Topographic Reconstructions of the Trans-Gondwanan Mountain Belt

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology/Geophysics

Flynn Cameron November 2021

ABSTRACT

Reconstructing the evolution of the shape of Earth's surface in deep time has not been previously attempted. How topography changes through time is essential in understanding the controls on ancient Earth systems (e.g. climate, biology and atmosphere/hydrosphere chemistry). The Neoproterozoic to Cambrian East African Orogen amalgamated through an important time for Earth's climate. Here, I attempt the first reconstruction of the changing topography of the trans-Gondwanan mountain belt, as a first step in revealing the significance of the mountain belt on climate throughout this period. The topographic reconstruction was attempted by incorporating inverted metamorphic pressure-time (P-t) data into a compositional isostatic equilibrium equation. This was done to determine an approximate elevation of the mountain belt relative to the modern-day elevation. By georeferencing the P-t data to current geological provinces, and incorporating them into a full plate model, a paleo-geographic topographic reconstruction was developed through the final amalgamation sequence of Central Gondwana. Across the orogen there is a variability in the depths that the rocks were buried and ultimately the elevations the mountain belts reached above sea level. The Arabian Nubian Shield (accretionary orogenesis from ~750-600 Ma) produced elevations of up to ~3 km peak elevation, similar to average heights of the current day European Alps. In the Mozambique and India/Madagascar belts much higher elevations of up to ~8 km, are predicted from ~650 –530 Ma., elevations similar to the current day Himalayas.

In addition to developing a methodology to apply topography in deep time, a proof-of-concept study was undertaken to efficiently obtain relevant pressure-time data for future campaign-style topography reconstruction studies. This was done using garnets from a well characterised transect across Southern India, which dated using the novel laser Lu–Hf inductively coupled plasma reaction cell mass spectrometry (LA-ICP-MS/MS) technique. Quartz inclusions within these were then analysed using RAMAN spectroscopy to determine their trapping pressures. These produced results of up to $\sim 12-15$ kbar at ages ~ 600 to 540 Ma (peak conditions) which agree with conventional pressure-time studies and demonstrate the potential of this workflow.

KEYWORDS

Topography, Reconstruction, Isostasy, Gondwana, Climate, East African Orogen, Garnet, Neoproterozoic.

TABLE OF CONTENTS

Abstract	i
Keywords	i
List of Figures and Tables	3
Introduction	6
Geological Setting/Background	8
Topographic Reconstructions and Isostatic Equilibrium	8
East African Orogen	9
Arabian Nubian Shield	12
Mozambique Belt, Madagascar and India	14
Analytical Case Study on Garnets from Southern India	16
Organisation and Layout	18
Methods	19
Analytical Approach	20
Geochronology	21
LA-ICP-MS/MS garnet Lu-Hf Geochronology	21
LA-ICP-MS monazite and rutile inclusion in garnet U-Pb Geochronology	22
RAMAN Spectroscopy Barometry	23
Isostasy Application	24
Depth Calculation	24
Compositional Isostatic Equilibrium	25
Thermal Adjustment	28
Thermal Isostasy	28
Error Calculation	29
Observations and Results	30
Analytical Method Results	30
Geochronology	30
Lutetium-Hafnium Geochronology	30
Uranium-Lead monazite and rutile inclusions in Garnet	35
RAMAN Spectroscopy Barometry	41
Isostasy Results	44
Compositional Isostasy Results	44
Error Results	48
Discussion	49

Uncertainties in data, Assumptions and Limitations	49
P-T conditions	50
Assumptions on the crustal structure and composition	51
Analytical Approach	52
Compositional and Thermal Isostasy	53
Model Reconstructions and Elevations of the East African Orogen	54
Thermal Corrections	64
The Trivandrum and Madurai Blocks of the Southern Granulite Terrain (a Study)	Case
Ages and Metamorphic Conditions and their Tectonic Implications	65
Conclusion	68
Acknowledgments	70
References	71
Appendix A: Analytical Samples	77
Appendix B: Geochronology Data	83
Appendix C: Isostasy Calculations	92

LIST OF FIGURES AND TABLES

```
Figure 1: Crustal Provinces involved in the East African Orogen modified from (Fritz et
al. 2013). Detailing the sample locations collected from literature to be used to define
the crustal provinces, the individual provinces involved across the
Figure 2: A diagram modified from (Ratheesh-Kumar et al. 2020) detailing the crustal
provinces in Southern India showing the whole SGT in NB (Nagercoil Block), TB
(Trivandrum Block), SMAB (Southern Madurai Block), NMAB (Northern Madurai
Block) as well as their associated complexes from Sri Lankain the WC (Wanni
Complex), HC (Highland Complex) and VC (Vijayan Complex). It includes the P-T-t
data collected from published literature to define a crustal column and the samples
Figure 3: Schematic diagram detailing the compositional isostatic equilibrium equation
for both crustal columns C1 the ancient crust and C2 the modern crust and the
parameters used to define them. P, is pressure, p is the density, q is the gravity
Figure 4: Tornado XRF imaging of dispersed yttrium content across zones in garnet
samples used for the Lu–Hf dating method. Red is the concentration of the vttrium
across the garnet. I06-83 shows a significant concentration around the rim of the garnet.
but lacks yttrium content in the core. I06-08 does not show any yttrium zonation, rather
a homogenous concentration throughout. I02-02 shows an erratic zonation with what
seems to be multiple zones around a low yttrium concentration core. I06-106a maf
shows yttrium concentration on inclusions within the garnet, not the actual garnet
mineral. I06-38 alike sample I06-08 shows a homogenous yttrium concentration
Figure 5: Above: Whole garnet (all zones) Lu/Hf isochron was calculated for sample
106-08. No omitted laser ablation spots, Below: Whole garnet (all zones) Lu/Hf
isochron was calculated for sample I06-83, two omitted ablation spots based on
Figure 6: Above: whole garnet (all zones) Lu–Hf isochron was calculated from sample
106-38, no omitted ablation spot. Below: Whole garnet (all zones) Lu–Hf isochron was
calculated from sample I06-02, ablation spots omitted, presented as part of a newly
Figure 7: CL imaging of rutile inclusions in garnet sample I06-106a maf, indicating the
Figure 8: CL imaging of monazite inclusions in garnet sample I06-106a maf, indicating
Figure 9: U/Pb concordia diagram calculated from monazite grains in sample IO6-106a
Figure 10: Calculated (<sup>206</sup>Pb/<sup>238</sup>U) weighted mean with no omitted data, error bars are
Figure 11: U/Pb Weighted mean calculated from rutile grains in garnet I06-106a
(mafic), outlined from most <sup>206</sup>Pb/<sup>238</sup>U to the least, the omitted results unshaded are
Figure 12: P-T isomekes for sample I06-83 calculated using RAMAN Spectroscopy of
quartz inclusions, with the temperatures from the published literature (Collins et al.
```

2007; Prakash, Prakash, and Sachan 2010) as overlays for identifying possible pressures Figure 13: P-T isomekes for sample I06-08 calculated using RAMAN Spectroscopy of quartz inclusions, with the temperatures from the published literature in the Trivandrum Block (Taylor et al. 2015; Harley and Nandakumar 2016) as overlays for identifying Figure 14: Paleogeographic Reconstruction of the first amalgamation events from ~680ma - 620ma, showing the separate events, involved crustal provinces, the present collision/suture zones along with the paleo-georeferenced elevations (Uncorrected), EDT: Egyptian Desert Terrane, AD: Atmur-Delgo, GG: Gebeit-Gabgaga, TOBA: Tokar-Barka Terranes, WES: Western Ethiopia Shield, SES: Southern Ethiopia Shield, KB: Kibaran Belt, TZC: Tanzania Craton, USB: Usagaran Belt, UBB: Ubendian Belt, BB: Bangwelu Block, IB: Irumide Belt, ZB: Zambesi Belt, SM: Southern Madagascar, CM: Central Madagascar, NM: Northern Madagascar, SGT: Southern Granulite Terrane, TNB: Trivandrum-Nagercoil Block, WC: Wanni Complex, HC: Highland Complex, VC: Vijayan Complex, AC: Antogil Craton, MC: Masora Craton. References Figure 15: Paleogeographic Reconstruction of the first amalgamation events from ~680ma - 620ma, showing the separate events, involved crustal provinces, the present collision/suture zones along with the paleo-georeferenced elevations (Uncorrected), EDT: Egyptian Desert Terrane, AD: Atmur-Delgo, GG: Gebeit-Gabgaga, TOBA: Tokar-Barka Terranes, WES: Western Ethiopia Shield, SES: Southern Ethiopia Shield, KB: Kibaran Belt, TZC: Tanzania Craton, USB: Usagaran Belt, UBB: Ubendian Belt, BB: Bangwelu Block, IB: Irumide Belt, ZB: Zambesi Belt, SM: Southern Madagascar, CM: Central Madagascar, NM: Northern Madagascar, SGT: Southern Granulite Terrane, TNB: Trivandrum-Nagercoil Block, WC: Wanni Complex, HC: Highland Complex, VC: Vijayan Complex, AC: Antogil Craton, MC: Masora Craton. References Figure 16: Paleogeographic Reconstruction of the first amalgamation events from ~580ma - 530ma, showing the separate events, involved crustal provinces, the present collision/suture zones along with the paleo-georeferenced elevations (Uncorrected), WES: Western Ethiopia Shield, SES: Southern Ethiopia Shield, KB: Kibaran Belt, TZC: Tanzania Craton, USB: Usagaran Belt, UBB: Ubendian Belt, BB: Bangwelu Block, IB: Irumide Belt, ZB: Zambesi Belt, SM: Southern Madagascar, CM: Central Madagascar, NM: Northern Madagascar, SGT: Southern Granulite Terrane, TNB: Trivandrum-Nagercoil Block, WC: Wanni Complex, HC: Highland Complex, VC: Vijayan Complex, AC: Antogil Craton, MC: Masora Craton. Also detailing the samples 106-08 and 106-83 compositional isostasy results. References for data sources are listed Figure 17: Schematic Paleo-Reconstructions of the times at which the mountain summits were greatest. During the formation of the Mozambique Belt (~620 Ma) and the Malagasy Orogeny (~540 Ma), Reconstructed from the models above (Fig. 12; Fig.

Table 1: Assumed/Calculated values for parameters used to calculate the compositional
isostasy from <i>Eq.1</i> and <i>Eq.2</i>
Table 2: Table summary showing the samples analysed from the Lu–Hf garnet dating
technique
Table 3: Table summary of sample I06-106a monazite and rutile (²⁰⁶ Pb/ ²³⁸ U) weighted
mean ages
Table 4: Table summary detailing the pressure results for RAMAN spectroscopy using
a maximum temperature of 950–1100°C for sample I06-83 (Collins et al. 2007;
Prakash, Prakash, and Sachan 2010), and a maximum temperature of 900–950°C
(Taylor et al. 2014; Harley and Nandakumar 2016). As well as the depths associated
and the relative elevation after adjustment for isostasy
Table 5: Compositional isostasy calculations for the data collected from the published
data across the areas of the EAO, corrected where necessary to the modern elevation
above sea level detailing the relevant data sources of the P-t and density data associated
with the definition of the crustal columns. The Fig. 14-16 (reconstructions) use this
data
Table 6: Summary table displaying the individual effect of change in each parameter on
the resultant elevation after application of the compositional isostasy equation

INTRODUCTION

Topography, the features of Earth's surface, are controlled by the movement of tectonic plates, which is linked to Earth's climate. The elevation and global location of mountains has a major control on the intensity of erosion, feeding into the carbon cycle. Therefore, an understanding of the evolution of topography, is critical when attempting to model the Earth system in deep time (Chamberlin 1899; Raymo, Ruddiman, and Froelich 1988; Hilton and West 2020). The process of silicate weathering within mountains draws down CO₂ from the atmosphere, which is a long term control on climate (Hilton and West 2020; Mills, Donnadieu, and Goddéris 2021). These processes are also a factor in the amount of nutrients supplied to the ocean, which controls biological activity and photosynthetic oxygen production (Goddéris et al. 2017).

The Neoproterozoic was a tumultuous time in Earth's history, with breakup and formation of supercontinents, extreme climatic variation and the proliferation of life (Halverson et al. 2009; Lenton et al. 2014; Hoffman et al. 2017). The oceanic Sr⁸⁷/Sr⁸⁶ isotope record also displays a strong increase over the mid/late Neoproterozoic, which is used as a proxy for the weathering of old rocks and thus erosion rates of mountain belts (Shields 2007; Halverson et al. 2009).

The late Neoproterozoic – early Cambrian East African Orogen (EAO) is considered the largest orogen of the last billion years prior to the Cenozoic, which formed during the final amalgamation of Gondwana (Collins and Pisarevsky 2005; Fritz et al. 2013). The EAO is over 7000 km in strike length and is thought to be analogous to the Himalayas (Fritz et al. 2013). Merdith et al. (2021), attempted the first full plate tectonic reconstruction for the last billion years, providing indicative locations of tectonic plates through time. However, to develop a climate model for the Neoproterozoic, the other variable that must be considered is topography (Mills et al. 2019; Mills, Donnadieu, and Goddéris 2021). Moreover, it is not straightforward to reconstruct the topography of half a billion years ago, so the EAO is used as a case study to test the feasibility of estimating topography in deep time. The EAO preserves rocks at the surface that experienced a wide range of pressures and temperatures in the Neoproterozoic, which reflect varying degrees of orogenic burial at different times during the amalgamation of Gondwana (Fritz et al. 2013).

This study investigates inversions of pressure-time metamorphic data from past studies across the EAO, and paleo-georeferences them in tectonic reconstructions of the orogen (Merdith et al. 2021). Applying crustal parameters for ancient and modern crusts (taken from various data sources; *see Table 5*) allows for the determination of a series of paleo-crustal sections, to balance against their associated modern crustal sections. This enables definition of the ancient overburden enforced upon the ancient crustal columns and allows the correction for isostasy (Airy 1855; Pratt and Stokes 1859; Pratt and Challis 1855). This facilitates the development of a compositional (and in-future thermal) isostatic inversion for both crustal columns, which predict elevation-time points across the EAO (Hasterok and Chapman 2007). These are limited in space-time based on their locale and the limited abundance of preserved rock. In order to counter these complications, a reconnaissance, proof-of-concept study, was undertaken trialling a workflow obtaining campaign-style P–t estimates for the orogen. This was collected from the age of garnets and pressures derived from trapped quartz inclusions.

GEOLOGICAL SETTING/BACKGROUND

Topographic Reconstructions and Isostatic Equilibrium

Topographic reconstructions in deep time have rarely been attempted due to the uncertainty of inverting data to past elevations. Here, I attempt to reconstruct a crustal column using published pressure-time data and rock compositions to input into an isostatic equilibrium equation to find corresponding elevation in deep time.

Using the reconstructed density of the crustal columns from a place at a known time and balancing the input parameters to the crustal column developed for the modern crust, it is possible to develop a gradient in height for the mountains through time. This is called the compositional isostasy. This process is based off the initial concepts proposed by Airy(1855) & Pratt(1855; 1859) and are prepared using pressure and density estimates. Defining this gives a basic uncorrected elevation relative to the elevation of the crust above sea level today. In future studies, this height can be further modified to correct for the thermal isostatic elevation variations that are based on temperature at depth, thermal conductivity, heat production and heat flow input parameters (Hasterok and Chapman, 2007).

East African Orogen

The East African Orogen (EAO) was a dynamic belt that formed via a series of tectonic collisional events involved in the amalgamation of Gondwana from ~850-530 Ma, after the break-up of the supercontinent Rodinia (Fritz et al. 2013; Collins and Pisarevsky 2005; Stern 1994). Each of these events was significant in the building of a large mountain belt stretching across the Gondwanan supercontinent (Jacobs, Bauer, and Fanning 2003; Squire et al. 2006). Today these events are preserved in remnants of the old mountains in metasedimentary and meta-igneous rocks stretching from northern Egypt on the Sinai Peninsula to Mozambique in the south and Southern India/Sri Lanka to the east (Johnson et al. 2011b; Fritz et al. 2013; Collins et al. 2021). The EAO consists of two distinct areas. To the north the Arabian Nubian Shield (ANS), which consists of a pre-amalgamated series of Neoproterozoic arc accretions from ~850–700 Ma, these make up modern Egypt, Sudan, Eritrea, Ethiopia and some parts of Saudi Arabia (Johnson et al. 2011a; Fritz et al. 2013). The ANS stretches eastward to the Afif and Azania microcontinent terranes that geographically make up modern Saudi Arabia, Yemen and Somalia (Johnson et al. 2011a). Four distinct accretion events are recorded in the ANS, highlighted by (Fritz et al. 2013; Robinson et al. 2014), these range from ~850-600 Ma. This study, however, is focussed on the latter events in the amalgamation from ca. 680-600 Ma. To the south, the lower grade metamorphic ANS pinches out, moving into the Mozambique Belt (MB), which preserves much higher grades (Fritz et al. 2013). Published geochronology from these areas show protolith ages only closely predating the metamorphism (Johnson et al. 2011b; Tenczer et al. 2013). These correspond to the arc amalgamation ages before becoming overprinted by the Afif-Abas collision event in the latter ANS formation (Johnson et al. 2011a). To the south of this, the Mozambique Belt consists of various reworked pre-Neoproterozoic crustal fragments involved in events ranging from ~650– 530 Ma, the MB stretches from Kenya to Tanzania in a series of granulite facies metamorphosed terranes including Mozambique and Madagascar (Fritz et al. 2013). Remnants of the MB are associated with the Southern Granulite Terrain (SGT) of southern India and the granulite metamorphic terrains across Madagascar (Plavsa et al. 2015). Ages corresponding to these events throughout these regions are recorded in information from granulites, however some past geochronology reveals protolith ages to be variable from Archean to Mesoproterozoic in age (Collins, Clark, and Plavsa 2014; Plavsa et al. 2015; Clark et al. 2020).

Figure 1: Crustal Provinces involved in the East African Orogen modified from (Fritz et al. 2013). Detailing the sample locations collected from literature to be used to define the crustal provinces, the individual provinces involved across the

ANS/MB/Madagascar.(se e Table 5; Appendix C)

Arabian Nubian Shield

In the Arabian Nubian Shield the oldest continental amalgamation event is associated with the final amalgamation between the Afif Abas microcontinent and the previously accreted ANS volcanic arc (Johnson et al. 2011a). Evidence of this accretion system was recorded in the Baladiyah metamorphic complex of eastern Saudi Arabia. This complex preserved mid-amphibolite facies metamorphism at approx. 750 Ma. This was not a widely observed metamorphic event in the ANS (Abu-Alam et al. 2014). A continental collisional event from ~680-650 Ma produced extensive an regional greenschist/amphibolite facies metamorphism event. With evidence from the Sinai peninsula of Egypt in the Feiran-Solaf Metamorphic complex (Abu El-Enen and Whitehouse 2013) and the Baladiyah metamorphic complex recording a second metamorphic event. These initial events preserved relatively low temperature and low pressure conditions (Abu-Alam et al. 2014). The collision of the amalgamated arcmicrocontinent-proto-ANS with the North African Plate, is a latter event recorded in the ANS. This is associated with ages from ~650–610 Ma, evidenced in: the Sinai Peninsula and Eastern Desert metamorphic terranes of Egypt; the Wadi Abu Barga and associated metamorphic complexes of Jordan; the Elat metamorphic complexes of Southern Israel; and the Baladiyah complex of eastern Saudi Arabia (STERN and MANTON 1987; Eliwa et al. 2008; Jarrar et al. 2013; Abu-Alam et al. 2014; Elisha, Katzir, and Kylander-Clark 2017; Abu Sharib et al. 2018). All these complexes recorded metamorphism from greenschist to mid-amphibolite facies. However, in the southern ANS, the Kenyan metamorphic complexes recorded events of the same ages to upper-amphibolite facies with a relatively large increase in pressure in comparison to the events of the northern ANS (Hauzenberger, Robl, and StÜWe 2005; Hauzenberger et al. 2007b). A final event in the ANS was recorded from ~620–600 Ma, this is associated with the fully amalgamated ANS collision with the Afif, Sahara Metacraton and Congo Plates. This event was preserved in the metamorphic complexes of Eritrea, the Southern and Western Ethiopian shields, the Eastern Desert Terrain and Sinai peninsula of Egypt and the western boundary of the Sahara Metacraton in Northern Sudan (Johnson et al. 2004; Andersson, Ghebreab, and Teklay 2006; Abu El-Enen and Whitehouse 2013; Karmakar and Schenk 2015). These recorded regionally variable P–T information to higher conditions relative to the previous event, preserving mid-amphibolite to upper-amphibolite facies metamorphism.

Mozambique Belt, Madagascar and India

The Mozambique belt is a continuation from the southern ANS and mostly consists of Archean and Paleoproterozoic crustal fragments reworked in the amalgamation of Gondwana (Collins, Clark, and Playsa 2014; Playsa et al. 2015; Clark et al. 2020). These are associated with the continental collisions of the microcontinent Azania (Madagascar, Sri Lanka and Southern India) with the Congo Craton (Collins et al. 2007). These record their earliest metamorphic activity to variably high pressure and moderate temperature granulites from ~640 Ma. These include the Kenyan and Tanzanian eastern granulite system from current mountains of the Pare, Usambara, Ukaguru and Uluguru Mountains (Meert, van der Voo, and Ayub 1995; APPEL, MÖLLER*, and SCHENK 1998; Möller, Mezger, and Schenk 2000; Sommer et al. 2003; Huntly Cutten, Simon P. Johnson, and Bert De Waele 2006; Boniface and Schenk 2007; Hauzenberger et al. 2007a; Bingen et al. 2009; Boniface and Schenk 2012; Tenczer et al. 2013; Sommer, Kröner, and Lowry 2017). These correlate to the latter metamorphic events recorded across the ANS supposedly being associated with a large boundary frontal continental collision with the Azanian microcontinent (Collins and Pisarevsky 2005; Fritz et al. 2013). Granulite metamorphism, continuing until approx. 580 Ma has been interpreted to be a prolonged collision/suture (Fritz et al. 2013). The Southern Mozambique Belt continuing in to the Mozambique Cabo-Delgado Nappe System, preserves the final amalgamation of Gondwana, recording upper granulite facies metamorphism with very high pressure and variable mid/high temperatures across ~580-540 Ma (Viola et al. 2008; Bingen et al. 2009; Boyd et al. 2010; Ueda et al. 2012; Engvik, Tveten, and Solli 2019). The ~550 Ma collision between the Indian Dharwar, Antongil and Masora Cratons and the amalgamated Azania/Congo continent recorded upper amphibolite to granulite facies

metamorphism. It preserved mid/high pressure, mid temperature metamorphic conditions in the Bemarivo Belt, Antananarivaro Block, Anoysen Block, Vohibory Group and the Androyen Group of Madagascar (Kröner, Braun, and Jaeckel 1996; Markl, Bäuerle, and Grujic 2000; JÖNS et al. 2006; JÖNS and SCHENK 2008; Jöns and Schenk 2011; Boger et al. 2014).

These are also recorded in the southern terranes of India/Sri Lanka in the Southern Granulite Terrane, the Trivandrum-Nagercoil Block, the Vijayan, Highland and Wanni complexes (Kröner and Williams 1993; Raase and Schenk 1994; Prakash 2008; Prakash, Prakash, and Sachan 2010; Li et al. 2019). These granulites retain variable mid/high pressures and ultra-high temperatures. These provinces are inferred to have been a part of the Azanian microcontinent and at the forefront of the final collision involved in the formation of Gondwana (Collins and Pisarevsky 2005).

Analytical Case Study on Garnets from Southern India

As a part of the development of a topographic reconstruction across the East African Orogen, a methodology has been developed as part of a case study to obtain pressure– time data for campaign-style analysis of garnets, these will be applied to the topographic reconstruction. Garnets are a common porphyroblast in metamorphic rocks and preserve geochronological and thermobarometric information, which makes them a perfect target for obtaining data for a topographic reconstruction. Garnet data was collected from a transect across the Southern Granulite Terrane of India.

