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THE DISTRIBUTION OF GENE RATIOS FOR RARE
MUTATIONS

Author's Note (CMS 19.204a) *

* Reproduced from "Contriburtions to Mathematical Statistics (1950) by permission of John Wiley &
Sons, Inc.

The two subjects of this paper which deserve attention are (i) its
bearing upon evolutionary theory, and (ii) the mathematical treat-
ment of a class of functional equations.

In 1922 the author had attempted to examine whether the geneti-
cal situation indicated somewhat vaguely by observational data with
quantitative characters could be more fully elucidated on the basis
of the theoretical concepts of genetics. It was first necessary to
form an opinion on the distribution of the gene ratios of factors ex-
posed to different selective conditions, and then to ascertain their
respective contributions to the genetic variance, and to selective
progress.

The mathematical treatment in 1922 left much to be desired, since
on reflection it appeared that more searching questions could be
asked, and especially the probable progress of new mutations could
be traced statistically, making the distinction between the frequency
of the new gene ana that of the old. The numerical error to which
attention is called in the first section of this paper is of little conse-
quence, since the corresponding distribution is unchanged. It is not
on this point that I have differed from Professor Sewall Wright, but
in that I do not share his conviction that evolutionary progress is
favoured by the subdivision of a species into small, imperfectly iso-
lated populations, save in the case stressed by Darwin in which the
environmental conditions of these are sufficiently diverse to induce
divergent evolutionary tendencies. Wright, on the other hand, has
maintained that random survival in such populations leads to the test-
ing of a greater variety of genotypes, and to the more rapid discovery
of successful combinations, while my own studies have not led me
to believe in any such effect, as a factor contributing to organic
evolution.

Proceedinge of the Royal Society of Edinburgh, 50: 205-220, (1930).



To mathematicians the chief interest of the present paper lies in
the treatment of the functional equations which arise in the exact
examination of the terminal distributions, in the three cases consid-
ered, namely, (i) the steady state without mutation or selection, (ii)
equilibrium with mutations but without selection, (iii) the equilib-
rium distribution for mutations having very small selective effects.
With these distributions established, the probabilities of mutations
of different classes establishing themselves, and their contribution to
the frequencies at given gene ratios and to the heritable variance, are
all calculable. The evolutionary consequences are developed in
Genetical Theory of Natural Selection (Oxford, 1930), which is based
for these questions on the present papes.
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XVIL—The Distribution of Gene Ratios for Rare Mutations. By
R. A. Fisher, Sc.D., F.R.S. (Rothamsted Experimental Station,
Harpenden, Herts). Communicated by Professor Gopnrrey H.
THOMSON.

(MS. received March 21, 1930. Read May 5, 1930.)

1. INTRODUCTORY.

IN 1922 the author published a short paper, “On the Dominance Ratio,”
in the Proceedings of the Royal Society of Edinburgh (vol. xlii,
pp. 321-341). Among other results, the conclusion was drawn that in
the total absence of mutations and of selective survival, the quantity of
variation, the variance, of an interbreeding group would decrease by
reason of random survival, at a rate such that the “time of relaxation”
was 4n generations, where n is the number breeding in each generation.

The variance after the lapse of T generations was found to be
proportional to e~TH»,

During last year Professor Sewall Wright of Chicago has been good
enough to send me in MS. an investigation in which, while confirming
many other conclusions of my paper, he arrives at a time of relaxation
of only 2n generations. Both periods are in most species so enormous
that they lead to the same conclusion, namely, that random survival,
while of great importance in conditioning the fate of an individual
mutant gene, is a totally unimportant factor in the balance of forces by
which the actual variability of species is determined. Nevertheless it
will, I hope, minimise the confusion which every error is liable to cause
if I put on record at once my acceptance of Professor Wright's value,
and at the same time eradicate the error of my previous work by
giving a more rigorous and comprehensive treatment of the whole subject.
I may say that the previous conclusions as to the interpretation of the
evidence for Mendelian dominance in the factors contributing to human
variability are untouched, but that the réle of mutations in maintaining
the current genetic variability of a species may now be set in a much
clearer light.

