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Abstract

The quark-meson coupling (QMC) model is a phenomenological model which seeks
to describe nuclear systems in terms of quark degrees of freedom. This is done by
coupling the meson fields, which describe the nuclear force, to the valence quarks
inside of the baryons. Considered in this work is a many-body expansion of the QMC
model, extended to include strange baryons (hyperons). From here this expansion is
applied to solve for the binding energy of a number of different situations.

The first of these applications is to fit the coupling constants in the model to the
binding energies of Lambda hyperons. The binding energies for Lambda hyperons
are known for several different nuclei, which makes it ideal for fitting the constants.
This is completed by using previously established values for the coupling constants,
and allowing for slight variations in the coupling constants, due to the many-body
expansion being an approximation to the QMC model.

Following this, the coupling constants found will be used to predict the binding energies
for a number of different cascade hyperons, which have 2-strange quarks instead. An
isospin-dependent term is introduced here, which includes a new coupling constant,
and so these are tested for a few different values of the coupling constant.

Next, a prediction for the effect of the nuclear potential on the binding of a negative
cascade, bound by the Coulomb force into an iron atom, is made. This is done by
calculating the energy levels of the 5g and 6h states to a high precision, and then
finding the transition between them. This transition is compared to the case where
there is no Coulomb potential, in order to investigate the effect the strong force has on
the binding.

Finally, the mean contribution of the scalar meson field is calculated, for the binding of
a Sigma hyperon in a helium nucleus. This value can then be used to make a prediction
for the change in the magnetic moment between the Sigma hyperon in and out of the
nuclear medium.
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Introduction

Nuclear physics is the study of the interactions between baryons and the properties
of such matter. This includes properties such as mass and binding energy, magnetic
moments, and similar [1]. Inside the scope of nuclear physics is the study of finite
nuclei, which are collections of protons and neutrons (together known as nucleons).
Nuclear physics also extends to include the study of infinite nuclear matter. Infinite
nuclear matter is matter where the number of nucleons present is taken towards infinity,
which is in a naive sense, what is occurring in a neutron star [2].

In the past it was assumed that the appropriate degrees of freedom for doing nuclear
physics were the nucleons. Indeed, the majority of nuclear properties can be described
without an appeal to the nucleon structure [3]. However, if one ignores this structure,
there still remains the question of the origin and exact nature of the nuclear force.
Furthermore, at dense enough nuclear matter, such as that in neutron stars, it is
postulated that quarks are the correct degrees of freedom for nuclear physics [2] [4].
Despite this, in nuclear physics, the current prevailing opinion remains that the nuclear
physicist can ignore nucleon structure, at least in the majority of cases, due to the
energy scale of nuclear physics [5].

In order to investigate nuclear phenomena then, a popular approach is to consider
an effective field theory. These are quantum field theory approaches, which include
the degrees of freedom to be investigated, be that the nucleon or quark, along with all
the appropriate symmetries. One such approach in the field, which has accomplished
this, is a theory known as quantum hadrodynamics (QHD). In QHD the hadrons are
considered the correct degrees of freedom, coupled to a number of different meson fields
[6] [7]. Then, in this model, one could consider the nuclear force as the result of virtual
mesons being exchanged between the hadrons.

However, should one still remain curious as to whether or not this structure is
indeed irrelevant to the interactions in nuclear matter, one might consider a couple of
different options to proceed. One possible option would be to consider using quantum
chromodynamics (QCD) to describe the nuclear environment. But as shall soon be
seen, due to the complexity of this theory, it is not really possible to apply QCD to a
full nuclear environment.

Due to these restraints, for the time being, the best alternative option is to turn to a
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2 Introduction

phenomenological model, where the quarks are the degrees of freedom, to describe the
nuclear environment. One such phenomenological model is the Quark-Meson Coupling
(QMC) model [4]. This model shares some similarities to QHD. The key difference
is that instead of coupling the meson fields to the nucleons, the QMC model couples
the meson fields to the quarks inside of the nucleons, and hence the nucleons are not
structureless in this model.

In past work, a many-body expansion of the QMC Hamiltonian has been found
for nucleons [8]. This allowed for the comparison of the QMC model to the Skyrme
effective force, which upon fitting the coupling constants in the model, led to a good
degree of agreement between these two descriptions [9] [10]. This provides some amount
of confidence that making use of this type of many-body expansion is a legitimate
endeavour. It is then of interest to see how this expansion might extend to strange
quark nuclear material.

To this end, this work intends to investigate the binding of strange quark baryons,
or hyperons, into finite nuclear matter. There has already been quite a bit of work
done investigating the binding of Lambda hyperons, where a number of experiments
have been carried out to establish the binding energy for a number of different hy-
pernuclei [11]. There have also been past attempts to find a phenomenological model
which accounts for these binding energies [12] [13]. Despite a relative abundance of
investigation into one strange quark nuclear material, there is still quite a bit unknown
about scenarios where two strange quarks are present [14]. This makes it of interest to
investigate how this expansion of the QMC model might fare in these cases. The QMC
model has also in past been used to investigate strange quark nuclear systems [15] [16]
[17]. Where this work shall differ from this past work is by implementing a simple
many-body approximation, and carrying out the calculations of the binding energies
using more recent calculations of the coupling constants for the quarks to the meson
fields.

This thesis will begin with a brief overview of background concepts pertinent to the
QMC model in ch. [1]. Following this, in ch. [2], the QMC model will be introduced,
beginning with a derivation of how to find the classical energy of a nucleon in the QMC
model, and then using the classical energy, the Hamiltonian will be expanded in terms
of the many-body forces.

With the background needed to understand the model established, in ch. [3] the
many-body expansion will be extended to Λ0 hyperons, in which there is one strange
quark, and the remaining quarks have zero isospin. With the expansion established
we will then be in a position to calculate the binding energies of the Λ hyperons.
The binding energies will be calculated from the Schrödinger equation, which can be
solved using a Numerov algorithm. The Λ binding energies in finite nuclear matter
are relatively well established so from these a best fit for the coupling constants in the
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QMC model will be found.
Using the coupling constants determined from the Λ binding, in ch. [4] the binding

energies of both the Ξ0 and Ξ− cascade hyperons will be investigated. These will now
include both an isospin dependent contribution, and for the Ξ− a Coulomb interaction
is also included. The derivation for both of these terms will be included in this chapter.
Following this the splitting in the atomic energy levels due to the nuclear interaction
will be investigated in ch. [5]. This will be carried out in an iron nucleus, and compared
to the analytical solution for a point-like iron nucleus. Iron has been chosen first, as an
experiment has already been carried out on iron targets [18]. Following this, Carbon
has also been proposed as a target, and so similar calculations will be carried out for
a carbon nucleus [19].

Finally, a brief investigation of some of the properties of nuclear matter in the case
of the binding of Σ0 hyperon will be carried out, in ch. 6]. This will include the
calculation of the mean σ meson field in 4He, as thus far the Σ0 has only been found
to be bound into a Helium nucleus [20] [21].





Chapter 1

Background Information

To begin, we shall first consider a number of important concepts that are needed to
understand the QMC model. This will include a brief overview of the particle physics
and QCD concepts relevant to the model. Following this a number of different types
of hadrons, relevant to this project, will be introduced. With this, the MIT bag model
will then be introduced. The MIT bag model is a model for hadron structure, which
aims to capture the key features of QCD, namely confinement of the quarks. Finally,
a brief discussion on nuclear physics will be had, where some of the usual practices in
the field, and key concepts will be introduced.

1.1 Particle Physics Background

Currently, the prevailing model for matter is that it is made up of particles, as postu-
lated in the standard model [22]. One of the striking features about these particles is
that particles of a given variety are indistinguishable. That is to say that should one
observe an electron, then they would know what all electrons are like.

The understanding of particles has evolved quite a bit over time, however the current
way they are understood is formulated in a quantum field theory. In quantum field
theory particles are thought of as excitations in a quantum field [22] [23]. This leads
to a natural understanding of how particles interact with each other over a distance.
These interactions are considered to be mediated by the fields, which in turn leads to
understanding these interactions as the exchange of virtual particles.

The standard model has been demonstrated to describe three of the four elementary
forces, with this interpretation. The particles which mediate these forces are known as
gauge bosons. These gauge bosons are the photon for the electromagnetic force, the
W and Z bosons for the weak force, and the gluon for the strong force.

In addition to these particles, the standard model also includes the description of
quarks, leptons and the Higgs boson. Particularly relevant to this work are quarks,
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6 Chapter 1. Background Information

as quarks are the fundamental particles which form baryons. The quark model arose
from the work of Gell-Mann and Zweig [24], independently. Gell-Mann had already
introduced the idea of the ’eight-fold way’ [25], which organised the known baryons
and mesons by their charge and strangeness, but left open the question as to why they
could be arranged this way.

1.2 QCD Background

This question was eventually explained through the postulation of quarks, and gluons
[26] [27]. This led to the development of a quantum field theory, QCD, which describes
the interactions between quarks and gluons. Quarks and gluons carry a property known
as colour. Colour follows an SU(3) gauge theory, with the option of quarks being red,
green or blue [28]. In addition, quarks also carry another quantum number known as
flavour. There are six options for quark flavours, up, down, strange, charm, top, or
bottom. Of particular relevance to this work are the up, down and strange quarks. Now
we note, that SU(3) is a non-Abelian gauge symmetry group, and thus the generators
of the theory do not commute. Thus, the QCD Lagrangian can be expressed as below,
neglecting the flavour arguments here for brevity [23]:

L = ψ̄(i/∂ −m)ψ − 1

4
(∂µA

a
ν − ∂aν )

2 + gAa
µψ̄γ

µtaψ

− gfabc(∂µA
a
ν)A

µbAνC − 1

4
g2(f eabAa

µA
b
ν)(f

ecdAµcAνd) (1.1)

Where here, ψ is the quark wavefunction, Aa
µ are the gluon fields, g is the coupling

constant for the theory, fabc are the structure constants, and ta is a matrix represen-
tation of the underlying Lie algebra of the generators.

From this Lagrangian we can deduce the types of interactions between the quarks
and gluons. Namely, we can see from the third term, that there is a gluon-quark
interaction vertex, from the fourth term a three gluon vertex, and from the fifth term a
four gluon vertex. The gluon self-interaction vertices differentiate QCD from QED, as
in QED the photon cannot interact with itself. It is these self-interaction vertices which
lead to a peculiar QCD phenomena, known as confinement. Confinement ultimately
results in all physical hadrons being in colour singlet, or colour neutral, states. This
leads to a prediction that there are no isolated quarks or anti-quarks, but only ever
quarks or anti-quarks confined into hadrons. Instead, should one try to separate out
a quark the gluon field would form what is called a ’flux tube.’The energy required
to separate this quark from the gluon field grows linearly with distance, which leads
to the confinement of the quarks [29]. This all leads to a picture of the nucleon as a
complicated environment!
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Now, due to the complexity introduced by the self-interaction of the gluon fields,
QCD currently has no analytical solution. The primary way that QCD is explored is
through a computational scheme, known as lattice QCD. Unfortunately lattice QCD is
rather computationally expensive, for even simple systems. A full nuclear environment
is from a QCD perspective, an incredibly complex system, and as the number of nu-
cleons present increases, this problem is made far more complicated by the increasing
complexity of the possible interactions [30]. So, if we are interested in finding how the
quark structure effects nuclear physics properties, what possible means are available
to us?

1.2.1 From QCD to Nuclear Physics

Well, despite the challenge of increased complexity in the nuclear environment, there
have been some attempts at applying lattice QCD to calculate nuclear physics proper-
ties. These have included both investigations into finding the nucleon-hyperon poten-
tial [31], and also to investigating properties like the magnetic moments of nuclei [32].
However, these attempts are not considering large nuclei, which remain an impractical
way to attempt to solve the problem.

If QCD is not a viable way to investigate how nucleon structure effects nuclear
properties, then an alternative way to approach the problem would be to consider
an effective field theory. On this view then, the nuclear force is considered to be a
residual effect, caused by the ’leaking’ of the strong force outside of the baryons [5].
The underlying principle in effective field theories is that there is some amount of
independence for the physics which occurs at a given energy scale, from the physics
that happens at another energy scale. This is to say that a given effective field theory
consists with the particles of interest, as the degrees of freedom, alongside all the
symmetries of the system, without considering what might be happening at other
energy scales [33]. In general, this is not an unreasonable principle for doing physics;
one does not need quantum mechanics to describe the motion of the solar system. But
the question then remains what are the appropriate degrees of freedom? It is thus a
central premise for the QMC model that the quarks are the correct degree of freedom,
and not the nucleons.