Figure 2: A diagram modified from (Ratheesh-Kumar et al. 2020) detailing the crustal provinces in Southern India showing the whole SGT in NB (Nagercoil Block), TB (Trivandrum Block), SMAB (Southern Madurai Block), NMAB (Northern Madurai Block) as well as their associated complexes from Sri Lankain the WC (Wanni Complex), HC (Highland Complex) and VC (Vijayan Complex). It includes the P-T-t data collected from published literature to define a crustal column and the samples collected as part of the 'case study' on garnets "analytical sample location".

Organisation and Layout

This thesis outlines differing methodologies, their results and their hierarchical position in the overall topographic reconstruction. For the 'Analytical Methods' section, a transect within Southern India was used as a proof-of-concept for obtaining pressure-time data. The methodology outlines the methods applied to these rocks. Along with this, data from different geological provinces was collated from past literature across the areas of the EAO, including from the areas involved with the 'case study' as part of the analytical methodology.

It is important to understand that the purpose of this study is to attempt a new approach to characterise mountain topography in deep time, rather than precisely quantify past topography. Many assumptions with related uncertainties are necessary to carry out this study, which are clearly outlined in the text. The data collected is a separate case study to collect useable pressure-time data across Southern India, which in future can be used to dramatically increase the data needed for paleo-topographic reconstructions.

METHODS

Paleo-elevations are estimated using an isostatic equation at specifically defined areas of the EAO where pressure-time data is extracted from the literature. Using an isostatic equilibrium equation to balance crustal columns from deep time to the present, is undertaken by manually defining physical properties to each of the columns.

Defining the parameters used in the balanced equation was accomplished using past literature from specific locations (geological provinces) across the orogen. These values were highly variable in their quality and reliability. To improve this, a pressure-time workflow was developed coupling Lu–Hf age of garnets (Simpson et al. 2021) with RAMAN spectroscopy of trapped quartz inclusions from samples in Southern India, when undertaking future paleo-topography studies the workflow will keep the dataset obtained consistent. The data collected from both sources will be used to define specific physical properties for the crustal columns used in the isostasy equation (*See Fig. 3*).

The variability in credibility and reliability of data from past literature created difficulty in data collection. The sparsity and integrity of data across important areas in the EAO such as Somalia, Sudan and Kenya was inherently poor. Therefore, results from studies that are credible and reliable across the EAO, will be interpolated to represent a larger regional setting rather than a localised one, as well as neglecting some areas with poor or few data. To counter the difficulties in obtaining certain data, the limitations, assumptions and uncertainties in the collected literature data as well as the analytically obtained data are discussed.

Analytical Approach

To test the proof-of-concept workflow, data from a credible and reliable source is necessary for the application to the isostasy method. This was done using an analytical methodology to obtain pressure-time (P-t) data from single garnets in relevant samples, by coupling laser Lu–Hf ICP-MS/MS with RAMAN spectroscopy analysis of trapping pressures from quartz inclusions in the garnets. A further proposed analysis to estimate independent temperatures through titanium content in quartz inclusions was not undertaken due to time constraints. Instead, for this study we have constrained trapping pressures using estimated temperatures from published literature. This allows for the efficient determination of peak pressure and age of the metamorphic rocks that are garnetbearing. In this study, samples were collected from a transect over Southern India. The transect consists of nine samples and covers garnet bearing rocks across the SGT ranging from the Trivandrum-Nagercoil Block in the south to the Northern Madurai Block in the north (*see Fig. 2*).

Undertaking this study in Southern India is ideal as there is a large amount of good quality thermobarometric studies in the region, which we will use to compare with our study. The results from the samples will also be used in tandem with the developed isostasy method.

GEOCHRONOLOGY

LA-ICP-MS/MS garnet Lu-Hf Geochronology

Lu–Hf age data were collected from in-situ garnet porphryoblasts ranging from 500 μ m to 10000 μ m from seven samples mounted in epoxy resin pucks. All samples were imaged using the M4 TORNADO Micro-XRF in order to reveal any garnet zonation patterns and obtain the relative yttrium content abundance as a proxy for lutetium, using the methodology developed by Simpson et al. (2021). Based on this, seven samples were chosen for analysis via LA-ICP-MS/MS, using a RESOlution/LR ArF 193 Nanometer Excimer Laser and Agilent 8900x ICP-MS/MS. The ablation of garnets was performed in an argon atmosphere with a frequency of 10Hz. A spot size of 120 μ m was used for all the samples with an acquisition time of 110 seconds total. The measured isotopes were ¹⁷⁶Lu, ¹⁷⁶Hf and ¹⁷⁷Hf. The collected age data were processed and calculated in the program LADR (Norris 2018). The samples were corrected to the secondary standard Hogsbo-1 (1039.5 ± 46.8 Ma; MSWD: 0.038) *(see Appendix B)*.

LA-ICP-MS monazite and rutile inclusion in garnet U-Pb Geochronology

Where one sample yielded an uncertainty in Lu–Hf age, U–Pb age data were also collected from monazite and rutile inclusions in a garnet porphryoblast from sample 106-106a to further constrain the age of metamorphism (I06-106 a maf). To avoid any complicated zonation within the garnet, the sample was imaged using a Hitachi SEM. These were analysed using LA-ICP-MS, using the RESOlution/LR ArF 193 Nanometer Excimer Laser and Aligent 8900x ICP-MS. The monazite and rutile grains were analysed in an argon atmosphere with a frequency of 5Hz. A spot size of 43 μ m for rutile and 13 μ m for monazite was used with acquisition time of 120 seconds. The measured isotopes for monazite were ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³⁸U, ²³⁵U and ²³²Th. These age data were processed in the program LADR. The monazite data were corrected to the secondary standard MAdel and the rutile data were corrected to the secondary standard R19(499.94 ± 10 Ma; MSWD: (*see Appendix B*).

RAMAN Spectroscopy Barometry

An analysis using the RAMAN spectroscopy method was performed on samples I06-08, 106-83, 106-106a maf, 106-02 and 106-38. Analyses were conducted using a Witec UHTS 300 spectrometer (holographic gratings of 1,800 grooves/mm) attached to a Witec alpha300 confocal Raman microscope at the Scanning Probe Microscopy Facility, Curtin University. Raman spectra were excited using a 532nm solid state Nd:YAG laser. The spectrometer was initially calibrated to the 520.5 cm⁻¹ of metallic silicon and subsequently calibrated to the 464.8 cm⁻¹ peak of synthetic quartz. The spectra of unstrained (free) crystals of synthetic quartz was measured throughout the analysis session to subsequently calibrate the analytical sessions. The collected spectra were background corrected for the continuum luminescence background. Peak positions, full widths at half maximum (FWHMs), and integrated intensities were determined from fits with pseudo-Voigt functions in Witech Project FOUR. For each of the selected Raman bands the shift in wave number ($\Delta \omega$) was calculated as the difference between the peaks of the analysed inclusion (ω_i) and the peaks of a reference spectra of a free and unstrained quartz crystal (ω_0). Sets of $\Delta\omega$ for each inclusion (modes ω_{128} , ω_{206} , and ω_{464}) have been used to determine strain using the software stRAinMAN (Angel et al. 2019) by employing the Grüneisen tensors for quartz (Murri et al. 2018). Calculation of entrapment pressure and isomekes was conducted in EntraPT, an online MATLAB toolbox (Mazzucchelli, Angel, and Alvaro 2021).

ISOSTASY APPLICATION

Depth Calculation

The results of the analytical methodology detailed above, combined with published literature pressure-time data are needed to effectively test the isostatic equilibrium equation (*see Table 5*). In addition, density data is needed for the crust beneath the surface and the now-eroded crust that lay above the present erosion level (*assumed: see Table 1*). These estimates were collected either directly from the rock geochemistry described by a global geochemical database (Rybach 1988, Jennings et al. 2019, Gard et al 2019, Hasterok et al. 2017, Hasterok et al 2019, Hasterok et al 2021), or from associated density data based on the location in the associated geological province. With these parameters Eq. 1, depth can be determined at any time t_n .

$$P = pgh$$

Where *P* is the pressure of the current rock at surface in pascals, *p* is the estimated compositional density of the current rock at the surface in kg/m^3 (calculated using a weighted mass equation from the global geochemical database; *see Appendix C*), *g* is the gravitational acceleration constant 9.80665 ms^{-2} and *h* is the depth of the crust in kilometres. Inverting this equation, we are able to determine the depth at which the rocks were buried, assuming that there were no non-gravitational forces contributing to the resultant stresses. This ensures that we can determine a modelled depth at which the now exposed rocks were buried into the crust, an important parameter in defining the thickness of the crustal column at time t_n .

Compositional Isostatic Equilibrium

From applying an estimation of depth in deep time, extrapolating a compositional isostatic height estimation is based on applying thicknesses and density data to a modernday crust as well as the eroded crust, which is assumed to have a widely accepted overall compositional density of 2850 kg/m³.

Determining the layout of the modern crustal structure is again based on literature. Seismic survey results across the region were used to define the modern crustal layout. These parameters are used to estimate the compositional density in each layer resulting in a weighted average density of the crust to the Moho (Qureshi 1971; Mooney et al. 1985; Mahatsente, Jentzsch, and Jahr 1999; Rao and Bitragunta 2006; Hansen et al. 2007; Leinweber et al. 2013; Dreiling et al. 2020)(*see Table 4; Appendix C*). The Moho is assumed to be the approximate compensation depth, meaning that this is the theoretical end of the crust in this adaption for each crust (see *Fig. 3*).

When equalising these columns to one another and simplifying the equation we are able to determine the relative displacement in elevation in the crust from time t_n to the modern crust at time t_0 , using Eq. 2, which was a modified equation from the initial isostatic equilibrium equations proposed by Airy (1855) and Pratt (1855; 1859).

$$-\Delta\varepsilon = \frac{(h_{c1}p_{c1} - h_{c2}p_{c2})}{p_m} - h_{c1} + h_{c2}$$

Where $\Delta \varepsilon$ is the relative change in height (km) from t_n to t_0 , $h_{c1} \& h_{c2}$ are the crustal thicknesses of the crustal columns at t_n and t_0 , $p_{c1} \& p_{c2}$ are the associated densities to the individual crustal columns and p_m is the approximate density of the mantle (3330 kg/m^3).

Figure 3: Schematic diagram detailing the compositional isostatic equilibrium equation for both crustal columns C1 the ancient crust and C2 the modern crust and the parameters used to define them. P, is pressure, p is the density, g is the gravity acceleration constant,

Description	Assumed/*Calculated Value	Parameter
Eroded crust homogenous density	2850 kg/m³	p _{cn}
Mantle constant density	3330 kg/m ³	p_m
Gravitational Acceleration constant	9.80665 m/s ²	g
Weighted density and crustal thickness profile	*From Crustal Structure Seismic Profiles	p _{c2} ; W _{c2}
Modern Moho depth	*from Crustal structure Seismic Profiles	h _{c2}
Ancient depth in crust	*from the depth equation (surface density and associated pressures)	h _{cn}

Table 1: Assumed/Calculated values for parameters used to calculate the compositional isostasy from *Eq.1* and *Eq.2*.

This equation (*Eq. 2*) produces a basic elevation referred to as the compositional isostatic elevation, which is the relative difference of the eroded mountains to the current crust after accounting for isostasy. This has had no corrections based on its thermal isostasy, base height from seismic surveys or errors calculated and defined for the height itself. The thermal isostasy is calculated using past temperature data obtained at depth (P-T-t) as well as the thermal conductivity and heat production in each of the layers of the modern crust and the ancient crust. The methodology that should be considered in future studies is detailed below.

THERMAL ADJUSTMENT

The compositional isostasy based on the density for each of the profiles first defined by Pratt then Airy in 1855, produces unadjusted models to their thermal state, which allows for the buoyancy of the crustal columns to be corrected slightly based on their approximate geotherm. Hence, this should produce elevations slightly higher than those calculated from the compositional densities.

Thermal Isostasy

Calculation of two geotherms are needed for each of the crustal columns, a regional geotherm as well as a reference geotherm. An approximate elevation gradient can be calculated the difference between two lithospheric thermal states, from which an approximated depth change can be calculated, thus allowing for a correction to the compositional isostasy.

The thermal isostasy geotherm difference equation is listed below.

$$\Delta \varepsilon_T = a_v \int_{z_0}^{z_{max}} \left[T(z) - T_{ref}(z) \right] dz$$

Where a_{ν} is the thermal expansion coefficient, z_{max} is the maximum depth of integration or the point at which both geotherms have reached the mantle adiabat, $T_{ref}(z)$ is the geotherm calculated for a reference column (C1), T(z) is the regional geotherm calculated for (C2) and $\Delta \varepsilon_T$ is the elevation change for the thermal isostasy.

To calculate the geotherms a simple temperature relationship with depth was developed in a 1-D layered model (Chapman 1986).

$$T_n = T_0 - q_0 \Delta z \sum_{i=1}^n \frac{1}{k_i} + \sum_{i=1}^n \frac{A_i}{2k_i} \Delta z^2 - \frac{\Delta z^2}{2} \sum_{i=1}^{n-1} \frac{(\sum_{j=1}^i A_i)}{k_{i+1}}$$

This calculates the temperature at depth to the n^{th} layer in conjoined steps, where T_0 is the temperature at the surface, A_i is the heat production of the layer, k_i is the layer thermal conductivity, Δz is the depth extent, g_0 is the heat flow at the surface calculated from current databases and n is the consecutive layer number. These parameters were calculated from their rock compositions from the global geochemical database. Adjusting the initial compositional isostasy to its thermal correction is just an addition onto the initial elevation calculation.

For the ancient crust, however, the only information available are the metamorphic P-T conditions. Therefore, an inversion of the typical equation *(See below)* is needed to obtain the surface heat flow for the hypothetical eroded crust which was developed assuming a felsic-dominated continental crust.

$$q_{0} = \frac{T_{n} - T_{0} + \Delta z^{2} \sum_{i=1}^{n-1} \frac{\sum_{j=1}^{i} A_{j}}{k_{i+1}} + \frac{\Delta z^{2}}{2} \sum_{i=1}^{n} \frac{A_{i}}{k_{i}}}{\Delta z \sum_{i=1}^{n} \frac{1}{k_{i}}}$$

Error Calculation

Errors were calculated using the individual parameter errors for pressure, temperature, model thermal conductivity, model heat production, model densities and crustal thickness. This uncertainty will be used to show where some calculations can be relatively unaffected or where the collection of data must be improved in future studies. It also highlights where some assumptions can have large effects.

OBSERVATIONS AND RESULTS

Analytical Method Results

GEOCHRONOLOGY

Lutetium-Hafnium Geochronology

All data can be found in the supplementary material. Analyses were targeted using the yttrium dispersion in the garnets outlined by TXRF scans. The results for samples I06-08, I06-83, I06-02 and I06-38 yielded appropriate ages (*Fig. 5; Fig. 6*). The other samples analysed, however, returned highly imprecise ages. This was interpreted as being due to the garnets experiencing extreme temperatures allowing the diffusive loss of hafnium. The ages also may have been affected by inclusions within the garnet. All samples produced ages between ~650–550 Ma, apart from I06-02 which produced an irregular age of Paleoproterozoic age (*see Table 2*).

Sample Number	Location	Lithology	Latitude	Longitude	Age (Ma)	MSWD	n
106-08	Trivandrum Block	Granulite Facies Metapelitic Schist	9.012306	76.877417	591.0 ± 28.3	1.1	65
106-02	Trivandrum Block	Granulite Facies Metapelitic Gneiss	8.602944	76.952694	1923.9 ± 159.7	1.2	77
106-83	Northern Madurai Block	Granulite Facies Metabasic Schist	10.281639	77.534361	601.5 ± 52.6	1.1	49
106-38	Southern Madurai Block	Granulite Facies Metapelitic Gneiss	9.442222	77.5935	578.0 ± 131.3	1.1	60

Table 2: Table summary showing the samples analysed from the Lu-Hf garnet dating technique

Figure 4: Tornado XRF imaging of dispersed yttrium content across zones in garnet samples used for the Lu–Hf dating method. Red is the concentration of the yttrium across the garnet. 106-83 shows a significant concentration around the rim of the garnet, but lacks yttrium content in the core. 106-08 does not show any yttrium zonation, rather a homogenous concentration throughout. 102-02 shows an erratic zonation with what seems to be multiple zones around a low yttrium concentration core. 106-106a maf shows yttrium concentration on inclusions within the garnet, not the actual garnet mineral. 106-38 alike sample 106-08 shows a homogenous yttrium concentration throughout the garnet.

Figure 5: Above: Whole garnet (all zones) Lu/Hf isochron was calculated for sample I06-08, No omitted laser ablation spots, Below: Whole garnet (all zones) Lu/Hf isochron was calculated for sample I06-83, two omitted ablation spots based on uncertainty in errors.

Figure 6: Above: whole garnet (all zones) Lu–Hf isochron was calculated from sample 106-38, no omitted ablation spot. Below: Whole garnet (all zones) Lu–Hf isochron was calculated from sample 106-02, ablation spots omitted, presented as part of a newly discovered age.

Uranium-Lead monazite and rutile inclusions in Garnet

Monazite and rutile inclusions within garnet were analysed (U–Pb) to confirm the Lu– Hf age, which yielded a large uncertainty from sample I06-106a maf. These were imaged on the SEM to ensure the recognition of complex zoning in the minerals (*Fig 7; Fig 8*). These data have been summarised in *Table 3 (Fig.9; Fig. 10; Fig.11)*. Raw data

Sample Number	Location	Lithology	Latitude	Longitude	Mineral	Age (Ma)	MSWD	Ν
106-106a maf	Palghat- Cauvery Shear Zone	Granulite Facies Metapelitic Gneiss	11.135694	78.047944	rutile	452.9 ± 2.77	1.75	12
					monazite	535.4 ± 1.4	1.33	39

Table 3: Table summary of sample I06-106a monazite and rutile (²⁰⁶Pb/²³⁸U) weighted mean ages.

Figure 7: CL imaging of rutile inclusions in garnet sample I06-106a maf, indicating the most concordant rutile grains and their individual laser spots.

Figure 8: CL imaging of monazite inclusions in garnet sample I06-106a maf, indicating the most concordant monazite grains with their individual laser spots.

Figure 9: U/Pb concordia diagram calculated from monazite grains in sample IO6-106a Maf, all laser ablation spots used, no omitted data.

Figure 10: Calculated (206 Pb/ 238 U) weighted mean with no omitted data, error bars are 2σ in range.

Figure 11: U/Pb Weighted mean calculated from rutile grains in garnet I06-106a (mafic), outlined from most 206 Pb/ 238 U to the least, the omitted results unshaded are results are quoted by the 2σ range (grey shaded area).

RAMAN Spectroscopy Barometry

Samples I06-08 and I06-83 both produced reasonable results for the RAMAN spectroscopy barometery at temperatures calculated from published data in the Trivandrum and Madurai Blocks respectively (Collins et al. 2007; Prakash, Prakash, and Sachan 2010; Taylor et al. 2014; Harley and Nandakumar 2016). The results are summarised in *Table 4*. The other samples (I06-02, I06-38 and I06-106a maf), however, were fractured to varying degrees, which may have resulted in lower enclosed strains.

Figure 12: P-T isomekes for sample I06-83 calculated using RAMAN Spectroscopy of quartz inclusions, with the temperatures from the published literature (Collins et al. 2007; Prakash, Prakash, and Sachan 2010) as overlays for identifying possible pressures at peak P-T conditions.

Figure 13: P-T isomekes for sample I06-08 calculated using RAMAN Spectroscopy of quartz inclusions, with the temperatures from the published literature in the Trivandrum Block (Taylor et al. 2015; Harley and Nandakumar 2016) as overlays for identifying possible pressures at peak P-T conditions

ISOSTASY RESULTS

Sample Number	Location	Latitude	Longitude	Pressure (kbar)	Err (kbar)	Depth (km)	Compositional Elevation (km)
106-08	Trivandrum Block	9.012306	76.877417	14	5	51.92	7.08
106-83	Northern Madurai Block	10.281639	77.534361	12.5	2	48.04	6.55

Compositional Isostasy Results

Table 4: Table summary detailing the pressure results for RAMAN spectroscopy using a maximum temperature of 950–1100°C for sample 106-83 (Collins et al. 2007; Prakash, Prakash, and Sachan 2010), and a maximum temperature of 900–950°C (Taylor et al. 2014; Harley and Nandakumar 2016). As well as the depths associated and the relative elevation after adjustment for isostasy.

Flynn Cameron Topographic Reconstruction: East African Orogen

Final Data Table	Peak Age (Ma)	Err (Ma)	Press. (Kbar)	Err (Kbar)	Depth (Km)	Elevation Gradient (km)	Modern Elevation Correction	Reference	Seisimc Profile Reference
India, Madagascar & Sri Lanka	521	21	9.1	0.2	33.37	3.62	3.62	Jons et al, 2006	Rindraharisaona et al. 2017
	534	44	11.2	1.8	42.15	4.99	5.54	Jons & Schenk 2011	Rindraharisaona et al. 2017
	612.3	4.8	12.8	2.2	48.42	5.41	6.83	Jons & Schenk 2007	Rindraharisaona et al. 2017
	539	6	8.7	0.7	34.36	3.64	4.21	Raase & Schenk, 1994, Kroner & Williams 1993	Dreiling et al. 2020
	539	6	6.05	0.85	24.27	2.34	2.45	Raase & Schenk, 1995	Dreiling et al. 2020
	535	4.9	11.5	1.5	39.38	5.37	7.13	Collins et al 2007	Vijaya Rao et al. 2006
	521	8	11.15	1.05	41.50	5.66	5.85	Prakash et al, 2010	Vijaya Rao et al. 2006
	544	5	6.4	0.2	36.93	5.04	5.09	Harley & Nandakumar 2016	Vijaya Rao et al. 2006
	546.7	5.9	11	2	44.50	6.07	7.14	Li et al. 2020	Vijaya Rao et al. 2006
Arabian Nubian Shield	760		7.15	0.35	26.06	2.15	2.97	Abu El-Rus et al 2008	Mooney ad Healey, 1986
	632	3	4.5	0.5	16.13	0.91	1.57	Eliwa, Abu El- Einen, Kahlaf and Murata 2008, Stern and Manton 1987	Hansen et al. 2007
	676		5.4	0.8	17.93	1.15	1.82	Abu-Alam et al 2014	Hansen et al. 2007
	620	6	5.6	0.3	21.15	1.59	2.26	Abu-Alam et al 2014	Hansen et al. 2007
	750		5.35	1.55	24.74	2.08	2.75	Abu-Alam et al 2014	Hansen et al. 2017
	635	15	4.8	1.2	14.34	0.66	1.33	Abu-Alam et al 2014	Hansen et al. 2017
	587		7.5	0.5	29.06	3.97	4.47	Whitehouse and Abu-El- Einen 2014	Saleh et al. 2006
	632	3	4.95	0.95	16.26	2.22	2.59	Eliwa, Abu El- Einen, Kahlaf and Murata 2008, Stern and Manton 1987	Qureshi 1971

Flynn Cameron Topographic Reconstruction: East African Orogen

	625	5	4.6	0.3	16.36	1.43	1.93	Abu Sharib et al. 2013	Saleh et al. 2006
	582	0.2	7.5	0.5	27.74	3.00	3.34	Stern 2018	Saleh et al. 2006
	593	4	7	0.5	24.79	2.68	3.16	Stern 2018	Saleh et al. 2006
	620	6	5.8	0.1	21.43	1.66	2.16	Elisha, Katzir and Kylander- Clark 2017	Hansen et al. 2007
	625		5.5	0.5	19.88	1.25	1.74	Jarrar et al. 2013	Hansen et al. 2007
	602		5.75	0.25	18.91	1.06	1.45	Karmaker and Schenk (2015b)	Hansen et al. 2007
	593	5	8	0.5	27.51	2.94	4.53	Andersson et al. 2006	Mahatsente et al. 1999
	593	5	9	0.5	31.32	3.45	5.12	Andersson et al. 2007	Mahatsente et al. 2000
	590	6	8.2	1	28.53	3.07	4.74	Johnson et al. 2004	Mahatsente et al. 1999
	533	12	8.1	2.1	28.19	3.03	4.70	Johnson et al. 2004	Mahatsente et al. 1999
	604	6	8.6	2.2	29.93	3.26	4.93	Johnson et al. 2004	Mahatsente et al. 1999
Mozambique Belt	629	6.8	10.9	0.2	39.17	4.16	4.16	Hauzenberger et al. 2005, Hauzenberger et al 2007	Simyu and Keller. 1994
	644	15	12	0.3	43.13	4.69	4.69	Hauzenberger et al. 2005, Hauzenberger et al 2007	Simyu and Keller. 1994
	638	1.8	7.88	0.1	28.32	2.68	2.68	Hauzenberger et al. 2005, Hauzenberger et al. 2007	Simyu and Keller. 1994
	640		12.5	0.5	46.72	5.18	5.18	Sommer et al, 2003	Simyu and Keller. 1994
	635	15	10.25	0.75	39.53	4.20	4.20	Appel et al, 1998	Simyu and Keller. 1994
	593	20	11	3.5	41.63	4.59	4.59	Boniface and Schenk 2012	Simyu and Keller. 1994
	642	0.9	8.5	2.5	55.49	6.44	6.44	Sommer, Kroner and Iowry 2017	Simyu and Keller. 1994
	557	16	15.7	1.4	56.42	7.69	7.69	Engvik et al, 2007	Thor Leinweber et al. 2013
	575	1	12.3	1.5	54.27	7.40	7.40	Engvik et al, 2007, Kroner 2001 (AGE)	Thor Leinweber et al. 2013

555	11	9.2	1.8	34.86	4.75	4.75	Viola et al 2009	Thor Leinweber et al. 2013
596	11	11.8	1.8	50.31	6.86	6.86	Viola et al 2009	Thor Leinweber et al. 2013

Table 5: Compositional isostasy calculations for the data collected from the published data across the areas of the EAO, corrected where necessary to the modern elevation above sea level detailing the relevant data sources of the P-t and density data associated with the definition of the crustal columns. The *Fig. 14-16 (reconstructions)* use this data.

