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From a logician’s point of view one of the most surprising results ob-
tained by the theory of estimation is that not only the mathematical
form of the inferences which can be rigorously drawn concerning the
unknown parameters of the populations sampled, from the frequen-
cies observed in a random sample, depends on the particular mathe-
matical specification of this population, but that the logical nature
of these inferences depends on this also.

The present paper is designed to illustrate the fact that, if one set
of functional conditions is satisfied, there will exist sufficient statis-
tics, while, if a second and distinct limitation is imposed on the prob-
lem, estimates may be made exhaustive, and the small sample prob-
lem solved with exactitude, by means of ancillary statistics.

Examples of each class are treated in detail, so that the reader may
grasp clearly the peculiarities of the likelihood function which each
implies. Both classes are of rather common occurrence, but beyond
therr it would appear that it is not possible to derive exact state-
ments of fiducial probal-ility from the primary inference supplied by
the relative likelihood o all possible combinations of parametric
values.

The particular contents of the paper are briefly sketched in the
summary, page 306.
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1. Introductory.

To Thomas Bayes* must be given the credit of broaching the problem of
using the concepts of mathematical probability in discussing problems of
inductive inference, in which we argue from the particular to the general ;
or, in statistical phraselogy, argue from the sample to the population, from
which, ex hypothesi, the sample was drawn. Bayes put forward, with con-
siderable caution, a method by which such problems could be reduced to the
form of problems of probability. His method of doing this depended essentially
on postulating a priori knowledge, not of the particular population of which our
observations form a sample, but of an imaginary population of populations
from which this population was regarded as having been drawn at random.
Clearly, if we have possession of such a priori knowledge, our problem is not
properly an inductive one at all, for the population under discussion is then
regarded merely as a particular case of a general type, of which we already
possess exact knowledge, and are therefore in a position to draw exact deductive

inferences.
To the merit of broaching a fundamentally important problem, Bayes

added that of perceiving, much more clearly than some of his followers have
done, the logical weakness of the form of solution he put forward. Indeed we

* ¢ Phil, Trans.,” vol. 53, p. 370 (1763),
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are told that it was his doubts respecting the validity of the postulate needed
for establishing the method of inverse probability that led to his withholding
his entire treatise from publication. Actually it was not published until after
his death.

If a sample of # independent observations each of which may be classified
unambiguously in two alternative classes as ‘‘successes ” and * failures ”’
be drawn from a population containing a relative frequency x of successes,
then the probability that there shall be @ successes in our samples is, as was first

shown by Bernoulli,
n!

al!(n—a)! 71—

(1)

This is an inference, drawn from the general to the particular, and expressible
in terms of probability. We are given the parameter x, which characterizes
the pepulation of events of which our observations form a sample, and from it
can infer the probability of occurrence of samples of any particular kind.

If, however, we had a priori knowledge of the probability, f (z) dz, that =
should lie in any specified range da, or if, in other words, we knew that our
population had been chosen at random from the population of populations
having various values of z, but in which the distribution of the variate x is
specified by the frequency element f (x) dz of known form, then we might argue
that the probability of first drawing a population in the range dz, and then
drawing from it a sample of » having a successes, must be

o (L= @) de ®
since this sequence of events has occurred for some value of z, the expression
(2) must be proportional to the probability, subsequent to the observation of
the sample, that x lies in the range dz. The postulate which Bayes considered
was that f (), the frequency density in the hypothetical population of popula-
tions, could be assumed @ prior: to be equal to unity.

