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THE WAVE OF ADVANCE OF ADVANTAGEOUS
GENES

Author's Note (CMS 31.354a)*

* Reproduced from "Contributions to Mathematical Statistics" (1950) by permission of John Wiley
and Sons, Inc.

This is an isolated paper which I have not followed up either practi-
cally or theoretically. It seemed essential to examine the properties
of the differential equation determining gene spread in the simplest
case, and it was a pleasure to find that the very empirical process
used for the computation of the fundamental function would work
successfully. The quantitative solutions found were strongly sug-
gestive for comparisons with the observable facts, especially in lit~
toral organisms.
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THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES
By R. A. FISHER, Sc.D., F.R.S.

I. THE PROBLEM OF GENE DISPERSION

ConsTpERapopulation distributed in a linear habitat, such as a shoreline, which it occupies
with uniform density. If at any point of the habitat a mutation oceurs, which happens to be
in some degree, however slight, advantageous to survival, in the totality of its effects, we
may expect the mutant gene to increase at the expense of the allelomorph or allelomorphs
previously occupying the same locus. This process will be first completed in the neighbour-
hood of the oceurrence of the mutation, and later, as the advantageous gene is diffused into
the surrounding population, in the adjacent portions of its range. Supposing the range to be
long compared with the distances separating the sites of offspring from those of their
parents, there will be, advancing from the origin, a wave of increase in the gene frequency.
We may first on the simplest possible postulates consider the motion of this wave.

Let p be the frequency of the mutant gene, and ¢ that of its parent allelomorph, which we
shall suppose to be the only allelomorph present. Let . be the intensity of selection in favour
of the mutant gene, supposed independent of p. Suppose that the rate of diffusion per
generation across any boundary may be equated to

op
ox
at that boundary, « being the co-ordinate measuring position in the linear habitat. Then p
must satisfy the differential equation

P _ 0%
= k-é-y-c—é+mpq, ...... (1)

where ¢ stands for time in generations.

The constant k is a coefficient of diffusion analogous to that used in physics. Its use should
be appropriate in many cases. In all real cases we may expect irregularities due to k varying
at different points of the range, due to variations in the density of the population, and to
variation in the selective advantage of the mutant at different places. Further, the means
of diffusion may involve an unequal drift in opposite directions, so that some parts of the
range predominate as centres of multiplication and others as centres of extinction. The
effects of all such complications can only be discussed by reference to the course of events
when they are absent. The purpose of equation (1) is to specify the simplest possible con-
ditions.

The use of the analogy of physical diffusion will only be satisfactory when the distances of
dispersion in a single generation are small compared with the length of the wave. In reality
diffusion is a complex process, compounded often of the diffusion of gametes, and that of
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larvae, in addition to adult forms; a more exact treatment than that supplied by a simple
coefficient would involve the interaction of these components, and the stages at which the
selective advantage was enjoyed. So far as it is applicable, the analogy of physical diffusion,
therefore, greatly simplifies the problem.

With respect to the assumed independence of m from p, this is effectively to assume that
there is no dominance in respect of the selective advantage enjoyed. Apart from its simplicity
this is also, in the author’s opinion, the most important case to consider, in respect to advan-
tageous mutations occurring in nature. There are, at least, plausible reasons for supposing
that the common recessiveness of observed mutations is a characteristic of harmful muta-
tions, which have long been appearing in the species with relatively high mutation rates,
whereas beneficial mutations must, at the time of their establishment, occur with exceedingly
low mutation rates, and have rarely appeared before in the recent history of the species. On
these grounds dominance would be expected to be absent, and its absence is made the more
probable by the fact that in most cases the quantitative effect of beneficial mutations must
be extremely small. For the same reason the selective intensity m is taken to be a small
quantity, so that p may be taken to vary continuously with time, and not discontinuously
from generation to generation.