Parameter		
Pressure	Change (kbar)	Resultant Change Elevation (km)
	1	0.52
	0.5	0.26
Density at depth	Change (kg/m ³)	
	50	0.11
	100	0.23
Weighted Modern Crust Density	Change (kg/m ³)	
	50	0.64
	100	1.29

Error Results

 Table 6: Summary table displaying the individual effect of change in each parameter on the resultant elevation after application of the compositional isostasy equation.

DISCUSSION

Uncertainties in data, Assumptions and Limitations

This thesis is a first attempt at calculating elevations for terranes and therefore like any pilot study, assumptions must be made. These assumptions are made at multiple stages within the process. Each parameter used in the building of the crustal column has its own individual assumptions, limitations and uncertainties. Understanding these assumptions, limitations and uncertainties is as important as the model itself and therefore, will be discussed below.

P-T CONDITIONS

The P–T conditions were collated from published literature and from this comes a level of uncertainty. Many of the terranes have had little work done on them, and often the studies undertaken have used outdated methods, or do not provide the information required to effectively control the quality of data. In some cases, determining whether the quoted age represents peak metamorphism is difficult to ascertain due to the ambiguity within the literature. It is important to also note, that in some published literature data, extremely low geothermal gradients were avoided, as they likely represent evidence for subduction-zone metamorphism, which do not represent a crust in isostatic equilibrium.

When applying the isostasy equation to the dataset, caution was taken through accounting for the uncertainties on each parameter involved and how each parameter separately changes the final result *Table 6*.

Large regions of the EAO lacked adequate metamorphic data, or metamorphic data linked to age constraints. This limits the regional resolution of this study. Additionally the peak pressures used are assumed to be an exclusive result of gravitational forces alone in Eq. 1. No non-gravitational forces were accounted for in the collisional environment. Adjusting the result to account for these forces should be considered in future studies of this nature. A summary of the assumed parameters is found in the methods (*see Table 1*).

ASSUMPTIONS ON THE CRUSTAL STRUCTURE AND COMPOSITION

The composition of the crustal columns were determined via the use of crustal structure analysis of seismic surveys for the modern crust. This allowed for observed estimation of the physical properties through the crust, including changes in layer thickness. The interpolation of the P-T data discussed above is used to identify the area, the metamorphic facies and its composition, this allows for large areas to be assigned as being at the same depth. To improve upon this assumption and remove this limitation, high quality surface surveys, seismic surveys and mapping of the region should be considered.

The composition of the eroded crust for the ancient crust was estimated simply to be a generic felsic crust with homogenous density (2850 kg/m²), with standard values for thermal conductivity, heat production, heat flow and layer thicknesses (*Appendix C*). The uncertainty in the calculation surrounding changes in each parameter in terms of how they affect the compositional elevations is shown above in *Table 6*.

The compositional isostasy methods have their parameters defined by the composition and layer structure of the crustal columns. Consequentially, a reduction of uncertainty and or limitations on the collection of these parameters is necessary to improve upon the results. To reduce the number and magnitude of assumptions a more detailed understanding of crustal layouts and the geological background is needed.

The Moho depth was assumed to be representative of the total crustal thickness for the modern crust, which was stacked below the hypothetical crustal column based off the depth calculations obtained from the P-t data. The Moho was assumed to be static and to change relative to the modern depth plus the above (eroded) crust. No other factors influencing the Moho depth were taken into consideration.

51

ANALYTICAL APPROACH

Obtaining these parameters manually by applying the 'analytical methodology' also has its assumptions, limitations and uncertainties.

The collection of the pressures calculated from quartz inclusions using RAMAN spectroscopy may not be associated with the peak assemblage, suggesting pressures may not be directly associated with the 'peak age' calculated using the Lu–Hf dating method (Godet et al. 2021).

This study's purpose was to simply characterise pressure-time data from garnets alone. Understanding the full P-T-t history of the mineral assemblages and undertaking petrochronological studies would be preferable, but less practical in collecting numerous spatial data.

COMPOSITIONAL AND THERMAL ISOSTASY

The compositional isostasy results in *Table 5* show elevations with systematic variability based on their input pressures and densities, which give relatively applicable elevations for the reconstructions uncorrected to the thermal isostatic gradient. The uncertainties on these are relatively large and are affected by changes in the pressures, which for every 1 kbar change, there is a change of approx. 0.516 km elevation change. The densities associated with these rocks are less effective on the final elevation for every 50 kg/m³ the final elevation changes by approx. 0.111 km. A change in the total weighted density for the modern crustal column, causes large changes in the elevation greatly in which every 50 kg/m³ change, the final elevation changes by approx. 0.645 km.

The thermal isostasy adjustment can, in theory, adjust the compositional component to account for the thermal effect on the crustal buoyancy. In this study, however, calculating the reference and observed geotherms in a steady state environment is not supported due to a mismatch in heat production between the two crustal columns and the total crustal thickness. To achieve better results on the thermal isostasy, calculating each geotherm needs further study on each of the crustal columns and the thermal properties on the surface rocks must be better constrained.

Model Reconstructions and Elevations of the East African Orogen

The calculated elevations allow for global/regional paleo-geographic reconstructions, which are used to show the associated events in the latter stages. Georeferencing the modern locations to their approximate locations associated with their ages in deep time, details the multistage mountain building events of the EAO. The georeferenced reconstruction is based off a global tectonic (GPLATES) reconstruction from Merdith et al. (2021).

Figure 14: Paleogeographic Reconstruction of the first amalgamation events from ~680ma - 620ma, showing the separate events, involved crustal provinces, the present collision/suture zones along with the paleo-georeferenced elevations (Uncorrected), EDT: Egyptian Desert Terrane, AD: Atmur-Delgo, GG: Gebeit-Gabgaga, TOBA: Tokar-Barka Terranes, WES: Western Ethiopia Shield, SES: Southern Ethiopia Shield, KB: Kibaran Belt, TZC: Tanzania Craton, USB: Usagaran Belt, UBB: Ubendian Belt, BB: Bangwelu Block, IB: Irumide Belt, ZB: Zambesi Belt, SM: Southern Madagascar, CM: Central Madagascar, NM: Northern Madagascar, SGT: Southern Granulite Terrane, TNB: Trivandrum-Nagercoil Block, WC: Wanni Complex, HC: Highland Complex, VC: Vijayan Complex, AC: Antogil Craton, MC: Masora Craton. References for the data sources are listed in *Table 5*.

The earliest prevalent metamorphic data that was inverted is associated with accretionary orogenesis in the EAO that dates back to ~680 Ma. These ages are recorded in samples from across the Arabian-Nubian Shield (*see Table 5*). In the north, the extent and age of metamorphism is associated with the accretion ages of the Afif–Abas Terrane to the previously accreted western ANS platform.

The first paleo-elevation models (*Fig. 14*;~670–650 Ma) coincide with the final accretion and collision of the ANS (Collins et al. 2021). This involved the Afif–Abas microcontinent colliding with the western side of the already accreted ANS terrane, recording peak P-T conditions (in northern ANS) to ~5 kbar and ~600–700°C, which equates to approximately ~17 km depth. Applying this to a modern crust shows crustal thickening estimates of ~45–50 km. From this, the compositional isostasy of the columns suggests an approximate 1.15 km above sea level (see *Fig. 14*).

At approximately ~650–620 Ma, metamorphism was seemingly more widespread throughout the northern ANS, implying a major tectonic reorganisation (Meert 2003; Collins and Pisarevsky 2005). Peak pressures of 4–6 kbar and temperatures of up to 600– 800°C were reported in assemblages across the ANS, causing burial to approximately 15– 22 km depth. Application of this to the modern column produces a crustal thickness of ~44–53 km, and balancing this to a modern crustal column produces elevations from 0.6– 2.2km (*Fig. 14*).

To the south in the Mozambique Belt rocks record higher peak pressures, ranging between 7.8–15 kbar and temperatures of ~750–850°C. Applying this to a crustal column produces crustal thicknesses ranging from ca. 68–93 km. Balancing this to a modern crustal column produces elevations of 2.6–6.5 km height (*Fig. 14*).

Both of these events in the ANS and the MB may have been associated with the continental collision of the Azanian microcontinent in the south with the amalgamated Archean and Paleoproterozoic crustal fragments of the Congo/Angola Plate (Collins and Pisarevsky 2005; Merdith et al. 2021). To the north, the collision did not appear to have the same intensity, but it still resulted in the closure of the ocean basin, separating the ANS from the Archean/Paleoproterozoic crustal fragments of the North Africa plate (Blades et al. 2021).

Figure 15: Paleogeographic Reconstruction of the first amalgamation events from ~680ma - 620ma, showing the separate events, involved crustal provinces, the present collision/suture zones along with the paleo-georeferenced elevations (Uncorrected), EDT: Egyptian Desert Terrane, AD: Atmur-Delgo, GG: Gebeit-Gabgaga, TOBA: Tokar-Barka Terranes, WES: Western Ethiopia Shield, SES: Southern Ethiopia Shield, KB: Kibaran Belt, TZC: Tanzania Craton, USB: Usagaran Belt, UBB: Ubendian Belt, BB: Bangwelu Block, IB: Irumide Belt, ZB: Zambesi Belt, SM: Southern Madagascar, CM: Central Madagascar, NM: Northern Madagascar, SGT: Southern Granulite Terrane, TNB: Trivandrum-Nagercoil Block, WC: Wanni Complex, HC: Highland Complex, VC: Vijayan Complex, AC: Antogil Craton, MC: Masora Craton. References for the data sources are listed in *Table 5*.

From ~620 Ma, published studies show many differing metamorphic constraints across the ANS, with pressures varying from 5.5–8.6 kbar and temperatures from 570–770°C. These have been modelled as depths ranging from 18–31 km. Application of the depths to a crustal column produces crustal thicknesses of ~49–60 km. Balancing this to a modern crust produces elevations ranging from 1–4 km. These are highly variable depending on their position and could be associated with the final amalgamation of the North African Plate, arc amalgamation and/or the movement of the amalgamated ANS towards the converging Azania and Congo/Angola Plates, creating a triple-junction collision at ~600 Ma (*see Fig. 15*).

In the Mozambique Belt, two locations record pressures to 12-14 kbar, modelling burial depths of ~41-50km, which when applied to the crustal column produce a crustal thickness of ~78-90 km. Balancing this to the modern crustal column produces elevations of ~4.6-6.8 km respectively for ages within this time domain. These are associated with the continuation of the Azanian microcontinent's southernmost collision with the Congo/Angola Plate (Collins et al. 2007; Merdith et al. 2021).

Figure 16: Paleogeographic Reconstruction of the first amalgamation events from ~580ma -530ma, showing the separate events, involved crustal provinces, the present collision/suture zones along with the paleo-georeferenced elevations (Uncorrected), WES: Western Ethiopia Shield, SES: Southern Ethiopia Shield, KB: Kibaran Belt, TZC: Tanzania Craton, USB: Usagaran Belt, UBB: Ubendian Belt, BB: Bangwelu Block, IB: Irumide Belt, ZB: Zambesi Belt, SM: Southern Madagascar, CM: Central Madagascar, NM: Northern Madagascar, SGT: Southern Granulite Terrane, TNB: Trivandrum-Nagercoil Block, WC: Wanni Complex, HC: Highland Complex, VC: Vijayan Complex, AC: Antogil Craton, MC: Masora Craton. Also detailing the samples I06-08 and I06-83 compositional isostasy results. References for data sources are listed in *Table 5*. From ~580 the final amalgamation events of Gondwana were underway, producing peak metamorphic assemblages focussed in the MB. However, a second phase of orogenesis is also recorded in the southern ANS (Johnson et al. 2011a). Between ~580–530 Ma the rocks in the Mozambique Belt locally record pressures from 9.7-15.7 kbar, suggesting burial depths of ~34–36 km, Applying this to a crustal column produces a crustal thickness to 79–96 km, which when balanced to a modern crust produces uncorrected elevations ranging from 4.5-7.7 km. This extreme thickening is associated with the initiation of continual collision between the now amalgamated Azania and the Congo/Angola Plate and proto-India (Collins and Pisarevsky 2005; Merdith et al. 2021)(*see Fig. 16*). This is referred to as the Malagasy Orogeny (Collins 2006).

The event between the proto-Indian plate and the southern Azanian microcontinent in Madagascar/Sri Lanka/Modern Southern India at ~540 Ma, record pressures from 7–13 kbar producing depths of ~25–48 km. These correlate to a crustal column with crustal thicknesses ranging from 54–89 km, balancing this to a modern crustal column produces heights ranging from 2.3–6 km for ages associated with this final collision time domain (*Fig. 16*). The areas in the Mozambique Belt also have associated heights with the previous collisions, suggesting these were re-uplifted at the result of this Malagasy Orogeny.

The collision between India and Africa was the final event in the multistage formation of the EAO and thus, the amalgamation of Gondwana. In the north, the accretionary orogenesis in the ANS dominated the early-stage collisions, with mountain formation not exceeding ~2 km elevation until ~620 Ma. At this time, mountains reached ~2–4 km elevation throughout the mid-southern ANS. Further south, in the MB, contemporary summits are modelled to exceed ~7 km elevation. This magnitude of orogenesis lasted through to the ca. 540 Ma Malagasy Orogeny; the final collision to form central Gondwana, which caused a further uplift to similar heights. These elevations are analogous to those found in the modern Himalaya. I suggest that the southern EAO preserves evidence for Himalayan-scale mountain belts over ~100 Myr from ~630–530 Ma due to the two-stage collision as first Azania, then Neoproterozoic India, collided with the core of what is now central Africa.

Figure 17: Schematic Paleo–Reconstructions of the times at which the mountain summits were greatest. During the formation of the Mozambique Belt (~620 Ma) and the Malagasy Orogeny (~540 Ma), Reconstructed from the models above (*Fig. 12; Fig 13*). This is a depiction of what future mountain reconstructions may look like.

THERMAL CORRECTIONS

A thermal correction on all these reconstructions would slightly increase each of the heights, producing higher mountain belts. These corrections, based on the region, would increase the elevations by up to 2 km higher than the compositional elevations.

The Trivandrum and Madurai Blocks of the Southern Granulite Terrain (a Case Study)

AGES AND METAMORPHIC CONDITIONS AND THEIR TECTONIC IMPLICATIONS

The final amalgamation of central Gondwana is widely accepted to be ~550 Ma through the collision of the Paleo-Indian continental crust (Dhawar, Antogil and Masora Cratons) with the Azanian microcontinent and its collision with the Congo craton *(see Fig.16)*. Many of the provinces of southern India record this event including the Trivandrum and the Madurai Blocks of the Southern Granulite Terrain *(see Fig. 2)*.

The Trivandrum Block is an elongate NW–SE trending gneiss complex that forms part of the SGT. It is bounded to the NE by the Anchankovil Shear Zone separating it from the southern Madurai Block and the Nagercoil Block to the SW. Each of these blocks preserve the latest Neoproterozoic to Cambrian (ca. 570–515 Ma) high grade metamorphic and deformational events associated with the amalgamation of eastern Gondwana. For this a peak metamorphic age of 544 ± 5 Ma (Harley and Nandakumar 2016) is comparable to the Lu–Hf garnet ages obtained in this study (I06-08; 591 ± 28.3 Ma). This age is supported by other studies in the Trivandrum block (Singh et al. 2010; Taylor et al. 2014; Taylor et al. 2015; Harley and Nandakumar 2016). The age obtained in this study, however, is slightly older than expected.

Sample IO6-02 from the Trivandrum Block preserves a Lu–Hf garnet age much older age than expected (1923.9 \pm 159.7 Ma). Though this has a large uncertainty, it supports a Paleoproterozoic tectonothermal not yet previously recorded in this area, due to the Neoproterozoic-Cambrian overprint. Harley and Nandakumar (2016) however, suggest that the metasedimentary paragneisses in the Trivandrum Block are polymetamorphic, initially metamorphosed in the Paleoproterozoic in an event preceding

the recognised 1.89–1.85 Ga granitic orthogenesis from the area, with a disconcordant zircon age at 1.92 Ga, providing evidence of this event.

Samples I06-83 and I06-38 are from the Northern Madurai Block, the northernmost province in the SGT. This, much like the Trivandrum Block, experienced metamorphism associated with the final collision in the EAO (~550–530 Ma). Studies in this area reveal peak metamorphic ages from metamorphic zircons of 535 ± 4.9 Ma (Collins et al. 2007). Lu–Hf garnet ages from these samples however, preserve relatively unprecise Neoproterozoic ages (I06-83, 601.5 \pm 52.6 Ma; I06-38, 578.0 \pm 131.3). Interpretations made from these data are, therefore, not precise enough to distinguish between the previous Azania–Congo collision (~650-550 Ma) or the widely recognised India–Azania/Congo collision (~550–530 Ma).

All the Lu–Hf results for the Neoproterozoic–Cambrian event produced ages of around ~600ma from analysis of whole garnets. All of these ages are interpreted to be the prograde-peak condition metamorphic ages and assumed to be associated with pressures calculated from the RAMAN spectroscopy (Godet et al. 2021).

Sample I06-106a maf from the Palghat Cauvery shear zone to the north of the Madurai Block did not produce precise Lu–Hf age data. However, the garnet contained monazite and rutile inclusions, these were dated to yield more precise ages of garnet growth across the P-t pathway. The monazites age of 535.41 ± 1.37 , is interpreted to be a prograde–peak phase in the metamorphic pathway. This age is supported by previous work from these localities (Collins et al. 2007; Prakash 2008; Prakash, Prakash, and Sachan 2010) which recorded peak metamorphic ages of ~540 Ma. The rutile inclusions in garnet yield a U–Pb age of 452.9 ± 2.77 Ma, which is ~80 Myr younger than the monazite ages and likely represents a cooling age, whereby the associated collisional

regime maintained its temperature at depth before cooling and disallowing further diffusion of Pb from the rutile, or alternatively may have undergone a reheating event (Kooijman et al. 2011; Zhang et al. 2014).

The age of metamorphism associated with this collision is interpreted to be the age of its prograde-peak conditions (Godet et al. 2021). Through RAMAN spectroscopy, peak pressures from samples I06-08 and I06-83 in the Trivandrum and Northern Madurai Blocks were calculated for their associated ages discussed above (I06-83, 601.5 ± 52.6 Ma, 591.0 ± 28.3 Ma. The quartz inclusions for sample I06-08 produced approximate peak pressures of ~14 +/- 5 kbar at constant temperatures of ~900°C- 950°°C, based on the thermometry presented in (Harley and Nandakumar 2016; Taylor et al. 2015; Taylor et al. 2014). The pressures lie within error of pressures calculated from thermobarometric studies in the Trivandrum Block and result in depths to approx. 50km, thus resulting in the relative elevation reaching approx. 7.5 km elevation.

The inclusions from I06-83 produced approximate peak pressures of $\sim 12.5 \pm -3$ kbar at a constant temperature of $\sim 950-1100$ °C based on the thermometry studies undertaken in the Northern Madurai Block by (Prakash, Prakash, and Sachan 2010; Collins et al. 2007). This produces depths of ~ 36 km depth, producing isostatic elevations reaching ~ 5.1 km.

CONCLUSION

- The compositional isostasy calculates accurate bulk reconstructed elevations with the uncertainty weighing on the involved individual parameter errors e.g. pressure.
- The thermal component, in theory would make the crust more buoyant, thus the correction applied to the compositional isostasy would slightly increase the elevations calculated. In future studies the thermal isostasy should be calculated to account for all isostasy variables.
- The analytical workflow developed can be applied to any metamorphic rock bearing garnets. The potential of this workflow is significant and can be used as an efficient tool for collection of pressure-time data in large scale tectonic/topographic reconstructions.
- In terms of this study on the EAO, the outcomes distinctly show that paleoelevations can be produced. When applying the method in future studies, however, consideration into the reduction of the assumptions, limitations and uncertainties must be taken into account. The analysis of the assumptions, limitations and uncertainties outlines where parts of this methodology can be improved by a more in depth review of the literature from the region as well as conducting surveys across the region of interest.

- The overall elevations across the amalgamation of Gondwana reveal that some areas in the EAO may have reached to similar heights to the Himalayas possibly even higher, thus confirming that the amalgamation event could be a collision style producing heights similar to that of the Himalayas.
- In the Arabian-Nubian Shield the results show much lower elevations up to 3 km from ~750 through to 600 Ma.
- In the Mozambique Belt and Madagascan/Indian belts much higher elevations were reached.
 - From ~630 Ma elevations in the Mozambique belt reached heights of up to ~7.5 km, through the coming together of the Azanian microcontinent and the Congo/Angola plate (*see Fig. 17*).
 - From ~540 Ma the formation of mountains in India and Madagascar reached elevations of up to ~8 km at result of the Malagasy Orogeny (Collins 2006)(*see Fig. 17*).
- These first paleo-topographic reconstructions show that the large-scale topography associated with the latter collisions in the amalgamation of Gondwana, may have played a significant role in the changes of climate throughout the Neoproterozoic-Cambrian time period.

