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Background: Various deep-learning systems have been proposed for automated sleep staging. Still, the
significance of age-specific underrepresentation in training data and the resulting errors in clinically
used sleep metrics are unknown.
Methods: We adopted XSleepNet2, a deep neural network for automated sleep staging, to train and test
models using polysomnograms of 1232 children (7.0 ± 1.4 years) and 3757 adults (56.9 ± 19.4 years) and
2788 older adults (mean 80.7 ± 4.2 years). We developed four separate sleep stage classifiers using
exclusively pediatric (P), adult (A), older adults (O) as well as PSG from mixed cohorts: pediatric, adult,
and older adult (PAO). Results were compared against an alternative sleep stager (DeepSleepNet) for
validation purposes.
Results: When pediatric PSG was classified by XSleepNet2 exclusively trained on pediatric PSG, the
overall accuracy was 88.9%, dropping to 78.9% when subjected to a system trained exclusively on adult
PSG. Errors performed by the system staging PSG of older people were comparably lower. However, all
systems produced significant errors in clinical markers when considering individual PSG. Results ob-
tained with DeepSleepNet showed similar patterns.
Conclusion: Underrepresentation of age groups, in particular children, can significantly lower the per-
formance of automatic deep-learning sleep stagers. In general, automated sleep stagers may behave
unexpectedly, limiting clinical use. Future evaluation of automated systems must pay attention to PSG-
level performance and overall accuracy.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Overnight polysomnography (PSG) is the cornerstone of sleep
medicine, collecting a range of physiological signals. Experts
manually interpret these physiological signals based on consensus
rules, which are prone to bias and error. By convention, sleep is
separated into a discrete set of stages, and observing the temporal
development yields the architecture of sleep upon which sleep
processes are assessed. Historically, sleep staging was performed
manually on 30-s time frames by a sleep technician visually
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evaluating EEG rhythms, EOG and EMG patterns.
Recent advances in digital signal processing and machine

learning have paved the way to automate this labour-intensive and
tedious process fully. In particular, deep learning approaches have
achieved a sleep staging performance that is on par with human
experts [1]. Under the current American Academy of Sleep Medi-
cine (AASM) scoring framework, interscorer variability between
human experts is, on average, about 83%; it varies substantially for
stage N1 but also for N3 [2,3]. The current AASM position is that
‘artificial intelligence’ should augment but not replace the expert
evaluation of PSG [4]. Technology for automated sleep staging is
considered mature and has found its way to commercial sleep
evaluation systems, including wearables [5].

Key to the tremendous success of deep learning is the avail-
ability of large datasets providing a broad sample of sleep stages
that the machine seeks to ‘learn’ by generalizing the patterns un-
derpinning sleep. Large publicly available PSG datasets, such as the
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Sleep Heart Health Study (SHHS) [6] and National Sleep Research
Resource [7], and Montreal Archive of Sleep Studies (MASS) [8]
provide sufficiently large training and testing data for deep learning
systems.

Of concern, most PSG databases typically used for developing
sleep stagers include only recordings from adults, creating a sig-
nificant inherent sample bias and potentially large scoring errors
that may result in substantial errors when applied in the pediatric
or geriatric sleep setting. Aside from age bias, databases often
feature particular clinical populations, introducing further sam-
pling bias.

Compared to adults, NREM sleep in children contains more
slow-wave sleep and displays higher theta, alpha, sigma and beta
frequency band power in EEG [9]. The sleep architecture in children
is characterized by an increase in N2 sleep at the expense of N3 [10].
In contrast, older people produce lower slow-wave amplitudes,
slow delta waves and discrete spindles, lowering N3 sleep but
increasing N2 sleep [11]. Further, most sleep stagers are evaluated
by the overall accuracy they achieve for specific sleep stages across
all epochs and total sleep time sleep efficiency. Also, the error at the
level of the individual PSG and its effect on typical clinically used
markers of sleep architecture often receives little attention when
evaluating algorithms.

