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Thesis Abstract 

Natural selection has become a pervasive theory of evolution since its first proposal over 160 

years ago. Some forms of selection have been intensively studied such that we now have a 

robust understanding of their dynamics, can predict their effects, and have wide-ranging 

evidence in empirical data from natural populations. Fluctuating selection, when selection 

shifts in strength or direction over time, is a form of natural selection that has been studied 

sporadically over the last century. As a consequence, we have a number of models of 

fluctuating selection but a comprehensive understanding of its effect on genomic variation 

has remained elusive. Fluctuating selection was originally studied in the form of phenotype 

observations, for example, Fisher and Ford studied wing patterns in a population of scarlet 

tiger moth and noticed patterns varied in proportion over time. More recently, fluctuating 

selection has been identified at the molecular level using allele frequencies. With recent 

advances in sequencing and decreases in associated costs, the last decade has seen a 

multitude of evidence of fluctuating selection in natural and experimental populations. A 

large quantity of this has stemmed from investigations of cosmopolitan Drosophila 

melanogaster populations over seasonal time scales but is also observed in other species such 

as Arabidopsis thaliana, non-biting midge, and stickleback. This thesis contains a methodical 

investigation of fluctuating selection, with an emphasis on its effects on neutral genetic 

variation. 

In Chapter 1, I perform an updated review of the field of fluctuating selection, compiling the 

abundance of recent evidence of fluctuating selection in natural and experimental populations 

as well as analytical studies of the dynamics of loci under this form of selection. Additionally, 

I highlight the gaps that remain in our current knowledge of fluctuating selection, with the 

hope of filling some with the subsequent work in this thesis.  
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In Chapter 2, I benchmark population genetic simulation frameworks to identify an efficient 

and robust way to simulate non-standard forms of natural selection using fluctuating selection 

as an example. I compare four simulation frameworks using classical and updated data-

recording methods to identify the workflow that confers the most efficient computational 

resource usage for use in the following chapters. 

Chapter 3 comprises a population genetic analysis of the effects of seasonally fluctuating 

selection on linked neutral genetic variation. A single-locus model of fluctuating selection is 

used to characterise its effect on linked neutral genetic variation using a range of population 

genetic statistics. I then compare the signatures of fluctuating selection to common selection 

types (i.e. positive and balancing selection) to determine if fluctuating selection can be 

differentiated from these forms.  

In Chapter 4, I simulate multilocus fluctuating selection to examine its impact on genome-

wide effective population size. A recent theoretical study found that seasonally fluctuating 

selection can decrease diversity genome-wide. I find that under realistic model parameters 

estimated from Drosophila data, fluctuating selection indeed leads to a strong reduction in 

effective population size, and thus reduces genome-wide genetic diversity. I discuss the 

results in the context of Lewontin’s Paradox, the observation that the range of genetic 

diversity across species is much smaller than the extent of variation in population size.  

Together, this thesis synthesises and expands our knowledge of fluctuating selection and its 

implications on population genetic measures and approaches. 
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Natural selection, the theory that species promote their survival by adapting to changes in 

their environment, was first proposed by Charles Darwin over 160 years ago (Darwin 1859). 

Since then, selection has been observed in a wide variety of species and in a number of 

different forms.  

Early studies of natural selection used observations of phenotype to identify traits under 

selection (Darwin 1859; Tutt 1891; Fisher 1930; Ford 1937; Fisher & Ford 1947). However, 

the advent of affordable sequencing technologies has led to an abundance of genetic data, 

enabling us to study selection at the molecular level in the context of genetic variation. 

Natural selection can have significant impacts on neutral diversity at sites linked to a selected 

locus (Smith & Haigh 1974; Charlesworth et al. 1993), and these patterns can be identified 

when assessing genetic variation in a population, allowing for the identification of selection. 

In addition, increased computational capability and new algorithmic methods have resulted in 

powerful population genetic simulators being developed which can model complex selective 

processes and examine their effects on genetic diversity (Baumdicker et al. 2022; Haller & 

Messer 2023).  

Several features of genetic variation can be leveraged using population genetic statistics to 

identify natural selection, this includes the distribution of allele frequencies, i.e. site 

frequency spectrum (Tajima 1989; Bitarello et al. 2023); levels of variation across a region 

(Smith & Haigh 1974; Watterson 1975; Tajima 1983); and haplotype frequencies (Garud & 

Rosenberg 2015). These can then be compared to expectations of these statistics under 

neutral evolution to determine if distortions have occurred that can be attributed to natural 

selection.  

Simple forms of selection that assume constant selection pressures in homogeneous 

populations are now well understood, owing to a substantial body of research not only 
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examining the dynamics and implications of loci under these forms of selection but 

identifying them in empirical data. Positive selection is one such form, where a beneficial 

variant increases in frequency in a population until reaching fixation, thereby decreasing 

diversity in surrounding regions (Smith & Haigh 1974; Fay & Wu 2000; Pritchard et al. 2010; 

Coop & Ralph 2012; Hermisson & Pennings 2017). Positive selection has been found in a 

wide range of species, spanning all forms of life, in natural populations and experimentally 

(Petersen et al. 2007; Garud et al. 2015; Souilmi et al. 2022; Zhong et al. 2022; Harris & 

Garud 2023). Other well-studied forms of selection include balancing selection, in the form 

of heterozygote advantage where alleles are held at intermediate frequencies, thereby 

maintaining genetic variants in a population (Tian et al. 2002; Hedrick 2007; Andrés et al. 

2009; Sellis et al. 2011; Key et al. 2014; Bitarello et al. 2018; Chapman et al. 2019; Bitarello 

et al. 2023), and background selection, the purging of neutral variation linked to deleterious 

alleles in a population (Charlesworth et al. 1993; Hudson & Kaplan 1995; Charlesworth 

2012; Comeron 2014; Matheson & Masel 2023). Theoretical, experimental, and empirical 

methods have been developed and refined for the study of these selection types. However, 

selection cannot always be expected to be simple or constant (Bell 2010), and consequently, 

attention has now moved to the investigation of more complex forms of selection. 

Fluctuating selection is a form of selection that was first proposed almost a century ago and 

has been periodically examined over the following decades (Fisher & Ford 1947; Haldane & 

Jayakar 1963; Hedrick et al. 1976; Gillespie 1991, 1997; Barton 2000; Huerta-Sanchez et al. 

2008; Bell 2010; Taylor 2013; Wittmann et al. 2017). Fluctuating selection occurs when 

selection pressures shift in magnitude or direction over time and is often considered a form of 

balancing selection as it is able to maintain segregating alleles longer than expected under 

neutral evolution (Wittmann et al. 2017). By maintaining multiple variants segregating across 

time, fluctuating selection allows populations to withstand changing environments by 
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carrying adaptations suited to different conditions across generations. In recent years, whole-

genome resequencing studies of populations across time have led to the identification of 

seasonally fluctuating selection, i.e. hundreds to thousands of alleles that oscillate on a 

seasonal time scale, in plants and insects with short generation times (reviewed in depth in 

Chapter 1; Bergland et al. 2014; Busoms et al. 2018; Garcia-Elfring et al. 2021; Machado et 

al. 2021; Behrman & Schmidt 2022; Kelly 2022; Pfenninger et al. 2022; Pfenninger & 

Foucault 2022; Rudman et al. 2022; Bitter et al. 2023; Lynch et al. 2023; Nunez et al. 2023). 

However, there have also been studies using ancient DNA to identify changing selection 

pressures at individual loci in larger mammals with longer generation times, including studies 

in humans (Ludwig et al. 2015; Jagoda et al. 2018; Mathieson & Mathieson 2018; Yair et al. 

2021; Mathieson & Terhorst 2022). In addition to this evidence from empirical data, there has 

been a number of studies modelling the dynamics of fluctuating loci (Haldane & Jayakar 

1963; Wittmann et al. 2017; Bertram & Masel 2019; Park & Kim 2019; Kim 2023). 

Theoretical studies of the impact of fluctuating selection on linked neutral diversity have 

been examined (Gillespie 1997; Huerta-Sanchez et al. 2008; Taylor 2013; Wittmann et al. 

2023). However, the only study of regular fluctuations used a coalescent approach (Wittmann 

et al. 2023), leaving the effects of regularly fluctuating selection on other patterns of 

population genetic variation and genome-wide effective population size to be investigated. 

Most of these studies have been published since the last review of the field of fluctuation 

selection (Bell 2010). In this time, there have also been a number of simulation methods 

developed that may allow for the effective simulation of fluctuating selection, however, these 

have yet to be consistently benchmarked. This thesis concentrates on the population genetic 

signatures and implications of fluctuating selection using simulation approaches. It is 

structured as follows. 
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Chapter 1 - Fluctuating selection and the determinants of genetic variation. 

In this chapter, I review the field of fluctuating selection as it currently stands, summarising 

recent evidence from natural populations and experimental studies, examining new 

theoretical models, and discussing these findings and their implications in the context of 

wider population genetic theory. This published review also highlights the gaps remaining in 

our current knowledge, some of which are filled by the following studies in this thesis. 

Chapter 2 - Population genetic simulation: Benchmarking frameworks for non-standard 

models of natural selection. 

The work in this thesis is conducted using population genetic simulation to explore 

seasonally fluctuating selection, a non-standard model of natural selection. This chapter 

explores simulation workflows that allow for the simulation of complex models of selection 

while also comparing the computational resource usage of each approach.  

Chapter 3 - Discerning the genetic footprints of seasonal fluctuating selection: A comparison 

with established selection forms. 

In my third thesis chapter, I simulate single-locus seasonally fluctuating selection to elucidate 

the signatures of this form of selection using population genetic statistics including diversity, 

site frequency spectrum, and haplotype-based statistics. I then compare this with common 

forms of balancing and positive selection to determine if fluctuating selection can be 

discriminated for these types of selection using population genetic statistics. This study 

provides a detailed understanding of the effect of fluctuating selection on linked neutral 

variation and how this differs from more common and well-understood forms of selection 

(i.e. positive and balancing selection). 
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Chapter 4 - The effect of fluctuating selection on effective population size. 

This chapter investigates the effect of seasonally fluctuating selection on effective population 

size (Ne), a key parameter in population genetics and conservation. It has previously been 

proposed, based on theoretical modelling, that fluctuating selection can lead to a wide-

ranging decrease in diversity even at regions that are unlinked from any selected sites. 

Diversity is a commonly used indicator of effective population size, but the direct influence 

of fluctuating selection on effective population size has yet to be quantified. In this chapter, I 

explore multilocus seasonally fluctuating selection and examine the impacts on variance 

effective population size using realistic model parameters derived from empirical Drosophila 

data. I discuss the findings in relation to the resolution of Lewontin’s Paradox, the 

observation that the variance in diversity (and effective population size) across species is 

orders of magnitude smaller than the variance in census population size.  
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Review

Fluctuating selection and the determinants of
genetic variation
Olivia L. Johnson,1 Raymond Tobler,1,2 Joshua M. Schmidt,3 and Christian D. Huber 1,4,*

Recent studies of cosmopolitan Drosophila populations have found hundreds to
thousands of genetic loci with seasonally fluctuating allele frequencies, bringing
temporally fluctuating selection to the forefront of the historical debate surround-
ing the maintenance of genetic variation in natural populations. Numerous mech-
anisms have been explored in this longstanding area of research, but these
exciting empirical findings have prompted several recent theoretical and experi-
mental studies that seek to better understand the drivers, dynamics, and ge-
nome-wide influence of fluctuating selection. In this review, we evaluate the
latest evidence for multilocus fluctuating selection in Drosophila and other taxa,
highlighting the role of potential genetic and ecological mechanisms in maintain-
ing these loci and their impacts on neutral genetic variation.

The maintenance of genetic variation
Determining the mechanisms responsible for maintaining genetic variation in natural popula-
tions has been a central goal of evolutionary biologists for more than a century [1]. In the
past decade, the availability of population genomic datasets for numerous species has allowed
this question to be directly evaluated in natural populations, reigniting historical debates
regarding the role of genetic drift (see Glossary) and natural selection as the predominant evo-
lutionary mechanisms shaping population genetic diversity (Box 1). Among the more intriguing
findings has been the discovery that hundreds to thousands of polymorphic loci in cosmopol-
itan Drosophila melanogaster populations appear to be maintained by selection pressures
that oscillate across seasons [2,3]. This has revived interest in the contribution of fluctuating
selection to the maintenance of genetic variation within populations and the genetic and eco-
logical factors that underlie it [4–7]. Here we examine recent empirical evidence for multilocus
temporally fluctuating selection in natural and experimental populations and evaluate a range
of theoretical treatments to provide an overview of recent developments in this area while high-
lighting the importance of these findings for the age-old question, what maintains genetic
variation in natural populations?

Evidence of seasonally fluctuating selection in natural populations
Early field studies of fluctuating selection utilized phenotype observations as proxies for changes
in underlying gene frequencies [8]. For instance, Fisher and Ford’s classic 1947 study showed
that different morphs in a natural population of the scarlet tiger moth, Panaxia dominula, were
‘affected by selective action varying from time to time in direction and intensity, and of sufficient
magnitude to cause fluctuating variation in all gene-ratios’ to an extent that could not be attributed
to genetic drift [9]. The development of genomic sequencing technologies in the past few
decades has facilitated the direct discovery of fluctuating selection at the molecular level, with
studies having used allele frequency time-series data to identify fluctuating selection acting at a
single locus [10] and multiple loci [2,3,11–13] in natural populations.

Highlights
Recent observations of seasonally fluctu-
ating allele frequencies at hundreds to
thousands of loci across the genome in
cosmopolitan Drosophila populations
have highlighted fluctuating selection as
a potentially important factor in the main-
tenance of genetic variation in natural
populations.

Empirical evidence also suggests that
fluctuating selection may influence ge-
netic diversity across large portions of
the genome through linkage.

Several single and multilocus theoretical
treatments have been presented for fluc-
tuating selection over the past decades,
but these models have not been evalu-
ated in light of these recent empirical
findings.

We highlight evidence of fluctuating se-
lection in species beyond Drosophila
and explore potential causal genetic
and ecological mechanisms.

The combined evidence suggests that
fluctuating selectionwill need to be incor-
porated in future population genetic
models that seek to understand variation
in genetic diversity across species.
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To date, the strongest empirical evidence for multilocus fluctuating selection at the molecular level
comes from studies of D. melanogaster populations from temperate North American and
European environments. A study of North American D. melanogaster conducted by Bergland and
colleagues identified approximately 1750 sites fluctuating seasonally from a total of ~500 000
surveyed SNPs (false discovery rate <0.3) in a Pennsylvanian population sampled in the spring and
fall seasons across 3 years in succession [2] (Figure 1, Key figure). The frequency of selected loci
changed by an average of 20% between spring and fall across the 3 years, equating to selection co-
efficients of 5–50%per locus per generation.When accounting for the limited statistical power of their
study, the authors estimate that the total number of sites that cycle either as a direct result of season-
ally fluctuating selection or through linkage to such a site could be ten times the number identified.
Bergland and colleagues also found evidence thatmany seasonal SNPswere shared polymorphisms
with Drosophila simulans, a sister species to D. melanogaster that diverged several million years ago
[14], implying that these loci had either been segregating prior to their divergence or are recurrent mu-
tations that aremaintained by oscillating seasonal selection pressures overmillions of years. Nonethe-
less, seasonal changes in life history traitsmeasured forD. simulans andD.melanogaster populations
sampled from the same Pennsylvanian orchard showed substantial interspecies differences, sug-
gesting that these putative shared seasonal SNPs may not be maintained by selection pressures
that are common to both species [15].

A subsequent study examined allele frequency fluctuations within 20 D. melanogaster popula-
tions distributed across North America and Europe [3], with Machado and colleagues reporting
average shifts of 4–8% and associated selection coefficients of 10–30% per season, among
the top 1% (i.e., most significant) of all common ~775 000 SNPs surveyed. Interestingly, the fluc-
tuating SNPs identified by Bergland and colleagues in the Pennsylvanian population were only
slightly enriched among the top 1% of SNPs identified in this study, and this enrichment was
not statistically significant using a permutation approach (pperm = 0.0512). This discrepancy
may be due to the addition of many more populations in the more recent study, leading to in-
creased statistical sensitivity for alleles exhibiting small but consistent seasonal fluctuations across

Box 1. Evolutionary causes of population genetic diversity
The first empirical evaluations of population genetic variation in 1966 used allozyme assays in fruit flies [49] and humans
[78] to reveal surprisingly high levels of segregating genetic variation in both species, eventually prompting the develop-
ment of the Neutral Theory of Molecular Evolution [79,80]. The Neutral Theory asserts that newly arising beneficial muta-
tions are exceedingly rare relative to neutral variants, such that levels of standing genetic variation are predominantly
shaped by genetic drift rather than positive selection. Later revisions of the Neutral Theory argued that the key determinant
of neutrality is the strength of selection acting on a variant relative to the effective population size [81], thereby broadening
the role of genetic drift to include weakly selected mutations.

An alternative to the Neutral Theory states that levels of genetic diversity can be largely explained by the action of selection
on functional variants and its effects on neutral variation linked to the selected sites [64,82–84]. Such models typically con-
sider positive and background selection [57,84] but also balancing selection [85]. Balancing selection is a form of natural
selection that maintains allelic diversity at selected loci across generations [60]. Distinct mechanisms for balancing selec-
tion include heterozygote advantage, sexually antagonistic selection, fluctuating selection, and frequency-depen-
dent selection [86]. Notably, while many forms of balancing selection result in polymorphisms being maintained at stable
equilibrium frequencies [87], both fluctuating and frequency-dependent selection can result in oscillating allele frequencies.
To distinguish between these two modes of selection, we note that fluctuating selection is mediated by an alternating en-
vironmental variable, such as temperature, resource availability, predator abundance, or population size [88], whereas fre-
quency-dependent selection is conditional on the allele frequency (i.e., the selective value of an allele is causally dependent
on its relative abundance rather than the environment).

Population genomic studies have inferred balancing selection in several species, including humans. Estimates of loci under
selection have generally been small in number (tens of loci; [89–91]) and largely circumscribed to immune-related genes
[92]. However, recent studies using more powerful methods and larger sample sizes suggest that balancing selection, in-
cluding fluctuating selection, directly maintains hundreds of independent causal loci [2,3,93–95], suggesting amore prom-
inent role for balancing selection in maintaining functional genetic variation than has been previously appreciated.
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Glossary
Adaptive tracking: continuous
adaptation in response to a rapid
environmental change.
Allozyme: enzymes that have the same
function but are structurally different.
Antagonistic pleiotropy: when loci
contribute to multiple traits with
contrasting effects.
Background selection: loss of neutral
genetic variations due to negative
selection of linked deleterious alleles.
Balancing selection: classically
defined as the maintenance of genetic
variants at intermediate frequencies over
long periods of time. More broadly
defined, it is an evolutionary force that
leads fitness-affecting variants to
segregate within a population longer
than expected.
Boom–bust: exponential population
growth (boom; summer season)
followed by collapse (bust; winter
season) where selection on the
beneficial summer allele weakens at
higher population densities.
Chromosomal inversion: a type of
mutation where a segment of DNA has
been flipped in place in the genome.
Diminishing-returns epistasis: a
form of epistasis where, as more loci
with beneficial alleles are present in a
genome, there is less fitness advantage
gained from each additional beneficial
allele.
Dominance: describes the relationship
between the phenotype and the
genotype at a diploid locus in
heterozygotes; quantified by the
dominance coefficient d. In this context,
d > 0.5 indicates that the allele is
dominant and masks the alternative
allele, whereas d < 0.5 indicates that the
allele is recessive.
Dominance modifier: an allele, or
epigenetic process, that changes the
dominance of another locus.
Effective population size (Ne): the
hypothetical number of individuals in an
idealized Wright–Fisher population that
has the same rate of genetic drift as the
population of interest.
Fitness: a measure of reproductive
success, or the likelihood that an
individual or genotype can survive long
enough to reproduce or be passed on to
the next generation.
Fluctuating selection: when the
strength and/or direction of selection
shifts over time.
Frequency-dependent selection:
where fitness depends on the frequency
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the majority of sampled populations (Figure 1), while being less likely to detect seasonal fluctuations
that are population-specific[3]. Nonetheless, the study demonstrated that seasonal adaptation is a
general phenomenon that impacts numerous loci in temperate fruit fly populations.

D. melanogaster harbors several large chromosomal inversions that have been shown to influ-
ence adaptive clinal variation across multiple continents [16], suggesting that these structural var-
iants might also contribute to the quantity and dynamics of fluctuating loci reported for this
species. However, while an excess of seasonally fluctuating SNPs was found in several different
inversions by Machado and colleagues [3], the identity of enriched inversions tends to be

Key figure

Detecting loci with seasonally fluctuating allele frequencies
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Figure 1. Allele frequency trajectories were simulated under seasonally oscillating selection pressures. Three loci displaying
parallel seasonal allele frequency oscillations within replicates (i.e., across years) and between replicates are highlighted (red,
green, and blue lines). This repeated seasonal change in frequency across replicates is the underlying pattern used to statis-
tically identify seasonally fluctuating loci. The null hypothesis is that neutral loci unlinked to selected sites (grey trajectories) will
not experience such regular seasonal oscillations. Statistical analyses have employed a binomial logit-linked generalized linear
model (GLM) that regresses the frequency of each locus on season (i.e., spring and fall) encoded as a dummy variable
[2,3,13]. More complex statistical models that account for repeated measures produce similar results [2,3]. The Bergland
et al. study [2] compared parallel shifts measured across successive seasonal time points, whereas both the Machado
et al. [3] and the Rudman et al. [13] studies had replication at the temporal and population levels. While genetic drift
(e.g., grey lines) andmigration from neighboring demes violate model assumptions, these were rejected as likely explanations
for the observed seasonal frequency fluctuations based on simulations [2]. Statistical models that explicitly account for ge-
netic drift and time-varying selection pressures are under active development and could be applied in the future to more ro-
bustly infer selected polymorphisms and quantify the contribution of fluctuating selection to allele frequency changes across
the genome [28,108].
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of the phenotype or genotype in the
population.
Genetic drift: shifts in allele frequency
in a population over time due to random
sampling of alleles for the next
generation from the gene pool of the
current generation.
Geometric mean fitness: the
geometric mean of the fitnesses of a
genotype across generations. It is the
relevant criterion for the maintenance of
polymorphism in models with discrete
generations.
Harmonic mean fitness: the
reciprocal of the mean of the reciprocals
of the fitnesses of a genotype across
space; a key quantity in models of
spatially maintained genetic variation.
Heterozygote advantage: also
termed overdominance; when the
heterozygote genotype has higher
fitness than either homozygous
genotype.
Hitchhiking: where the linked flanking
regions of loci under selection are carried
along with the selected allele to a high
frequency.
Positive epistasis: a form of epistasis
where fitness benefit per allele increases
with each additional beneficial allele
across loci.
Positive selection: selection on a
genetic variant that confers a beneficial
trait in a given environment, causing it to
increase in frequency.
Protection from selection: also
known as the storage effect; each
season, a proportion of the population is
replaced by juveniles. The remaining
adult individuals are not subject to
selection.
Sexually antagonistic selection:
when a trait that is favorable in one sex is
unfavorable in the other.
Tajima’s D: a neutrality test statistic
that measures the difference in mean
number of pairwise nucleotide
differences and the number of
segregating sites across a region.
Negative values signify an abundance of
low-frequency variants, associated with
positive selection or population
expansion. An excess of intermediate-
frequency alleles, associated with
balancing selection, population
bottlenecks, or structure, results in a
positive value.
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inconsistent across different studies [3,17,18], and no such enrichment was observed among
segregating inversions in the North American D. melanogaster population studied by Bergland
and colleagues [2]. This suggests that the role of inversions may be strongly dependent on the
local population genetic profile.

Attempts to identify the potential environmental pressures underlying the seasonally fluctuating
Drosophila loci also suggest that local factors may predominate over any shared ecological
drivers [2,3,18,19]. For instance, allele frequency changes were well predicted by maximum tem-
perature prior to sampling in a North American D. melanogaster population but not in European
populations, where average temperature and humidity were better predictors [18]. Accordingly,
adaptive seasonal allele fluctuations in D. melanogaster appear to be strongly influenced by
local genetic and environmental factors that invoke highly population-specific dynamics, and
this might partly explain the lack of common candidate seasonal SNPs observed across the dif-
ferent studies.

Experimental validation of rapid seasonal adaptation
Recently, a novel adaptive tracking field experiment involving outbred D. melanogaster popu-
lations was deployed to explicitly evaluate the role of selection in maintaining seasonally oscillating
loci and its associated hitchhiking effects [13]. The experimental design involved rearing fruit flies
in outdoor cages that contained features of a natural orchard – for example, fruit trees, natural
ground cover, and insect and microbial community – along with regularly replenished food and
egg-laying substrate. This aimed to allow the experiment to capture natural shifts as a result of
local ecological features rather than experimental artefacts. Because the experiment was de-
signed to preclude opportunities for gene flow events, all allele frequency changes could be attrib-
uted to either genetic drift or selection acting on pre-existing variants. Around 9000 SNPs
exhibited significant parallel allele frequency shifts across ten replicated populations measured
at multiple points between midsummer and late fall in a single year, with changes ranging from
2% to 8% between consecutive sampling periods and up to 5% when comparing the first and
final samples taken during the experiment.