ACKNOWLEDGMENTS

I would like to give my biggest thanks to supervisors Prof. Alan Collins and Dr. Derrick Hasterok, for their invaluable support, guidance and lifelong teachings they have given through the course of this project. Dr. Morgan Blades, is thanked for her continual academic inspiration, scientific and emotional support throughout the year. Prof. Chris Clark and Sean Makin from Curtin University are thanked for their help with the RAMAN spectroscopy they conducted on samples. Alex Simpson is thanked for his help with Lu–Hf LA-ICP-MS/MS analyses and data processing. Mitchell Bockman is thanked for his support with SEM imaging and LA-ICP-MS analysis of samples. Dr. Ben Wade and Dr. Sarah Gilbert are thanked for their help and with Tornado XRF and LA-ICP-MS analyses of samples. I would also like to thank the honours cohort for making the final year of undergrad a memory I will never forget.
REFERENCES

- Abu El-Enen, Mahrous M., and Martin J. Whitehouse. 2013. 'The Feiran–Solaf metamorphic complex, Sinai, Egypt: Geochronological and geochemical constraints on its evolution', *Precambrian Research*, 239: 106-25.
- Abu Sharib, Ahmed, Ayman Maurice, Yasser Abd El-Rahman, Ioan Sanislav, B. Schulz, and Bottros Bakhit. 2018. 'Neoproterozoic arc sedimentation, metamorphism and collision: Evidence from the northern tip of the Arabian-Nubian Shield and implication for the terminal collision between East and West Gondwana', *Gondwana Research*, 66: 13-42.
- Abu-Alam, T. S., M. Hassan, K. Stüwe, S. E. Meyer, and C. W. Passchier. 2014.
 'Multistage Tectonism and Metamorphism During Gondwana Collision: Baladiyah Complex, Saudi Arabia', *Journal of Petrology*, 55: 1941-64.
- Airy, George Biddell. 1855. 'III. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys', *Philosophical Transactions of the Royal Society of London*, 145: 101-04.
- Andersson, U. B., W. Ghebreab, and M. Teklay. 2006. 'Crustal evolution and metamorphism in east-central Eritrea, south-east Arabian-Nubian Shield', *Journal* of African Earth Sciences, 44: 45-65.
- Angel, R. J., M. Murri, B. Mihailova, and M. Alvaro. 2019. 'Stress, strain and Raman shifts', *Zeitschrift Fur Kristallographie-Crystalline Materials*, 234: 129-40.
- APPEL, P., A. MÖLLER*, and V. SCHENK. 1998. 'High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania: P-T-t evidence against granulite formation by continent collision', *Journal of Metamorphic Geology*, 16: 491-509.
- Bingen, B., J. Jacobs, G. Viola, I. H. C. Henderson, Ø Skår, R. Boyd, R. J. Thomas, A. Solli, R. M. Key, and E. X. F. Daudi. 2009. 'Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly', *Precambrian Research*, 170: 231-55.
- Blades, Morgan L., Alan S. Collins, John Foden, Justin L. Payne, Kurt Stüwe, Tamer Abu-Alam, Farid Makroum, and Mahmoud Hassan. 2021. 'Age and hafnium isotope evolution of Sudanese Butana and Chad illuminates the Stenian to Ediacaran evolution of the south and east Sahara', *Precambrian Research*, 362: 106323.
- Boger, S. D., W. Hirdes, C. A. M. Ferreira, Bernd Schulte, T. Jenett, and Christopher Fanning. 2014. 'From passive margin to volcano-sedimentary forearc: The Tonian to Cryogenian evolution of the Anosyen Domain of southeastern Madagascar', *Precambrian Research*, 247: 159–86.
- Boniface, Nelson, and Volker Schenk. 2007. 'Polymetamorphism in the Paleoproterozoic Ubendian Belt, Tanzania', *Geochimica et Cosmochimica Acta*, 71: A107.
 - ——. 2012. 'Neoproterozoic eclogites in the Paleoproterozoic Ubendian Belt of Tanzania: Evidence for a Pan-African suture between the Bangweulu Block and the Tanzania Craton', *Precambrian Research*, 208-211: 72-89.
- Boyd, R., Ø Nordgulen, R. J. Thomas, B. Bingen, T. BjerkgåRd, T. Grenne, I. Henderson,
 V. A. Melezhik, M. Often, J. S. Sandstad, A. Solli, E. Tveten, G. Viola, R. M.
 Key, R. A. Smith, E. Gonzalez, L. J. Hollick, J. Jacobs, D. Jamal, G. Motuza, W.
 Bauer, E. Daudi, P. Feitio, V. Manhica, A. Moniz, and D. Rosse. 2010. 'THE

GEOLOGY AND GEOCHEMISTRY OF THE EAST AFRICAN OROGEN IN NORTHEASTERN MOZAMBIQUE', *South African Journal of Geology*, 113: 87-129.

- Chamberlin, TC. 1899. 'An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis (continued)', *The Journal of Geology*, 7: 667-85.
- Chapman, D. S. 1986. 'Thermal gradients in the continental crust', *Geological Society, London, Special Publications*, 24: 63-70.
- Clark, Chris, Alan S. Collins, Richard J. M. Taylor, and Martin Hand. 2020. 'Isotopic systematics of zircon indicate an African affinity for the rocks of southernmost India', *Scientific Reports*, 10: 5421.
- Collins, Alan S. 2006. 'Madagascar and the amalgamation of Central Gondwana', *Gondwana Research*, 9: 3-16.
- Collins, Alan S., Morgan L. Blades, Andrew S. Merdith, and John D. Foden. 2021. 'Closure of the Proterozoic Mozambique Ocean was instigated by a late Tonian plate reorganization event', *Communications Earth & Environment*, 2: 75.
- Collins, Alan S., Chris Clark, and Diana Plavsa. 2014. 'Peninsular India in Gondwana: The tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts', *Gondwana Research*, 25: 190-203.
- Collins, Alan S., Chris Clark, K. Sajeev, M. Santosh, David E. Kelsey, and Martin Hand. 2007. 'Passage through India: the Mozambique Ocean suture, high-pressure granulites and the Palghat-Cauvery shear zone system', *Terra Nova*, 19: 141-47.
- Collins, Alan S., and Sergei A. Pisarevsky. 2005. 'Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens', *Earth-Science Reviews*, 71: 229-70.
- Dreiling, Jennifer, Frederik Tilmann, Xiaohui Yuan, Christian Haberland, and S. W. Mahinda Seneviratne. 2020. 'Crustal Structure of Sri Lanka Derived From Joint Inversion of Surface Wave Dispersion and Receiver Functions Using a Bayesian Approach', *Journal of Geophysical Research: Solid Earth*, 125: e2019JB018688.
- Elisha, Bar, Yaron Katzir, and Andrew Kylander-Clark. 2017. 'Ediacaran (~620Ma) high-grade regional metamorphism in the northern Arabian Nubian Shield: U-Th-Pb monazite ages of the Elat schist', *Precambrian Research*, 295: 172-86.
- Eliwa, Hassan, Mahrous Abu El-Enen, I. Khalaf, Tetsumaru Itaya, and Mamoru Murata. 2008. 'Metamorphic evolution of Neoproterozoic metapelites and gneisses in the Sinai, Egypt: Insights from petrology, mineral chemistry and K–Ar age dating', *Journal of African Earth Sciences - J AFR EARTH SCI*, 51: 107-22.
- Engvik, Ane K., Einar Tveten, and Arne Solli. 2019. 'High-grade metamorphism during Neoproterozoic to Early Palaeozoic Gondwana assembly, exemplified from the East African Orogen of northeastern Mozambique', *Journal of African Earth Sciences*, 151: 490-505.
- Fritz, H., M. Abdelsalam, K. A. Ali, B. Bingen, A. S. Collins, A. R. Fowler, W. Ghebreab, C. A. Hauzenberger, P. R. Johnson, T. M. Kusky, P. Macey, S. Muhongo, R. J. Stern, and G. Viola. 2013. 'Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution', *Journal of African Earth Sciences*, 86: 65-106.
- Goddéris, Yves, Yannick Donnadieu, Sébastien Carretier, Markus Aretz, Guillaume Dera, Mélina Macouin, and Vincent Regard. 2017. 'Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering', *Nature Geoscience*, 10: 382-86.

- Godet, Antoine, Carl Guilmette, Loic Labrousse, Matthijs A. Smit, Jamie A. Cutts, Donald W. Davis, and Marc-Antoine Vanier. 2021. 'Lu–Hf garnet dating and the timing of collisions: Palaeoproterozoic accretionary tectonics revealed in the Southeastern Churchill Province, Trans-Hudson Orogen, Canada', *Journal of Metamorphic Geology*, 39: 977-1007.
- Halverson, Galen P., Matthew T. Hurtgen, Susannah M. Porter, and Alan S. Collins. 2009.
 'Chapter 10 Neoproterozoic-Cambrian Biogeochemical Evolution.' in Claudio Gaucher, Alcides N. Sial, Hartwig E. Frimmel and Galen P. Halverson (eds.), *Developments in Precambrian Geology* (Elsevier).
- Hansen, Samantha, James Gaherty, Susan Schwartz, Arthur Rodgers, and A. Al-Amri. 2007. 'Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis', *Journal of Geophysical Research*, 113.
- Harley, Simon, and V. Nandakumar. 2016. 'New evidence for Palaeoproterozoic High Grade Metamorphism in the Trivandrum Block, Southern India', *Precambrian Research*, 280.
- Hasterok, Derrick, and David S. Chapman. 2007. 'Continental thermal isostasy: 1. Methods and sensitivity', *Journal of Geophysical Research: Solid Earth*, 112.
- Hauzenberger, Christoph A., Jörg Robl, and Kurt StÜWe. 2005. 'Garnet zoning in high pressure granulite-facies metapelites, Mozambique belt, SE-Kenya : constraints on the cooling history', *European Journal of Mineralogy*, 17: 43-55.
- Hauzenberger, Christoph A., Holger Sommer, Harald Fritz, Andreas Bauernhofer, Alfred Kröner, Georg Hoinkes, Eckart Wallbrecher, and Martin Thöni. 2007a. 'SHRIMP U–Pb zircon and Sm–Nd garnet ages from the granulite-facies basement of SE Kenya: evidence for Neoproterozoic polycyclic assembly of the Mozambique Belt', *Journal of the Geological Society*, 164: 189-201.
 - ——. 2007b. 'SHRIMP U–Pb zircon and Sm–Nd garnet ages from the granulite-facies basement of SE Kenya: evidence for Neoproterozoic polycyclic assembly of the Mozambique Belt', *Journal of the Geological Society*, 164: 189.
- Hilton, Robert G., and A. Joshua West. 2020. 'Mountains, erosion and the carbon cycle', *Nature Reviews Earth & Environment*, 1: 284-99.
- Hoffman, Paul F., Dorian S. Abbot, Yosef Ashkenazy, Douglas I. Benn, Jochen J. Brocks, Phoebe A. Cohen, Grant M. Cox, Jessica R. Creveling, Yannick Donnadieu, Douglas H. Erwin, Ian J. Fairchild, David Ferreira, Jason C. Goodman, Galen P. Halverson, Malte F. Jansen, Guillaume Le Hir, Gordon D. Love, Francis A. Macdonald, Adam C. Maloof, Camille A. Partin, Gilles Ramstein, Brian E. J. Rose, Catherine V. Rose, Peter M. Sadler, Eli Tziperman, Aiko Voigt, and Stephen G. Warren. 2017. 'Snowball Earth climate dynamics and Cryogenian geology-geobiology', *Science Advances*, 3: e1600983.
- Huntly Cutten, Simon P. Johnson, and Bert De Waele. 2006. 'Protolith Ages and Timing of Metasomatism Related to the Formation of Whiteschists at Mautia Hill, Tanzania: Implications for the Assembly of Gondwana', *The Journal of Geology*, 114: 683-98.
- Jacobs, J., W. Bauer, and C. M. Fanning. 2003. 'Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica', *Precambrian Research*, 126: 27-53.

- Jarrar, Ghaleb, Thomas Theye, Najel Yaseen, Martin Whitehouse, Victoria Pease, and Cees Passchier. 2013. 'Geochemistry and P–T–t evolution of the Abu-Barqa Metamorphic Suite, SW Jordan, and implications for the tectonics of the northern Arabian–Nubian Shield', *Precambrian Research*, 239: 56-78.
- Johnson, P. R., A. Andresen, A. S. Collins, A. R. Fowler, H. Fritz, W. Ghebreab, T. Kusky, and R. J. Stern. 2011a. 'Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen', *Journal of African Earth Sciences*, 61: 167-232.
- Johnson, Peter, Arild Andresen, Alan Collins, Abdel-Rahman Fowler, Harald Fritz, Woldai Ghebreab, Timothy Kusky, and Bob Stern. 2011b. 'Late Cryogenian– Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen', *Journal of African Earth Sciences - J AFR EARTH SCI*, 61: 167-232.
- Johnson, Timothy E., Teklewold Ayalew, Aberra Mogessie, F. Johan Kruger, and Marc Poujol. 2004. 'Constraints on the tectonometamorphic evolution of the Western Ethiopian Shield', *Precambrian Research*, 133: 305-27.
- JÖNS, N., and V. SCHENK. 2008. 'Relics of the Mozambique Ocean in the central East African Orogen: evidence from the Vohibory Block of southern Madagascar', *Journal of Metamorphic Geology*, 26: 17-28.
- JÖNS, N., V. SCHENK, P. APPEL, and T. RAZAKAMANANA. 2006. 'Two-stage metamorphic evolution of the Bemarivo Belt of northern Madagascar: constraints from reaction textures and in situ monazite dating', *Journal of Metamorphic Geology*, 24: 329-47.
- Jöns, Niels, and Volker Schenk. 2011. 'The ultrahigh temperature granulites of southern Madagascar in a polymetamorphic context: implications for the amalgamation of the Gondwana supercontinent', *European Journal of Mineralogy*, 23: 127-56.
- Karmakar, Shreya, and Volker Schenk. 2015. 'Neoproterozoic metamorphic events along the eastern margin of the East Sahara Ghost Craton at Sabaloka and Bayuda, Sudan: Petrology and texturally controlled in-situ monazite dating', *Precambrian Research*, 269: 217-41.
- Kooijman, Ellen, Dewashish Upadhyay, Klaus Mezger, Michael M. Raith, Jasper Berndt, and C. Srikantappa. 2011. 'Response of the U–Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: The Kadavur anorthosite complex, southern India', *Chemical Geology*, 290: 177-88.
- Kröner, A, I Braun, and P Jaeckel. 1996. 'Zircon geochronology of anatectic melts and residues from a highgrade pelitic assemblage at Ihosy, southern Madagascar: evidence for Pan-African granulite metamorphism', *Geological Magazine*, 133: 311-23.
- Kröner, A., and I. S. Williams. 1993. 'Age of Metamorphism in the High-Grade Rocks of Sri Lanka', *The Journal of Geology*, 101: 513-21.
- Leinweber, Volker Thor, Frauke Klingelhoefer, Sönke Neben, Christian Reichert, Daniel Aslanian, Luis Matias, Ingo Heyde, Bernd Schreckenberger, and Wilfried Jokat. 2013. 'The crustal structure of the Central Mozambique continental margin— Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa', *Tectonophysics*, 599: 170-96.

- Lenton, Timothy M., Richard A. Boyle, Simon W. Poulton, Graham A. Shields-Zhou, and Nicholas J. Butterfield. 2014. 'Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era', *Nature Geoscience*, 7: 257-65.
- Li, Shan-Shan, Richard M. Palin, M. Santosh, E. Shaji, and T. Tsunogae. 2019. 'Extreme thermal metamorphism associated with Gondwana assembly: Evidence from sapphirine-bearing granulites of Rajapalayam, southern India', *GSA Bulletin*, 132: 1013-30.
- Mahatsente, Rezene, Gerhard Jentzsch, and T. Jahr. 1999. 'Crustal structure of the Main Ethiopian Rift from gravity data: 3-dimensional modeling', *Tectonophysics*, 313: 363-82.
- Markl, Gregor, Jürgen Bäuerle, and Djordje Grujic. 2000. 'Metamorphic evolution of Pan-African granulite facies metapelites from Southern Madagascar', *Precambrian Research*, 102: 47-68.
- Mazzucchelli, Mattia Luca, Ross John Angel, and Matteo Alvaro. 2021. 'EntraPT: An online platform for elastic geothermobarometry', *American Mineralogist*, 106: 830-37.
- Meert, Joseph. 2003. 'A synopsis of events related to the assembly of Eastern Gondwana', *Tectonophysics*, 362: 1-40.
- Meert, Joseph G., Rob van der Voo, and Samwel Ayub. 1995. 'Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana', *Precambrian Research*, 74: 225-44.
- Merdith, Andrew S., Simon E. Williams, Alan S. Collins, Michael G. Tetley, Jacob A. Mulder, Morgan L. Blades, Alexander Young, Sheree E. Armistead, John Cannon, Sabin Zahirovic, and R. Dietmar Müller. 2021. 'Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic', *Earth-Science Reviews*, 214: 103477.
- Mills, Benjamin J. W., Yannick Donnadieu, and Yves Goddéris. 2021. 'Spatial continuous integration of Phanerozoic global biogeochemistry and climate', *Gondwana Research*.
- Mills, Benjamin J. W., Alexander J. Krause, Christopher R. Scotese, Daniel J. Hill, Graham A. Shields, and Timothy M. Lenton. 2019. 'Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day', *Gondwana Research*, 67: 172-86.
- Möller, Andreas, Klaus Mezger, and Volker Schenk. 2000. 'U–Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa', *Precambrian Research*, 104: 123-46.
- Mooney, W. D., M. E. Gettings, H. R. Blank, and J. H. Healy. 1985. 'Saudi Arabian seismic-refraction profile: A traveltime interpretation of crustal and upper mantle structure', *Tectonophysics*, 111: 173-246.
- Murri, M., M. L. Mazzucchelli, N. Campomenosi, A. V. Korsakov, M. Prencipe, B. D. Mihailova, M. Scambelluri, R. J. Angel, and M. Alvaro. 2018. 'Raman elastic geobarometry for anisotropic mineral inclusions', *American Mineralogist*, 103: 1869-72.
- Plavsa, Diana, Alan S. Collins, John D. Foden, and Chris Clark. 2015. 'The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India', *Tectonics*, 34: 820-57.

- Prakash, D. 2008. 'UHT metamorphism and its significance in Madurai block, South India'.
- Prakash, D., S. Prakash, and H. K. Sachan. 2010. 'Petrological evolution of the high pressure and ultrahigh-temperature mafic granulites from Karur, southern India: evidence for decompressive and cooling retrograde trajectories', *Mineralogy and Petrology*, 100: 35-53.
- Pratt, Archdeacon, and George Gabriel Stokes. 1859. 'II. On the deflection of the plumbline in India caused by the attraction of the Himalaya mountains and the elevated regions beyond, and its modification by the compensating effect of a deficiency of matter below the mountain mass', *Proceedings of the Royal Society of London*, 9: 493-96.
- Pratt, John Henry, and James Challis. 1855. 'I. On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India', *Philosophical Transactions of the Royal Society of London*, 145: 53-100.
- Qureshi, Iftikhar R. 1971. 'Gravity Measurements in the North-eastern Sudan and Crustal Structure of the Red Sea', *Geophysical Journal International*, 24: 119-35.
- Raase, P., and V. Schenk. 1994. 'Petrology of granulite-facies metapelites of the Highland Complex, Sri Lanka: implications for the metamorphic zonation and the P-T path', *Precambrian Research*, 66: 265-94.
- Rao, V., and Rajendra Bitragunta. 2006. 'Structure and evolution of the Cauvery Shear Zone system, Southern Granulite Terrain, India: Evidence from deep seismic and other geophysical studies', *Gondwana Research - GONDWANA RES*, 10: 29-40.
- Ratheesh-Kumar, R. T., P. L. Dharmapriya, B. F. Windley, W. J. Xiao, and U. Jeevan. 2020. 'The Tectonic "Umbilical Cord" Linking India and Sri Lanka and the Tale of their Failed Rift', *Journal of Geophysical Research: Solid Earth*, 125: e2019JB018225.
- Raymo, Maureen E., William F. Ruddiman, and Philip N. Froelich. 1988. 'Influence of late Cenozoic mountain building on ocean geochemical cycles', *Geology*, 16: 649-53.
- Robinson, F. A., J. D. Foden, A. S. Collins, and J. L. Payne. 2014. 'Arabian Shield magmatic cycles and their relationship with Gondwana assembly: Insights from zircon U–Pb and Hf isotopes', *Earth and Planetary Science Letters*, 408: 207-25.
- Shields, Graham. 2007. 'A normalised seawater strontium isotope curve: Possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth', *eEarth*, 2.
- Simpson, Alexander, Sarah Gilbert, Renee Tamblyn, Martin Hand, Carl Spandler, Jack Gillespie, Angus Nixon, and Stijn Glorie. 2021. 'In-situ LuHf geochronology of garnet, apatite and xenotime by LA ICP MS/MS', *Chemical Geology*, 577: 120299.
- Singh, Yengkhom, Bert Waele, Subrata Karmakar, Sunayana Sarkar, and Tapas Biswal. 2010. 'Tectonic setting of the Balaram-Kui-Surpagla-Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt, NW India and its implication on correlation with the East African Orogen in the Gondwana assembly', *Precambrian Research*, 183: 669-88.
- Sommer, H., A. Kröner, C. Hauzenberger, S. Muhongo, and M. T. D. Wingate. 2003. 'Metamorphic petrology and zircon geochronology of high-grade rocks from the central Mozambique Belt of Tanzania: crustal recycling of Archean and

Palaeoproterozoic material during the Pan-African orogeny', *Journal of Metamorphic Geology*, 21: 915-34.

- Sommer, Holger, Alfred Kröner, and J. Lowry. 2017. 'Neoproterozoic eclogite- to highpressure granulite-facies metamorphism in the Mozambique belt of east-central Tanzania: A petrological, geochemical and geochronological approach', *Lithos*, 284.
- Squire, Richard, Ian Campbell, Charlotte M. Allen, and Christopher Wilson. 2006. 'Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?', *Earth and Planetary Science Letters*, 250: 116-33.
- STERN, R. J., and W. I. MANTON. 1987. 'Age of Feiran basement rocks, Sinai: implications for late Precambrian crustal evolution in the northern Arabian–Nubian Shield', *Journal of the Geological Society*, 144: 569-75.
- Stern, Robert J. 1994. 'Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland', Annual Review of Earth and Planetary Sciences, 22: 319-51.
- Taylor, Richard J. M., Chris Clark, Ian C. W. Fitzsimons, M. Santosh, M. Hand, Noreen Evans, and Brad McDonald. 2014. 'Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India', *Contributions to Mineralogy and Petrology*, 168: 1044.
- Taylor, Richard J. M., Chris Clark, Tim E. Johnson, M. Santosh, and Alan S. Collins. 2015. 'Unravelling the complexities in high-grade rocks using multiple techniques: the Achankovil Zone of southern India', *Contributions to Mineralogy* and Petrology, 169: 51.
- Tenczer, V., Ch Hauzenberger, H. Fritz, G. Hoinkes, S. Muhongo, and U. Klötzli. 2013. 'Crustal age domains and metamorphic reworking of the deep crust in Northern-Central Tanzania: a U/Pb zircon and monazite age study', *Mineralogy and Petrology*, 107: 679-707.
- Ueda, K., J. Jacobs, R. J. Thomas, J. Kosler, F. Jourdan, and R. Matola. 2012. 'Delamination-induced late-tectonic deformation and high-grade metamorphism of the Proterozoic Nampula Complex, northern Mozambique', *Precambrian Research*, 196-197: 275-94.
- Viola, G., I. H. C. Henderson, B. Bingen, R. J. Thomas, M. A. Smethurst, and S. de Azavedo. 2008. 'Growth and collapse of a deeply eroded orogen: Insights from structural, geophysical, and geochronological constraints on the Pan-African evolution of NE Mozambique', *Tectonics*, 27.
- Zhang, Jianxin, C. G. Mattinson, Shengyao Yu, and Yunshuai Li. 2014. 'Combined rutilezircon thermometry and U-Pb geochronology: New constraints on Early Paleozoic HP/UHT granulite in the south Altyn Tagh, north Tibet, China', *Lithos*, 200.

APPENDIX A: ANALYTICAL SAMPLES

Samples were collected from a transect survey by Prof. Alan Collins in a 2006 Indian Geological field trip. The targeted samples were those with large enough garnets for analysis.

Locations	Ν	E	latitude	longitude
106-02	08 36 10.6	76 57 09.7	8.602944	76.952694
106-05	09 00 44.3	76 52 38.7	9.012306	76.877417
106-08	09 00 44.3	76 52 38.7	9.012306	76.877417
106-38	09 26 32.0	77 35 36.6	9.442222	77.5935
106-44	09 26 44.2	77 34 23.2	9.445611	77.573111
106-57	N 09 52 46.7	E 77 48 11.0	9.879639	77.803056
106-60	N 09 56 25.1	E 77 49 33.4	9.940306	77.825944
106-83	N 10 16 53.9	E 77 32 03.7	10.281639	77.534361
IO6-106	N 11 08 08.5	E 78 02 52.6	11.135694	78.047944

Appendix A 1: List of the Samples collected as part of the campaign-style analytical method.