Here, we evaluate the significance of age-specific underrepre-
sentation in training data for automated sleep stagers and the
resulting errors in clinically used sleep metrics.
2. Methods

2.1. Automatic sleep stager architecture

We adopted XSleepNet2, the deep neural network presented in
Ref. [12], as the automatic sleep staging model (Fig. 1). It achieves
state-of-the-art sleep-staging performance on awide range of sleep
databases. This model adheres to the sequence-to-sequence auto-
matic sleep staging concept, which recently achieved expert-level
performance in automatic sleep staging [12]. More specifically,
the model is devised to handle a sequence of consecutive epochs
(20 epochs in this study) as input andmaps them into a sequence of
sleep stages at once. The capability of processing a series of epochs
allows the model to incorporate possible long-range dependencies
between sleep epochs in the input sequence, which is vital in
improving sleep staging performance. It resembles how sleep ex-
perts perform manual scoring, who typically need to attend to a
large context around a target epoch to determine its stage.

XSleepNet2 features a hybrid architecture and simultaneously
ingests two different signal representations, the raw signal and
Fig. 1. Schematic representation of the XSleepNet2
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time-frequency image, as the input; the time-frequency image was
extracted as described in Ref. [12]. More specifically, the raw signal
of a 30-s epoch (i.e. EEG or EOG) was transformed to a time-
frequency image via short-time Fourier transform (STFT) with a
window size of 2 s, 50% overlap, Hamming window, and 256-point
Fast Fourier Transform (FFT), followed by logarithm scaling. Two
complementary deep neural subnetworks handle the two repre-
sentations separately. One subnetwork receives the raw signal and
combines a convolutional neural network (CNN) and a recurrent
neural network (RNN) for epoch-wise encoding and sequence-wise
encoding, respectively. The other processes time-frequency repre-
sentation as input and relies on two RNNs, one for epoch-wise
encoding and one for sequence-wise encoding. The first subnet-
work has many parameters (i.e. strong modelling capacity) to
leverage a large training data size by design. In contrast, the second
subnetwork has few parameters (i.e. limited modelling capacity) to
avoid overfitting when the training data size is small. During model
training, the learning pace of the two subnetworks is adapted ac-
cording to their generalization and overfitting behaviour such that
the one generalizing well is rewarded while the one overfitting is
penalized. As a result, the network as a whole learns a good rep-
resentation from both the raw-signal and time-frequency image
inputs and gains robustness to the amount of training data.

To explore the generalisability of our findings, we tested the
performance of an alternative, popular deep learning-based sleep
stager, DeepSleepNet, widely used in the literature [13]. In brief, 30-
s EEG epochs are subjected to convolution layers for representation
learning. Temporal associations are learned via bidirectional long
short-term memory (LSTM) layers.
2.2. Polysomnographic data

The experimental data comprised 7777 overnight PSG re-
cordings with at least 5 h of valid EEG data pooled from the
Childhood Adenotonsillectomy Trial (CHAT) [14,15], Cleveland
Family Study (CFS) [16], Multi-Ethnic Study of Atherosclerosis
(MESA) [17], Osteoporotic Fractures in Men Study (MrOS Sleep)
[18], Cleveland Children's Sleep and Health Study (CCSHS) [19], and
Study of Osteoporotic Fractures [20]. Epochs with all zeros (due to
poor electrode contact) or annotated “UNKNOWN” (due to signal
artifacts) were considered invalid and discarded from analysis.
Further, EEG values exceeding six standard deviations were clipped.

We used single-channel EEG (C4-A1) and EOG (ROC-LOC) as
model inputs for the automated sleep staging systems. The EEG and
EOG signals, originally sampled with different sampling fre-
quencies, were resampled to 100 Hz and bandpass filtered with a
low cut-off frequency of 0.3 Hz and a high cut-off frequency of
deep neural network, adapted from Ref. [12].
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40 Hz using a 100th-order bandpass finite impulse response (FIR)
filter. Each recording was normalized to the range [�1, 1].

To quantify the effect of the training sample's age bias on the
automatic sleep stager output, we divided the data set into three
age groups (Table 1): children aged from 4.5 to 10 years, adults aged
from 16.1 to 74.8 years, and older adults aged from 75.0 to 96.0
years. The age cut-off values were chosen based on the age char-
acteristics of the datasets. We excluded participants older than ten
and younger than 16 years from our pediatric sample to reduce the
impact of developmental changes on sleep EEG associated with
adolescence.
2.3. Statistics

The set of pediatric PSG was randomly divided into five equal
subsets for 5-fold cross-validation. Similar splitting was performed
for the adult and older adult datasets. We developed four separate
sleep stage classifiers using exclusively pediatric (P), adult (A), older
adult (O), as well as PSG from mixed cohorts: pediatric, adult, and
older adult (PAO). The deep neural network, i.e. XSleepNet2, was
configured as in the original work [12]. The performance of the four
sleep stager models was assessed with confusion matrices. To
evaluate the clinical relevance of sleep staging performance, we
calculated several typical hypnogram metrics used in the clinical
setting: total sleep time (TST), sleep efficiency (SE), time of Wake,
N1, N2, N3 and REM sleep, Wake after sleep onset (WASO) and REM
sleep latency.
3. Results