Applying a statistical approach that accounts for linkage among the putatively selected sites re-
sulted in a total of 165 unlinked independent genomic clusters that exhibited parallel directional
changes indicative of rapid adaptation to seasonal changes in selection pressures over the
year, a pattern consistent with strong fluctuating selection. Remarkably, selection at these loci
was inferred to have impacted the frequencies at >60% of the 1.9 million genome-wide SNPs
screened during the study. Only three clusters were found to be strongly linked with known inver-
sions, indicating that the seasonal signal seen in this study is not strongly driven by common seg-
regating inversions. Consistent with theoretical results [20,21], simulations under a truncation
selection model showed that the observed frequency shifts are feasible despite the large number
of independently selected loci (i.e., 4.5 loci per chromosome per month, changing at least 2% in
frequency) that are competing against each other [13]. Combined with the two studies of wild
Drosophila populations, these results provide strong evidence for fluctuating selection targeting
at least hundreds of independent loci in Drosophila populations in temperate environments.
They indicate that fluctuating selection is likely to affect allele frequency changes at linked neutral
alleles across a large portion of the genome, and suggest that it also has a major role in shaping
genome-wide diversity in these populations. Interestingly, while this study provides further sup-
port for multilocus fluctuating selection being a common feature in Drosophila populations living
in temperate climates, we found no significant overlap between the candidate SNPs reported
in Bergland et al. [2] and Machado et al. [3] and the genomic clusters of Rudman et al. [13]
(Bergland–Rudman overlap pperm = 0.813, Machado–Rudman overlap pperm = 0.445). While
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this lack of overlap suggests that a substantial fraction of the seasonally adapting loci might be
population specific and/or temporally constrained (see Outstanding questions), it remains un-
known to what extent this lack of replicability was caused by the imperfect mirroring of selection
pressures between the experimental regime and natural environments.

Evidence for fluctuating selection beyond Drosophila
While most evidence for multilocus fluctuating selection comes from observations of Drosophila
populations, fluctuating selection has been identified in several other species, suggesting it may
be found throughout all life.

A study of non-biting midge (Chironomus riparius) over a cold-snap period found evidence of fluctu-
ating selection at 19SNPs, of which tenwere unlinked [12]. Frequency changes of at least 50%were
observed for all ten independent SNPs, with all but one returning to their pre-cold-snap frequency
after 6 months. Balancing selection was inferred at four of the SNPs using Tajima’s D, with
one other SNP showing signs of a recent selective sweep. A separate study of the same species
sampled seasonally over 3 years also found that nearly 360 000 SNPs were impacted by selection
(among ~22.7 million SNPs), with alleles changing frequency by at least 15% between two consec-
utive sampling periods or the first and last sampling points. Notably, while some loci were found to
switch direction in concert with environmental changes, the majority did not covary with seasonal
change [11] (Box 2). Rapid adaptation was also observed in a study of six populations of threespine
stickleback (Gasterosteus aculeatus) inhabiting bar-built estuaries that undergo seasonal environ-
mental changes due to intermittent connectivity to the ocean. Analyses of pooled sequencing
data sampled in spring and fall of 2016 revealed significant parallel allele frequency shifts at thou-
sands of loci across the six populations [22]. Functional enrichment analysis of the candidate
genes suggests rapid osmoregulatory adaptation to temporal changes in salinity. Similar patterns
were reported for coastal Arabidopsis thaliana populations, where alleles conferring differential levels
of salinity tolerance were found to be maintained by annual fluctuations in soil salinity levels [23].

Because of a lack of long-term genetic time-series data for most species, direct molecular evi-
dence for fluctuating selection pressures operating over super-seasonal ecological timescales
is largely limited to species for which ancient DNA is available. For instance, alleles associated
with leopard complex spotting (LP), a speckled coat pattern, were found to fluctuate in frequency
in ancient horse genomes between the Late Pleistocene (approximately 17 000 years ago) and
the Iron Age [24]. This is suspected to result from waves of artificial selection for the speckled
coat pattern favoring the LP allele, which eventually becomes detrimental as LP homozygotes ex-
hibit congenital night blindness. In humans, studies of ancient genomes have revealed that selec-
tion pressures often vary over millennial timescales, with some introgressed Neanderthal alleles
persisting at low frequencies for tens of thousands of years before being targeted by selection

Box 2. Non-oscillating or aperiodic fluctuating selection
Natural environmental fluctuations can follow periodic cycles (diurnal, seasonal, or pluriannual) but also exhibit random var-
iation or noise that is aperiodic. While such non-oscillatory fluctuations do not exhibit regular temporal changes by nature,
they can result in serial changes in the direction of selection (i.e., where the beneficial allele alternates through time) that are
sufficiently frequent to preserve genetic variation at the selected locus [8,11]. Accordingly, non-oscillating environmental
fluctuations are unlikely to result in the distinct frequency fluctuations observed in Drosophila but might still affect genetic
diversity and be detected in genetic time-series data. For example, time-series data for the non-biting midge (Chironomus
riparius) shows non-neutral changes in allele frequency at hundreds of loci across the genome, which cluster in distinct
temporal patterns. In this case, seasonal patterns were of relatively minor importance, and only a few temporal patterns
could be related to measured environmental variables [11]. Although our review largely focuses on cyclical environmental
change, theoretical work on randomly changing adaptive environments has demonstrated that non-oscillatory fluctuations
in selection pressures can also maintain genetic polymorphism and phenotypic/genetic variance of quantitative traits un-
der certain conditions [38,85,96].
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[25,26]. Similarly, alleles associated with adaptation to agricultural diets were initially introduced
into early European farming populations at the start of the Neolithic, but only became strongly se-
lected some 5000 years later in the Bronze Age [27,28]. Furthermore, recent research has dem-
onstrated that causative variants for many human traits and diseases have population-specific
effects [29,30], implying the intensity of the underlying selection pressures has changed over
time in at least some of the studied populations [31].

Beyond genomic data, evidence for temporally varying selection pressures operating at the phe-
notypic level has been reported in studies of vertebrate species that measured trait and fitness
components over time [8]. For example, the strength of selection on breeding dates was esti-
mated for 31 populations of 21 species of birds and mammals, showing that variation in the
strength of selection and/or fluctuations of an optimum phenotype had strong statistical support
across all taxa [32].

These examples suggest that fluctuations in the strength and direction of selection may be a reason-
ably common feature for a wide variety of species and that these fluctuations can be tracked through
time and are influencing the allele frequency dynamics of many genomic loci. However, in many of
these cases, the lack of long-term temporal coveragemeans that it remains unclear whether the fluc-
tuating selection pressures also alter the direction of selection frequently enough to avoid the fixation
of adaptive alleles – a necessary condition to maintain polymorphisms in models of fluctuating selec-
tion [33]. In the future, the analysis of ancient DNA datasets covering successive ecological and/or cli-
mate cycles and long-term field studies will help improve our understanding of the environmental
drivers of fluctuating selection pressures and their temporal characteristics.

Theoretical models of fluctuating selection
Theoretical studies have aimed to evaluate the conditions under which genetic variants are main-
tained in fluctuating environments. Haldane and Jayakar first proposed a general condition for a
temporally fluctuating polymorphism in a biallelic single-locus model [33] where the favored allele
alternates across two opposing environments (e.g., hot and cold). Stable polymorphism at a sin-
gle locus requires the heterozygote to have a greater geometric mean fitness than the homo-
zygous alternatives [33]. This contrasts with spatial selection models, where the difference in
harmonic mean fitness between genotypes is key [34–36]. Since this seminal study by
Haldane and Jayakar, fluctuating selection has been explored through models of temporally fluc-
tuating selection coefficients [37] as well as Gillespie’s SAS-CFF (stochastic additive scale–
concave fitness function) model, which was designed to provide a mechanistic explanation for
genetic variation in enzymes [38–48]. The SAS-CFF model uses a SAS to imitate enzyme activity
under a random continuous environment, with the enzyme activity beingmapped to a CFF. These
properties result in random fluctuations in selection pressures (Box 2), which produce stable poly-
morphic loci when the average effect of each allele is the same and only weakly correlated across
different environments [38].

Although a single stable polymorphism can be well explained by thesemodels, extending them to
the multilocus case (i.e., potentially explaining the hundreds of fluctuating loci seen in Drosophila)
is nontrivial [4]. For instance, the evolutionary applicability of genetic models that permit non-
additive loci and multiplicative epistasis was questioned for requiring seemingly unrealistic levels
of genetic load (i.e., whereby some individuals would have to produce an astronomically large
number of offspring to avoid population extinction) [49–51]. By contrast, models of fluctuating
selection where loci contribute additively to a trait can maintain polymorphism at only one or
two loci [4,52]. Accordingly, multilocus fluctuating selection has long been considered unrealistic
as a mechanism for the maintenance of a large number of polymorphic sites [4].
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In light of the compelling empirical evidence emerging from population genomic studies of
Drosophila [2], recent theoretical work has re-evaluated the plausibility of multilocus fluctuating
selection by drawing on a wider class of selection models that include various forms of
dominance and epistasis [4]. In particular, the ‘segregation lift’ (SL) model proposed byWittmann
and colleagues can maintain polymorphism at hundreds of loci under seasonally oscillating selec-
tion pressures without generating unrealistic levels of genetic load (Figure 2) [4]. The SL model de-
composes fitness into two parts: (i) the seasonal score (z) contributed by each locus, scaled by a
seasonal dominance coefficient; and (ii) a fitness function [w(z)] that allows for epistasis across se-
lected loci and is constant across seasons (Figure 2). Both positive and diminishing-returns
epistasiswere examined; however, maintenance of long-term fluctuating loci under positive epis-
tasis required that seasonally favored alleles are almost completely dominant (i.e., extreme domi-
nance reversal, Box 3; dominance approaches 1 as the number of loci increases), resulting in
large changes in dominance between seasons. By contrast, with diminishing-returns epistasis,
moremoderate changes in dominance were permissible – as the number of loci increases, permis-
sible dominance values approach 0.5 –making diminishing-returns epistasis more plausible overall
[4]. Moreover, beneficial mutations often exhibit diminishing-returns epistasis in empirical studies
[53–55].

Wittmann and colleagues also investigated amore complex version of their SLmodel that allowed
dominance and effect sizes of selected loci to take random values that are potentially asymmetric
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Figure 2. Amplitudes of allele fluctuations from empirical and simulated data. (A) Boxplot of amplitudes of allele frequency fluctuations of unlinked seasonally
selected loci under Wittmann and colleagues’ complex segregation lift (SL) model [4] with varying epistasis values (y parameter) in a population of 10 000 individuals
with ten generations in each season. A total of 1000 loci (ten replicates of 100 loci) were simulated for each y value, with the number of fluctuating loci (i.e., loci still segre-
gating after 90 000 generations) shown beneath each box. All loci have a combined summer and winter dominance greater than 0.5, the critical dominance value for stable
fluctuations, which is used to generate the seasonal score [z =∑ l=1

L cl, where cl is the contribution of each locus (i.e., the product of the effect size and the dominance of the
locus)]. By varying y, the mean amplitude of the fluctuations can encompass the range of mean amplitudes reported in natural Drosophila melanogaster populations by
both Bergland et al. [2] and Machado et al. [3], the distributions of which are shown. X-chromosome SNPs are excluded from the Bergland et al. distribution and were
not analyzed in the Machado study. (B) Note that, as y increases, epistasis becomes more negative while the strength of per-locus selection increases. This is because
log[w(z)] is the relevant scale to evaluate epistasis [4].
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across seasons [4]. In this generalized setting, the authors found that stable polymorphisms were
possible as long as the arithmetic mean dominance between seasons was greater than 0.5
(i.e., the seasonally favored allele is on average dominant across the two seasons). Accordingly,

Box 3. Dominance reversal
The concept of dominance reversal was originally proposed by Sewall Wright in 1915 [97] and has since been discussed
primarily in terms of its role in antagonistic pleiotropy and sexually antagonistic selection [10,98–104]. Loci character-
ized under both criteria exhibit fitness trade-offs whereby the fitness effect of an allele switches from positive to negative
across environments (with the different sexes being the relevant ‘environment’ for the latter criterion; Figure I) [98,105].
Dominance reversals canmaintain polymorphism at loci exhibiting fitness trade-offs by enabling a net heterozygote advan-
tage; that is, the identity of the beneficial allele alternates across environments but dominance always favors the beneficial
allele, sufficiently masking the effects of the deleterious allele in heterozygotes to promote polymorphism [101].

The prevalence of dominance reversal in natural systems remains largely unknown, though it has been observed for poly-
morphic loci related to salinity tolerance in the copepod Eurytemora affinis, with these loci carrying alleles that are simulta-
neously beneficial and completely dominant in either saltwater or freshwater environments [106]. Dominance reversals
have also been observed to impact the expression levels of nearly 1400 different genes in experimental Drosophila
melanogaster populations evolving under two different temperature regimes, likely as a result of temperature-mediated
stress affecting cis and trans regulation [107]. Around two-thirds of the genes experiencing dominance reversals showed
evidence of trans-regulatory control, with two of the 13 identified transcription factors also experiencing temperature-
dependent dominance reversals themselves [107]. Regulatory mechanisms have also been explored as potential
dominance modifiers in dominance reversals associated with sexually antagonistic selection, with simulations showing
that the regulatory properties of the dominance modifier (in this case, a cis-regulatory binding site) induced reverse
dominance in allele expression between the sexes [105]. This indicates that dominance reversals are a plausible
mechanism in natural populations, although its role in maintaining variation in the presence of fluctuating selection remains
to be empirically verified.

TrendsTrends inin GeneticsGenetics

Figure I. Beneficial reversal of dominance in a two-season environment (unbroken lines). The A allele is
dominant and beneficial in the winter and becomes recessive and deleterious in the summer. Fitness for the additive
case is shown with broken lines. The figure shows symmetrical patterns of dominance across seasons, but it is
possible for dominance to be asymmetrical (although the geometric mean fitness across generations of the
heterozygote must be larger than that of either homozygote to sustain a polymorphic locus).
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the SLmodel suggests that fluctuating selection canmaintain hundreds of polymorphic loci under
quite general conditions. Notably, less than 10% of simulated loci were considered detectable
(i.e., had shifted 5% in the expected direction in at least half of the evaluated seasons), with
these loci typically having the greatest effect size. Even so, by merely varying the epistasis
parameter, loci under this model produce allele frequency fluctuations comparable with empirical
observations in natural Drosophila populations (Figure 2).

Ecological mechanisms for fluctuating selection
Reversal of dominance (Box 3) is fundamental to the SL model: it allows the maintenance of genetic
variation without having to assume unrealistically strong selection pressures [6]. Bertram and Masel
[6] examined whether ecological mechanisms can also produce balanced polymorphisms in fluctu-
ating environments without having to assume dominance reversal. In conjunction with the genetic
mechanism of dominance reversal, they investigated two ecologicalmechanisms – boom–bust de-
mographies and protection from selection – both of which are known to lead to low-frequency
alleles being favored over high-frequency alleles, a requirement of stable polymorphisms [6]. When
modeling the dynamics at a single locus with alleles alternately favored in a binary seasonal environ-
ment (i.e., summer and winter), both ecological and genetic mechanisms were capable of stabilizing
alleles with strong fitness effects, provided that the effect sizes are relatively similar across seasons
(Figure 3). However, only dominance reversal was able to maintain alleles with weak fitness effects.
Nonetheless, the authors conclude that both genetic and ecological mechanisms, possibly in com-
bination, may plausibly maintain individual loci exhibiting allele frequency changes consistent with
empirical observations in D. melanogaster (i.e., where selection pressures are strong). Further, the

TrendsTrends inin GeneticsGenetics

Figure 3. Protection from selection model. (A) Effect sizes for summer and winter alleles that result in stably fluctuating
loci (red region in each subpanel) under different fractions of protection (0, 0.5) and additive (d = 0.5) or reversal of dominance
(d = 0.6) models. (B) Allele trajectories when 50% of the population is protected from selection. The black cross in (A) shows
the seasonal effect sizes (i.e., both panels: winter = 2.3, summer = 3.5) and dominance values (i.e., top panel = 0.5, bottom
panel = 0.6) for the adjacent allele trajectories plotted in (B). (C) Fitness equations used in (A,B), where as/w represents the
fitness benefit of the seasonal allele and d signifies the dominance of the seasonal allele [5,6].
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authors suggest that ecological mechanisms widen the scope for temporal variability to balance
polymorphism, although the study did not explicitly model multilocus scenarios [6].

The ‘protection from selection’ mechanism has been extended to the multilocus case in a different
study [7] that includes a ‘refuge’ subpopulation that is protected from cyclically fluctuating selection
pressures. This model was shown to maintain a moderate number of selected polymorphisms, but
in its current formulation is not able to explain the large number of fluctuating loci observed in North
American Drosophila [2]. However, it remains to be investigated whether model modifications could
promote the maintenance of larger numbers of segregating loci [7], which would demonstrate that
dominance reversal is not essential for sustaining hundreds of fluctuating alleles.

Fluctuating selection affects genome-wide diversity
In addition to directly impacting the evolution of selected loci, fluctuating selection may exert con-
siderable influence over surrounding neutral genetic variation. A longstanding debate amongst
population geneticists concerns whether the cumulative effects of selection have a major role in
determining genome-wide levels of diversity observed within and among different species
[56,57]. The genetic hallmarks of positive and background selection on flanking regions
have been well investigated; both selection modes generally reduce levels of linked genetic diver-
sity with the most pronounced reductions occurring in regions with low recombination rates
[58,59]. By contrast, classical models of balancing selection lead to an increase in diversity at
tightly linked regions but have no effect on diversity in more distant regions [60].

The effect of fluctuating selection on genetic diversity at linked sites is much less well investigated
(but see [61–63]). In terms of diversity patterns, fluctuating selection produces signatures consis-
tent with both balancing selection and selective sweeps (i.e., strong positive selection on a single
beneficial locus): it increases diversity close to the selected site but decreases diversity further
away [5,7,63]. Intriguingly, a fluctuating locus can also diminish genetic variation at unlinked re-
gions (e.g., different chromosomes [5,64]), a consequence of the strong recurrent bottlenecks
created by the skewed fitness distribution across individuals after environmental change
(whereby the majority of offspring are produced by a small number of individuals [61]). A recent
theoretical study suggests that this genome-wide diversity-reducing effect outweighs the in-
crease in diversity in regions tightly linked to the selected sites, predicting a substantial reduction
in the diversity in species experiencing strong multilocus fluctuating selection [5]. The scale of this
reduction increases with the magnitude of allele frequency fluctuations at the selected loci [5,63],
although even small fluctuations can cause large genomic reductions in neutral diversity when
their effects aggregate across many loci [5,61].

Importantly, subtle allele frequency fluctuations can be difficult to detect in population genetic data
using standard approaches and thus might often be missed or misinterpreted as classical balancing
selection. Accordingly, large-sample-size time-series data will be necessary to quantify the
abundance andmagnitude of fluctuating selection across the genome in various species and to pro-
vide insights on the fundamental parameters needed to model its effect on linked neutral diversity.
Empirical support for the theoretical predictions comes from an evolve-and-resequence study of
D. melanogaster populations adapting to either constant or spatially/temporally fluctuating salt and
cadmium environments [65]. Among the different regimes, the lowest levels of neutral diversity
were found in replicated populations exposed to temporally fluctuating environments, suggesting
that the fluctuating regime indeed reduces genome-wide diversity.

In sum, a handful of theoretical and experimental results indicate that fluctuating selection could
be a major but currently underappreciated factor shaping levels of genetic diversity in natural
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populations. If so, this would have important implications for the resolution of Lewontin’s paradox
(i.e., the observation that levels of diversity across metazoans vary by only two orders of magni-
tude while census population sizes vary over several [57,66]). For instance, when exposed to pe-
riodically changing environments, species with a large census population size might experience
sequential genetic bottlenecks caused by rapid adaptation to changing environments leading
to a small local effective population size (Ne) (as shown in [18,67] forDrosophila), whereas spe-
cies defined by smaller populations and longer generation times might maintain higher levels of
genetic diversity by virtue of being less able to adapt to short-term environmental fluctuations.
Therefore, if fluctuating selection is widespread among species, this mechanism could partially
resolve Lewontin’s paradox by reducing neutral genetic diversity in species in relation to their cen-
sus population size and generation time [57]. Similarly, fluctuating selection might also contribute
to genome-wide levels of linkage disequilibrium (LD) in various species. Indeed, it was suggested
that recurrent selection at multiple loci may help to explain the observed excess in long-range LD
in natural D. melanogaster populations beyond expectations under purely demographic models
[68,69].

Concluding remarks and future perspectives
Selection in natural populations is likely to be a dynamic interplay between spatially and temporally
varying selection pressures that shape the distribution of functional variation. However, tempo-
rally fluctuating selection remains understudied relative to adaptation to spatially heterogeneous
environments. Recent results from cosmopolitan D. melanogaster populations reporting
hundreds to thousands of seasonally selected loci have helped to revive interest in the role of tem-
porally fluctuating selection in adaptation and themaintenance of genetic variation [2,3,13]. Although
the concept of fluctuating selection has been around for more than 100 years, only in the past de-
cade have advances in whole-genome sequencing allowed the detection of causal loci and the
quantification of their dynamics from genetic time-series data. It is possible that many balanced poly-
morphisms previously identified in population genetic studies are actually the targets of fluctuating
selection rather than examples of classical balanced loci (i.e., where two alleles are maintained at
constant frequencies); the similarity of the surrounding genetic footprints left by the twomodes of se-
lection is expected to make the two forms difficult to distinguish [5]. Together with evidence of fluc-
tuating selection in a range of species, this suggests that multilocus fluctuating selection may be far
more common than previously thought [70]. Accordingly, the development of novel statistical
methods to discriminate balanced and fluctuating loci in population genetic studies and the gener-
ation of suitable time series datasets for diverse taxa are sorely needed to establish the prevalence
and impact of fluctuating selection across the tree of life.

There are still many theoretical and empirical aspects of fluctuating selection and oscillating loci of
which we remain largely ignorant (see Outstanding questions). For example, while a significant
fraction of fluctuating polymorphisms observed in D. melanogaster is shared with sister species
D. simulans [2], it is plausible that the bulk of these variants are only transient and subject to fre-
quent turnover. This may also explain the lack of overlap in candidate loci between studies of cos-
mopolitan D. melanogaster populations [2,3,13]. Further, the influence of fluctuating selection on
genome-wide diversity remains relatively unknown, as previous theoretical and empirical investi-
gations have predominantly focused on the significance of selective sweeps and background se-
lection [59,71]. The recent availability of fast and powerful population genomic simulators [72,73]
provides a promising avenue to compare models of fluctuating selection with empirical observa-
tions and gain a better understanding of the dynamics at play. In addition, ecological mechanisms
remain understudied in the light of recent findings showing that they are a plausible basis for fluc-
tuating loci [6,7], and further investigation is needed to elucidate their role relative to genetic
mechanisms like dominance reversal [6].
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Outstanding questions
How long are alleles under fluctuating
selection typically maintained in natural
populations?

How do fluctuating alleles become
established? Is it through de novo
mutation or through introgression from
populations in extreme environments?

How prevalent is multilocus fluctuating
selection in species other than
Drosophila and what are the main
environmental drivers?

Is there power to discriminate the
population genetic signatures of
fluctuating selection from those of
simple forms of balancing selection or
soft selective sweeps?

Is reversal of dominance the main
mechanism maintaining alleles under
fluctuating selection or do other
mechanisms also play a role?

What is the relevance of genes under
fluctuating selection for adaptation to
massive environmental shifts such as
anthropogenic climate change?

To what degree are fluctuating alleles
and their environmental pressures
shared between species?
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Finally, fluctuating selection is potentially an important contributor to genetic variance in fitness. A
recent meta-analysis based on an improved statistical approach has proposed that a substantial
amount of additive genetic variance in fitness in wild bird and mammal populations had been
missed by previous studies, such that additive genetic variance is much larger than previously
thought [74]. A substantial fraction of this variance is likely to be maintained by selection [75],
with fluctuating selection being a plausible candidate. Ultimately, fluctuating selection might be
a major driver of genetic diversity and an important mechanism enabling rapid adaptation to
changing climatic conditions and, if so, elucidation of its role will become increasingly relevant
for future conservation efforts to protect endangered species [76,77].
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Abstract 

Population genetic simulation has emerged as a common tool for investigating increasingly 

complex evolutionary and demographic models. Software capable of handling high-level 

model complexity has recently been developed, and the advancement of tree sequence 

recording now allows simulations to merge the efficiency and genealogical insight of 

coalescent simulations with the flexibility of forward simulations. However, frameworks 

utilising these features have not yet been compared and benchmarked. Here we evaluate 

various simulation workflows using the coalescent simulator msprime and the forward 

simulator SLiM, to assess resource efficiency and determine an optimal simulation 

framework. Three aspects were evaluated: 1) the burn-in, to establish an equilibrium level of 

neutral diversity in the population; 2) the forward simulation, in which temporally fluctuating 

selection is acting; and 3) the final computation of summary statistics. We provide typical 

memory and computation time requirements for each step. We find that the fastest 

framework, a combination of coalescent and forward simulation with tree sequence 

recording, increases simulation speed by over twenty times compared to classical forward 

simulations without tree sequence recording, though it does require six times more memory. 

