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A certain amount of disparity in usage and opinion among meteor-
ologists wishing to test the significance of supposed periodicities had
arisen in the absence of any treatment of this subject by the prin-
ciples applicable to small samples.

The reader will notice that the periods of the components discussed
in this paper are not integral multiples of the unit interval of obser-
vation, but integral submultiples of the entire period of observation.
- Using these it is shown that an exact solution can take account of
the two circumstances which had given trouble (i) that the supposed
periodicity to be tested is usually selected as having the largest ap-
parent amplitude, and (ii) that the variability of the series must be
estimated from the data, and needs to be eliminated from the test
of significance.

The treatment of a frequency distribution consisting of a series
of polynomial arcs with the highest possible contact at the points
of discontinuity is of some mathematical interest.

I have also used this example to illustrate the properties of esti-
mates involving non-linear functions of the frequencies (Paper 163).

The exact tests arrived at were embodied in a short table, designed
to meet immediate and practical needs. A fuller table is published
with this edition, giving for all values of n the number of submultiple
periods available, from 5 to 50, both the 5 per cent and the 1 per cent
values. The test is now so direct and easy that the urge to ascribe
significance to casual fluctuations in time series, which all who deal
with such series must have felt, should be capable of rational control.

Proceedings of the Royal Society of London, A, 125: 54-59, (1929).
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Tests of Significance in Harmonic Analysis.
By R. A. Fiseer, F.R.S.

(Received June 5, 1929.)

1. Schuster’s Test.

If a series u;, U, ..., Uz,qq constitute a random sample from & normally
distributed population, then any linear function
2n4+1

A= 8 (am)
1

will also be normally distributed ; moreover its mean will be zero if S (a,) = 0,
and its variance will be equal to that of the original population if

S (e =1
Any other linear function
B— 2n§-1 (be)
will be distributed independently of the first if
S(a,b;) =0,
and in this case the sum of the squares,
z = A% 4 B2,

will be distributed so that the chance of exceeding any particular value of

z 18

where ¢ is the mean value of #, equal to twice the variance of the population
sampled.

This proposition, which gives the y* distribution for the particular case
n = 2, is the basis of Schuster’s test of the significance of any particular term
in the harmonic analysis of a series. For the coefficients

_ 2 2rcpr
=V 1% amy1
b, = 2 2rpr

Ml 1

fulfil the necessary conditions for all integral values of p. Values of p from
1 to n give independently distiibuted values of z and, if the variance of the
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population were known a priors, the test would be rigorous for any one of
these chosen in advance.

2. Allowance for Selection of the Largest Term.

The practice of picking out the larger values of #, not in advance, but by
reason of their exceptional magnitude, requires, as Sir Gilbert Walker has
shown, an important modification of the test of significance. For, if we wish
to test the significance of the largest observed value of &, we must compare the
value observed with the sampling distribution of the largest of » independent
values, and not with that of any one value chosen in advance. If P stand fox
the probability which we adopt, as sufficiently small to be used as a criterion
of significance, the corresponding value of # will be given by

e—f = P,
for any particular term, but if z is chosen to be the largest of » independent
values, it is necessary that the probability should be 1 — P that all the »
values shall be less than z, so that

<1-e‘§>"=1-—P

is the equation which determines the least value of # to be judged significant.
This is the criterion derived by Walker.

3. Allowance for the Sampling Error of the Estimated Variance.

In the practical application of this criterion, when c is not known a priore,
it is necessary to substitute for ¢ an estimate of it derived from the data, and,
for an exact test, to take into account the sampling error of this estimate. The
estimate of ¢ will necessarily be based on the variance observed in the original
sample, or, what comes to the same thing, on the average value of z for
the n possible periods; and, whether we take, as our actual estimate,
the average of all the n values, or the average of the (n—1) values
other than that to be tested, all that is required for an exact solution, in either
case, is the frequency distribution of the largest of n values of z, expressed as a
fraction of the total of the sample of 7 of which it is the largest member.