As an axiom this supposition of Bayes fails, since the truth of an axiom
should be manifest to all who clearly apprehend its meaning, and to many
writers, including, it would seem, Bayes himself, the truth of the supposed
axiom has not been apparent. It has, however, been frequently pointed out
that, even if our assumed form for f (z) dz be somewhat inaccurate, our con-
clusions, if based on a considerable sample of observations, will not greatly be
affected ; and, indeed, subject to certain restrictions as to the true form of
f () dz, it may be shown that our errors from this cause will tend to zero as the
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sample of observations is increased indefinitely. The conclusions drawn will
depend more and more entirely on the facts observed, and less and less upon
the supposed knowledge a priore introduced into the argument. This property
of increasingly large samples has been sometimes put forward as a reason for
accepting the postulate of knowledge a prior. It appears, however, more
natural to infer from it that it should be possible to draw valid conclusions from
the data alone, and without a priort assumptions. If the justification for any
particular form of f (z) is merely that it makes no difference whether the form
is right or wrong, we may well ask what the expression is doing in our reasoning
at all, and whether, if it were altogether omitted, we could not without its aid
draw whatever inferences may, with validity, be Inferred from the data. In
particular we may question whether the whole difficulty has not arisen in an
attempt to express in terms of the single concept of mathematical probability,
a form of reasoning which requires for its exact statement different though
equally well-defined concepts,

If, then, we disclaim knowledge a priori, or prefer to avoid introducing such
knowledge as we possess into the basis of an exact mathematical argument, we
are left only with the expression

n | 2 (1 — @)=,

at (n—a)!

which, when properly interpreted, must contain the whole of the information
respecting = which our sample of observations has to give. This is a known
function of z, for which, in 1922, I proposed the term “ likelihood,” in view of
the fact that, with respect to z, it is not a probability, and does not obey the
laws of probability, while at the same time it bears to the problem of rational
choice among the possible values of x a relation similar to that which prob-
ability bears to the problem of predicting events in games of chance. From the
point of view adopted in the theory of estimation, it could be shown, in fact,
that the value of z, or of any other parameter, having the greatest likelihood
possessed certain unique properties, in which such an estimate is unequivocally
superior to all other possible estimates. Whereas, however, in relation to
psychological judgment, likelihood has some resemblance to probability, the
two concepts are wholly distinct, in that probability is appropriate to a class of
cases in which uncertain inferences are possible from the general to the par-
ticular, while likelihood is appropriate to the class of cases arising in the problem
of estimation, where we can draw inferences, subject to a different kind of
uncertainty, from the particular to the general,
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The primary properties of likelihood in relation to the theory of estimation have
been previously demonstrated.* In the following sections I propose to exhibit
certain further properties arising when the functional properties of the specifica-
tion of the population fulfil certain special, but practically important, con-
ditions.

2. The Distribution of Sufficient Statistics.

The essential feature of statistical estimates which satisfy the criterion of
sufficiency is that they by themselves convey the whole of the information,
which the sample of observations contains, respecting the value of the para-
meters of which they are sufficient estimates. This property is manifestly
true of a statistic Ty, if for any other estimate T, of the same parameter, 6,
the simultaneous sampling distribution of T, and T, for given 8, is such that
given T}, the distribution of T, does not involve 6 ; for if this is so it is obvious
that once T, is known, a knowledge of T,, in addition, is wholly irrelevant ;
and if the property holds for all alternative estimates, the estimate T; will
contain the whole of the information which the sample supplies.

This remarkable property will be possessed when

Zlog T,
where L is the Iikelihood of 0 for a given sample of observations, is the same
function for all samples yielding the same estimate T, ; for on integrating the
expression above with respect to 0, it appears that log L is the sum of two
components, one a function only of 6 and T,, and the other dependent on the
sample but independent of 6. If

f(Ty, Ty, 0) dT, dT,

is the frequency with which samples yield estimates simultaneously in the
ranges dT, and dT,, it follows that

STy, Ty, 0) = &3 (Ty, 0) . 5 (Ty, Ty);

where the first factor involves T; and 0 only, and the second does not involve
0. The distribution of T, given T, will therefore be

B (Ty, Ty) dT, / [ $2mm ars

* Fisher, ¢ Proc, Camb, Phil, Soc.,” vol, 22, p. 700 (1925).
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the integral being taken over all possible values of T,, and in this expression
the parameter § is seen not to appear.