1.3 Baryons and Mesons in the QMC Model

Throughout this work a number of different baryons and mesons will be explored. The
QMC model describes the nuclear environment by coupling these different meson fields
to the quarks inside of the baryons. And so to accurately describe the forces in the
nuclear environment we will include different mesons to mediate certain aspects of the
force. Let us first consider the different baryons to be considered in this work, before
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Baryon Quark Content Electric Charge [qe] Iz Strangeness Mass [MeV]

Proton uud +1 +1
2

0 938.272
Neutron udd 0 −1

1
0 939.565

Table 1.1: Table Summarising relevant Nucleon quantum numbers

Hyperon Quark Content Electric Charge [qe] I Iz Strangeness Mass [MeV]

Λ0 uds 0 0 0 -1 1115.683
Σ0 uds 0 1 0 -1 1192.642
Ξ0 uss 0 1

2
+1

2
-2 1314.86

Ξ− dss -1 1
2

−1
2

-2 1321.71
Ω− sss -1 0 0 -3 1672.45

Table 1.2: Table Summarising relevant Hyperon quantum numbers

turning to the mesons describing the different interactions.

1.3.1 Baryons

The simplest, and most common types of baryons dealt with in this work are the
protons and neutrons, collectively called nucleons. These can be grouped together to
create objects called nuclei. Nuclei are classified by both their nucleon number, which
is the total number of nucleons present, and the proton number, which is the number
of protons present. The properties of the nucleons are summarised in table [1.1].

The other type of baryons considered will be those containing strange quarks, which
are also called hyperons. When a hyperon is present in a nucleus, it is called a hyper-
nuclei. The properties of the different types of hyperons considered here, are found in
table [1.2].

Here we have already been introduced to a number of important properties con-
sidered throughout this work. The first of which is isospin, denoted as I. Isospin is a
property which up and down quarks each possess. Up and down quarks both have an
isospin of a half [28]. It is possible as well for the isospin of these quarks to be aligned
or anti-aligned, which is what distinguishes the Λ0 and the Σ0, as can be seen in table
[1.2]. However, isospin has different components. The most important component of
the isospin is the third component, Iz or sometimes I3. For this component of the
isospin, the up and down quarks differ, where the up quark has Iz = +1

2
and the down

quark has Iz = −1
2
. So, although the Λ0 and Σ0 have differing values of isospin, they

each have a third component of isospin of zero.
The other important quantum number to define is the strangeness. The strangeness

is defined as the number of anti-strange quarks, subtract the number of strange quarks,
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S = ns̄ −ns. Thus, we see that the strangeness is negative for each of the hyperons we
investigate here [22]. Strangeness is a conserved quantity in strong interactions [28],
which is important for this work, as throughout we shall not account for interactions
where the strange quarks decay to up and down quarks. The meson fields which
mediate the forces in this work are considered as the leaking of the strong force, and
these interactions should not cause the strangeness of the hyperons to change.

1.3.2 Mesons

In this work, there are three mesons considered to be mediating the nuclear force.
Importantly, the mesons considered here are all composed of only up and down quarks,
and their anti-particles.So, as these mesons do not have any strange quarks, a simple
approximation, motivated by the Okubo-Zweig-Iizuka rule (OZI rule) [22], will be that
the strange quarks will not couple to the meson fields. This rule states that QCD
processes where the Feynmann diagram can be disconnected into two separate diagrams
by imagining a ’cut’ across only gluon lines will be suppressed [34]. Hence, the meson
field interactions with the strange quarks in the hyperons are suppressed, compared
to those with the up and down quarks in the hyperons. This results in an overall
reduction in the coupling of the meson fields to a Lambda hyperon compared to that
of a nucleon.

σ Meson

The σ meson is a scalar isoscalar meson. This means that it has a net spin of zero,
as the constituent quarks have anti-aligned spins. It also has zero isospin. Here then,
the sigma meson will couple equally to the up and down quarks in a baryon. The
Lagrangian density which describes the coupling of the scalar meson to these quarks
is given by:

Lσ Int = gqσ q̄σq (1.2)

As can be seen from the interaction term here, the interaction with the sigma field
acts similarly to the mass term in the Dirac equation. In this way, the interaction with
the sigma field can be understood as adjusting the quark mass. However, this process
then introduces an ambiguity in the exact mass of the σ meson, in the nuclear medium.
It is thus often treated as a parameter in any fit being done, with values taken to be
around mσ = 500MeV [8] [35].

ω Meson

The ω meson is a vector isoscalar meson. So here, the quark and antiquark pair have
aligned spins. However, this meson still has an isospin of zero. So, the ω meson inter-
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action with both up and down quarks is the same. The Lagrangian density describing
the coupling of the ω meson to these quarks is given by:

Lω Int = gqω q̄γ
µωµq (1.3)

The mass for the ω meson is given by mω = 783MeV [8]. Furthermore, each of the
components of the ω field each satisfy the Klein-Gordon equation individually.

ρ Meson

The final meson considered in this work is the ρ meson, which is both a vector and
isovector meson. So similarly, to the ω meson, the ρ has quarks with aligned spin.
However, as the isospin is non-zero for this meson it will couple differently to the
up and down quarks inside the baryons in the QMC model. The Lagrangian density
describing the interaction of the ρ and a quark is given by:

Lρ Int = gqρq̄γ
µ τ

α

2
ραµq (1.4)

Here τ represents the Pauli matrices, which introduce the dependence on the isospin
of the quarks. The mass of the ρ is given by mρ = 770 [8].

1.4 Baryon Structure

It is known that nucleons are not point particles, but rather have an underlying struc-
ture. And it is one of the central premises of this thesis that this underlying structure
has some effect on nuclear physics. And thus, in order to properly carry out this work,
there is a need to have a model for the baryon structure.

In order to capture this structure, it is important that the model for nucleon struc-
ture exhibits confinement. There are a number of different models which try to describe
this. The type of model focused on here will be a class of models known as bag models.
These are simple models where the quarks are restricted to be inside an area of space
called a bag. Particularly, throughout this work the MIT bag model will be employed.

1.4.1 MIT Bag Model

The MIT bag model is a model initially proposed by Chodos et al. [36] [37]. This model
describes the nucleon as three valence quarks, constrained within a spherical bag. The
final element to this model is that there is a constant amount of energy required to
produce and sustain this bag. The Lagrangian density then for this model, inside the
bag, is simply given by:
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LMIT = q̄(iγµ∂µ −mq)q −BV (1.5)

The first term here is a Dirac equation for the quark fields, with the mass term
being that for the mass of a quark, mq. Here B, is the energy density, which takes a
constant value. The effect of adding this term amounts to picking up an extra term in
the energy-momentum tensor, such that you find: T µν = T µν

Fields − Bgµν , while inside
the bag, and when outside the bag the energy-momentum tensor vanishes. This implies
that the quarks inside are confined, as we desire for our model of nucleon structure.
The boundary condition on the surface of the bag, where r = R, amounts to:

(1 + iγ⃗ · r̂)q = 0 (1.6)

1.5 Nuclear Physics Background

With the needed background for both the particle physics, and baryon structure dealt
with, we shall now turn to considering how nuclear forces are commonly described, in
terms of many-body forces. Then we shall briefly survey an alternative description of
nuclear physics, QHD.

1.5.1 Many-Body Forces in Nuclear Physics

The first microscopic description of the nuclear force was given by Yukawa, which was
described by an exchange of virtual pions [5]. These exchanges can lead to interactions
between 2 or 3 nucleons. These are known as many-body forces, based on the number
of nucleons involved.

However with the discovery of many more types of heavier mesons, it has become
apparent that this simple model of the nuclear force would be inadequate [22]. Now
there could be much more complex interactions, involving the exchange of not only
pions, but also of the other mesons, such as the σ, ω, ρ or even other heavier strange
quark mesons. This is to be expected, as knowing that nucleons are actually intricate
objects with many moving parts, one might expect to find a more complex description
of their forces. Despite there being now more possible options for the meson exchanged
between nucleons, the fundamental idea of many-body forces remains applicable. Even
more interesting is to note that not all types of mesons contribute to higher-order
many-body forces, as will be seen for the vector mesons in this work.

1.5.2 Quantum Hadrodynamics

Due to the complexity of baryon structure, and the challenges it produces, a sensible
place to begin to investigate the nuclear force would be through an effective field theory.
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One of these effective field theories which shares some similarities with the QMC model
is quantum hadrodynamics (QHD). This model couples the meson fields introduced in
section [1.3.2], to the nucleons, treated as structureless Dirac particles [6].

In this way, the model circumvents the problem of the underlying quark structure.
It is noted that this will lead to increasing complexity at short distance, due to the
break down of the hadronic description [7]. With this being said, the QHD model
does include both explicit dependence on the meson fields, due to the couplings, in a
relativistic way, which are desirable properties for a theory of the nuclear force.

1.5.3 Binding Energy

Finally, we shall consider what is the primary property calculated throughout this
work, the binding energy. The binding energy is defined as the energy that it takes
to remove a baryon from a nucleus. This is the difference between the energy of the
baryon when bound in the nucleus, compared to when it is free.

EBinding = EBound − EFree (1.7)

The energy of a free state is larger than that of a nucleon in a bound system, and
thus binding energy is negative, as one might expect for a bound state. Throughout
this project, we shall find the binding energy by finding the ground state energy of a
baryon, bound into the nuclear environment described by a many-body potential.

In nuclear physics it is also common to consider the average binding energy per
nucleon, for a nucleus. For small nuclei this is found to increase rapidly with nuclear
size, however, at a certain nuclear size the binding energy per nucleon begins to remain
relatively constant [3]. This is a process which is known as saturation. Saturation is
caused by nucleons only interacting with the other neighbouring nucleons [38]. In larger
nuclei, the number of nucleons interacting with the maximum number of neighbours is
larger than in smaller nuclei, which leads to the average binding energy per nucleon to
remain roughly constant for larger nuclei. This once again changes however for very
large nuclei, as the Coulomb force begins to have a greater impact on the binding
energy, leading to a reduction in the binding energy per nucleon [39].



Chapter 2

Introducing the QMC Model

2.1 Setting up the QMC Model

The QMC model functions by coupling the meson fields to the valence quarks inside
of the baryons of interest. This provides a method to investigate how the underlying
baryon structure contributes to nuclear effects. As we saw in section [1.4.1], the MIT
bag model makes for a simple model with which we can describe the nucleon structure.
From here, we will consider a derivation of the classical energy for a nucleon in the
nuclear environment, in the QMC model, following closely from the work of Guichon
et al. [4].

We begin by considering the coordinates, of a nucleon, in the rest frame of the nucleus
(NRF henceforth). These are denoted as (t, r⃗) throughout. Then the nucleon can be
described following a classical trajectory through the nuclear environment, given by
R⃗(t), with a corresponding velocity:

v⃗ =
dR⃗

dt
(2.1)

And thus, the instantaneous rest frame (IRF henceforth), can be defined for the
nucleon, with coordinates (t′, r⃗′). Then, the transformation between these two systems
is given by:

r|| = r′|| cosh η + t′ sinh η (2.2)

r⊥ = r′⊥ (2.3)

t = t′ cosh η + r′|| sinh η (2.4)

Where we have the rapidity tanh η = |v⃗(t)|, r|| are the components parallel to the
velocity, and r⊥ are the components transverse to the velocity.

13
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The benefit of defining the coordinates in this way is that in the IRF, it is reasonable
to implement the MIT bag model, introduced in [1.4.1]. Thus we have a solution for
the quark fields in the IRF. From here, it is necessary to couple the quark fields to
the meson fields. In the NRF we expect that the meson fields are simply functions of
position, generated by the nuclear environment. Hence they are given by σ(r⃗), ωµ(r⃗),
and ρµα(r⃗). We note that the ρ meson can be treated in a similar manner to the ω
meson due to both being vector mesons. So from here we shall neglect the ρ meson,
until we reintroduce it by analogy in equation [2.41].

Now we simply need to transform these meson fields to the IRF. We denote the
coordinate for the position of the quark from the center of a bag, u⃗′ = r⃗′ − R⃗′. Then
this follows a simple Lorentz transformation, such that:

σ′(t′, u⃗′) = σ(r⃗) (2.5)

ω′0(t′, u⃗′) = ω(r⃗) cosh η (2.6)

ω′i=1,2,3(t′, u⃗′) = −ω(r⃗)v̂ sinh η (2.7)

And hence we can couple the quarks to the mesons, resulting in the interaction
Lagrangian in the IRF:

LI = gqσ q̄
′q′(u′)σ′(u′)− gqω q̄

′γµq
′(u′)ω′µ(u′) (2.8)

From here we aim to find the Hamiltonian in the IRF. To do this we begin by con-
sidering the nucleon position R⃗ at time T in the NRF, and consider the transformation:

R|| = R′
|| cosh η + t′ sinh η (2.9)

R⊥ = R′
⊥ (2.10)

T = t′ cosh η +R′
|| sinh η (2.11)

Then for a point in the bag, r⃗′ = u⃗′ + R⃗′, at the same time t′, we had the relation
as in eqn. [2.2]. Thus we can conclude that:

r|| = R′
|| cosh η + t′ sinh η + u′|| cosh η (2.12)

= R|| + u′|| cosh η (2.13)

r⃗⊥ = R⃗⊥ + u⃗′⊥ (2.14)

And substituting these coordinate transforms into the σ field:

σIRF (u
′) = σ(R||(T ) + u′|| cosh η, R⃗⊥(T ) + u⃗′⊥) (2.15)
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And for the ω field, we find:

ωIRF (u
′)′0 = ω(R||(T ) + u′|| cosh η) cosh η (2.16)

ωi=1,2,3
IRF (u′)′ = −ω(u⃗′⊥ + R⃗⊥(T ))v̂ sinh η (2.17)

With this we can apply the Born-Oppenheimer approximation, which allows us to
solve for the equations of motion of the quarks, while we take R⃗(T ) as a fixed parameter.
That is to say we shall take:

σIRF (t
′, u⃗′) ≈ σ(R⃗(T )) (2.18)

2.2 QMC Lagrangian & Classical Nucleon Energy

With the form for the meson fields in the IRF established, it is now possible to write
a Lagrangian for the QMC model.

