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Ezample -—Determine the intrinsic accuracy of an error curve of Type IV. and the
efliciency of the method of moments in location and scaling.
Since

i r+lr+2r+4

-
P =

but

therefore the efficiency of the method of moments in location is

7'2 =1 (’r+ 42+V2) (‘])
e P tore (e LR

When v = 0, we have for curves of Type VII. an efficiency of location

6

] - o,
r+1r+2

The efficiency of location of these curves vanishes at » = 1, at which value the standard
deviation becomes infinite. Although values down to —1 give admissible frequency
curves, the conventional limit at which curves are reckoned as heterotypic is at # =
For this value the efficiency is

49 121+
132 49+

which varies from 91-67 per cent. for the symmetrical Type VIL. curve, to 37-12 per
cent. when y > o and the curve to Type V.
Turning to the question of scaling, we find

W~1 __r+l §2r+4+u’[

m’w”
whence —_ .
gm—-l—- L =_2r+1’
a ¢ r+4
an m;”=9: 7'_-_+_4_’
n 2r+1
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the intrinsic accuracy of scaling is therefore independent of ,. Now for these curves

3r—1 < 87
p = = (1 G e )
P 72 r—3 4
80 that
Bo—l _ Pr—=2 +»* (+10r—12)
4 2r—2 r=3(rt4)
and

b= a’ 12r—=2 4102 (1P 4+ 10r—12)
“oomT o 2rZ2r=3 (1 +)

The efficiency of the method of moments for scaling is thus

7=27 =8 7+ 4 (”"+) . (@)
r+ 1 {7 =2 42 (¥ 4+ 10r—12)} s '

when v = 0, we have for curves of Type VIL. an efficiency of scaling

12

I

7P+

—

The efficiency of the method of moments in scaling these curves vanishes at r == 3,
where 3, becomes infinite ; for » = 7, the efficiency of scaling is

2_5” 49 +,°
2 1715+4107,*

varying in value from 78-57 per cent. for the symmetrical Type VIL curve, to 25-70
per cent. when » > o and the curve to Type V.

10. Tee EFFICIENCY OF THE METHOD OF MOMENTS IN FITTING THE PEARSONIAN
CURVEs.

The Pearsonian group of skew curves are obtained as solutions of the equation

ldy _ =lw=m) ()

yde  a+br+ex

algebraically these fall into two main classes,

af o« (1 + a_x,> (1- -’E)”" dx

1223
and

x? -4 ~vtantL
dfoc<1+a—,> ‘e o dz,

according as the roots of the quadratic expression in (5) are real or imaginary.
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The first of these forms may be rewritten
r42

A= (1-Z) > e an,
o
r being negative, showing its affinity with the second class.

In order that these expressions may represent frequency curves, it is necessary that
the integral over the whole range of the curve should be finite ; this restriction acts in
two ways :(—

(1) When the curve terminates at a finite value of #, say « = a,, the power to which

@,— z is raised must be greater than — 1.
(2) When the curve extends to infinity, the ordinate, when % is large, must diminish

more rapidly than };;

In Fig. 2 is shown a conspectus of all possible frequency curves of the Pearsonian type ;

Heterotypic Limitr=7
Limiof 3 diagramr=3

L rEt

G S G
B. Showing region of validity of second moment.
Fig. 2. Conspectus of Pearsonian system of frequency curves.
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the lines AC and AC’ represent the limits along which the area between the curve and
a vertical ordinate tends to infinity, and on which m,, or m,, takes the value — 1 ; the
line CC’ represents the limit at which unbounded curves enclose an infinite area with
the horizontal axis; at this limit » = —1.

The symmetrical curves of Type II.

r+2

extend from the point N, representing the normal curve, at which r is infinite, through
the point P at which r = —4, and the curve is a parabola, to the point B (r = —2),
where the curve takes the form of a rectangle ; from this point the curves are U-shaped,
and at A, when the arms of U are hyperbolic, we have the limiting curve of this type,
which is the discontinuous distribution of equal or unequal dichotomy (r = 0).

The unsymmetrical curves of Type I. are divided by Pearson into three classes
according as the terminal ordinate is infinite at neither end, at one end (J curves), or
at both ends (U curves); the dividing lines are (/BD and CBD’, along which one of
the terminal ordinates are finite (m,, or m., = 0) ; at the point B, as we have seen, both
terminal ordinates are finite.

The same line of division divides the curves of Type III.,

A f o« xre~* da,

at the point E (p = 0), representing a simple exponential curve ; the J curves of Type I11.
extend to F (p = —1), at which point the integral ceases to converge. In curves of
Type IIL, r is infinite ; » is also infinite, but one of the quantities m, and m, is finite,
or zero (= p); as p tends to infinity we approach the normal curve

df < e~ dz.

Type VL., like Type III., consists of curves bounded only at one end ; here r is
positive, and both m, and m, are finite or zero. For the J curves of Type VI. both
m, and m, are negative, but for the remainder of these curves they are of opposite sign,
the negative index being the greater by at least unity in order that the representative
point may fall above CC’ (r = —1).

Type V. is here represented by a parabola separating the regions of Types IV. and VIL.;
the typical equation of this type of curve is

As r tends to infinity the curve tends to the normal form ; the integral does not

r-+3

5 = 1, or r = —1. On curves of Type V., then, r is finite

become divergent until

or zero, but » is infinite.
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In Type IV.

x’ ”T'S? tant L

o —-ViANn  w

df o (1 + -—2-> e a;
\ (27

we have written », not as previously for the difference between m, and m, for these
quantities are now complex, and their difference is a pure imaginary, but for the differ-
ence divided by +/—1; » is then real and finite throughout Type IV., and it vanishes
along the line NS, representing the symmetrical curves of Type VII.

w22
df e« <1 + g;) !
from 7 = o tor = —1.