The condition that 9L/08 should be constant over the same sets of samples
for all values of 0, which has been shown to establish the existence of a
sufficient estimate of 0, thus requires that the likelihood is a function of 6,
which, apart from a factor dependent on the sample, is of the same form for all
samples yielding the same estimate T. The sufficiency of sufficient statistics
may thus be traced to the fact that in such cases the value of T itself alone
determines the form of the likelihood as a function of 6. If a conventional
value such as unity is given to the maximum likelihood for any sample, the
likelihood is thus expressible as a function of 0 and T only, if T is the sufficient
estimate. We shall use this property in obtaining a general form for the
sampling distribution of sufficient statistics.

2.1. It will help if we take an illustrative example of this problem. Let the
element of frequency in a distribution be given by

1,
6—!-:1,6 ® da

where the variate « can take any real value from 0 to ©, and 0 is an unknown
parameter greater than —1. Consider the problem of estimating 6 from a
sample of n values of z.

If L is the likelihood of any possible value of 6,
logL = — nlog 0! 4 68 (log x) — 8 (x),

and this is maximized for variations of 6, when 0 = T, where
F(T) = % S (log ),

and F(T) is the first differential of the logarithm of the factorial function.
This is the equation of estimation by the method of maximum likelihood. It
will be observed that apart from a constant factor the likelihood is expressible
as a function of 6 and T only, that is

L= Aexp{—nlog 6!+ n6F(T)}
so that T is evidently a sufiicient estimate.
2.2. The sampling distribution of our estimate must evidently be derived

from that of the mean of the logarithms of the several values of z in the sample,

Now the mean value of '
¥ log z
en
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18 ‘
@+%!
i )

1 g_'_it — »
jﬂ!m e dx—-__.é.!._.._

By the familiar process of expanding the multiple integral in a product of
single integrals, the mean value over all samples of

1 .
ett;LS(logz) — eit/"(T)

=

and this is the characteristic function of

F(T)

18

M=

from which its distribution may be inferred.
To determine the probability function knowing the characteristic function
M (it) we may use the property of the sine integral -

J ©8in % du =",
0 u 2
writing k¢ for u it appears that
! jw sin ke % = 3
™ Jo t

when % is positive, and —% when k is negative ; or that

lr{sin(a;-—a)t——-sin(x——b)t}‘-i-t
T t

0

where b > a, is unity when b > x > a, and zero when # is less than a or exceeds
b.
Consequently the Stieltjes integral

J:df(w) = 7_11 j:(!;jim {sin (z — @) t — sin (x — b) t} df (z) ;
writing
sin (z — a) t = ‘_21; (5t a=0 _ gitw=a)
gives us
Wﬂ@:irﬁwmmmeMpm—rWMw+WMHML
Ja Jo ot
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where f () is the probability function of the variate 2, and M is its character-
istic function.

We may note that M (it) and M (—it) must be conjugate quantities, which
may be written R 4 1il, then

— 7P M (1t) + €®' M (— it) = 2R sin bt — %I cos bt

so that the integral takes the real form

1 r ‘—?- {R (sin bt — sin at) — 1 (cos bt — cos at)}.
T Jo

Where the probability function is differentiable so that

df (x) =y dx
then

df (x) =y dz = o j {e=#t M (st) + e'=t M (— it)} dt
= J {R cos (tz) + Isin (tz)} dt.
T

2.4. For the sufficient statistic T, the sampling distribution will therefore
be given by

T) j o=HE N (i0) d 5
but v
e"'iff'('[') D/I — ‘[‘ (6) .
T w
L{o+5)

hence the distribution may be directly inferred from the nature of the likelihood
function in the form

E(T).dT 0 1L(6)
df = LO g
e it
S,wL<9+;>
or ,E' (r \)dTJ- (I(‘) (_?—) t)

where £ (T) stands for the second differential coefficient of log (T !).

We may illustrate the use of this formula by deriving the limiting forms for
extreme values of 6.