I1. WAVES OF STATIONARY FORM

If we seek for a solution of (1) representing a wave of stationary form advancing with

velocity v, we may put op ap

_—— Y,

ot ox
and obtain the differential equation (2) involving only one independent variable:

d*p  dp
kmﬁ-v%q-mpq_o. ...... (2)
Since the variable z does not appear explicitly, we may write, for the frequency gradient,
g = —dplde,

dp dg dg

d? ~ dx_g@;’

and so find the relation between g and p,

whence

d
kg%—vg+mpq =0. L. (3)

At the point of inflexion dg/dp = 0, and vg = mpg; in advance of this point dg/dp is positive.
If g/p tends to a limit % as p tends to zero, then » must satisfy the equation,
kut—vu+m =0,
a quadratic equation in u, which has real roots only if v2 is not less than 4km; but gfp cannot
tend to zero for vy >mpq, and cannot tend to infinity because v > k.dgfdp. Hence solutions
only exist for which the velocity of propagation is equal to, or exceeds, 2+/(km).
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Writing A = +/(kjm),
v = +/(mk) <c+%),

then equation (3) may be written

, g S |
z maams - J—
/\gdp g/\(c+c)+pqw0. ...... (4)
Or, if Ay = pgz,
dz 1 1
—+{(1=2p)z—~lect=}4=~=0 ... 5
pqdp+( D)z (c+c)+z 0, (%)

where ¢ is any positive number, conventionally taken to be less than 1.
In the especially interesting case of minimal velocity, equation (5) may be written

this case, when ¢ = 1, we may call (a). If ¢ lies between 1 and v/ 4, we have a range of cases,
which may be called case (b). When ¢ = 1/} (case ¢), a second case of special interest arises
with the equation de 3 1

pq@=2pz+;7§w(z+;)’ ...... (50)
and having a velocity of propagation 1/ times the minimum. Finally, in case (d), ¢ is less
than /1.

III. PARTICULAR CASES
When p = 1, the only positive value of z for which dz/dp is finite is the positive root of the
equation 1
z2+(c+5)z—~l = 0
1 .
or 22_2?{\/(64+602+ I~ (c2+1)} = «.

In the neighbourhood of all other values dz/dp increases inversely to (1—p), so that no
other finite value is admissible at p = 1. In general, at this extremity

1
(1«~p)zdz/dp=z2+(c+g)z—1
dp zdz ( i B ) dz

or e e e D)
l-—_p z2+(c+£)z-l F-x oz /3“ ﬁ
‘ c (z—a)
- = log
08¢ = ZaT 6+ 1) 6 =)
which as —log ¢+ 00 cannot be satisfied for any finite value of 4.
The only admissible solution is therefore that for which z = a, at the limit when p = 1.
When p = 0, we have in case (a)

dz 1 ,
% 2pr——(1—2)2
L 2pz z( z)

pt 4,
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For positive values of z, the right-hand side is positive when
(2p—1)22+22-1

_ —1+4/(2
is positive; this is zerowhenzis 2z, = "‘““2; _\/_/'5 p)'

When p > 4, there is only one positive root. This root decreases (as p passes from 0 to 1) from

1 to (V2~ 1), which are the terminal values of z. Since dz[dp is positive when z >z, (apart
from a region of higher values when p <}), z can never exceed 2, for intermediate values of
p, for positive values of its derivative can never allow it to pass out of the region of positive
values, 5o as to decrease to its final value. Consequently, in the neighbourhood of p = 0, z
must decrease even more rapidly than z,. For small values of p therefore dz/dp must tend

to a negative infinity. The differential equation to be satisfied in this region is
dz 1 .
pc-i;——-—-z-(l——z), ...... (6a)

dp —zdz dz dz

o P o= 1=z (1-2®
1
whence logp = ——l—:-z-—log(l—z)+A,
Y|
= -
or P l_ze , (7a)

where the constant of integration 4 is that which carries the solution to the terminal value
z=+/(2-1),atp=1.