LInt = gqσ q̄
′q′(t′, u⃗′)σ(R⃗ + u⃗′)− gqω q̄

′ [γ0 cosh η + γ⃗ · v̂ sinh η
]
q′(t′, u⃗′)ω(R⃗ + u⃗′) (2.19)

Then the Hamiltonian would be given by:

H = BV +

∫ RB

0

du⃗′q̄′[−iγ⃗ · ∇⃗+mq

− gqσσ(R⃗ + u⃗′) +
[
γ0 cosh η + γ⃗ · v̂ sinh η

]
ω(R⃗ + u⃗′)]q′(t′, u⃗′) (2.20)

Then this can be split into a Hamiltonian in two parts:

H = H0 +H1 (2.21)

Where these are given by:

H0 = BV +

∫ RB

0

du⃗′q̄′[−iγ⃗ · ∇⃗+mq − gqσσ(R⃗)

+ gqω q̄
′ [γ0 cosh η + γ⃗ · v̂ sinh η

]
ω(R⃗ + u⃗′)]q′(t′, u⃗′) (2.22)

H1 =

∫ RB

0

du⃗′q̄′[−gqσ(σ(R⃗ + u⃗′)− σ(R⃗))

+ gqω(ω(R⃗ + u⃗′)− ω(R⃗))(γ0 cosh η + γ⃗ · v̂ sinh η)]q′(t′, u⃗′) (2.23)
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At this point, we note that H1 acts as a perturbation, but we shall ignore it in
this work. This term turns out to correspond to a spin-orbit term which is known to
be a very small term for Λ hyperons [40], and thus is negligible in the applications
considered here.

With this noted, we continue, by first considering a set of eigenfunctions, ϕα which
are complete and orthogonal, defined by:

hϕα(u⃗′) = (−iγ0γ⃗ · ∇⃗+m∗
qγ

0)ϕα(u⃗′) (2.24)

=
Ωα

RB

ϕα(u⃗′) (2.25)

Which we take to have eigenvalues Ωα/RB, where Ωα are the eigenfrequencies,
corresponding to quantum numbers with the label α, and RB is the bag radius. Here,
m∗

q is not the physical quark mass. For now, we note that m∗
q will be the quark mass,

plus the local scalar attraction. The solution to the lowest energy positive mode is
known, and given by:

ϕ0m(t′, u⃗′) = N

(
j0(

xu′

RB
)

iβqσ⃗ · û′j1(xu
′

RB
)

)
χm√
4π

(2.26)

With:

Ω0 =
√
x2 + (m∗

qRB)2 (2.27)

βq =

√
Ω0 −m∗

qRB

Ω0 +m∗
qRB

(2.28)

N = x/

{
j0(x)

√
2R3

B

[
Ω0(Ω0 − 1) +m∗

qRB/2
]}

(2.29)

Then the quark field will be given by an expansion of the different energy modes:

q′(t′, u⃗′) =
∑
α

e−ik⃗·u⃗′
ϕα(u⃗′)bα(t

′) (2.30)

Where bα is a annihilation operator for the given mode. And here k⃗ is chosen such
that:

k⃗ = gqωω(R⃗)v̂ sinh η (2.31)

Then substituting the quark fields into H0:
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H0 =
∑
α

Ωα

RB

b†αbα −
∑
αβ

〈
α
∣∣∣(gqσσ(R⃗)−mq +m∗

q)γ
0
∣∣∣ β〉 b†αbβ + N̂qg

q
ωω(R⃗) cosh η +BV

(2.32)

Then by choosing m∗
q = mq−gqσσ(R⃗), the matrix elements which involve the mixing

of states |α⟩ and |β⟩ for α ̸= β are eliminated, thus reducing the problem to:

H0 =
∑
α

Ωα(R⃗)

RB

b†αbα + N̂qg
q
ωω(R⃗) cosh η +BV (2.33)

This choice of the parameter however leads to the eigenfrequency and wavefunction
ϕα becoming dependent on R⃗ via the sigma meson field. However, this does also lead to
the Hamiltonian gaining a clear physical interpretation, when we act the Hamiltonian
on the wavefunction of a nucleon.

When we act this Hamiltonian on a nucleon’s wavefunction we find the energy for
the nucleon in the IRF. We first begin by noting that we expect the nucleon should
be described by three quarks in the lowest energy states. And thus when acting b†αbα
on the nucleon, we expect to pick up three factors of Ω0. Similarly, when acting the
number operator on the nucleon, N̂q, we shall pick up a factor of 3 for the 3 valence
quarks. This then gives the expression for the energy of a nucleon:

EIRF
0 =

3Ω0(R⃗)

RB

+BV + 3gqωω(R⃗) cosh η (2.34)

Thus, we find that we have the energy from the 3 valence quarks in the first term,
the energy contribution from the ω meson, and also the bag energy from the MIT bag
model. From here we shall set the effective mass of the nucleon as:

M∗
N(R⃗) =

3Ω0(R⃗)

RB

+BV (2.35)

With this energy, we can now transform back to the NRF, to find the NRF energy:

E0 =M∗
N(R⃗) cosh η + 3gqωω(R⃗) (2.36)

The final step to obtain the classical energy for a nucleon, is to note that this energy
can be described by the Lagrangian:

L(R⃗, v⃗) = −M∗
N(R⃗)

√
1− v2 − 3gqωω(R⃗) (2.37)

And then by performing an expansion in powers of v2, we find that the non-
relativistic expansion is given by:
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L(R⃗, v⃗) ≈ 1

2
M∗

N(R⃗)v
2 −M∗

N(R⃗)− 3gqωω(R⃗) (2.38)

Which can be written as the classical Hamiltonian:

Hclassical =
P⃗ 2

2M∗
N(R⃗)

+M∗
N(R⃗) + 3gqωω(R⃗) (2.39)

And so we conclude that the classical energy is given by:

P⃗ 2

2M∗
N(R⃗)

+M∗
N(r⃗) + 3gqωω(R⃗) (2.40)

At this point it is appropriate to consider the ρ meson and it’s contribution to the
energy. We note that the difference between the ρ and ω is that the ρ is an isovector
meson, and so we must account for the isospin factors. However this leaves much of
the derivation unchanged, and so we can conclude that we simply need substitute:

3gqω → gqρ
τN3
2

(2.41)

Where here the isospin operator is acting on the third component of isospin for the
nucleon. Thus we obtain the contribution from the vector mesons to the energy:

V (R⃗) = 3gqωω(R⃗) + gqρ
τN3
2
b(R⃗)(R⃗) (2.42)

Here, we have chosen b to be the component of the ρ meson, which corresponds to
the time component of the ρ meson field, and the α = 3 component in isospin space.
Thus, we find the classical energy for a nucleon, given as:

Eclassical =
P⃗ 2

2M∗
N(R⃗)

+M∗
N(r⃗) + V (R⃗) (2.43)

Now that we have found the classical energy for a nucleon, we wish to move towards
a many-body expansion of the QMC Hamiltonian. By performing this many-body
expansion it is possible to find a Hamiltonian which is much easier to compare to the
standard nuclear many-body theories. With this the goal is to produce a model with
less parameters with a simple relation to the coupling of the meson fields to the quarks,
than other models. Before we can get to this however, we must make a digression in
order to make clear the definitions of the different couplings in this work.
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2.2.1 Coupling Constants

At this point, it is necessary to make clear the meaning of the different coupling con-
stants used throughout this work. It is key to the QMC model that the coupling of
the meson fields is to the quarks. The coupling of these fields to the quarks within the
baryons is denoted by a superscript, gqσ, g

q
ω and gqρ. Next the coupling of the fields to

the nucleon can be found from these quark couplings. These are denoted simply by gσ,
gω, and gρ.

In order to find the relation between these coupling constants we shall consider
the solution to the meson-fields in the mean-field approximation. We shall continue to
follow the derivation as laid out in Guichon et al 1996 [4].

The equations of motion for the meson field operators are given by:

∂µ∂
µσ̂ +m2

σσ̂ = gqσ q̄q (2.44)

∂µ∂
µω̂ν +m2

ωω̂
ν = gqω q̄γ

νq (2.45)

∂µ∂
µ ˆρν,α +m2

ρ
ˆρν,α = gqρq̄γ

ν τ
α

2
q (2.46)

From here we consider the mean fields, which are the expectation values of the
meson fields in the ground state of the nucleus. We shall represent the ground state of
the nucleus as |A⟩, and thus:

⟨A| σ̂(t, r⃗) |A⟩ = σ(r⃗) (2.47)

⟨A| ω̂ν(t, r⃗) |A⟩ = δ(ν, 0)ω(r⃗) (2.48)

⟨A| ˆρν,α(t, A⃗) |0⟩ = δ(ν, 0)δ(α, 3)b(r⃗) (2.49)

From here, must evaluate the source terms in the mean field approximation. For
brevity’s sake, we shall once again neglect the rho meson term here, as it follows
similarly to the derivation of the ω term.

We begin by noting that in the mean field approximation the sources are the sum
of the sources created by each nucleon. Thus, we have:

q̄q(t, r⃗) =
∑
i=1,A

⟨q̄q(t, r⃗)⟩i (2.50)

q̄γνq(t, r⃗) =
∑
i=1,A

⟨q̄γνq(t, r⃗)⟩i (2.51)

We once again note that the nucleons are described in the IRF by 3 quarks in the
lowest energy state. Thus, in the IRF of a given nucleon:
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⟨q̄q(t, r⃗)⟩i = 3
∑
m

ϕ̄0,m
i (u⃗′)ϕ0,m

i (u⃗′) = 3si(u⃗′) (2.52)

⟨q̄γνq(t, r⃗)⟩i = 3δ(ν, 0)
∑
m

ϕ† 0,m
i (u⃗′)ϕ0,m

i (u⃗′) = 3δ(ν, 0)wi(u⃗′) (2.53)

Then to evaluate the expectation value for the nucleus in its ground state, we must
convert these to the NRF. We find at t in the NRF we have:

R′
i,|| = Rt,|| cosh ηi − t sinh ηi, R⃗′

i,⊥ = R⃗i,⊥ (2.54)

r′|| = r|| cosh ηi − t sinh ηi, r⃗
′
⊥ = r⃗⊥ (2.55)

And thus:

u′i,|| = (r|| −Ri,||) cosh ηi, u⃗
′
i,⊥ = r⃗⊥ − R⃗i,⊥ (2.56)

So from the Lorentz transformations of these source terms we can find the equations:

⟨q̄q(t, r⃗)⟩i = 3si((r|| −Ri,||) cosh ηi, r⃗⊥ − R⃗i,⊥)) (2.57)〈
q̄γ0q(t, r⃗)

〉
i
= 3wi((r|| −Ri,||) cosh ηi, r⃗⊥ − R⃗i,⊥)) cosh ηi (2.58)

⟨q̄γ⃗q(t, r⃗)⟩i = 3si((r|| −Ri,||) cosh ηi, r⃗⊥ − R⃗i,⊥))v̂i sinh ηi (2.59)

Which, by taking the Fourier transform, can be expressed as:

⟨q̄q(t, r⃗)⟩i =
3

(2π)3
(cosh ηi)

−1

∫
dk⃗ei⃗·(r⃗−R⃗iS(

⃗
k, R⃗i) (2.60)〈

q̄γ0q(t, r⃗)
〉
i
=

3

(2π)3

∫
dk⃗ei⃗·(r⃗−R⃗iW (

⃗
k, R⃗i) (2.61)

⟨q̄γ⃗q(t, r⃗)⟩i =
3

(2π)3
v⃗i

∫
dk⃗ei⃗·(r⃗−R⃗iW (

⃗
k, R⃗i) (2.62)

Where the expressions for S(k⃗, R⃗i) and W (k⃗, R⃗i) are given by:

S(k⃗, R⃗i) =

∫
du⃗e−i(k⃗⊥·u⃗⊥+k||u||/ cosh ηi)si(u⃗) (2.63)

W (k⃗, R⃗i) =

∫
du⃗e−i(k⃗⊥·u⃗⊥+k||u||/ cosh ηi)wi(u⃗) (2.64)
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From here, one can show that the mean field expressions for the meson sources are
given by:

⟨A| q̄q(t, r⃗) |A⟩ = 3

(2π)2

∫
dk⃗eik⃗·r⃗ ⟨A| (cosh ηi)−1e−ik⃗·R⃗iS(k⃗, R⃗i |A⟩ (2.65)

⟨A| q̄γ0q(t, r⃗) |A⟩ = 3

(2π)2

∫
dk⃗eik⃗·r⃗ ⟨A| e−ik⃗·R⃗iW (k⃗, R⃗i |A⟩ (2.66)

⟨A| q̄γ⃗q(t, r⃗) |A⟩ = 0 (2.67)

The final equation being true as the velocity vector will average to zero. Finally,
before obtaining the equations of motion in the mean-field equation, we must consider
the matrix elements inside the integrals. We first begin by noting that the elements,

⟨A|
∑

i e
−ik⃗·R⃗i ... |A⟩ are negligible unless the magnitude of k⃗ is less than, or on the order

of the reciprocal of the nuclear radius. As can be seen in the expressions for S(k⃗, R⃗i)

andW (k⃗, R⃗i), k⃗ and u⃗ are multiplied together, and u⃗ is bounded by the nucleon radius.
This means that provided we are considering appropriately large nuclei, we can neglect
the argument of the exponential in the definitions of S(k⃗, R⃗i) and W (k⃗, R⃗i).