The error to be corrected lies in the derivation (p. 326) of the
differential equation satisfied by the distribution of the frequency ratios
of different factors, when none are subject to selective action. If the
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two alternative genes in any locus appear in the ratio p : g, the variance
of p after one generation of random breeding will be

e

2’
where m is the number breeding in each generation. To avoid the
inconvenience that this variance is a function of p, we may write

Ip=1-cosf, 2¢=1+cosb
when

Sp= pgd0
and the variance of 6 is therefore very nearly constant at the value 1/2n.
Although, n being large, the values of 6 after one generation of
random breeding will be well represented by a normal distribution with
constant variance, yet its mean will differ from zero by an amount of
order 1/n. This was overlooked in the previous treatment; to find the
mean of §0 as far as terms in n~!, we may write

1 1-2p
80 = —==8) — Eope. ..
Jrg " ipg Jpq( ?)

then since the mean value of dp is strictly zero, while that of (dp)? is

pq/2n, the mean value of §§ is seen to be

1-9 1
= — —cot 6.
™ JJE Py (7]

This, of course, with values of n of many millions, is an exceedingly
small quantity, but its effect is not negligible for the discussion required,
for if
is the distribution of the values of 6 for different factors, the flux past
every value of § due to random reproduction in one generation is changed
from -

1 oy
~4n 96
to -
y 1oy
- 4_7-11 cot 6 — in @’

and the differential equation to be satisfied by y becomes

gy 1o %y
Fomlmoeenrzg) - - O
instead of
u_1wy
oT = 4n 062’

the equation previously obtained; in both T is measured in generations.
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2. THE SOLUTION FOR STEADY DrCAY.

It so happens that the function of 6 which satisfies the true equation
in the case when, in the absence of mutations, the variance is steadily
decaying owing to chance extinctions at the termini =0, =1, is the
same as the corresponding solution of the original erroneous equation,
namely, y=A sin 6.

Substituting in the true equation we have

0A . 2A sin §
37 8in 6= I
or
i A=A Tn,
in place of
A= Aoe——Tﬁn

originally obtained. This confirms the value of 2n generations for the
time of relaxation, found by a quite independent method by Professor
Wright. The variance will then be halved by random survival in
2nlog 2=14n generations. The immense length of this period for most
species shows how trifling a part random survival must play in the
balance of influences which determines the actual variability.

3. VARIABILITY MAINTAINED CONSTANT BY MUTATIONS IN THE
ABSENCE OF SELECTION.

If in equation (1) we put 9y/dT equal to zero, we may at once
integrate the right-hand side in the form

oy -

é—é+ycot:0— — 4nB,

where B is the net number of factors in each generation, the gene ratios

of which flow past any specified value of 6, and the differential equation

now simply represents the fact that this flux is the same for all values

of 6. The equation may now be integrated giving the primitive,
ysinf=A+4nB cos 6

or
y=Acosec 0 +4nBcotd. . . . . - (2)

If we make the convention that mutations are equally frequent in
supplying factors with 6 near to zero and in supplying factors with @
near to s, the symmetrical solution

y=A cosec 0
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will be appropriate; but, if we suppose all mutations occur at 6=0,
then y should tend to zero at ==, and the appropriate form is

y=4nB(cosec f+cot ). . . . . . (3)

In either case the integral of y to the limit of its range at 6=0
fails to converge, so that the relation between the number of factors
maintained and the rate of mutation cannot be made out without an
investigation of the terminal conditions. Before passing on to consider

CURVE A MINUTE SELECTIVE DISADVANTAGE an = -I
B NEUTRAL MUTATIONS
C MINUTE SELECTIVE ADVANTAGE an = +I|

-8 6 -4 -2 0 2 4 6 8
VALUES OF z

F1e. 1.—Frequency curves of logarithmie gene ratio, 2, for different levels of selective advantage;
note that the frequency ordinate is highest for the most extreme admissible negative values
of z, and remains nearly constant over a range which is extremely sensitive to small selective
intensities, '

these, we may consider the distribution now obtained as a distribution
not of 6 but of the more convenient variate z=1log (p/q), the logarithmic
gene ratio. The frequency distribution (3) may be represented on the
scale of z by noting that

df = 4nB (cosec § + cot 9)d6
= 4nBqdz

dz

= 4,71,]31 +ez.