Near the limit 6 —~ — 1 the general expression

MEWD) [ 0D g
o e OI?
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may be rewritten, substituting
T=—1+¢"*
0=—1+4¢,

and, since, as will be apparent, when y is large, all important contributions
will arise from small values of ¢, the limiting form of our distribution is

ne? dg (® ( U\ nie?
1 inte X
o j‘_m +1+0) o de

Writing ¢ for te¥ we then have

id d‘q —Z lg=y) j 1+ it)“" einte(g—v) dt

and writing z for 1 + 4¢
e Y M jz-n i dz
2m

where u stands for e?~7, and the integral is taken from 1 — ¢ ®wto 1 44, or
in an open contour passing counter-clockwise to the right of the singularity,
z=0. Writing { for nuz we have
TS PP
2m

where the integral does not now involve the variate w, and is evidently
2rif(n — 1)1 The distribution now appears as

6@-:-1—1—)! "yl e duy,
in which ¢?~Y may be substituted for w.

The probability integral in this case is given by the x? distribution for 2n
degrees of freedom. Thus if a sample of 10 had been taken, we have 20 degrees
of freedom, and the 59, values are at y2=10-851 and 31-410.* Putting
nu == L2 the 59 values of u are 0-5426 and 1-5705, whence those of g — y can
be obtained, showing that in 909, of samples g will lie between y — 0-6110
and y + 0-4514. For given g, therefore, the fiducial probability is 59, that
v exceeds g +- 0-6110, or falls short of g — 0-4514,

At the upper limit where 6 - 0 we may write

T=g%, 6=y

¥ « Statistical Methods for Research Workers,” Table 111.
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and since g — vy remains finite for finite values of the probability function

Iog%:2(9“ Y)
Y

and tends to zero. The general expression for the distribution, which is

M) [* 0L iz,
tends to the limiting form
dT [ e -2,
If = Z?'_____ '( int 29 T —int
| df 5T ). Ginte ze Tint g
or substituting for T and 6
df = Z@_i? r g—2int @=ply g—nt2y 4y
L
2_7_" —~2n{g—y}*
¢ dg

showing that ¢ tends in the [imit to be normally distributed about the
population value y with variance 1/4n. The 59, points of the distribution of
g are therefore v - 1-645/v/4n, and for a given ¢ the 59, points of the
fiducial distribution of y are g + 1-645/v/4n.*

2.5. The interest of this form lies in the possibility of generalizing it for all
sufficient statistics. For, let the equation of maximum likelihood have a

solution

p(T)=A

where A is a symmetric function of the observations not involving the para-
meter 0. The expression for 0/00 log L must have been of the form

C{AY (6) — $(6). ¢ (0)}

where the possible factor C, if not a constant, must be a function of the observa-
tions which is expressible as a function of A, if the likelihood is to be expressible
as a function of 0 and T ouly.

The expression for log L then must be of the form

CAwe)——qub(e)dwe)w

* «Statistical Methods for Research Workers,” Table 1.
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where B is a function of the observations only. That C a symmetric function
of all the observations must be merely the number » in the sample appears
from the fact that log L is the sum of expressions involving each observation

singly. Hence
CA=8(X), B=8X),

where X, X, are functions of the individual observations #. The likelihood

is now the product
—ny b (8)dy(8) v N
e J oV (9.5 (X) g8 (X))

and
L) s PUNCRSIETNT)

Il o

Ly + )
where F, () is written for j édy.

But the frequency function of the variate X was given by
~r) X X B gy
(4 : [ € -
aX
hence its characteristic function is
M ('I/t) — eFx (Y +it)—Fy ()

while that of 8 (X) is the nth power of this expression, hence the probability
that 8 (X) lies between S, and S, 18

j df = él"r D= 50 M (i) — SN (i) — 7 SN ) + 654 (i)
(2

i

—Lfaf L) LS L) | LhS) |

Tom), @ W S) T L—i8) L(y+8)  L{¢—a8)

L

this being the general expression for the probability of any sufficient statistic
falling within assigned limits ; S, and S, being the limits of the known function
n¢ (T) of the sufficient estimate T.

2.6. The property that where a sufficient statistic exists, the likelihood, apart
from a factor independent of the parameter to be estimated, is a function only
of the parameter and the sufficient statistic, explains the principal result
obtained by Neyman and Pearson in discussing the efficacy of tests of signifi-
cance. Neyman, and Pearson introduce the notion that any chosen test of
a hypothesis H, is more powerful than any other equivalent test, with regard
to an alternative hypothesis H;, when it rejects H, in a set of samples having
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an assigned aggregate frequency ¢ when H is true, and the greatest possible
aggregate frequency when H, is true.