Then, recognising that
∫
dk⃗eik⃗·(r⃗−R⃗i = δ(r⃗ − R⃗i, and (cosh ηi)

−1 =
M∗

N (R⃗i)

Ei−V (R⃗i)
we can

define the scalar, vector, and isospin densities:

ρs(r⃗) = ⟨A|
∑
i

M∗
N(R⃗i)

Ei − V (R⃗i)
δ(r⃗ − R⃗i) |A⟩ (2.68)

ρV (r⃗) = ⟨A|
∑
i

δ(r⃗ − R⃗i) |A⟩ (2.69)

ρ3(r⃗) = ⟨A|
∑
i

τN3
2
δ(r⃗ − R⃗i) |A⟩ (2.70)

Then the expectation values of the source terms are given the forms, deducing what
the isovector term should be from the ω derivation:

⟨A| q̄q(t, r⃗) |A⟩ = 3S(r⃗)ρs(r⃗) (2.71)

⟨A| q̄γνq(t, r⃗) |A⟩ = 3δ(ν, 0)ρV (r⃗) (2.72)

⟨A| q̄γν τ
α

2
q(t, r⃗) |A⟩ = δ(ν, 0δ(α, 3)ρ3(r⃗) (2.73)

Where here we have S(r⃗) as:
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S(r⃗) = S(0, r⃗) =

∫
du⃗sr⃗(u⃗) (2.74)

=
Ω0/2 +m∗

qRB(Ω0 − 1)

Ω0(Ω0 − 1) +m∗
qRB/2

(2.75)

Finally, we can find the mean fields equations for the meson fields, and from here
deduce the relationship between the nucleon and quark coupling constants for the
different meson fields. We find:

(−∇2
r +m2

σ)σ(r⃗) = gσS(r⃗)/S(σ = 0)ρs(R⃗) (2.76)

(−∇2
r +m2

ω)ω(r⃗) = gωρV (r⃗) (2.77)

(−∇2
r +m2

ρ)b(r⃗) = gρρ3(r⃗) (2.78)

From here, we can deduce the relation between the nucleon couplings, gσ, gω and
gρ and their corresponding quark couplings, gqσ, g

q
ω, and g

q
ρ:

gσ = 3gqσS(σ = 0) (2.79)

gω = 3gqω (2.80)

gρ = gqρ (2.81)

We note then that the σ nucleon coupling depends on the quantity S(r⃗), which will
be important in chapter [6].

2.3 Energy Density Functional

With the definitions for the quark couplings clear, we are now ready to work towards
the many-body expansion for the QMC Hamiltonian.

Eclassical =
P⃗ 2

2M∗
N(R⃗)

+M∗
N(R⃗) + V (R⃗) (2.82)

Where V (R⃗) includes the relevant interactions we are concerned with. From here
we shall follow closely the derivation from Guichon & Thomas [8], which will ulti-
mately lead to a many-body expansion of the QMC model. We first note that a good
approximation can be made for the effective mass:

M∗
N(R⃗) ≈MN − gσσ(R⃗) +

d

2
(gσσ(R⃗))

2 (2.83)
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Here, d is the scalar polarizability, which functions analogously to the electric or
magnetic polarizability in electromagnetism. It is a parameter which is fitted to repro-
duce the correct nucleon mass [41], and has units of [fm]. One can also make a good
approximation for the momentum term, by taking a Taylor expansion of the effective
mass. Then combining these approximations together, we find:

P⃗ 2

2M∗
N(R⃗)

+M∗
N(R⃗) ≈MN +

P⃗ 2

2MN

− gσσ(R⃗)×
[
1− d

2
gσσ(R⃗)

]
×

(
1− P⃗ 2

2M2
N

)
(2.84)

Combining these two approximations together we find:

Eclassical =
P⃗ 2

2MN

+MN − gσσ(R⃗)

[
1− d

2
gσσ(R⃗)

]
×

[
1− P⃗ 2

2M2
N

]
+ V (R⃗) (2.85)

And thus we have obtained the classical energy for a single nucleon, in a useful
form for our work here. Then, we can write down the energy density functional, by
including the energy from the meson fields, and summing over all the nucleons in the
system:

E =
∑
i

EN,i + Emeson (2.86)

Where Emeson is given by:

Emeson =
1

2

∫
d3r
[
(∇⃗σ)2 +m2

σσ
2
]
− 1

2

∫
d3r
[
(∇⃗ω)2 +m2

ωω
2 + (∇⃗ρ)2 +m2

ρb
2
]

(2.87)
However we note that it is not particularly useful to have the nucleon energy in the

form
∑

iEN,i, and it will be much more useful to express this in terms of the nucleon
density. This can be done, by expressing the density as:

ρcl(r⃗) =
∑
i

δ(r⃗ − R⃗i) (2.88)

And then for the scalar density, which includes the velocity-dependent term, we
will express for now as:

ρcls (r⃗) =
∑
i

δ(r⃗ − R⃗i)×

[
1− P⃗i

2

N

2M2
N

]
(2.89)

And so we can then replace the sums over the nucleons with integrals over the
nucleon densities, as below:
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∫
d3rρcl(r⃗)gωω(r⃗) =

∑
i

gωω(R⃗i) (2.90)

∫
d3r(r⃗)

[
gσσ(r⃗)−

d

2
(gσσ(r⃗))

2

]
ρcls =

∑
i

[
gσσ(R⃗i)−

d

2
(gσσ(R⃗i))

2

][
1− P⃗i

2

N

2M2
N

]
(2.91)

And so the energy density functional can be expressed as:

E =
∑
i

[
M +

P⃗i

2

N

2MN

]
+ Emeson

−
∫
d3r(r⃗)

[
gσσ(r⃗)−

d

2
(gσσ(r⃗))

2

]
ρcls +

∫
d3rρcl(r⃗)gωω(r⃗) (2.92)

2.4 Meson Field Equations of Motion

With the energy density functional obtained in this form, it is now possible to solve
for the equations of motion for the meson fields. These are defined by the functional
derivatives:

δE

δσ
= 0 (2.93)

δE

δω
= 0 (2.94)

Where once again the ρ meson is treated similarly to the ω and so we shall neglect
for now, and reintroduce it again towards the end of this section.

Then taking the functional derivative with respect to the meson fields, we obtain
the equations of motion for the meson fields:

δE

δσ
=0 = −∇⃗2σ −m2

σσ + ρcls gσσ [1− dgσσ] (2.95)

δE

δω
=0 = −∇⃗2ω −m2

ωω + gωρ
cl (2.96)

Now if we define Gσ = g2σ/m
2
σ, and Gω = g2ω/m

2
ω, the equations can be expressed

as:
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gσσ = Gσ(1− dgσσ)ρ
cl
s +∇2 gσσ

m2
σ

(2.97)

gωω = Gωρ
cl +∇2 gωω

m2
ω

(2.98)

In these equations, let us first consider the derivative terms. It is assumed that
the meson fields will follow roughly the nucleon density, and that the scale of the
derivative operator will be the thickness of the nuclear surface, roughly a few [fm].
Thus, it is reasonable to treat the terms containing these derivatives as perturbations
and thus replace the fields in these equations with the nucleon density. So, we shall
use gσσ ≈ Gσρ

cl
s or gωω ≈ Gωρ

cl for these terms.
With this substitution we note that the ω meson field equation becomes:

gωωsol =
Gω

m2
ω

∇2ρcl +Gωρ
cl (2.99)

And hence the solution to this has been found with that substitution. Then the
analogous solution to the ρ meson would be:

gbbsol =
Gb

m2
b

∇2ρcl +Gb
τ3
2
ρcl (2.100)

With solutions to both the ω and ρ meson fields, we now turn to the σ meson field.

2.4.1 Sigma meson equation of motion

The simplest way to solve for the σ meson field is to find an iterative solution. As we
expect the meson fields to go like the nucleon density, we begin by taking the lowest
order approximation:

gσσ = Gσρ
cl
s (2.101)

We then substitute this into the equation of motion, to find:

gσσ
1 =

Gσ

m2
σ

∇2ρcls +Gσ(ρ
cl
s )

2(1− dGσρ
cl
s ) (2.102)

Then one can repeat this substitution, to generate higher order many body terms.
So, the solution to the σ meson field, to an arbitrary order of many body forces, is
given by:

gσσsol =
Gσ

m2
σ

∇2ρcls +Gσρ
cl
s +

∑
j≥1

(−d)j(Gσρ
cls)

j+1 (2.103)
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2.5 Many-Body Hamiltonian

With solutions to the meson field equations, the final step in this derivation, is to
substitute these solutions back into the energy-density functional, to obtain a many-
body expansion of the QMC model Hamiltonian. Here, for the sake of brevity, we shall
only consider terms up to and including three-body interactions, though it is a simple
process to generate higher order many-body interactions, by repeatedly iterating the
meson field equations. We shall also neglect the spin-orbit interactions here too. This
results in a Hamiltonain of the form:

HQMC =
∑
i

P⃗ 2
i

2M
+

∫
d3r

[
−Gσ

2
ρ2 +

dG2
σ

2
ρ3 +

GσP⃗
2

2M2
ρ2 − Gσ

2m2
σ

ρ∇2ρ+O(ρ4)

]

+

∫
d3r

[
Gω

2
ρ2 +

Gω

2m2
ω

ρ∇2ρ+
Gρ

2

τ⃗i · τ⃗j
4

(
ρ2 +

1

m2
ρ

ρ∇2ρ

)]
(2.104)

And thus a simple many-body expansion of the Hamiltonian for the QMC model
has been found. This enables us to compare the results from the QMC model to those
from other models, to compare the effectiveness of them.



Chapter 3

Lambda Nucleon Many-Body
Forces

Compared to the other hyperons, the binding data for the Λ is relatively abundant.
This makes the Λ binding ideal for fitting the σ and ω meson coupling constants, before
we turn to making the prediction for Ξ hyperon binding energies. To get to fitting these
constants, first the many-body forces expansion will be extended to include Λ hyperons.
From this, the potential energy can be formulated for the binding of the Λ in a nucleus.
With this potential it is possible to write down the Schrödinger equation, and solve
an eigenvalue problem to find the binding energy. This was accomplished by using the
numerov algorithm. Finally the best fit will be carried out including 3, 4, or 5 body
forces, to determine which provides the best fit.

3.1 Finding the Many-Body forces

In chapter [2], the derivation for the many body forces for nucleon-nucleon interactions
was presented. This can now be extended to include the interactions between the Λ
and nucleons. First, the classical energy must be defined. This is done in an analogous
way to the classical energy of the nucleon. Now, as seen in table [1.2], we note that the
Λ, has zero isospin, and hence does not interact with the ρ meson, and is electrically
neutral, so does not experience the Coulomb potential. Thus, for a given Λ hyperon
located at R⃗j, the classical energy is given by:

EΛj =
P⃗j

2

2M∗
Λ(R⃗j)

+M∗
Λ(R⃗j) + gωω(Rj) + Vso (3.1)

We will apply the same expansion to the effective mass, as seen in the derivation
for nucleon-nucleon interactions, and so we can expand the classical energy in terms of
the σ field as:

27
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EΛj =MΛ − gσσ

[
w − w̃d

2
gσσ

]
×

[
1−

P⃗ 2
j

2M2
Λ

]
+

P⃗ 2
j

2MΛ

+ gωω(R⃗j) (3.2)

It is worth noting, that here we neglect the spin-orbit interaction, as it does not
significantly contribute to the many-body forces, and is small regardless for Λ hyper-
nuclei [40]. This accords with what has been previously shown in the QMC model,
where the spin-orbit interactions in hypernuclei have been shown to be small [17] [42].
Here, the constants w and w̃, are fit to reproduce the Λ mass in-medium [41].

