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LIMITING FORMS OF THE FREQUENCY DISTRIBUTION
OF THE LARGEST OR SMALLEST MEMBER OF A
SAMPLE

Author's Note (CMS 15.179a) *

* Reproduced from "Contributions to Mathematical Statistics" (1950) by permission of John Wiley &
Sons, Inc.

The distribution of the largest and smallest observation in a sample
of given size offers considerable numerical difficulties. It is here
shown that the limiting forms are few and comparatively simple,

although with a normal distribution they are approached exceedingly
slowly. _ '
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Limating forms of the frequency distribution of the largest or
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1. Introductory.

In a previous paper on the subject of the distribution of the
largest member of a sample from a normal population, one of the
authors has given constants involving the first four moments for
samples up to 1000. In this paper, possible limiting forms of such
distributions in general are discussed. It will appear that a
particular group of distributions provides the limiting distributions
n all cases, and that the case derived from the normal curve is
peculiar for the extreme slowness with which the limiting form is
approached.

2. The possible limiting forms deduced from the functional
relation which they must satisfy. '

Since the extreme member of a sample of mn may be regarded
as the extreme member of a sample of n of the extreme members
of samples of m, and since, if a limiting form exist, both of these
distributions will tend to the limiting form as m is increased
indefinitely, it follows that the limiting distribution must be such
that the extreme member of a sample of n from such a distribution
has itself a similar distribution.

If P is the probability of an observation being less than z, the
probability that the greatest of a sample of n is less than z is P,
consequently in the limiting distributions we have the functional
equation

Pr(2)=P(anz+b,);
the solutions of this functional equation will give all the possible
limiting forms.

If @ is not equal to unity, then

z=ax+b,
when z= b
1-a’
and at this point Pr=P,
P =0orl,
consequently the solutions fall into three classes: :
L a=1, Pr(z)=P (x+ by),

II. P=0 when =0, Pr(z)= P (ay),
III. P=1 when 2=0, P (z)= P (a,x).
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L If Pr(z)= P (z+by,),
then nlog P (x)=log P (x +b,),
and log n + log (— log P (z)) =log (— log P (= +b,));
z log n

ﬁherefore the expression log (—log P (%)) — A 1s constant, or
periodic, with period b,.
Now for all values of m and n
bin = bm + bn)
and if b, is an analytic function of n, a supposition which excludes
the periodic solution,

b = ', M n = ',
whence mb = nb’y,
o o
or . . b’,, = ﬁ y
and b, =clogn + d, where ¢ and d are constants.
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Fig. 1. Distribution p=e~¢", or dp=¢~*-¢""dx represented by the curve y =e=*=¢ "
Putting n = 1, it appears that
d=0.

Hence log (—log P,) = 'g + constant,

or, the limiting form is that of —log (- log P,)=g, for ¢ must be
negative since & is assumed to increase with P. The distribution
of the greatess of a sample of n from this distribution is

—log (—log Pp)= 2 —logn,
the distribution being merely shifted, without change of size or
form, through a distance logn. The curve is shown in Fig. 1.
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II and TI1, If Pr(z)y= P (a,),

Qg == Qo Qg
and, if ¢ is an analytic function of n,
? I ’ !
Mol gy, = Qg A g, N gy, = A U »
s
. o -1
whence =,
a, kn
of which the solution is
-1
— —n -1
log a,, = - log n, ay =n"1%k

since ¢ =1 whenn=1,

Now log(—log P(z)) is increased by logn when logz is in-

creased by log ,, so that, excluding as before the periodic solutionf’

log n log
log <— lOg’ P (&2)) - IOg n
must be constant. This gives
log (—log P(x))=—k(logx +¢)
or —log P (z)=(Az)™*.
If P=0 when =0, k will be positive (II).
The form of the curve 1s then that of
P=¢ ",

k

_ ok . N
dP = J;Jc—;le dz, where k 1s positive.

If P=1 when #=0, k will be negative and all possible values
of z will be negative; in this case (III) the form of the curve is
given by ‘

—log P = (— )k, where k is positive,
P=¢(-9F
dP =k (- ayte~ (-2 dg,
The only possible limiting curves are therefore:
I dP=¢="""da,

in which the effect of selecting the greatest value of a sample
of n is merely to shift the curve, without affecting its scale, through
a distance log n.
ko _
IL dP =$T}-fe ® da:,
in which the effect of selection is to increase the scale of the curve
by the factor n'/%, maintaining the terminus z =0 unchanged.
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IIL AP =k (- zy=te~ (~ 9 dg,

in which the effect of selection is to decrease the scale of the
curve by the factor n~*, while maintaining the terminus x =0
unchanged. In this case alone will the selected curve increase
materially in accuracy as selection is increased; the weight of an
observation, from curves of constant form, will be inversely pro-
portional to the square of the scale, and will be proportional to
n¥k, The accuracy of the extreme observation will therefore increase
more rapidly than that of, for example, the mean, if k is less than 2.