Overall, using efficient simulation workflows can lead to a substantial improvement when 

modelling complex evolutionary scenarios – though the optimal framework ultimately 

depends on the available computational resources. 

Introduction 

Evolutionary and demographic processes have long been explored using theoretical models 

[1–3]. While these models have been predominantly examined using analytical methods, 

simulation approaches have recently become a common companion to such methods and 

have facilitated the exploration of evolutionary genetic contexts that are not tractable using 
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conventional analytic approaches [4–7]. Over the last few decades, simulation software has 

been developed and enhanced to the point that they are now, in principle, easily adaptable to 

arbitrarily complex population and evolutionary genetic scenarios [8–13]. Although realism is 

still restricted by the time and memory (random-access memory, RAM) required to simulate a 

given model, recent advances have increased the capability of simulation software and 

enabled more efficient use of resources. In the following sections, we provide a brief 

overview of the two principled means of simulating population genetic models – namely, 

coalescent simulations and forward simulations [12,14,15] – then introduce the tree sequence 

data structure [16,17], a recent advance in data recording that allows for the combination of 

coalescent and forward simulation in a single framework.  

Simulation types 

There are three main types of numerical approaches available for population genetic studies: 

forward, coalescent, and resampling [18]. A description of resampling simulations is omitted 

as it requires empirical data from existing samples, likely to contain non-neutral regions and 

an unknown selection regime, from which the simulated data is generated. Given that the 

general aim of simulation in evolutionary genomics is to model specific modes of selection 

and their effect on the linked neutral background [19–23], this work will instead focus on 

coalescent and forward simulations. 

Forward simulations model population genetic change across successive generations as it 

advances forward in time. This allows for the exploration of complex events with high levels 

of ecological and evolutionary realism throughout the simulation, as demographic and 

selective events can vary across time and space and act heterogeneously across the genome 

[24]. As forward simulations simulate all individuals across successive generations they can 

be both time and memory-intensive, particularly because not all individuals contribute to the 
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subsequent generation and, consequently, most simulated individuals/genomes are not 

ancestral to those sampled in the present [8,24]. In contrast, coalescent simulations actively 

reduce computational burden by working backwards in time and only model the genetic 

ancestry of individuals directly ancestral to a fixed set of individuals sampled in the present. 

Thus, coalescent simulations start from the sampled individuals and build genealogical trees 

backwards in time, connecting individual DNA sequences with ancestral lineages until all 

branches have coalesced to form a single root sequence, which signifies the most recent 

common genetic ancestor of all sampled individuals [14]. While coalescent models did not 

accommodate recombination initially, the ancestral recombination graph (ARG) is a form of 

the coalescent model that includes recombination by allowing for standard ancestry 

coalescence (i.e. two homologous sequences meeting at a common ancestor) but also 

recombination-based coalescence (i.e. two contiguous genetic sequences annealing onto a 

common ancestral background) [25,26]. This results in multiple different genealogies across 

large DNA sequences, such as chromosomes, each of which represents the ancestry of a 

distinct recombined segment [14,15,25,26]. This method of genealogical back-tracking 

means that coalescent simulations are faster and often more efficient than those that move 

forward in time, as they use an idealised population model to generate the genetic ancestry of 

individuals that does not require simulating the genetic history of whole populations across 

all generations [15,18]. Coalescent models also generally assume that new mutations arise 

independently of the underlying genealogies, which allows mutations to be overlaid once the 

genealogy has been generated [14,17]. However, while this replicates the expected behaviour 

of neutral mutations, it is not the case for those that are under selection [27–29]. Accordingly, 

while it is possible to simulate selection in the coalescent framework, the available models 

are limited in complexity, with most coalescent simulators only considering selection at a 

single locus (e.g. [13,30–32]). 
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Figure 1. Diagram of genealogy with associated output tree sequence and non-

genealogical data.  
A Genealogies across a genomic sequence and through time, with time units on the y-axis in 

generations and branches coloured by the ancestry of the numbered nodes. Mutations are shown by 

crosses (x) and labelled with their associated ID found in the subsequent tables. Each genealogy 

derives from a contiguous segment of the genome, with the corresponding genomic coordinates 

shown on the x-axis. The haploid genomes of each node are shown below, with segments coloured 

according to their branch. Each node is labelled on the right-hand side of the segment. New mutations 

introduced to that node are shown in black, whereas inherited mutations are shown in grey. 

Recombination events are also depicted (//). B The tree sequence output consists of a node table, edge 

table, site table, and mutation table. The values included in these tables correspond to the illustrated 

genealogy in A. This data structure is coloured red or purple throughout the study, depending on the 

incorporation of neutral mutation. Panel A and B adapted from Kelleher et al. 2018 [17]. C An 

example of non-genealogical output in the form of standard SLiM output. This data structure is 
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coloured in turquoise throughout the study. The header contains information about the output, these 

values are (left to right): the time (tick and cycle) that the output corresponds to, whether it is an 

output of the full population (A) or just a sample (SS), the population sampled, and the number of 

individuals. This is followed by mutation information. Each line is a unique mutation with the 

associated values being (left to right): a within-file numeric identifier, mutation ID, mutation type, 

position, selection coefficient, dominance coefficient, the population the mutation arose in, the time it 

arose and a frequency count. In this example, mutation 0 is under selection, while the others are 

neutral. The mutation section is followed by information on sampled individuals. This includes the 

individual ID, the sex if enabled (in this case H for hermaphrodite), and the identifier for the two 

haploid genomes of the individual. Finally, the genome section contains the genome ID, followed by 

the chromosome type (A for autosomal), and the identifiers of the mutations in the genome. 

The tree sequence 

The “succinct tree sequence” is a data structure that captures the genealogy of individuals and 

recombination events (shown in Figure 1), similar to an Ancestral Recombination Graph 

(ARG) [15,16]. It can be used in both coalescent and forward simulations and is an efficient 

way to simulate, store, and analyse genealogical and genetic variation data [15–17,33]. 

Several simulators use this data structure [10,13,16,34], notably the widely-used coalescent 

simulator msprime [13] and forward simulator SLiM [10].  

The tree sequence data structure consists of four tables (Figure 1B): a node table, which 

contains haploid genome information including ID and age; an edge table, that records the 

branches between distinct ancestor and child nodes (haploid genomes); a site table, which 

records the ancestral state of sites in the simulated sequence; and a mutation table, which 

records the position, the derived state, and the first node to inherit each mutation that occurs 

during the simulation. The tree sequence tables are filled backwards in time in coalescent 

simulations [15] and chronologically for forward simulations, iterating over all individuals in 

each generation [17]. For forward simulations, the tree sequence is simplified periodically, 

removing records of branches that terminate prematurely; this eliminates redundant node and 

edge information, improving memory efficiency and ensuring the final tree sequence only 
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contains information relevant to the final population. The efficiency can be further enhanced 

by delaying the storage of neutral sequence data in the tree sequence. When filling the tree 

sequence tables using simulations, only non-neutral mutations that will affect the resulting 

genealogy need to be accounted for, as neutral mutations do not affect genealogical 

relationships and thus would only slow the simulation with additional data recording and 

storage burden. Neutral diversity can be added onto the final tree sequence conditional on the 

local genealogy (i.e. neutral mutations drawn onto branches of the tree after it has been 

formed) [16,17]. Additionally, summary statistics are efficiently calculable over the tree 

sequence and these calculations – which utilise the topology and branch lengths of the tree 

sequence – are often faster than those using allele frequencies [13,15,16]. The tree sequence 

approach stands in contrast to standard forward simulations, which do not retain genealogical 

relationship information for sampled individuals [30,35,36]. An example of this non-

genealogical format is shown in Figure 1C. 

In this study, simulations were run using both coalescent and forwards-in-time simulators to 

evaluate the efficiency of these methods and their use of tree sequence recording compared to 

standard simulation practices. Five methods were compared in the generation of a burn-in to 

establish equilibrium levels and patterns of neutral diversity (see Figure 2); the burn-in was 

then used as the initial population data for the forward simulation of selection. The primary 

aim of these simulations is to examine the temporal impact of evolutionary processes on the 

neutral diversity within a population, necessitating the sampling of individuals at multiple 

timepoints throughout the forward simulation. As a test model, we implement both single- 

and multi-locus models of fluctuating selection – a dynamic selection model wherein 

selection pressures vary over time. This model is challenging to execute with standard 

simulation software and is introduced as the evolutionary process of interest in these forward 

simulations (Figure 2). Each aspect of the simulation framework was compared using tree 
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sequence recording and classical non-genealogical (i.e., sequence-based) methods of 

simulating data, which simulate neutral mutations in real time rather than overlaying them 

onto the genealogy after the simulation is complete. Further, the calculation of population 

genetic statistics using functions that utilise the tree sequence data structure was compared to 

those that require allele frequency information. Finally, the complete simulation framework 

was evaluated by benchmarking the time and memory usage across various combinations of 

simulation programs, data types, and summary statistic calculations. While the classical and 

tree sequence approaches have been benchmarked previously [16], hybrid approaches using a 

coalescent burn-in and forward simulation with selection have not yet been compared. 

  



 
 

42 
 

Figure 2. Workflow of the benchmarking tests.  
Four primary workflows were examined: The first workflow entailed a classical forward simulation, 

encompassing a burn-in phase followed by a selection simulation where both neutral and non-neutral 

mutations were generated. Summary statistics were subsequently derived from the resulting allele 

frequency data. The second workflow, akin to the first, employed forward simulation for both the 

burn-in and selection simulation phases; however, tree sequence recording was utilized and only non-

neutral mutations were simulated. This allowed the use of the 'checkCoalescence' option in SLiM for 

the burn-in, which guarantees coalescence of all local genealogies across the genome. All simulations 

in these two workflows were executed solely in SLiM. The third and fourth workflows adopted a 

hybrid approach, commencing with a coalescent burn-in conducted in msprime. In the third workflow, 

neutral mutations were overlaid on the resulting trees and then used to initiate a classical forward 

simulation. The fourth approach followed the coalescent burn-in with a forward simulation in SLiM 

utilizing tree sequence recording. Summary statistics were calculated using both tree sequence and 

allele frequency-based calculations. Additionally, a burn-in comprising a forward simulation with tree 

sequence recording for 10Ne generations, where Ne is the effective population size, was also 

conducted to directly compare the classical and tree sequence approach under the widely used 10Ne 

criterion. The delineated boxes are color-coded based on the data type employed: turquoise for non-

genealogical data format, red for the tree sequence data structure, and purple for the tree sequence 

accompanied by neutral mutation information. 
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Methods 

All simulations were conducted on a MacBook Pro (2.4 GHz 8-Core Intel Core i9 with 64 

GB of RAM), using python 3.8.12.  

Simulated population context 

For all simulations, a 1 megabase (Mb) chromosomal region was simulated, with 

evolutionary and population genetic parameters reflecting those of a wild Drosophila 

melanogaster population. D. melanogaster was chosen because Drosophilids have been the 

focal taxon of research into the population genetics of many different types of selection [37], 

including temporally fluctuating selection [38–42], a form of selection that displays complex 

dynamics not easily implemented using standard population genetic simulation software. As 

D. melanogaster has a very large estimated effective population size (Ne), on the order of 1 

million individuals [43], population parameters were downscaled in the simulations, and 

recombination rate (r) and mutation rate (μ) parameters proportionately upscaled. This 

conserves key compound parameters (e.g. 2Ner and 4Neμ) while expediting run times by 

avoiding simulating and storing genetic data of 1 million individuals each generation. 

Accordingly, rescaled population sizes of 10,000 individuals, r of 10-6, and μ of 10-7 were 

simulated to model a Drosophila population with a Ne equal to 1 million, r of 10-8 [44] and μ 

of 10-9 [45,46], respectively. When scaling population parameters, the selection coefficient 

must also be appropriately scaled. Hence, we use a scaled selection coefficient of 1 that is 

equivalent to a selection pressure two orders of magnitude weaker in a natural population (i.e. 

unscaled s = 0.01). 
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Simulation workflows 

Three different aspects of a typical population genetic simulation project were evaluated 

(Figure 2): 1) the burn-in, to establish an equilibrium level of neutral diversity in the 

population; 2) the forward simulation, in which selection is acting; and 3) the computation of 

summary statistics. This study utilises the coalescent simulator msprime (v. 1.2.0; [13]) and 

the forward simulator SLiM (v. 4.0.1; [10]) in conjunction with the python programming 

libraries: pySLiM (v. 1.0), to process the tree sequences; and tskit (v. 0.5.2), to analyse the tree 

sequences [13,17,47]. SLiM was chosen due to its flexibility, which allows users to customise 

the simulation by scripting specific evolutionary and demographic events using a range of 

functions that target these aspects. Similarly, msprime, PySLiM, and tskit are used as they also 

work with tree sequences and have been integrated with SLiM.  

To conduct benchmarking, the memory and time requirements of msprime and SLiM are 

compared, as well as the efficiency of using the tree sequence data structure compared to the 

classical forward approach. Memory usage was measured using the python package 

tracemalloc. As this package cannot measure the memory usage of SLiM, the peak RAM 

usage of SLiM simulations was measured using an internal function, 'usage(peak = T)', in the 

software. Following the SLiM tree sequence recording benchmarks presented in Haller et al. 

[16], we conducted 10 replicates of each simulation. Examination of the results revealed that 

the inter-replicate variance was sufficiently small relative to the absolute values to provide 

adequately robust estimates (Table S1, S2, S3). 

Burn-in 

Burn-in simulations are commonly employed in population genetic models to establish 

equilibrium levels of neutral population genetic diversity prior to the commencement of the 

phase of empirical interest (e.g. the fluctuating selection phase in the present study). The 
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difference in resource usage was compared for five different burn-in scenarios that combined 

the two types of simulations – i.e. the msprime coalescent simulator or SLiM forward 

simulations – and two recording scenarios – i.e. with neutral mutations being directly 

recorded throughout the simulations or tree sequence recording used instead (see Figure 2).  

When running burn-ins in SLiM, classical forward simulations (i.e. those utilising in-time 

neutral mutation recording) were run for 100,000 generations, since the number of 

generations required to achieve sequence-wide coalescence and stable levels of neutral 

diversity is approximately 10 times the effective population size (Ne) [14,48]. However, 

recent work suggests that simulating for 10Ne generations is not sufficient to ensure 

coalescence [16,35] and, accordingly, SLiM has introduced an option (checkCoalescence=T) 

to check if all lineages have coalesced across the full length of the simulated sequence. 

Hence, SLiM simulated burn-ins that used tree sequence recording were run by either 

simulating for 10Ne generations or until all lineages had confirmed coalescence. Each burn-in 

approach was replicated 10 times. 

Diversity was measured for all burn-in simulations to evaluate if the levels of neutral 

population genetic variation match theoretical expectations [14]; i.e. !
"	$	!

 where θ is 4Neμ, 

and μ is the per-generation mutation rate. For msprime simulations and SLiM tree sequence 

output, tskit’s diversity function was used to calculate nucleotide diversity. For the classical 

simulation approach, diversity was calculated directly in SLiM based on allele frequency data 

using the 'calcHeterozygosity' function. The normality of the diversity distributions for each 

simulation type was examined using the Shapiro-Wilk test. Because the diversity distribution 

of some simulation types was not strictly Gaussian, we conducted both t-test and the 

nonparametric Mann-Whitney U-test to examine if the mean significantly deviates from the 

neutral expectation. Relative diversity, calculated by dividing the diversity value by the 
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neutral theoretical expectation ( !
"	$	!

), was then compared between the different simulation 

approaches. 

Forward simulation selection models 

Next, we evaluated the resource usage of SLiM simulations of a complex selection regime – 

namely, a stable population of 10,000 individuals experiencing a fluctuating selection 

pressure that oscillates across two seasons, with 10 generations per season – comparing the 

same two recording options that were used in the burn-ins (i.e. either tree sequence recording 

or the classical in-time mutation recording).  

We explored two models of fluctuating selection, in which selection targeted either a single 

locus or multiple loci. Both models were replicated 10 times for each data recording method. 

To simulate single locus selection, we implemented the model proposed by Wittmann and 

colleagues, who derived fitness equations for genotypes at a seasonal locus (Table 1; [7]). For 

all simulations conducted using this model, we set the selection coefficient to 1 and the 

dominance value to 0.6 across both seasons.  

Table 1. Fitness equations from Wittmann et al. 2023 used to simulate seasonally 

fluctuating selection at a single locus.  
A fitness equation was used to calculate an individual's fitness (ω) depending on the season (either 

summer or winter) and the genotype at the seasonal locus (i.e. either WW, SW, or SS, where W 

denotes the winter-adapted allele and S the summer-adapted allele), by assuming a selection 

coefficient (s) and a dominance coefficient (h) for each seasonal allele.  

Season 𝜔WW 𝜔SW 𝜔SS 

Winter 1 + sw 1 + hwsw 1 

Summer 1 1 + hsss 1 + ss 
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 For our simulations of multilocus fluctuating selection, we used the following two-part 

fitness function [38]:  

𝑧% = 𝑛% + 𝑑% × 𝑛&'( [1] 

𝜔(𝑧) 	= 	 (1	 + 	𝑧)) [2] 

The first equation is a score (z) that combines the effects of favoured alleles at seasonal loci 

in a given season (the x subscript in eq. 1 indicates that the season could be either summer or 

winter). This score comprises the number of loci homozygous for the seasonal allele (nx) plus 

the product of the number of sites that are heterozygous for the seasonal allele (nhet) and the 

dominance of that allele (dx). This score is then incorporated in a fitness function (𝜔(𝑧); eq. 

2), where y is a coefficient that accounts for epistasis between seasonal loci. For this model, 

10 seasonal loci are simulated, each with a dominance value of 0.6 and a y value of 4 for both 

seasons as this was shown to lead to stable polymorphism [38].  

For simulated selection models using a specific recording type (i.e. classical mutation 

recording or tree sequencing recording), the final population from the burn-in step was used 

as the initial population for the selection phase. All forward simulations of fluctuating 

selection were run in SLiM for 4Ne (40,000) generations, as this provided sufficient time for 

allele frequencies to reach stable oscillations and is the time required for the stabilisation of 

genome-wide patterns of neutral diversity under the influence of fluctuating selection [7]. To 

observe changes in genetic variation over time as selection exerts its effect on linked 

diversity, 100 individuals were sampled in the first generation after the burn-in, and then 

every 10,000 generations throughout the simulation. In the final generation, the whole 

population was sampled. For simulations using tree sequence recording, resource usage 

calculations also included importing the final tree sequence into python and overlaying 
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neutral mutations with msprime, resulting in neutral and non-neutral mutation information at 

the conclusion of both simulation workflows. 

Calculation of summary statistics 

The resource usage involved in the calculation of summary statistics was also tested, with 

comparisons of functions that either utilise the tree sequence data structure or those that use 

allele frequency information for estimation. Calculations were performed using tskit (v. 0.5.2) 

[13,17,47] functions on tree sequence data and the python package scikit-allel (v. 1.3.5) [49] 

on allele frequency data from the 10 replicates of each selection model and data recording 

combination. Tajima’s D and nucleotide diversity statistics were calculated using both tskit 

and scikit-allel, as both packages have functions to calculate these statistics. The peak 

memory usage and time required for the calculation of each statistic were recorded as well as 

the total time, including necessary reformatting steps.  

Results 

Population genomic simulation is an important tool for exploring and testing the dynamics 

and consequences of complex evolutionary phenomena. Given the large number of 

simulations typically required for robust quantification and testing, efficient simulation 

frameworks are key. Here, a combination of modern simulation approaches are compared to 

benchmark workflows for population genetic studies of non-standard forms of natural 

selection.  

Burn-in to establish neutral diversity 

When comparing the computational efficiency of msprime and SLiM to run a neutral burn-in, 

the former was considerably faster than when using either tree sequence recording (10Ne 

generations or until coalescence is confirmed) or the classical mutation recording approach in 
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SLiM. msprime burn-ins were 40 times faster than those conducted in SLiM when simulating 

for 10Ne generations and using tree sequence recording (Figure 3A; Table S1). Overlaying 

neutral mutations had a negligible impact on runtime, with msprime being able to generate 

~260,000 mutations in less than a second, including file input and output [13]. The runtime 

difference between msprime and SLiM approaches increased to almost 114 times when using 

the 'checkCoalescence' option for tree sequence recording in SLiM, which ensures that all 

lineages have coalesced across the simulated sequence. In this case, simulations ran for an 

average of 283,840.5 generations, and coalescence was reached in no fewer than 240,189 

generations. Notably, this is substantially more (~180% increase) than the value of 10Ne that 

is typically recommended for reaching an equilibrium state in burn-in simulations [35], 

suggesting that the coalescence checking option should be used to ensure robust burn-ins in 

SLiM. msprime was over 220 times faster than SLiM when using the classical in-time 

mutation recording approach, consistent with previous benchmarking results showing that 

forward approaches only outcompete msprime when extremely long sequences (i.e. 1010 

nucleotides) are simulated [16].  
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Figure 3. Resource usage for burn-in simulations.  
Simulations that use standard non-genealogical output are shown in turquoise, red signifies 

simulations that output a tree sequence, and purple are simulations resulting in a tree sequence that is 

overlaid with neutral mutations. Each approach was replicated 10 times. A Time in seconds for 

simulations to complete, comparing the use of the tree sequence data structure, in msprime with and 

without overlaid neutral mutations as well as in SLiM run for 10Ne generations and until coalescence 

is ensured, and using the classical approach. B Memory usage in megabytes (MB) for these same 

simulations. 

The memory required for msprime simulations was also significantly lower compared to 

simulating forwards in time with SLiM (Figure 3B), irrespective of the recording method 

used. msprime had a peak memory consumption of about 76 MB when running a burn-in and 

overlaying neutral mutations. This was almost 140 times lower than the mean peak memory 
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of the SLiM burn-in using tree sequence recording, which required an average of about 10.6 

GB whether the 'checkCoalescence' option was activated or not. The use of in-time mutation 

recording resulted in significant reductions in memory burden relative to tree sequence 

recording, requiring around 1.3 GB, though this is still 16x more memory than that consumed 

by msprime using in-time mutation recording. This difference in memory consumption was 

also found when the tree sequence recording method was first proposed [17]. However, the 

initial benchmarking found that tree sequence recording consumed less memory compared to 

the classical mutation recording approach [16]. This disparity is potentially due to less 

frequent usage of tree simplification in the current study, as there is a trade-off between the 

frequency of simplification events and resource usage (i.e. increasing the frequency of 

simplification events leads to greater computational time but lower memory consumption 

[16]). 

When comparing levels of diversity (Figure 4), the coalescent simulations in msprime 

resulted in levels of neutral diversity close to the theoretical expectation (relative diversity = 

0.996; p: Shapiro-Wilk < 0.05, t-test > 0.05, Mann-Whitney U-test > 0.05). Forwards 

simulations in SLiM result in slightly decreased levels of diversity when 'checkCoalescence' 

is not implemented, such that the mean levels of neutral diversity when simulating for 10Ne 

generations with tree sequence recording (0.966; p: Shapiro-Wilk < 0.05, t-test < 0.001, 

Mann-Whitney U-test < 0.01) and using the classical mutational recording approach (0.994; 

p: Shapiro-Wilk > 0.05, t-test < 0.05) were significantly less than the neutral expectation. 

However, using tree sequence recording and conditioning on coalescence results in a mean 

diversity that is similar to the neutral expectation (0.999; p: Shapiro-Wilk > 0.05, t-test > 

0.05). This reinforces the importance of ensuring coalescence when running burn-ins with 

tree sequence recording in SLiM. Notably, coalescent approaches such as msprime guarantee 

coalescence across the full simulated sequence, which together with the minimal resource 



 
 

52 
 

usage makes it the preferred method for producing burn-ins to establish neutral diversity. 

However, should a non-neutral burn-in be required, e.g. to evaluate changing selection 

pressures or continuously introduced deleterious mutations, then forward simulations are 

required and users need to decide between the time-efficient but memory-heavy tree sequence 

recording (confirming coalescence) or the slower but more memory-efficient classical 

mutation reporting approach. 