Now the total energy density functional can be defined as:

EQMC =
∑
i

ENi +
∑
j

EΛj + Emeson (3.3)

And as before, we will replace ρcl =
∑

j δ(r⃗ − r⃗′j), and so turn this expression into
an integral expression, as shown below:

EQMC =
∑
i

P⃗i

2

2MN

+
∑
j

P⃗j

2

2MΛ

−
∫
dV ρNgσσ

[
1− d

2
gσσ

]
×
[
1− P 2

N

2M2
N

]
−
∫
dV ρΛgσσ

[
w − w̃d

2
gσσ

]
×
[
1− P 2

Λ

2M2
Λ

]
+

∫
dV gωω [ρN(r⃗) + wωρΛ(r⃗)] + Emeson

(3.4)

Where the weighting for the ω meson is wω = 1 + SB

3
and sB is the strangeness

of the baryon, and so here, as we are considering a Λ, this is given by wω = 2
3
. In

addition, Emeson is given by:

Emeson =
1

2

∫
dV
[
(∇⃗σ)2 +m2

σσ
2
]
− 1

2

∫
dV
[
(∇⃗ω)2 +m2

ωω
2
]

(3.5)

With this it is now possible to find the equations of motion for the meson fields,
and thus form a Hamiltonian which can be used to explore nuclear phenomena.

3.2 Equations of Motion

From here it is now possible to find the equations of motion for the mesons, by varying
the energy density functional, as before. Thus we obtain:
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δE

δσ
=0 = −∇⃗2σ −m2

σσ + ρNgσσ [1− dgσσ] + ρΛgσσ [w − w̃dgσσ]×
[
1− P 2

Λ

2M2
Λ

]
(3.6)

δE

δω
=0 = −∇⃗2ω −m2

ωω + gω(ρN + wωρΛ) (3.7)

Which taking Gσ = g2σ
m2

σ
and Gω = g2ω

m2
ω
, these equations can be simplified, as:

gσσ = − gσ
m2

σ

∇⃗2σ + ρNGσσ [1− dgσσ] + ρΛGσσ [w − w̃dgσσ]×
[
1− P 2

Λ

2M2
Λ

]
(3.8)

gωω = − gω
m2

ω

∇⃗2ω +Gω(ρN + wωρΛ) (3.9)

Now in order to solve the sigma equation, we will make use of an iterative approach.
We will apply a similar approximation as to that before, where here we have:

gσσ
0 = GσρN + wGσρΛ (3.10)

Upon substituting this into the equations of motion to obtain the first iteration we
find:

gσσ
1 = − 1

m2
σ

∇⃗2 [GσρN + wGσρΛ] +GσρN(1− d[GσρN + wGσρΛ])

+GσρΛ(w − w̃d[GσρN + wGσρΛ])

[
1− P 2

Λ

2M2
Λ

]
(3.11)

And upon making a similar substitution for the ω equation:

gωω = − 1

m2
ω

∇⃗2 [GωρN + wGωρΛ] +GωρN + wωGωρΛ (3.12)

Now with solutions to the equations of motion at hand, one can substitute these
equations into the energy density functional, to find a Hamiltonian dependent on the
density of the nuclear material, and not the meson fields. For the sake of brevity, only
terms containing a ρΛ will be included below, as the binding of a single Λ hyperon into
a nucleon is being investigated. Thus, the contribution from the sigma meson is given
by:
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H(Λ)
σ = ρΛ

{
−wdG2

σ

m2
σ

(∇⃗ρN)2 +
wd2G3

σ

m2
σ

(∇⃗(ρ2N)) · (∇⃗ρN)+[
−GσwρN +

(
w +

w̃

2

)
dG2

σρ
2
N − (w + w̃) d2G3

σρ
3
N − w̃dG2

σ

m2
σ

(∇⃗ρN)2

+
w̃d2G3

σ

m2
σ

(∇⃗(ρ2N)) · (∇⃗ρN) +
G3

σρ
2
Nd

2(w + 2w̃)

m2
σ

(∇2ρN)

]
×

(
1− P⃗Λ

2

2M2
Λ

)}
(3.13)

Above, terms including (1/m2
σ)

2
are ignored, as these terms are small enough to

be negligible compared to the others. In addition terms including ∇ρΛ are also not
included. The term for the ω meson, neglecting all the derivative terms for the same
reason as above, is given by:

Hω = GωwωρNρΛ (3.14)

This contributes a repulsive component to the many-body forces. We note that
this two-body interaction is the highest order that the omega meson contributes to the
many-body forces.

3.3 Calculating the Binding Energy

With the Hamiltonian determined, it is now possible to calculate the binding energy.
This can be accomplished by solving the energy-eigenvalue problem for the Schrödinger
equation:

HΨΛ = EΨΛ (3.15)

In order to obtain this equation, the variation of the full Hamiltonian, with respect
to ρΛ is taken, and terms containing any remaining factors of ρΛ are neglected. These
terms containing remaining factors of ρΛ are neglected as there is only one Λ present
in the nuclear environment, and so there are no ΛΛ interactions. This returns the
equations of motion for a single Lambda bound into the nuclear environment via the
many-body interaction.

From here it is possible to set up the Schrödinger equation. The equation of motion
found from the Hamiltonian gives a Schrödinger equation of the form:
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P⃗Λ

2

2MΛ

Ψ(r⃗) +GωwωρNΨ(r⃗)+[
−GσwρN +

(
w +

w̃

2

)
dG2

σρ
2
N − (w + w̃) d2G3

σρ
3
N

](
1− P⃗Λ

2

2M2
Λ

)
Ψ(r⃗) = EΨ(r⃗)

(3.16)

Now the terms from the sigma equation that include momentum dependence are

the velocity-dependent corrections. Grouping all these terms with the P⃗Λ
2

2MΛ
, and making

the usual substitution P⃗Λ = −i∇⃗ (working in units ℏ = 1), this can be rearranged as:

−
[
1 +

1

MΛ

GσwρN − 1

MΛ

(
w +

w̃

2

)
dG2

σρ
2
N +

1

MΛ

(w + w̃) d2G3
σρ

3
N

]
∇2

2MΛ

Ψ(r⃗)

+

[
GωwωρN −GσwρN +

(
w +

w̃

2

)
dG2

σρ
2
N − (w + w̃) d2G3

σρ
3
N

]
Ψ(r⃗) = EΨ(r⃗) (3.17)

From here velocity-dependent terms will be collectively labelled as η(r), and the
other terms will be labelled Vbinding(r), to shorthand the expressions, such that the
equation can be expressed as:

−η(r) ∇⃗2

2MΛ

Ψ(r⃗) + Vbinding(r)Ψ(r⃗) = EΨ(r⃗) (3.18)

Where:

Vbinding(r) = GωwωρN −GσwρN +

(
w +

w̃

2

)
dG2

σρ
2
N − (w + w̃) d2G3

σρ
3
N (3.19)

η(r) = 1 +
1

MΛ

GσwρN − 1

MΛ

(
w +

w̃

2

)
dG2

σρ
2
N +

1

MΛ

(w + w̃) d2G3
σρ

3
N (3.20)

It is now necessary to find a form for the nucleon density. Throughout it will be
assumed that the nucleon density is spherically symmetric, and thus the Hamiltonian
will also be spherically symmetric. Second, we will consider the nature of the density of
nucleons, which was considered in section [3.2]. Through the majority of this project,
the density of nucleons will be represented by a Woods-Saxon density, which is given
by the form:

ρN(r) =
ρ0

[1 + exp((r − cA1/3)/a)]
(3.21)
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This density is plotted for a variety of different nucleus sizes in figure [3.1]. In this
equation, the constants in this density to consider are ρ0 which is the nuclear saturation
density throughout taken as ρ0 = 0.15[fm−3], and the parameters of the model, which
are set to c = 1.1[fm] and a = 0.6[fm].

Figure 3.1: Density plotted for a few different nuclei

With this, we now have all that we need to investigate what this binding potential
looks like. Plotted in figures [3.2a]-[3.2d] is the 4-body potential with and without cor-
rection terms. Included first is a plot with no corrections from the velocity-dependent
terms, or the derivatives of the potential, as in figure [3.2a]. Following this a plot is
included with all the corrections in figure [3.2b]. Following this a plot of the potential
with no derivative corrections [3.2c]. Finally a plot of the derivative contribution is
included on its own in figure [3.2d].

Now we will return to expanding the∇2 term, in spherical coordinates, and utilising
the symmetries of the problem, so as to express the equation in a form which can
be solved. As the potential is spherically symmetric, one can first assume assume a
separable solution, of the form Ψ(r⃗) = Ylm(θ, ϕ)ψ(r), where Ylm(θ, ϕ) are the spherical

harmonic functions. Thus, substituting in ∇⃗2 in spherical coordinates, we find:

− 1

2MΛ

[
1

r2
∂

∂r

(
r2
∂

∂r

)
ψ(r)− l(l + 1)

r2
ψ(r)

]
+
Vbinding(r)

η(r)
ψ(r) =

E

η(r)
ψ(r) (3.22)

Now upon substituting ψ(r) → u(r)
r
, and substituting into this equation, one can

show:

1

r2
d

dr

(
r2
d

dr

)
u(r)

r
=

1

r

d2u

dr2
(3.23)

And thus, making use of this the equation can be expressed as:
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(a) 4-Body Potential without any
Corrections

(b) 4-Body Potential including all
corrections

(c) 4-Body Potential with velocity-
dependent terms

(d) Derivative Contributions to the
Binding Potential

Figure 3.2: The 4-Body Potential with and without the derivative and velocity-
dependent corrections

− 1

2MΛ

[
d2u

dr2
− l(l + 1)

r2
u(r)

]
+
Vbinding(r)

η(r)
u(r) =

E

η(r)
u(r) (3.24)

Thus, this equation can be expressed in the form, d2u
dr2

= f(r)u(r), as shown below:

d2u

dr2
= −2MΛ

[
1

η(r)
[E − Vbinding(r)]−

l(l + 1)

2MΛr2

]
u(r) (3.25)

With this equation, it is now possible to find rψ, by solving this eigenvalue problem.
This is done using the Numerov algorithm. The details of this algorithm and it’s
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implementation in solving the Schrödinger equation can be found in appendix [A]. The
code used can be found at: github.com/NathanaelBotten/MPhil-Code.

3.4 Fitting the Coupling Constants

With a method to find the solution to the Schrödinger equation, and hence the ground
state energy, for any given nucleus, it is now of interest to determine which coupling
constants provide the best fit to the experimental data. As the Λ has no isospin-
dependent interaction, nor any electromagnetic interactions, it is simple enough to
run a best fit over a variety of values of Gσ and Gω. The values chosen were based on
previous results from the QMC model, within the bound of plus or minus 10% [35]. So,
the values tested were Gσ ∈ [8.65, 10.60] and Gω ∈ [4.71, 5.70]. This range was chosen
because the many-body expansion is an approximation to the exact solution of the
mean fields, and the nucleon density is also an approximation here. Thus, we cannot
expect that the coupling constants will be exactly the same here. These constants
were tested with step sizes of 0.01, for all the combinations of these constants. The
experimental values of the binding energies fitted to, came from Hashimoto and Tamura
[11], Gal et al. [43], and Pal et al. [44]. The fit was to the 1s and 1p states for 208Pb,
139La, 89Y , 51V , 40Ca, and 32S. This fit was run with the potential including up to
3-body, 4-body and 5-body interactions. The results of these fits are plotted in figures
[3.3a], [3.3b], and [3.3c].
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(a) The best fit including 3-body
terms

(b) The best fit including 4-body
terms

(c) The best fit including 5-body
terms

Figure 3.3: The different best fits, including different many-body forces

The 3-body fit yielded the values for the best fit of Gσ = 8.65, and Gω = 4.96, with
the error χ2 = 5.4008. The 4-body fit returned a much better fit, with the coupling
constants Gσ = 8.65, and Gω = 5.64, and an error to the fit χ2 = 1.8190. Including
the 5-body had the effect of reducing the accuracy of the fit, with the error being
χ2 = 3.6398, corresponding to coupling constants Gσ = 8.65 and Gω = 5.51. And so
we have determined that the best fit is produced by the 4-body model. Hence, when
calculating the following, we will continue with this model.
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This is peculiar for nuclear physics, as in the vast majority of work a two-body or
three-body model is preferred. In these models, four body interactions contribute a
relatively small amount to the binding energy, compared to the two and three body
interactions [45] [46]. However, we find here that this is not the case here! As can be
seen in the plot breaking up the binding potential for 208Pb into its various compo-
nents, figure [3.4], the two and three body potentials have a difference of approximately
10[MeV]. But the contribution from the 4-body potential is greater than 15[MeV]. This
means that in the model laid out above, the 4-body interactions make a significant con-
tribution to the binding energy of the Hyperon! It has been shown previously that the
Lambda binding depth is around 26.5[MeV] [13]. Here, adding the 4-body interactions
leads to a binding depth much closer than that, so it is sensible that including the
4-body interactions improves the fit to the energies.

