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THE DERIVATION OF THE PATTERN FORMULAE OF
TWO-WAY PARTITIONS FROM THOSE OF SIMPLER
PATTERNS ’

By R. A. FisHER and J. WISHART.

[Received 28 November, 1930.—Read 11 December, 1930.]

1. Introductory.

If the moment generating function of a variable be defined in terms
of the frequency element df(x) of a variate  in the form

M = [e*df(@),

then. when M can be expanded in a series of powers of t, the cumulative
function K, defined by

K=logM,
can also be expanded in the form
K=3%t
r T

The coefficients «, of this expansion have by different writers been
termed semi-invariants and cumulative moment functions. Since both
terms are lengthy, and the first somewhat misleading, we propose in
what follows to refer to them as the cumulants of the distribution.

In a recent paper* it was shown that, if symmetric functions %,
of the r-th degree, are calculated from the observations of a sample, in
such a manner that the mean value of k, in all possible samples is equal
to the r-th cumulant (x,) of the infinite population from which the sample
has been taken, then the cumulants of the distribution of any k, and
of the simultaneous distribution of all such statistics, which are neces-
sarily expressible in terms of the cumulants of the population, may be
readily and simply determined by combinatorial methods. The essence
of the method is that the coefficient of any single term in the required

 R. A. Fisher, Proc. London Math. Soc. (2), 30 (1929), 199-238.

Proceedings of the London Mathematical Soeiety, Series 2, 33: 195-208, (1931). 503



504

196 R. A. FisHER and J. WISHART [Dec. 11,

formulae is a composite of contributions from one or more two-way
partitions, of which one marginal partition represents the formula, while
the other specifies the particular term; and for each such partition the
numerical coefficient is derived as the number of ways of setting up the
partition, while the coefficient in 7, the size of the sample, depends on
the pattern of the two-way partition, i.e. on the number of rows and
columns, and the number and distribution of zero entries. A useful list
of such pattern formulae has already been given (loc. cit.).

The listing of the great number of patterns possible for two-way
partitions of larger numbers would, however, be impracticable; the
present paper will show how the pattern formulae for such cases may
be readily derived from those already listed. Patterns with a large
number of rows have necessarily, for formulae of given degree, relatively
few entries in each row. The extreme case is that for the terms involving
only the variance of the sampled population, in which each row has only
two entries; these patterns are of particular interest, since only these
occur in the distribution of moment statistics derived from the normal
distribution. Tt will be seen that the method of deriving the pattern
function by the addition of a new column is particularly simple in these
cases. It should be noted that the pattern functions are the same for
wmultivariate as for univariate problems.

2. The general method of evaluating a pattern.

The general procedure for determining the function of n associated
with any specified pattern is to consider all the possible ways in which
the rows can be separated into separate groups, or separates. Thus with
two rows we have only two possible separations, the rows being either
amalgamated as in the marginal total, or kept separate; these two
separations correspond to the partitions (2) and (1%) respectively. With
three rows we have one separation corresponding to the partition (3),
three corresponding to the partition (21), and one corresponding to the
partition (13). In general the number of separations of r rows corre-
sponding to the partition (pT'pl:...) is

r!
7!'1! (.pl !)’rl . 'ﬂ'g! (_pg !)wz e
and the total number of separations of 7 rows into s separates is

1 s=l71r—
(s-—l)!A ar-h,

the leading (s—1)-th divided difference of the series of the (r—1)-th
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powers of the positive integers. Representative numbers are given in
Table I.

TABLE I.
Number of separations of » rows into s separates.
Number of separates
Number of
rows 1| 2 3 4 5 6 7 8 | 9| Total
2 1| 1 9
3 1 3 1 5
4 1 7 6 1 15
5 1} 15 25 10 1 52
6 L} 31 90 65 15 1 203
7 1| 63}] 80L| 850 | 140 21 1 ) 877
8 1}127] 966 | 1701 | 1050 | 266 | 28| 1 4140
9 1255 3025 | 7770 | G951 | 2646 | 462 | 36 | 1 | 21147

The total number of separations, being [Whitworth, Choice and
Chance (1886), 95] the coefficient of 2’ /r! in the expansion of

e¥—1
e ’

increases rapidly, and although, usually, large groups of separations making
similar contributions may be treated together, it is evidently desirable
to shorten the method for cases of more than six or eight rows.