Ifx,, .. ., %, are the co-ordinates of a point in Euclidian space of n dimensions,
the simultaneous distribution of the » values will be represented by a density

function

e—cl(zx + 23 + o+ x)
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which is constant over plane finite regions of » — 1 dimensions, bounded by the
n-surfaces
z, =0

in the form of a generalised tetrahedron. In every such region, the distribution
of the ratio of the largest co-ordinate to the sum of all co-ordinates will be
the same, and, since the density is constant over each such region, the
distribution is to be found merely from the elements of generalised volume,
into which the region is divided for fixed values of the ratio. Any particular
co-ordinate, e.g., z;, will be the greatest in one mth of the whole region, this
fraction being bounded on the one hand by the loci, at which it ceases to be
greatest,

Ty = Ly, By = Ly, ..., Ty = Ty,
and, on the other, by the boundaries,

Xy =0, x3=0, .. #=0;
within this region it is required to find the distribution of the ratio

Ty

=m1+w2+...+a:,,'

g

4. The Discontinuiiies of the Distribution.

The distribution defined geometrically by the dissection of a generalised
tetrahedron exhibits a number of discontinuities ; the linear regions which
constitute its boundary intersect # — 1 at a time at the sets of points
typified by

Ty == Ty = Ty = e 0 e . ==Xy
Ty =0, % = 3= . . =2,
Ty=23=0, & =1ua4= = %,
Ty=1=Tg=. . =%, =0,

at which it is evident that the values of g are

o b1,

n—1’

representing in succession, the centre of the generalised tetrahedron, the
centres of all its bounding faces, of successively lower dimensions, which meet
in the point, g = 1, the middle points of the edges running from this point,
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and finally the limiting point, g = 1, itself. Hence g is distributed over the
range from 1/n to 1; and for an exact test of significance we require to know
the probability with which any particular value between these limits is
exceeded.

5. The Bxact Distribution.

A point about the distribution which greatly facilitates the solution, is that
within the region between any two discontinuities the probability integral of
the distribution is merely a polynomial in g of degree » — 1. For the
boundaries of any region, g = ¢,, change the magnitude of their elements
continuously at rates determined by the magnitude of their boundaries, and
$0 on down to the bounding edges, the lengths of which are linear functions of
¢ ; consequently the probability integral is in each region a polynomial of
degree n — 1, but from region to region the (n — 1)th differential coefficient
with respect to g changes discontinuously.

We may therefore represent the probability integral by the form

P=o(1 =g +oag(l— 2"+ ... + an (1 — ng)" ™,

in which as many terms are to be taken as have positive quantities within the
brackets. The last term is therefore included for no possible value of g, but
is written above in order to utilise the condition that when ¢ <<1/n the
probability integral shall be unity. This condition is sufficient to determine
the n coefficients by equation of the coefficients of ¢°, ¢, ..., g".

To determine their actual values let

f=—=1+4 ot + agt? + ... + ",

then the equations of the successive coefficients give

f=0, (t2)r=0, .., (L) =0,

at the value ¢ = 1. These are evidently equivalent to

d @t
=0, =f= vy = f=0,
f=0 GI=9 =/ =0

for the same value, so that f, being of degree n, must be a numerical multiple
of (¢ — 1), or, in view of its first term,

f=— =
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We have therefore the probability integral in the form

R L i e e L e

where k is the greatest integer less than 1/g.

8. Summary and Table of 5 per cent. Values.

A practical convenience of the form which has been obtained for the prob-
ability integral, is that for small values of P, such as are needed in tests of
significance, the magnitude of the successive terms decreases very rapidly,
so that even when, as at the 5 per cent. point for n = 50, as many as seven
terms exist, very high precision is obtained from the first three terms only.
Indeed the first term alone gives a very satisfactory approximate test of
significance. The first term has, moreover, a simple meaning in relation to a
related statistical problem. There are, in fact four related distributions each
of which is the appropriate solution of one of four problems.

(I) The distribution of any one harmonic term obtained from a random
sample of numbers drawn from a population of known variance. Schuster’s
solution of this is given by the distribution of the form

P=e" (1)

(II) The distribution of the largest of the » harmonic terms obtained from a
similar sample ; for this we have Walker’s solution

Pe=1—(1—e™" 2)

(III) We may ask what is the distribution of any one harmonic term as a
fraction of the total (or mean) of the terms obtained from the same sample ;
here there is no restriction that our term should be the largest, and all points
within the generalised tetrahedron are available, so that

P=(1—gr (3)

where g is the chosen term expressed as a fraction of the whole.