In case (b), since dz[dp is positive for all values of p when z lies between ¢ and 1/¢, and
since the terminal value « is less than ¢, we must take z = ¢ at p = 0; we need a negative
value of dz[dp at the terminus, satisfying the equation

dz 1/1
pdp = zpc__c_(.c.._c) (==, .. (6b)
where ¢? > 4. Writing the equation in the form
dz l—czz__ 6_l—c2
dp  pc? ep
d 1-c?
— 1-~1/c2) 1-1/c2 _ ____7 n—1fc?
or ap @) = Zop Pt B
c
3 1-1/c® 2—1/c? 1-1/c%
it appears that 2p Y P +ecp B,
in which again, the first term on the right-hand side is to be omitted, giving the solution
¢~z = Bptet-t. (7b)

Since the power of p is less than unity, dz/dp is still infinite at the limit.
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In the special case (¢), where 1/¢* = 2, we find on integration

zfp = 2clogp +cfp—c,

or V) ~z=ple—v2logp), e (7¢)
tending to zero with p, but still with an infinite derivative.
Finally in case (d) c—z = —-%-bi-p
1 2¢?

In this case the constant of integration is associated with a negligible term. In fact by
expanding ¢ —z in powers of p as
2¢3
z= C—l—_%-z2)+}9[)2+7p3+...

and substitnting, we have successive equations for 8, y, ..., i.e.
8= 2¢5(3 — 4c?)
= =39 (1 =2’
_ 8¢7(5 ~— 11¢? + 8c?)
YT (1= 3¢%) (1 —dc?) (L — 2¢%)°

We have thus an expansion for z as a power series in p, a form of expansion which fails at
the singular values ¢ = 3, 4, 5, ...; showing, nevertheless, that when ¢~2> 2, the solution

having z = ¢ for p = 0 is unique.

IV. THE AMBIGUITY OF VELOCITY

The most striking point about equation (2) is that the velocity of advance of the mutant
factor appears to be indeterminate. If, for example, any part of the range were filled
+ ith the mutant form, and the zone of transition were artificially given frequencies with
the low gradient of gene ratio appropriate to a high velocity, the mutation would spread
with a higher velocity than if the initial gradient had been higher, and would continue to
spread indefinitely with this higher velocity so long as uniform conditions were encountered.
Common sense would, I think, lead us to believe that, though the velocity of advance might
be temporarily enhanced by this method, yet ultimately, the velocity of advance would
adjust itself so as to be the same irrespective of the initial conditions. If thisisso, equation
(2) must omit some essential element of the problem, and it is indeed clear that while a
coefficient of diffusion may represent the biological conditions adequately in places where
large numbers of individuals of both types are available, it cannot do so at the extreme front
and back of the advancing wave, where the numbers of the mutant and the parent gene
respectively are small, and where their distribution must be largely sporadic.

The effect of chance at the advancing front may be calculated by considering an aggregate
of discrete particles, which increase in number with a relative growth rate m, as at the wave
front of our original problem, but are free also to increase in numbers indefinitely in the
interior of their range. We shall suppose them to be scattered at small unit intervals of time
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Fig. 1. Progressive wave of increase of frequency of advantageous genes. A, median of heterozygotes, p=0-559,
x=—0-194. B, point of inflexion, at which the rate of change of gene frequency is greatest, p=0-442,
x=0765. C, point at which change in gene frequency is most easily detected, p=0-377, =1-297. The zero
of the abscissa, 2, is the point at which the number of mutant genes in front is equal to the number of
parent genes behind, p=0-536, x=0.
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Fig. 2. Distribution of heterozygotes in relation to curve of increase of frequency of advantageous genes.
Median 2= —0-194; mode « = +0-296.
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so that the displacements of the particles at each scattering are distributed independently

2

1 -3
— g da;
(

o/ (27)

then & of our previous notation will correspond to jo®.

in the normal curve x
T

e

Whatever may be the original distribution, in one dimension, of the particles, we may

specify it by means of the characteristic function

M(t) = S(e¥),
where 8 stands for summation over all the particles, and z for the co-ordinate of any one
of them. The effect of the dispersion of the particles is now merely to multiply M by the
factor ¢t at unit intervals of time, while the effect of multiplication of the particles is to
multiply it by em. If K stands for log M, it appears then that K increases uniformly with time
at a rate m + $o2¢?; after time 7'
K(T) = K(0) + T(m+ so??).