The Pearsonian system of frequency curves has hitherto been represented by the
diagram (13, p. 66), in which the co-ordinates are 8, and 8,. This is an unsymmetrical
diagram which, since B, is necessarily positive, places the symmetrical curves on a
boundary, whereas they are the central types from which the unsymmetrical curves
diverge on either hand ; further, neither of the limiting conditions of these curves can
be shown on the 8 diagram ; the limit of the U curves is left obscure,* and the other
limits are either projected to infinity, or, what is still more troublesome, the line at
infinity cuts across the diagram, as occurs along the line r = 3, for there 3, becomes
infinite. This diagram thus excludes all curves of Types VIL.,1V., V., and VI., for which
r <3,

In the 8 diagram the condition r == constant yields a system of concurrent straight
lines. The basis of the representation in fig. 2 lies in making these lines parallel and
horizontal, so that the ordinate is a function of # only. We have chosen 7 ==y— ;1;
and have represented the limiting types by the simplest geometrical forms, straight lines
and parabolas, by taking
(Lt +2) (I=y —a?)

y (= +y)

de = 17+ =

It might have been thought that use could have been made of the criterion,

= By (Bs+3) -2
77 4(48,—-38,) (28,~88,—6)

fe
by which Prarson distinguishes these curves; but this criterion is only valid in the
region treated by PEARsON. For when 7 = 0, «, = 1, and we should have to place
a variety of curves of Types VIL, IV., V., and V1., all in Type V. in order to adhere to
the criterion. ‘
This diagram gives, I believe, the simplest possible conspectus of the whole of the
Pearsonian system of curves; the inclusion of the curves beyond 7 = 3 becomes neces-

* The true limit is the line B; = B, +1, along which the curves degenerate into simple dichotomies.
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sary as soon as we take a view unrestricted by the method of moments ; of the so-called
heterotypic curves between r = 8 and 7 = 7 it should be noticed that they not
only fall into the ordinary Pearsonian types, but have finite values for the moment
coefficients B8, and 8,; they differ from those in which r exceeds 7, merely in the fact
that the value of B,, calculated from the fourth moment of a sample, has an infinite probable
error. It is therefore evident that this is not the right method to treat the sample, but
this does not constitute, as it has been called, * the failure of Type IV.,” but merely
the failure of the method of moments to make a valid estimate of the form of these
curves. As we shall see in more detail, the method of moments, when its efficiency is
tested, fails equally in other parts of the diagram.

In expression (3) we have found that the efficiency of the method of moments for
location of a curve of Type IV. is

B = rPy~1 ('r+42+u2\/
r+1r+2r+4 (74

whence if we substitute for r and » in terms of the co-ordinates of our diagram, we obtain
a general formula for the efficiency of the method of moments in locating Pearsonian
curves, which is applicable within the boundary of the zero contour (fig. 3). This may

Tig. 3. Region of validity of the first moment (the mean) applied in the location of
Pearsonian curves showing contours of efficiency,

be called the region of validity of the first moment ; it is bounded at the base by the
line 7 = 1, so that the first moment is valid far beyond the heterotypic limit ; its other
boundar);, however, represents those curves which make a finite angle with the axis at
the end of their range (m,, or m,, == 1) ; all J curves (m,, or m,, < 0) are thus excluded.
This boundaryhas a double point at P, which thus forms the apex of the region of validity.
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In fig. 3 are shown the contours along which the efficiency is 20, 40, 60, and 80 per cent.
For high efficiencies these contours tend to the system of ellipses,

82°+6y° = 1K,

In a similar manner, we have obtained in expression (4) the efficiency of the
second moment in fitting Pearsonian curves. The region of validity in this case is
shown in fig. 4 ; this region is bounded by the lines r'= 3, »» = —4, and by the limits

@ ,

P ob

Fig. 4. Region of validity of the second moment (standard deviation) applied in scaling of
Pearsonian curves, showing contours of efficiency.

(m,, or m,, = —1) on which 724,? vanishes. This statistic is therefore valid for certain
J curves, though the maximum efficiency among the J curves is about 30 per cent.
As before, the contours are centred about the normal curve (N) and for high efficiencies
tend to the system of concentric circles,

122°+12y° = 1-E,

showing that the region of high efficiency is somewhat more restricted for the second
moment, as compared to the first.

The lower boundary to the efficiencies of these statistics is due merely to their probable
errors becoming infinite, a weakness of the method of moments which has been partially
recognised by the exclusion of the so-called heterotypic curves (r < 7). 'The stringency
of the upper boundary is much more unexpected ; the probable errors of the moments do
not here become infinite ; only the ratio of the probable errors of the moments to the
probable error of the corresponding optimum statistics is great and tends to infinity as
the size of the sample is increased.

That. this failure as regards location occurs when the curve makes a finite angle with
the axis may be seen by considering the occurrence of observations near the terminus
of the curve.