These samples were prepared for geochronology and RAMAN spectroscopy by first obtaining individual garnets from each sample and setting them in individual Epoxy Resin Pucks as part of the standard sample preparation methodology. Proper safety precautions were taken throughout this process.

Appendix A 2: A garnet porphryoblast from sample I06-02: From a metapelitic granulite gneiss, with biotite rich layers ranging from 0.5 – 1cm thickness, with large 0.5 – 2cm garnet porphryoblasts within the biotite rich layers. The garnet is highly fractured and incudes quartz grainsof varying size

Appendix A 3: A garnet porphyroblast from sample I06-08: From a metapelitic schistose granulite, with thin interchanging mica rich layers and quartz layers (5mm). Garnet porphryoblasts are erratically placed throughout 5mm-10mm. The garnet porphryoblasts include large quartz inclusions relatively unfractured.

Appendix A 4: A garnet Porphyroblast from sample 106-38: From a metapelitic gneiss granulite, with thick biotite and quartz dominated layers, with small garnet porphryoblasts residing in the quartz dominated layers ranging from 5mm to 10 mm. small qtz inlcusions are in the garnet porphyroblast, however, the garnets are relatively fractured.

Appendix A 5: A garnet porphyroblast from sample I06-83: From a metabasic granulite schist, dominated by pyroxenes and biotite with quartz rimming the garnet porphryoblasts, the garnets themselves are relatively unfractured with quartz inclusions.

Appendix A 6: Garnet Porphyroblast from sample 106-106a maf: A metapelitic grnulite gneiss, with varying thick quartz and mica rich layers, the garnet porphryoblasts are varied in their placement throughout and had a fine inclusions assemblage of rutile and monazite, the analysed one in the sample seen above was found in a biotite rich layers.

APPENDIX B: GEOCHRONOLOGY DATA

Appendix B 2: Calculated isochron Concordia age for standard Hogsbo

Appendix B 1: Calculated isochron Concordia age for standard MAdel

Appendix B 3: Calculated isochron Concordia age for standard R10

Appendix B 4: Calculated isochron Concordia age for standard R19

Sample	Analysis	206Pb/238U	206Pb/238U	207Pb/235U(calc)	207Pb/235U(calc)	238U/206Pb	238U/206Pb	207Pb/206Pb	207Pb/206Pb
IO6-106a Ru4 - 1	NIST610	0.086944122	0.029809625	0.654969853	0.075941207	11.52727412	0.336568828	0.054715266	0.006191729
IO6-106a Ru11 - 3	NIST610	0.074616893	0.00196104	0.571242487	0.027326182	13.43181422	0.309809834	0.055420924	0.002743478
IO6-106a Ru22 - 2	NIST610	0.074160203	0.001683119	0.585750304	0.026048481	13.45121655	0.300953474	0.056921616	0.002220038
IO6-106a Ru11 - 1	NIST610	0.073151439	0.001798615	0.577794106	0.027370487	13.69816087	0.321612157	0.057137962	0.002489139
IO6-106a Ru12 - 6	NIST610	0.07795303	0.001731493	0.624495798	0.025785557	12,82531609	0.262703061	0.058084793	0.002192478
106-106a Ru24 - 1	NIST610	0.0703629	0 00148144	0 553465904	0.025130687	14 22277835	0 330722659	0.056717036	0.00239484
106-106- Ru14 - 1	NIST610	0.080839318	0.002201269	0.655243604	0.026398743	12 35110857	0.281724373	0.058990749	0.002175126
106-106- Ru14 - 1	NISTG10	0.0806333318	0.002201203	0.033243004	0.020338743	12.33110037	0.281724373	0.058350745	0.002175120
100-100a Ru25 - 5	NISTO10	0.065007958	0.001732383	0.065755746	0.047034319	12.15250055	0.200155109	0.059064294	0.0042095
106-106a Ru18 - 1	NIST610	0.0753145372	0.001949117	0.581011907	0.024754783	13.0/810440	0.308860309	0.05/968///	0.002297735
106-106a Ru13 - 2	NIS1610	0.075325614	0.002140774	0.604272299	0.025514033	13.24505169	0.291252078	0.0583475	0.002250473
106-106a Ru11 - 2	NIS1610	0.073451094	0.001934227	0.590511976	0.02/98255	13.64445103	0.29908389	0.058197624	0.002607481
IO6-106a Ru1 - 3	NIST610	0.075890061	0.002003798	0.617919355	0.028983323	13.03615324	0.307822805	0.058958716	0.002421514
IO6-106a Ru12 - 2	NIST610	0.071609002	0.001628121	0.576300143	0.022451231	13.98512292	0.287916729	0.058297442	0.002092177
IO6-106a Ru11 - 4	NIST610	0.073271053	0.001818944	0.592568867	0.02625605	13.64949603	0.318559834	0.05859309	0.002396661
IO6-106a Ru18 - 2	NIST610	0.068500941	0.001756684	0.546783582	0.025590613	14.59854067	0.384895255	0.05810244	0.002412764
IO6-106a Ru4 - 2	NIST610	0.072510526	0.001706811	0.588528389	0.020989774	13.81241043	0.326869229	0.058957525	0.001864409
IO6-106a Ru10 - 1	NIST610	0.072556199	0.001373674	0.59024543	0.026986935	13.81286874	0.283653227	0.05884029	0.002640393
IO6-106a Ru10 - 3	NIST610	0.071121036	0.001815921	0.576985495	0.025747745	14.09400427	0.338928787	0.058677209	0.00241844
IO6-106a Ru8 - 2	NIST610	0.072975006	0.001739016	0.595487932	0.023999511	13.74214726	0.302654675	0.059148819	0.002161218
IO6-106a Ru10 - 2	NIST610	0.071236196	0.001455745	0.581956789	0.024948472	14.07392889	0.314522968	0.059077611	0.002425046
IO6-106a Ru3 - 3	NIST610	0.076144381	0.002240259	0.6355662	0.060326738	13.05794671	0.307013484	0.060628957	0.005367423
IO6-106a Ru23 - 2	NIST610	0.073332444	0.001230775	0.609156972	0.025414595	13.62953189	0.291685177	0.059821304	0.002268425
106-106a Ru2 - 4	NIST610	0.074057385	0.001924894	0.621935422	0.029356294	13 36652981	0 297683239	0.060842579	0.002533808
106-1063 Ru9 - 1	NIST610	0.071720272	0.001282082	0.601054145	0.022020705	12 0792500	0.206169260	0.060668224	0.002257085
106-106- Ru12 - 2	NIST610	0.071723373	0.001383083	0.614715057	0.033330703	12 72286672	0.230108303	0.061124064	0.003237083
106-106a Ru12 - 5	NISTO10	0.066347706	0.001/0/0/1	0.614715057	0.02777409	15.75580072	0.51559057	0.001124004	0.00244945
106-106a Ru10 - 4	NISTO10	0.000547790	0.001621230	0.530233003	0.027042942	14.42200252	0.400009077	0.059902987	0.002840047
106-106a Ru23 - 1	INIST610	0.069062547	0.001564676	0.580720678	0.031999869	14.43309352	0.31/35362	0.060568082	0.003244085
106-106a Ru17 - 1	NIS1610	0.075330264	0.001901472	0.655952107	0.028416154	13.26234467	0.278605706	0.06352342	0.002436133
106-106a Ru12 - 5	NIS1610	0.074065447	0.001/1/064	0.643434366	0.029349488	13.4852/025	0.2964/1545	0.062894518	0.002470577
IO6-106a Ru2 - 3	NIST610	0.075176126	0.001803589	0.656454373	0.041213844	13.16884393	0.277631387	0.063270894	0.00382138
IO6-106a Ru16 - 2	NIST610	0.068935741	0.002059723	0.593246909	0.028538682	14.47473157	0.356673258	0.062707292	0.003106472
IO6-106a Ru22 - 1	NIST610	0.076474432	0.001751469	0.676579775	0.038153389	13.04859578	0.280914708	0.063825453	0.003520447
IO6-106a Ru21 - 3	NIST610	0.075547301	0.001969707	0.671266529	0.028806952	13.20781926	0.309225761	0.064109193	0.002464711
IO6-106a Ru16 - 1	NIST610	0.071862749	0.001962701	0.63898321	0.031170513	13.8932272	0.304515214	0.064794233	0.003093626
IO6-106a Ru8 - 1	NIST610	0.064423603	0.001816283	0.561351172	0.030580086	15.5549148	0.50480373	0.063177	0.00392395
IO6-106a Ru21 - 1	NIST610	0.073845334	0.00169659	0.664423293	0.033924619	13.50962323	0.308227254	0.065026103	0.003090975
IO6-106a Ru14 - 3	NIST610	0.080146325	0.002277095	0.737195102	0.031712972	12.47359741	0.296592234	0.067019658	0.002449972
IO6-106a Ru2 - 5	NIST610	0.07840648	0.002153836	0.729598369	0.042643001	12.64196974	0.287569494	0.067483598	0.003812686
IO6-106a Ru20 - 3	NIST610	0.071586478	0.002128306	0.665533837	0.041334045	14.14458005	0.411872263	0.067406355	0.003901589
IO6-106a Ru25 - 2	NIST610	0.464728692	0.059503206	16.64763799	0.822408014	2.173841084	0.402233053	0.257406512	0.012873209
IO6-106a Ru20 - 1	NIST610	0.077927383	0.001763752	0.763866149	0.055296994	12.9611475	0.293968821	0.071103934	0.005240907
IO6-106a Ru6 - 1	NIST610	0.073071243	0.002079937	0.714758467	0.057150968	13,70621005	0.316129144	0.071046366	0.005427189
IO6-106a Ru8 - 3	NIST610	0.080098744	0.001684622	0.817801905	0.031485339	12,51380899	0.279321654	0.07392768	0.002381078
IO6-106- Ru12 - 1	NIST610	0.074292384	0.001607929	0 757083512	0.043849702	13 48611607	0 273488531	0.073851667	0.003881291
106-1062 Ru2 - 1	NIST610	0.079510672	0.001007525	0.934541904	0.043043702	12 62220846	0.261072282	0.075091007	0.000574200
106-106- Ru1 2	NISTG10	0.078070707	0.004801058	0.824541904	0.112851555	12.02333840	0.301372383	0.070092034	0.003374333
100-100a Ru1 - 2	NUCTC 10	0.07547016	0.002244438	0.819078333	0.048342433	12.07219009	0.300170333	0.07534847	0.004380204
106-106a Ru13 - 3	NIST610	0.07547916	0.001945312	0.793020722	0.048310267	13.22428/42	0.284307051	0.076536745	0.004061609
100-100a KU2 - 2	NISTO10	0.081105343	0.002212/93	0.877850912	0.052788388	12.1965/532	0.262889278	0.077405568	0.004402321
106-106a Ru1 - 1	NIS1610	0.075469438	0.00200656	0.805//0/41	0.080870941	13.1120//38	0.29335839	0.077185501	0.007827981
106-106a Ru12 - 4	NIS1610	0.073990438	0.001////88	0.786985701	0.04351699	13.51/39316	0.2968/526/	0.077068245	0.004275073
IO6-106a Ru25 - 1	NIST610	0.081203472	0.001744466	0.887330334	0.132773097	12.34283115	0.289481958	0.078968679	0.013462436
IO6-106a Ru17 - 2	NIST610	0.086025155	0.002496461	0.959137174	0.048590882	11.7224909	0.272005237	0.081271498	0.003765411
IO6-106a Ru13 - 1	NIST610	0.07825132	0.002121518	0.86362295	0.065027718	12.74956964	0.290102669	0.080216561	0.005208951
IO6-106a Ru7 - 1	106-106a R	0.073317825	0.001493403	0.806607775	0.279333358	13.70820759	0.31329339	0.079665803	0.025536878
IO6-106a Ru19 - 1	NIST610	0.070581514	0.001746963	0.774174051	0.126389637	14.15974495	0.336808431	0.0797477	0.01135625
IO6-106a Ru2 - 1	NIST610	0.080416269	0.003049389	0.927369584	0.099203605	12.29871989	0.320488816	0.083484545	0.009124867
IO6-106a Ru3 - 2	NIST610	0.074939264	0.00200089	0.850113328	0.048760096	13.25451053	0.305587565	0.082272749	0.004159663
IO6-106a Ru7 - 2	106-106a R	0.080033967	0.001686654	0.983151181	0.051613287	12.68315819	0.291415926	0.089204737	0.004625612
IO6-106a Ru - 1	NIST610	0.075928207	0.00199412	0.937351418	0.076515737	13.05375937	0.298235519	0.089307145	0.007187666
IO6-106a Ru20 - 2	NIST610	0.085773453	0.001970155	1.115304597	0.04521244	11.63309913	0.259560167	0.094145165	0.003418334
106-106a Bu9 - 2	NIST610	0.075740081	0.001751938	0.947834435	0.053605539	13 23688332	0.303189977	0.09052384	0.004725922
106-106a Bu7 - 2	NIST610	0.085779909	0.002254879	1.145354013	0.06052238	11 69009924	0.321758382	0.096803379	0.00406588
106-106a Ru7 - 1	NIST610	0 074097724	0.001803621	0 949928796	0 1959/0/39	13 52377577	0 3370461	0.093108848	0.01826203
106-1062 Ru17 - 2	NIST610	0.082005527	0.002640270	1 212095212	0.155540459	12 24750126	0.3370401	0 107807110	0.005224674
IO6-106- P21 2	NISTE10	0.002003537	0.002040378	1 270212244	0.074029389	12.24/30120	0.330202283	0.10/00/119	0.005254074
100-100a RU21-2	NISTC10	0.080415135	0.001829/52	1.2/9312244	0.10/302243	12.41444/38	0.20/1845//	0.114959144	0.009582413
100-100a KU19-2	NICTOR	0.080/12454	0.002150/84	1.298302449	0.14829/684	12.3901//23	0.2905//166	0.110919032	0.011300143
100-100a KU14 - 2	UTGICINI	0.088478891	0.002294882	1./6/908569	0.08/82821/	11.28934031	0.250639828	U.145556/48	0.006233796

Appendix B 5: U/Pb Results for the rutile assemblage in sample I06-106a maf

Analysis	206Pb/238U	207Pb/206Pb	207Pb/206Pb	207Pb/235U(calc)	207Pb/235U(calc)	208Pb/206Pb	208Pb/206Pb	208Pb/232Th	208Pb/232Th	238U/206Pb	238U/206Pb
106-106a Mo	0.001342355	0.057684835	0.00151583	0.698460446	0.017049365	3.286954985	0.064648927	0.026624045	0.000574294	11.41534536	0.186455882
106-106a Mo	0.001421256	0.058132298	0.001511352	0.691100497	0.017013073	3.668924515	0.053289559	0.02692707	0.000592508	11.6274034	0.208796422
106-106a Mo	0.001425397	0.057891825	0.001899635	0.707253484	0.021903133	3.778677853	0.107785994	0.027106183	0.000639079	11.29700303	0.187509672
106-106a Mo	0.001613544	0.058089283	0.001734386	0.691378284	0.019241361	3.45423175	0.130211032	0.026570779	0.000615544	11.59386122	0.219122587
106-106a Mo	0.001298202	0.057683255	0.001437732	0.68997821	0.016381473	3.195056889	0.111517356	0.027300755	0.00059367	11.57923692	0.18833184
106-106a Mo	0.001336039	0.057818622	0.001642341	0.69856205	0.019375508	2.365992372	0.037750661	0.026834036	0.00056754	11.4657818	0.185420661
106-106a Mo	0.001453439	0.058061705	0.001363958	0.699903365	0.016501096	4.022997879	0.147956083	0.025470321	0.000540307	11.4908645	0.203607072
106-106a Mo	0.00135576	0.05964218	0.001423524	0.707781782	0.016328488	5.012658714	0.382201894	0.026442599	0.000550849	11.67242673	0.197052579
106-106a Mo	0.001386274	0.056927016	0.001444318	0.681534486	0.016228295	2.25110507	0.033809724	0.026888109	0.000593696	11.57244742	0.19632508
106-106a Mo	0.001365475	0.058063639	0.001425653	0.692247097	0.015877817	3.174228765	0.172640311	0.025803158	0.000549097	11.62114763	0.191587949
106-106a Mo	0.001327193	0.058361504	0.001459304	0.699351351	0.015868054	2.078212396	0.06044608	0.027728711	0.000601534	11.55800116	0.188866385
106-106a Mo	0.001334421	0.058647853	0.001516436	0.701338736	0.017712956	2.334622467	0.029289506	0.026716388	0.000557211	11.57936683	0.189886339
106-106a Mo	0.001442126	0.057416082	0.00157019	0.695082373	0.017355996	2.425357221	0.082898979	0.026272813	0.000609859	11.43709275	0.199443497
106-106a Mo	0.001441251	0.057527525	0.001385361	0.688856859	0.015486577	2.045885754	0.028670342	0.026265254	0.000547574	11.56372585	0.198690085
106-106a Mo	0.001265719	0.058245393	0.001456347	0.701996678	0.017469695	2.980573808	0.100247785	0.02785712	0.000633003	11.48337693	0.183280534
106-106a Mo	0.001335921	0.058445382	0.001365835	0.703281971	0.015671478	5.900491463	0.426446852	0.026939357	0.000549047	11.50596603	0.188327419
106-106a Mo	0.001607621	0.059757178	0.002211641	0.72940994	0.026302043	3.801394479	0.154268679	0.027997436	0.000850406	11.2608231	0.208858182
106-106a Mo	0.001620862	0.058690346	0.001713648	0.704942126	0.021157813	3.344717465	0.094173129	0.027208779	0.000622125	11.47372591	0.222391579
106-106a Mo	0.001390846	0.058833734	0.00154288	0.711831635	0.017283493	5.108095618	0.349274108	0.02665068	0.00063605	11.40607414	0.193723722
106-106a Mo	0.001463015	0.058498243	0.001520305	0.698305329	0.016776377	4.592282307	0.086381555	0.026789234	0.00057437	11.57412384	0.21139924
106-106a Mo	0.001614194	0.059120543	0.001570356	0.703414374	0.017624738	4.242107007	0.129176239	0.02758881	0.000711001	11.61260526	0.228820123
106-106a Mo	0.001395944	0.059578064	0.001859041	0.696289463	0.019900696	3.627728602	0.058089136	0.026274587	0.000583326	11.83916001	0.212037922
106-106a Mo	0.001810131	0.059577571	0.002705683	0.716925922	0.035501615	3.889888452	0.200028444	0.026582434	0.000817217	11.46081756	0.241693646
106-106a Mo	0.001280986	0.05843785	0.001490844	0.693186955	0.016776337	4.078805965	0.074755131	0.026460049	0.000575239	11.68074376	0.186955257
106-106a Mo	0.001340838	0.058597428	0.001377874	0.702382748	0.015753195	8.086022051	0.452612468	0.02676327	0.000552277	11.54641517	0.188943797
106-106a Mo	0.001285179	0.05859209	0.001434835	0.692328571	0.016130062	6.013452597	0.378525389	0.026093979	0.000633556	11.71441021	0.187388575
106-106a Mo	0.001331013	0.058179391	0.001433845	0.6832541	0.016224404	5.598573831	0.278062789	0.02555977	0.000573945	11.78245604	0.199360673
106-106a Mo	0.001322575	0.057285141	0.001449977	0.686496363	0.016601496	3.271280343	0.074240306	0.027434488	0.00055729	11.54573744	0.186178254
106-106a Mo	0.001519321	0.056995242	0.001647524	0.677428015	0.018244346	3.117042225	0.048444131	0.026746596	0.000588256	11.63545677	0.220621139
106-106a Mo	0.001406137	0.058686861	0.001524869	0.703028512	0.017566139	3.661267694	0.063276032	0.026645052	0.000617483	11.55404435	0.195323992
106-106a Mo	0.00149903	0.057933242	0.001581301	0.691979097	0.017897659	3.723179685	0.056596682	0.026149993	0.00052926	11.59390347	0.207114147
106-106a Mo	0.001989035	0.056856119	0.002424677	0.687634253	0.023660004	4.344023386	0.10618074	0.026705577	0.000659248	11.40936092	0.248639199
106-106a Mo	0.001360474	0.058400129	0.001430587	0.706049023	0.015876231	5.486912535	0.389159202	0.02735861	0.00059978	11.45632103	0.190585459
106-106a Mo	0.001557725	0.05756729	0.001698619	0.698506653	0.020922961	4.364449129	0.247589077	0.027653035	0.000643859	11.38622517	0.220317132
106-106a Mo	0.00132998	0.058111419	0.001442647	0.703261716	0.01617539	9.710478695	0.81520743	0.027335565	0.000610648	11.44265195	0.188390117
106-106a Mo	0.001381687	0.057966245	0.00140966	0.689237588	0.015350734	2.792953175	0.069558685	0.027123919	0.000551706	11.65078826	0.196302564
106-106a Mo	0.001358323	0.057894198	0.001485532	0.69468645	0.016934464	6.847149737	0.471667983	0.026227345	0.00057998	11.54605969	0.193221787
106-106a Mo	0.001270969	0.0583066	0.001398995	0.695560145	0.01538132	3.518713774	0.19087148	0.02626404	0.000585851	11.6108737	0.183723792
106-106a Mo	0.001388787	0.057895936	0.001429458	0.696560245	0.016018925	6.408460472	0.881917129	0.025888797	0.000544834	11.51394333	0.195718741