If the process be continued for a long time, the form of K will be determined by the ever-
increasing second term, and the distribution will tend to the normal form, with variance
T2, and total number proportional to e™?. Let us now draw a line beyond which a large but
constant number of particles have already advanced, and consider with what velocity this
line will move forward. The proportion, P, of the population beyond this line will fall oft
proportionately with =™, but if { is the ratio of its distance from the centre to the standard
deviation - 1 )

P=—eif
£+/(2m)

approximately, when P is small, whence it appears that £* differs from 2mT' by a constant,
and by the logarithm of ¢, or, in other words, that £/4/(2mT) tends to unity as a limit. But
the ratio of the standard deviation to o4/7" also tends to unity. Hence the distance of our
arbitrary line from the centre bears a ratio to aT+/(2m), which tends to unity. Evidently
the front advances finally with constant velocity given by a+/{2m), or putting o = /(2k),
with velocity 2+/(km), which is the minimal velocity consistent with equation (2). The con-
ditions at the front of the wave are the same in both cases, save that the diffusion of a
continuous variable has been replaced by the random dispersion of discrete particles, and
when this is done it is seen that only one velocity of advance is ultimately possible.

V. THE TABULATION OF THE WAVE FORM FOR ¢ =1

Tt has been shown in Section III that whereas innumerable solutions of the equation pass
through the point p = 0, z = 1, only one passes through the other terminal point p = 1,
z = 4/2— 1. Starting from this point therefore, it should be possible to obtain the numerical
value of z for each value of p from 0 to 1, and so to construct the wave.

The process was carried out in three stages: (¢) An expansion of zin terms of p was obtained

75



76

362 ADVANTAGEOUS GENES

for the immediate neighbourhood of p = 1. (b) Atany point on the curve dz/dp was calculated
from the differential equation, and from this, and preceding values, the next point on the
curve was obtained. (c) Since dz/dp tends to infinity as p tends to zero, at a certain stage a
series of values of p for given z were obtained by interpolation, and the process continued
using dpfdz instead of dz/dp.

If z2=1/2—-1+ag+bg®+cg®+ ...
when g is small, by substitution in the differential equation, and equating powers of ¢, we find

2(y/2—1) < 2000¢
~wET ) =0-10582293
"= B12v2 IEEES,
211y/2—1) .
- =0-0533084
(BF2v2)2(6+2+/2) PSSR
16(35 + 38+/2)

= (-0341074,

T BT2v2P(6+22) (1+2v2)
while the fourth coefficient is numerically about 0-02417. These suffice to give seven-figure

accuracy up to ¢ = 0-06, or numerically

Table I. Values of z calculated from terminal expansion

» z
1-00 0-4142 136
0-99 (4152 772
0-98 0-4163 518
097 04174 376
0-96 0-4185 3482
0-95 0-4196 4365
G-94 0-4207 6434

The first seven values for p and z give a sufficient start for the second process. From the
value of z corresponding to p = 0-96, the value of dz/dp can be calculated from the differential

equation 1
4 dz (51-4- 2qz——2—z).

dp  pq
Unit error in z will introduce an error in 1/z of about, 6, or in - zof about 7; when the divisor

pq is as small as 0-:0384, the error in dz/dp is nearly 170 times as great as that in z, but in the
opposite direction. As pg increases, however, the error in dz/dp becomes less than 100 times
that in 2, and the increment added to z to give the next value becomes sufficiently accurate.

The increment may be calculated from the differential coefficient, and its backward
differences. This if D stand for the operation of differentiation, A for forward differencing,
and V for backward differencing,

Az = (6P —~ 1}z = (1 + 3D+ 1D+ ...) Dz;
but el =1-V,
D =V4+}ivV2ilvey



whence

which is conveniently applied in the form -

where as many as three differences are used.