This frequency distribution is illustrated by curve B in fig. 1. The
frequency ordinate is nearly constant for values of 2z less than —4, at
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which point the mutant gene occupies nearly 2 per cent. of the available
loci; it falls to half its previous value when z is raised to zero, when
50 per cent. of the loci are occupied by mutant genes. For higher gene
ratios still, the frequency falls rather rapidly to zero. Since the frequency
ordinate is nearly constant for high negative values of z, the total
frequency maintained depends on how far the curve may be carried to
the left, or how large (negative) values the logarithmic frequency ratio,
z, may have. Evidently this will depend on the size of the population,
and an exact treatment will evidently require an examination of the
terminal conditions.

4, DISTRIBUTIONS EXPRESSED BY FUNCTIONAL EQUATIONS.

A very powerful method of approach was indicated, but not utilised,
in the previous paper. If
170, Pn Pm <ot

are the probabilities of an individual gene carried by a member of the
species, being represented in the next generation in 0,1, 2, . . . offspring,
we may define a function

fz)=py+px+pt+ . . .,

for values of 2 between 0 and 1, and it has been shown that to consider
the offspring of two individuals instead of one, we have only to substitute

{f(x)}? for flz).
Consequently, if the number of factors in which the rarer gene
occupies 1, 2, 3, . . . loci are given by =, m,, my, . . ., and if
(@) =mx + mx + g+ . . .,

the effect upon ¢ of random breeding for one generation is to substitute

${fz)} for ¢(z).
In practice we shall require to use the form
S (x)=em—1,

and if we first take the case of extinction of genes without mutation, the
distribution of gene frequencies, which maintains its form, while one
factor is extinguished in each generation must satisfy the functional
equation

$(e*) = () + 4,
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for the distribution being symmetrical, half the extinctions may be taken
to be reductions from 1, 2, 8, . . . loei to zero, and half to be increases
to 2n.

The corresponding equation for the generating function ¢, for the
case of a distribution in equilibrium with mutations at the rate of one
in each generation, is

() - @) =1 -2,
for a mutation may be represented as an increase of unity in the number
of genes occupying one locus only, and a corresponding decrease of the
(indefinite) number occupying no loci.

The solutions of these equations will be shown to correspond with the
solutions of the differential equations obtained above, and to admit in
addition of an investigation of the terminal condition.

5. THE FuNoTION w,.
In order to solve the functional equations, we define a function u, of
a single real variable », which shall satisfy the condition
Uy = e,

starting from the arbitrary value w,=0. The values of u,, u,, . . . may
now be obtained by direct substitution, and these evidently tend to unity
as a limit. To obtain a form for large values of », we may put

1

11,,=r_—u:
and obtain .
ol i, 11 B
V1 =T T P T3 T 190, 72003 61 v T

Where By, etc., stand for the Bernoulli numbers

1 1 5 691

= [ B,=— = e e,
B, 42 By 30 10786 By, 2730

It appears from the recurrence formula of v that when v is large a
first approximation is given by ;
V=3V,
and substituting this in the third term of the expression, we obtain the
second approximation
V= %V‘i—% log v,
the error of which will tend to a finite limit, as v tends to infinity.