 

Figure 4. Relative diversity of burn-in simulations. 

Relative diversity was calculated to compare the levels of neutral diversity at the end of each burn-in 

simulation with expected diversity levels for the simulated population under neutral evolution 

(expectation is equal to !
"	$	!

). Coalescent simulations generated in msprime were compared with 

forward simulations that were generated in SLiM. 

Forward simulation of fluctuating selection 

Following the benchmarking of the burn-in methods, the resource usage of the forward 

simulation of fluctuating selection in SLiM was tested. Here, classical forward simulations 

utilising in-time mutation reporting and forward simulation with recently developed tree 
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sequence recording methods are compared, and both the single locus and multilocus models 

were implemented.  

For the forward simulations of the single locus selection model, the classical approach took 

over 12 times longer (approximately 2 hours and 43 minutes; Table S2; Figure 5A) than using 

tree sequence recording and overlaying neutral mutations afterwards (~13.5 minutes). The 

runtime of the classical approach decreased when simulating multilocus selection, taking an 

average of 1 hour and 23 minutes versus approximately 18 minutes when using tree sequence 

recording. This time improvement provided by tree sequence recording does come with an 

increase in memory burden (Figure 5B), requiring approximately six times more memory 

(12.1 and 8.8 GB for single locus and multilocus models, respectively) than forward 

simulations employing in-time mutation reporting (1.9 and 1.4 GB). The developers of tree 

sequence recording do note that it can be more memory intensive and thus is not always 

advisable [16,17]. However, when the required RAM is available, the reduction in the time 

required for the simulation to run, combined with the additional data captured in the tree 

sequence data structure, can make tree sequence recording more desirable than classical 

forward simulations.  
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Figure 5. Resource usage for forward simulations modelling selection. 
A Time and B memory requirements for forward simulations in SLiM on a log scale. Two models of 

fluctuating selection, a single locus and a multilocus model, are compared, along with the use of the 

tree sequence recording (red) compared to classical forward simulation (i.e. using in-time mutational 

reporting; turquoise).  

Summary statistics 

Given the benchmarking results reported in the previous sections, a simulation set-up that 

utilised a coalescent burn-in in msprime and forward simulation of selection using tree 

sequence recording was determined to be the fastest approach. Previous studies indicate that 

the use of the tree sequence data structure can also facilitate the rapid calculation of 
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population genetic statistics [13,17]. Accordingly, we performed tree- or allele-based 

calculations on the relevant outputs of our simulated fluctuating selection regime and 

compared computation times and memory usage (Table S3). The tree-based statistics required 

less memory than the allele-based calculations, exhibiting an 80% average reduction in RAM 

usage for the single locus selection model, and a 50% average reduction for the multilocus 

selection model (Figure 6A). In contrast, the tree-based calculations had the longest mean 

compute time, ranging from 0.3 to 1.2 s for the four combinations of statistics and selection 

models (Figure 6B). The allele-based calculations were significantly faster, taking less than a 

hundredth of a second. However, this calculation time does not take into account the time 

required to manipulate that data into the form required by the statistical function. The tree-

based calculation can be applied directly to the tree sequence resulting from the forward 

simulation, whereas the allele-based statistics require a specific array of allele counts and a 

separate vector of variant positions. When the time taken to prepare these data formats is 

included, allele- and tree-based calculations have similar compute times (Figure 6C). 
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Figure 6. Resource requirements for analysis of simulated data.  

Comparisons of A memory, B calculation time and C total time taken including data manipulation for 

combinations of models of selection and calculation type for two common population genetic 

statistics, nucleotide diversity, and Tajima’s D.  

The complete simulation framework 

We combined the outcomes of the burn-in, selection phase (single allele model), and 

summary statistic calculations (nucleotide diversity), to obtain benchmarks for the four tested 

simulation frameworks (Figure 2; Table S4): 1, classical forward simulations using in-time 

mutation recording during the burn-in and selection phases with allele-based calculations; 2, 

forward simulations using tree sequence recording in the burn-in (generating a robust burn-in 

using the check coalescent option to ensure coalescence of lineages) and selection phase with 

tree-based calculations; 3, a coalescent burn-in overlaid with neutral mutations followed by a 

selection phase with in-time mutation recording and allele-based calculations; and 4, a 

coalescent burn-in followed by a selection phase using tree sequence recording with tree-
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based calculations of summary statistics. Notably, the complete framework values for the 

multilocus method are similar and can be found in Table S4. In contrast, single locus 

selection models displayed considerable differences with approaches that utilised classical 

methods taking the longest time to complete, having an average computation time of 

approximately 5 hours when in-time mutation reporting was used for both burn-in and 

selection phase and taking 2 hours and 43 minutes when it was only used in the selection 

phase. Significant gains were made by frameworks that used tree sequence recording, with 

run times decreasing to 85 minutes when this was employed in the selection phase and only 

14 minutes when employed in both the burn-in and selection phase. These gains in 

computation incur a trade-off with memory consumption, with frameworks employing tree 

sequencing recording in at least one step having a maximum memory burden of ~12 GB 

versus ~2 GB for frameworks where this recording type was not used. 

Discussion 

SLiM is a powerful population genetic simulation tool that implements tree sequence 

reporting within a forward simulation structure, which has made the evaluation of arbitrarily 

complex evolutionary scenarios feasible. Previous studies benchmarking SLiM simulations 

have all employed msprime’s recapitation function, where lineages that remain uncoalesced at 

the end of the simulation are joined in post-simulation data processing [16]. Accordingly, 

population-wide levels of neutral diversity are not fixed at a specific value at the onset of the 

simulation, making this method unsuitable for research that aims to investigate how the effect 

of selection on linked neutral variation builds up over time.  

In our study, we have explored four options for generating appropriate population-wide 

patterns of neutral diversity in a pre-simulation burn-in phase, followed by SLiM forward 

simulations of a complex fluctuating selection scenario. Our benchmarks show that a hybrid 
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workflow employing a msprime coalescent burn-in phase and conducting the selection phase 

using SLiM’s tree reporting procedure provides appropriate levels of initial population genetic 

diversity as well as delivering rapid simulations. This hybrid framework is between 6-21 

times faster than the other three options. While the tree sequence reporting format does 

impose higher memory burdens than simulations that employ in-time mutation reporting, 

these RAM levels are feasible for modern computing environments (~12 GB in the present 

study). Similarly, summary statistic calculations on tree-based outputs are slightly slower 

than allele-based methods, though this comprises a small proportion of the overall run time 

and is not sufficient to offset the time savings created by the usage of tree recording (in place 

of in-time mutation recording) throughout the simulation.  

Another important consideration arising from our study is that the coalescence of neutrally 

evolving lineages is not guaranteed to occur within 10Ne generations, a criterion that is often 

used in population genetic simulations. While this is not an issue when using coalescent 

simulators like msprime, which ensure genome-wide lineage coalescence, for users choosing 

to work solely in SLiM, we strongly encourage the use of the ‘checkCoalescence’ option to 

generate appropriate population levels of neutral diversity at the onset of the simulations.  

Taken together our benchmarks demonstrate the hybrid tree sequence workflow – which 

combines an msprime coalescent burn-in with the core simulation conducted in SLiM – is an 

effective framework for the simulation of non-standard evolutionary processes due to the rich 

information provided by the tree sequence data structure and the potential for greatly reduced 

computational run times compared to workflows adopting in-time mutation recording. As 

shown in this study, however, the improved run times afforded by tree sequence recording 

also come with higher memory requirements, and this trade-off depends on the population 

genetic model being simulated. Accordingly, the optimal simulation framework for each 
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evolutionary genetic study will ultimately depend on both the simulated population genetic 

model and resources available in the local computational environment.  
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Supplementary Information 

Table S1. Summary values for resource usage, diversity, and the final generation of 

burn-in simulations.  

Simulator Data Type Resource Mean Variance Minimum Maximum 

msprime Tree Sequence Time (s) 37.366637 0.42374342 36.41605 38.62125 

msprime Tree Sequence with 
Neutral Mutations Time (s) 37.963179 0.39716497 37.04375 39.17149 

SLiM Tree Sequence (10Ne) Time (s) 1543.8 506.622222 1506 1583 

SLiM Tree Sequence 
(Coalesced) Time (s) 4256.4 185244.267 3575 4768 

SLiM Classical (10Ne) Time (s) 8426.9 161730.544 7913 9053 

msprime Tree Sequence Memory (MB) 73.719385 0.05721054 73.19834 74.09223 

msprime Tree Sequence with 
Neutral Mutations Memory (MB) 76.466541 0.06223297 75.95247 76.8672 

SLiM Tree Sequence (10Ne) Memory (MB) 11490.49 3554020.55 10149.5 16608 

SLiM Tree Sequence 
(Coalesced) Memory (MB) 10612.379 1.35E+06 7863.87 11708.8 

SLiM Classical (10Ne) Memory (MB) 1253.42 6.05E+04 1020.63 1898.95 

msprime Tree Sequence with 
Neutral Mutations Diversity 0.0039687 1.21E-09 0.00391 0.004004 

SLiM Tree Sequence (10Ne) Diversity 0.003852 2.17E-09 0.003801 0.003938 

SLiM Tree Sequence 
(Coalesced) Diversity 0.0039807 1.82E-09 0.003905 0.004062 

SLiM Classical (10Ne) Diversity 0.003963 7.06E-10 0.003926 0.003997 

msprime 
Tree Sequence & Tree 
Sequence with Neutral 

Mutations 
Final Generation N/A N/A N/A N/A 

SLiM Tree Sequence (10Ne) 
& Classical (10Ne) Final Generation 100000 0 100000 100000 

SLiM Tree Sequence 
(Coalesced) Final Generation 283840.5 848881820 240189 322276 
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Table S2. Summary values for forward simulations of selection phase. 

Simulator Selection 
Model Resource Mean Variance Minimum Maximum 

Classical Multilocus Time (s) 4985.737735 527.9862688 4948.706671 5009.905124 

Classical Single Locus Time (s) 9784.142022 55038.2371 9558.260197 10251.72032 

Tree 
Sequence Multilocus Time (s) 1065.124218 1779.645299 1005.015845 1143.515013 

Tree 
Sequence Single Locus Time (s) 809.140324 497.9385517 786.5171781 847.118891 

Classical Multilocus Memory 
(MB) 1434.322 15351.50888 1263.54 1711.59 

Classical Single Locus Memory 
(MB) 1990.348 28251.41591 1815.12 2387.28 

Tree 
Sequence Multilocus Memory 

(MB) 8837.154 348108.16 7951.19 9825.66 

Tree 
Sequence Single Locus Memory 

(MB) 12082.54 2185613.069 10490.5 14080.6 
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Table S3. Summary values for analysis of simulation data with allele-based and tree-

based calculations. 

Input 
Data Type 

Calculation 
Type 

Selection 
Model Statistic Resource Mean Variance Minimum Maximum 

Tree 
Sequence Tree-based Single 

Locus 
Nucleotide 
Diversity 

Memory 
(MB) 0.401701 3.83E-07 0.400564 0.402675 

Tree 
Sequence Tree-based Single 

Locus Tajima's D Memory 
(MB) 0.429567 1.59E-07 0.429004 0.430196 

Tree 
Sequence Allele-based Single 

Locus 
Nucleotide 
Diversity 

Memory 
(MB) 6.700995 0.483635 6.006624 7.387836 

Tree 
Sequence Allele-based Single 

Locus Tajima's D Memory 
(MB) 6.069129 0.395609 5.441 6.690508 

Classical Allele-based Single 
Locus 

Nucleotide 
Diversity 

Memory 
(MB) 2.03 0.00028 2.008968 2.057128 

Classical Allele-based Single 
Locus Tajima's D Memory 

(MB) 1.750968 0.0002 1.731624 1.772904 

Tree 
Sequence Tree-based Multilocus Nucleotide 

Diversity 
Memory 

(MB) 0.401888 2.08E-07 0.401332 0.402531 

Tree 
Sequence Tree-based Multilocus Tajima's D Memory 

(MB) 0.42972 1.09E-07 0.42908 0.430056 

Tree 
Sequence Allele-based Multilocus Nucleotide 

Diversity 
Memory 

(MB) 3.394773 0.000311 3.357887 3.419015 

Tree 
Sequence Allele-based Multilocus Tajima's D Memory 

(MB) 3.024864 0.000247 2.991728 3.045936 

Classical Allele-based Multilocus Nucleotide 
Diversity 

Memory 
(MB) 0.792682 0.000105 0.774896 0.809112 

Classical Allele-based Multilocus Tajima's D Memory 
(MB) 0.689093 7.74E-05 0.673848 0.703176 

Tree 
Sequence Tree-based Single 

Locus 
Nucleotide 
Diversity 

Calculation 
Time (s) 6.01E-01 0.007784 0.49732 0.707807 

Tree 
Sequence Tree-based Single 

Locus Tajima's D Calculation 
Time (s) 1.185142 0.029352 1.001424 1.386468 

Tree 
Sequence Allele-based Single 

Locus 
Nucleotide 
Diversity 

Calculation 
Time (s) 0.008996 1.96E-06 0.007031 0.011153 

Tree 
Sequence Allele-based Single 

Locus Tajima's D Calculation 
Time (s) 0.007064 1.62E-06 0.005917 0.009892 

Classical Allele-based Single 
Locus 

Nucleotide 
Diversity 

Calculation 
Time (s) 0.003102 2.15E-07 0.00277 0.004277 

Classical Allele-based Single 
Locus Tajima's D Calculation 

Time (s) 0.001074 2.63E-08 0.000889 0.001491 

Tree 
Sequence Tree-based Multilocus Nucleotide 

Diversity 
Calculation 

Time (s) 0.277023 5.42E-05 0.267461 0.289421 

Tree 
Sequence Tree-based Multilocus Tajima's D Calculation 

Time (s) 0.542382 8.20E-05 0.529961 0.554457 

Tree 
Sequence Allele-based Multilocus Nucleotide 

Diversity 
Calculation 

Time (s) 0.004918 3.69E-07 0.004363 0.006341 
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Tree 
Sequence Allele-based Multilocus Tajima's D Calculation 

Time (s) 0.004039 6.71E-07 0.00346 0.006273 

Classical Allele-based Multilocus Nucleotide 
Diversity 

Calculation 
Time (s) 0.001236 3.48E-08 0.001026 0.001601 

Classical Allele-based Multilocus Tajima's D Calculation 
Time (s) 0.000611 7.26E-09 0.000516 0.000705 

Tree 
Sequence Tree-based Single 

Locus 
Nucleotide 
Diversity 

Total Time 
(s) 0.601318 0.007784 0.497325 0.707812 

Tree 
Sequence Tree-based Single 

Locus Tajima's D Total Time 
(s) 1.185142 0.029352 1.001425 1.386468 

Tree 
Sequence Allele-based Single 

Locus 
Nucleotide 
Diversity 

Total Time 
(s) 12.11231 2.625862 10.39819 13.84901 

Tree 
Sequence Allele-based Single 

Locus Tajima's D Total Time 
(s) 12.27627 3.272729 10.39801 15.15988 

Classical Allele-based Single 
Locus 

Nucleotide 
Diversity 

Total Time 
(s) 0.801595 0.007893 0.715683 1.029525 

Classical Allele-based Single 
Locus Tajima's D Total Time 

(s) 0.772711 0.005633 0.678232 0.925132 

Tree 
Sequence Tree-based Multilocus Nucleotide 

Diversity 
Total Time 

(s) 0.277026 5.42E-05 0.267463 0.289425 

Tree 
Sequence Tree-based Multilocus Tajima's D Total Time 

(s) 0.542382 8.20E-05 0.529962 0.554457 

Tree 
Sequence Allele-based Multilocus Nucleotide 

Diversity 
Total Time 

(s) 6.47338 0.042623 6.22972 6.767085 

Tree 
Sequence Allele-based Multilocus Tajima's D Total Time 

(s) 6.279504 0.013452 6.135808 6.547757 

Classical Allele-based Multilocus Nucleotide 
Diversity 

Total Time 
(s) 0.223205 0.001295 0.193988 0.317061 

Classical Allele-based Multilocus Tajima's D Total Time 
(s) 0.23141 0.002209 0.190004 0.313396 
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Table S4. Summary of resource usage for the four complete simulation frameworks 

examined. 

Framework Selection Model Mean Time (s) Peak Mean 
Memory (MB) 

1 - Forward simulation with classical mutation 
recording and allele-based calculation Single locus 18211.84362 1990.348 

2 - Forward simulation with tree sequence 
recording and tree-based calculation Single locus 5066.141642 12082.54 

3 - Hybrid simulation with classical mutation 
recording and allele-based calculation Single locus 9822.906796 1990.348 

4 - Hybrid simulation with tree sequence 
recording and tree-based calculation Single locus 847.1082791 12082.54 

1 - Forward simulation with classical mutation 
recording and allele-based calculation Multilocus 13412.86094 1434.322 

2 - Forward simulation with tree sequence 
recording and tree-based calculation Multilocus 5321.801244 10612.379 

3 - Hybrid simulation with classical mutation 
recording and allele-based calculation Multilocus 5023.924119 1434.322 

4 - Hybrid simulation with tree sequence 
recording and tree-based calculation Multilocus 1102.767881 8837.154 
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Abstract 

Fluctuating selection is frequently studied in natural populations by observing allele 

frequency trajectories over brief or contemporary timeframes and through theoretical 

analyses of frequency dynamics. However, little is known of its effect on linked neutral 

diversity. Here, we simulate single locus seasonally fluctuating selection and characterise its 

genomic footprint using diversity, site-frequency spectrum (SFS), and haplotype-based 

statistics. Notably, fluctuating selection exhibited distinct signals depending on when in the 

seasonal cycle the population was sampled. Differences were also observed between recently 

established fluctuating selection and selection that has fluctuated over an extended period of 

time. Compared to other types of selection, fluctuating selection showed distinguishing 

signatures compared to both hard and soft selective sweeps but overlapped considerably with 

balancing selection. Leveraging linear discriminant analysis, we identified a combination of 

statistics that most effectively distinguishes fluctuating selection from positive and balancing 

selection. Our findings shed light on the distinct genomic signatures of fluctuating selection, 

paving the way for in-depth analyses of the long-term dynamics of loci pinpointed in 

contemporary studies. 

Significance  

This research sheds light on the unique genomic patterns of fluctuating selection in natural 

populations. By simulating and analysing its impact on linked neutral diversity, we reveal 

how it differs from other established selection forms, and how it varies across different stages 

of the seasonal cycle. Our findings enhance our understanding of the intricacies of fluctuating 

selection and introduce effective statistical tools for distinguishing it in population genetic 

studies. Importantly, our research facilitates population genetic analyses of loci previously 
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identified as fluctuating over a short time frame to better understand their long-term 

dynamics. 

Introduction 

It has long been understood that genetic selection can have a significant impact on 

surrounding neutral genetic variation (Smith & Haigh 1974; Clarke 1979; Holderegger et al. 

2006; Kern & Hahn 2018; Charlesworth & Jensen 2021). This impact can be characterised 

and used to identify genomic loci that have been under selection. Such distortions of neutral 

genetic variation can be identified in several ways using different statistics and aspects of 

genomic variation; these include measures of diversity, haplotype frequencies, and changes to 

the site frequency spectrum (Watterson 1975; Tajima 1983, 1989; Garud & Rosenberg 2015; 

Bitarello et al. 2018). The effects of positive and balancing selection on these statistics are 

well-documented. Positive selection is characterised by a significant decrease in diversity 

surrounding the selected site (Smith & Haigh 1974; Braverman et al. 1995), an excess of rare 

variants (Tajima 1989), and an increase in haplotype homozygosity (Smith & Haigh 1974; 

Tajima 1989; Braverman et al. 1995; Garud & Rosenberg 2015). In contrast, an increase in 

diversity and an excess of intermediate frequency variants are a hallmark of balancing 

selection (Charlesworth 2006).  

Fluctuating selection, defined by variation in strength or direction of selection over time, is a 

form of balancing selection whose genomic impact is much less well explored (Gillespie 

1997; Barton 2000; Huerta-Sanchez et al. 2008; Taylor 2013; Wittmann et al. 2023). It has 

previously been studied from phenotype observations alone until recent advances in next-

generation sequencing allowed the examination of allele frequency fluctuations across time 

(Bell 2010). Genetic evidence of fluctuating selection is now observed across a wide range of 

diverse species (Ludwig et al. 2015; Garcia-Elfring et al. 2021; Kelly 2022; Pfenninger & 
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Foucault 2022; Lynch et al. 2023; and reviewed in Johnson et al. 2023) but is particularly 

strong in Drosophila melanogaster with studies finding tens to thousands of alleles 

fluctuating between 4 - 20% across seasonal cycles (Bergland et al. 2014; Machado et al. 

2021; Glaser-Schmitt et al. 2021; Behrman & Schmidt 2022; Rudman et al. 2022; Nunez et 

al. 2023). In addition to these empirical studies, a number of theoretical models have been 

developed to better understand the dynamics and mechanisms of fluctuating selection 

(Haldane & Jayakar 1963; Takahata et al. 1975; Gillespie 1978, 1997; Barton 2000; Taylor 

2013; Wittmann et al. 2017; Bertram & Masel 2019; Park & Kim 2019; Wittmann et al. 2023; 

Kim 2023; reviewed in Johnson et al. 2023). While this work has largely aimed to add 

ecological realism and explain the abundant number of fluctuating SNPs observed in certain 

species (Bergland et al. 2014; Machado et al. 2021; Kelly 2022; Pfenninger et al. 2022; 

Pfenninger & Foucault 2022; Rudman et al. 2022; Bitter et al. 2023), few studies have 

contributed to our knowledge of the indirect effects of fluctuating selection on surrounding 

neutral genetic variation (Huerta-Sanchez et al. 2008; Wittmann et al. 2023). As a form of 

balancing selection, fluctuating selection maintains genetic diversity directly at, and very 

closely linked to, selected sites; however, recent analytical analysis has suggested that regions 

less strongly linked and unlinked to the selected sites decrease in diversity, which on a 

genome-wide level overwhelms the increase close to the selected loci (Wittmann et al. 2023). 

This effect has been confirmed in a temporal study of Daphnia pulex, where the authors show 

that temporal variation in selection coefficients is reducing levels of genome-wide diversity 

(Lynch et al. 2023). The effect of fluctuating selection on the site frequency spectrum (SFS) 

has been explored using diffusion approximations and simulation to obtain the SFS following 

random, autocorrelated environmental fluctuations (Huerta-Sanchez et al. 2008). Fluctuating 

selection was seen to distort the SFS, with fewer rare and intermediate alleles and more high-

frequency alleles than expected under neutrality. While this distortion is evident in the 
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unfolded SFS, it is less pronounced in the folded SFS. Consequently, SFS-based statistics that 

are derived from the folded spectrum, like Tajima’s D (Tajima 1989), remain largely 

unaffected. There is also limited power to discriminate fluctuating selection from positive 

selection, using likelihood-ratio tests, when the temporal variance in the selection coefficient 

is small (Huerta-Sanchez et al. 2008). Additionally, fluctuating selection leads to a greater 

fixation rate for selected sites, resulting in increased divergence compared to polymorphism 

akin to the effects of positive selection (Huerta-Sanchez et al. 2008; Gossmann et al. 2014). 

While these findings are vital in our understanding of the influence of fluctuating selection on 

genetic variation and population genetic inference, the effect of regular oscillations, such as 

those seen in Drosophila, remain largely unexplored. Moreover, fluctuating selection has yet 

to be characterised in the context of haplotype-based statistics which may provide further 

understanding of the dynamics of loci and the surrounding genetic variation under this type of 

selection.  

Here, we investigate the effect of fluctuating selection on linked neutral variation. We 

conducted fast and efficient simulations, using tree sequence recording, of a seasonally 

fluctuating allele originating from a single de novo mutation. We then contrasted these with 

simulations of positive selection, in the form of hard and soft selective sweeps, and balancing 

selection represented by heterozygote advantage. To this end, we employed common 

diversity and SFS-based population genetic statistics along with measures based on haplotype 

frequencies, calculated in windows across the simulated region. These were then used in 

linear discriminant analysis (LDA) to identify a combination of statistics that best 

discriminate fluctuating selection from the other types of selection examined. We find 

fluctuating selection to be distinct from all forms of positive selection at the central window 

containing the selected site. In contrast, the signatures of balancing and fluctuating selection 

largely overlap across most metrics, but they can be differentiated using haplotype statistics. 
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Importantly, the signals from seasonally fluctuating selection varied depending on its 

sampling time during the cycle. This distinction could improve our capacity to differentiate it 

from other selection types that do not vary across seasons when data sampling covers 

multiple time points.  

Results 

We simulated a diploid, randomly mating population with constant population size and 

recombination rate and mutation rates reflecting the Drosophila melanogaster species 

(Comeron et al. 2012; Schrider et al. 2013; Keightley et al. 2014). We assume a binary two-

season environment with 10 generations per season (Wittmann et al. 2023). Three types of 

selection were modelled: fluctuating selection (Wittmann et al. 2023); balancing selection, in 

the form of heterozygote advantage (Charlesworth et al. 1997); and positive selection, in the 

form of both hard and soft selective sweeps (Garud & Rosenberg 2015).  