If any group of samples can be found within the region of rejection whose
probability of ocourrence on the hypothesis H, is less than that of any other
group of samples outside the region, but is not less on the hypothesis H,, then
the test can evidently be made more powerful by substituting the one group
for the other. Consequently, for the most powerful test possible the ratio of
the probabilities of occurrence on the hypothesis H to that on the hypothesis
H, is less in all samples in the region of rejection than in any sample outside it.
For samples involving continuous variation the region of rejection will be
bounded by contours for which this ratio is constant. The regions of rejection
will then be required in which the likelihood of H,, bears to the likelihood of Hj,
a ratio less than some fixed value defining the contour.

The test of significance is termed uniformly most powerful with regard to a
class of alternative hypotheses if this property holds with respect to all of
them. This evidently requires that the contours defined by the ratio of the
likelihood of H, and H, shall be the same as those defined by the ratios of the
likelihood of any two hypotheses in the class. If, therefore, T’ is a statistic
defining these contours, and 8y, 0,, ..., are variable parameters defining the
hypothetical populations, the likelihood of any hypothesis must be expressed

in the form
L=Af(T, 0, 0, ...)

where A is a factor independent of the parameters.
The method of estimation by maximum likelihood, when applied to the
form above, will yield equations for 6;, 0, .., etc.
¢1 (T,, 01, 62, -..) - (),
éy (T, 64, 05, ...) =0

where

0
¢’a - ‘a—é; logf’

and the solutions of these will give estimates of 0, 0,, ..., which we may
designate Ty, T,, ..., in the form
T, =, (T')
Ty = ¢, (T'), ete.
It is evident, at once, that such a system is only possible when the class of
hypotheses considered involves only a single parameter 9, or, what comes to
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the same thing, when all the parameters entering into the specification of the
population are definite functions of one of their number. In this case, the
regions defined by the uniformly most powerful test of significance are those
defined by the estimate of maximum likelihood, T. For the test to be uni-
formly most powerful, moreover, these regions must be independent of 0,
showing that the statistic must be of the special type distinguished as sufficient.
Such sufficient statistics have been shown to contain all the information which
the sample provides relevant to the value of the appropriate parameter 9.
It is inevitable therefore that if such a statistic exits it should uniquely define
the contours best suited to discriminate among hypotheses differing only in
respect of this parameter; and it is surprising that Neyman and Pearson
should lay it down as a preliminary consideration that “ the testing of statistical
hypotheses cannot be treated as a problem in estimation.” When tests are
considered only in relation to sets of hypotheses specified by one or more
variable parameters, the efficacy of the tests can be treated directly as the
problem of estimation of these parameters. Regard for what has been estab-
lished in that theory, apart from the light it throws on the results already
obtained by their own interesting line of approach, should also aid in treating
the difficulties inherent in cases in which no sufficient statistic exists.

3. A Second Class of Purameters for which Estimation need Involve no Loss of
Information.

In the case of sufficient statistics the likelihood function is, apart from a
constant factor, the same for all sets of observations which yield the same
estimate by the method of maximum likelihood. A second case, of somewhat
wider practical application, occurs when, although the sets of observations
which provide the same cstimate differ in their likelihood fupctions, and there-
fore in the nature and quantity of the information they supply, yet when
samples alike in the information they convey exist for all values of the
estimate and occur with the same frequency for corresponding values of the
parameter..