Figure 3.4: Potential split into different many-body forces for 208Pb
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Cascade Nucleon Many-Body
Forces

With the best fit for the coupling constants fitted to the binding of the Λ hyperons,
we are now in a position to investigate the binding of cascade hyperons. Cascade
hyperons come in two varieties. The neutral cascade, Ξ0, which has the valence quarks
uss, and the negative cascade, Ξ−, which has the valence quarks dss. Thus we note that
unlike the Λ0 hyperon, there will also be an isospin interaction, as the cascade hyperons
have isospin Iz = ±1

2
. In addition to this the Ξ− will experience an electromagnetic

interaction, which must also be accounted for when calculating the binding energy.

4.1 Deriving the Many-Body Forces

We begin by considering the classical energy of the cascade hyperons. For now we shall
neglect the electromagnetic interaction for the Ξ− hyperon. Thus we have:

EΞk =
P⃗k

2

2M∗
Ξ(R⃗k)

+M∗
Ξ(R⃗k) + gΞωω(R⃗k) + gΞρ b(R⃗K)

τ3
2

(4.1)

Where we have denoted the time component of the ρ meson field with b for the
isospin interaction. We also have τ here as the Pauli matrices. This also follows for
the nucleon as well, so we have:

ENi =
P⃗i

2

2M∗
N(Ri)

+M∗
N(R⃗i) + gNω ω(R⃗i) + gNρ b(R⃗k)

τ3
2

(4.2)

We shall treat the effective mass in a similar way as before, so we simplify the
classical energy of the cascade hyperon as:
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EΞk =MΞ−gσσ
[
wΞ − w̃Ξd

2
gσσ

]
×
[
1− P 2

k

2M2
Ξ

]
+

P 2
k

2MΞ

+gΞωω(Rk)+g
Ξ
ρ b(Rk) ·

τ3
2

(4.3)

The weightings for the σ field are once again taken from [41], this time with the
fitting being to that of the Ξ hyperons. Now, with the classical energy we can calculate
the equations of motion.

4.2 Equations of Motion for the Cascade

The process for finding the σ and ω fields is very similar to that of the Λ as in chapter
[3], where the significant difference is the coupling constants are adjusted differently.
Thus, this part of the derivation will be brief with more depth when considering the
isospin and electromagnetic interactions.

4.2.1 σ and ω equations of motion

The equations for the σ and ω proceed in much the same way as they did for the Λ
hyperon. We express the σ component of the energy density functional as:

Eσ =

∫
dV
[
(∇⃗σ)2 +m2

σσ
2
]
−
∫
dV ρNgσσ

[
1− d

2
gσσ

]
×
[
1− P 2

N

2M2
N

]
−
∫
dV ρΞgσσ

[
wΞ − w̃Ξd

2
gσσ

]
×
[
1− P 2

Ξ

2M2
Ξ

]
(4.4)

Where the equation differs from the Λ case is the fitting constants w and w̃, as
these take a different value here to fit the mass of the cascade hyperons. However this
does not change the derivation in any substantial way.

Thus, considering terms only of order O(ρΞ), and excluding the derivative terms
here, we find:

Hσ =

[
−GσwΞρNρΞ +

(
wΞ +

w̃Ξ

2

)
dG2

σρ
2
NρΞ − (wΞ + w̃Ξ) d

2G3
σρ

3
NρΞ

](
1− P⃗Ξ

2

2M2
Ξ

)
(4.5)

Similarly to the σ meson, the equations of motion for the ω meson are similarly left
unchanged, with the exception of the new constant. Here, as the cascade is a 2-strange
quark particle, the constant is wω = 1

3
, and thus we obtain the Hamiltonian for the ω

part:

Hω =
1

3
GωρNρΞ (4.6)



4.2. Equations of Motion for the Cascade 39

4.2.2 b⃗ Field Equation of Motion

We begin by writing the energy for the b⃗ component of the energy, which takes the
form:

Eb = −1

2

∫
dV
[
∇2b2 +m2

ρb
2
]
+

∫
dV ρNgb⃗b ·

τ⃗

2
+

∫
dV ρΞgb⃗b ·

τ⃗

2
(4.7)

However when applying the mean-field approximation, we note that only the third-
component of the ρ⃗ field is non-zero, and thus we obtain:

Eρ = −1

2

∫
dV
[
∇2b2 +m2

ρb
2
]
+

∫
dV ρNgρb

τ3
2
+

∫
dV ρΞgρb

τ3
2

(4.8)

Now taking the variation with respect to the b field, we find:

0 = −∇2b−m2
ρb+

τ3
2
gρ (ρN + ρΞ) (4.9)

And as before neglecting the ∇2 term as it’s contribution is small relative to the
other contributions, we thus obtain:

gρb = Gρ
τ3
2
(ρN + ρΞ) (4.10)

Which substituting back into the energy, and ignoring the derivative term due to it’s
small contribution, we find the term contributing the binding energy of the Ξ hyperon
in a nucleon is:

Hρ =
Gρτ

N
3 ρNτ

Ξ
3 ρΞ

4
(4.11)

Now we will consider the affect of τ3 acting on ρN . We note that ρN =
∑

k δ(r⃗−R⃗k),

where we sum over the nucleons at position R⃗k. Now if we act the third Pauli matrix on
a proton, we find that the eigenvalue is +1, while if we act on a neutron the eigenvalue
is −1, and hence:

ρ3 =
∑
proton

δ(r⃗ − R⃗p)−
∑

neutron

δ(r⃗ − R⃗n) (4.12)

And so we define this as ρ3 = ρp − ρn, where ρp is the proton density and ρn is the
neutron density. We will take these also to have a Woods-Saxon form when performing
calculations with the proton density having the proton number Z, and the neutron
density having neutron number N = A − Z. But this means for nuclei with N = Z,
there is no effect from the isovector term, which is true up till 40Ca.

Now the affect of the third Pauli matrix on ρΞ amounts to making the contribution
repulsive for Ξ−, as the quark composition of this is dss, and thus receives a negative



40 Chapter 4. Cascade Nucleon Many-Body Forces

contribution from the third Pauli matrix acting on the down quark. However for the Ξ0,
which has quark composition uss, this makes the contribution from isospin attractive,
as the Pauli matrix give a positive contribution when acting on the up quark. Thus
we can write the Hamiltonian for Ξ0 as:

Hρ =
1

4
Gρ(ρp − ρn)ρΞ (4.13)

And for Ξ−:

Hρ = −1

4
Gρ(ρp − ρn)ρΞ (4.14)

Plotted in figure [4.1] is the contribution from the ρ meson in Lead, Lanthanum,
and Yttrium to the binding potential for a Ξ0 hyperon. This was done with the value
for Gρ = 4.71, as taken from (Martinez, Thomas, Guichon and Stone, 2020).

Figure 4.1: The Rho Meson Potential contribution

With the isospin contribution found, it is now possible to calculate the binding
energy of the Ξ0 hyperons.
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4.3 Binding Energies of Neutral Cascades

We aim now to make a prediction for the binding energies for Ξ0 hyperons. We make
use of a similar method as to that when calculating the Λ binding energies, though
now an isospin interaction must be included.

Now there is not much data for the binding energy of the cascade hyperons to fit
the coupling constant for Gρ, and thus to investigate the affect this has on the binding
energy, the binding energy will be solved for Gρ = 4.71 and plus minus 10% of this
value. The previously calculated values of Gσ = 8.65, and Gω = 5.64 are also used
here, along with the 4-body force, as this produced the results closest to experiment.
The results are plotted in figure [4.2], for Gρ = 4.71.

Figure 4.2: Binding Energies for Gρ = 4.71

Now changing the coupling to the rho meson only affects nuclei where N ̸= Z,
and so the upper and lower bounds for the binding energy for these nuclei were also
calculated. These are plotted in figure [4.3].



42 Chapter 4. Cascade Nucleon Many-Body Forces

Figure 4.3: Binding Energies with the different values for Gρ

4.4 Calculating Coulomb Potential

We will now consider adding in the effect of the Coulomb potential between the protons
in the nucleus, and the Ξ− cascade. Now the Coulomb potential is given by:

V (r⃗) = ke

∫
d3r′

ρc(r⃗
′)

|r⃗ − r⃗′|
(4.15)

Where here k is the Coulomb constant, e is the charge of an electron, and ρc is the
charge density of the nucleus, which takes the form:

ρc(r⃗) =
ρ0

1 + exp
{[

r−Rc

a0

]} (4.16)

Where ρ0 is the charge density normalisation, and Rc and a0 are parameters to fit
the model.

Now, we note that the potential is a difficult integral to calculate due to the spherical
nature of the charge density, which makes it difficult to deal with the |r⃗− r⃗′| term. To
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deal with this we note that the convolution theorem can be applied. The convolution
theorem is given by:

Ṽ (q⃗) = (2π)3/2f̃(q⃗)g̃(q⃗) (4.17)

Where, for our problem, we can take g(r⃗ − r⃗′) = 1
|r⃗−r⃗′| , and f(r⃗

′) = keρc(r⃗
′).

We can then find the Fourier transform of these two functions. We start by noting
the Fourier transform of g(r⃗ − r⃗′) is known, and given by:

g̃(q⃗) =
4π

(2π)3/2
1

q2
(4.18)

Where here q = |q⃗|. This second transform we can begin simplifying:

f̃(q⃗) =
ke

(2π)3/2

∫
d3r′ exp{[−iq⃗ · r⃗]}r′2ρc(r⃗′) (4.19)

Now we take our charge density to be spherically symmetric, and thus ρc(r⃗
′) =

ρc(r
′), and also take the axis of our momentum transfer q⃗ to be aligned along the

z-axis, such that r⃗′ · q⃗ = r′q cos(θ). Thus we obtain:

f̃(q⃗) = ke
2π

(2π)3/2

∫
dr′r′2ρc(r

′)

∫ +1

−1

d(cos θ) exp [−iqr′ cos(θ)] (4.20)

Which evaluating the θ part gives a factor of 2j0(qr), where j0(x) is the first Bessel
function. Thus we find:

f̃(q⃗) = ke
4π

(2π)3/2

∫
dr′r′2ρc(r

′)j0(qr
′) (4.21)

With this we can now write the Fourier transform of the Coulomb potential as:

Ṽ (q⃗) = ke
(4π)2

(2π)3/2
1

q2

∫
dr′r′2ρc(r

′)j0(qr
′) (4.22)

Then we need simply to find the inverse Fourier transform to then find the potential
in space. Thus we find:

V (r⃗) =
ke

(2π)3/2

∫
d3q exp{iq⃗ · r⃗}Ṽ (q⃗) (4.23)

And so substituting in Ṽ (q⃗):

V (r⃗) = ke
2

π

∫
d3q exp{iq⃗ · r⃗}

[
1

q2

∫
dr′r′2ρc(r

′)j0(qr
′)

]
(4.24)

Which taking expanding the integral gives:
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V (r⃗) = 4ke

∫
dq

∫ +1

−1

d(cos(θ) exp{iq⃗ · r⃗}
[∫

dr′r′2ρc(r
′)j0(qr

′)

]
(4.25)

And aligning r⃗ along the z-axis, we find again that r⃗ · q⃗ = rq cos(θ), which now
evaluating the θ part of the integral we find:

V (r⃗) = 8ke

∫
dqj0(qr)

[∫
dr′r′2ρc(r

′)j0(qr
′)

]
(4.26)

Thus by evaluating this integral we find the potential in coordinate space. And we
note that it is still spherically symmetric, and so can conclude:

V (r) = 8ke

∫
dq

∫
dr′r′2j0(qr)ρc(r

′)j0(qr
′) (4.27)

This is a problem that can now be dealt with by using a simple numerical integration
routine. Some examples of this finite Coulomb potential are included in figure [4.4].

Figure 4.4: Example plots for Finite Coulomb Potentials
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4.5 Binding Energies of Negative Cascades

From here it is simple to calculate the binding energies for the Ξ− hyperons. These
energies were calculated using Gσ = 8.65, Gω = 5.64, and Gρ = 4.71. However, the
isospin interaction is now attractive, and hence the sign for the isospin interaction is
also reversed. Furthermore, it was necessary to integrate further out as the Coulomb
potential goes to zero slower than the nuclear potential.

This resulted in the binding energies, plotted in figure [4.5].

Figure 4.5: Plot of the binding energies for the negative cascade

The Coulomb potential is plotted along with the nuclear potential for 208
82 Pb and

40
20Ca in figures [4.6a] and [4.6b]. Also included are plots with these potentials added
together, in figures [4.7a] and [4.7b].
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(a) Separated Binding Potentials for Ξ−

in 208
82 Pb

(b) Seperated Binding Potentials for Ξ−

in 40
20Ca

Figure 4.6: Binding Potentials for Ξ− separated into Coulomb and Nuclear Components

(a) Total Binding Potential for Ξ− in
208
82 Pb

(b) Total Binding Potential for Ξ− in
40
20Ca

Figure 4.7: Total Binding Potentials for Ξ− in Lead and Calcium
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Cascade Coulomb Splitting

After having investigated the binding of the Ξ hyperons, we shall now turn to a more
detailed investigation into how the nuclear potential contributes to the binding of the
cascade into atomic states in iron and carbon atoms.

