline
Acc: 99.7%

GFLOPs: 617

DToP
Acc: 99.7% (+0.0%)

GFLOPs: 261
GFLOPs save: 57.7%

Baseline
Acc: 96.6%

GFLOPs: 617

DToP
Acc: 96.2% (-0.4%)

GFLOPs: 305
GFLOPs save: 50.6%

Baseline
Acc: 81.7%

GFLOPs: 617

DToP
Acc: 83.0% (+1.3%)

GFLOPs: 371
GFLOPs save: 39.9%

Baseline
Acc: 60.4%

GFLOPs: 617

DToP
Acc: 63.1% (+2.7%)

GFLOPs: 542
GFLOPs save: 12.2%

Figure 5.6. Visualised examples using ADE20K dataset. As com-
puting the intersection over union (IoU) is unreasonable within a sin-
gle image, we use the category-agnostic pixel accuracy (Acc) instead.
GFLOPs means float-point operations in Giga. Best viewed in color.
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Figure 5.7. Per-category scores on Pascal Context dataset with 59
classes excluding background.
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Chapter 6

Conclusions

In this thesis, we have proposed two methods for semantic segmentation, each designed
for different types of semantic segmentation decoders (pyramid and plain). Each
method specifically targets and aims to solve the most concerning problems caused
by those encoders.

First, We have proposed a compact yet very effective decoder, termed Neural
Representational Decoders (NRD), for the semantic segmentation task. For the first
time, we use the idea of neural representations for designing the segmentation de-
coder, which is able to better exploit the structure in the semantic segmentation label
space. To implement this idea, we dynamically generate the neural representations
with dynamic convolution filter networks so that the neural representations can be
incorporated into the standard encoder-decoder segmentation architectures, enabling
end-to-end training. We show on a number of semantic segmentation benchmarks
that our method is highly efficient and achieves state-of-the-art accuracy.

Next, we present SegViT, a novel approach for semantic segmentation using plain
ViT transformer base models. The proposed method introduces a lightweight decoder
head that incorporates the Attention-to-mask (ATM) module. Additionally, a Shrunk
structure is proposed to reduce the computational cost of the ViT encoder by 50%
while maintaining competitive segmentation accuracy. Moreover, this work extends
the SegViT framework to address the challenge of continual semantic segmentation,
aiming to achieve nearly zero forgetting. By protecting the parameters of old tasks,
SegViT effectively mitigates the impact of catastrophic forgetting. Extensive experi-
mental evaluations conducted on various benchmarks demonstrate the superiority of
SegViT over UPerNet, while significantly reducing computational costs. The intro-
duced decoder head provides a robust and cost-effective solution for future research
in the field of ViT-based semantic segmentation.

Finally, we study the problem of reducing computation costs for existing semantic
segmentation based on plain vision transformers. A Dynamic Token Pruning paradigm
is proposed based on the early exit of tokens. Motivated by the coarse-to-fine seg-
mentation process by humans, we assume that different tokens representing image
regions have dissimilar recognition difficulties and grade all tokens’ difficulty levels
using the inherent auxiliary blocks. To this end, we finalize the predictions of easy
tokens at intermediate layers and halt their forward propagation, which dynamically
reduces computation. We further propose a strategy to uphold context information by
preserving extremely easy semantic categories after token pruning. Extensive exper-
imental results suggest that the proposed method achieves compelling performance.
Similar to all other dynamic networks, DToP can not take full advantage of the calcu-
lation efficiency of a mini-batch. We will make optimization in the future and further
expedite vision transformers using the proposed DToP.

The methods proposed in this thesis have the potential to significantly impact the
current state of semantic segmentation, as evidenced by the growing number of works
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built upon our contributions. We envision our proposed methods laying a robust
foundation for various tasks and applications that rely on semantic understanding,
while also offering fresh insights to the research community. Our hope is that these
advancements will foster further progress and lead to more impactful developments in
the field of semantic segmentation.
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