Let
df = kx* d
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in the neighbourhood of the terminus, then the chance of an observation falling within
a distance x of the terminus is

e I pa® ot 1
& = Ko,

k
1

r=t

and the chance of n observations all failing to fall in this region is

{(1=£)
or, when n is great, and f correspondingly small,

eI,

Equating this to any finite probability, e, we have

Mett= 2,
n
or, in other words, if we use the extreme observation as a means of locating the terminus,
the error, x, is proportional to
'n,--:‘:;
when a <1, this quantity diminishes more rapidly than »~%, and consequently for large
samples it is much more accurate to locate the curve by the extreme observation than
by the mean.
Since it might be doubted whether such a simple method could really be more accurate
than the process of finding the actual mean, we will take as example the location of
the curve (B) in the form of a rectangle,

. dx @ @
(,U——C;—; IIL—-;)I <.E<7n+§)

and
df =0,
outside these limits.

This is one of the simplest types of distribution, and we may readily obtain examples
of it from mathematical tables. The mean of the distribution is m, and the standard
a
V12

reasonably large, is therefore distributed according to the formula

finrt
1 6n -==
= — ¢ < dax.
42 ™

The difference of the extreme observation from the end of the range is distributed
according to the formula

deviation

, the error m,—m, of the mean obtained from # observations, when # is

.
Lo dg;

42
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if ¢is the difference at one end of the range and , the difference at the other end, the
joint distribution (since, when # is considerable, these two quantities may be regarded

as independent) is
3

5 ¢ dg dy,
Now if we take the mean of the extreme observations of the sample, our error is
$é-n,
for which we write @ ; writing also y for ¢+ », we have the joint distribution of = and y,
Zb—; ¢ 2" da dy.

For a given value of x the values of y range from 2|z| to o, whence, integrating with
respect to y, we find the digtribution of x to be

dn
v om -
df ==¢ < " dua,

a

the double exponential curve shown in fig. 5.

@®
T

~
i

[\ I S
1

L 1. | L i
3 20 -i5 R -5 0 5 o 15 20 25
Fig. 5. Double exponential frequency curve, showing distribution of 25 deviations.

The two error curves are thus of a radically different form, and strictly no value for
the efficiency can be calculated ; if, however, we consider the ratio of the two standard

deviations, then

when n is large, a quantity which diminishes indefinitely as the sample is increased.
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For example, we have taken from Veca (14) sets of digits from the table of Natural
Logarithms to 48 places of decimals. The last block of four digits was taken from the
logarithms of 100 consecutive numbers from 101 to 200, giving a sample of 100 numbers
distributed evenly over a limited range. It is sufficient to take the three first digits
to the nearest integer ; then each number has an equal chance of all values between 0
and 1000. The true mean of the population is 500, and the standard deviation 289.
The standard error of the mean of a sample of 100 is therefore 28-9.

Twenty-five such samples were taken, using the last five blocks of digits, for the
logarithms of numbers from 101 to 600, and the mean determined merely from the highest
and lowest number occurring, the following values were obtained :—

1st hundred. 2nd hundred. 3rd bundred. 4th hundred. 5th hundred.

Digits.

53 - 3 + 5
= a ¥ m s Y w + P -
€n @& M
s 2 | 2 <18 f s 13 £ & |35 % g
g = | S g = | g ow | E o
S H & |mHE & [/ EB @ |8 H € |=- F -

983 —~ 0-5 |18 994 +46-0

o
0O
=4
=}
<
ot
=21

4548 |24 978 -+ 1-0 {39 980 + 9-5

41-44  I35-5 993 +14°0| 3 960 —~18:5{ 6 997 15| 1 978 ~10-5 | 4 979 —~8'5

3740 9 988 — 1-5|11 999 + 5031 98¢ +7-5| 4 978 — 9-0] 2 986 —6.0

33-36 7 99 4+ 10|13 997 4 5.0} 4 998 41-0|] 0 994 — 3-0{ 3 981 —8-0

29-32 1 988 — 5:5] 3 988 — 45| 4 992 ~2-0] 1 996 — 1-5 |21 977 -1-0

It will be seen that these errors rarely exceed one-half of the standard error of the
mean of the sample. The actual mean square error of these 25 values is 6-86, while the
calculated value, /50, is 7-07. It will therefore be seen that, with samples of only 100,
there is no exaggeration in placing the efficiency of the method of moments as low as
6 per cent. in comparison with the more accurate method, which in this case happens
to be far less laborious.

Such a value for the efficiency of the mean in this case is, however, purely conven-
tional, since the curve of distribution is outside the region of its valid application, and
the two curves of sampling do not tend to assume the same form. It is, however,
convenient to have an estimate of the effectiveness of statistics for small samples, and
in such cases we should prefer to treat the curve of distribution of the statistic as an
error curve, and to judge the effectiveness of the statistic by the intrinsic accuracy of
the curve as defined in Section 9. Thus the intrinsic accuracy of the curve of distri-
bution of the mean of all the observations is :
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while that of the mean of the extreme values is

4n®

o’
so yielding a ratio 8/n. It is probable that this quantity may prove a suitable substitute
for the efficiency of a statistic for curves beyond its region of validity.