The nature of the correspondence may be stated as follows: If z, ..., =,
stands for a sample of n values of a variate «, the distribution of which is
conditioned by a parameter, 0, then for any value of 9, there will be a definite
probability

p(z0)

of the occurrence of a variate less in value than .
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If, therefore, we take any other value of the parameter, say ¢, there will,
with continuous variates, always exist a series of observational values, y,
corresponding to the original series , such that

p(y $) =p(x 0)

The samples = and y will, however, only correspond in the sense required for
our present purpose if corresponding to any possible value, 6, a value, ¢, can
be found so that the relationship above holds for all values of . If, in fact, the
equation were solved for y, in the form

y=f?8 ¢
it is required that f shall be of the form
f@ 6, ¢ =F( Q) @

where Q is a function of 6 and ¢, independent of the observations, and such
that for any possible values of 6 and Q there exists a corresponding value of
$. Stated symmetrically it is required that some function of z and y can be
equated to a function of 6 and .

The typical case of such a relationship occurs in parameters of location.
If the distribution of the variate z involves a parameter 6, such that the
frequency with which z falls in any element di of its range is a function of
(z — 0), then 0 may be called a parameter of location. In such a case the

functional relationship (3) may be written
z—y=0—¢

and is clearly of the form required.
Let us take an example in which there is no sufficient estimate, and in which

the loss of information in estimating the unknown parameter even by the
method of maximum likelihood is considerable. The distribution of z is a
double exponential curve, the probability of z falling in the range dz, being

le= =0l dy.
The logarithm of the likelihood is
— 8|z — 6],

and this increases when 0 is increased only if more observations are greater
than those less than 0. The likelihood is therefore maximized if the number of
observations is odd, by equating 0 to the median observation ; if the number
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of observations is even the likelihood is constant when 6 has any value between
the two central observations.

For a sample of an odd number, % = 2s - 1 of observations, the sampling
distribution of the median is determinate, and the loss of information, if we
use the median as an estimate, unsupplemented by the ancillary information
which the sample contains, may be calculated. For, if the central observation
lies at a distance u from the centre of the distribution, u being supposed positive,
then the s highest values observed must each have fallen in a region comprising
only

Y Lo
of the total frequency, while the s lowest values have fallen in the remaining
region comprising

1 — e
of the total. Finally, the probability of the median itself falling in the range
du i3

te v du,
so that compounding the independent probabilities into which the event has
been analysed we have

_@s4D —uye 1o
¥ =R A (4 e

as the probability of the median having a positive sampling error, w. As s is
increased without limit we may write

uva =1,

and the distribution tends to the limit
df = L e g,
Vo

The amount of information derivable from a large sample of n thus tends to
equality with n, as the size of the sample is increased. Since the information
supplied by the independent observations is additive,* each must supply one
unit, and a sample of 2s -} 1 observations must contain 2s -+ 1 units of informa-
tion. The quantity elicited by using the median, 4.e., by replacing the 2s + 1
observations from the distribution

df = e~ "% dx,

* Fisher, ¢ Proc. Camb. Phil. foc.” vol. 22, p. 700 (1925),
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by a single observation from the distribution

(Zf 228);{;1}_‘—1 6—s}u~9| (2 s e-~]u—-8])a 8—-|u—-8| (]“)

may be caloulated from the mean value of

<ﬁlo df)

—lu—6] 2

se

<s gl gy -+ 1> .

When s exceeds unity the average values may be evaluated from the con-

sideration that

or of

® 2S+1! et .
’[0 (s——-l)(! (3’{‘;)!22"*16 CH (@ — ey e du

represents the probability that at least s 4 2 observations have positive, and
only s — 1 observations negative, deviations, and may therefore be equated to

PRV
ST+t 2@

The mean value of e~ 1“~*1/(2 — e~1“~?1) is therefore found to be

s+1 (1 (2s + 1)!

s TR B
Similarly, the mean value of e=21“=#1/(2 — ¢~!¥=%!)2 is
(s+1)(s+2)<1_ @+ @1yl >
s(s—1) sls4 1122 (s—1)! (s4+2)! 2%

The amount of information provided by the median of 2s + 1 observations

is therefore

p @+1)! _sE+DE+2)  @2s+1)!
+2(s+1)2_32(8+1)!223 — TEIDIE

s(s-+1)(s+2) (2s + 1)!
o s — 1 G—1)T(s+2)!2
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or

+1@s+1) [ (2)! }
(s —1) U ez

In the special case, s = 1, the general method fails, and a direct integration

yields the value
12 (log 2 — 1),

which is the limit to which the general expression tends as s > 1.