Appendix B 6: U/Pb results for the monazite assemblage in sample I06-06a maf

Analysis	176Lu/177Hf	176Lu/177Hf	176Hf/177Hf	176Hf/177Hf	106-60 - 74	1.198711	0.03305093	0.30524998	0.01719609
106-83 D2 - 9	2.57179264	0.07301056	0.31742798	0.01770178	106-60 - 73	1.23460425	0.03371883	0.29490621	0.01518134
106-83 D2 - 8	2.73452826	0.07579655	0.32141172	0.01936563	106-60 - 72	1.47721299	0.04327273	0.29335868	0.01647858
106-83 D2 - 7	1.39458967	0.03843111	0.29526412	0.01754337	106-60 - 71	1.37307138	0.04176143	0.30406827	0.02067463
106-83 D2 - 6	0.76614754	0.02219742	0.28737234	0.01560945	106-60 - 70	1.3042174	0.0391179	0.28752462	0.01775046
106-83 D2 - 5	2.08544029	0.06067202	0.31305955	0.0173971	106-60 - 7	1.22177957	0.03537073	0.27975086	0.01566858
106-83 D2 - 4	2,94388508	0.08100103	0.30525031	0.01688865	106-60 - 69	1.308412	0.03593014	0.29835593	0.01542256
106-83 D2 - 3	0.83701324	0.02222051	0.27753855	0.01473104	106-60 - 68	1.41150115	0.04256918	0.28106303	0.01652812
106-83 D2 - 20	0 98779798	0.0300977	0 29594699	0.01590566	106-60 - 67	1 30073339	0.0362706	0 30592807	0.01590454
106-83 D2 - 2	0.97918514	0.02592087	0.28735835	0.01423692	106-60 - 66	1 25854491	0.03421851	0 30065473	0.01705156
106-83 D2 - 19	2 38050497	0.06282929	0.30670525	0.01907865	106-60-65	1 201/6292	0.03193858	0.30233912	0.01/09130
106-83 D2 - 19	2.30030437	0.00202020	0.30070323	0.01709844	106-60-64	1 17100266	0.03133838	0.30235312	0.01574578
100-83 D2 - 18	1 21222124	0.07405005	0.31307704	0.01709844	106-60-62	1.06162240	0.03137877	0.30020190	0.01574578
100-83 D2 - 17	1.51222134	0.05313004	0.3017323	0.01500098	106-60-63	1.00103249	0.02770307	0.27420789	0.01588520
106-83 D2 - 16	1.000/2103	0.05253255	0.3010309	0.01505137	106-60-62	1.10887228	0.02877439	0.28259425	0.01514442
106-83 D2 - 15	0.73143071	0.02022132	0.28734085	0.01501172	106-60-61	1.4400254	0.04083867	0.30751394	0.01092481
106-83 D2 - 14	3.32275528	0.09049331	0.31834695	0.01806137	106-60-60	1.47211889	0.04324997	0.31465277	0.01753015
106-83 D2 - 13	0.31700491	0.01981551	0.2853474	0.00960815	106-60-6	1.32765538	0.03970531	0.2906269	0.01669321
106-83 D2 - 12	3.1483/938	0.08812182	0.32223866	0.01705873	106-60 - 59	1.39534683	0.0399111	0.30614379	0.01643638
106-83 D2 - 11	1.95832184	0.06226267	0.2851483	0.01533088	106-60 - 58	1.43506496	0.03904561	0.29460549	0.01538976
106-83 D2 - 10	0.00850571	0.00103685	0.28164047	0.00190651	106-60 - 57	1.46714926	0.04457829	0.30464122	0.01880595
106-83 D2 - 1	1.536624	0.06163364	0.28912344	0.01639606	106-60 - 56	1.46528507	0.04343949	0.30661623	0.01850147
106-83 D1 - 9	2.65592993	0.08150024	0.31411237	0.01669058	106-60 - 55	1.47767949	0.04417126	0.30174044	0.01773857
106-83 D1 - 8	4.24327316	0.12187233	0.33040765	0.01808903	106-60 - 54	1.30250272	0.03664755	0.31378781	0.01757437
106-83 D1 - 7	4.25029362	0.12802161	0.33145301	0.02091445	106-60 - 53	1.29338442	0.036363	0.3013243	0.01683164
106-83 D1 - 6	3.44810647	0.08746587	0.32565812	0.01546383	106-60 - 52	1.16999444	0.0315386	0.28672381	0.01470045
106-83 D1 - 5	3.18279771	0.08610732	0.30687237	0.01596122	106-60-51	1.20905603	0.03305767	0.29898886	0.01600182
106-83 D1 - 4	3.58628838	0.09828354	0.32086877	0.01725286	106-60 - 50	1.12448465	0.03028432	0.30255846	0.01682807
106-83 D1 - 31	2.83773417	0.06159761	0.31598278	0.01561606	106-60 - 5	1.34050579	0.03939419	0.29368955	0.01805044
106-83 D1 - 30	2.5936548	0.06791441	0.30684675	0.01446147	106-60 - 49	1.1354607	0.03171049	0.28633388	0.01600235
106-83 D1 - 3	2.90231892	0.07920223	0.31187693	0.01675543	106-60 - 48	1.25572944	0.03572774	0.31077044	0.01717871
106-83 D1 - 29	2.1283373	0.09637981	0.29968676	0.01529814	106-60 - 47	1.29921463	0.03686052	0.2929006	0.01583555
106-83 D1 - 28	3.45118236	0.08570515	0.33032782	0.01523223	106-60 - 46	1.27284628	0.0361981	0.28960898	0.01573438
106-83 D1 - 27	3.1554487	0.08414835	0.31843954	0.01606753	106-60 - 45	1.2762937	0.03533868	0.29762647	0.01555493
106-83 D1 - 26	3.06132653	0.07917534	0.32021832	0.01770805	106-60 - 44	1.31866577	0.03890602	0.30339599	0.01868417
106-83 D1 - 25	1.5892238	0.04479684	0.30402136	0.01618208	106-60 - 43	1.42448254	0.04136948	0.30220924	0.01798494
106-83 D1 - 24	1.8653419	0.05320758	0.30421341	0.01922478	106-60 - 42	1.44196095	0.04421188	0.28902273	0.01920975
106-83 D1 - 23	2.21267221	0.06643854	0.31311537	0.01788419	106-60 - 41	1.54238023	0.0486271	0.30101551	0.01940669
106-83 D1 - 22	2.66450438	0.06762032	0.3114791	0.01494063	106-60 - 40	1.40349584	0.04264985	0.29638281	0.01719973
106-83 D1 - 21	1.58349476	0.04375402	0.28508429	0.01525616	106-60 - 4	1.29859492	0.03857256	0.29981455	0.01949492
106-83 D1 - 20	1.77363727	0.08405893	0.30633431	0.01823032	106-60 - 39	1.36518365	0.04379382	0.30517908	0.0212227
106-83 D1 - 2	2.66864548	0.06941735	0.30571396	0.01515935	106-60 - 38	1.31266995	0.04279069	0.29543031	0.01846494
106-83 D1 - 19	2.15651711	0.06168396	0.29771617	0.02002668	106-60 - 37	1.24403768	0.03507774	0.29221255	0.01669665
106-83 D1 - 18	1.69601256	0.42832139	0.28531918	0.14569622	106-60 - 36	1.22908853	0.03515829	0.29076862	0.01666868
106-83 D1 - 17	3.35600582	0.48480429	0.3313606	0.0918144	106-60 - 35	1.16611347	0.03204908	0.29258968	0.01632026
106-83 D1 - 16	4 11334879	0.09855829	0 34313334	0.01617737	106-60 - 34	1 25447803	0.03618981	0 29478949	0.01834782
106-83 D1 - 15	5 20290318	0.11859291	0 34882725	0.0148425	106-60-33	1 23540188	0.03605671	0.29905781	0.01647887
106-83 D1 - 14	2 88533569	0.07470287	0 29794882	0.01583694	106-60 - 32	1 18836374	0.03418797	0.2903685	0.01589215
106-83 D1 - 13	6 58261426	0.16882756	0.23015455	0.01534720	106-60 - 31	1.16600475	0.03370082	0.2003003	0.01505215
100-83 D1 - 13	2 56926257	0.10882730	0.33913433	0.015034729	106-60-31	1.10003473	0.03379083	0.29942742	0.0102827
100-83 D1 - 12	2 42222414	0.09000413	0.30604891	0.01303934	106-60-30	1.22297493	0.03463434	0.29078391	0.01660125
100-83 D1 - 11	3.43222414	0.09879508	0.33003191	0.01011001	106-60-30	1.20977891	0.03781373	0.29505995	0.01009133
106-83 D1 - 10	4.01058257	0.11713055	0.34343533	0.02000345	106-60-29	1.32604103	0.03878149	0.31591590	0.01870142
106-60 DI-1	2.73447101	0.07855901	0.32398/21	0.02045171	106-60-28	1.09550145	0.03015096	0.2698147	0.0150207
100-00-9	1.15120406	0.0326491	0.30260148	0.01/29806	100-00-27	1.25926/53	0.03685659	0.30669941	0.01707541
106-60-80	1.36064516	0.0369/637	0.2/910444	0.01692238	106-60-26	1.22613498	0.03668579	0.29638/98	0.01/3/544
106-60-8	1.24494/73	0.03619391	0.29482259	0.01//80/1	106-60-25	1.11264631	0.0319319	0.28443367	0.01560848
106-60 - 79	1.326842	0.03661665	0.30464664	0.01677639	106-60 - 24	1.33746316	0.03932311	0.32131562	0.02078845
106-60 - 78	1.46544929	0.04144231	0.28588101	0.01841898	106-60 - 23	1.33792397	0.03945347	0.30214226	0.01697824
106-60 - 77	1.34489813	0.03769481	0.290141	0.01799245	106-60 - 22	1.46977999	0.04557377	0.30458229	0.01913225
106-60 - 76	1.21147486	0.03269958	0.30286536	0.01522772	106-60-21	1.31417331	0.03726327	0.30101635	0.01650516
106-60 - 75	1.19094929	0.03243028	0.29345561	0.01705451	106-60 - 20	1.2819892	0.0367802	0.29723413	0.01615537

	4 22726444	0.00004700	0.00540706	0.04625202	1	100 20 02 7	4 20500472	0.000000.4	0 20272600	0.04046406
106-60 - 2	1.23726414	0.03621733	0.29512726	0.01635292		106-38 D2 - 7	1.29588473	0.0289034	0.29372698	0.01216136
106-60 - 19	1.40519243	0.04227381	0.30508971	0.01/353/5		106-38 D2 - 6	1.688/34/2	0.0421772	0.32025751	0.015/9198
106-60 - 18	1.554/0325	0.04887629	0.30062479	0.02205567		106-38 D2 - 5	0.90795353	0.02226835	0.28401901	0.01526299
106-60 - 17	1.39804428	0.04337944	0.29802861	0.02017757		106-38 D2 - 4	0.83942221	0.02252552	0.27718093	0.01446828
106-60 - 16	1.25843657	0.03653524	0.29302593	0.01618551		106-38 D2 - 3	1.50106027	0.04121048	0.30600165	0.01579227
106-60 - 15	1.23791577	0.0359135	0.29320587	0.01719658		106-38 D2 - 20	0.64024062	0.01281701	0.28111606	0.01063691
106-60 - 14	1.21456417	0.0336756	0.2861044	0.01606276		106-38 D2 - 2	0.85672433	0.02563367	0.29426502	0.01911328
106-60 - 13	1.24851489	0.03622317	0.28197196	0.0157918		106-38 D2 - 19	1.34813826	0.03046763	0.30206892	0.01258093
106-60 - 12	1.20313403	0.03356621	0.29205535	0.01710245		106-38 D2 - 17	0.62088279	0.01314828	0.28829857	0.01110485
106-60 - 11	1,22395698	0.03447242	0.30365952	0.01600291		106-38 D2 - 16	0.69889849	0.01663915	0.28792003	0.01236848
106-60 - 10	1 26041652	0.03626298	0 28950719	0.01596491		106-38 D2 - 15	0 86751381	0.02403312	0 2850384	0.01688624
106-60 - 9	1.20041052	0.0272442	0.20330715	0.01900491		106-38 D2 - 14	0.60668215	0.01565082	0.2650304	0.0127115
100-00-9	1.24730313	0.0373443	0.31323030	0.01802815		100-36 D2 - 14	0.09008215	0.01303082	0.28559289	0.0127113
106-57 D3 - 9	0.05630639	0.00285921	0.28846828	0.01754005		106-38 D2 - 13	0.78126036	0.02104237	0.299/158/	0.01465274
106-57 D3 - 8	0.02843449	0.00181896	0.28602006	0.01488108		106-38 D2 - 12	1.26166436	0.03988656	0.28976797	0.01/60696
106-57 D3 - 7	0.07532467	0.00307341	0.28101413	0.01495714		106-38 D2 - 11	0.99488165	0.02820056	0.29597598	0.01718254
106-57 D3 - 6	0.0514646	0.00221608	0.27563352	0.01247168		106-38 D2 - 10	1.71304733	0.05368018	0.28928423	0.0195808
106-57 D3 - 5	0.05310062	0.00247043	0.28144024	0.0135392		106-38 D2 - 1	0.83766409	0.0244484	0.29127879	0.01577504
106-57 D3 - 4	0.02410039	0.00129057	0.28528743	0.0117201		106-38 D1 - 9	1.99616519	0.04241573	0.29549039	0.01183026
106-57 D3 - 3	0.01976274	0.0012124	0.28895265	0.01456385		106-38 D1 - 8	2.14031931	0.04275455	0.30636674	0.01123654
106-57 D3 - 20	0.04278862	0.0020894	0.28166975	0.01341122		106-38 D1 - 7	2.21507445	0.04429571	0.307997	0.01130169
106-57 D3 - 2	0.0269834	0.00165554	0 2786517	0 01399446		106-38 D1 - 6	2 20319218	0 04815756	0 30317218	0 01332202
106-57 D3 - 19	0.05977259	0.00227426	0.28682572	0.01197819		106-38 D1 - 5	2.08632885	0 0444308	0.31021098	0.01239124
	0.05377255	0.00221420	0.20002372	0.01226501			2.00032005	0.05910470	0.20427714	0.01235124
100-57 D3 - 12	0.00729903	0.00201338	0.20403108	0.01320391		100-38 D1 - 41	2.09237890	0.03819479	0.30437714	0.01233147
106-57 D3 - 17	0.08/32635	0.00304826	0.29222845	0.01250239		106-38 D1 - 40	4.46891614	0.12624021	0.336/831/	0.01936616
106-57 D3 - 16	0.10045099	0.00353007	0.28184021	0.01454446		106-38 D1 - 4	2.00262109	0.041/8824	0.30086225	0.011/2365
106-57 D3 - 15	0.12365323	0.0043396	0.27204901	0.01335621		106-38 D1 - 39	4.32626908	0.1179203	0.30841919	0.01759572
106-57 D3 - 14	0.06860472	0.00299715	0.27674109	0.01476264		106-38 D1 - 38	2.8784783	0.06699	0.30206743	0.01370221
106-57 D3 - 13	0.06216267	0.00302813	0.2744612	0.01433373		106-38 D1 - 37	2.21076249	0.04665003	0.31679296	0.0122516
106-57 D3 - 12	0.07305305	0.00285349	0.27652809	0.01157895		106-38 D1 - 36	1.35135284	0.03138461	0.2845797	0.01538342
106-57 D3 - 11	0.04579968	0.0019037	0.28406673	0.01188951		106-38 D1 - 35	1.28403924	0.03168696	0.31222045	0.01316784
106-57 D3 - 10	0.02453146	0.00157412	0.29057035	0.01435838		106-38 D1 - 34	1.59478818	0.03722221	0.29088307	0.01285416
106-57 D3 - 1	0.04219062	0.00223616	0.29079407	0.0148561		106-38 D1 - 33	1.65317541	0.05072703	0.31280777	0.01448284
106-57 D2 - 9	0.1019857	0.00446964	0.27872087	0.01807502		106-38 D1 - 32	1.66908162	0.04345542	0.28737586	0.01727513
106-57 D2 - 8	0.04633604	0.00240591	0 29124766	0.01576458		106-38 D1 - 31	2 54286004	0.05822791	0.30635208	0.01363273
	0.10208104	0.00240551	0.20124700	0.01679519			2.34200004	0.09310060	0.32509011	0.01509279
100-57 D2 - 7	0.10398194	0.00449639	0.3003242	0.01078518		100-38 D1 - 30	1.81408700	0.08210009	0.32398011	0.01009898
106-57 D2 - 6	0.07681739	0.00357574	0.27504558	0.0155626		106-38 D1 - 3	1.81408769	0.04003872	0.29886654	0.01496752
106-57 D2 - 5	0.05800425	0.00289392	0.28/555/5	0.01739444		106-38 D1 - 29	2.25012761	0.04745818	0.3080538	0.01203/9/
106-57 D2 - 4	0.05235981	0.00251109	0.29628505	0.01440785		106-38 D1 - 28	1.77892749	0.03368997	0.29821023	0.01032425
106-57 D2 - 3	0.03331521	0.00134372	0.28026582	0.00994331		106-38 D1 - 27	2.5721727	0.05822823	0.31261283	0.01418592
106-57 D2 - 2	0.01976729	0.0009268	0.28573406	0.00954422		106-38 D1 - 26	2.3244931	0.04767157	0.31282279	0.01178324
106-57 D2 - 10	0.02396664	0.00133696	0.27296448	0.01336355		106-38 D1 - 25	1.69959943	0.03667844	0.2993887	0.01254788
106-57 D2 - 1	0.08478328	0.00396042	0.2864811	0.01477144		106-38 D1 - 24	1.45578821	0.02838789	0.29739904	0.01057396
106-57 D1 - 9	0.09992665	0.00318137	0.28298877	0.0109688		106-38 D1 - 23	1.89307164	0.04354195	0.31094257	0.01384567
106-57 D1 - 8	0.21063631	0.00691154	0.27165824	0.01416821		106-38 D1 - 22	1.6997034	0.04107761	0.29867696	0.01456445
106-57 D1 - 7	0.37686088	0.01250174	0.2959199	0.01718143		106-38 D1 - 21	1.77459472	0.03972762	0.29824354	0.01495236
106-57 D1 - 6	0.62129536	0.01790769	0.28144964	0.01486561		106-38 D1 - 20	1.90837992	0.0397635	0.30171575	0.01243622
106-57 D1 - 5	0.24240415	0.00913638	0.27760943	0.0111216		106-38 D1 - 2	1 9295/595	0.03026161	0 21124487	0.01298451
100-57 D1 - 3	0.34540415	0.00813038	0.27700343	0.0111210		100-38 D1 - 2	2.04014779	0.03920101	0.31124487	0.01208451
100-57 D1 - 4	0.32508845	0.00809558	0.27904300	0.01137973		100-30 D1 - 19	2.04014778	0.04322003	0.30832093	0.01207092
106-57 D1 - 3	0.32635071	0.00805763	0.29105033	0.0126061		106-38 D1 - 18	2.3055134	0.04855462	0.30764389	0.01435743
106-57 D1 - 2	0.20936511	0.0040186	0.28846432	0.00835763		106-38 D1 - 17	2.42038527	0.05401573	0.29953399	0.01330836
106-57 D1 - 16	0.34139045	0.00757951	0.28114017	0.01033416		106-38 D1 - 16	1.98611076	0.03844064	0.30602468	0.01137879
106-57 D1 - 15	0.15574465	0.00523912	0.272386	0.01361364		106-38 D1 - 15	1.96228849	0.03903784	0.29954361	0.01278236
106-57 D1 - 14	0.24582417	0.00750356	0.26665246	0.01380604		106-38 D1 - 14	1.79167873	0.03873171	0.30003877	0.01246776
106-57 D1 - 13	0.13485259	0.00368265	0.28184775	0.01186334		106-38 D1 - 13	1.94307227	0.04396965	0.30541786	0.01308692
106-57 D1 - 12	0.30542699	0.00762401	0.28178752	0.01238762		106-38 D1 - 12	2.39477417	0.05176173	0.31021616	0.01246486
106-57 D1 - 11	0.09417861	0.00264035	0.27701752	0.0098239		106-38 D1 - 11	2.25817923	0.04590024	0.3032456	0.01232054
106-57 D1 - 10	0.06505505	0.00172751	0.28479951	0.00773409		106-38 D1 - 10	2.02271714	0.04144835	0.30104067	0.01326569
106-57 D1 - 1	0.4528405	0.01590428	0.29727302	0.02052257		106-38 D1 - 1	2.14688485	0.04758136	0.30690764	0.0134043
106-38 02 -9	1 67431006	0.04286609	0 291/16/2	0.01420275		106-106- m D	2 00212846	0 12401005	0.28802261	0.03650125
106-20 02-9	1 2025770	0.02247054	0 2011/06/	0.01=2/027		106-106- m D	0.04005530	0.00200210	0.26701212	0.03050135
100-38 02 - 8	1.2935//8	0.03247851	0.30114864	0.01534937		100-1069 m D	0.04895528	0.00298318	0.20781313	0.02359032

106-106a m D	0.05177678	0.00410509	0.27733168	0.02328723	106-106a m D	0.04142607	0.00313051	0.2746355	0.02612718
106-106a m D	2.17893504	0.14289045	0.27611336	0.03897157	106-106a m D	0.05323413	0.00441072	0.29219448	0.02692349
106-106a m D	0.09527337	0.00601349	0.29008831	0.02879504	106-106a m D	0.64463659	0.0335577	0.28169003	0.02752423
106-106a m D	0.07880186	0.00597812	0.2726646	0.0255759	106-106a m D	1.90719283	0.13186862	0.31574245	0.0492282
106-106a m D	3.34028881	0.27915255	0.3439737	0.05488502	106-106a m D	1-25			
106-106a m D	0.15025945	0.00892799	0.27784353	0.02436043	106-106a m D	0.11940923	0.00758155	0.28255679	0.02565766
106-106a m D	0.19851007	0.01114392	0.30768502	0.03009133	106-106a m D	0.132892	0.00785157	0.28807073	0.02722508
106-106a m D	0.22400587	0.01299899	0.30465013	0.02700944	106-106a m D	0.0787778	0.00516853	0.2751005	0.02401898
106-106a m D	0.13123609	0.00845323	0.28851478	0.02434694	106-106a m D	0.14254426	0.00830721	0.2633975	0.02280959
106-106a m D	0.17319874	0.00769586	0.28819405	0.01915702	106-106a m D	0.09832399	0.00709662	0.2818485	0.02373881
106-106a m D	0.24301464	0.01405162	0.29366079	0.02736105	106-106a m D	0.9257927	0.08066065	0.2831645	0.04822342
106-106a m D	0.18432283	0.00950491	0.28929874	0.02109483	106-106a m D	1-2			
106-106a m D	1.53708251	0.09324228	0.28810339	0.03829645	106-106a m D	0.16866173	0.01029494	0.29725858	0.0298748
106-106a m D	0.09687309	0.00649971	0 29611067	0.02874173	106-106a m D	0.42802096	0.02138536	0 27405849	0.02480629
106-106a m D	0.4835303	0.01927072	0.28864472	0.02084454	106-106a m D	2.61117778	0.15720275	0.25525128	0.03141315
106-106a m D	0 63997628	0.03742761	0 27787052	0.02996109	106-106a m D	6 03051348	0 5016084	0.36502418	0.05737983
106-106a m D	0.70240137	0.06967056	0.2583888	0.06271255	106-106a m D	6 25738869	1 05138192	0.41287612	0.15217846
106-106a m D	0.76240137	0.05480142	0.22003888	0.00271233	106-106a m D	1 484021	0.10122858	0.41207012	0.13217846
106-106a m D	0.70808818	0.03480142	0.2824082	0.03939833	106-106a m D	1.404921	0.10132838	0.30003932	0.04000443
106-106a m D	4 12272227	0.02974909	0.29720138	0.03014785	106-106a m D	1.09519527	0.10007804	0.31200223	0.04034732
106-106a m D	4.12372337	0.20815301	0.31528359	0.0408351	106-106a m D	2.20003880	0.21289093	0.30668944	0.03730745
106-106a m D	2.46112563	0.21334866	0.3251558	0.06047306	106-106a m D	2.20984967	0.20852162	0.30508495	0.07608638
106-106a m D	0.14021711	0.01114275	0.29058784	0.02810943	106-106a m D	1.83801041	0.10976326	0.3038644	0.03531002
106-106a m D	0.20453309	0.01087931	0.27265555	0.02317248	106-106a m D	2.50475577	0.20053897	0.30286639	0.05069875
106-106a m D	0.35728484	0.018/9531	0.2/9/33/5	0.0257514	106-106a m D	1.62077186	0.13307652	0.24742447	0.04300284
106-106a m D	1.44980486	0.13470348	0.2944786	0.06801534	106-106a m D	1-10			
106-106a m D	1.40912009	0.11287693	0.2726778	0.04414532	106-106a m D	1.53034635	0.11068566	0.29123267	0.04143318
106-106a m D	0.41523253	0.02264803	0.26416473	0.02987677	106-106a m D	1-1			
106-106a m D	0.174197	0.00973288	0.27632379	0.02365236	106-106a D3 -	0.23497327	0.01568012	0.29136505	0.03951576
106-106a m D	0.19454344	0.01186423	0.26320611	0.02458626	106-106a D3 -	0.03160236	0.0030912	0.29245585	0.0243529
106-106a m D	0.14343066	0.00899287	0.27014347	0.03253142	106-106a D3 -	0.05106493	0.01192345	0.26649388	0.06284992
106-106a m D	3.48171282	0.22458863	0.35148448	0.04298687	106-106a D3 -	0.03854684	0.0087092	0.24737529	0.06300076
106-106a m D	0.23043183	0.01471299	0.26799794	0.03456469	106-106a D3 -	0.0466111	0.00983011	0.29211943	0.06150894
106-106a m D	2.39168841	0.26766326	0.30789993	0.05600865	106-106a D3 -	0.02964751	0.00353247	0.27828202	0.02724174
106-106a m D	4.44241983	0.32626629	0.36559309	0.05038988	106-106a D3 -	0.75540513	0.03638406	0.28568208	0.03042536
106-106a m D	0.08845491	0.00550172	0.29820026	0.02399123	106-106a D3 -	0.02928732	0.00283897	0.29022111	0.02465233
106-106a m D	0.98367172	0.0500546	0.27373823	0.02830217	106-106a D3 -	0.2577625	0.01668878	0.30517218	0.03059938
106-106a m D	1.8578722	0.10117181	0.31254383	0.03867437	106-106a D3 -	0.10491022	0.0105727	0.25832898	0.02952178
106-106a m D	1.79386934	0.10843439	0.28102897	0.03432765	106-106a D3 -	0.0963647	0.00752781	0.26927901	0.0282238
106-106a m D	1.85857794	0.1095892	0.28696691	0.03387735	106-106a D3 -	0.03162694	0.00324077	0.30003826	0.02994169
106-106a m D	1.36720458	0.07900681	0.3276847	0.03757121	106-106a D3 -	0.20414055	0.02168812	0.29005906	0.05512469
106-106a m D	1.97431978	0.11794821	0.28498945	0.03768049	106-106a D3 -	0.15320768	0.01740859	0.26523433	0.04998872
106-106a m D	2.28510952	0.24312573	0.36655393	0.07281682	106-106a D3 -	0.11074252	0.00957922	0.30656931	0.03963935
106-106a m D	0.17237197	0.01158627	0.29847139	0.0294518	106-106a D3 -	0.16175823	0.02005587	0.28265049	0.0616907
106-106a m D	0.15639763	0.00808229	0.27609002	0.02315048	106-106a D3 -	27			
106-106a m D	0.14163161	0.00592187	0.28613293	0.01704722	106-106a D3 -	0.11239065	0.00950309	0.30009654	0.03585561
106-106a m D	0.31850777	0.01189702	0.28533957	0.01800363	106-106a D3 -	0.24605149	0.01598212	0.28452445	0.03181521
106-106a m D	0.34563611	0.01328076	0.27654722	0.01841705	106-106a D3 -	0.79696425	0.04217076	0.27932931	0.02900315
106-106a m D	1.80535086	0.09801628	0.30166047	0.03462267	106-106a D3 -	2.39887803	0.11287464	0.32403194	0.02949684
106-106a m D	0.10194266	0.00619557	0.27876359	0.02240099	106-106a D3 -	0.90126847	0.03310761	0.2956606	0.02040086
106-106a m D	0.40724094	0.02091338	0.28643531	0.02364238	106-106a D3 -	0.80082028	0.03607155	0.29015775	0.024655
106-106a m D	0.00169621	0.00015603	0.28207993	0.00489734	106-106a D3 -	0.96801661	0.05258695	0.29576166	0.02785721
106-106a m D	0.06033361	0.00464135	0.29160019	0.02811672	106-106a D3 -	0.23806366	0.01694237	0.27937474	0.03729671
106-106a m D	1.14623055	0.05127417	0.28612683	0.02671573	106-106a D3 -	0.86725234	0.03831695	0.30966622	0.02862977
106-106a m D	1.40695167	0.06305262	0.29603055	0.02578057	106-106a D3 -	1.00631852	0.04160227	0.31507525	0.02416556
106-106a m D	0.46004526	0.02223864	0.31207443	0.03096322	106-106a D3 -	1.64934659	0.05625635	0.30331752	0.02057418
106-106a m D	0.34335121	0.02057034	0.27790742	0.03356899	106-106a D3 -	2,1880509	0.08281845	0.29339236	0.02322588
106-106a m D	0 12584772	0.00781082	0 26510188	0.02662352	106-106-203	1 72591492	0.05214816	0 28548308	0.01674120
106-106a m D	0 23444615	0.01439665	0 29249638	0.02830867	106-106-203	2 08499141	0.09825041	0 29186675	0 02733752
106-106a m D	3 8972545	0 27179026	0 35537670	0.04318808	106-106-203	0 1550228	0 0093628	0 2830151	0.029628
106-1062 m D	0 04837066	0 00343085	0.2780//9	0 0201022	106-106- 03	0.38785426	0 0205020	0.200101	0.023020
100-100a III D	0.04037000	0.00342085	0.27004403	0.0201022	100-1009 D3 -	0.30703430	0.02039039	0.20941415	0.03104728