Hard selective sweeps were simulated by introducing a single beneficial mutation in the 

center of the simulated sequence, whereas soft selective sweeps were simulated by 

introducing multiple beneficial mutations via a high beneficial mutation rate (see Methods). 

These modes of selection were chosen as fluctuating selection has been suggested to reflect 

aspects of both balancing and positive selection (Barton 2000; Huerta-Sanchez et al. 2008; 

Taylor 2013; Wittmann et al. 2023). From these simulations, we then characterised the effect 

of each form of selection in 10 kb windows over a 5 Mb region. 

Fluctuating allele frequency trajectories 

Fluctuating selection was simulated using a seasonal single locus model, starting from a 

single de novo summer-favoured mutation introduced at the beginning of the summer season. 

We used the fitness model presented by Wittmann and colleagues (Table 1; Wittmann et al. 
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2023) and tested three selection coefficients (s; 1, 0.5, 0.1) and two dominance coefficients 

(d; 0.5, 0.6). The seasonal allele was seen to fluctuate in frequency immediately after 

introduction, with the trajectory oscillating around an average frequency that increased until a 

stable oscillation around an equilibrium frequency was reached (Figure 1). For most 

simulations, the seasonal allele was maintained in the population until the simulation 

terminated at 100,000 generations. However, for weak selection (s < 0.1) and dominance of 

0.5, seasonal alleles were often either lost or reached fixation before the end of the 

simulation. The following analysis only considers simulations where the selected allele was 

segregating until the end of the simulation, i.e. in some cases this required the simulation to 

restart if the selected locus was fixed or lost (Appendix 1). In general, greater selection 

coefficients conferred fluctuations with a larger amplitude and less variance in the allele 

frequencies at any given time. The different dominance coefficients also affect seasonal allele 

frequency trajectories, with d = 0.6 leading to more stable fluctuations than d = 0.5 (Figure 1; 

Wittmann et al. 2017, 2023).  
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Figure 1. Allele frequency trajectories of fluctuating selection for different selection and 

dominance coefficients.  
Three different selection coefficients (s; 0.1, 0.5, 1) and two dominance coefficients (h; 0.5, 0.6) are 

shown, labelled on the right-hand side of each row of panels to which it corresponds. Left-hand panels 

show the increase in the frequency of the summer-favoured allele from a single mutation until the 

allele is stably oscillating around the equilibrium frequency. The right-hand panels show the 

fluctuations after 96,000 generations over three consecutive seasonal cycles.  

Characterising the signatures of fluctuating selection. 

The influence of fluctuating selection was characterised across a 5 Mb simulated region using 

a range of population genetic statistics and averaging the values of statistics, calculated in 10 

kb windows, across 50 replicates. These include measures of diversity, statistics based on the 

site frequency spectrum (SFS), and haplotype statistics. We compare fluctuating selection 

immediately after it reaches a stable oscillation around an equilibrium frequency (early 
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equilibrium) and after it has been at equilibrium for approximately 96,000 generations (long-

term). The use of these two timepoints allow the characterisation of the signatures of 

selection at varying timepoints during which the allele frequency trajectories are stable. This 

provides the opportunity to determine how the signature of selection differs from when 

selection is first clearly identifiable with allele frequency data to when the allele has been 

stably segregating for extended periods of time and the genomic region surrounding the site is 

at equilibrium. We again simulate under three values of s (0.1, 0.5, 1), but use a constant 

dominance coefficient of 0.6 as it resulted in more stable trajectories. Samples are taken from 

the final generation of summer where we expect the most distinction from neutrality due to 

the extreme allele frequency at this time point.  

When looking at measures of diversity, such as nucleotide diversity (π) and Watterson’s theta 

(Figure 2), at early equilibrium, fluctuating selection demonstrates a narrow decrease at the 

selected site which is less negative with lower selection coefficients. However, long-term a 

broad decrease can be seen greater than 1 Mb away from the selected site, with a small 

increase in diversity right at the selected locus. This broad decrease lessens with decreasing 

strength of selection such that it is not noticeable when s = 0.1. Tajima’s D demonstrates a 

decrease at the selected site with slightly positive shoulders when fluctuation selection is at 

early equilibrium; however, this becomes a small and narrow positive peak once selection has 

been stable long-term.  
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Figure 2. Footprints of fluctuating selection across time using SFS-based statistics. 

Signature of fluctuating selection at early equilibrium and long-term for nucleotide diversity, 

Watterson’s theta, Tajima’s D, and the variance, skew, and kurtosis of the SFS, as well as non-central 

deviation (NCD) with a target frequency of 0.5 in both its unstandardised and standardised forms. 

Statistics were calculated in 10 kb windows across the simulated region and were averaged across 50 

replicates for three selection coefficients: 1, in blue; 0.5, shown in green; and 0.1, in red. A dashed red 

line signifies the position of the selected site. Dashed black lines illustrate the 5%, 50% and 95% 

quartiles for simulations without selection, lines are labelled with the relevant quartiles. 
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We also examined the moments of the unfolded SFS to identify if fluctuating selection had 

any unique effects on the distribution of allele frequencies surrounding a seasonally selected 

site (Figure 2). A narrow peak in variance, that increases with greater selection coefficients, is 

visible at early equilibrium. This suggests that fluctuating selection increases the variance in 

allele frequencies around the selected site. For the skew and kurtosis of the SFS, we see a 

narrow negative peak together with a subtle broader decrease surrounding the central peak. A 

more negative central peak and more pronounced broader decrease is correlated with a 

greater selection coefficient. The decrease in skew and kurtosis around the selected site 

suggests the SFS has a broader, less skewed distribution of allele frequencies (e.g., fewer rare 

variants and more intermediate and high-frequency variants) compared to surrounding 

regions. Huerta-Sanchez and colleagues observed a similar effect on the SFS under randomly 

fluctuating selection (Huerta-Sanchez et al. 2008). However, they found fewer intermediate 

variants than we observe under seasonally fluctuating selection where there are equally 

elevated levels of intermediate and high-frequency variants (Figure S1). This increase in 

intermediate variants contradicts the negative peak we see in Tajima’s D at the central 

window (Figure 2), however, fluctuating selection appears to decrease in singletons while 

maintaining, and potentially increasing, other low-frequency variants along with the increase 

in more common variants which likely contributes to the negative values of Tajima’s D 

(Figure S1). When we look further away from the selected site, we find the distribution to be 

skewed towards rare variants, potentially as a result of the recurrent sweep-like manner of 

seasonally fluctuating selection (Coop & Ralph 2012). Long-term fluctuating selection at the 

central window does not show the same pattern in the moments of the SFS (Figure 2), 

however when looking at the site frequency spectrum, we see the increase in intermediate and 

high-frequency variants is still visible at this time point (Figure S1).  
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Non-central deviation (NCD) is a statistic designed to identify balancing selection that 

quantifies how the SFS deviates from the expected balanced equilibrium frequency i.e. the 

target frequency (TF; Bitarello et al. 2018). Here, we use a version of NCD (NCD1) that does 

not require outgroup information, and we use it with three target frequencies (0.5, 0.4, 0.3). 

As recommended, we standardised NCD based on the number of segregating sites in each 

window to control for potential confounding (Bitarello et al. 2018). Fluctuating selection has 

similar overall influences on NCD at all three target frequencies and when NCD is 

standardised (Figure 2; Figure S2). When fluctuating selection has reached early equilibrium, 

NCD is characterised by a large increase at the selected locus, specifically for standardised 

measures of NCD but also as the target frequency decreases. This central positive peak is 

located within a broader negative peak. For long-term fluctuating selection, the broader 

negative peak becomes more pronounced whereas the central positive peak disappears. As the 

selection coefficient decreases, this signature becomes less apparent such that when s = 0.1, it 

is not visible anymore. 

Fluctuating selection also has a visible impact on haplotype-based statistics (Figure 3). We 

calculated Garud’s H statistics which are a range of statistics that measure shifts in the 

haplotype frequency distributions to identify positive selection and discriminate hard and soft 

sweeps. For Garud’s H1, H12 and H123, a large narrow peak is seen at the selected site for 

selection coefficients equal to 0.5 and 1 when fluctuating selection has just reached early 

equilibrium. The peak becomes an order of magnitude smaller when selection has been stable 

and at long-term equilibrium, and is effectively inverted for Garud’s H2/H1, used to classify 

soft sweeps. The significant peak in H1, H12, and H123, suggests there is a small number of 

haplotypes at high frequencies surrounding the selected site, similar to a selective sweep. 

This signature is more pronounced for higher selection coefficients which is to be expected as 

the fluctuations are quicker to reach a stable oscillation. This leaves little time for 
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recombination and mutation to deteriorate the haplotype initially linked to the novel summer-

beneficial mutation, thus resembling a hard selective sweep. Moreover, high values of H12 

and H2/H1 are also indicative of a soft sweep (Garud & Rosenberg 2015); at early 

equilibrium, fluctuating selection demonstrates a high H12 but low H2/H1 at the selected site. 

However, by the long-term timepoint H2/H1 has increased, while H12 remains elevated, 

suggesting the sweep pattern softens over time. 
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Figure 3. Signatures of fluctuating selection in haplotype statistics. 
Garud’s H statistics calculated in 10 kb windows across a 2 Mb region with the selected site at the 

centre for early equilibrium and long-term fluctuating selection. Three selection coefficients were 

considered, s = 1 in blue, s = 0.5 in green, and s = 0.1 in red. 
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Signatures of fluctuating selection change across the seasonal cycle 

While these statistics show that fluctuating selection has a distinctive footprint when sampled 

at the end of summer, the signature can change when sampling at different stages throughout 

the seasonal cycle. Nucleotide diversity, Watterson’s theta, Tajima’s D, haplotype statistics, 

NCD, and the variance, skew, and kurtosis of the SFS all demonstrate differences between the 

different sampling times in each season, i.e. in the middle or end of either summer or winter, 

particularly right after reaching early equilibrium (Early Equilibrium Fluctuating). For 

diversity measures, NCD, moments of the SFS, and Tajima’s D, signals are most pronounced 

at the end of summer, where it is distinct from the weaker pattern seen in the middle of 

summer or winter (Figure 4). The end of winter shows the weakest signal, looking almost 

neutral. This is also seen for haplotype-based statistics when fluctuating selection reaches 

early equilibrium (Figure 4). At long-term time points differences in patterns between winter 

and summer are not observed. However, an additional pattern is observed at long-term 

sampling points whereby features are present at the end of seasons but are not visible in the 

middle of seasons. Haplotype-based statistics and Tajima’s D demonstrate this pattern at 

long-term fluctuating selection (Long-Term Fluctuating; Figure 4). In contrast, statistics such 

as NCD and diversity measures demonstrate a constant Long-Term Fluctuating signature 

across the season (Figure 4). Together, this suggests that there are optimum times at which 

natural populations should be sampled to detect signatures of fluctuating selection.  
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Figure 4. Signatures of fluctuating selection differ at different points of the seasonal 

cycle. 

Garud’s H1 and nucleotide diversity values for early equilibrium and long-term fluctuating selection 

are plotted at the middle and end of summer and winter across a single seasonal cycle. Data simulated 

with a selection coefficient of 1 is shown as it gives the clearest patterns, which are less pronounced 

as the selection coefficient decreases. There are a few different patterns seen across the seasonal cycle 

in a number of statistics tested in this study but shown here for Garud’s H1 and nucleotide diversity. 
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is a single motif that is more or less pronounced at different points; the second a presence/absence of 

signatures depending on when individuals are sampled, is observed in Garud’s H1 at Long-Term 

Fluctuating between the middle and ends of the season. Nucleotide diversity demonstrates a consistent 

signal across the whole of the seasonal cycle for Long-Term Fluctuating. 

Distinguishing fluctuating selection from other forms of selection 

After characterising the signatures of fluctuating selection, we compared them to the 

footprints of more traditional forms of selection, such as positive and balancing selection. We 

aimed to ascertain if fluctuating selection has unique features that can be leveraged to 

discriminate it from other types of selection in empirical data. Our simulations of balancing 

and fluctuating selection as well as positive hard sweeps, start from a single de novo mutation 

(Figure S3). However, in the case of positive soft selective sweeps, we consider a beneficial 

trait conferred by multiple mutations. This was implemented using an increased mutation rate 

at the site of the selection which introduced multiple beneficial mutations in a short time. 

Balancing selection was simulated as symmetrical overdominance. All forms of selection 

were simulated with a selection coefficient of 0.1. Fluctuating and positive selection were 

also simulated with selection coefficients of 0.5 and 1. Particularly in the case of fluctuating 

selection, estimates of s from empirical data have spanned this range (Bergland et al. 2014; 

Machado et al. 2021; Rudman et al. 2022; Bitter et al. 2023). Balancing selection was not 

simulated at these strengths due to its unrealistic effects on fitness which lead to large 

proportions of (heterozygous) individuals not contributing any offspring each generation. The 

dominance coefficient was 0.6 for fluctuating selection as it gives stable trajectories while it 

was 0.5 for positive and balancing selection (Figure 1).  

For hard sweeps, data was sampled immediately after fixation of the selected allele. For soft 

sweeps, data was sampled immediately after fixation of the beneficial trait, i.e. when each 

individual has at least two beneficial alleles either from the same or different mutational 
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origins. Balancing and fluctuating selection were sampled immediately after the alleles 

reached their stable fluctuations or early equilibrium frequency (Early Equilibrium 

Balancing/Fluctuating) and in the final sampling year of the simulation (~96,000 generations; 

Long-Term Balancing/Fluctuating). In all cases, we sampled the population over a full 

seasonal cycle, i.e. for each of 20 generations. 

Population genetic statistics were then calculated in 10 kb windows across the simulated 

sequence. We first contrasted signatures of the different forms of selection at the focal 

window, which is centred over the selected site. We used samples taken at the end of summer 

where we expect the strongest distinction between different selection models.  
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Figure 5. Population genetic statistics at the 10 kb window centred over the selected site 

for different types of selection.  
Boxplots show the distribution of values for each statistic, labelled at the top of each facet, from 50 

replicates of each form of selection (s = 0.5). Positive selection in the form of hard (purple) and soft 

(blue) selective sweeps often cluster together and away from Early Equilibrium and Long-Term 

Balancing (red and pink) and Fluctuating selection (turquoise and green) and neutral evolution 

(mustard) for most statistics. 
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Signals of positive selection are distinct from those of fluctuating selection. 

We compared fluctuating selection to other forms of selection using multiple-testing 

corrected t-tests (Figure S4, S5, S6), starting with the weakest strength of simulated selection 

(s = 0.1). Overall, hard and soft sweep patterns were significantly different (p < 0.05; Figure 

S4) from fluctuating selection at both its early equilibrium and long-term sampling for all 

statistics excluding comparisons of standardised NCD in comparison with soft sweeps and 

unstandardised NCD (TF = 0.3) in comparison with hard selective sweeps. We calculated 

Cohen’s D (Cohen 1988), as a means to evaluate the degree of overlap in the distribution of 

statistics (Grice & Barrett 2014).  

Pairwise comparisons of Early Equilibrium Fluctuating and hard selective sweeps for 

nucleotide diversity, Watterson’s theta and variance in SFS (p < 0.001) had no more than 5% 

overlap between the distributions of the two types of selection (Figure S4, S7; Grice & 

Barrett 2014). This was also seen for Tajima’s D (p < 0.01) which showed considerably more 

overlap with soft sweeps (75%) than with hard sweeps (13%). Haplotype-based statistics also 

follow this trend with 25-40% overlap with hard sweeps and 40-70% overlap with soft 

sweeps. This suggests that overall, fluctuating selection shows more similarity with soft 

sweeps than with hard sweeps. However, the skew and kurtosis of the SFS (p < 0.001) 

demonstrated similar levels of overlap with both forms of positive selection, with 20-35% for 

hard sweep comparisons and 21-25% for soft sweep comparisons, suggesting that these 

aspects of the SFS are equally similar to hard and soft selective sweeps. Unstandardised NCD 

with target frequencies of 0.4 and 0.5 were the only two measures that overlap more with 

hard sweeps (40-70%) than with soft sweeps (32-45%).  

When comparing positive selection with Long-Term Fluctuating selection, again most 

statistics were significantly different (p < 0.05) except for the comparison with hard sweeps 
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for unstandardised NCD (TF = 0.4). Similar to Early Equilibrium Fluctuating selection, 

Long-Term Fluctuating selection is more distinct from hard selective sweeps than soft 

selective sweeps for all significant comparisons, with 0-65% and 15-76% overlap 

respectively across all statistics (Figure S5).  

These trends in the overlap between fluctuating selection and hard and soft sweeps continue 

to be seen with stronger selection (s = 0.5 and s = 1; see Figure 5, S5, S6 and S8). In 

particular, comparisons of standardised NCD becomes non-significant (p > 0.05) between 

Early Equilibrium Fluctuating and soft selective sweeps for selection coefficients of both 0.5 

and 1, as this measure increases to levels that are seen for positive selection. However, this is 

not true for Long-Term Fluctuating, which consistently shows negative standardised NCD 

values. A similar behaviour is observed for Tajima’s D, which is also indistinct between Early 

Equilibrium Fluctuating and soft selective sweeps when selection is strong (s = 1), but which 

is consistently distinct when compared with Long-Term Fluctuating selection. This suggests 

that shortly after the introduction of the selected allele fluctuating selection SFS patterns are 

similar to soft selective sweeps (positive standardised NCD, negative Tajima's D), whereas 

long-term signals become similar to balancing selection (negative standardised NCD, positive 

Tajima's D). Moreover, all other statistics show significantly distinct distributions between 

fluctuating and positive selection (Figure S6, S7), although for certain statistics weak positive 

selection could mimic strong fluctuating selection. For example, when fluctuating selection 

has a strength of 1 and positive selection has a selection coefficient of 0.1, we find nucleotide 

diversity is not significantly different between soft positive selection and fluctuating selection 

at early equilibrium, and comparisons of the variance and kurtosis of the SFS are non-

significant between fluctuating selection and hard sweeps at this same time point. 

Finally, it should be noted that while fluctuating selection is distinct from positive selection 

for many statistics, it frequently did not differ from neutral evolution in our analysis. At Early 
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Equilibrium Fluctuating and s = 0.1, fluctuating selection significantly differed from neutral 

simulations only for nucleotide diversity, Watterson’s theta, and variance in the SFS (p < 

0.01). At Long-Term Fluctuating and s = 0.1, Tajima’s D, unstandardised NCD of all target 

frequencies and standardised NCD (TF=0.4 and 0.5) were significantly distinct from neutral 

evolution (p < 0.05). This suggests that while fluctuating selection is distinguishable from 

positive selection, at least for the central window, differentiating it from neutrality proved to 

be significantly more challenging. 

Next, we focus on discriminating balancing selection from fluctuating selection, which 

demonstrated more similarity at the central window than positive selection. 

Fluctuating selection shows distinct but subtle differences from balancing 

selection. 

Fluctuating selection was next compared to balancing selection. Three selection strengths for 

fluctuating selection were tested. Both fluctuating and balancing selection were sampled at 

two time points and only equivalent time points were compared. At early equilibrium when s 

= 0.1, only unstandardised NCD and the skew of the SFS were non-significant between 

balancing and fluctuating selection (p > 0.05). However, at the long-term sampling point, 

there were no statistics that demonstrated a significant difference between the two forms. 

Maximum divergence at early equilibrium is seen in Garud’s haplotype statistics where 

overlap between the two selection forms is between 13% and 35% (Figure S9). The variance 

in the SFS also shows lower levels of overlap (~45%) than the other statistics which share 

between 61-80% of their distribution.  

The number of statistics where the two selection forms significantly differ is at its lowest 

when the fluctuating selection coefficient is 0.5 (Figure 6). At early equilibrium, this was 

only H2/H1, the variance and kurtosis of the SFS, and Tajima’s D (p < 0.01). At the long-
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term sampling point, haplotype-based statistics, nucleotide diversity, unstandardised NCD 

(TF = 0.5) and Watterson’s theta showed significance (p < 0.05). These comparisons all 

showed considerable overlap, falling between 51% and 80%. At this selection strength, 

equilibrium is reached, from a de novo frequency, in a similar time frame for both balancing 

and fluctuating selection (an average of 140 generations for balancing, and 160 generations 

for fluctuating selection) resulting in similar patterns at this early time point (explored further 

below).  

The most significant differences occur when the strength of fluctuating selection is 1. At early 

equilibrium, all statistics but unstandardised NCD (TF = 0.4 and 0.5) are significant (p < 

0.05). Whereas at long-term, only comparisons of haplotype statistics, nucleotide diversity, 

unstandardised NCD and Watterson’s theta are significant.  
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Figure 6. Comparisons between equilibrium balancing and fluctuating selection. 

The values of the statistics for comparisons of fluctuating selection (s = 0.5) and balancing selection (s 

= 0.1). The coloured lines are the values of the replicates, while the black line shows the average 

value at each window. Both early equilibrium and long-term timepoints are shown. The top two rows 

show statistics that are significantly different at the central window, while the bottom rows show 

statistics that demonstrate a non-significant difference. The dashed red line shows the position of the 

selected site. 
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If we consider the broader simulated region and when the selection strength is equal between 

balancing (s = 0.1) and fluctuating selection (s = 0.5), early equilibrium balancing and 

fluctuating selection show similar signals (Figure 6). The signal looks similar to a partial 

sweep, which is expected as the selected mutation starts from a de novo frequency of 1/2Ne 

and is sampled immediately after the allele frequency becomes stable. For balancing selection 

this is after an average of 140 generations into the simulation, and 160 generations, with an 

increased selection coefficient, for fluctuating selection. What is slightly unexpected is the 

difference in this partial sweep signal between balancing and fluctuating selection. Given the 

allele frequency trajectory, one would expect fluctuating selection to have a greater partial 

signal sweep as the selected allele reaches greater frequencies than under balancing selection. 

However, this is not always the case, with Garud’s H1 at early equilibrium showing a smaller 

peak than balancing selection (Figure 6). Similar distinctions in the signal are seen even when 

sampling at the same time for both fluctuating and balancing selection (Figure S10) with 

fluctuating selection showing consistently smaller signals than balancing selection. The initial 

difference in time to reach equilibrium allele frequency, combined with the fluctuating allele 

trajectory, is likely causing these observations. The shorter time to reach a stable equilibrium 

under balancing selection means less recombination occurs, resulting in a greater loss of 

diversity around the selected site that is maintained until later in the simulation when 

recombination can break up the haplotype that the selected allele is found on. In addition, 

balancing selection maintains this signal for longer than fluctuating selection, where it 

deteriorates faster due to the constant change in the direction of the allele frequency. This 

partial sweep signal weakens as the selection coefficient decreases and the alleles take more 

time to reach a balanced equilibrium (Figure S11).  
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Linear Discriminant Analysis (LDA) 

We conducted LDA analysis, using the 'lda' function of the R package MASS, to determine if 

a combination of the summary statistics tested above could be used to discriminate early 

equilibrium and long-term fluctuating selection from balancing selection and neutral 

evolution. Multiple aspects of the dataset were examined to see if there is an optimal 

combination of variables that can best differentiate fluctuating selection both from balancing 

selection and at different time points (i.e. early equilibrium and long-term). We consider just 

the central window both at the end of summer and combinations of either the ends of both 

seasons or the middle and end of summer. We also examined if using multiple windows to 

capture the signal of selection in flanking regions could improve our ability to discriminate 

fluctuating selection. As there are a large number of statistics to be considered and not all 

may significantly contribute to discriminating the different forms of selection, we used a 

stepwise approach to first determine a set of statistics that allow for the most separation 

between selection types. The approach utilised the 'greedy.wilks' function (of the klaR 

package) to determine which statistics contribute significantly to discriminating the different 

selection types and sampling points. This function utilises Wilks’ lambda, a measure of how 

well groups can be separated based on dependent variables and aims to minimise this value to 

determine which statistics will provide the best discriminatory ability (Wilks 1932). We first 

conducted stepwise forward variable selection on the training dataset of 30 (out of 50) 

replicates of each selection type and sampling point. This returned a formula of variables to 

be used in the subsequent LDA (supplementary tables). The resulting model was then used to 

predict the type and time point of selection using a cross validation approach on the 

remaining 20 replicates to determine the accuracy of the model. We compared the accuracy 

between each type of selection and each time point to determine the ability to distinguish 

fluctuating selection using different aspects of the data (Figure 7). We tested four different 
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approaches. The first used only the central window over the selected site sampled at the end 

of summer. We then tested if using multiple windows improved discrimination, using the 

central window, the window directly adjacent and a window 250 kb away from the selected 

site, in the hope of using patterns that extend further into the flanking region to discriminate 

the forms of selection. The final two approaches utilise multiple sampling points within a 

seasonal cycle, being either the ends of both summer and winter or the middle and end of 

summer. Overall, accuracy of prediction increases with increasing strength of fluctuating 

selection.  