Equall
auey dv—v+}logw
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must tend to a constant value as v is increased indefinitely. Let —C stand
for this constant, and let

w,=4v-v+llogv+C,
then we may obtain an expansion for w in inverse powers of v; for
the recurrence formula provides that

o _1 "1 1 1 }
T =g\ 3t T, TR0 T
1 1,1 1 \
1 {1 LD S S
R S PR TPE I £ R

and expanding this expression we obtain, dropping the suffix of v,

v 3 i 5 =6 =7 147308 v

TTaa T 720" 94 790 43,720 1512, 720 T 1680790 * 3367908 " $31 T3 790"

as an expansion of w,;;—w,; the first term shows that the leading
term in the expansion of w is 1/72v for

1 1+t 1 1
TRERTER AT

and similar expansious may be obtained for (v}, —v;?), and so on. We
thus obtain
w’=£1+ vt  vd Tlet 8759075
72 1080 108.144 168.72%2 630.720%

. 31yt + 163707 2087909308
81.7202 " 1008, 7202 9504 .840.720%

While the last three coefficients are all less than 10-% they show no
such a decided tendency to decrease as would justify our evaluating the
constant C by putting v=1, v=0, & substitution which shows C to exceed
by unity the limit of the sum of the coefficients. We may, however, use
the larger values of v found by the recurrence formula for somewhat
higher integral values of ».

For example, at v=35, the last three terms in w are less than 1079, so
that w will not be much in error in the ninth place of decimals; u is
found by direct substitution in the recurrence formula to be ‘73192 31844
and

v -} log\F— }v +w=1-01464,8607
gives a value of C nearly right to the last figure. To improve much upon
this, it would be necessary to work to more than 10 places in the calcu-
lation of w. As a check, working to 14 places up to u,, where the
last term retained in w is about 2x 10712 the value was found to be
10146486071 7, a value which shows that the apparent precision attained
by the series is not illusory.
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6. SoLUTIONS oF THE FuNcTioNaL EqQUATIONS.

If, in the equation

$(e* 1) - p(x) =1,
z=u,

‘#(uﬂ‘l) - d’(uv) =% ’

which is satisfied if ¢ is the same function of x as 3v is of w. But we
know that

we substitute

we have

1 1 1 l-u (1-u)?
e’ T s ——l 1— — ——— o ————— . . "
R R A ekt = et v SLRE

hence, apart from a finite fraction of the frequency, ¢ may be expanded
in powers of « in the form

$() = 2+ log (1 - 2)

—§x+}—1—’2+-1—73'3+ , @
61 18

showing that in the distribution of gene ratios appropriate to steady
extinetion without mutation or selection, the frequency of factors repre-
sented in %k loci must, when £ is large, tend to unity. Since each step
increases the gene proportion p by 1/2n, we have, apart from the extremes

of the distribution,
dy = 2ndp

=7 8in §d6,

in agreement with the solution obtained for this case from the differential
equation. The total number of factors at all frequencies will be

2n - }(y +log 2n) --01464,86071,7,

(where vy is Euler’s constant 0-577215664), the remainder of which is
negligible compared with the first term, twice the number of individuals
breeding in each generation, thus verifying the rate of decay to be 1 in 2n
in each generation,

The exact treatment of the terminal frequencies, which shall account
for the distribution of the finite quantity 0014649, omitted from expres-
sion (4), evidently requires the differential coefficients of }» with respect
to u, at the value w=0. Since the series for w in powers of (1—u) is
itself doubtfully convergent at this value, its differential coefficients may

be still less relied upon to converge ; we therefore require reduction formule -

for these coefficients.

From the recurrence formula
u, ~ 1 =log u,y,,
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we have, differentiating with respeect to v,

du,, 1 dupy,

oy Ay
or
dv dy

== Uy )
du, duw}_;

from which the value of dy/du for a lower value can be obtained with the
same relative precision as at the higher.
We may write the relation in the form

I__ I
vol =1y

with the understanding that any suffixes differing by unity can be sub-
stituted for those indicated. Since also

2 d
Juy

we can at once derive the further relations

vl =up ! +u 2w

vo = wgry " 4 Bu b B

v = uy T+ T+ 6wy, b u

vy =1+ 15u 2 T4 250,30, T+ 10w, b,V + A

vo ' = w4 81uy v, T + 90u 3, + 6 5u, b,V + 1605y, ¥ 4wy, 7,
and so on.