R. A. FISHER

Az = {1+ 3V +5V2+EV3+ ...} Dz;

1+3V(L4+3VI+5V(+..,

363

To minimize initial errors eight places were used in the values of z for p = 0-96, 0-95 and

0-94. The scheme of calculation then starts as below:

Table II. Calculation of z from the differential equation

b

P z dzfdp Vdz|dp V2dz/dp

0-96 0-4185 3482 11029 8
095 0-4196 4365 11147 2 HZ ‘; 25
0-94 0-4207 6434 11267 1 a9 29
0-93 04218 9715 11389 2 2 27
0-92 0-4230 423 115140 128 30
0-91 0-4242 000 11641 &

16
0-90 0-4253 707 17712 igg : 338
0-89 042653 544 11904 4 1332 23
0-88 0-4277 516 12039 9 13§ (; 31
0-87 0-4289 625 12178 5 1380 30
0-86 04301 874 12320 1

The second differences of dz/dp show but slight oscillation. It is not to be supposed that
the seventh figure in z is always correct, but on trying a false start with an error —2 at
p =096, and +4 at p = 0-95, the errors in the subsequent figures alternate, with the
greatest error —7 at p = 0-93,and at p = 0-86 are in exact agreement with the table above.

As the process is continued dz/dp and its differences increase. Third differences become
appreciable at about p = 0-70 and fourth differences at about p = 0-35. From p = 0-21 to
p = 0-15 the interval was reduced to 0-005, from 0-15 to 0+ 10 to 0-002, and from 0-10 to 0-07
to 0-001, in order to make the difference series decrease sufficiently rapidly.

From the values of z between p = 0-070 and 0-078, the values of p corresponding with
2 = 0663, 0-664, 0-665 and 9-666 were calculated, using initially nine figures, and from these
the values of dp/dz calculated from the differential equation, thus

Table IIL. Values of p used in the final stages of tabulation

z P dpldz

0-663 0-0751002 76 0968591 9538
0-664 0-0741364 63 0-959053 -

—9463 75
0-665 0-0731821 47 0-949590 _ 0387 76
0-666 00722372 61 0-940203 9313 74
0-667 0-0713017 2 0-930890 — 9240 73
0-668 0-0703754 6 0-921650 —9166 74

0-0694584 0 0-912484

0-669
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The values from z = 0-667 onwards were obtained by calculating the successive differences
from the differential coefficient. From z = 0-670 to z = 0-790 the interval was 0-002; but
from that point using fourth differences the interval can be raised to 0-005. The last point
caleulated gave z = 0-875, p = 0-0004017 38, at which stage p is decreasing by more than a
quarter of its value at each step.

VI. NUMERICAL APPLICATIONS

It appears from equation (4) that the gradient is a maximum where g = pq[2A, or where
2 = }. This occurs when p = 0-442428, when gA = 0-1233427.

With a population cross-breeding at random the proportion of hoterozygotes for any value
of p is 2pq. The total number of heterozygotes in any length of habitat in comparison with

the number of organisms is

f 2pyq dz,
between the limits considered; writing Adp/pgz for dz, this is seen to be merely

2 [2.

z
Now d(pgz) = pqdz+(1—2p)zdp,
but by equation (5a) pgdz = 2pz dp—(%(l —2)%;
dp .
hence d(pgz) = —~ {2 —(1—2)%
dp
=z 2dp - —-z-' .

Consequently, the indefinite integral 2X f %ﬁ

may be expressed in the form 2X(2p — pgz).
Since pgz vanishes when p = 0, or p = 1, the total number of heterozygotes maintained
at any tirme is equal to the population of the length of habitat
4A = 4+/(kfm)
proportional to the square root of the coefficient of diffusion, and inversely to the square
root of the intensity of selection. The relation

dp
f 5 = 2p—pqz

also affords a needed check to the accuracy of the values of z obtained, for if the process of
caleulation at any stage had allowed of a systematic drift across the curves satisfying the
equation, the values of 1/z would have been systematically raised or lowered, and the value
of the integral would depart from its calculated value. The test may be applied by sections.
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The largest discrepancy found is between 0-4 and 0-5, and amounts to about one part in two
millions, or nearly 2} units in the seventh place. The value of p at the point of inflexion may
thus really be one part in a million higher than that given above.