We focus on the model using balancing selection with a selection coefficient of 0.1 and 

fluctuating selection with a strength of 0.5 as these selection strengths were the least 

differentiated when comparing individual statistics (Figure 7). We find that using multiple 

time points leads to the most accurate distinction of Early Equilibrium Fluctuating selection, 

with the use of the data from the end of each season leading to 90% correct classification 

when classifying this form of selection. In contrast, using a single time point and multiple 

windows had the most accuracy when predicting Long-Term Fluctuating selection, with 85% 

of cases correctly classified. This multi-window approach had the highest overall accuracy 

for all forms of selection and all strengths of fluctuating selection (Figure S12, S13). 

Together, these results demonstrate that there is still power to distinguish fluctuating selection 

from other forms of selection even in cases where there are few individual statistics that can 

differentiate these forms.  
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Figure 7. Confusion matrix of LDA accuracy. 
Confusion matrices show LDA model accuracy for a fluctuating selection coefficient of 0.5 and 

balancing selection strength of 0.1. The predicted selection type and sampling point is labelled on the 

x-axis with the model's true classification on the y-axis. The proportion of calls for each combination 

is shown on the respective tile.  

Discussion 

Fluctuating selection has been largely examined in the context of allele frequency trajectories 

over time. While the signature of fluctuating selection on diversity and the SFS at linked 

neutral sites have been previously elucidated, this study expands this current understanding to 

haplotype-based statistics as well as statistics developed to identify balancing selection. 

Moreover, this study focuses on regular fluctuations (i.e. seasonally fluctuating selection) due 

to the mounting empirical evidence in Drosophila and other species (Bergland et al. 2014; 

Machado et al. 2021; Behrman & Schmidt 2022; Pfenninger & Foucault 2022; Rudman et al. 
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2022; Bitter et al. 2023; Nunez et al. 2023) while most previous studies have considered only 

random fluctuations (Haldane & Jayakar 1963; Takahata et al. 1975; Gillespie 1997; Barton 

2000; Huerta-Sanchez et al. 2008; Taylor 2013).  

The signatures of fluctuating selection in diversity and SFS measures have been previously 

studied. Wittmann and colleagues found that diversity generally decreases at neutral sites 

linked to the site under fluctuating selection. However, diversity very closely linked to the 

selected sites is slowly increasing after the start of selection, leading to a peak within a 

broader depression of diversity, a specific signature of fluctuating selection that is distinct 

from either positive or balancing selection. This signature is partly captured in this study, 

with samples at early equilibrium showing a substantial decrease linked to the selected site. 

However, even at the long-term sampling point, diversity at our central 10 kb window was 

never significantly exceeding expected neutral levels (Figure 2). Wittmann et al. note that the 

width of the peak in diversity around the selected site decreases with increasing amplitude, as 

it is largely dependent on the harmonic mean allele frequency (Wittmann et al. 2023). 

Further, in their study the peak only appears below a recombination rate of 10-4. Given the 

recombination rate used in our study, we would expect the peak to be only about 100 bp in 

width, which is unlikely to be visible in the 10 kb windows used. Wittmann and colleagues 

also highlight that this signature may be difficult to identify in empirical data due to its 

narrow width.  

While the signature in the SFS observed here generally supports the findings of Huerta-

Sanchez et al. (Huerta-Sanchez et al. 2008) with a decrease in singletons and an increase in 

high frequency variants, we observe an increase in intermediate variants that was not seen in 

previous analysis. We also found fluctuating selection to be distinct from positive selection 

when using the moments of the unfolded SFS, observing decreased variance and increased 

skew and kurtosis. Fluctuating selection was also seen to affect Tajima’s D at early 
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equilibrium, causing a substantial negative peak at the central window; this is likely due to 

fluctuating selection only decreasing singletons while increasing intermediate and high-

frequency variants.  

Fluctuating selection demonstrates visible differences in signal between different points in the 

seasonal cycle for many of the population genetic statistics tested. This was also seen in 

Wittmann et al’s investigation of long-term diversity signatures of fluctuating selection 

(Wittmann et al. 2023), where they suggested that the peak in diversity centred on the 

selected site is expected to be greatest in the middle of the season. However, their long-range 

effects (i.e. further away from the selected sites) were found to be constant across the 

seasonal cycle which is consistent with our observations of constant diversity values across 

the season for Long-Term Fluctuating (Figure 4). Wittmann et al’s observed short-range 

effects seemingly contradict our results, as we identified the end of summer to be where the 

most distinct signal and the most extreme values for statistics can be observed. However, this 

is because the summer-favoured allele is introduced as a single mutation in our study, leading 

to a transient partial sweep signal shortly after due to the summer-allele being largely on a 

single genetic background while the winter-allele is found on numerous backgrounds. This 

contrasts to the setup of Wittmann et al, where the seasonal allele is introduced already at 

50% frequency and is only sampled at long-term time points. The effect of our choice of 

model implementation, introducing the selected allele as de novo mutation, is also visible in a 

number of statistics including haplotype-based statistics (Figure 4). Shortly after the 

introduction of the summer-beneficial mutation, at the end of summer when the allele is at its 

highest frequency, we see a decrease in diversity and an increase in H1 (haplotype 

homozygosity) around the selected site. In the middle of the season, this summer allele and 

its associated haplotype is at an intermediate frequency leading to intermediate signals at 

these time points. H1 decreases further at the end of winter when the summer allele has 
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decreased such that its genetic background is less likely to be captured when sampling the 

population. In addition, we also see a seasonal signature in H1 at the long-term sampling 

point, whereby we observe a peak around the selected site at the end of each season. This 

suggests that the end of seasons would be the optimal time to sample populations to capture 

the signals of fluctuating selection. Moreover, this temporal dependence of signatures could 

be used to discriminate seasonal selection from constant forms of selection, such as classical 

balancing selection or selective sweeps, where selection signals are not expected to change 

over short seasonal timeframes. For example, we show a substantial increase in power in our 

Linear Discriminant Analysis (LDA) when samples from the end of each season (instead of 

just the end of summer season) were used for classification. Moreover, by capturing the 

presence of the signal in the middle of the season, and its absence at the end of the sampled 

season, one might be able to infer that the allele is favoured towards the opposite season. We 

have tested reasonably strong levels of selection for positive selection, weaker positive 

selection may also require this temporal sampling.  

It has previously been suggested that fluctuating selection shows signatures of recurrent 

partial sweeps (Coop & Ralph 2012). As a generalised model Coop & Ralph suggest that as 

the rate of recurrent sweeps increases, the SFS is further skewed towards rare variants and 

loses intermediate variants, with high frequency variants increasing but becoming fixed with 

subsequent sweeps (Coop & Ralph 2012). Our results have similarities and differences with 

these findings. At the central window we see a general increase in intermediate and high-

frequency alleles, and a loss of singletons which contradicts these results. But when we look 

at linked neutral sites further away from the selected site, we observe this predicted skew 

towards rare variants (Figure S1).  

For lower selection coefficients fluctuating selection is not significantly different from neutral 

evolution for a number of statistics. Estimates of selection strength of fluctuating alleles from 
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empirical data range from 0.1 to 1 (Bergland et al. 2014; Machado et al. 2021; Rudman et al. 

2022; Bitter et al. 2023) suggesting that signals seen in this study are plausible. Using linear 

discriminant analysis, we are able to distinguish between fluctuating and balancing selection 

at all tested selection coefficients with varying degrees of accuracy. The approach used to 

train the LDA did affect the accuracy of prediction, with models leveraging information from 

across seasonal cycles having the greatest accuracy for Early Equilibrium Fluctuating but 

using multiple windows having greater overall accuracy and classification of Long-Term 

Fluctuating. This highlights the use of different sampling frameworks to leverage this 

information in future studies. The LDA models consistently included haplotype statistics, 

particularly H1 and H2/H1, and variance of the SFS suggesting these statistics form the basis 

on which balancing and fluctuating selection is distinguished.  

It is difficult to know how the signatures observed in this study are affected by other forces 

experienced in a natural environment. Hence, the field will benefit from the exploration of 

fluctuating selection signals with additional ecological realism such as realistic demographic 

models with bottlenecks and admixture, rapid boom-bust demography within a seasonal 

cycle, or combined with other forms of selection such as background selection, or multilocus 

selection.  

Conclusion 

Overall, fluctuating selection impacts linked genetic variation as early as when the allele 

frequency has reached a stable equilibrium. These signatures are distinct from positive 

selection and change between different points in the seasonal cycle. We find that fluctuating 

selection can be distinguished from balancing selection, at both its early equilibrium and 

long-term sampling points and for all tested selection coefficients, when information in 

seasonal patterns and the genomic pattern around the selected site are leveraged.  
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Methods 

Simulations 

All simulations were of a 5 Mb segment with a selected locus at its centre. Four forms of 

selection were simulated: positive selection in the form of soft and hard selective sweeps, 

balancing selection, and seasonally fluctuating selection. Positive selection was simulated 

with the selection pressure acting from the start of the simulation. For hard selective sweeps, 

a single mutation was added in the first generation at a frequency of 1/2Ne. To establish 

multiple mutations for the soft selective sweep, an increased beneficial mutation rate was 

implemented to establish multiple beneficial mutations at the selected locus early in the 

simulation, imitating a multiple-origin soft sweep. Balancing selection was simulated from a 

single mutation with the fitness of individuals dictated by the genotype at the selected site. 

Individuals with a heterozygous genotype at the selected site had a fitness of 1, and 

homozygote fitness being 1 minus the selection coefficient (s) of the alternate allele. 

Similarly, fluctuating selection was simulated from a single mutation in a binary two-season 

environment with the selection pressure implemented using a fitness model presented by 

Wittmann and colleagues (Wittmann et al. 2023). The model comprises seasonal selection 

and dominance coefficients (s and h respectively). Individual fitness depends on the genotype 

and the season (summer/winter), shown in Table 1. In the simulations, the selection and 

dominance coefficients were equal between seasons which were each 10 generations in 

length.  
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Table 1. Fitness equations from Wittmann et al. 2023 and used to simulate seasonally 

fluctuating selection. The fitness equation used to calculate an individual’s fitness 

depends on the season they are in and the genotype at the seasonal locus. 

Season 𝜔ww 𝜔sw 𝜔ss 

Winter 1 + sw 1 + hwsw 1 

Summer 1 1 + hsss 1 + ss 

 

As models of fluctuating selection have been developed for Drosophila melanogaster 

populations, we use downscaled population parameters to increase the efficiency of the 

simulations while capturing the genetic changes expected in the natural population. To 

simulate a population equivalent to a natural population with an effective population size of 1 

million individuals, a recombination rate of 10-8 (Comeron et al. 2012), and a mutation rate of 

10-9 (Schrider et al. 2013; Keightley et al. 2014), we use a population size of 10,000, a 

recombination rate of 10-6 and mutation rate of 10-7. In accordance, the selection coefficient 

must also be scaled such that s = 0.01 in a natural population corresponds to an s of 1 in the 

downscaled, simulated population. For these simulations, we maintained a constant 

population size between seasons. 

The simulations were comprised of three parts, using a method benchmarked in Chapter 2. 

Firstly, a coalescent burn-in was simulated using msprime (v. 1.2.0; Baumdicker et al. 2022) 

to establish neutral diversity and ensure coalescence of the lineages of the population in 

which selection was simulated. The tree sequence of the burn-in (Haller et al. 2019) was then 

read into the forward simulator, SLiM (v. 4.0.1; Haller & Messer 2023), as the starting 

population. The selected mutation/s were drawn into a genome in the starting population (as 

described above given the form of selection being simulated) and the simulation was run for 
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100,000 generations in a binary two-season environment. If the mutation was lost prior to the 

completion of the forward simulation, the simulation was restarted, reading in the coalescent 

burn-in population. The number of restarts was recorded (Appendix 1). Tree sequence 

recording was used to sample 100 individuals for 60 consecutive generations (three seasonal 

cycles) at various time points throughout the simulation. For positive selection, this also 

included immediately after the selected allele became fixed in the population. For fluctuating 

and balancing selection, populations were also sampled after the allele frequency trajectory 

was at equilibrium for a whole seasonal cycle (early equilibrium). This provided high 

resolutions at some time points as well as the ability to watch the patterns of selection 

develop through time. The allele frequency of the selected allele was also recorded (Kelleher 

et al. 2016, 2018; Haller et al. 2019).  

The tree sequence resulting from the forward simulation consisted of the coalescent burn-in 

as well as the forwards in time simulation in which selection was acting. Neutral mutations 

were then overlaid onto the tree sequence using msprime. The pySLiM (v. 1.0) and tskit (v. 

0.5.2) libraries (Kelleher et al. 2018; Ralph et al. 2020; Baumdicker et al. 2022) were also 

used in the processing of the tree sequence throughout the simulation workflow. 

Calculation of summary statistics 

Subsequent analysis of the tree sequence was conducted using tskit (v. 0.5.2), PySLiM (1.0), 

and scikit-allel (v. 1.3.5; Miles et al. 2021). Statistics were calculated in 10 kb windows 

across the simulated segment. A number of summary statistics were calculated. Tajima’s D 

(Tajima 1989) and nucleotide diversity (Tajima 1983), and the number of segregating sites 

were calculated with tskit. Tajima's D was also calculated using scikit-allel (v. 1.3.5) which 

was used to calculate Watterson’s theta (Watterson 1975), Garud’s H1, H2, H2/H1, and H123 

(Garud & Rosenberg 2015). In addition to these statistical functions, we also calculated the 
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balancing selection statistic NCD (Bitarello et al. 2018). This statistic was calculated in 

python, using eq. 1.  

𝑁𝐶𝐷 = /∑ (,!-./)"#
!$%

1
  [1] 

The NCD statistic uses the minor allele frequencies of mutations in a window and compares 

them to a target frequency (TF). We used three values for the TF, 0.5, 0.4 and 0.3. As NCD 

can be correlated to the number of segregating sites in the window, we standardised the NCD 

values by binning each window by the number of segregating sites. Bins increasing by 

increments of 25 were used. We then calculated the mean and standard deviation of NCD at 

each TF under neutral evolution. NCD was then standardised (ZNCD) using eq. 2.  

𝑍234 =
234-5'61#&'()*+

78#&'()*+
  [2] 

Variance, skew, and kurtosis of the distribution of allele frequencies in each window were 

also captured, the variance was calculated with the Python library statistics, while skew and 

kurtosis were calculated using the SciPy package (v. 1.9.0; Virtanen et al. 2020).  

Comparing forms of selection 

Pairwise comparisons to obtain values of significance were calculated with a t-test using the 

'compare_means' function of ggpubr (v. 0.6.0) with the Hochberg correction. The different 

selection types were compared at the window over the selected site for each statistic 

investigated. Cohen’s D was also calculated for each comparison (Cohen 1988; Grice & 

Barrett 2014) using the lsr R package (v. 0.5.2) to evaluate the difference between means for 

statistics that returned a significant p-value. 

Linear Discriminant Analysis (LDA)  



 
 

106 
 

Linear Discriminant Analysis was conducted using a stepwise approach, by first determining 

which statistics separate the groups best and using this tailored subset to determine the 

formula for the LDA. Analysis was conducted without positive selection to ensure the model 

was tailored to distinguishing early equilibrium and long-term balancing and fluctuating 

selection. We used four approaches, the first used only the values of each statistic at the 

central window from the final generation of summer as the relevant time point in the 

simulation. The second utilised values from the central window, the adjacent window, and a 

window 250 kb away from the selected site for each statistic. The third, used only the central 

windows but values sampled from the end of each season in the relevant seasonal cycles, and 

the final approach used values from the central window sampled at the middle and end of 

summer. The model was developed and trained on 30 (out of 50) replicates and then tested on 

the remaining 20 replicates. The 'greedy.wilks' function, from the R package klaR (v. 1.7), 

was run over all the statistics to determine which variables best separated the different 

selection types. The level for the F-test decision ('niveau' argument of function) was set to 

0.05 (i.e. the maximum p-value of difference between the previous model and the model with 

the additional variable). This function conducts a stepwise forward variable selection, testing 

different combinations of variables to determine the one that confers the most separation and 

returns a formula for subsequent LDA analysis. The LDA was conducted using the R package 

MASS and its 'lda' function. This formula was used to train the model on the 30 replicates. It 

was then tested on the remaining 20 replicates using a cross validation approach and the 

accuracy of prediction of the model for each form and time point of selection was calculated 

and recorded.  
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Figure S1. Folded and unfolded site frequency spectrum of a single replicate for each 

selection type. 
Neutral evolution, Early Equilibrium Fluctuating selection (Eq.) at the central window and at a 

window 250 kb from the selected site, Long-term Fluctuating selection (Lt), hard and soft positive 

selection after fixation, and Early Equilibrium and Long-term Balancing selection (s = 0.1) all at the 

central window. Figure extends over two pages. 
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Figure S2. Signatures of fluctuating selection in NCD for all target frequencies. 
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Figure S3. Allele frequency trajectory of single replicate for each form of selection. 

Time in simulated generations is shown along the x-axis and the allele frequency of the selected allele 

is shown on the y-axis. All simulations had a selection coefficient of 0.1 and the data from one 

replicate is shown on each panel. The establishment of a selected allele/trait is shown for each form of 

selection. Balancing and fluctuating selection are shown until the allele has reached a stable 

equilibrium. For fluctuating selection, this follows the summer-favoured allele. For soft sweeps, each 

beneficial mutation conferring the selected trait is coloured differently, and the combined sum of the 

frequencies of each mutation gives the frequency of the trait. Hard and soft sweeps are shown until 

just after fixation.  
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Figure S4. Heatmap of p-value and Cohen’s D for pairwise comparisons between 

balancing, fluctuating and positive selection with a selection coefficient of 0.1. 
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Figure S5. Heatmap of p-value and Cohen’s D for pairwise comparisons between 

balancing selection with a selection coefficient of 0.1, with fluctuating selection, and 

positive selection with a selection coefficient of 0.5. 
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Figure S6. Heatmap of p-value and Cohen’s D for pairwise comparisons between 

balancing selection with a selection coefficient of 0.1, with fluctuating selection, and 

positive selection with a selection coefficient of 1. 
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Figure S7. Population genetic statistics at the 10 kb window centred over the selected 

site for different types of selection (s = 0.1).  
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Figure S8. Population genetic statistics at the 10 kb window centred over the selected 

site for different types of selection (s = 1).  
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Figure S9. Comparisons of Garud’s haplotype statistics between balancing selection (s = 

0.1) and fluctuating selection of all selection coefficients (s = 0.1, 0.5, 1) 
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Figure S10. Balancing (s = 0.1) and Fluctuating selection (s = 0.5) when sampled at the 

same time point (i.e. 2560 generations) for variance in the SFS, nucleotide diversity, and 

Tajima’s D. 
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Figure S11. Balancing selection at three selection coefficients (s = 0.01, 0.05, 0.1) with the 

selected allele frequency trajectories from de novo to stable equilibrium and associated 

variance in SFS, Watterson’s theta and nucleotide diversity at early equilibrium. 
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Figure S12. LDA model accuracy for fluctuating selection coefficient of 1. 
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Figure S13. LDA model accuracy for fluctuating selection coefficient of 0.1. 
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Figure A1-1. Establishment distribution of hard selective sweeps, balancing and 

fluctuating selection with a selection coefficient of 0.1.  
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Figure A1-2. Establishment distribution of fluctuating selection for selection coefficients 

(s) 0.1, 0.5, 1 and dominance coefficients (h) 0.5, 0.6.  
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Supplementary tables 

s = 0.1, end of summer, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 0.181 0.001 -11.633 
Variance of SFS 0.138 0.001 51.182 

Nucleotide diversity 0.114 0.001 -977.703 
H1 0.101 0.005 -339.37 
H12 0.093 0.05 215.561 

Watterson's theta 0.086 0.05 1082.165 
 

s = 0.1, end of summer, central, adjacent and 250 kb window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Central 0.181 0.001 -8.981 
Variance of SFS - Central 0.138 0.001 49.18 

Nucleotide diversity - Central 0.114 0.001 -1007.584 
H1 - Central 0.101 0.005 -373.062 
H12 - Central 0.093 0.05 257.284 

H2/H1 - Adjacent 0.083 0.02 -3.863 
Watterson's theta - Central 0.077 0.05 1142.683 

 

s = 0.1, end of summer and winter, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Winter 0.138 0.001 -11.983 
Variance of SFS - Summer 0.108 0.001 37.191 

Tajima's D - Summer 0.090 0.001 -2.94 
H1 - Winter 0.082 0.01 -277.256 

H123 - Winter 0.072 0.001 166.117 
Tajima's D - Winter 0.066 0.05 1.767 

Nucleotide diversity - Summer 0.062 0.05 -369.679 
Nucleotide diversity - Winter 0.056 0.05 356.483 
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s = 0.1, middle and end of summer, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Middle 0.141 0.001 -9.766 
Tajima's D- End 0.110 0.001 1.824 

Variance of SFS - End 0.092 0.001 -30.421 
H1 - Middle 0.083 0.01 302.315 

H123 - Middle 0.071 0.001 -221.207 
 

s = 0.5, end of summer, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 0.278 0.001 8.229 
Variance of SFS 0.161 0.001 -59.51 

Tajima's D 0.121 0.001 1.03 
H1 0.090 0.001 136.26 

Nucleotide diversity 0.076 0.001 1079.059 
H123 0.065 0.001 -88.215 
H12 0.057 0.001 67.5 

Watterson's theta 0.053 0.05 -718.281 
 

s = 0.5, end of summer, central, adjacent and 250 kb window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Central 0.278 0.001 7.765 
Variance of SFS - Central 0.161 0.001 -57.324 

Tajima's D - Central 0.121 0.001 0.788 
H1 - Central 0.090 0.001 126.610 

Watterson's theta - Adjacent 0.072 0.001 -103.508 
H123 - Central 0.061 0.001 80.698 

Watterson's theta - Central 0.053 0.001 -939.575 
H12 - Central 0.047 0.005 70.000 

Watterson's theta – 250 kb 0.042 0.01 -396.169 
Nucleotide diversity - Central 0.038 0.005 1299.880 

H2/H1 - Adjacent 0.035 0.05 1.655 
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s = 0.5, end of summer and winter, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Winter 0.193 0.001 -3.83 
H2/H1 - Summer 0.075 0.005 6.386 

Variance of SFS - Summer 0.049 0.001 -95.435 
Variance of SFS - Winter 0.024 0.001 72.778 

H1 - Summer 0.018 0.001 114.468 
Tajima's D - Summer 0.014 0.001 1.24 

Nucleotide diversity - Summer 0.012 0.001 5796.645 
Nucleotide diversity - Winter 0.009 0.001 -5446.187 

H123 - Winter 0.007 0.001 -155.476 
H12 - Winter 0.006 0.001 87.499 

 

s = 0.5, middle and end of summer, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Middle 0.258 0.001 -5.016 
Variance of SFS - End 0.133 0.001 -99.46 

Variance of SFS - Middle 0.058 0.001 60.662 
Nucleotide diversity - End 0.047 0.001 4643.404 

Nucleotide diversity - Middle 0.036 0.001 -4389.633 
Watterson's theta - Middle 0.031 0.001 -103.165 

H1 - End 0.026 0.001 121.168 
H2/H1 - End 0.022 0.001 7.427 

H123 - Middle 0.019 0.001 -537.25 
Tajima's D - End 0.017 0.005 2.17 

H12 - Middle 0.015 0.005 504.016 
 

s = 1, end of summer, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2H1 0.212 0.001 5.311 
Watterson's theta 0.074 0.001 -379.052 

H123 0.032 0.001 -16.487 
Variance of SFS 0.022 0.001 -58.557 

H1 0.018 0.001 38.695 
Nucleotide diversity 0.016 0.05 827.106 
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s = 1, end of summer, central, adjacent and 250 kb window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Central 0.212 0.001 -5.469 
Watterson's theta - Central 0.074 0.001 120.781 

H123 - Central 0.032 0.001 13.151 
Watterson's theta - Adjacent 0.019 0.001 -921.171 
Variance of SFS - Central 0.014 0.001 56.767 

H1 - Central 0.011 0.001 -366.792 
Kurtosis of SFS - Adjacent 0.010 0.05 -0.0275 

Nucleotide diversity - Central 0.009 0.05 -794.486 
 

s = 1, end of summer and winter, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Summer 0.212 0.001 -2.757 
H2/H1 - Winter 0.056 0.001 1,909 

Watterson's theta - Summer 0.019 0.001 -3513.087 
Variance of SFS - Summer 0.012 0.001 6.667 

H1 - Summer 0.008 0.001 -16.319 
Variance of SFS - Winter 0.007 0.001 9.113 

Tajima's D - Winter 0.005 0.001 6.054 
Tajima's D - Summer 0.004 0.001 -4.902 

Watterson's theta - Winter 0.004 0.001 2750.617 
 

s = 1, middle and end of summer, central window 

Variables Associated Wilks 
lambda 

p-value of 
difference 

Model 
coefficient 

H2/H1 - Middle 0.186 0.001 -8.075 
Watterson's theta - End 0.064 0.001 -570.102 

H123 - End 0.024 0.001 14.754 
Variance of SFS - End 0.017 0.001 68.353 

Variance of SFS - Middle 0.013 0.001 -12.531 
H1 - End 0.011 0.001 -33.935 

NCD (TF = 0.3) - Middle 0.009 0.001 1.328 
H1 - Middle 0.008 0.005 -33.203 

 

  



 
 

131 
 

 

 

Chapter 4 

The effect of fluctuating selection on 

effective population size 
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Introduction 

Effective population size (Ne) is a population genetic measure of the ideal population size that 

explains the levels of genetic drift (i.e. stochastic genetic change) and inbreeding observed in 

a given population (Wright 1931; Kimura & Crow 1963). In the field of evolutionary biology, 

effective population size is used as a measure of the amount of genetic drift in a population 

and is often employed in the estimation of the effects of a number of evolutionary processes 

(Waples 2022). This includes the rate of loss of genetic diversity and the effectiveness of 

selection (Kimura 1983; Charlesworth 2009). Effective population size is also a key 

parameter in plant and animal breeding as well as conservation biology as it can quantify the 

effects of inbreeding. For example, it is often used to develop targets in conservation efforts 

as it captures a population’s history of inbreeding and genetic drift and aiming to maximise 

the effective population size should minimise these effects and reduce the loss of genetic 

diversity (Laikre et al. 2016; Wang et al. 2016).  