5.1 Experimental Motivation

There exists a relative abundance of experimental data for strangeness S = −1 systems
[47], however there has yet to be much investigation into strangeness S = −2 systems
[14] [48]. Exploring this further will help to elucidate our understanding of baryon-
baryon interactions, governed by the SU(3) flavour symmetry. These systems can be
Ξ hyperons, or 2 Λ or Σ systems. As there are 2 strange quarks in these systems it will
also be possible to see interactions between strange quarks.

Of particular interest for this work, is that because there are now 2 strange quarks
it might be important in these systems to explicitly treat quark degrees of freedom
[49]. Thus, these experiments could potentially provide strong evidence in favour of a
model for nuclear physics which treats quark degrees of freedom, like the QMC model.

There has in past been an experiment proposed, which will involve measuring x-
rays emitted from Ξ− hyperons bound into an atomic state in an iron atom [49]. The
goal is to be able to determine the potential depth for the Ξ−-nucleus potential, by
measuring the transition energy between the different energy states of the Ξ− bound
into the target. This is done by measuring the energy of the x-rays emitted during this
transition. One can then compare the energy of the x-rays emitted, to the change in
the energy levels for the Ξ− calculated from the Dirac equation, with only the Coulomb
potential, in order to determine the contribution from the nuclear potential. From this
one could then extract the potential depth of the nuclear potential [14] [49].

Here, we shall provide a prediction using the QMC model, as to what these energy
shifts should be. This shall be done by calculating the energy levels of the 5g9/2 and

47
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6h11/2 atomic states for a cascade bound into an iron atom. This will be done both
including and excluding the nuclear potential, in order to calculate the shift in the
binding energy induced by the nuclear potential. Following this a similar investigation
shall be carried out for carbon, as carbon has also recently been proposed as a target
to investigate Ξ− interactions [19].

5.2 Point-like Coulomb

Now the energy transitions calculated for this experiment have previously been calcu-
lated using the Dirac equation. Furthermore, the energy transition from the (6, 5) →
(5, 4) states is on the order of 100[keV], and so it is important to be able to find the
energy accurately, to a high precision. For this reason, the Numerov algorithm no
longer suffices for calculating these states. This can be shown by trying to reproduce
the energy eigenvalues for the point-like Coulomb potential. These energy eigenvalues
can be calculated analytically, however it was found that the values calculated using
the Numerov algorithm did not converge to the analytical values.

This motivated the decision to turn to solving the Dirac equation instead, using
the Runge-Kutta algorithm. It has been shown in past work to be able to reproduce
the point-like hydrogen atom energy to a high precision [50]. Now to test how well
the code extends to an iron atom, the point-like Coulomb potential will be tested for
a number of different states. Of particular interest are the higher energy states. The
point-like Coulomb potential is given by:

V (r) = −αZ
r

(5.1)

Unlike the solutions to the Schrödinger equation, solutions to the Dirac equation
are spinors. These take the form of:

ψα(r⃗) =

[
gα(r)χ

µ
κ(r̂)

−ifα(r)χµ
−κ(r̂)

]
=

[
Gα(r)

r
χµ
κ(r̂)

−iFα(r)
r

χµ
−κ(r̂)

]
(5.2)

Here, µ is a label to denote that the components containing the spin information
χ have more than one component, and α is used to collectively refer to the principal
quantum number and the quantum number κ, which is given by:

κ =

{
−j − 1

2
if j = l + 1

2

−j + 1
2

if j = l − 1
2

(5.3)

The wavefunction is then normalised such that:∫
|ψα|2d3r =

∫ ∞

0

r2[ |gα(r)|2 + |fα(r)|2]dr = 1 (5.4)
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State Analytical Energy (MeV) Numerical Energy (MeV)

1s1/2 −23.413492 −23.413491
2p3/2 −5.813321 −5.813321
3d5/2 −2.580455 −2.580455
4f7/2 −1.450869 −1.450855
5g9/2 −0.928368 −0.928368
6h11/2 −0.644629 −0.644623

Table 5.1: Table of Point-like Energies - Using Runge-Kutta

As the components containing the spin have the identity:∫
χm†
κ χm′

κ′ dr̂ = δκκ′δmm′ (5.5)

This leads to a Dirac equation, contiaining the point Coulomb potential, of the
form:

d

dr

[
Gα(r)
Fα(r)

]
=

[
−κα

r
λα + 2µ− VCoulomb(r)

−λα + VCoulomb(r)
κα

r

] [
Gα(r)
Fα(r)

]
(5.6)

Where here, instead of solving directly for the energy eigenvalue, we solve for the
eigenvalue λα = Eα − µ.

Using this Dirac equation, it was shown that it was possible to recreate the required
analytical energy states. The analytical solution to the energy eigenvalues are given,
in natural units, by:

En,j ≈ µ

√
1− (Zα)2)

κ2
− µ (5.7)

Where here µ is the reduced mass of the cascade and iron nucleus, and α is the
fine-structure constant. Now, for the highest angular momentum states for a given
energy level, κ is given by κ = −n.

The results then of the attempt at a numerical solution are compared to the analyt-
ical results in table [5.1]. As can be seen it was possible to find the energy eigenvalues
to within a 10th of a keV, and so it is reasonable to assume that this solver should
be appropriately accurate for the calculation of the other energy eigenvalues. And the
energy of the transition between the 6h11/2 and 5g9/2 states is found to be 283.745keV.
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State Finite Energy (keV) Point Coulomb Energy (keV)

5g9/2 −904.504 −928.368
6h11/2 −620.777 −644.623

6h11/2 - 5g9/2 283.727 283.745

Table 5.2: Table of the finite Coulomb potential energies, including the transition
energy

5.3 Finite Coulomb Energy Levels

Now, having validated that the solver is able to return sufficiently accurate and precise
values for the point-like Coulomb potential, we can have confidence that the solver
will return similarly accurate and precise values for the finite potential, as well as the
nuclear potential. Using the finite Coulomb potential, as found in sec. [4.4], we shall
now calculate the energy eigenvalues for a number of these states.

Now, as stated in the proposal [14], the states of interest are the 5g9/2 and the 6h11/2.
Applying the finite Coulomb potential in place of the point-like Coulomb potential, we
find the energies recorded in table [5.2].

And so we see that when compared to the point Coulomb potential, these have
the slight effect of increasing the energy of both the 5g9/2 state and the 6h11/2 states.
However, we note that the difference between the transition energies is found to be less
than a 10th of a keV.

5.4 Nuclear + Finite Coulomb Energy Levels

With the finite Coulomb energy levels established, we wish now to see how the inclusion
of the nuclear potential shifts the energy levels. In order to do this, we shall now have to
modify the Dirac equation used. The Dirac equation with only the Coulomb potential
is given by:

(iγµ∂
µ −m− eγµA

µ)ψ = 0 (5.8)

Where Aµ is the 4-vector containing the electric and magnetic potentials. We note
here that the electromagnetic potential enters in as a vector potential. Thus, the ω
and ρ mesons will enter into the Dirac equation in a similar manner then, as they are
vector mesons. The σ meson however will enter into the equation like the mass term,
as the σ meson is a scalar meson. So, we find then, a Dirac equation of the form:[

iγµ(∂
µ − eAµ + gωΞω

µ + gρΞρ
µ
α

τα
2
)− (m− gσΞσ)

]
ψ (5.9)
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Where here the coupling constants are coupling the meson fields to the cascade, and
thus we have gσΞ = wgσ, gωΞ = 1

3
gω and gρΞ = gρ [41]. Then, as the solutions found

were in the mean-field approximation, we note that ωi=1,2,3(r) = 0 and all components
of the ρ meson except for ρ03(r) = b3(r) are zero. And finally, there is no magnetic
potential considered here, and so we find the Dirac equation:[

iγµ∂
µ + iγ0(−eA0(r) +

1

3
gωω

0(r) + gρb3(r)
τ3
2
)− (m− wgσ(r)σ)

]
ψ (5.10)

V (r) = VCoulomb(r) +
1

3
gωω(r) + gρb3(r)

τ3
2

(5.11)

Thus, we obtain the new equation:

d

dr

[
Gα(r)
Fα(r)

]
=

[
−κα

r
λα + 2µ− wgσσ(r)− V (r)

−λα + wgσσ(r) + V (r) κα

r

] [
Gα(r)
Fα(r)

]
(5.12)

Now, from earlier, we saw that the solutions to these meson fields are given by:

gσσ = − 1

m2
σ

∇⃗2 [GσρN + wGσρΞ] +GσρN(1− d[GσρN + wGσρΞ])

+GσρΞ(w − w̃d[GσρN + wGσρΞ])

[
1− P 2

Ξ

2M2
Ξ

]
(5.13)

gωω = − 1

m2
ω

∇⃗2 [GωρN + wGωρΞ] +GωρN + wωGωρΞ (5.14)

gρb(r) = Gρ
τ3
2
(ρN + ρΞ) (5.15)

Now, when substituting into the Dirac equation, we neglect the terms which con-
tain any factors of ρΞ, as these terms would correspond to the interactions between
more than one cascade hyperon. However, we recognise then that there is no 4-body
interaction, to which the coupling constants were fitted. Here, as there are no Ξ density
terms, we note that this expansion goes as the original many-body expansion [8]. Thus
we can take the σ meson field as:

gσσ = − 1

m2
σ

∇⃗2 [GσρN ] +GσρN(1− dGσρN + d2G2
σρ

2
N) (5.16)

Which we seen now includes a final term which will correspond to a 4-body inter-
action. Using these, the energies were calculated and recorded in table [5.3].

As can be seen from this, the introduction of the nuclear potential causes a greater
shift in the energy of the 5g9/2 state, than in the 6h11/2 state. This leads to the
transition energies shifting by about 2.898keV, as can be seen in table [5.4].
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State Energy (keV)

5g9/2 −907.425
6h11/2 −620.800

6h11/2 - 5g9/2 286.625

Table 5.3: Table energies now including the nuclear potential, and the transition energy

State Nuclear Potential (keV) Finite Coulomb (keV) Energy Shift (keV)

5g9/2 −907.649 −904.504 3.145
6h11/2 −620.800 −620.777 0.023

6h11/2 - 5g9/2 286.849 283.727 3.122

Table 5.4: Table comparing the energies after including the nuclear potential, as well
as the finite Coulomb potential

5.5 Alternative Approach to Nuclear Potential

Now, we shall also consider an alternative approach to including the nuclear potential.
This is to make an approximation which does not distinguish between the Lorentz
scalar and vector potentials. This makes it comparable to the Hamiltonians used in
ch. [4]. From here, we shall introduce a term to the Hamiltonian corresponding to a
Dirac equation. Then taking the variation with respect to ψ†

Ξ, it is possible to find
an equation of motion for ψΞ. This process amounts to essentially solving the Dirac
equation, of the form:

d

dr

[
Gα(r)
Fα(r)

]
=

[
−κα

r
λα + 2µ− VC(r)− VBinding(r)

−λα + VC(r) + VBinding(r)
κα

r

] [
Gα(r)
Fα(r)

]
(5.17)

Where here, the potential, VBinding is the same as has been used in the previous
chapters, as in equation [3.19], though here it is the equivalent for a cascade hyperon.
A table summarising the energies calculated using this method are included in table
[5.5].

As can be seen, the difference between these two methods is small, amounting into
a difference in the transition energy of 0.303keV.
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State First Method (keV) Alternative Method (keV) Difference (keV)

5g9/2 −907.649 −907.153 0.496
6h11/2 −620.780 −620.799 0.001

6h11/2 - 5g9/2 286.625 286.332 0.303

Table 5.5: Table comparing the energies of the two different methods for including the
nuclear potential

State Analytical Energy (keV) Numerical Energy (keV)

2p3/2 −144.3036 −144.3036
3d5/2 −64.1307 −64.1307
4f7/2 −36.0727 −36.0726

Table 5.6: Table of Point-like Energies - Carbon Atoms

5.6 Carbon Atomic Energies

We shall now consider the atomic binding of the negative cascade hyperon into a
carbon atom, as carbon has been considered as a possible alternative target. It has
been proposed to look at the transitions (4, 3) → (3, 2) and (3, 2) → (2, 1), as these
transitions have been shown to have transitions in the order of 100keV, and also to
show a reasonable amount of energy shift, due to the nuclear interaction.

Once again, we shall verify that the solver implemented provides sufficient precision
and accuracy, by testing the point Coulomb potential energies. The results of this are
recorded in table [5.6]. As can be seen it is possible to reproduce the energy for these
state, to within a 10th of a keV once again.

Hence, we turn to calculating the finite Coulomb potential. In past it has been
shown that the charge density for carbon can be fit to a Woods-Saxon density, using
slightly adjusted parameters [51]. Here, we take the parameters, ρ0 = 0.15[fm−1],
c = 1.1[fm], and a = 0.65[fm].

With these parameters, the finite Coulomb energies were calculated, and recorded
in table [5.7].