The contribution of each separation to the function required is the
product of the factor n(n—1)... (n—s+1) with factors for the several
columns ; these factors are

1 —1 2!

n' nn—1)Y nr—1)n—2"

according as the column is represented in 1, 2, 3, ... separates. This
process has been already sufficiently exemplified (R. A. Fisher, loc. cit.).

We shall now show how the pattern-function for a pattern containing.

a column with only two entries may be obtained from the pattern-
functions of simpler patterns, and then consider the parallel procedure
to be used when no column contains less than three or more entries.

3. Expansion of a pattern function in terms of the functions of simpler
patterns.

Consider the pattern
« X XX
X . XX
XX .
XX .

505



506

198 R. A. FisHER and J. WISHART [Dec. 11,

of which the right-hand column contains only two entries. The fifteen
separations which are possible with four rows may be divided into two
classes, in one of which (a) the two rows represented in the fourth column
lie in the same separate, while in the second class (8) they lie in different
separates. In the first class the fourth column contributes the factor n="
in the second class the factor is —1/n(n—1).

Now in separations of the first class the cofactors of n~! will be the
contributions of all its possible separations to the pattern-function of
the pattern

XXX

XX .
X X .

in which the fourth column is omitted, and the first two rows of the
original pattern are amalgamated. In general we may designate the
function of this reduced pattern by A. If now we represent the function

of the pattern
« XX
X . X
XX .
X X .

in which the rows have not been amalgamated, by B, it appears that the
cofactor of —1/n(n—1) in the pattern-function to be evaluated will
consist of all the contributions to B which do not occur in A, and the
required function is reduced to the form

A B—4 __ 4 B

n  ah—1)" n—1 T am—1)
which is a general formula for the function of any pattern having a

column with only two entries.
In the particular case considered we may at once substitute

1 _ n
4 T (n—1)in—2)’ B T (n—1)P*¢n—29)°
. 1 1y __ 1
and obtain (_———_n—l)”(1z—2) (1—n—1> ==

in accordance with the value given in Fisher’s list of useful patterns.
Alternatively, of course, B could have been reduced in turn to
functions of two column patterns.
Whenever one or both rows represented in the column to be removed
contain only two entries, the pattern-function B vanishes, and we are

left simply with
A/(n-1);
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this will always be the case with the pattern of terms involving only
variances and covariances, which are the only terms which appear in
sampling from normal populations.

For these normal cases use may be made of the symbolical diagram
in which each column is represented by a point and each row by a line
joining the two points corresponding to the two columns in which it is

represented. Thus for the evaluation of «(3'2), we have partitions

represented by the figures

o U W

in each of which one angle at which two lines meet represents the column
with only two entries. The reduction formula thus shows that the
functions associated with these patterns will be each 1/(n—1) of the
functions associated with the simpler patterns represented by the three
figures below (two of which are equivalent),

that is of those which occur in the evaluation of «(3*). In respect cf the
numerical factor, too, it should be noticed that every way of setting up
a partition for k(3% corresponds to twelve ways of setting up one of the
partitions for «(3*2), since any one of the six rows may be broken and
connected in two ways with the elements of the new column. Thus a
correspondence is established for the whole coefficient, and we have for

the normal case
12

n—1

«(812) = k(8% kg,

or, in general, since the number of rows in the partition is equal to the
power of k; by which the coefficient is multiplied, the addition of a new
part 2 is equivalent to the action of the operator

PP _d_
’Il'—l dK'g’

an operator by means of which the higher cumulants of simultaneous
distributions involving the estimated variance ks may be very readily
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obtained. In the multivariate case the operator for adding a variance

or covariance k,, 1s
a

2~ (kpr ks Kpskgr) 53—
o =1 ( P"‘ qs+ e qr) dirs’

where «,, stands for the covariance of the variates p and q.