To determine the efficiency of the moment coefficients 3, and 3, in determining the
form of a Pearsonian curve, we must in general apply the method of Section 8 to the
calculation of the simultaneous distribution of the four parameters of those curves when
estimated by the method of maximum likelihood. Expressing the curve by the formula
appropriate to Type IV., we are led to the determinant

as the Hessian of

—1, when

r+lr+2r+d r+1r+2v r+1r+2 r41v
@ (F+d +0%) @ rrd +4)  a(r+2°+7) a(r+2 +v)
rHlr+2v  r+1(2r+d+r) T+l r4+2407
Y ey 2 (TR e ST s
ad(r+4 +/4) d(r+d4 +) a(rr2+4)  alr+2 +/)
r+lr+2 T+ 1 o
e S )1 F it oo F
a('r+2)+u’) a 7‘+2£+»2) ar 8 vor 875
r+ly 7424y o | il
— —loo F — log F
alrrZ+7)  a(rrz4n)  der © a8

F = e'*‘”"( e sin” 0 dé.
0

The ratios of the minors of this determinant to the value of the determinant give
the standard deviations and correlations of the optimum values of the four parameters
obtained from a number of large samples.

In discussing the efficiency of the method of moments in respect of the Jorm of the
curve, it is doubtful if it be possible to isolate in a unique and natural manner, as we
have done in respect of location and scaling, a series of parameters which shall successively
represent different aspects of the process of curve fitting. Thus we might find the
efficiencies with which r and » are determined by the method of moments, or those of
the parametric functions corresponding to @, and B, or we might use m, and m, as
independent parameters of form; but in all these cases we should be employing an
arbitrary pair of measures to indicate the relative magnitude of corresponding contour
ellipses of the two frequency surfaces.

For the symmetrical series of curves, the Types II. and VIL, the two systems of
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ellipses are coaxial, the deviations of r and » being uncorrelated ; in the case of Type VII
we put » = 0, in the determinant given above, which then becomes

r+1r+2 0 r41
r+4 r+2
0 2r+1 0
44

< s
ilf
[ SRR
<
s
m
1%

g

(=)
<
+ [
(3]
<
s
Py
m
T
<
wll
—
N~——
|
"
TN
(2
e
gt

and falls in the two factors

[r+1{ (”1\..; q_>}__ 1 ][H@F(g)_q«ﬂ’l
2r+4 \ / 2 r—2 2r+4 2/ pyetl
8o that
2 20712
nay =

S/ S ——
?‘+,2 F<§/—-27‘+19+4

H

and

The corresponding expressions for the method of moments are

e P ST 2 f7‘2+7 +10)
7, =5

r—17—817—5
and

e 2 NS Y e
mr,."':?—.?’ 1" r—3 (s 7‘+18).
"3 P=—5r—7

Since for moderately large values of », we have, approximately,

_— 186 1 3
)+2§(> r+lr 4=—<1'— ),

and

— — —_ . R 4
r+1 r+22{F <T—2—1>—F <22->}-—2 r+lr+4 =6—="—""—3;
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we have, approximately, for the efficiency of 4,,

(r+2°+17r+2...)r—17r—87—5
(P+r+10)rir—2"

3

or, when 7 is great,

288,

1-=;

and for the efficiency of r,,

(r+2 +2..)r+1"r=57r—7_
(P—r+18)rr—1"7r—3

or, when 7 is great,

The following table gives the values of the transcendental quantities required, and
the efficiency of the method of moments in estimating the value of » and  from samples
drawn from Type VII. distribution.

e T
. r+2°E <‘2'> Ef(i)ifcivency N { . (1:_1 _f <% )} Eﬁ(‘:})i:ncy
S R w 2/ \2 w
SR
6 5-31271 0
6 5-31736 0-2572
7 532060 0-4338 5-9473 0
8 5-32296 0-55669 5-9574 0-1687
9 5-32472 0-6449 5-9649 0-3130
10 5-32607 0-7097 5-9706 0-4403
11 5-32713 0-7586 5-9750 0-5207
12 5-32797 0:7963 5-9787 0-5935
13 5-32866 0-8259 5-9810 0-6519
14 5-32919 0-8497 5-9839 0-6990
15 5-98563 0-17376
16 5-9870 07694
17 5-9883 0-7959
18 5-9895 0-8182

It will be seen that we do not attain to 80 per cent. efficiency in estimating the form
of the curve until r is about 17-2, which corresponds to 8, = 3-42. Even for sym-
metrical curves higher values of 8, imply that the method of moments makes use of
less than four-fifths of the information supplied by the sample.
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On the other side of the normal point, among the Type IL. curves, very similar formulse
apply. The fundamenrtal Hessian is

= owlE)
oo ()

where r ig written for the positive quantity, —r, whence

2 r—28
Nnoy = o —
2 E <2-—2——> ~2r—1r—4
and
4dr—1r—2
ne;? =
e r—2 r—1

= () - () e

Now since

it follows that

— <T—;—2> —2r—1r—b=r—2 F (1:2:1'> —2rr—3,

which is the same function of r—4 as

P12 E <7§) —2rFirtd
is of 7.

In a similar manner
e g 7—2 'r‘-1>\ R ——
; - T2y g (T oy o
7+17‘2{F<2> <2}27 1r—4
e . 3 -
=gp—=1 =2 f —— = F o _.27.___2,,._'_1’
which is the same function of »r—38 as

e 3 e r—1 r — —
r+1 r+2 {F( 3 ) F (2)} —2r+1r+
18 of 7.
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In all these functions and those of the following table, # must be substituted as a
positive quantity, although it must not be forgotten that » changes sign as we pass from
Type VIL to Type II., and we have hitherto adhered to the convention that 7 is o
be taken positive for Type VII. and negative for Type IL.