Finally, we consider adding in the nuclear potential. We shall do this by using the
modified Dirac equation, once again with 4-body interactions present. The energies
are recorded in table [5.8].

We see then that this results in a shift in the energy transitions of 5.379keV for the
(3, 2) → (2, 1) transition.
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State Energy (keV)

2p3/2 −0.138724
3d5/2 −0.058433
4f7/2 −0.030575

Table 5.7: Table of Finite Coulomb Energies - Carbon Atoms

State Nuclear Potential (keV) Finite Coulomb (keV) Energy Shift (keV)

2p3/2 −143.792 −138.724 5.068
3d5/2 −58.621 −58.433 0.188
4f7/2 −30.575 −30.575 0.000

3d5/2 - 2p3/2 85.170 80.291 4.880
4f7/2 - 3d5/2 28.046 27.858 0.188

Table 5.8: Table comparing the energies with and without the nuclear potential- Car-
bon



Chapter 6

Neutral Sigma Hyperon
Calculations

The final hyperon to be investigated is the Σ0 hyperon. Here we aim not to calculate
the binding energy but rather to calculate the expectation value of the σ meson field
in nuclear matter. This will then be used to calculate the magnetic moment of the Σ0

in the nuclear environment in order to produce an experimental prediction.

6.1 Experimental Motivation

An interesting phenomena which is predicted by the QMC model approach, is that the
magnetic moment of the Σ0 hyperon is different in free space, when compared to when
it is bound in nuclear matter [52]. One can show then that the interaction with the σ
meson field leads to the spreading out of the up and down quark wavefunctions [53],
which corresponds then to a change in the magnetic moment.

However, it is not possible to measure this change in the magnetic moment directly.
Instead, one must investigate the decay:

Σ0 → Λ0 + γ (6.1)

Where on the left the spins of the up and down quarks are aligned such that they
have a total spin of 1. The decay conserves spin then by emitting a photon, while the
spin of the up and down quarks in the Lambda become anti-aligned. This is known as
a magnetic transition, and here the decay rate is proportional to the magnetic moment
of the light quark.

To provide a prediction for the change in the magnetic moment, one must first
obtain the σ meson expectation value, in the nuclear environment. This can then be
used to calculate the magnetic moment for the Σ hyperon in the nuclear environment.

55
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6.2 Finding the Wavefunction

It is of interest to consider the binding of the Σ0 into a Helium nucleus. However, when
dealing with this nucleus, it is no longer appropriate to use a Woods-Saxon density.
Instead the density used takes the form:

ρ(r) =
ρ0

1 + exp [(r − c)/1]

(
1 + w

r2

c2

)
(6.2)

Then, it is important to normalise the density. The binding shall be into 4He, and
thus we require: ∫

dV ρ(r) = 4 (6.3)

As there are 4 nucleons in this Helium nucleus. The parameters taken are c =
0.964[fm], a = 0.322[fm], and w = 1.74 [54]. The normalised density is plotted in figure
[6.1], for those parameters. With this the equations of motion for the meson fields
remain the same, with the exception of the different form for the density.

Figure 6.1: Plot of Density for Helium nucleus (Normalised)

Now the binding energy of a Σ0 hyperon into a Helium nucleus is known to be
7.6[MeV]. Furthermore, we note that the isospin is zero for a Helium nucleus, as N = Z,
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and the Σ0 is an electrically neutral hyperon, and thus there is no isovector nuclear
force, or Coulomb potential to account for. This leaves just interactions with the sigma
and omega meson fields. As we are interested in the sigma field, the omega coupling
will be adjusted to fit to the binding energy. Once this has been completed, then the
wavefunction can be found for this given energy and set of coupling constants. Here we
are exploring Helium binding, and so it is impractical to consider a 4-body force, due
to the number of nucleons present, and so for this calculation, only the 2 and 3 body
forces are considered. Included is a plot of r2ψ2, in figure [6.2], with Gσ = 8.65, which
corresponds to a value for Gω = 3.69. The potential is also plotted in figure [6.3]

Figure 6.2: Plot of r2ψ2

6.3 Calculating the Mean Field

Now we turn to calculating the mean sigma meson field, and the mean density. These
are given by:

⟨gσσ⟩ =
∫
dV gσσ(r) |ΨΣ0(r⃗)|2 (6.4)
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Figure 6.3: Binding Potential for a Σ0 Hyperon

⟨ρ⟩ =
∫
dV ρ(r) |ΨΣ0(r⃗)|2 (6.5)

Now the equation for the sigma field is obtained from the equations of motion, and
is given by:

gσσ = GσρN(1− dGσρN) (6.6)

Now the Numerov solver outputs u(r) = rψ(r), not ψ(r), however this can be
sidestepped as a problem when including this factor of r, with that which arises from
the volume element in the total integral. Thus upon expanding the volume element,
we can simplify this to:

⟨gσσ⟩ = 4π

∫
dr gσσ(r) |uΣ0(r)|2 (6.7)

⟨ρ⟩ = 4π

∫
dr ρ(r) |uΣ0(r)|2 (6.8)

And when evaluating these for Gσ = 8.65, we find ⟨gσσ⟩ = 103.23[MeV] and ⟨ρ⟩ =
0.07258[fm]−3.
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However it is of interest to find this in terms of the quark coupling, and not the
nucleon coupling. Thus, we are interested in finding < gqσσ >. As in sec. [2.2.1], we
saw that the relation between the quark and nucleon coupling was:

gσ = 3gqσS(σ = 0) (6.9)

And hence, so, we can find the expectation value of < gqσσ >, by:

< gqσσ >=
gqσ
gσ

< gσσ > (6.10)

And so now, we must evaluate S(σ = 0). It is a good approximation to take
Ω0 ≈ 2.04 as the eigenfrequency, and mq = 0. With these, we find the expression for
S(Σ = 0) simplifies to:

S(σ = 0) =
1/2

(Ω0 − 1)
(6.11)

S(σ = 0) =
1/2

1.04
= 0.4808 (6.12)

Next we can find the the nucleon coupling by taking:

gσ = mσ

√
Gσ (6.13)

Here we shall take mσ = 504[MeV], which gives the nucleon coupling gσ = 7.512,
after taking into account that gσ should be unitless, and thus the quark coupling is
given as, gqσ = 5.209. This leads to the expectation value of the sigma meson field,
coupled to the quark is given as < gqσσ >= 71.57[MeV].





Conclusions

It is fitting at this point to summarise the findings of this work. In this work, a many-
body expansion of the QMC model involving hyperons has been accomplished, done
in the same vein of the work completed by Guichon & Thomas [8].

This expansion was first applied to Lambda hyperons. In this first case, the isospin-
dependent contribution was ignored, as the Lambda has zero isospin. In addition, the
spin-orbit interaction was taken to be zero as well, as this is small for Lambda hyperons.
With this, it was possible to fit the coupling constants of the σ and ω meson fields.
This was carried out using experimental values for the binding energy of the 1s and 1p
states for Lambda hyperons ranging from A=32, up to A=208. It is of interest to note
that including terms up to 4-body interactions returned the best fit, with the 3-body
fit being the worst. Thus, throughout the rest of the work the 4-body interactions were
included. The results of these fits can be found in figures [3.3a]-[3.3c].

Using these coupling constants it was possible to extend the model to calculate the
binding energy of the cascade hyperons. To do this the isospin-dependent interaction
was introduced, as well as the finite Coulomb potential. It is worth noting that the
coupling to the rho meson was not fitted, so a few different values were investigated
to see how changing this coupling would affect the binding energy. The predictions for
these binding energies can be found in figures [4.2], [4.3] and [4.5].

Following this an investigation into the atomic binding energy of the negative cascade
in carbon and iron nuclei was carried out. Of particular interest was calculating the
shift in the atomic energy levels due to the strong interaction, as this effect is to be
investigated at J-PARC. So, to carry this out, the energy eigenvalues for the relevant
energy eigenstates were calculated, both including and excluding the nuclear potential.
It was found that the energy shift due to the nuclear potential in iron, for the transition
between the 5g and 6h states, was 3.122[keV]. In carbon for the 2p and 3d states the
shift in the transition energy was 4.880[keV].
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Finally, the mean value of the sigma meson field and the mean nucleon density
was calculated for the Sigma hyperon, bound in Helium. Here the coupling constant
for the omega meson was refit, to match the binding energy of the Sigma hyperon
in Helium. Then using this, the corresponding wavefunction could be found, and
then these values could be calculated. It was found that < gqσσ >= 71.57[MeV], and
< ρN >= 0.07258[fm−3]. The mean value of the sigma field will be used now to
calculate a prediction for the change in the magnetic moment of the Sigma hyperon in
and out of the nuclear medium.



Appendix A

Numerical Details of the Numerov
Algorithm

Throughout this work, to solve the eigenvalue problem above, the Numerov algorithm
will be employed. The advantage of using this algorithm is that it can be employed for
any given value of energy, and will provide a way to test for whether the solution for
that given energy is a valid eigenvalue, as will be seen in [A.2].

A.1 Numerov Algorithm Details

Numerov’s algorithim is equipped to solve differential equations of the form:

d2y

dx2
= f(y, x) (A.1)

Which is the form for which we have arranged our problem here. The Numerov
algorithm works in an iterative manner, by using the past two points to determine
what the next should be [55]. This is derived from making the Taylor expansion of
y(x) around a small step h, which gives:

y(x± h) = y(x)± hy′(x) +
h2

2
y′′(x)± h3

6
y′′′(x) +

h4

24
y(iv)(x) (A.2)

One can then use this to derive the identity:

y(x+ h) + y(x− h)− 2y(x)

h2
= y′′(x) +

h2

12
y(iv)(x) (A.3)

≡
(
1 +

h2

12

d2

dx2

)
y′′(x) (A.4)
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Now, the left hand term can be identified as the central-difference for the second
derivative of y(x). Making use of this, and the identity, upon rearranging, and taking
note of the fact that in our situation, the right hand side is a function of x only, one
can arrive at an expression:

y(x+ h) =

{
2

[
1− 5h2

12
f(x)

]
y(x)−

[
1 +

h2

12
f(x− h)

]
y(x− h)

}/[
1 +

h2

12
f(x+ h)

]
(A.5)

Thus, provided that one knows the function f(x), for all points, one has a method
of finding y(x + h) if they know points y(x) and y(x − h), which provides a way to
iterate to solve for y(x).

A.2 Solving the Eigenvalue problem with the Nu-

merov Algorithm

With the details of the Numerov algorithm established, we shall now consider how to
apply the algorithm to solve the problem at hand. The wavefunction for the Λ hyperon,
bound into a nucleus, should be qualitatively similar to that of the hydrogen atom.
Thus, as u(r) = rψ, we expect that u(0) = 0, and as r → ∞, u(r) → 0. Furthermore
the wavefunction should be continuous and smooth at all points. Now to ensure the first
three conditions, the solution will be split into a left and right side solution, uL(r) and
uR(r) respectively, where the solutions integrate inwards to a match point rmatch. This
enables us to implement the boundary conditions by taking uL(0) = 0, and u(rend) = δ,
where rend is the endpoint for the solution we find, and δ is small. Then, continuity
can be enforced by matching the solutions at the match point, as below:

uL(r) → uL(r)×
uR(rmatch)

uL(rmatch)
(A.6)

At this point it is worth noting that the value chosen for δ is actually not important,
as this will only change the scale of the right hand side solution, which after matching
the solutions, and then normalising the solution becomes unimportant. It is only
important to ensure that the value for rend is sufficiently far out so as to be approaching
zero, so that a valid solution is determined.

Thus, three of the four required conditions are satisfied for any given energy eigen-
value. This provides a way to test for whether an energy eigenvalue has been found,
by testing whether the wavefunction is smooth or not. This condition is given by:

∂uR
∂r

∣∣∣∣∣
rmatch

=
∂uL
∂r

∣∣∣∣∣
rmatch

(A.7)
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To do this we take an approximation for the first derivatives of these functions
around the match point:

∂uL
∂r

∣∣∣∣∣
rmatch

≈ uL(rmatch)− uL(rmatch−1)

h
(A.8)

∂uR
∂r

∣∣∣∣∣
rmatch

≈ uR(rmatch+1)− uR(rmatch)

h
(A.9)

And then by selecting a given tolerance, ϵ, we can test if the solution is sufficiently
smooth: ∣∣∣∣uL(rmatch)− uL(rmatch−1)

h
− uR(rmatch+1)− uR(rmatch)

h

∣∣∣∣ < ϵ (A.10)

Which simplifies upon combining uR and uL, into one function u(r):∣∣∣∣umatch+1 + umatch−1 − 2umatch

h

∣∣∣∣ < ϵ (A.11)

Should this hold, then a valid solution to the eigenvalue has been found1.
An example solution to the binding energy of 208Pb is plotted in figure [A.1], for a

chosen set of coupling constants.

Figure A.1: u(r) for 208Pb, with Gσ = 8.65, Gω = 5.60

1The implementation of this, as well as all the other code in this project can be found at:
github.com/NathanaelBotten/MPhil-Code.
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