4. Removal of a column of three entries.

The direct generalization of the method of the last section to parti-
tions containing a column of three entries will evidently express the new
function in terms of the functions of five simpler partitions, each obtained
by suppressing the column of three entries, namely A, formed by the
amalgamation of all three of the rows used in the column suppressed;
Bi, By, By, formed by the amalgamation of two only of these three rows;
and C by leaving all three rows distinct. In the new function the
cofactor of 1/n will evidently be 4, that of —1/n(n—1) will be the sum of
three quantities B—4, and that of 2/n(n—1)(n—2) will be

C—(B,—A)—(By—A4)—(Bs—~A)—4 = C—B,—By—B;+424.

Hence the general formula is

1 3 4
4 <7 + nn—1) + nin—1(n— 2))

1 2 2C
—(B+B,+By) <n(n—-— 1) + nn—1)(n— 2)) + nn—1n—2)

. n 1 2
~ (n—1n—2) A—_(n—l)(n——‘Z) (B1+B2+B3)+n(n——l)('n—2) c.

As an example we may derive the function for the pattern

X X X
X X X
X X X
XX .

from those for the simpler patterns

X X X X X X
X X X X X X
X X X X
X X
A B, = B, = By c
1 n n(n+1)
n—1 n—1)n—2) n—1)n—2)(n-—38)"
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We have then

n _ 8n + %(n+1)
n—12m—2) m—1Pn—2%" n—12n—2>*n—38)

nt—8n*+1Tn+2
n—1)7*n—2)°*n—3)"

In its application to normal patterns the formula for removing a
column of three entries is reduced to the simple formula

2
(n—l)(a'zr—Q)A’

but it should be noticed that A here is not necessarily .the function of
a normal pattern, for the other entries of the rows represented in the
suppressed column may be in three different columns, in which case 4
will be the function of a pattern having a row with three entries. When,
however, two of the amalgamated rows are duplicates joining the same
pair of columns, the function will be expressed in terms of that of a
normal pattern. In the representative diagram the effect of this will be
to suppress a point, two of the lines from which are duplicates, and to
replace the set of three lines meeting there by a single line joining their
extremities

as does the broken line in the figure. By two such operations such a
diagram as

is reduced to I, representing the pattern

X X
X X

and having the function 1/(n—1), whence it easily follows that the
diagram in question is associated with the function

n?/(n—1)* (n—2),
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In the case where three entries appear in the amalgamated row the
partition of which 4 is the function, though not a normal one, is of the
kind which must occur in the term in 3y’ "', that is in the final term of
the corresponding formula. Since any arrangement of a two-way parti-
tion having a marginal column represented by the partition (8 277
corresponds to six arrangements of the normal partition of the formula
in which a new row of three entries has been added, these coefficients
must be in the simple ratio

6n
(n—1)(n—2)’

For example, the coefficient of the term in «,«3 of the formula for
x(48) is
36n
m—1{n—2)°

whence it follows that the coefficient of the term in « of the formula for
k(4 3%) must be
2167*
(n—12(n—2)*

as may be verified from the formula given previously. Equally the
corresponding coefficients in the formulae for «(32%) and «x(3?2%) are

48 d 288n
(n—1)* an n—12n—2)°

All the normal terms occurring in the distribution of k; and of its
simultaneous distribution with other such statistics may then be obtained
from the coefficients of simpler formulae.

5. The removal of a column containing any number of entries.

In expressing the function of a pattern as a linear function of the
patterns formed by deleting a column of r entries, and amalgamating the
r corresponding rows into p’ rows in accordance with the partition
(p7p32...), where

pr=r,

/

I =pf,

let a(p?p3e...) be the coefficient of the function of any one of the patterns
so formed.
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The functions consist of the suins of contributions from all possible
separations of all the rows; we shall designate by Q(g¥'¢}:...) the total
contribution of all such separations in which the r rows of the deleted
column are separated in any particular way into y, separates containing
g1 of these rows each, y; separates containing ¢, of these rows each, and
so on; then, if the partition (pTipg:...)can be found by subdividing the
parts of the partition (q¥'qy...) in A ways, any @ will appear in the
expansion with coefficient

Shal(plipy:...),

the summation being over all partitions (pTip3:...), and this must be
equated to its coefficient in the function of the whole pattern, namely

(=) p—D! ——,

(n—p)!
n!

where 2(y) = p. We have in this way one such equation for every kind
of partition (g¥¢¥:...), and these are sufficient to determine the unknown
coefficients a.