—_ r e : FeTTY
-2 E (e Effici - . .
. T < 5 ) Eﬂ(i);;lency « {F <£___2> - <g_;1 >} Efficiency
DD, it Ve
Co=Or-lr-4. “ 2_—2 of 1
- 2re-lr=4

2 4 0 4 0

3 4-93480 0-0576 5-1595 0-0431

1 5-15947 0-2056 5-5648 G-1445

5 5-23966 0-3590 5-7410 0-2613

6 5-27578 04865 5-8305 0-3708

7 5-20472 0-5857 5-8813 0-4653

8 5-30576 06615 5-9126 0-5441
9 531271 0-7198 5-9331 0-6090
10 5-31736 0-7650 5-9473 0-662¢
11 5-32060 0-8005 5-9574 0-7063
12 5-32296 0-8287 5-9649 0-7427
13 5-32472 0-8516 5-9706 0-7731
14 5-32607 0-8702 5-9750 0-7986
5 5-9787 0-8202

In both cases the region of validity is bounded by the rectangle, at the point B
(fig. 2, p. 343). [Kfficiency of 80 per cent. i3 reached when ¢ is about 14-1 (8, = 2-65).
Thus for symmetrical curves of the Pearsonian type we may say that the method of
moments has an efficiency of 80 per cent. or more, when g, lies between 2-65 and 3-42.
The limits within which the values of the parameters obtained by moments cannot be
greatly improved are thus much narrower than has been imagined.

11. Tue REASON FOR THE EFFICIENCY OF THE METHOD OF MOMENTS IN A SMALL
REGION SURROUNDING THE NorRMAL CURVE.

We have seen that the method of moments applied in fitting Pearsonian curves has
an efficiency exceeding 80 per cent. only in the restricted region for which g, lies between
the limits 265 and 3-42, and as we have seen in Section 8, for which 3, does not exceed
0-1. The contours of equal efficiency are nearly circular or elliptical within these
limits, if the curves are represented as in fig. 2, p. 343, and are ultimately centred round
the normal point, at which point the efficiencies of all parameters tend to 100 per cent.
It was, of course, to be expected that the first two moments would have 100 per cent.
efficiencies at this point, for they happen to be the optimum statistics for fitting
the normal curve. That the moment coefficients 8, and B, also tend to 100 per cent.
efficiency in this region suggests that in the immediate neighbourhood of the normal
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curve the departures from normality specified by the Pearsonian formula agree with
those of that system of curves for which the method of moments gives the solution of
maximum likelihood.

The system of curves for which the method of moments is the best method of fitting
may easily be deduced, for if the frequency in the range dz be

Y (CU, 61, 92, 93, 94) CZCG,
then

2 logy
a9
must involve % only as polynomials up to the fourth degree; consequently

7= e«a’(z*+pxz’+pgz‘~’+psz+p.))

the convergence of the probability integral requiring that the coefficient of #* should be
negative, and the five quantities @, p,, ps, Ps, p, being connected by a single relation
representing the fact that the total probability is unity.

Typically these curves are bimodal, and except in the neighbourhood of the normal
point are of a very different character from the Pearsonian curves. Near this point,
however, they may be shown %o agree with the Pearsonian type ; for let

z? z o
S TRt R 2 I i a2 bt
Y= Ce 203 TA

represent a curve of the quartic exponent, sufficiently near to the normal curve for the
squares of £, and £, to be neglected, then

d = (kT g
El—;logy— -;3(1~<57610 1k30-2>
@

— )

- 2
(14802 + 48,2
\ o &/

neglecting powers of k£, and %,. Since the only terms in the denominator constitute a
quadratic in z, the curve satisfies the fundamental equation of the Pearsonian type of
curves. In the neighbourhood of the normal point, therefore, the Pearsonian curves
are equivalent to curves of the quartic exponent ; it is to this that the efficiency of 4,
and u,, in the neighbourhood of the normal curve, is to be ascribed.

12. DisconTiNUOUS DISTRIBUTIONS.

The applications hitherto made of the optimum statistics have been problems in
which the data are ungrouped, or at least in which the grouping intervals are so small
as not to disturb the values of the derived statistics, By grouping, these continuous
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distributions are reduced to discontinuous distributions, and in an exact discussion must
be treated as such.

If p, be the probability of an observation falling in the cell (s), p, being a function of
the required parameters 6,, ¢,...; and in a sample of N, if n, are found to fall into

that cell, then
S(log f) = S (=, log p,).

If now we write 7%, = p,N, we may conveniently put
- LAY
L=8 <n, log =)

where L differs by a constant only from the logarithm of the likelihood, with sign
reversed, and therefore the method of the optimum will consist in finding the menimum
value of L. The equations so found are of the form

oL _ _g(man) :
%-s@%%a.......”<m

It is of interest to compare these formule with those obtained by making the Pearsonian
¥* & minimum.
For

xX'=8 (o)
n

and therefore g

1 + X2 = S <Z"L.:‘;) 3>
so that on differentiating by dg, the condition that y2 should be a minimum for variations

of 9 is

0’ 07\ _
&%%Q_a..........m

Equation (7) has actually been used (12) to “ improve ” the values obtained by the
method of moments, even in cases of normal distribution, and the Poisson series, where
the method of moments gives a strictly sufficient solution. The discrepancy between
these two methods arises from the fact that x* is itself an approximation, applicable
only when %, and n, are large, and the difference between them of a lower order of
magnitude. In such cases

L= S(ntlog%‘) = S<m+mlog'm;;$> = S{x“-é%&é%?f’

and since

8 (x) =0,
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we have, when ® is in all cases small compared to m,
L = —1 2
18 <m 3x

as a first approximation. In those cases, therefore, when x* is a valid measure of the
departure of the sample from expectation, it is equal to 2L ; in other cases the approxi-
mation fails and L itself must be used.