3. The limating form appropriate to any particular frequency
dustribution.

If in any frequency distribution p is the probability of an
observation being less than «, and if as p — 1 the quantity

(I-p)a*

‘tends to a finite limit, ¥ then 1t is evident that P=p» will have

the form
P=¢" nakx~k

in the limit for large samples of n.
Since, for any two values of P other than 0 and 1, the values
of  as n tends to infinity tend to the finite ratio of the values of

(—log P)~1%
the limiting form of the distribution will be the same if

1-p=a*¢ (a)

where the range of log ¢, for any finite range of log #, tends to zero
as « tends to infinity.

The scale of the distribution for the greatest of n, measured
by an'®, will in such cases approach the limit

(pn)t%,
where the argument of ¢ is given by the equation
2k =n¢ ().
Equally, for any frequency distribution for which
(I-p)ele

tends to a finite limit 4 as p tends to unity, the limiting forms
of the distribution of the largest of a sample of n will be given by

P =e- ”Ae"xlc.
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Since, in this case, for any two values of P other than 0 and 1,
the difference of the two values of z/c tends to a constant value,
the limiting form of distribution will be the same if

1-p= el ‘f’ (@),

when the range of log ¢ in any finite range of z/c tends to zero as
z tends to infinity. Thus, if ¢ 1s constant, ¢ () may contain factors
such as 2. The location of the distribution, given by

§= log (nd),

will then, as the limiting form is approached, change as ¢ log (n¢),
in which the argument of ¢ is given by the equation

z = ¢ log (n¢ (x)).

The case in which ¢ is constant does not exhaust the applica-
tions of this limiting form, for whatever function 1 — p may be of
x, 1f we write

1 d
==~ log(1~p),

then, if the range of log (1 — p) + z/c from z = £ to = € +ct, tends
to zero, as « tends to infinity, for all real values of ¢, then will the
same limiting form be valid.

For example, let

1-p =e
1
then C=;—g;_:;,
ct ¢
and ?—-;:;,

which tends to zero, if r is positive, for all values of ¢.

But
log(1-p)+2fc=rzft—ar
=(r—-1)§& _r_(%-:_l_) Er%c** + smaller terms;

the range will therefore tend to zero, for

r(r=1)g 4z, r—18
—T’E’ o= 2r £

which tends to zero, for all values of ¢, if  is positive.
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The parameter ¢, which measures the scale of the distribution,
will increase if r < 1, and decrease if » > 1, while the location of the
mode as the limiting form is approached is given in general by

P=¢,
or n(l—p)=L1

Again, for the normal curve with unit standard deviation

1 2
1-p=—=e¥21(1-X),
p=ze e (1-X)
where X tends to zero as « tends to infinity,
1 1
E—-E‘F?—X,

log(l-p)+ zfec=—3%2*—loge+aE+1—}log(2m)— X
—+ 38~ log £ +1— flog (2m) - X,

where X vanishes as 2 — o0, at all values of z from £ to &+ ct.
For sufficiently large samples of n from a normal curve, the
distribution of the largest of the sample will be centred about a

mode m given by
A" A2 =n,

with scale given by
m

CTwEl
4. The approach of the distribution of the greatest of a normal
sample to its final form.

The final form for the largest of a normal sample has been
shown to be given by

P=eg-eve,

where ¢ diminishes to zero as the sample increases, in such a way
that to the degree of approximation required in very large samples

m

c= m2+1
and et ¥ o — .,

Since for any finite value of m, however large, ¢ will still be
diminishing as n increases, the case has an analogy at any stage
with the distribution derived from

p=e" (-,

in which also the scale diminishes as n increases. This analogy
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may be utilised by equating the rate of change of the scale with
increasing » 1n the two cases.