But if the statistic k,, defined as having its mean sampling value
equal to «,, be expanded in the form

k.= ZA(pTps..0spispe ..,

where s, is the sum of the p-th powers of the observations, then the
coefficient of XX ... in the mean value of the expansion, when the
mean values of the s-products are expanded in terms of the moments
#, by the general formula previously given (Fisher, loc. cit., p. 207),
will be
n' LI 2

2z —p) wA(PTpse...),
where p is the number of ways in which the parts of (p7'pj?...) may be
amalgamated to form those of (¢¥'¢¥*...), and this is to be equated to its
known coefficient in the expansion of k., namely

(—y-lp—1)! rl
alxal o (@I (g

The relation between A and p may be found from-the following con-
sideration ; the number of ways of dividing r objects into p' parts,
po pi ..., these being grouped into p divisions g ¢}2..., may be obtained
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either by multiplying by A the number of ways of dividing r objects into
parts g q¥:..., t.e.
A r!
Xilxe!.o (D) (ggtye ...

or equally by multiplying by u the number of ways of dividing r objects
into parts pTipP:..., i.e.
I r!
mlagl o (o)™ (py )™,

This relationship must hold for each particular separation of the partition
(p1'p3...) having specification (g¥'g¥...), as defined by MacMahon*,
or, as is here required, for all separations taken together. Consequently
our second set of equations may be written

r!
7"1!77'2!... (‘pl!)ﬂ'l(‘pg!)ﬂz...

—o)!
S (prpp..) + b= (—ptp—1y e,

showing that we can satisfy the equations for a by putting

,or!
7?1!7"2! ...(p] !)"l(pz!)"2-..

a(piips:...) = A(QpTppe...) = ,
where the partition functions 4 have been already given up to partitions
of six, that is, as far as is needed for the deletion of a column of six
entries, in Fisher’s expressions for k, to k¢ (loc. cit., 203-4).

Let us illustrate this general method of proof by the case when r = 4.
The function of a pattern containing a column of four entries is to be
expressed in terms of the functions of the fifteen simpler patterns formed
by deleting this column, and amalgamating the entries of the four rows
in which it is represented in every possible way. We represent by F(4)
the function of the patterns found by amalgamating all four rows into
one, by F1(31), F3(31), F3(81), Fi(31) the functions of the four patterns
which can be found by leaving one row untouched and amalgamating
into one the remaining three. Similarly there will be three functions
F(2%), six functions F(21%), and one function F(1%*). We have to find
five coefficients a(4), a(31), a(2%), a(21%), and a(1%), such that the new
function shall be

5
a(4) F(4)+éa(3 DF(@S 1)+;l‘s‘.,a(2"’) F(22)+§a(2 1) F21)+a(1f) F1Y).
1

* P. A, MacMahon, Combinatory analysis, 1 (1915), 46.
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Now the separations in which all four rows lie in different separates
appear only in F(1%9, and the sum of their contributions, Q(1%), comes
into the new function with an additional factor

—6
nn—1n—2)(n—3)’

hence the first of the five equations required is

_ —8
T ar—1Dn—2(n—8)

a(1%

Next any separation in which the four rows lie in three different separates
will appear in one of the functions F(212%) and also in F(1*%), and the sum
of the contributions from such separations, Q(21*), comes into the new
function with the additional factor 2/n(n—1)(n—2), so that we have the
second equation

2 D [ R .. A—

a2 15+ a(1%H = A—Dn—3)"

Thirdly, any separation in which the rows fall two each into two different
separates will appear in one of the functions F(2?), in two of the functions
F(21?%), and in the function F(1%), so that

—1

a(22)+2a(2 12)+a(1‘) = m

It should be noted that the coefficient 2 is the number of ways in
which a partition (2?) can be subdivided into a partition (21%).

Fourthly, any separation in which three of the rows fall into one
separate, and the remaining row into a different one, appears in one
function F(31), in three functions F(21%, and in the function F(1%),
giving the equation
—1

a8 D+8a(2 1)+l = ~o—5,

in which the coefficient 3 is the number of ways in which a partition (31)
may be subdivided into partitions (2 1%).