(IV) Finally the probability that the largest of the n terms should exceed g
18, 80 long as this probability is small, naturally not far from  times the value
given by (3), and has been shown to be exactly

B - ! -
P n(l—gf ™ — ot (7 e (U= R, 4)

where k is the largest integer less than 1/g.
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How good an approximation is obtained by using the first term only, is
shown by the following table giving the 5 per cent. values of g for values of
from 5 to 50 in a parallel column with those obtained by ignoring all terms
after the first.

. g g

(by exact formula). (by first term only).
b 0-68377 0-68377
10 0-44495 0-44495
i5 033462 0-33463
20 0-27040 0-27046
25 0-22805 0-22813
30 0-19784 0-19794
35 0-17513 0-17525
40 0-15738 0-157562
45 0-14310 0-14324
50 0-13135 0-13149

This table can be used directly in testing significance ; the b per cent. point
is the lowest level of significance likely to be wanted, and for higher levels,
such as the 1 per cent. point, the first term will provide an even closer approxi-
mation. The method of section 5 should be useful in many distribution
problems involving points of discontinuity.

The value of g may in all cases be very easily obtained. If all the Fourier
submultiples have been worked out, it is, as already defined,

z
Z + Ty + ... 2,
The denominator of this expression is, however, merely
2n-+1 -
S (u, —u)
r=1

In the case where the number of observations in the series is even, (2n - 2),
we need still only consider the »n complete harmonic terms, and can obtain

their sum as

12 — (U — Uy + Ug ~— oo — Ugp i)
— 2 . 1 2 3 2nt+-2
,§1 (1 — ) n -+ 2
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Author's revised version of table on preceding page (CMS 186,59a),

SIGNIFICANT VALUES FOR ¢, THE RATIO OF THE SUM OF SQUARES FOR THE
Most SioniricaNt PEriop N. (THE ToTAL For n PErions OBTAINABLE FROM
A SEQUENCE oF (2n + 1) or (2n + 2) Successive OBSERVATIONS.)

n 5% 19, n - 5%, 1% n 59, 19,

.68377 | 78874 | 20 | .27040 | .32971 35 | .17513 | .21338
.61615 | .72179 (| 21 | .26060 | .31783 36 | .17124 | .20860
.56115 | .66440 || 22 | .25155 | .30683 || 37 | .16754 | .20405
.51569 | .61517 || 23 | .24315 | .29661 38 | .16400 | .19970
47749 | 57271 || '24 | .23534 | .28709 || 39 | .16062 | .19554

O WO

10 | .44495 | .53584 || 25 | .22805 | .27819 || 40 15738 | 19156
11 .41688 | .50357 || 26 | .22123 | .26986 || 41 .15429 | 18776
12 | .39240 | .47510 || 27 | .21483 | .26205 || 42 | .15132 | .18411
13 | .37085 | .44982 || 28 | .20883 | .25470 || 43 | .14847 | .18060
14 | .35172 | 42722 || 29 | .20317 | .24778 || 44 | .14573 | .17724

15 | .33461 | 40680 || 30 | .19784 | .24124 || 45 | .14310 | .17401
16 | .31922 | .38851 || 31 | .19280 | .23506 || 46 | .14057 | .17089
17 | .30529 | .37180 || 32 | .18803 | .22921 47 | .13814 | .16789
18 | .29262 | .35655 || 33 | .18351 | .22366 || 48 | .13579 | .16501
19 28104 | .34257 || 34 | .17921 | .21839 49 | .13353 | .16222

20 | .27040 ] .32971 | 35 | .17513 | .21338 | 50 | .13135 | .15954

Table of g; for testing the significance of the leading periodic component of a
geries of 2n + 1 or 2n + 2 consecutive values. Each of n components contributes
a certain fraction to the total sum of squares, and g is taken to be the largest of
these fractions. If this exceeds the corresponding tabulated value significant
evidence of periodicity is indicated.
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