From these it is evident that, knowing the series of differential
coefficients of » with respect to w at any integral value such as y=35, the
corresponding series may be obtained step by step down to y=0. In this
way we obtain, for the series of coefficients

1 1 dky
2" k! du?
the values:
k. True Value. Approximation. Error. Remainder.
1 818,202,78 '833,333,33 +015,130,55 — 1000,481,94
2 916,762,37 916,666,67 ~000,095,70 — 000,386,24
3 944,993, 44 '944,444,44 — -000,479,00 +000,092,76
4 *968,266,12 *958,333,33 + -000,067,21 ++000,025,55
5 '966,634,08 966,666,67 +000,032,59 ~-000,007,04
6 979,225,35 972,299,99 — 000,003,13 — *000,003,91

The table shows in parallel columns (i) the values derived from the
reduction formula from those at y= 5, (ii) the values given by the approxi-
mation 1—1/6k, (iii) the differences between these values, (iv) the remainder
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of the deviations needed to make up the total +°014,648,61. The mere
fact that this difference decreases at every step, and is finally reduced to a
very trifling value, indicates that the errors shown in the first six terms,
small as they are, are far greater than those to be anticipated at higher
values of k.

The second functional equation, appropriate for variability maintained
by a constant supply of mutations, has the form

B(e®) —p(z)=1-=;
substituting here u, =2, we have
¢’(uv+l) - dlu)=1-u,;

but from the recurrence formula

« d

—tyy, = 61y

dv v+1 dv vy
hence

log dﬁl-’u,,,,.l - logdil;u,, =u,-1;

so the functional equation may be written

d d
(1) + log Tl = o(u,) + log T
which is satisfied if

$(u) +log 2
v

is a constant. Since by its definition ¢(0)=0, we thus find that ¢ is the

same function of x as
log v/ - log v,’

is of w. The approximate form,

Lo

V=

-4

gives log v =1log 2 -2log (1 —u);
so that an approximation is given by
Px)= -2log (1 -x)=2w+ 324+ 2034 . | |
which will account for the whole frequency save for
log 2 - log v, =200,645,07.

The frequency at p="Ik/2n is now found to be 2/k when k is large, or the
frequency element to be
_2dp_ sin 66 (1 + cos 6)db

p l-cosd  sind
= (cosec 8 + cot 8)d#,
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thus confirming the solution obtained by means of the differential equation.
By the present method, however, we can evaluate the total number of
factors maintained in the specific variance by one mutation in each
generation as
9(y + log 2n) + -200,645,07,
the value of which ranges from 30-372 to 57-903 as n changes from 10 to
102,
The exact terminal frequencies for this case may be obtained from
I, I u ¥
vi=v, Uy +'~2—V0 + ..
hence
VI v 2y )
10g;-7=log{1+uv—of oo At \l

5 p] 4
o o 2 v /

which, on expansion in powers of u, yields the frequency coefficients of the
following table :

k. True Value. Approximation, Error, Remainder.

1 2:240,917,26 2:000,000,00 —240,917,26 +-040,272,19
2 ‘953,776,16 1:000,000,00 +046,223 84 —005,951,65
3 671,863,62 666,666,67 ~005,196,95 —000,754,70
4 *501,095,71 500,000,00 ~+001,095,71 +-000,341,01
5 399,761,71 400,000,00 +000,238,29 +000,102,72

showing, as in the previous case, that the discrepancy from the approximate
formula is confined, for all practical purposes, to the extreme terminal values.

7. THE EFFECTS OF A SMALL SELECTIVE ADVANTAGE
OR DISADVANTAGE.

The method of functional equations has now made clear in what way
the terminal forms of the solutions of the differential equations should be
interpreted ; we may therefore now consider the differential equation appro-
priate to mutations enjoying a small selective advantage, such supplying in
all probability the greater portion of the genetic changes taking place in
the course of evolution.