Finally, any separation in which all four rows fall in the same separate
appears in all the functions, so we have
1
';y

a(4)+4a(8 1)+8a(2D)+6a(2 1) +a(1Y) =

completing the set of five equations necessary to determine the
coefficients a.
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The equations may evidently be solved by direct substitution, yield-
ing the solution

a(l) = 7,(”_-1>(n—f2)(n—3)’
a(2 1% = (,L_1)(n32)(n~3)’
a(2?) = (n—_g'_)”(.%‘:;‘;“)’
«(31) = (n,_l)“(,i’i*;}(i,_sy
a(4) = T

T (n—1)(n—2)(n—38)°

The proof of the relationship under discussion depends, however, upon
the correspondence of the equations for a with those obtained by putting

e = A@)s,+ 4B 1)sgs, + 42D+ 42 19)s,5°+ 4 (1Y s},

and expressing the conditions that the mean value of the statistic so
constructed shall be equal to the population parameter «, with its identical
expression in terms of the moments

Ky = pmy—dugm —8ui+12u, ui —6ul.
Here i will appear in the expansion of the mean value of s? only, giving
nn—Dn—2Dn—38)4(1%H) = —6;
uypd will appear in the means of s,si and of %, giving
nn—1)n—2) {4(219)+64(1Y} = 12;
u; will appear in the means of s}, s,s], and sf, giving
nn—1){42H+4(21H+84(1H} = -3,
while the two remaining equations are
nn—D{4B H)+24(2 1H4+44(1Y; = —4
and n{Ad@+AB D+ARHY+42 1)+40AN: =1,

the numerical factcrs in these equations being the number of ways in
which the parts of any particular partition may be amalgamated to form
those of the partition in the equation of which it occurs.
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These equations also may be solved by direct substitution, giving the
familiar relations

40y = e
4@ = e,
4(2) = (n_"_‘gj“(%g;’
4@ Y = —2 ",
AW = — 2D

n—1)(—2D(n—38)’

from which it is evident that we can obtain the corresponding solutions
for a by dividing by the number of ways in which four objects may be
distributed in the required partition, or in general by

1 7!
mlmy! L (D (P

6. Proof of the vanishing of a class of zero functions.

The fact that the function of a two-way partition can be found

by an expression linear in the functions of partitions with one less column,

and with the rows represented in the deleted column more or less
amalgamated, may be used to prove that the partition function is neces-
sarily zero in a class of cases in which its vanishing has hitherto only
been noted empirically. The class in question 1s that of partitions the
rows of which can be divided into two groups, which, whatever may be
their internal connections, are only connected with each other by entries
in a single column. For example, in the pattern

XXX .
XXX .
. XX
« X X

the group of columns represented in the two upper rows and the group
represented in the two lower rows have in common only a single column,
namely the third from the left. Evidently all patterns in which any row
has only one entry belong to this class, but, whereas a statistical reason
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has already been given for patterns with such rows having zero functions,
no general demonstration applicable to the whole class has been given.

The demonstration which suggests itself from the methods of this
paper is as follows, If any of the columns which are not represented in
both groups of rows is removed, all the patterns in terms of which the
entire pattern-function is expanded still possess two groups of rows having
only one column in common. If all such columns are removed in suc-
cession, the expansion contains only the functions of patterns having
a single column, all of which have, however, two or more rows.

It is obvious statistically that the function of such patterns must
be zero, for the statistics k, have been defined so that their mean sampling
values shall be «, and shall contain no product terms in «’s of lower
degree ; we may, however, give an algebraical proof for a pattern of r rows
and one column.

The contribution to the function of any sepuration into s separates
will be

—-—-al‘-l e
()7 =D iy,

wn—1)...(n—s4+1) o —1) =D —

and, the number of separations heing

the complete function must be
é (___)s-lAs—l(lr-l)’
s=1

which is the finite difference expansion of 0'~', and is consequently zero
when r exceeds unity, as in the class of patterns under consideration.

Summary.

A method is developed of calculating the function of n to be associated
with any two-way partition in the evaluation of the cumulants of the
sampling distribution of the appropriate moment statistics k, by expand-
ing it in terms of the functions of partitions having simpler patterns.
When columns of two or three entries oceur the simplification is extremely
rapid. The method is, however, generalized for all cases.

A proof is given of the vanishing of the functions corresponding to all
patterns in which the rows may be divided into two groups having only
a single column in common.
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