The effective centre of the wave in its advance is the point at which there are as many
mutant genes in front as there are parent genes behind. The number of parent genes behind
any point, expressed in terms of the population per unit length of the habitat, is

f qd:v:J‘lg@:)\fl@-.
—w g =

Since z behaves regularly in the neighbourhood p = 1, this integral offers no difficulty to
direct evaluation. The value from p = } comes to 1:540762A. The number of mutant genes
in advance of any point is more troublesome to ascertain. The form
dp
0 g%

is unsuitable, since the differential coefficient of z is infinite at p = 0. Writing
d
9
P (pg?)

for 1/z, it takes the form A(— 2 logq»—f ;-d(pqz)) ,
0

which may be used, though with some difficulty. Near the terminus, the most satisfactory
process is to expand d(pgz) in the form

d(pge) = pzdq +qd(p2),
giving the third form

1
/\(—2logq—-pz—fpz-‘~lq—'(-l)= A(~2logq~pz—(p+logq)z-f (p+10gq)dz),

which may be used with confidence, since p+logg is of the order of }p? and becomes
negligible within the range tabulated.

The integral to p = } is found to be 1-244939, showing, on comparison with the number
of parent genes behind this point, that the effective centre lies behind the 50 per cent point
by 0-295823), or at a place where p has risen to 0-535709. At this point the number of mutant
genes in front and of parent genes behind are both equal to the total number in the length
1-398150). We take this point as the origin of the co-ordinate x, in Table IV,

To put the situation concretely, let us suppose a mutation giving a selective advantage of
1 per cent is spreading along a continuously occupied shore line. Suppose that the standard
displacement of young from parents in each generation is 100 yards. Then with m = 0:01
per generation, k = 5000 square yards per generation, and X = +/(k/m) = 717 yards. The
number of heterozygotes is equal to the population of 2868 yards, or rather more than a mile
and a half of coast, though it is spread over 6 or 8 miles. The rate of advance v = 24/(mk) is
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Table IV. Values of z and x for each integral percentage of p.