Now, for P=¢ -9,
we have dP = kn (- z)e-re~ (-2 gy,
so that the logarithm of the ordinate at any point is
(k—1) log (— ) — n(— «)* + constant,
giving as equation for the mode, m,

k-1
(—a)= nk
dlog(—z) 1
whence Tqogny = ~5
But for the normal curve
dloge dlogec dm m?—1

dlogn= dm dlogn=~(m2+ 13"
Hence the distribution in which
m?—1
(m*+ 1y
should provide a penultimate form of approximation, which will
duly tend to the ultimate form as h tends to zero.

1
==k

5. The moments of the ultimate and penultimate forms.
The moments of the ultimate form
dP=e¢"""""da

may be found most directly from the generating function of the
semi-invariants

K =log M,
where M= J. ” et?dP.
For, writing z for ¢,
M =[ rterds=(~1)!
0
Ll A ds
- - e (% 1) .
and K—-logM—ryt+6 2I+3!( dz“logw'),,=0+""
whenee it follows that the distance of the mean from the mode is
' =y = 577215665,

. ;
the varlance is oy =% = 164493407,

the third moment 1s

=2 {1 Fat ot } =2:40411381,
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while the fourth moment is given by
~Suf=6{1 4+ 24 4.} =T = 64939394
fu Ot 2TET [T T5 :

Consequently, for sufficiently large samples we shall have

—yo=—I"_
Mean — Mode = YO= AT
. 7re
Variance = ' e,

B, =12985676,

Bg = 5'4!.
For the penultimate form

AP =k(—ay e (- 2V dg,

i

writing —z=tt=t
we have. dP =—e¢tdt,
and gy = (=Y (—2)rdP=(=yt*dP = (=) (kr)!;

also the mode is given by
—az=(1-h)

Hence we have as penultimate formulae

Mean — Mode = % {(1— hy* — A1,

Variance = ;—; {(Ch)!— (A1)},

together with B3, and 8, expressed in terms of 4 only.

The extreme slowness with which the ultimate form is ap-
proached is well shown by the fact that even for enormous samples
the penultimate form is still materially different in its 8 coefficients.
The following tables show, for different values of %, the corre-
sponding values of m and n, and, in parallel columns, the distance
of the mean from the mode, the variance and the 3 coefficients.
It will be observed that even for samples of nearly a billion the
penultimate form is still considerably different from the ultimate
form. The appropriateness of the penultimate form for samples
of 1000 downwards can be tested from the results given in a
previous paper*, using for m the value of # for which p = 1/n, and
the corresponding values of ¢ and A.

* Biometrika, xviI, pp. 364~387 (1925).
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It is apparent that the penultimate form effectively bridges

great gap between samples of 1000 or less and the ultimate

the
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is underestimated by an amount which seems to attain a maximum
of about 1°/, for samples of about 1000, whereas the value for the
ultimate form is over 7°/  in error for samples of nearly a billion.
The standard deviation is given by the penultimate form with a
negative error of about 2§ °/, at 1000 and only about 4% °/, at 60,
while the ultimate form is nearly 10°/, out at 1000, and just
under 3 °/, at a billion. In both comparisons the largest deviations
occur in the B coefficients. The latter are consistently too low in
the penultimate form for samples of 1000 and less, and probably
do not attain a close approximation until the sample number is
nearly a million, while an equally good approximation to the
ultimate values 8, =1299 and B8,= 54 would only be attained by
such incredibly large samples as are represented by values of about
‘004 for k (c. 10®). The changes in 8, and B, with varying A,
together with the actual values for samples up to 1000, are shown
in Figs. 2 and 3.
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Fig. 2. Change in g8, with sample size as indicated by the penultimate formula,
with actual values for samples up to 1000,
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Fig. 3. Change in 8, with sample size as indicated by the penultimate formula,
with actual values for samples up to 1000,

6. Summary.

The limiting distribution, when n is large, of the greatest or
least of a sample of n, must satisfy a functional equation which
limits its form to one of two main types. Of these one has, apart
from size and position, a single parameter A, while the other is the
limit to which it tends when A tends to zero.

The appropriate limiting distribution in any case may be found
from the manner in which the probability of exceeding any value
# tends to zero as « is increased. For the normal distribution the
limiting distribution has k= 0.

From the normal distribution the limiting distribution is
approached with extreme slowness; the final series of forms passed
through as the ultimate form is approached may be represented
by the series of limiting distributions in which & tends to zero in
a definite manner as » increases to infinity.

Numerical values are given for the comparison of the actual
with the penultimate distributions for samples of 60 to 1000, and
of the penultimate with the ultimate distributions for larger
samples.
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