Ne can be calculated in a myriad of ways using different aspects of population genetic 

measurements (Wang et al. 2016; Waples 2022). There are three commonly used measures of 

effective population size. Inbreeding and variance effective population size reflect the 

number in the parental and offspring generations, respectively. If a population is stable, these 

values will be equal, however, inbreeding Ne will be large and variance Ne small in declining 

populations and the opposite will be seen for growing populations (Crow 1954; Crow & 

Denniston 1988; Waples 2022). Another measure of Ne is the coalescent effective population 

size, which uses genetic diversity to estimate effective size (Sjödin et al. 2005; Wakeley & 

Sargsyan 2009; Waples 2022). Consequently, levels of diversity can serve as an indicator of 

effective population size (Caballero 1994). Such usage of diversity measures has led to the 

general consensus that effective population sizes are smaller than census population sizes 
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(Nc). This is used to explain Lewontin’s Paradox, the observation that the variance in genetic 

diversity is substantially smaller (by orders of magnitude) than the variance in census 

population sizes across species, by asserting that effective population size is more strongly 

reduced in larger populations than smaller populations decoupling the variance in diversity 

and census population size (Lewontin 1974; Buffalo 2021; Charlesworth & Jensen 2022).  

There have been several potential explanations of Lewontin’s paradox put forth since this 

original finding, all of which would reduce the effective population size relative to the census 

population size. These proposals have included demographic events such as bottlenecks or 

extinction and recolonisation events (Ohta & Kimura 1973; Slatkin 1977; Buffalo 2021; 

Charlesworth & Jensen 2022), as well as a high variance or skew in reproductive success 

(Waples et al. 2018). Natural selection has also been included in proposals, particularly the 

influence of selection on diversity at linked neutral sites (Corbett-Detig et al. 2015; Buffalo 

2021; Charlesworth & Jensen 2022). Genetic hitchhiking, a hallmark of directional selection, 

was originally proposed as an explanation for Lewontin’s paradox as it describes the decrease 

in diversity levels caused by selected alleles carrying surrounding neutral variants to extreme 

frequencies or even fixation when recombination does not have enough time to break up the 

selected haplotype (Smith & Haigh 1974; Kaplan et al. 1989). Selection models such as 

recurrent selective sweeps (Buffalo 2021; Charlesworth & Jensen 2022; Achaz & Schertzer 

2023) and background selection (Comeron 2014; Charlesworth 2012; Corbett-Detig et al. 

2015; Comeron 2017; Buffalo 2021; Charlesworth & Jensen 2022) have also been explored 

due to the diversity-reducing effects they induce. However, the decrease in diversity that 

results from these types of selection is not of the magnitude of Lewontin’s paradox (Coop 

2016; Buffalo 2021) There are several selection forms that remain understudied in their 

potential contribution to this phenomenon, and fluctuating selection is one such form. 
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Fluctuating selection, when selection changes in direction or intensity, has recently been 

shown to have wide-ranging effects on levels of genetic diversity (Taylor 2013; Huang et al. 

2014; Wittmann et al. 2023). Genetic evidence of fluctuating selection has been found in a 

range of species (Kelly 2022; Pfenninger & Foucault 2022; Lynch et al. 2023; reviewed in 

Johnson et al. 2023) but has been most extensively studied in cosmopolitan Drosophila 

melanogaster populations (Bergland et al. 2014; Behrman et al. 2018; Machado et al. 2021; 

Rudman et al. 2022; Bitter et al. 2023; Nunez et al. 2023). A recent study of the effects of 

fluctuating selection on genetic diversity has shown that it leads to genome-wide decreases 

that can overwhelm any local maintenance of variation at the selected site (Wittmann et al. 

2023). This effect can be so widespread that a single site under seasonally fluctuating 

selection can cause a decrease in diversity in completely unlinked regions, i.e. different 

chromosomes (Wittmann et al. 2023). This genome-wide decrease was shown to reach levels 

of up to 30% when multiple additive seasonal loci were simulated across 3 chromosomes. 

This effect is due to the recurrent bottlenecks caused by alleles under selection switching 

between favourable and non-favourable environments, leading to an increased variation in 

offspring number between individuals, i.e. a small fraction of individuals contribute 

disproportionately to the next generation. Substantial decreases in genome-wide diversity as 

seen under fluctuating selection suggest this form of selection could have implications for the 

resolution of Lewontin’s paradox, should fluctuating loci reduce effective population size 

relative to the census size and have a stronger effect in larger populations. 

In this study, we simulate numerous seasonally fluctuating loci under the segregation lift 

model, a multilocus model of seasonal adaptation (Wittmann et al. 2017). We assumed locus-

specific parameters of effect size and dominance, and D. melanogaster guided parameters of 

population size, genome size, and recombination rate. By varying the epistasis parameter in 

the segregation lift model, we were able to vary and fit amplitudes of our simulated allele 
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frequency fluctuations to empirically observed amplitudes from natural and outdoor 

experimental populations (Bergland et al. 2014; Machado et al. 2021; Rudman et al. 2022; 

Bitter et al. 2023). Using the estimated epistasis parameter and number of selected sites, we 

then simulate a full Drosophila genome and measure the effect of these fluctuating loci on the 

instantaneous variance effective population size. This is a genome-wide measure of effective 

population size that captures changes in the variance in offspring number which can be 

influenced by selection. By examining the effect of fluctuating selection on effective 

population size we aim to determine if it could contribute to an explanation for Lewontin’s 

paradox. 

Methods 

All simulations are conducted in the forward simulator SLiM (v. 4.0.1; Haller & Messer 

2023).  

Model of multilocus seasonally fluctuating selection 

Fluctuating selection is largely evidenced in natural populations of D. melanogaster 

(Bergland et al. 2014; Behrman et al. 2018; Glaser-Schmitt et al. 2021; Machado et al. 2021; 

Rudman et al. 2022; Bitter et al. 2023; Glaser-Schmitt et al. 2023; Nunez et al. 2023). 

Consequently, we simulate a randomly mating D. melanogaster population of 1 million 

individuals, in a binary 2-season (summer/winter) environment. We use a multilocus model 

of seasonally fluctuating selection presented by Wittmann and colleagues, the segregation lift 

model (Wittmann et al. 2017). This is a dynamic fitness landscape model that consists of 

multiple parts. Each seasonal locus is allocated a dominance coefficient (d) and effect size 

(Δ) for each season (summer/winter). The dominance coefficients are drawn from a uniform 

distribution with a minimum of 0 and a maximum of 1. It was found stable polymorphism is 

more likely when the average dominance across seasons is greater than 0.5 (Wittmann et al. 
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2017) and consequently, if the average dominance for a given seasonal locus is less than this 

value the dominance parameters are redrawn. Positive effect sizes for each locus are drawn 

from a log-normal distribution (Wittmann et al. 2017), by drawing a pair of parameters from 

a bivariate normal distribution with a mean of 0, standard deviation of 1, and correlation 

coefficient of 0.9, and subsequently exponentiating both values. We use correlated values as it 

was found that smaller differences between the summer and winter effect size resulted in 

more stable allele frequency fluctuations (Wittmann et al. 2017). These parameters are then 

used to calculate the contribution of a locus (Cl) to a season-specific seasonal score (zs/w).  

𝑧7/: =	∑ 𝑐;<
;="   [1] 

Thus, the contribution of each locus is dependent on the genotype at the locus and the season 

it is in, illustrated in Table 1. As an example, in winter if the locus is homozygous for the 

winter-favoured allele the contribution is the winter effect size (Δw), if it is homozygous for 

the summer allele the contribution is 0, if it is heterozygous the contribution is the product of 

the winter dominance and effect size of that locus (dwΔw). The sum of the contributions of all 

seasonal loci form the first part of the selection model, the seasonal score (zs/w; equation 1). 

This seasonal score is then incorporated into the second part of the model, a fitness equation 

that accounts for different levels of epistasis via the epistasis parameter (y; equation 2).  

𝜔(𝑧) 	= 	 (1	 + 	𝑧)) [2] 

Multiplicative fitness as well as positive and diminishing-returns epistasis were tested when 

the model was originally presented but diminishing-returns epistasis was determined to be 

most plausible having been evidenced in empirical studies (Chou et al. 2011; Khan et al. 

2011; Kryazhimskiy et al. 2014; Wittmann et al. 2017). Diminishing-returns was found to be 

conducive to long-term fluctuating loci that experience reasonable reversals of dominance, 
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compared to other forms of epistasis that require almost complete reversal of dominance 

between each season (Wittmann et al. 2017). All values of y in equation 2 confer diminishing-

returns epistasis, but greater values signify greater per-locus selection. When simulating in 

SLiM under this model, the fitness of individuals was recalculated each generation using 

SLiM’s 'fitnessEffect' callback (Haller & Messer 2023).  

Table 1. Contribution of seasonal loci (Cl) to fitness.  
The contribution of a seasonal locus is conditioned on the genotype at that locus and the current 

season. If the locus is homozygous for the seasonal allele the contribution is the effective size of the 

seasonal allele. If the locus is homozygous for the allele of the opposing season the contribution is 0. 

If the locus is heterozygous, the contribution is the product of the effect size and the dominance 

coefficient for that given season. 

Season Cl,ww Cl,sw Cl,ss 

Winter Δw Δwdw 0 

Summer 0 Δsds Δs 

 

Simulating allele frequency trajectories of seasonally fluctuating loci. 

We started by simulating the allele frequency trajectories of loci using the outlined multilocus 

model of selection. We tested different values of the epistasis parameter y, ranging from 0.5 

to 20 (0.5, 1, 2, 4, 8, 12, 16, 20) and different counts of seasonal loci (l; 100, 200, 500). In 

these simulations, l unlinked seasonal loci were drawn in at 50% frequency and their allele 

trajectories were tracked over time. We downscaled our population parameters by a factor of 

2 and simulated a constant population size of 500,000 individuals with 5 generations per 

season, equivalent to 10 generations per season in a population of 1 million (Wittmann et al. 

2017). Due to computational constraints, for a loci number of 500, we only simulated y 

values of 8, 12 and 20, as preliminary tests with smaller population size suggested this range 

to be most consistent with empirical data. Simulations were run for 18,000 generations, 
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sampling allele frequencies for three consecutive seasonal cycles every 9,000 generations. 

Each combination of parameters was replicated 20 times. We then collated the data and 

calculated the amplitude of allele frequency change for each seasonal locus across time.  

Multiple linear regression of allele frequency amplitude for estimating selection 

parameters 

We used the information obtained in the allele frequency simulations to investigate how the 

epistasis parameter (y), which determines the strength of per-locus selection, depends on the 

number of seasonal loci and the amplitude of seasonal allele frequency change. We tested the 

mean, median and 90% quartile amplitude of seasonal loci as one independent variable, and 

number of seasonal loci as second independent variable in a multiple regression model, with 

the epistasis parameter as the dependent variable. The fitted regression model then allowed us 

to derive the epistasis parameter given amplitude and number of causal loci from empirical 

studies of fluctuating selection in Drosophila. We include both additive effects and two-way 

interaction of the two independent variables, and tested if certain models significantly 

improved the fit to the data. We also modelled the number of initial seasonal loci required to 

result in a specific number of final loci based on the sampled epistasis value, as typically 

some proportion of seasonal polymorphisms got fixed or lost early on in the simulation. 

Eventually, these models were used to derive parameters for genome-wide simulations of 

seasonally fluctuating selection in D. melanogaster, depicted in Table 2. 
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Table 2. Parameters for genome-wide simulations 

Number of 
causal loci 

Mean 
amplitude References Derived 

y 
Derived 

initial loci 

111 0.05 Number of genes that overlapped with 
clusters in Rudman et al. 2022. 11 150 

90 0.08 Rudman et al. 2022 15 127 

264 0.02 Bitter et al. 2023 9.5 340 

27 0.04 Rudman et al. 2022 2 37 

9 0.35 

Causal loci from Rudman et al. 2022. 
The amplitudes of the top 9 SNPs were 

averaged for each study of natural 
populations with available data 

(Bergland et al. 2014, Machado et al. 
2021) and found to be similar. 

7.5 19 

 

Genome-wide simulation of seasonally fluctuating selection 

The previous simulations assumed that all selected variants are unlinked from each other. To 

investigate the effect of fluctuating selection on the variance effective population size in a 

more realistic setting that includes linkage, we conducted genome-wide simulations of 4 

Drosophila chromosomes: 2L, 2R, 3L, and 3R. We used Comeron et al’s recombination maps 

for these four chromosomes (Comeron et al. 2012). As outlined above, we derived parameters 

that are consistent with studies of fluctuating selection from natural populations of D. 

melanogaster (Bergland et al. 2014; Machado et al. 2021), as well as from experimental 

studies using outdoor mesocosms (Rudman et al. 2022; Bitter et al. 2023; Table 2). We drew 

in an initial number of seasonal alleles at 50% frequency randomly across three 

chromosomes, leaving the final chromosome with no seasonal loci to allow for measuring the 

effect on effective population size in unlinked regions. We simulated for 10,000 generations, 

sampling allele frequencies and calculating the variance effective population size over a 
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seasonal cycle every 1000 generations. We conducted simulations of a downscaled constant 

population size of 500,000 individuals as well as a fluctuating population size, to model 

cosmopolitan Drosophila's boom-bust demography, with a summer population size of 

500,000 and a winter population size of 50,000. The fluctuating population size simulations 

used the same parameters as the constant population size simulations to ensure they were 

comparable. Each simulation of unique parameters was replicated 10 times. 

Calculating effective population size 

To calculate effective population size, we drew neutral mutations across the four simulated 

chromosomes, with one variant every 100 kb. These mutations were introduced at 50% 

frequency and allowed to segregate for one seasonal cycle. After 10 generations, the change 

in allele frequency of the neutral mutations was recorded and used to calculate the variance 

effective population size, which is a genome-wide estimation of effective population size 

(Waples 1989; Jónás et al. 2016). First, the standardised variance, F, was calculated for each 

neutral mutation according to equation 3 (Waples 1989).  

𝐹 = (6;;';'	>?'@A'1B)	B&61C')"

D.FG
 [3] 

This F value was then averaged across either the chromosomes with seasonal mutations (2L, 

2R, 3L; linked region) or the chromosome without seasonal mutations (3R; unlinked region). 

These values were used in equation 4 to calculate the effective population size for both 

regions (Waples 1989; Jónás et al. 2016). 

𝑁' =
-"D

F	;1("-	/)
  [4] 
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Offspring Capping 

Our simulation of strong seasonal selection can produce an unrealistically large number of 

offspring for a small number of highly fit parental individuals. Thus, we also examined if 

limiting the number of offspring individuals per parent would reduce the effect of fluctuating 

selection on effective population size. We capped the number of offspring at 10, using SLiM’s 

'modifyChild' callback. This allowed alternate parents to be allocated to individuals of a new 

generation if the ones originally picked had already contributed to 10 individuals. This 

effectively allows less fit individuals to also contribute to the next generation. We also 

examined the effect of this limitation on the distribution of allele frequency fluctuations. 

Results 

Simulating allele frequencies of loci under fluctuating selection 

We conducted simulations of unlinked seasonal loci to characterise the range of fluctuations 

for various combinations of initial loci number and epistasis value. We first examined the 

number of segregating loci across time to investigate to what degree and how quickly 

fluctuating alleles become fixed or lost in our model (Figure 1). We see two main trends: a 

slow and steady decrease over time, seen largely for lower epistasis values; or a sharp loss of 

alleles at the start before the number of segregating loci levels out for the remainder of the 

simulation. In the latter case, most loci will be lost in the first 9,000 generations with the 

subsequent loss of segregating loci occurring at a slower rate than this initial phase. Seasonal 

loci that became fixed or lost were found to have a bimodal distribution of mean effect size 

across seasons compared to segregating alleles that displayed a more normal distribution 

(Figure S1). The bimodal distribution would suggest that as the mean effect size moves 

further away from 1, where the summer and winter effect sizes are equal, alleles are less 



 
 

143 
 

likely to remain segregating. This is likely caused by larger differences in effect size leading 

to less stable fluctuations (Wittmann et al. 2017). 

 

Figure 1. The average number of segregating loci across time. 
The time in generations is shown on the x-axis, with the average number of segregating loci shown on 

the y-axis. Each panel depicts the number of segregating loci for a different number of initial loci. 

Each line is for a specific epistasis value (y), as indicated by the colour of the line. 

We also examined the distributions of amplitudes of allele frequency fluctuations to 

determine if they stabilised over time, similar to the number of segregating loci. We sampled 

every 9000 generations but found that the distributions of seasonal amplitude were 

established by this first sampling point at generation 9000 (Figure 2). This suggests that a 

stable distribution of allele frequency fluctuations is quickly established while there are still 

segregating loci being lost after the first 9000 generations. This rapid establishment is likely 

driven by the intermediate initial frequency of mutations (0.5) and instant selection pressure 

allowing fluctuations to start immediately and from a frequency near that expected at the start 

of the seasonal cycle. 
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Figure 2. Distribution of the amplitude of allele frequency fluctuations across time.  
The distribution of allele frequency fluctuations of segregating seasonal loci at different sampling 

points (in generations). Each facet displays a different initial loci number (labelled in the top strip) 

and epistasis (also labelled in the second strip and by the colour of the distributions). The distribution 

of the amplitude of allele frequency fluctuations is shown on the y-axis. Note that fixed or lost alleles 

(i.e. non-polymorphic loci) are excluded from the distribution. 

Having established that the distributions of seasonal fluctuations become stable within less 

than 9000 generations, we next investigated how the amplitude distribution changes with loci 

number and epistasis value y for samples after this initial phase. We observed that on a log-

log scale, there is a linear relationship between the final number of segregating loci and 

various aspects of the amplitude of allele frequency fluctuation (i.e. mean, median, 90% 

quartile; Figure 3) for each epistasis value. The mean amplitude ranged from ~ 0.4% to 

16.5% across all epistasis values. The 90% quartile captured the larger allele frequency 
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fluctuations simulated, ranging to values up to 35%. The largest median amplitude of 

fluctuation was 11.8%, suggesting that there are many loci with smaller allele frequency 

fluctuations and a small number of loci with large amplitudes that are inflating the mean. 

Simulations of 100 loci (largest mean = 16.5%, median = 11.8%, 90% quartile = 35%) show 

overall larger allele frequency amplitude than simulations of 500 loci (largest mean = 3.2%, 

median = 2%, 90% quartile = 8.2%). Greater values of the epistasis parameter y confer 

stronger selection, leading to larger allele frequency fluctuations (Figure 3). This suggests 

that the selection strength per individual locus increases with increasing y and decreasing loci 

number. 

We decided to leverage the strong log-linear relationship shown in Figure 3 to derive model 

parameters that mimic amplitude distributions and loci numbers previously reported in 

empirical studies of fluctuating selection in D. melanogaster (Bergland et al. 2014; Machado 

et al. 2021; Rudman et al. 2022; Bitter et al. 2023). 
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Figure 3. Relationship between number of segregating loci, epistasis, and amplitude of 

seasonal allele frequency fluctuation. 

Each panel depicts the relationship between the initial and final number of segregating loci (sampled 

at 18,000 generations) and either the mean, median, or 90% quartile of allele frequency fluctuations, 

for different epistasis values. The amplitude of the seasonal fluctuation is shown on the y-axis. The 

initial loci number is visualised by the shape of the points, and each point represents a simulated 

replicate (of which there are 20 for each initial loci number and epistasis value). The epistasis value is 

illustrated by the colour of the points and lines.  
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Multiple linear regression model to determine empirically informed parameters 

of seasonally fluctuating selection 

We used a multiple linear regression approach to calculate the epistasis value required to 

generate allele frequency fluctuations of a given average amplitude and a specified number of 

segregating loci. To this end, we fit a multiple regression model with epistasis as the 

dependent variable, and the number of loci and mean amplitude as predictors, after log-

transforming all variables. In addition, we also tested the median and 90% quantile of the 

amplitude as predictors. However, using the mean amplitude gave the best model-fit (r2 = 

0.9922), compared to the median amplitude (r2 = 0.9787) and the 90% quartile of the 

amplitude (r2 = 0.9838). Further, an ANOVA model comparison suggested that adding a two-

way interaction term did not significantly improve the model-fit (p > 0.05). Hence, the 

simpler additive model was subsequently used for the prediction of epistasis (y), and mean 

amplitude was used as one of the predictors. The final regression equation is shown in 

equation 5, 

𝑙𝑜𝑔(𝑦)	~	0.9949	𝑙𝑜𝑔(𝑛) 	+ 1.0926	𝑙𝑜𝑔(𝑚𝑒𝑎𝑛_𝑥) 	+ 	0.4258 [5] 

where y is the epistasis value, n is the final number of segregating seasonal loci, and mean_x 

is the mean amplitude of seasonal allele frequency fluctuation. 

A multiple regression model was also used to determine the number of initially segregating 

loci required to obtain the final number of segregating loci after the initial loss of alleles. The 

model predicts the desired final number of segregating loci (L) from the epistasis parameter 

(y) and initial number of loci (n). In this case, adding an interaction term to the model 

(equation 6) significantly improved the fit (p < 0.001). 

𝐿	~	1.1814𝑛	 + 0.4541𝑦 + 	0.007179𝑛𝑦	 + 4.1124 [6] 



 
 

148 
 

Using these two fitted regression models, we computed epistasis values based on values of 

the mean amplitude of allele frequency fluctuation and the final number of segregating loci 

derived from studies of natural D. melanogaster populations (Table 2). We used estimates of 

the final number of segregating seasonal loci from Rudman et al. and Bitter et al.’s outdoor 

cage experiments (Rudman et al. 2022; Bitter et al. 2023). In these two studies, the authors 

used linkage disequilibrium, hitchhiking, and parallel allele frequency change to estimate the 

number of unlinked ‘clusters’ that occur in their experimental populations. With the 

assumption that each cluster is driven by a single seasonal locus, we use the number of 

clusters as an estimate of the "final" number of segregating loci. We also use the number of 

genes found to overlap with clusters in Rudman et al. as another alternate estimate for the 

number of segregating loci (Rudman et al. 2022). For mean amplitude, we used a range of 

values from published studies of D. melanogaster in both natural populations as well as 

experimental studies (Bergland et al. 2014; Machado et al. 2021; Rudman et al. 2022; Bitter 

et al. 2023), along with averaging the amplitudes of the top loci from the published seasonal 

SNP data from the studies by Bergland et al. and Machado et al. corresponding with the 

number of segregating loci derived from either Rudman et al. or Bitter et al.. For all 

subsequent simulations, we used our regression model approach to derive an epistasis 

parameter and the initial number of segregating loci from these empirically derived 

combinations of mean amplitudes and number of causal loci, as summarized in Table 2. 

Genome-wide effect on Ne 

We simulated the autosomes of a Drosophila genome to evaluate the effect of seasonally 

fluctuating selection on variance effective population size in a Drosophila population (see 

Methods). We first assessed our regression model approach and found that the final number 

of segregating loci was slightly higher than the final loci number input into the model, with 

an average of 5 additional segregating loci and no more than 15 in a single replicate. In 



 
 

149 
 

contrast, the mean amplitude was marginally lower than the values used in the model, with a 

decrease of 0.7%. The maximum discrepancy was 23%, however this occurred when using 

extreme empirical parameters (i.e. 9 final loci with an average amplitude of 35% to 

correspond with the mean amplitude of the top 9 SNPs from Bergland et al. and Machado et 

al’s empirical data). Overall, under reasonable conditions, the model results in allele 

frequency amplitude and final segregating loci numbers close to the empirically derived input 

values. 