The characteristics of the study sample are summarised in
Table 2. As expected, TST shortened with increasing age, and
conversely, SE was highest in children and lowest in older adults.
Likewise, wake time and WASO were shortest in children and
longest in older adults. Children spent marginally less per cent of
sleep in N1 than adults and older adults. The percentage of N2
increased with age while N3 decreased. There was no notable age
trend in the portion of REM sleep.

Confusion matrices for the XSleepNet2 sleep stager models are
shown in (Fig. 2, top). When pediatric PSG was classified by the
system exclusively trained on pediatric PSG (P), the overall accuracy
was 88.9%. But the accuracy significantly dropped when pediatric
PSG was subjected to a system trained exclusively on adult PSG (A)
(78.9%). Using a system trained on mixed cohort PSG (PAO), the
overall accuracy for pediatric PSG was comparable to that of the
pediatric sleep stager (87.5%). Across all three models, stage N1
classificationwas most error-prone, dropping as low as 21.7% when
Table 1
Study samples.

Database Children
N ¼ 1232

Age (mean ± sd) 7.0 ± 1.4 y
[Range] [4.5e10 y]
Sex (male, female, unknown) 578 m, 633f,21u
Race
white 482
black 577
Other/unknown 173

Source databases (N) CFS (N ¼ 18),
CHAT (N ¼ 1214)

CFS ¼ Cleveland Family Study, CHAT ¼ Childhood Adenotonsillectomy Trial, MESA ¼ M
Study of Factures.
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using the adult system compared to 66.6% and 62.1% for P and PAO.
In contrast, the Wake and REM classification was most accurate,
reaching >90% for P and PAO and 71.3% and 95.0% for the adult sleep
stager. Stage N2 and N3 classification exceeded 85% for all but the
adult sleep stager.

Considering the sample of older people (Fig. 2, bottom), the
overall sleep stager accuracy was 88.4% when the system was
trained exclusively on an older population and 88.1% when solely
trained on the adult sample. When trained on the entire cohort,
including children (PAO), the accuracy was 88.1%. Similar to the PSG
of children, N1 classification accuracy was the poorest (around
40%), while Wake and REM classification exceeded 90%, with N2
classification marginally worse. Of interest, N3 classification was
notably less accurate (around 60e65%), particularly when
compared to pediatric data (87%e92% accuracy).

DeepSleepNet achieved marginally lower overall classification
accuracies than XSleepNet2 but displayed a similar pattern of
performance drop when pediatric PSG was scored on a system
trained exclusively on adult data (Table S1). Sleep stage classifica-
tion accuracy showed a similar pattern (Fig. S1),

Fig. 3 shows the errors common to all XSleepNet2 models,
stager-specific errors distributed over the five sleep stages, and the
distances of misclassified epochs to their nearest sleep stage tran-
sition. In the case of pediatric sleep staging (top left), light sleep
contributed the most to the set of common errors, and N2 is the
most misclassified stage. The stager-specific errors exhibit clear
discrepancies between the stager trained with adult data only (A)
and those trained with pediatric PSG (P and PAO) data. Adult PSG
classification resulted in a noticeably higher amount of mis-
classified Wake and N1, while a significantly lower amount of
misclassified N3 and REM. Such a difference was not observed in
the case of the sleep stager developed on older adult data (top-
right), where stager-specific errors are distributed across the sleep
stages similarly, suggesting fewer differences between adult and
older adult PSG compared to pediatric data.