106-106a D3 -	0.19991324	0.01216882	0.27072189	0.02987424
106-106a D3 -	0.12992927	0.00893899	0.26265583	0.02711545
106-106a D3 -	0.11426775	0.01089465	0.29234566	0.03133009
106-106a D2 -	0.2174163	0.01679722	0.28114958	0.03505985
106-106a D2 -	0.09728961	0.00748403	0.24658461	0.02592078
106-106a D2 -	1.21244397	0.0716303	0.33478957	0.03666071
106-106a D2 -	2.10788875	0.1248849	0.31168736	0.03879483
106-106a D2 -	0 51415544	0.064952	0 30399494	0.06227973
106-106a D2 -	0 73439446	0.0746522	0.29322061	0.06028495
106-106a D2 -	0 77742771	0.0784643	0.31969891	0.06374403
106-106a D2 -	0.09869358	0.00860611	0.29649557	0.03336808
106-106a D2 -	0.05005550	0.00617720	0.29450504	0.03030000
106 106 D2 -	0.072803	0.00017723	0.23430304	0.03049033
106-106a D2 -	16	0.01232032	0.20342028	0.03918228
106-106a D2 -	10	0.01071220	0 27222242	0.04522474
106-106a D2 -	0.17310299	0.018/1229	0.27552542	0.04535474
106-106a D2 -	0.09433218	0.00719362	0.28975486	0.03360025
106-106a D2 -	0.03/14436	0.00373343	0.28853738	0.0230828
106-106a D2 -	13	0.007.57.5	0.0000000	0.00/7/
106-106a D2 -	0.0/827929	0.00745989	0.28936003	0.03159569
106-106a D2 -	0.22873856	0.01506008	0.30304665	0.03771284
106-106a D2 -	0.09422046	0.00742045	0.27681509	0.02526902
106-106a D2 -	0.07061009	0.00655344	0.27004831	0.02975935
106-106a D1 -	1.0361502	0.05959348	0.32813545	0.03635091
106-106a D1 -	0.9133884	0.06438867	0.29275894	0.0293418
106-106a D1 -	0.83298407	0.05366257	0.30327123	0.03163915
106-106a D1 -	1.01219248	0.05714138	0.28902647	0.03792502
106-106a D1 -	0.81690879	0.04820087	0.28797837	0.02832808
106-106a D1 -	0.98509473	0.0553773	0.27509934	0.02833379
106-106a D1 -	0.81717965	0.04329214	0.2947466	0.0294808
106-106a D1 -	0.50345323	0.02745001	0.29296877	0.03197038
106-106a D1 -	0.90316845	0.05653874	0.2823278	0.03561055
106-106a D1 -	0.19580292	0.02642751	0.28640669	0.02064996
106-106a D1 -	0.12261534	0.00713285	0.28360007	0.01187295
106-106a D1 -	0.10973219	0.00577407	0.28849293	0.01627284
106-106a D1 -	0.87758343	0.04670841	0.26361188	0.02777582
106-106a D1 -	0.23559426	0.01565988	0.30148584	0.03185668
106-106a D1 -	3.36303775	0.19940218	0.33443156	0.04246321
106-106a D1 -	3,93879614	0.21873438	0.32044121	0.03489876
106-106a D1 -	0.88518366	0.05748713	0 2690702	0.02290128
106-106a D1 -	6 34808298	0 40626265	0 33959048	0.0401805
106-106a D1 -	3 7293189	0.21589082	0 33601817	0.03740183
106-106a D1 -	1 71706012	0.14614931	0.29617595	0.02924273
106-1062 D1 -	0.21076200	0.01244225	0.20017555	0.02324273
106 106 D1	0.21970399	0.01344323	0.2383703	0.02789103
106 106 D1 -	0.52554651	0.01020723	0.330//01/	0.029/3268
106-106a D1 -	3.82315089	0.29079905	0.29874944	0.04500466
106-08 D3 - 9	1.00444151	0.04215046	0.30409977	0.01296418
106-08 D3 - 8	1.173024	0.02581539	0.29039304	0.01250265
106-08 D3 - 7	5.01659468	0.1231472	0.32044024	0.01531949
106-08 D3 - 6	3.55500083	0.07984891	0.32292969	0.0137782
106-08 D3 - 5	2.28540852	0.05016076	0.29/38365	0.01236313
106-08 D3 - 4	3.72543008	0.08734742	0.31810125	0.01444029
106-08 D3 - 3	2.41904055	0.05600911	0.30005025	0.01446527
106-08 D3 - 20	2.13361721	0.04664011	0.3066466	0.01251851
106-08 D3 - 2	1.24288661	0.02849972	0.28753513	0.01238635
106-08 D3 - 19	2.77205246	0.05738182	0.29804173	0.01164299
106-08 D3 - 18	1.45777942	0.03087034	0.29178843	0.01152312
106-08 D3 - 17	1.14492569	0.02468725	0.30031566	0.01282205
106-08 D3 - 16	2.52701922	0.05333751	0.30583611	0.01332805
106-08 D3 - 15	2.91946228	0.06272582	0.31354861	0.01262506
106-08 D3 - 14	3.06802694	0.06869132	0.31918967	0.0144334

106-08 D3 - 13	3.23056432	0.06703836	0.32182364	0.01333996
106-08 D3 - 12	1.62977545	0.03697427	0.29517145	0.01182821
106-08 D3 - 11	1.43295205	0.03056426	0.29370514	0.01166558
106-08 D3 - 10	1.72844516	0.03831085	0.31108322	0.01548918
106-08 D3 - 1	1.14618674	0.02665599	0.28959167	0.01265431
106-08 D2 - 9	0.96648867	0.02490092	0.28520449	0.01380978
106-08 D2 - 8	1.0696681	0.03033858	0.29057145	0.01585018
106-08 D2 - 7	1.01672237	0.02966823	0.30098575	0.01636965
106-08 D2 - 6	10.6483489	0.26409051	0.38562313	0.01704876
106-08 D2 - 5	6 28440506	0 15589955	0 35893846	0.01628156
106-08 D2 - 4	3 76324458	0.0776939	0 3279913	0.01242612
	16 0628802	0.25/85211	0.5275515	0.01292012
	0 9970064	0.03030511	0.20766727	0.01000204
100-08 D2 - 23	0.8870004	0.02020311	0.20142022	0.01204825
106-08 D2 - 24	0.9021759	0.02116919	0.30143923	0.01382546
106-08 D2 - 23	0.85948949	0.01959247	0.29872502	0.01436516
106-08 D2 - 22	1.00423909	0.02335441	0.28794109	0.01245492
106-08 D2 - 21	1.01618727	0.02298329	0.29217057	0.01239943
106-08 D2 - 20	0.84156568	0.02002116	0.29441849	0.01294679
106-08 D2 - 2	9.52751687	0.21021779	0.37775797	0.01557194
106-08 D2 - 19	0.85400953	0.01995672	0.28079436	0.01216344
106-08 D2 - 18	0.85009485	0.02016549	0.29526345	0.01370961
106-08 D2 - 17	0.9266705	0.02282607	0.29803414	0.01345377
106-08 D2 - 16	0.80436812	0.01862445	0.28790048	0.01217468
106-08 D2 - 15	1 35996676	0.03683749	0 30529005	0.01718542
106-08 D2 - 14	0.88008006	0.030003743	0.30323005	0.01710542
	0.00120026	0.02010155	0.27713550	0.01201474
100-08 D2 - 13	0.90429920	0.02229784	0.2841037	0.01377378
106-08 D2 - 12	1.062/515/	0.02994044	0.30825315	0.01857212
106-08 D2 - 11	0.87648936	0.02256577	0.28296049	0.01363802
106-08 D2 - 10	1.18/0/524	0.03553241	0.29787493	0.0168826
106-08 D2 - 1	11.3616267	0.23812732	0.40366003	0.01630888
106-08 D1 - 9	5.00474789	0.11077424	0.33653042	0.01461223
106-08 D1 - 8	2.15651021	0.05228077	0.30588529	0.01670576
106-08 D1 - 7	9.4566094	0.20032741	0.37808427	0.0140789
106-08 D1 - 6	10.1681366	0.21574124	0.4031573	0.0147099
106-08 D1 - 5	3.14575447	0.06921044	0.31576374	0.01353097
106-08 D1 - 4	13.6089323	0.31889529	0.43769625	0.01775316
106-08 D1 - 3	9.86352745	0.23313876	0.37687367	0.01693453
106-08 D1 - 20	3.08488909	0.06385304	0.31221827	0.01288182
106-08 D1 - 2	5.49355184	0.14297042	0.35593767	0.0176748
106-08 D1 - 19	4.56315611	0.101934	0.34658431	0.01666652
106-08 D1 - 18	1.50369136	0.0346657	0.29745424	0.01287576
106-08 D1 - 17	1 56266627	0.03491415	0 30431911	0.01279518
106-08 D1 - 16	2 73170662	0.06058243	0.30886701	0.01288171
106-08 D1 - 15	5 70940599	0.11011006	0.30880701	0.01200171
106-09 D1 - 13	1 9671 4000	0.0424554	0.34320379	0.01343995
106-08 D1 - 14	1.86714899	0.0421554	0.29008941	0.01282849
106-08 D1 - 13	9.25259883	0.22130695	0.38980514	0.01650422
106-08 D1 - 12	7.21355183	0.20650307	0.33620678	0.0203595
106-08 D1 - 11	15.3083756	0.35461739	0.45953949	0.01905333
106-08 D1 - 10	2.77440499	0.0662263	0.31954986	0.01429112
106-08 D1 - 1	2.68958747	0.06378468	0.30414582	0.01369543
106-05 R - 9	1.31357135	0.0292434	0.29811744	0.01302096
106-05 R - 8	1.15897765	0.02918656	0.30475293	0.01253561
106-05 R - 7	1.09295031	0.02602931	0.28996569	0.01189833
106-05 R - 6	0.97828358	0.02158161	0.29437059	0.01180917
106-05 R - 5	1.03951755	0.023274	0.29255178	0.01201074
106-05 R - 40	0.99934569	0.0230882	0.29502268	0.01250642
106-05 R - 4	1.01903556	0.0235028	0.28767704	0.01229594
106-05 R - 39	1.33080014	0.03095648	0.29523479	0.01281708
106-05 R - 38	1.21975529	0.02815299	0.2893486	0.01250815
106-05 R - 37	1 11277070	0.02500861	0.28728026	0.012300/1
100 05 N= 57	1.112//0/9	0.0200001	5.20720020	0.01200041

106-05 R - 36	1.03001415	0.02324489	0.28887266	0.01415602	1
106-05 R - 35	1.10565984	0.02541874	0.2973914	0.01427492	1
106-05 R - 34	1.10610004	0.02603521	0.29686167	0.01289546	1
106-05 R - 33	0.96510933	0.022345	0.29069648	0.0127034	1
106-05 R - 32	0.97122514	0.02283302	0.30203194	0.01643044	1
106-05 R - 31	1.07559095	0.02489791	0.28729213	0.01330647	1
106-05 R - 30	1.01220748	0.02196298	0.30923555	0.01498641	1
106-05 R - 3	1.08693443	0.02473759	0.31006892	0.0147077	1
106-05 R - 29	1.03608204	0.02267266	0.29713787	0.01184926	1
106-05 R - 28	0.99951623	0.02196051	0.29220596	0.01174951	1
106-05 R - 27	0.9611301	0.02131738	0.29831508	0.01226539	
106-05 R - 26	1,21243997	0.02883941	0.31175234	0.01735215	
106-05 R - 25	1 41964265	0.03406903	0 29186211	0.01322973	
106-05 R - 24	1 21863642	0.02764518	0.29100211	0.0131/8/1	
106-05 R - 24	1 29474024	0.02704318	0.20375555	0.01634811	
100-05 R - 23	1.23474024	0.03117037	0.30550284	0.01034811	
106-05 R - 22	1.07506456	0.02490795	0.30556527	0.01413955	<u>'</u>
106-05 R - 21	1.04144052	0.02394835	0.30296059	0.01323026	1
106-05 R - 20	1.048/928/	0.02536539	0.30286862	0.0140687	1
106-05 R - 2	0.93187813	0.02093061	0.29352736	0.01307531	1
106-05 R - 19	0.97804372	0.02132732	0.29245383	0.01291862	1
106-05 R - 18	1.02089148	0.02302772	0.29486431	0.01216655	1
106-05 R - 17	1.35184737	0.02923817	0.30939714	0.01213964	1
106-05 R - 16	1.14335038	0.0248365	0.29236064	0.0119896	1
106-05 R - 15	0.93857501	0.02113222	0.30568424	0.01324639	1
106-05 R - 14	1.12312383	0.02455728	0.29195359	0.01173142	I
106-05 R - 13	1.09590986	0.02498058	0.29030339	0.01329342	1
106-05 R - 12	1.18211038	0.02786378	0.3008714	0.01550707	1
106-05 R - 11	1.10409085	0.02477747	0.30784903	0.01490311	
106-05 R - 10	1.3179924	0.02998289	0.3052459	0.0127206	
106-05 R - 1	0 81561785	0.01862591	0 29026376	0.01414873	
106-05 0 - 9	0 97338426	0.02353227	0 29610002	0.01315954	
106-05-0-8	0.7799676	0.01722299	0.28974478	0.01191186	
100-05 0 - 8	0.7755070	0.01722233	0.28574478	0.01175621	
106-05 0 - 6	0.0378223	0.01589509	0.28033033	0.01168615	
106-05-0-6	0.77403570	0.01034383	0.29180372	0.01108013	
106-05 0 - 5	0.98201648	0.02223199	0.29806201	0.01258501	
106-05 0 - 4	0.98288843	0.0223592	0.29969557	0.01239206	
106-05 0 - 3	0.83853672	0.01858851	0.30/32515	0.01208604	
106-05 0 - 2	1.00239614	0.02278668	0.28542158	0.01387549	1
106-05 0 - 17	1.03180295	0.02366424	0.27730973	0.0133357	1
106-05 0 - 16	0.97027605	0.02153126	0.28694031	0.01171506	1
106-05 0 - 15	0.89429008	0.02005294	0.28568168	0.01187421	1
106-05 0 - 14	0.83347299	0.01893909	0.29987899	0.01231892	1
106-05 0 - 13	0.84624863	0.02067991	0.28268811	0.01280521	1
106-05 0 - 12	0.87681396	0.01993902	0.28907297	0.01200979	1
106-05 0 - 11	0.94834785	0.0229819	0.29744035	0.01328197	I
106-05 0 - 10	0.89292442	0.02141682	0.28023823	0.01366635	1
106-05 0 - 1	1.04672149	0.02446781	0.29560285	0.01276943	I
106-05 C - 9	0.98179479	0.01876773	0.31623721	0.01047313	1
106-05 C - 8	1.09741437	0.07675294	0.28357248	0.02975737	
106-05 C - 8	0.94603191	0 11023778	0 29738036	0.0360789	
106-05 C - 7	1 24472208	0.02531349	0.30526255	0.01117885	
106-05 C - 6	1 252529/0	0.02551549	0.30446070	0.011/7016	
	1 1550/550	0.02010002	0.21504662	0.01100707	H
100-05 C - 5	1.13594559	0.02313/43	0.31304003	0.01160/8/	l H
106-05 C - 40	1.0826/488	0.02128/25	0.30452564	0.01062642	H
106-05 C - 4	0.93414424	0.01/7807	0.31282245	0.01197503	
106-05 C - 39	0.94473343	0.01774107	0.31517897	0.01073837	
106-05 C - 38	1.23306404	0.02549018	0.3060163	0.01195073	<u> </u>
106-05 C - 37	1.13669095	0.02284465	0.30645186	0.01117131	<u> </u>
106-05 C - 36	0.99002537	0.03228282	0.3082135	0.01088359	
106-05 C - 35	1.09251717	0.02184896	0.31612989	0.01216918	<u> </u>

106-05 C - 34	1.02765014	0.02003288	0.30794455	0.01055307
106-05 C - 33	1.05283123	0.02041886	0.30707998	0.01129804
106-05 C - 32	0.97554909	0.01855514	0.30952342	0.01024586
106-05 C - 31	1.35416258	0.02900215	0.31377134	0.01209997
106-05 C - 30	0.97398716	0.02647439	0.31547702	0.01145277
106-05 C - 3	1.15688328	0.02562392	0.30711247	0.01221985
106-05 C - 29	1.36762531	0.04503413	0.3165697	0.02117544
106-05 C - 29	0 94068841	0.07900572	0 29492274	0.03258194
106-05 C - 28	0.99595216	0.01971484	0.31404522	0.0116832
106-05 C - 27	1 09859482	0 02294459	0 30800742	0.01270519
106-05 C - 26	1 3274949	0.06882862	0 30681045	0.01202045
106-05 C - 25	1 24406802	0.02560803	0 31394833	0.01267862
106-05 C - 24	1.52846317	0.02300003	0.31701/81	0.01368783
106-05 C - 23	1.06707843	0.03405007	0.313/1302	0.01051349
100-05 C - 25	1 0759168	0.02040403	0.31413921	0.01031343
100 05 C 22	1 45591245	0.02043735	0.30056338	0.01552203
100-05 C - 21	1.40001240	0.03307043	0.31022017	0.01032203
100-05 C - 20	0.04011028	0.02044482	0.31332317	0.01022323
100-05 C - 19	1 10822022	0.01840383	0.30318291	0.01173912
106-05 C - 18	1.19833923	0.02370211	0.31083100	0.01104904
106-05 C - 17	1.24372714	0.02034900	0.30084437	0.0115810
106-05 C - 16	1.20000128	0.020778	0.29793117	0.01218128
100-05 C - 10	1.0568/200	0.02423443	0.31758724	0.01218138
106-05C-13	1 1146427	0.01957542	0.32133413	0.01083073
100-05C-14	1.1140427	0.0211314	0.31330887	0.01268004
100-03C-13	1.17502917	0.02422233	0.30839343	0.01308994
106-05 C - 12	1.08081009	0.02043400	0.3170384	0.01042072
106-05 C - 10	1.10038373	0.02137372	0.31/00/81	0.01077121
100-05 C - 10	0.07810877	0.01920920	0.31050337	0.01029889
106-022 T2 - 9	0.97819877	0.02008318	0.31038021	0.0112050
106-02a T2 - 5	1 11354624	0.02128496	0.30515805	0.01085555
106-02a T2 - 8	1.11354024	0.02120430	0.30355011	0.00180184
106-02aT2 - 6	1 9899866	0.038549	0 35352016	0.01320389
106-02a T2 - 5	1.40529178	0.02693664	0.32727004	0.01209975
106-02a T2 - 4	1.32202781	0.02574658	0.31752481	0.01044721
106-02a T2 - 3	1.22152381	0.02193596	0.30889775	0.01026479
106-02a T2 - 2	1.02775199	0.01803105	0.30935643	0.00922394
106-02a T2 - 1	1.03024092	0.01812402	0.29938933	0.00997082
106-02a T1 - 9	1 36440268	0.02663501	0 32752096	0.01116971
106-02a T1 - 8	1.37778785	0.02838422	0.33079582	0.01176168
106-02a T1 - 7	1.20377644	0.02268638	0.33074482	0.01158258
106-02a T1 - 6	1.30453875	0.02617283	0.32943263	0.0120634
106-02a T1 - 5	1.5184623	0.03102897	0.3348033	0.01202826
106-02a T1 - 4	1.44223074	0.02811681	0.32573214	0.01204932
106-02a T1 - 3	1.12871993	0.0195863	0.30394871	0.00944177
106-02a T1 - 2	1.11262886	0.01962674	0.3132216	0.00950286
106-02a T1 - 1	1.12945107	0.02102367	0.31624466	0.0107712
106-02a T1 - 1	0.80978519	0.01266529	0.30114669	0.00785515
106-02a D3 - 9	0.85424332	0.01513329	0.29934223	0.00914262
106-02a D3 - 8	0.64096719	0.01191096	0.30717801	0.00960364
106-02a D3 - 7	1.07632927	0.03411962	0.30225339	0.01651351
106-02a D3 - 6	0.39849994	0.00751275	0.29635052	0.00981244
106-02a D3 - 5	0.52307436	0.01230611	0.30072012	0.01124454
106-02a D3 - 4	0.61565463	0.01184995	0.29369151	0.00970593
106-02a D3 - 3	0.33787709	0.00665273	0.28744096	0.00928689
106-02a D3 - 2	0.21173364	0.00410801	0.29552681	0.00837071
106-02a D3 - 1	0.54709952	0.01007135	0.29261303	0.01065287
106-02a D3 - 1	0.50612484	0.01314701	0.30310361	0.01187449
106-02a D2 - 9	1.00700891	0.02584857	0.31572593	0.01463363
106-02a D2 - 8	1.03816856	0.02503851	0.32264166	0.01386902
•				