We found that fluctuating selection using these empirically based models reduced genome-

wide effective population size by as much as 76% and no less than ~7% across a parameter 

space that conferred mean allele frequency fluctuations between 1.6 and 18.4% (Figure 4). 

Interestingly, the greatest reduction in effective population size was not observed under 

parameters that led to the largest mean seasonal fluctuations, but for a combination of 127 

initial loci with a y value of 15, which had a mean seasonal amplitude of only 6.7%. This 

allele frequency fluctuation is within the range of estimates from studies of natural 

populations (Machado et al. 2021; Rudman et al. 2022; Bitter et al. 2023). The least reduction 

in effective population size resulted from a combination of 37 initial loci and a y value of 2, 

which had a mean amplitude of 3.2%. However, we find a considerable reduction with very 

similar allele frequency fluctuation for 150 initial loci and a y value of 11, suggesting the 

mean amplitude of allele frequency fluctuation is not the only driver of this reduction in 

effective population size. 
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Figure 4. Relative reduction in effective population size due to fluctuating selection 
Relative reduction in effective population size across time (simulated generations). Each panel shows 

effective population size for a different combination of initial loci number and epistasis value 

(labelled respectively in the top strip). A dashed black line depicts the neutral expectation (i.e. 0% 

reduction). The blue line demonstrates relative effective population size under neutral evolution, while 

the red line signifies effective population size under fluctuating selection. The corresponding mean 

amplitude of each parameter combination is included in the bottom right of each panel. 

We then examined whether other aspects of the amplitude of fluctuation are better predictors 

of the decrease in effective population size (Figure 5). We compare the mean, median, and 

maximum seasonal fluctuation with the reduction in effective population size and observe 

that maximum amplitude appears to have a roughly linear relationship with the reduction in 

effective population size (r2 = 0.7621). The mean and median amplitude do not show such 

clear patterns, with a steep linear relationship for simulations with initial loci number greater 

than 19, but the values for the simulations with 19 initial loci and an epistasis value of 7.5 are 

outliers to this trend. This suggests that the more extreme (i.e. largest) allele frequency 

fluctuations are the best predictors for a strong reduction in Ne, not the average amplitude or 

the number of fluctuating sites. 
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Figure 5. Relationship between reduction in effective population size and aspects of 

seasonal fluctuation (amplitude). 
The relative reduction in effective population size in relation to the mean, median, and maximum 

amplitude for each simulated replicate of each combination of initial loci number and epistasis value 

(coloured). 

We also explored the relationship between the dominance and effect size of the seasonal loci 

that remain segregating and the amplitude of allele frequency. We see a general trend across 

the parameter combinations of increasing seasonal allele frequency fluctuation with greater 

mean effect size (average of the summer and winter effect size; Figure 6A). The distribution 

of mean dominance and amplitude demonstrates that smaller dominance sizes can confer a 

wider range of amplitudes, particularly decreasing the lower range of amplitudes but without 

decreasing the upper range (Figure 6B). Hence, loci with the largest amplitude, which are 

likely driving the reduction in effective population size, also have a large mean effect size but 

are not restricted to any particular range of mean dominance coefficients.  
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Figure 6. Mean effect size and mean dominance coefficient of seasonal loci segregating 

at the end of simulations in relation to their amplitude of fluctuation. 
A The mean effect size and B mean dominance coefficient, calculated as the average of both the 

summer and winter value for each locus, compared to the amplitude of each locus. The colours of the 

points illustrate the mean dominance or effect size. Each panel depicts a different parameter 

combination labelled in the top strip with the initial loci number and epistasis value, respectively. 

Offspring capping 

It was noted previously that under the segregation lift model, unrealistically large offspring 

numbers per parent might occur, but restricting the offspring number per parent did not 

qualitatively change the allele frequency fluctuations (Wittmann et al. 2017). Thus, we aimed 

to determine if the reduction in effective population size would be less substantial if offspring 

output, the number of offspring any individual can have, was capped. We also observed little 

difference between the distributions of allele frequency fluctuations with and without 

offspring capping, with amplitudes from capped simulations only being slightly less than 

those without offspring limitation. Using 150 initial loci and an epistasis value of 11 as an 

example, we see that the mean amplitude is 0.041 with capping and 0.043 without. Further, 
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the maximum amplitude only differed by 1% between simulations with capping and without 

for this parameter combination (0.646 and 0.656, respectively). When examining levels of 

effective population size, we observe that if the original reduction in effective population size 

was approximately 50% or less, capping offspring does not reduce the effect of fluctuating 

selection on effective population size. However, capping offspring did limit the reduction in 

effective population size compared to when the original reduction in effective population size 

was more severe (Figure 7). With capping, the most extreme reduction in effective population 

size was less than ~75% in the initial 'burn-in' phase of the simulation and approximately 

60% at equilibrium. 

 

Figure 7. Reduction in effective population size with and without offspring capping. 
Effective population size under neutral evolution, with and without offspring capping, are depicted in 

purple and green respectively. The neutral expectation is shown by the dashed black line. Effective 

population size under fluctuating selection with standard offspring generation is shown in blue, and 

fluctuating selection with offspring capping is shown in red. The mean amplitude of fluctuating loci 

with offspring capping is written in the bottom of each respective panel. 

Fluctuating population size  

We also tested the effects of fluctuating selection on a population of fluctuating size. It is 

known that D. melanogaster in temperate environments undergo a boom-bust demography 

where population sizes grow (boom) in the summer, when conditions are optimal and 

resources are abundant, and crash (bust) in winter when resources are sparse. We simulate a 
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step wise population decrease of 1 order of magnitude (500,000 to 50,000 individuals) at the 

start of the winter season that increases again at the beginning of summer. Interestingly, we 

find similar proportions of reduction in effective population relative to the harmonic mean 

population size as was seen in the constant-sized model (i.e., ~10-75% reduction; Figure 8). 

In some cases, this equates to a reduction of an order of magnitude compared to the peak 

summer census population. For example, when simulating 150 initial loci, with a y value of 

11 with an amplitude of 4.6%, the harmonic mean effective population size is reduced by 

approximately 55%. The resulting effective population size is approximately 41,000 

individuals, down from a summer census population size of 500,000. Hence, fluctuating 

selection combined with recurring bottlenecks may be able to explain a substantial 

discrepancy between census and effective population size. 

 

Figure 8. Reduction in effective population size due to fluctuating selection in a 

population with boom-bust demography. 
The dashed line depicts the neutral expectation, and the purple line represents the estimated effective 

population size of a fluctuating population size (relative to the harmonic mean population size) under 

neutral evolution, while the green line is neutral evolution in a constant population size. The red line 

shows the effective population size under fluctuating selection for a constant size population size, and 

for a fluctuating population size in blue. The mean amplitude of allele frequency fluctuation in a 

fluctuating population is included in the bottom right of the respective panel. 
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Discussion 

Fluctuating selection was shown to have genome-wide effects on levels of diversity, even in 

regions that are completely unlinked to any selected sites (Wittmann et al. 2023). This is an 

indication that fluctuating selection impacts effective population size by increasing the 

variance in offspring number. In this study, we quantify this effect on effective population 

size (i.e., the variance effective population size) in a simulated Drosophila population and 

investigate the relationship between the reduction in effective population size and factors 

such as mean, median, and maximum amplitude, as well as the effect size and dominance 

coefficient of the seasonally selected loci. We test both a constant and a fluctuating 

population size, and additionally determined if capping the number of offspring limits the 

reduction in Ne. 

We use a model of fluctuating selection that simulates seasonal alleles with different 

dominance and effect sizes, this implies that the seasonal allele frequency fluctuations 

(amplitudes) are different for each locus. We find a strong positive relationship between the 

maximum seasonal amplitude and the reduction in Ne. The maximum amplitude of seasonal 

SNPs identified in Bergland and colleagues' 2014 study as well as Machado et al’s 2021 

study is approximately 0.37 and 0.45, respectively (Bergland et al. 2014; Machado et al. 

2021). When comparing this to our simulations, this suggests there is potentially a reduction 

in effective population size of between 40-60% in the natural populations in these studies due 

to fluctuating selection (Figure 5). Further investigation into this relationship between 

maximum amplitude and effective population size under additional ecological realism and 

estimation of effective population size from natural populations in which fluctuating selection 

had been identified may inform whether this effect is maintained when there are additional 
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forces at play. Notably, we observed that the reduction in effective population size is robust to 

fluctuations in population size and capping of the offspring number per parent. 

Lewontin’s paradox pertains to the much smaller variance in genetic diversity between 

species compared to the variance in census population size, which spans several orders of 

magnitude. One possible solution to this paradox is that natural selection reduces effective 

population size to a larger degree in larger populations, thus leading to less variation in 

genetic diversity between species than predicted from their census population sizes. This 

explanation is only feasible if there is actually a strong effect of natural selection on levels of 

neutral diversity, i.e. a strong reduction in Ne. We observed reductions in effective population 

size of up to 75%. In our simulated constant population of 500,000, this confers an effective 

population size of 125,000 individuals. While this is not several orders of magnitude, this is 

still a substantial decrease and suggests fluctuating selection may play a key role in 

explaining Lewontin’s paradox, in combination with other types of selection and 

demographic effects such as recurrent bottlenecks (Buffalo 2021; Charlesworth & Jensen 

2022). For instance, when we combined fluctuating selection with a fluctuating population 

size model, we were able to capture differences between census and effective population size 

that correspond to an order of magnitude, with realistic values of mean amplitude of 

fluctuating alleles. This suggests fluctuating selection combined with population demography 

may be able to explain a large portion of the discrepancy between census and effective 

population sizes. Fluctuating selection is also a more plausible cause of this disparity than 

recurrent positive selection as it can be sustained for as long as the oscillating pressure is 

active, as selected alleles are being maintained for extended periods of time. Previous 

proposals of positive selection as the cause of Lewontin’s paradox rely on a constant supply 

of positively selected mutations (Buffalo 2021; Charlesworth & Jensen 2022; Achaz & 

Schertzer 2023) as diversity in the regions surrounding the selected allele is slowly regained 
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after the selected allele becomes fixed and diversity recovers. In contrast, the recurrent 

selective bottlenecks caused by a large proportion of individuals being strongly maladapted 

after each seasonal transition lead to a consistently reduced effective population size 

throughout time. 

Conclusion 

Under an empirically informed model, fluctuating selection was found to reduce effective 

population size by as much as 75%, and even when individuals were limited to only 10 

offspring per parent, a maximum reduction of 60% was observed. We found that the 

maximum amplitude of the seasonal allele frequency fluctuation, i.e. the largest amplitude 

over all selected loci, was a crude indicator of the reduction in effective population size that is 

independent of the number of loci. When fluctuating selection was simulated in addition to a 

fluctuating population size, we were able to capture reductions in variance effective 

population size one order of magnitude lower than the peak census population size. Together, 

the significant reduction in effective population size, combined with the ability of fluctuating 

selection to maintain segregating alleles for long periods of time, make it a plausible 

contributor to resolving Lewontin’s paradox. Further investigations with additional ecological 

realism, and fitting the segregation lift model to species other than Drosophila, will improve 

our understanding of the broader implications of this reduction in effective population size 

across the tree of life. 
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Figure S1. Distribution of mean effect size for segregating (black) and fixed/lost (red) 

alleles. The number of initial loci and y parameters are labelled at the top of each panel. 

A mean effect size of 1 signifies that the summer and winter effect sizes are equal. 
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Overview 

Natural selection is a key principle in biology. The study of this evolutionary phenomenon 

has evolved from observing phenotypes (Darwin 1859; Fisher & Ford 1947) to directly 

discerning it at the molecular level through allele frequencies and patterns of neutral genetic 

variation (Smith & Haigh 1974; Berry et al. 1991; Bergland et al. 2014). This has allowed the 

investigation of natural selection in species throughout all life and on a broad range of 

timescales, from evolve-and-resequence studies of species with short generation times 

(Petersen et al. 2007; Abdul-Rahman et al. 2021; Rudman et al. 2022) to the use of ancient 

DNA in larger mammals (Ludwig et al. 2015; Souilmi et al. 2022). With an extensive body of 

research regarding common types of selection such as positive and classical balancing 

selection (Charlesworth 2006; Stephan 2019), attention has now turned to more complex 

forms of selection which benefit from advances in sequencing and computational technology 

and increasing accessibility to these resources due to declining costs.  

Fluctuating selection is a type of selection that has long been theorised but has yet to be 

consistently studied in the same manner as other selection forms. This has left us with a 

number of gaps in our current knowledge. In addition to this, recent improvements in 

sequencing and associated costs have allowed for the direct identification of fluctuating allele 

frequency trajectories across time (Bergland et al. 2014; Machado et al. 2021; Pfenninger et 

al. 2022; Pfenninger & Foucault 2022; Rudman et al. 2022; Bitter et al. 2023). This has 

brought fluctuating selection to the forefront of the field of natural selection resulting in an 

abundance of new studies over the last decade; however, much of the focus has been on 

identifying fluctuating alleles in natural populations and modeling the dynamics of such loci. 

This thesis takes an alternate approach. Instead, I aimed to characterise the effects of 

fluctuating loci on linked neutral genetic variation to determine if it can be discriminated 
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from other common forms of selection. In addition, I explored the influence of fluctuating 

selection on population genetic statistics and measures, such as effective population size. 

An updated review of fluctuating selection 

In Chapter 1, I lead a review of the field of fluctuating selection, synthesising the abundance 

of evidence that has been published since the previous review conducted in 2010 (Bell 2010). 

Bell’s review challenges the idea that selection is gradual and slow which was first 

perpetuated by Darwin (Darwin 1859) and led to the development of the infinitesimal model 

in population genetics (Fisher 1930). Bell highlights that environments are constantly 

changing which is more likely to result in rapid adaptation to varying selection pressures. As 

a consequence, Bell proposed that fluctuating selection is expected to be common and 

summarises the evidence of this in a number of species (Bell 2010). Notably, evidence in 

Drosophila is not included in this prior review but has since been a key species in the study 

of fluctuating selection, both experimentally and in natural populations (Bergland et al. 2014; 

Huang et al. 2014; Glaser-Schmitt et al. 2021; Machado et al. 2021; Behrman & Schmidt 

2022; Rudman et al. 2022; Bitter et al. 2023; Glaser-Schmitt et al. 2023; Nunez et al. 2023). 

Moreover, additional evidence has also been found in a variety of other species spanning all 

forms of life and a range of time scales; from plants and insects to mammals ranging from 

seasonal scales to thousands of years (Ludwig et al. 2015; Busoms et al. 2018; Garcia-Elfring 

et al. 2021; Pfenninger et al. 2022; Pfenninger & Foucault 2022). In addition to recapitulating 

studies of empirical data, I also summarise the abundance of theoretical studies of fluctuating 

selection. This includes a discussion of models of fluctuating loci, including the segregation 

lift model used in Chapters 2 and 4, as well as the influence of fluctuating selection on 

genome-wide diversity, explored further in Chapter 4.  
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Ecological mechanisms for fluctuating selection 

My review also covers theoretical models that involve ecological mechanisms of fluctuating 

selection. In this thesis, I largely simulate a constant population size and an equal number of 

generations per season. It is understood that, in reality, Drosophila experience a boom-bust 

demography, whereby the population increases over summer and decreases over winter due 

to abiotic factors such as temperature and humidity and biotic factors such as food 

availability (Varpe 2017; Bertram & Masel 2019). In addition, D. melanogaster has been 

suggested to undergo ‘overwintering’, such that there are fewer generations in the winter 

compared to summer (Bergland et al. 2014; Nunez et al. 2023). In Chapter 4, I simulate a 

fluctuating population size to emulate the boom-bust demography observed in natural 

Drosophila populations. I also simulate fluctuating selection with offspring capping, limiting 

the number of offspring per parent, to ensure I am encapsulating effects likely to be seen in 

nature to compare against idealised population genetic effects (i.e. where individuals can 

contribute to a larger portion of offspring than biologically viable). I find that the effects of 

fluctuating selection on variance effective population size are robust to both of these 

ecological mechanisms. In addition, the combination of fluctuating selection and boom-bust 

demography produces a reduction in effective population size on the order of a magnitude, 

suggesting that ecological mechanisms in conjunction with fluctuating selection may be able 

to explain the large disparity between effective and census population size seen in many 

insect species. 

Limitations in ecological realism 

Some of the limitations of the work in this thesis relate to the ecological parameters under 

which simulations are conducted (i.e. generations per season, population size across seasons). 

I use constant population sizes and equal generations per season to untangle the effects of 
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selection from the influence of demographic events, this provides an effective foundation for 

our understanding of the impacts of fluctuating selection. However, ecological parameters in 

natural populations might be very different from those simulated, and future studies could 

include additional ecological realism to capture any additional features that may result from 

these ecological influences. In addition, protection from selection, where a portion of the 

population is replaced as juveniles and selection is not acting on the remaining adult 

population (Bertram & Masel 2019; Park & Kim 2019; Kim 2023; Yamamichi et al. 2023), is 

another ecological mechanism that was not included in the work in this thesis but may add 

further ecological realism to simulations as another contributor to fluctuating allele 

frequencies. An additional limitation is that I do not simulate recurrent mutation, instead 

investigating only the fluctuating loci that are introduced at the initiation of simulations. The 

mutation rates of Drosophila are large enough that some seasonal loci could mutate over the 

timescales simulated in these studies (Keightley et al. 2014). This is again an additional 

feature that could be included in future work to add realism. It is important to note that there 

are likely a myriad of factors, some of which we still may not fully appreciate, acting on 

natural populations. Thus, while the addition of ecological factors may generate the impacts 

of fluctuating selection more similar to what is seen in natural populations, simulations can 

never perfectly replicate what happens in nature. That being said, simulation does provide us 

with a suitable understanding that can then be tested against empirical data. 

Simulations of fluctuating selection 

In Chapter 2, I evaluate simulation frameworks for complex selection models, like fluctuating 

selection. Most studies that benchmark population genetic simulation programs only simulate 

simplified forms of selection with constant pressure, such as selective sweeps or purifying 

selection (Shlyakhter et al. 2014; Thornton 2014; Haller & Messer 2017; Kelleher et al. 2018; 

Haller et al. 2019; Baumdicker et al. 2022). This makes evaluating the appropriate simulation 
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program difficult when aiming to model non-standard forms of selection, with resource usage 

for static models of selection not always providing an accurate approximation for models of 

fluctuating selection. This chapter allows for the consideration of realistic resource usage 

when complex models of selection are implemented. I tested four workflows, two of which 

have not been benchmarked previously. Two simulation programs are utilised, msprime 

(Baumdicker et al. 2022), a coalescent simulator, and SLiM (Haller & Messer 2023), a 

forward-in-time simulator. I found that using a coalescent burn-in simulated in msprime 

considerably reduces computational resource usage. This approach not only ensured the 

coalescence of lineages across the whole of the simulated segment but also established levels 

of diversity equivalent to the neutral expectation. In comparison, I found that when using 

forwards-in-time approaches for the burn-in, the simulation must be run for an average of 

28Ne generations to ensure coalescence across a simulated segment of 1 Mb. This is 

considerably longer than the 10Ne generations that are typically recommended to reach an 

equilibrium state when conducting simulations. In addition to having uncoalesced lineages 

when using this 10Ne approximation, levels of diversity are significantly lower than the 

neutral expectation, which can be an issue when examining the effects of a selection form on 

diversity over time as I did in Chapter 3.  

For the selection phase of our benchmarking workflows, I used the forward population 

genetic simulator, SLiM. The use of SLiM allowed for additional complexity to be 

incorporated into simulations beyond simplified models of constant selection, from the 

implementation of seasonal selection pressures to capping offspring numbers. I compared the 

resource usage of classical mutation recording to a recently developed computational 

technique using a novel data structure, tree sequence recording (Haller et al. 2019; Haller & 

Messer 2023). I found that mutation recording was substantially slower but used less 

computational memory, compared to tree sequence recording which was faster but required 
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more RAM. The tree sequence recording approach also retains genealogical information 

which can be utilised in the analysis of the simulation output, with tree sequence-based 

statistics being considerably faster to compute.  

The workflow consisting of a coalescent burn-in in msprime followed by a selection phase 

simulated in SLiM with tree sequence recording was used in Chapter 3, where I investigated 

the effects of fluctuating selection on established levels of neutral diversity at different time 

points. Chapter 4 did not require an established level of initial neutral diversity, since here we 

measure the instantaneous effective population size that does not rely on information from 

established neutral variants. Thus, I only simulated the forward selection phase using the 

classical mutation recording approach over a reasonable number of generations. This 

drastically improved the performance of the simulation and allowed me to simulate the full 

extent of the two major Drosophila autosomes under realistically large population sizes.  

Answering outstanding questions 

I identified several outstanding questions in my review in Chapter 1. Some of these were 

addressed in the subsequent chapters of this thesis. In the review I ask, is there power to 

discriminate the population genetic signatures of fluctuating selection from those of simple 

forms of balancing selection or soft selective sweeps? In Chapter 3, I determine that 

fluctuating selection can be readily distinguished from positive selection, in the form of hard 

and soft selective sweeps, using single statistics. Differentiation between balancing and 

fluctuating selection is more challenging, particularly when alleles have recently reached 

equilibrium and are established in similar time frames. This generates partial sweep patterns 

of comparable magnitude that are difficult to discriminate. In addition, when comparing 

single statistics, balancing and fluctuating selection failed to be discriminated from one 

another, this highlights that there are potentially cases of fluctuating selection that have been 
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mistaken for balancing selection if statistics that struggled to distinguish these forms were 

used. Using linear discriminant analysis, I found that balancing selection can be well 

distinguished from fluctuating selection by using multiple statistics in combination. For 

example, utilising multiple time points, observed across the season, allowed for the correct 

classification of short-term fluctuating and balancing selection in 90% of cases. In contrast, in 

the case of long-term selection multiple windows around the selected site (i.e. the window 

over the selected size, the window adjacent to the selected side, and a window 250 kb away 

from the selected site) allowed for 85% correct classification of the two forms of selection, 

suggesting that the spatial genomic pattern allows further power for discrimination. In sum, 

our results suggest that utilising multiple statistics that leverage different types of information 

(i.e., spatial across the genome, and temporal across the season) may significantly help to 

reliably classify fluctuating selection.  

My review also highlights that fluctuating selection may have important implications for the 

resolution of Lewontin’s Paradox. In Chapter 4, I investigate the effect of fluctuating 

selection on effective population size in this context. Fluctuating selection was seen to reduce 

effective population size by up to 75%, whilst maintaining alleles with a mean allele 

frequency fluctuation within the range observed in natural populations (Bergland et al. 2014; 

Machado et al. 2021; Rudman et al. 2022; Bitter et al. 2023). This suggests that fluctuating 

selection may be a conceivable explanation for some degree of this discrepancy between 

measures of effective and census population size. 

Future work 

Many of our remaining questions concern fluctuating alleles in natural populations, i.e. how 

long are alleles under fluctuating selection typically maintained in natural populations? How 

do fluctuating alleles become established? Is it through de novo mutation or through 
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introgression from populations in extreme environments? In Chapter 3, I determined that it is 

possible for a single de novo mutation to become established and observed a unique 

fluctuating allele frequency trajectory (i.e. frequency fluctuates around an increasing average 

frequency) before alleles reached a stable oscillation. This pattern could be utilised for the 

estimation of the age and origin of fluctuating alleles in empirical data. I also characterise the 

patterns of neutral variation expected around loci under short and long-term fluctuating 

selection. Future work scrutinising the patterns of diversity around fluctuating SNPs 

identified in empirical data may confirm if the signatures identified in this thesis hold true 

under all the additional forces experienced by individuals in natural populations. Drosophila 

parameters are used in this thesis to conduct empirically informed investigations; however, 

this work could be extended to the multitude of species in which fluctuation has been 

identified or could potentially be occurring. In particular, examination of the effect of 

fluctuating selection on effective population size in other species may bring us closer to 

explaining Lewontin’s Paradox. 

Conclusions 

While our understanding of fluctuating selection has advanced considerably over the last 

decade, each development incites a myriad of additional questions, highlighted throughout 

this discussion. Overall, this thesis provides an updated review of the field; a unique 

benchmarking of workflows for population genetic simulation of non-standard models of 

selection; the characterisation of the signatures of fluctuating selection and their 

discrimination from other selection types; and an investigation into the effects of fluctuating 

selection on effective population size. Fluctuating selection has the potential to be prolific 

throughout species and time; this thesis contributes significantly to this exciting new area of 

research with major implications for the conservation of species and our understanding 

genetic diversity across the tree of life. 
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