Regarding the relative position of misclassified epochs to their
closest sleep stage transitions, 55% of the common pediatric stager
errors occurred within four epochs from their closest transitions.
Out of 55%, less than 20% are rapid-transition epochs. In the case of
the older adult sleep stager, the corresponding percentage is
around 65%, of which 25% are rapid-transition epochs. The stager-
specific errors generally saw fewer epochs distributed in the vi-
cinity of 4 epochs than the common ones. This is observed in both
cases of pediatric and older adult staging. However, no striking
differences are seen among the distributions of the stager-specific
errors. The sleep stage classification errors produced by Deep-
SleepNet were very similar (Fig. S2).
Adults
N ¼ 3757

Older Adults
N ¼ 2788

56.9 ± 19.4 y 80.7 ± 4.2 y
[16.1e74.8 y] [75.0e96.0 y]
2415 m, 1342f 1968 m, 820f

2166 2205
964 263
627 320
CFS (N ¼ 606), MESA (N ¼ 1401),
MrOS (N ¼ 1235),
CCSHS(N ¼ 515)

CFS (N ¼ 33),
MESA (N ¼ 652),
MrOS(N ¼ 1651),
SOF(N ¼ 452)

ulti-Ethnic Study of Arteriosclerosis, MrOS ¼ Osteoporotic Fractures in Men, SOF ¼



Table 2
Hypnogram characteristics of the pediatric, adult and older adults study sample obtained by manual expert scoring.

Children (n ¼ 1232) Adults (n ¼ 3757) Older Adults (n ¼ 2788) p-value

Age [years] 7.0 ± 1.4 56.9 ± 19.4 80.7 ± 4.2 <0.0001
TST [min] 451.4 ± 55.2 375.2 ± 83.4 344.8 ± 76.5 <0.0001
Wake [min] 109.7 ± 53.9 253.4 ± 105.1 286.9 ± 115.4 <0.0001
N1 [%] 8.2 ± 4.1 8.6 ± 7.3 9.1 ± 7.4 0.0003
N2 [%] 41.7 ± 8.6 58.9 ± 10.9 62.2 ± 13.9 <0.0001
N3 [%] 32.0 ± 8.9 14.0 ± 10.4 12.8 ± 12.1 <0.0001
R [%] 18.3 ± 4.3 19.6 ± 6.7 18.5 ± 7.4 <0.0001
WASO [min] 43.3 ± 38.2 84.1 ± 60.5 117.5 ± 70.9 <0.0001
SE [%] 81.5 ± 9.0 66.1 ± 12.6 61.2 ± 13.5 <0.0001
REM onset latency [min] 223.8 ± 68.3 219.3 ± 97.4 212.8 ± 103.0 <0.0001

TST e total sleep time; WASO e Wake after sleep onset; SE e sleep efficiency.

Fig. 2. Confusion matrices of XSleepNet2 output subjected to pediatric PSG (top) and PSG of older people (bottom) compared to manual scoring. A-trained e Sleep stager trained
exclusively on adult PSG; P-trained e Sleep stager trained exclusively on pediatric polysomnograms; O-trained e Sleep stager solely trained on older people; PAO-trained e Sleep
stager trained on a mixed cohort of children, adults and older adults.
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Table 3 summarises the relative errors in the clinical
hypnogram-based metrics for the pediatric study sample intro-
duced by XSleepNet2 compared tomanual scoring. Considering the
system trained exclusively on pediatric data, the interquartile range
of errors exceeded 10% for N1, WASO and REM latency. Similar re-
sults were obtained using the system trained on the mixed cohort.
However, when using the system exclusively trained on adults,
errors were notably more significant, with the IQR exceeding 10%
for all metrics but total sleep time and efficiency. Considering the
sample of older adults, the IQR of the relative error exceeded 10%
for all sleep stages except Wake. The IQR of errors was below 10%
for total sleep time, REM latency and sleep efficiency across all
XSleepNet2 models. The errors in hypnogram-based metrics ob-
tained with DeepSleepNet were comparable in magnitude
(Table S2).

Fig. 4 visually represents the complete range of relative errors by
the XSleepNet2 subjected to pediatric data as massive individual
errors are introduced by the automated sleep stager, particularly for
the relative percentage of sleep stages when staging pediatric PSG
with the adult sleep stager. Also, WASO and REM latency may be
estimated with more than 100% error. Fig. 5 visualizes the range of
errors produced by XSleepNet2 when staging the PSG of older
people. Similar to children, sleep stage distribution, in particular,
21
can lead to significant errors. But also, othermetrics were estimated
with errors larger than 100% in individual cases. Individual errors
produced by DeepSleepNet can become similarly significant
(Figs. S3 and S4).
4. Discussion