ADVANTAGEOUS GENES

The gradient, —dp/dzx, is pgz, when ¢ = 1 —p

Vi z x Y F z

0 1-000 0000 ©
0-01 0784 0738 7-6061 0-50 0-487 3135 0-2958
0-02 0-749 9772 66817 0-51 0-485 2501 0-2136
0-03 0-726 5592 6-1182 0-52 0483 2244 0-1309
0-04 0-708 2499 57027 0-53 0-481 2350 0-0477
0-05 0-693 0407 5-3693 0-54 0-479 2807 — 00360
0-06 0-679 9482 5-0883 0-55 0-477 3604 — 01203
0-07 0-668 4082 4-8437 0-56 0-475 4729 — 0-2053
0-08 0-658 0635 4-6261 0-57 0-473 6171 - 02910
0-09 0-648 6717 44291 0-58 0-471 7921 — 03776
0-10 0-640 0603 42485 0-59 0-469 9969 — 04651
0-11 0632 1012 4-0811 0-60 0-468 2305 — 0-5536
0-12 0-624 6967 3-9246 0-61 0-466 4921 — 0-6431
0-13 0-617 7705 37774 0-62 0-464 7808 - 07338
0-14 0611 2612 3:6380 0-63 0-463 0959 — 0-8358
0-15 0-605 1194 3-5053 0-64 0-461 4365 — 09181
0-16 0-599 3038 3-3785 0-65 0-459 8020 — 10139
0-17 0-593 7802 3-2568 0-66 0458 1916 -~ 1-1103
0-18 0-588 5197 3-1396 0-67 0-456 6047 — 1-2085
0-19 0-583 4974 3-0264 0-68 0-455 0406 ~ 1-3085
0-20 0-578 6922 2-9167 0-69 0-453 4987 ~ 1-4105
0-21 0-574 0856 2-8102 0-70 0-451 9785 —~ 1-5147
0-22 0-569 6611 2-7066 071 0450 4792 — 1-6213
0-23 0-565 4051 2-6056 0-72 0-449 0005 — 17304
024 0-561 3047 2-5068 0-73 0-447 5417 —~ 1-8423
0-25 0-557 3488 2:4101 074 0-446 1024 — 1:9572
0-26 0-553 5274 2-3154 075 0-444 6820 — 20754
0-27 (549 8316 22223 0-76 0-443 2802 - 2:1972
0-28 0-546 2533 2-1308 077 0-441 8964 — 2-3229
0-29 0-542 7852 20406 0-78 0-440 5303 — 24529
0-30 0-539 4208 1-9518 0-79 0439 1812 —~ 25876
0-31 0-536 1539 1-8640 0-80 0437 8492 —~ 27276
0-32 0-532 9792 1-7773 0-81 0436 5330 — 2-8733
0-33 0-529 8914 1-6915 0-82 0435 2329 — 3-0255
0-34 0-526 8861 1-6066 0-83 0-433 9492 — 3-1849
0-35 0-523 9589 1-5224 0-84 0-432 6805 — 33525
0-36 0-521 1060 1-4388 0-85 0431 4265 — 3-5293
0-37 0-518 3237 1-3558 0-86 0;430 1874 — 37166
0-38 0-515 6085 1-2732 0-87 0-428 9625 — 39160
0-39 0-512 9575 1-1911 0-88 0427 7516 — 41295
0-40 0-510 3676 1-1093 0-89 0426 5544 — 4-3597
0-41 0-507 8362 1-0278 090 0425 3706 — 4-6097
0-42 0-505 3607 0-9465 091 0-424 2001 — 4-8837
0-43 0-502 9387 0-8653 0-92 0-423 0422 — 51876
0-44 0-500 5680 07842 0-93 0-421 8972 — 55293
0-45 0-498 2466 0-7031 0-94 0-420 7643 — 59205
0-46 (495 9724 0-6220 0-95 0-419 6436 — 6-3796
0-47 0-493 7437 0-5408 0-96 0-418 5348 — 69371
0-48 0-491 5586 0-4594 0-97 0417 4376 — 7-6502
0-49 0-489 4159 0-3777 0-98 0-416 3518 — 8-6479
0-50 0-487 8135 0-2958 0-99 0415 2772 —10-3480

1-00 0414 2136 @
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about 14 yards per generation, or less than 10 miles in 1000 generations. To spread over a
habitat of several hundred miles might well take 10,000 or 100,000 generations. In con-
sequence, at any one time, the number of such waves of selective advance, simultaneously
in progress, must be large. The effective centre in our example is about 210 yards behind the
50 per cent point, while the steepest gradient of gene ratio, which is the point of most rapid
genetic change, is about 330 yards in advance of this point.

At any given spot the rate of change per generation in the proportion of mutant genes is

vy = 2pgmz,

which is less than } per cent at its highest point, where p is about 44 per cent. Very large
counts would therefore be needed, supposing the gene to affect any measurable or observable
characteristics, to detect the change in progress by observations during the course of only
a few generations. If, for example, both homozygotes and heterozygotes could be dis-
tinguished with certainty, the sampling variance of p, as estimated from the examination
of n individuals, would be pg/2n, while that of the difference as estimated from two such
counts would be pgfn.

If 7 were as high as 10,000, the standard error is thus 4 per cent when p is 0-5 where the
rate of change is only 0-244 per cent in each generation, so that about 5 generations must
elapse before a significant increase in the percentage could be observed. The rate of change
is greatest in relation to its sampling error at the maximum value of z+/(pg) or when