The failure of equation (7) in the general problem of finding the best values for the
parameters may also be seen by considering cases of fine grouping, in which the majority
of observations are separated into units. For the formula in equation (6) is equivalent to

3G.%)

where the summation is taken over all the observations, while the formula of
equation (7), since it involves #} changes its value discontinuously, when one
observation is gradually increased, at the point where it happens to coincide with a
second observation.

Logically it would seem to be a necessity that that population which is chosen in
fitting a hypothetical population to data should also appear the best when tested for
its goodness of fit. The method of the optimum secures this agreement, and at the
same time provides an extension of the process of testing goodness of fit, to those cases
for which the x? test is invalid.

The practical value of y? lies in the fact that when the condltlons are satisfied in
order that it shall closely approximate to 2L, it is possible to give a general formulu
for its distribution, so that it is possible to calculate the probability, P, that in a random
sample from the population considered, a worse fit should be obtained ; in such cases

«? is distributed in a curve of the Pearsonian Type IIL.,
’

w3

ool Huly

df « L%e’L dL,

or

where 7’ is one more than the number of degrees of freedom in which the sample may
differ from expectation (17).

Tn other cases we are at present faced with the difficulty that the distribution L
requires a special investigation. This distribution will in general be discontinuous (as
is that of ?), but it is not impossible that mathematical research will reveal the existence
of effective graduations for the most important groups cf cases to which y® cannot
be applied.
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We shall conclude with a few illustrations of important types of discontinuous
distribution.

1. The Poisson Series.

1, m 17-1: m
e N -y IR E,

involves only the single parameter, and is of great importance in modern statistics.
For the optimum value of m,

0
S {-——am(—m+x log m)} =0,
whence
S <-i2 -1) =0,
m

or
A -

m = 2.

The most likely value of m is therefore found by taking the first moment of the series.
Differentiating a second time,

] _g(-2%)=_
_;;ﬁ_s< m2>_

’

3s

so that

2 m
O = —
n

as 13 well known.

2. Grouped Normal Data.

In the case of the normal curve of distribution it is evident that the second moment
is a sufficient statistic for estimating the standard deviation ; in investigating a sufficient
solution for grouped normal data, we are therefore in reality finding the optimum
correction for grouping ; the SHEPPARD correction having been proved only to satisfy
the criterion of consistency.

For grouped normal data we have
! rm P dz,

pt:a'; 2

and the optimum values of m and + are obtained from the equations,

Ty

aL—s(&al“>=o,

om " \p,om
QI_‘ = S<£«§&> =0;
Ca Py 0o
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or, if we write,

we have the two conditions,

JESNEY

(3

/ N A
s{%(% _ﬁx)} -0

As a simple example we shall take the case chosen by K. Surra in her investigation of
the variation of y* in the neighbourhood of the moment solution (12).

Three hundred errors in right ascension are grouped in nine classes, positive and
negative errors being thrown together as shown in the following table :—

and

0”1 are 0-1 1-2 2-3 34 4-5 56 6-7 7-8 8-9
Frequency 114 84 53 24 14 6 3 1 1

The second moment, without correction, yields the value

o, = 2282542
Using SHEPPARD'S correction, we have

lcr,‘ = 2-264214,
while the value obtained by making y* a minimum is

oy = 2355860,

If the latter value were accepted we should have to conclude that SHEPPARD’S correc-
tion, even when it is small, and applied to normal data, might be altogether of the
wrong magnitude, and even in the wrong direction. In order to obtain the optimum

value of +, we tabulate the values of %L in the region under consideration ; this may
(o8

be done without great labour if values of ¢ be chosen suitable for the direct application
of the table of the probability integral (13, Table IL.). We then have the following
values :—

1 043 044 045 0'd6
[v8
oL . ) o,
= +157185 | +27149 | —11'098 | —24°605
o
a9l —0261 | — 0260
3
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By interpolation,

We may therefore summarise these results as follows :—

Uncorrected estimateof o . . . . . . . . . 228254
SHEPPARD’S correction . . . . . . . . . —0-01833
Correction for maximum hkehhood . . . . . =0-01817
“ Correction ” for minimum ,* . . . . . . . -0-07332

Far from shaking our faith, therefore, in the adequacy of SHEPPARD’s correction, '
when small, for normal data, this example provides a striking instance of its effective-
ness, while the approximate nature of the y* test renders it unsuitable for improving a
method which is already very accurate.

It will be useful before leaving the subject of grouped normal data to calculate the
actual loss of efficiency caused by grouping, and the additional loss due to the small
discrepancy between moments with SHEPPARD’S correction and the optimum solution.

To calculate the loss of efficiency involved in the process of grouping normal data, let

o= 11" rle)de

£-ha

when ae is the group interval, then

a’ i
)+322,5soj (€)+

V=) S T S

= £ ] '+-(£”—1) 1920(64 6£°+3) + (5“—15§‘+455“-15)+...},

322 560

whence

_ AT

and

o 11 a' ) }
L, - — v —— Y 5 12 l -
g =5 *{10 70 (B2 + 557 z4o( grizet+1)

of which the mean value is

1 o at & 1
D SO S
?{ ot T 1m0
a? a a® 31a® 313a'°
Read -+ |1-% 4% - + -

02|_ 12 146 1728  25.12% 175.12°
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neglecting the periodic terms ; and consequently

2 0’2( a"’ a"’ >
=Z(142 2 ),
& =2 \"*12 " 2880

Now for the mean of ungrouped data

w

2 o
Tp = —
n
2
so that the loss of efficiency due to grouping is nearly %.