This study explored the errors produced by two state-of-the-art
automated sleep staging systems created by sampling bias towards
middle-aged women and men. We observed a critical increase in
classification errors if pediatric data were assessed by sleep staging
models trained only on middle-aged adults. The problem can be
effectively rectified when including a representative training
sample of pediatric PSG in developing the sleep stager. Looking at
older people, the error caused by sleep stagers trained on middle-
aged adult data is substantially less than that experienced with
pediatric data. Indeed, adding a pediatric PSG appears to reduce the
median errors marginally. Thus, a single comprehensive automatic
sleep stager for a wide age range of patients starting from pre-
schooler with clinical-grade performance seems feasible if the
training data encompasses a broad representation. However, when
considering individual PSG, errors in clinical markers produced by
any sleep stager models can become unacceptably high, raising



Fig. 3. The top panels show common errors across all XSleepNet2 stagers and stager-specific errors distributed over the five sleep stages. The distances of misclassified epochs to
their nearest sleep stage transition are shown in the bottom panels. A-trained e Sleep stager trained exclusively on adult PSG; P-trained e Sleep stager trained on pediatric
polysomnograms; O-trained e Sleep stager trained exclusively on older people; and PAO-trained e Sleep stager trained on a mixed cohort of children, adults and older adults.

Table 3
Relative errors in typical clinically used measures of sleep architecture produced by XSleepNet2 trained on children (P-trained), adults (A-trained), older participants (O-
trained) or the mixed cohort (PAO-trained) when subjected to pediatric data or data from older participants. Errors are expressed in per cent as medians and interquartile
ranges. Errors exceeding 10% are printed in bold letters for convenience.

children older adults

Sleep metric P-trained A-trained PAO-trained P-trained A-trained PAO-trained
TST [min] 0.083 1.902 0.098 0.298 0.524 0.567

(-0.625 - 0.853) (0.564e4.65) (-0.660 - 0.999) (-2.758 - 3.524) (-2.521 - 3.875) (-2.427 - 3.906)
Wake [min] �0.354 ¡19.62 �0.7285 0.4843 0.7569 0.334

(-4.161 - 2.962) (-40.11 - �7.792) (-5.26 - 2.937) (-2.853 -3.968) (-2.375 - 4.479) (-1.019 - 1.819)
N1 [%] 6.905 ¡66.45 �2.817 ¡17.88 ¡24.61 ¡18.87

(-10.68e28.06) (-79.28 - -48.11) (-19.69e18.97) (-41.17e9.661) (-47.36e3.374) (-41.71e8.947)
N2 [%] �1.481 �4.351 �0.113 5.93 5.948 5.016

(-8.171 - 9.215) (-15.83e10.94) (-8.100 - 10.37) (-2.225 - 16.36) (-1.696 - 16.59) (-2.439 - 14.74)
N3 [%] �2.873 7.685 �0.801 ¡24.7 ¡21.21 ¡17.29

(-13.77e9.193) (-6.686 - 27.79) (-11.53e11.41) (-62.5e12.48) (-55.94e20.63) (-52.35e23.24)
REM [%] 3.288 (�4.834 - 35.05 (15.1 - 3.398 (�4.877 - 0.4573 1.538 0.041

12.57) 66.91) 12.66) (-8.182 - 10.57) (-7.225 - 12.3) (-8.393 - 10.23)
WASO [min] 0 ¡33.33 �0.855 0 �1.587 �1.639

(-11.01 - 11.21) (-55.4 - -13.48) (-12.5e10.49) (-9.859 - 10.69) (-12.38e9.483) (-11.99e8.587)
REM latency [min] �0.238 ¡71.58 �0.255 0 0 0

(-17.69e0.3017) (-92.08 - �4.32) (-21.27e0.279) (�0.314 - 0.133) (-0.329 - 0.139) (-0.257 - 0.199)
SE [1] 0.083 1.902 0.09 0.027 0.3669 0.423

(-0.625 - 0.853) (0.564e4.65) (-0.659 - 0.999) (-3.295 - 3.219) (-3.18 - 3.491) (-2.951 - 3.649)

TST e total sleep time; WASO e Wake after sleep onset; SE e sleep efficiency.
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serious questions as to whether “unsupervised” fully automated
sleep staging with current state-of-the-art systems is ready for
implementation in the clinic.