If @ is the selective advantage of the mutant genes, the flux past any
value of § may be written as

1 oy

| S y
-2-aysm<9---ﬁcot6-5‘5—o, . . . . (5)

provided a® may be neglected. It should be noted that the equation will
only be correct if a?n is a small quantity, and this limits its application
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to very minute selective intensities. For these, however, the equilibrium
condition of constant flux yields a differential equation for y of the first
order, which may be written

Y= (2an sin 6 - cot Hly = — 4anA
and may be integrated in the form

ye?an €08 8 gin f = QA eloncosé L B,

Since cos §= -1 when =, the condition that at this terminus, where
no mutations are oceurring, y sin 6 should be zero, is that
B= - 2A¢20m

gliving the solution
Y = 2A cosec §(1 ~ e~2on(i+ cosd)),

At the terminus =0 this will correspond to the distribution in equi-
librium with one mutation per generation if

-

A=
so that the distribution adopted is
\ 1 — e~2an(14 cos ¢)
df =ydf = 4 cosec GW(M

2 {1 - e"“”/(l“z)}dz.

1 —_ e—4am

Fig. 1, C, shows the distribution on the scale of 2 for an=1, while
the curve A on the same figure shows the curve for factors at a minute
selective disadvantage, an= —1.

While the curve of continuous distribution represents the frequencies
well over that part of the range in which +-2 is considerably less than
log m, the termini of the distribution are subject to adjustments similar
to those investigated in the absence of selection. Thus at the terminus
§ =0, the frequency element 4 cosec 8df will be replaced by a series of
frequencies for 1, 2, 3 genes given approximately by the series 2,1, %, . . .,
while at the terminus 8== we have the frequency element

8an cosec 6(1 + cos G)da

] — e—dan

the limit of which is
4an sin 6440

the form appropriate to steady extinction without mutation, the rate of

extinction at this terminus being
2a

l s e—-mn
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in each generation; this rate may equally be obtained by substituting
in the assumed flux of factors, Aa, the solution
9

-~
1 — e~tan’

A=

The probability of a mutant, enjoying a small selective advantage a,
spreading until it establishes itself throughout the entire population is
thus found to be 2a/(1 —e™**"); it is easy to see that with an indefinitely
large population, or in any case if 4an is large, this expression reduces
to 2a. Thus a mutation conferring a selective advantage of 1 per cent.

-:00 -75 50 =25 0 5 b0 75 100

VALUES OF an

F1a. 2.—Probability of success for mutations having a very minute selective advantage

or disadvantage.
will have practically a 2 per cent. chance of establishing itself. The
value of this probability affords a means of checking the accuracy of
our solution for values of a which, while still small, are large enough
to vitiate the condition that a’n should be small, the condition subject
to which the differential equation has been obtained. For, in an
indefinitely large population, the exact probability of ultimate survival is
given by 1-U, where U satisfies the equation

U = gc(V~1)
and c=e®
Writing P for 1—U, we have
cP=-log(1-P)=P+4P2+4P34+ . , .

which is satisfied by
5 7 131

P=2a-§a2+-a3_

S 4 . 3 .
5% " 510 ’

10 ALIEgVvaoXd

IVAINLENS
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showing that when a is small, even though a?n may be large, the value
2a is a good approximation to the probability of survival.

When an is not large, the probability 2a/(1 —e~4") tends to the small
but finite value 1/2n, as a tends to zero, and is finite even for negative
values of «; its value changes, however, very rapidly as we pass from
small negative to small positive selective advantages. Fig. 2 shows the
course of this change. It will be observed that the probability of suc-
cess increases over fiftyfold (et) in passing from an= -1 to an=+1,
that is from distribution A to distribution C of fig. 1.