The further loss caused by using the mean of the grouped data is very small, for

2 3
2 vy T a
” =Z= {1 —
™ n<+12>’

neglecting the periodic terms ; the loss of efficiency by using s, therefore is only

aG
2880°
Similarly for the efficiency for scaling,
& =1 _3¢ l{ﬁ 1_3)_ 2 (gp 018
ad_zlog V=SR-St 12(105 3) 360(95 +21£—5)
a* . 2 a® ;
926£8 4 2_oy_ 8 6 ‘5567 +9 }
+-30240( £+ 110£4+86£7—7) 1’814’400(515 +815£°+351£'~5567+9) +...},

of which the mean value is

2 o ot af 83a® }
—cfhy & a g U
9{ 6 + 40 270 * 129,600 ’

neglecting the periodic terms ;- and consequently

2 2 4 8
o = L{1+1+-9_ a ...}.

2n 6 360 10,800
For ungrouped data
17
o’

2
so that the loss of efficiency in scaling due to grouping is nearly %. This may be made

as low as 1 per cent. by keeping a less than }.
The further loss of efficiency produced by using the grouped second moment with
. SHEPPARD'S correction is again very small, for
2 ad

2 4
v=m=?f.< @, a
o= T 1+6+360,>

neglecting the periodic terms.

8

a
For , read 86400°

a®
2880
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Whence it appears that the further loss of efficiency is only

10,800

We may conclude, therefore, that the high agreement between the optimum value of
o and that obtained by SHEPPARD’S correction in the above example is characteristic
of grouped normal data. The method of moments with SHEPPARD’S correction is highly
efficient in treating such material, the gain in efficiency obtainable by increasing the
likelihood to its maximum value is trifling, and far less than can usually be gained by
using finer groups. The loss of efficiency involved in grouping may be kept below
1 per cent. by making the group interval less than one-quarter of the standard deviation.

Although for the normal curve the loss of efficiency due to moderate grouping is very
small, such is not the case with curves making a finite angle with the axis, or having at
an extreme a finite or infinitely great ordinate. In such cases even moderate grouping
may result in throwing away the greater part of the information which the sample
provides.

3. Distribution of Observations in a Dilution Series.

An important type of discontinuous distribution occurs in the application of the
dilution method to the estimation of the number of micro-organisms in a sample of
water or of soll. The method here presented was originally developed in connection
with Mr. CUTLER’S extensive counts of soil protozoa carried out ip the protozoological
laboratory at Rothamsted, and although the method is of very wide application, this
particular investigation affords an admirable example of the statistical principles
involved.

In principle the method consists in making a series of dilutions of the soil sample,
and determining the presence or absence of each type of protozoa in a cubic centimetre
of the dilution, after incubation in a nutrient medium.

The series in use proceeds by powers of 2, so that the frequency of protozoa in each
dilution is one-half that in the last.

The frequency at any stage of the process may then be represented by

m = é;,
when « indicates the number of dilutions.
Under conditions of random sampling, the chance of any plate receiving 0, 1, 2, 3
protozoa of a given species is given by the Poisson series
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and in consequence the proportion of sterile plates is

p - e-ﬂl’
and of fertile plates
qg=1l—e"™

In general we may consider a dilution series with dilution factor « so that

logp=- ﬁ,,
@
and assume that s plates are poured from each dilution.

The object of the method being to estimate the number # from a recard of the sterile
and fertile plates, we have

L = 8, (log p) +8, (log g)

when §, stands for summation over the sterile plates, and 8, for summation over those
which are fertile,
Now
op aq

ﬂlognz_alogn:plogp’

so that the optimum value of n is obtained from the equation,

e ™ —8,(Rlog p) = 0.
d log ;,,"Sl (log p) —8: ((1 log p> )

Differentiating a second time,

L o [plogp plog p\1.
a(logn)u—Sl(log]o) SQ{ 7 <logp+1+ p >J’

now the mean number of sterile plates is ps, and of fertile plates gs, so that the mean

)

value of é—-(-l—g-——-gn)l 18

= s8 {p log p—p log p(log p+1+€-log p)}* = —g8 { (log p)* 11 ,

o’ log #

the summation, 3, being extended over all the dilutions.
It thus appears that each plate observed adds to the weight of the determination

of log n a quantity
= & (log p)?
w 2 p).
q (
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We give below a table of the values of p, and of w, for the dilution series log p = 27~
fromz = —4tox = 11.

. P w. 8 (w) (per cent.).

—4 0-00000011254 0-000029 0-001

—3 0-0003354626 0-021477 0-906

—2 0-01831564 0°298518 13-485

—1 0-13653353 0626071 39-865

0 0-3678794 0-581977 64-387

1 0-6065307 0-385374 80-625

2. 0-7788008 0220051 89897

3 0-8824969 0117350 94-842

4 0-9394131 0-060567 97-394

5 0-9692332 0-030764 98-690

6 0-9844944 0-015503 99-343

7 0-9922179 0-007782 99-671

8 0-9961014 0-003899 99-836

9 0-9980488 0-001951 99-918

10 (-9990239 0-000976 99-959

11 0-9995118 0000488 99979
Remainder . . . . . . . . 0-000488
Total . . . . . . . . . . 2373265

For the same dilution constant the total S (w) is nearly independent of the particular

series chosen. Its average value being , or in this case 2-373138. The fourth

_’72
6log a
column shows the total weight attained at any stage, expressed as a percentage of that
obtained from an infinite series of dilutions. It will be seen that a set of eight dilutions
comprise all but about 2 per cent. of the weight. With a loss of efficiency of only 2 to
2% per cent., therefore, the number of dilutions which give information as to a particular
species may be confined to eight. To this number must be added a number depending
on the range which it is desired to explore. Thus to explore & range from 100 to 100,000
per gramme (about 10 octaves) we should require 10 more dilutions, making 18 in all,
while to explore a range of a millionfold, or about 20 octaves, 28 dilutions would be
needed.