_ 1
FT AT

which occurs when p = 0-377, or about 1-297A in advance of the effective centre of the wave,
where, if the number counted, n,is equated to 1/m?, the rate of change is just over half (0-5005)
its standard deviation in each generation. If the change manifests itself in a metrical cha-
racter, to the variance of which other factors, environmental or genetic, contribute, the
change will be most easily detected at some point between P = 0-377 and P = 0-442. The
direction of advance might also be indicated from observations at a single epoch by the
asymmetry of the wave, which is more extended behind than before, or by the skewness of
the distribution of heterozygotes, though these features might be expected to be obscured
by irregularities in the habitat. '

VII. APPENDIX ON THE CALCULATION OF SPECIAL POINTS
(a) The point of inflexion
At the point of greatest gradient, since in general
dg
kg;lfl;— vy +mpg = 0,

we have the relation vg = mpq,

or, simply, z=14
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The relevant tabular values are

P z 3%z x 3%
0-46 0-4959724 - 0-622002 ——
0-45 0-4982466 472 0703128 —47
0-44 0-5005680 493 0-784207 +16
043 0-5029387 —_— 0-865302 —

Inverse interpolation for z = 0-5 gives p = 0-4424276; whence direct interpolation gives
x = +0-764525.
(b) The point at which changes of frequency are most easily detected
This will not be at the point where change in frequency is most rapid, because the standard

error of a comparison of frequencies is not constant, but varies as +/(pg). We must therefore
maximize not zpg, but z4/(pg). This gives

dz L1
—_— i AT - —
dp  \p q)’
dz 1
but, in general o= 2= = (1~ 2p)z,
,in g , P 5~ (1-2p)
hence (1—2p)zt—4z2+2=0,
1
or ——
1+v(§+p)
The numerical values in this neighbourhood are
P _...__1__ z Difference 82
L+v/(3+p)
0-36 0-5188439 0-5211060 —0-0022621 —
0-37 0-5174007 0-5183237 —0-0009230 - 509
0-38 0:5159737 0-5156085 + 0-:0003652 —471
0-39 0-5145638 0-5129575 +0-0016063 —_

Inverse interpolation for zero difference gives p = 0-377126; whence x is found to be
1-297092.
(¢} The median of the heterozygotes
Since the proportion of the heterozygotes behind any point is given by
P~ $Pgs,
we may equate this expression to }. The following values will serve for interpolation:

P p—Epgz 8 z 8
0-54 0-48047333 — —0-035989 —
0-55 0-49092665 4178 —0-120301 —680
0-56 0-50142174 4139 —0-205293 —752
0-57 0-51195822 — —0-291087 —

Inverse interpolation gives p = 05586476, x = — 0193757,
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VIII, SuMmary

The form is discussed of a steadily progressive wave of gene increase due to the local
establishment of a favourable mutation, for the case of a uniform linearly distributed
population.

The equation obtained by the analogy of physical diffusion is found to be consistent with
all velocities of advance above a certain lower limit.

The indeterminacy of velocity is resolved by comparison with the properties of multi-
plying aggregates of particles, constantly subjected to random scattering. It appears that
the actual velocity of advance must be the minimum compatible with the differential
equation.

This velocity is proportional to the square root of the intensity of selective advantage
and to the standard deviation of scattering in each generation, or to the square root of the
diffusion coefficient when time is measured in generations. It may be expressed in the form

ov/(2m),
or Vo= 2\/(km),

where m is the selective advantage, o the standard deviation of scattering, and £ the diffusion

v

fl

coefficient.

The “leugth” of the wave, or the distance hetween any two assigned gene ratios, is
proportional to A = /(kfm),
which may conveniently be taken as the unit of length.

The form of the wave is tabulated so as to show, for each percentage of the frequency of
the mutant gene, the value of the gradient of gene ratio and the position at which this
percentage occurs relative to the effective centre of the wave, i.e. to the point in advance of
which there are as many mutant genes as there are parent genes behind it.

Stages of special interest which oceur in succession at each point reached are

Mutant Distance in
genes %, advance of centre
The point at which changes in frequency 377 1-30A
are most easily detected

The point of inflexion 44-2 0761
Equality of gene ratio, mode of heterozygotes 50-0 0-30A
Effective centre of wave 536 0

Median of heterozygotes 55-9 —0-19A
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