8. CONTRIBUTIONS TO THE VARIANCE.

In previous work the calculations of the quantitative contribution of
different classes of factors to the total variance of the species has been
much complicated by the widespread phenomenon of dominance, and by
our ignorance of the conditions under which factors may be expected to
be dominant or recessive. With the extension of genetical experience it
now seems probable that the recessive character is characteristic of
deleterious mutations which have long persisted in regular occurrence in
the species or group in which they are known ; and in the case of stable
dimorphism, determined by a simple Mendelian factor, of the less favoured
of the two phenotypes (genetic selection being necessarily absent or
balanced in such cases). Consequently, it is probable that the new and
sometimes favourable mutations on which evolutionary progress must
rely are neither dominant nor recessive, but have heterozygotes of an
intermediate character. Their contribution to the variance will then be
simply proportional to pg or to sin®#6, and the total variance supplied by
mutations having a selective advantage a, for each one occurring per
generation, will be proportional to

/0-" %ﬁi’_@sin 0dg

or to
2 1

1—ems ™ 9’

For negative values of an exceeding 2 this is nearly equal to 1/2an, while
for large positive values it approaches a constant value of 2, passing through
the value unity when «=0. Its course is shown in fig. 3. If in the
immediate neighbourhood of neutrality beneficial and harmful mutations
ave equally frequent, the variance contributed by mutations in a given
range of utility will increase sharply as the utility is increased past the
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point of neutrality. For higher values of « there is every reason to sup-
pose that the supply of mutations falls off, so that there will be a maximum
in the contributions to the specific variance ascribable to slightly beneficial
mutations. The frequency of harmful mutations probably increases con-
siderably with the extent of the injury up to high values of —an; in spite
of the decrease in the average contribution of each mutation to the specific

¥ T T T T T T U ¥ 2:0

1 I Il 1 1 L 1 0
-2:5 -2:0- ~I5 -0 ~0'5 0 05 1-0 -5 2:0 25

VALUES OF an

Fig. 3.—Proportionate contribution to the specific variance for factors of varying
selective advantage.

variance, there may thus well be a second maximum, representing the con-
tribution of definitely deleterious mutations which are constantly kept rare
by counter-selection. This latter maximum is of no direct importance for
evolutionary change, though the effects of Natural Selection in reducing
persistent mutants of this class to the recessive condition seem to be of the
greatest interest. The portion of the genetic variance to which evolutionary
progress is to be ascribed may be a large or a small portion of the whole
observable variance, but seems in any case to be concentrated in groups of
factors each determining a very minute selective advantage.
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9, SUMMARY.

The discussion of the distribution of the gene ratio of the author’s paper
of 1922 is amended by the use of a more exact form of the differential
equation to be satisfied. It appears that the time needed to halve the
variance by random extinction of genes in the total absence of mutations
should be 14 instead of 2'8 times the number of potential parents in each
generation. Either value shows thas the loss of variance due to this cause
is too trifling to be appreciable in the balance of causes which maintain
the actual genetic variability of species,

The same correction alters the distribution appropriate for the main-
tenance of variability at a fixed level by mutations in the absence of
selection. The new solution closely resembles the form previously obtained
and now confirmed for the practical case in which selection is present. The
method of differential equations, however, fails to deal satisfactorily with
these cases, owing to the failure of the integrals to converge at the termini
representing cases in which one or other allelomorph is extremely. rare.

A method of functional equations is developed for dealing with the
termini, and is shown to lead to the same solutions as the amended differ-
ential equations in the central portion of the range for which the latter are
valid, and further to give the terminal distribution of rare allelomorphs.
The method requires the investigation of a continuous function u, of argu-
ment » satisfying the recurrence formula

’u,,,+, = eu'l'—l .

From the asymptotic form of this function its expansion in the neigh-
bourhood of u=0 is derived, giving the frequencies of the required
distributions.

Exceedingly minute values for the selective advantage or disadvantage
make a great difference to (i) the chance of success of a mutation and (ii)
the contribution of such mutations to the specific variance. The order
of magnitude to be considered is the inverse of the population of the species.
The neutral zone of selective advantage in the neighbourhood of zero is thus
so narrow that changes in the environment, and in the genetic constitution
of species, must cause this zone to be crossed and perhaps recrossed relatively
rapidly in the course of evolutionary change, so that many possible gene
substitutions may have a fluctuating history of advance and regression
before the final balance of selective advantage is determined.
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