In practice it would be exceedingly laborious to calculate the optimum value of » for
each series observed (of which 38 are madedaily). On the advice of the statistical
department, therefore, Mr. CuTLER adopted the plan of counting the total number of
sterile plates, and taking the value of # which on the average would give that number.
When a sufficient number of dilutions are made, log » is diminished by§ log « for each
additional sterile plate, and even near the ends of the series the appropriate values of
n may easily be tabulated. Since this method of estimation is of wide application,
and appears at first sight to be a very rough one, it is important to calculats its efficiency.

Several figures in this table have been corrected.
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For any dilution the variance in the number of sterile plates is

spq,

and as the several dilutions represent independent samples, the total variance is

S (pg),

ven = LEAS ()

hence

T togn

Now S (pgq) has an average value %—2, therefore taking o = 2,

(log a) = -480453,

S(pg) =1

and

being very nearly constant and within a small fraction of unity ; whence the efficiency
of the methdd of counting the sterile plates is

6

—_— = 8771 .
Flog 2 8771 per cent.,

a remarkably high efficiency, considering the simplicity of the method, the efficiency
being independent of the dilution ratio.

13. SuMMARY.

During the rapid development of practical statistics in the past few decades, the
theoretical foundations of the subject have been involved in great obscurity. Adequate
distinction has seldom been drawn between the sample recorded and the hypothetical
population from which it is regarded as drawn. This obscurity is centred in the so-called
“ inverse ” methods.

On the bases that the purpose of the statistical reduction of data is to obtain statistics
which shall contain as much as possible, ideally the whole, of the relevant information
contained in the sample, and that the function of Theoretical Statistics is to show how
such adequate statistics may be calculated, and how much and of what kind is the
information contained in them, an attempt is made to formulate distinctly the types
of problems which arise in statistical practice.

Of these, problems of Specification are found to be dominated by considerations which
may change rapidly during the progress of Statistical Science. In problems of Distri-
bution relatively little progress has hitherto been made, these problems still affording
a field for valuable enquiry by highly trained mathematicians. The principal purpose
of this paper is to put forward a general solution of problems of Estimation.
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Of the criteria used in problems of Estimation only the criterion of Consistency has
hitherto been widely applied; in Section 5 are given examples of the adequate and
inadequate application of this criterion. The criterion of Efficiency is shown to be a
special but important case of the criterion of Sufficiency, which latter requires that the
whole of the relevant information supplied by a sample shall be contained in the statistics
caleulated.

In order to make clear the nature of the general method of satisfying the criterion
of Sufficiency, which is here put forward, it has been thought necessary to reconsider
BavEes’ problem in the light of the more recent criticisms to which the idea of “ inverse
probability ” has been exposed. The conclusion is drawn that two radically distinct
concepts, both of importance in influencing our judgment, have been confused under
the single name of probability. It is proposed to use the term likelihood to designate
the state of our information with respect to the parameters of hypothetical populations,
and it is shown that the quantitative measure of likelihood does not obey the mathe-
matical laws of probability.

A proof is given in Section 7 that the criterion of Sufficiency is satisfied by that set
of values for the parameters of which the likelihood is & maximum, and that the same
function may be used to calculate the efficiency of any other statistics, or, in other
words, the percentage of the total available information which is made use of by such
statistics.

This quantitative treatment of the information supplied by a sample is illustrated by
an investigation of the efficiency of the method of moments in fitting the Pearsonian
curves of Type IIL.

Section 9 treats of the location and scaling of Error Curves in general, and contains
definitions and illustraticns of the intrinsic accuracy, and of the centre of location of such
curves.

In Section 10 the efficiency of the method of moments in fitting the general Pearsonian
curves is tested and discussed. High efficiency is only found in the neighbourhood of
the normal point. The two causes of failure of the method of moments in locating these
curves are discussed and illustrated. The special cause is discovered for the high
efficiency of the third and fourth moments in the neighbourhood of the normal point.

Tt is to be understood that the low efficiency of the moments of a sample in estimating
the form of these curves does not at all diminish the value of the notation of moments as
a means of the comparative specification of the form of such curves as have finite moment
coefficients.

Section 12 illustrates the application of the method of maximum likelihood to dis-
continuous distributions. The Poisson series is shown to be sufficient!y fitted by the
mean. In the case of grouped normal data, the SHEPPARD correction of the crude
moments is shown to have a very high efficiency, as compared to recent attempts to
improve such fits by making y? a minimum ; the reason being that x* is an expression
only approximate to a true value derivable from likelihood. As a final illustration of
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the scope of the new process, the theory of the estimation of micro-organisms by the
dilution method is investigated.

Finally it is a pleasure to thank Miss W. A. Mackenzz, for her valuable assistance
in the preparation of the diagrams.
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