106-02a D2 - 7 0.63336	6897 0.01398325	0.29673153	0.01190244
106-02a D2 - 6 1.3324	4946 0.03545649	0.29608164	0.01568523
106-02a D2 - 5 0.9470	0828 0.02300595	0.29466536	0.01312434
106-02a D2 - 4 1.44560	0699 0.03868588	0.29935192	0.01535088
106-02a D2 - 3 0.89792	1835 0.02161975	0.30383678	0.01376292
106-02a D2 - 2 0.9595	1863 0.02126513	0.29761818	0.01193287
106-02aD2 - 1 1.01712	2161 0.02407976	0.31573124	0.01567109
106-02aD2 - 1 0.67549	9525 0.01320018	0.28965341	0.00986921
106-02aD1-9 0.6371	7818 0.01234783	0.28517366	0.0086099
106-02a D1 - 8 0.6846	6354 0.01238925	0.29760189	0.00948021
106-02aD1 - 7 0.65448	8773 0.01204477	0.28200675	0.00922296
106-02a D1 - 6 0.6504	5921 0.01177951	0.29388645	0.00909853
106-02a D1 - 5 0.95388	8564 0.01572784	0.30071579	0.00924247
106-02a D1 - 5 1.02	3749 0.01734473	0.31058807	0.01068205
106-02aD1-5 1.300	0945 0.02365287	0.33047768	0.0105867
106-02a D1 - 5 1 33719	9187 0.02263904	0 31708484	0.01041506
106-02aD1 - 5 0 58770	0966 0.01132688	0 29604004	0.01050007
106-02a D1 - 4 1 2884	1487 0 0213550e	0 32519415	0.00907463
106-02a D1 - 4 0 8928	7905 0.01482173	0.3069851	0.00873933
106-02a D1 - 4 1 3703	7952 0.01402173	0.32199699	0.01174671
106-02a D1 - 4 0 9281	3282 0.02703123	0 32047443	0.01147959
106-02a D1 - 4 0.5281	7785 0.01480163	0.32047443	0.01020272
106-02a D1 - 4 0 7025	0102 0.01469103	0 31250597	0.011/0231
106-02a D1 - 4 0.79330	0102 0.01007703	0.31230387	0.01177284
106-02aD1-4 0.31032	2472 0.01803037	0.32042180	0.01177384
106-02aD1-4 0.77030	0095 0.01405762	0.3126342	0.01073878
106-02aD1-4 0.77020	0633 0.01037005	0.32419435	0.00193337
106-02aD1-4 0.0392	0277 0.01045083	0.30139373	0.0033307
106-02aD1-4 0.5048	9277 0.01043083	0.20819030	0.01049978
106-02a D1 - 3 0.00482	7770 0.01908484	0.30373809	0.01225008
	6706 0.0E171612	0.3109038	0.01255508
106-02aD1-3 2.38140	5667 0.05171013	0.35400808	0.01335144
106-02a D1 - 3 1 58/65	5159 0.02996535	0.33637948	0.01100459
106-02a D1 - 3 1 3038	1629 0.03441998	0 32438917	0.01182439
106-02a D1 - 3 1 2539	5674 0.02332149	0 32472593	0.01091479
106-02aD1 - 3 1 5885	1247 0.03053391	0 33024596	0.01129813
106-02a D1 - 3 1 5293	7466 0.02834601	0 32920164	0.01058221
106-02a D1 - 3 1.1859	5891 0.02129642	0.32353269	0.0101839
106-02a D1 - 3 0 81804	4768 0.0171944	0 29330408	0.01165592
106-02a D1 - 2 1 18002	2201 0 02006132	0.31762339	0.01012616
106-02aD1-2 1.8059	9273 0.03712331	0.34582871	0.01241201
106-02aD1-2 1 194	7559 0.0205288	0 3163904	0.0093135
106-02a D1 - 2 1.6263	3408 0.03336384	0.33850263	0.01217262
106-02aD1-2 1.4073	1414 0.02576736	0.31468485	0.01038195
106-02a D1 - 2 2 1636	1333 0 04463433	0 36708762	0.01442859
106-02a D1 - 2 1,2059	5293 0.0210808	0.32330171	0.00984219
106-02a D1 - 2 0.7095	5417 0.01224971	0.30655	0.0088763
106-02a D1 - 2 0.59506	6788 0.01064877	0.29759649	0.00895248
106-02aD1-2 1.6545	3919 0.03171887	0.34408298	0.01150781
106-02aD1-2 0.62380	6145 0.01198253	0.30058821	0.00954675
106-02aD1 - 1 0.8754	5609 0.01486025	0.30889972	0.00888583
106-02a D1 - 1 0.7786	7019 0.01463707	0.30770265	0.0113341
106-02a D1 - 1 1.42658	8674 0.02640388	0.34247991	0.01104
106-02aD1 - 1 0.80844	4437 0.01358026	0.3013024	0.00877102
106-02a D1 - 1 0.80882	2358 0.01426439	0.30274346	0.00961194
106-02a D1 - 1 0.98610	9648 0.01947279	0.31410555	0.01086829
106-02a D1 - 1 1 1416	7665 0.02023299	0.31988299	0.01055696
106-02a D1 - 1 1 1 0	9661 0.02149564	0.3080431	0.0110298
106-02a D1 - 1 0.80568	8351 0.01488084	0.30218534	0.0099891
Appendix R 7. Lu	-Hf Raw Data	0.00210004	0.00000001
- ppenuia 17 / 12/0	Data		

APPENDIX C: ISOSTASY CALCULATIONS

To estimate certain properties such as density, *thermal conductivity and *heat production, simple weighted molar mass for minerals in the whole rock sample were calculated. *these were not calculated due to limitations on time.

4.20450906 C	-4.2045091	133178.1	263634.499	109246.399	40.357	79.889242	2804	555	9 2826.76	9 221913.28	9 112666.89	39.5322419	1100000		
5.18464729	-5.1846473	133178.1	287353.844	109246.399	40.357	37.0769224	2804	790	8 2828.68	242398.17	5 133151.77	46.7199223	1300000		
2.67549342	-2.6754934	133178.1	226632.32	109246.399	40.357	58.6764606	2804	358	2 2822.96	3 189956.86	3 80710.462	28.3194606	788000		
4.69457818 D	-4.6945782	133178.1	275494.171	109246.399	40.357	33.4830822	2804	529	3 2827.7	1 232155.73	/ 122909.33	43.1260821	1200000		
4.15550215 ej	-4.1555021	133178.1	262448.531	109246.399	40.357	79.529858	2804	755	4 2826.65	5 220889.04	7 111642.64	39.1728579	1090000		
3.26304814 pt	-3.2630481	112879.8	211632.73	92595.642	34.206	54.1311303	88235	119 2785.	3 2815.80	3 177882.26	9 85286.621	29.9251302	860000		
3.02579817 h .	-3.0257982	112879.8	205891.281	92595.642	34.206	52.3912971	88235	753 2785.	9 2814.84	3 172923.73	3 80328.096	28.1852971	810000		
3.07324816	-3.0732482	112879.8	207039.57	92595.642	34.206	52.7392638	88235	249 2785.	4 2815.04	7 173915.44	7 81319.801	28.5332637	820000		
3.45284812	-3.4528481	112879.8	216225.889	92595.642	34.206	55.5229968	88235	766 2785.	3 2816.52	9 181849.08	2 89253.440	31.3169968	00000		
2.93648543	-2.9364854	112578.84	203376.196	92348.7636	34.1148	51.6291502	88235	769 2785.	2 2814.50	2 170764.66	4 78415.898	27.5143502	800000		
1.06236874 St	-1.0623687	115500	177912.657	94745	35	53.9129263	2850	350	4 2	148646.8	2 53901.8	18.9129263	550000		
1.2403004 a	-1.2403 500	11104.42	1//1/0.004	PTCO.OTC	33.00/4	53.0903400	0000			140103	+ 20000.90/	19.0001400			
1.65548658	-1 3/63 508	111567 43	177172 201	/9169./341	23 2074	50.6803577	2820		2	1/12182	/ b1U8/.Ub4	10 221.434057	55000		
h	-2.0/0/41/	00220	104030.909	10001044	24.92	+9./142391	2000		1 2024.33	+ 130122.02	/ 0003.301	24./942390	10000		
ic	0.0012020	95,010	16/056 090	67450 44	27 07	10 71/0201	2000	37.	1 7077 02	1 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	D 70663 501.	74 70/3200	700000		
3 00428256 k	-3 0042826	91075 38	182601 263	74709 4102	27 5986	55 3337161	2800	891	1 2825.06	153754 40	79045 080	27 7351161	800008		
1.43420318	-1.4342032	89.66250	147317.084	76552.8772	28.2796	14 6415407	2800	591	8 2818 32	103184.40	8 46631 530	16 3619406	490000		
2.22132868	-2.2213287	94850.58	148512.247	77806.2182	28.7426	15.0037112	55172	364 2706.	5 2758.38	3 124150.38	5 46344.166	16.2611111	450000		
3.96712682 S	-3.9671268	96512.79	192421.116	79169.7341	29.2463	58.3094291	55172	2706.	2 2778.05	9 161999.65	9 82829.917	29.0631290	800008		
0.66452887	-0.6645289	98324.49	145651.427	80655.8771	29.7953	14.1367959	2850	350	4 2	3 121529.1	1 40873.263	14.3414959	400000		
2.0823813	-2.0823813	98324.49	179963.455	80655.8771	29.7953	54.5343804	2850	350	6 2	3 151162.25	5 70506.379	24.7390804	000069		
1.59346667 ei	-1.5934667	98324.49	168131.721	80655.8771	29.7953	50.9490065	2850	350	1 2	140943.94	7 60288.063	21.1537064	590000		
1.1534435	-1.1534435	98324.49	157483.161	80655.8771	29.7953	17.7221699	2850	350	6 2	2 131747.45	9 51091.579	17.9268698	500000		
0.90898618	-0.9089862	98324.49	151567.294	80655.8771	29./953	15.9294829	0587	50	0	5 120038.25	9 45982.421	16.134182	450000		
te	- L.L.D.C. O.J.L	00.00	100100.000	0000000000	01010	50.400000	12027	201	1 1010.12	10,014.12	14610.006	CC010002	10000		
0.00000000 d	-3 1537631	112/05 58	100/06 008	03100 7682	21 2026	0 1536350	13827	26/ 28/1	1 28/15 12:	167274 73	1 74373 053	26 0610350	750000		
S 06861555	-6 0686155	141784 17	288644 666	119442 422	47 9649	27 4680807	278N	5	7 2815 61	246276 48	7 126834 06	44 5031806	120000		
5.03611643	-5.0361164	121374	243248.018	102248.4	36.78	73.7115205	2780	195	3 2815.07	3 207503.23	2 105254.83	36.9315205	1000000		
5.65955861	-5.6595586	142207.23	279168.548	119798.818	43.0931	34.5965298	2780	231	3 2814.34	238083.59	1 118284.77	41.5034298	1080000		
5.36932951 St	-5.3693295	166973.73	296911.504	140662.718	50.5981	89.973183	2780	119	5 2810.63	7 252881.70	4 112218.98	39.3750830	1200000		
2.33576576	-2.3357658	108961.05	189042.923	89381.0795	33.0185	57.2857342	28571	108 2804.	7 2823.65	3 158542.69	5 69161.617	24.2672341	000069		
3.63545213	-3.6354521	117521.91	230906.969	96403.5789	35.6127	59.9718089	28571	336 2804.	9 2826.73	3 194327.03	9 97923.460	34.3591088	940000		
5.4143697 D	-5.4143697	131841.6	291619.079	108150.064	39.952	38.3694179	12821	337 2805.	5 2829.71	1 246139.70	3 137989.64	48.4174179	1280000		
4.98748505	-4.987485	115632	254720.132	94853.28	35.04	77.1879189	57143	745 2778.	9 2817.5	9 214974.84	9 120121.56	42.147918	1120000		
3.6 2006847	-3.6200685	103290	213419.351	84729.1	31.3	54.6725306	2850	331	2 2828.2	2 179840.83	1 95111.712	33.3725306	00006		
	LIEVALIUII FEAL	۲ <u>-</u>	£_=	14_p	Cullovines:		Ansira C				CT_DT IIT	nebru(r)	riessuie (raj		
ies		3	3	3 * *	*			2	2	2	* 2 2		Desocrato (Dal		
DATA AVALIABLE FOR THIS AREA	ING A PROXY (NO I	11 WE ARE US	596	37.115239	-16.162303	056		1357 11.	2837.4 4	Selt	Mozambique		Lurio Biet	Central Mozambique	50 Mozambique
DATA AVALIABLE FOR THIS AREA	ING A PROXY (NO L	11 WE ARE US	555	37.98223	-12.859359	8 747		.357 9.2	837.4 40	Belt	Mozambique		Lurio Blet	Central Mozambique	48 Mozambique
DATA AVALIABLE FOR THIS AREA	NG A PROXY (NO L	1 WE ARE USI	575	38.4742949	-11.459522	5 914	3	.357 12.	9837.4 40	Belt	Mozambique		Cabo Delgado Nappe	North Eastern Mozambique	47 Mozambique
DATA AVALIABLE FOR THIS AREA	NG A PROXY (NO E	16 WE ARE USI	557	40.023039	-13.536621	4 949	7	.357 15.	837.4 40	Belt	Mozambique		Cabe Delgado Nappe	North Eastern Mozambique	46 Mozambique
ania granulite horder	voruer or upendian.	0.9 Dat from us	642	7 0001 0.15	-/.01000/	5 0 5 0 10 5 0 10 5 0 10 5 0 10 10 10 10 10 10 10 10 10 10 10 10 1		1461 81	17567 38		Mozambinue	I drizania Craton boro	Ubendiari belt Tanzania Southern Granulites	Southern Tanzania	44 Janzania 45 Tanzania
rulites at the border of nakfa terr	2 value for the Gran	15 Using a base	635	37.655259	-7.116612		0.0	.357 10.2	837.4 40	3elt	Mozambique		Tanzania Southern Granulites	Central Western Tanzania	43 Tanzania
ulites at the border of nakfa terr	2 value for the Gran	na Using a base	640	36.909978	-7.693969	5 800	5 0.	1.357 12.	837.4 40	Belt	Mozambique		Tanzania Southern Granulites	Central Western Tanzania	42 Tanzania
ulites at the border of nakfa terr	value for the Gran	1.8 Using a base	638	38.196678	-2.349705	1 800	8	.357 7.8	9837.4 40	3elt .	Mozambique	Nakfa Terrane Border	Tanzania Southern Granulites	Southern Kenya	41 Kenya
ulites at the border of nakfa terr	yalue for the Gran	15 Using a base	644	38.363527	-3.384169	3 830		1.357 12	837.4 40	Selt 1	Mozambique	Nakfa Terrane Border	Tanzania Southern Granulites	Southern Kenya	40 Kenya
errane Metamorphics, lack or dat	e value for the Gran	sed e guist a 9	900 A	35.3/5833	-3 462013	2 700		200 8.0	2930.5 30 30 30 30 30	n shield	Arabian Nubia	Nalfa Terrano Dorder	Nakta Terrane Tanzania Couthorn Granulitor	Upper Ethiopia	38 Ethiopia
errane Metamorphics, lack of dat	2 value for Nakfa Te	12 Using a base	533	34.834167	8.1666667	1 710	2 2	206 8.1	930.5 34	n Shield	Arabian Nubia		Nakfa Terrane	Upper Ethiopia	37 Ethiopia
errane Metamorphics, lack of dat	2 value for Nakfa Te	6 Using a base	590	35.901667	9.072778	637	1	1.206 8.2	930.5 34	n Shield	Arabian Nubia		Nakfa Terrane	Upper Ethiopia	36 Ethiopia
rrane Metamorphics, lack of dat	value for Nakfa Te	Using a base		36.7226	15.3227	5 600	.0 1	.206 9	930.5 34	n Shield	Arabian Nubia	Haya Terrane Border	Nakfa Terrane	Associated to upper Ethiopia	35 Eritrea
vrane Metamornhics, lack of dat	value for Nakfa Te	5 Using a has	593	39 5693	15.421	700	0 .	33 3./ 1148 8	905.4 34	n Shield	Arabian Nubia		Nakfa Terrane	Associated to Unner Ethionia	34 Eritrea
			625	35.2623487	30.124866	700	2,0	8074 5.5	9820.7 33.	n Shield	Arabian Nubia		Arabian Platform	Western Jordan	32 Jordan
		6	620	34.559	29.34	1 615	.0	2463 5.8	806.9 29.	n Shield	Arabian Nubia		Israel Accretionary Complex	Central Southern Israel	31 Israel
		4	593	34.6666	24.6666	5 650	.0	4.92 7	2878.9	n Shield	Arabian Nubia		East Desert Terrain	Eastern Egypt	30 Egypt
		0.2	582	33.9032	26.0879	5 750	.0	5986 7.5	941.3 27.	n Shield	Arabian Nubia		East Desert Terrain	Eastern Egypt	29 Egypt
		5	625	33.5006695	26.388165	3 555		2796 4.6	053.8 28.	n Shield	Arabian Nubia		East Desert Terrain	Eastern Egypt	28 Egypt
m w 26	es of metamorphis	3 Two instanc	632	34.143	28.38	5 670	0.0	7426 4.9	2821.9 28.	n Shield	Arabian Nubia	Sinai Peninsula	Sinai Shield	North Eastern Egypt	27 Egypt
DATA AVALIABLE FOR THIS AREA	ING A PROXY (NO I	15 WE ARE US	635	37.0487	26.1236	2 330		7953 4.8	9844.1 29.	n Shield	Arabian Nubia	Arabian Shield	Midyan Terrane	North Western Saudi Arabia	24 Saudi Arabia
DATA AVALIABLE FOR THIS AREA	ING A PROXY (NO L	WE ARE US	750	37.0157	26.167	5 725	1.5	7953 5.3	844.1 29.	n Shield	Arabian Nubia	Arabian Shield	Midyan Terrane	North Western Saudi Arabia	23 Saudi Arabia
DATA AVALIABLE FOR THIS AREA	NG A PROXY (NO L	6 WE ARE USI	620	34.559	29.34	3 615	.0	7953 5.6	2844.1 29.	n Shield	Arabian Nubia	Arabian Shield	Midyan Terrane	North Western Saudi Arabia	22 Saudi Arabia
VATA AVALIABLE FOR THIS AREA	NG A PROXY (NO E	WE ARE US	676	37.001	26.287	8 670		7953 5.4	2844.1 29	n Shield	Arabian Nubia	Arabian Shield	Midvan Terrane	North Western Saudi Arabia	21 Saudi Arabia
YATA AVALIABLE FOR THIS AREA	NG A PROXY (NO E	3 WE ARE USI	632	37.0157	26.167	670	0	7953 4.5	98.44.1 29	n Shield	Arabian Nubia	Arahian Shield	Midvan Terrane	North Western Saudi Arabia	20 Saudi Arabia
			120	200 212	14 0428	7 315	-	2076 /.1	1024 6 54		Azania		NINTH AZANIA	North Factorn Vom on	nemes ht

Appendix C 2: Depth, Crustal thickness, Weighted Crustal Densities and the Depth.

1570000 1510000 970000 1400000 1500000

41.63098206 118648.299 2 55.48134.248 2 56.42329084 160806.379 2 54.26698673 154660.912 2 34.86024976 99351.7118 2 50.31376254 143394.223 2

 99
 218807.299
 2828.35459

 18
 262207.841
 2831.17229

 19
 277417.93
 2866.47134

 12
 271712.464
 2868.8467

 12
 215963.263
 2871.1933

 18
 215963.263
 2871.1933

 23
 260005.775
 2867.58121

2804 78.6309821 2804 93.931801 2889.5 96.7802908 2889.5 94.6239867 2889.5 75.2172498 2889.5 90.6707625

37 38.4461 40.357 40.357 40.357 40.357

 100159

 104073.593

 116611.552

 116611.552

 116611.552

 116611.552

 116611.552

 116611.552

 116611.552

 116611.552

9 259482.241 3 309974.943 2 319374.96 2 312259.156 2 248216.924 2 299213.516

-4.5893763 -6.4361496 -7.4000436 -7.6940851

6.43614962

133178.1 133178.1 133178.1 133178.1 126872.13 122100

1 -4.7536704 1 -6.8609676

6.86096 4.7536 1200000

Appendix C 1: Parameters, Pressures, densities from (Appendix C).

Indi

Southern Souther India India India

Highland Complex Southem Granulite T Southem Granulite T Southem Granulite T Southem Granulite T

e Terrain e Terrain e Terrain

Bekliv Block Itremo Block Highland Complex

Sub_Province1 Bemivaro Belt Androyan Block Ikalamavony Dom ain

2789.7

3.018 35.04 39.952 5.6127 9.1 9.1 11.2 12.8 8.7 6.05 11.5 11.5 6.4

0.2 1.8 2.2 0.7 0.85 1.05 1.05 2.2

800 950 950 900

950 11.13575 -4 10.94^

80.837 80.375 78.047917 78.05922

539 539 535 521 544 546.7

5 5 8 4.9 6 6

7.5458

Sub_Province2

Moho_Depth 31.3

Kbar

925

1000 857

-24.619257

45.618667

540

erature latitude_true longitude_tri age_peak age_peakerr Notes 25 -14.662432 49.658425

Province 3emarivo Block

Crustal Layout (modern)					
Southern Granulite Terrain	Vijaya Rao et al. 2006	Vellar - Bhavani Profile			
Density	Crust(km)	Crustal Column			
2730	9000	24570000			
2770	12000	33240000			
2750	14000	38500000			
2870	6000	17220000			
3330					
2780	Average for (Crustal Column 2)	28382500			
Sri Lankan Highland Complex					
Southern Granulite Terrain Density	Vijaya Rao et al. 2006 Crust(km)	Crustal Column			
	9000	0			
	12000	0			
	14000	0			
2220	6000	0			
#DIV/0!	Average for (Crustal Column 2)	0			
		<u> </u>			
Eastern Mozambique					
Cabo Delgado and Associates	Thor Leinweber et al. 2013				
Density	Crust(km)	0.175			
2690	26	0.175			
3050	7	0.175			
3330					
2889.5	40				
South West Saudi Arabia and Yemen	Moopey ad Healey, 1986				
Density	Crust (km)	Percent			
2750	22	0.628571429			
2950	7	0.2			
3050	6	0.171428571			
2841.428571	35				
Egypt (Sinai Peninsula)	Saleh et al. 2006				
Density	Crust(km)	Percent			
2390	5	0.206896552			
2900	6	0.206896552			
2706.551724	29				
Egypt (East Desert Terrane)	Saleh et al. 2006	Dorcont			
2400	1	0.034482759			
2750	16	0.551724138			
2900	12	0.413793103			
2800	29				
Western Arabian Shield (Saudi Arabia, Jordan and Israel) Density	Hansen et al. 2007 Crust/km)	Percent			
2850	Average upper crus given for whole AS	1			
Madagascar (Androyen) Inferred	Rindraharisaona et al. 2017	Inforred Darasita			
Felsic Lower density	10	2650	0.2857143		
Felsic Higher density	10	2800	0.2857143		
Intermideate Granite	15	2850	0.4285714		
2778.571429	35				
Madagascar (Ikalamayony) Inferred	Rindraharisaona et al. 2017			Error	
Felsc Lower Density	5	2650	0.1282051	50	
Felsic Higher Density	15	2800	0.3846154	50	
Intermediate granite	19	2850	0.4871795	50	
2605.128205	39 2711 53			25	
Sri Lanka Inferred	Dreiling et al. 2020				
Felsic Lower density	2750	10	0.2857143		
reisic nigner density	2800	12	0.34285/1		
2804.285714	35	35	5.57 14200		
Sudan Averaged	Qureshi 1971				
2850	35	1			
Ethiopian Rift 2D model	Mahatsente et al. 1999				
2700	11	0.323529412			
2780	14	0.411764706			
2900	9	0.264705882			
2/85.882353	34				
Kenva Rift 2d Model	Simyu and Keller. 1994				

Appendix C 3: Weighted crustal Densities