The explosion of deep learning research has produced a plethora
of automated sleep staging systems. Aside from apparent time
saving and related cost reduction, simplified EEG montages are an
attractive proposition. Typically, these models are benchmarked
against readily available adult PSG databases that may suffer from
limited data EEG quality, such as the SHHS, due to the data's age and
the data acquisition systems available at the time. While the per-
formance of these systems has been deemed sufficient for clinical
use, implementation in commercial systems and acceptance by the
22
clinical community is still limited. One key issue is that perfor-
mance is commonly reported across the entire cohort for testing
data rather than individual recordings. While accuracy may be
exceptionally high in many PSG recordings, it is crucial to evaluate
performance at the PSG level and establish the range of scoring
errors that can occur for an individual patient. Unlike human ex-
perts, deep learning models have been shown to behave in unex-
pected ways and occasionally produce unacceptably large errors.

Interestingly, both scoring systems used in this study produced
large individual errors, and the pattern of errors appears to be
similar, suggesting that automated systems may generally struggle
with particular recordings, and this problem is not specific to any



Fig. 4. The relative error in sleep staging of children created by XSleepNet2 trained exclusively on pediatric polysomnograms (P), adults' polysomnograms (A) and mixed cohorts
including older adults (PAO) compared to manual scoring. Data are presented as violin plots, including median and interquartile ranges. (TST e total sleep time; WASO eWake after
sleep onset; SE e sleep efficiency).

Fig. 5. The relative error in sleep staging of older people created by XSleepNet2 trained exclusively on older people's polysomnograms (O), adults' polysomnograms (A) and mixed
cohorts including children (PAO) compared to manual scoring. Data are presented as violin plots, including median and interquartile ranges. (TST e total sleep time; WASO eWake
after sleep onset; SE e sleep efficiency).

M. Baumert, S. Hartmann and H. Phan Sleep Medicine 107 (2023) 18e25
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particular deep-learning sleep stager. To address these issues, it
would appear necessary to output some measure of classification
uncertainty that will inform the sleep technician about the uncer-
tainty or reliability of individual PSG scoring results. The system
could recommend manual editing or rescoring if the uncertainty is
comparably high. From a modelling perspective, this raises the
need for an active learning mechanism for a model to be gradually
adjusted using the sleep technician's editing/rescoring annotation
in a closed-loop manner. Detailed performance assessment in
various clinical scenarios will be critical to promoting broad
acceptance. Inspecting howamodel behaves on the anomalous PSG
and understanding how sleep staging errors give rise to errors in
clinical markers would pave the way to modelling development,
generalization and robustness, narrowing the clinical imple-
mentation gap, where models achieve high performance in pre-
clinical testing perform poorly in the clinical setting. Auditing cases
where the systems fail may help identify and address the systemic
bias of the sleep stager [21]. The lack of sufficiently large data
representation of rare medical conditions may present another
challenge for deep learning systems. Transfer learning may provide
an effective strategy for dealing with rare diseases. Further,
implementing deep learning systems into the clinical pathway and
identifying practical ways of interaction between the system and
the user is necessary to close the implementation gap.

4.1. Limitations

We used a large convenience sample of sleep studies pooled
from multiple studies using various EEG recording equipment,
constituting a rich data representation. The prevalence of sleep
pathologies such as sleep-disordered breathing or periodic limb
movement disorder may not reflect the general population. Aside
from fragmenting the sleep microstructure, sleep architecture may
be affected.

Also, a potential sex bias may affect the performance of deep
learning systems. Women show larger slow wave amplitudes than
men, which may affect the performance of the sleep stager model
[22]. Sleep microstructure was shown to vary in older men and
women [23]. Given how well our mixed model generalized age
effects, we would anticipate similar effectiveness regarding sex
differences.

We did not include PSG from toddlers. Hence our findings
cannot be extrapolated to very young children. Given the sub-
stantial change in sleep formation and EEG patterns across the first
years of life, particularly in infants, automated sleep stagers using
deep learningmay need to be adapted for those specific age groups.
It remains to be seen whether an age-comprehensive single model
can serve this age group or whether dedicated systems are neces-
sary for very young children. To address the potential age bias in the
deep learning model, age labels minimizing the risk of mis-
diagnoses may become necessary.

Further, our findings are based on only two sleep stagers. While
we cannot generalize our observation to any possible deep learning
systems, many current state-of-the-art systems tend to perform
and behave similarly [24].

4.2. Conclusion

Underrepresentation of age groups, in particular children, can
significantly lower the performance of automatic deep-learning
sleep stagers. A single model trained on a broad representative
sample of data generalizes well and is preferable to age-specific
sleep stager models. In general, automated sleep stagers may
24
behave unexpectedly, limiting clinical use. Future evaluation of
automated systems must pay attention to PSG-level performance
and overall accuracy.
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