The median is an efficient estimate in the sense of the theory of large samples,
for the ratio of the amount of information supplied to the total available tends
to unity as the sample is increased. Nevertheless, the absolute amount lost
increases without limit. As s increases, this amount lost,

2s+1_(s—i—1)(2s+1){1 2s ! }’

s—1 T shE2E

may be replaced by

2(2s+ 1) s+1 _1)
s—1 Wrs+3)

approximately, or by 4 (v/sfxr —1). Thus with s = 314, for a sample of 629
observations, the loss of information is near to 36 units, or the value of about
36 observations.

It is a matter of no great practical urgency, but of some theoretical impor-
tance, to consider the process of interpretation by which this loss can be
recovered. Evidently, the simple and convenient method of relying on a
single estimate will have to be abandoned. The loss of information has been
traced to the fact that samples yielding the same estimate will have likelihood
functions of different forms, and. will therefore supply different amounts of
information. When these functions are differentiable successive portions of
the loss may be recovered by using as ancillary statistics, in addition to the
maximum likelihood estimate, the second and higher differential coefficients
at the maximum, In general we can only hope to recover the total loss, by
taking into account the entire course of the likelihood function.

In our particular problem the curve of likelihood is a succession of exponential
arcs, having n discontinuities at the values of the n observations of the sample,
the exponent changing by —2, as each observation is passed in a positive
direction. For the same value of our estimate, the median observation, this
function will have very different forms according to the length of the intervals
which separate the median-from its successive neighbours. Any samples,
however, in which these #n — 1 intervals are the same will have the same
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likelihood function. More explicitly the likelihood of the parameter having

a value ¢ as judged from the series of observations y,, ..., ¥, will be equal to
the likelihood of its value being 0 as judged from the series z,, ..., z,, if
z—y=0—4¢

for each pair of observations in the pair of samples.

We may specify the configuration of a sample by a series of positive non-
decreasing numbers a;, ..., a, representing the positive deviations from the
median of the s largest observations, and a second series of positive non-
decreasing numbers a';, ..., @, representing the excesses of the median over the
s smallest observations, so that if T is the median value the n observations
are represented by T —¢o',, ..., T—0a', T, T+a;, .., T +a,

The probability of occurrence of any series of observations, the true centre

of the distribution being 6,
Ldzy, ..., dz,
may now be written

G (:I: oo T ) ’ ’
'L. L on day ... da,da’; ...
ntL o(T, ay...a,d,..4d, AL day o 0y ... Ay
=un! L.dTda, ... da, da’; ... da’,
where, if, for example, 9 lies between T —a’, and T —a',,_,
L L o= 29 =1)(T—6) =8, (6+8) +2 (@1t oo +8pm),
n
Given the configuration of the sample, therefore, the probability that T
lies in a range dT, between the limits 6 +a',_, and 6 4-a’, is

df = _11{ 2@ e +8'pm) o~ (2p~1)(T~0) gT"

of which the integral between these limits is

L 2@t +0hm) (= (p=18pe _ g (p=1)a%),

@Zp—1A
and A is equal to the sum of all such integrals

1—e % 3 (e—-a’, — e2a’1~3a’.) +3 (eZa’,—3a’, — e2a'1+2“'l"5“") + ...
+ 1 —e® + §(e-a, — 62““3“') + % (eZa,-3a, —_ 2a1+2a,—5a,) + ..

Apart from the details of the analysis, however, it is apparent that if atfention
i8 confined to samples having a given configuration the sampling distribution of
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T for a given 9 is found from the likelihood of O for a given T, the probability
curve in the first case being the mirror image of the likelihood curve in the

second.
To evaluate the amount of information supplied by this distribution we must

evaluate the mean square of
log df
do

Now, if T lies between 6 4 o’,_; and 6 + o',

q
8o that in this case
4.9 —1)2

and the amount of information supplied by our estimate, in conjunction with
a specification of the configuration of the sample from which it was obtained, 1s

%{1 — e 3 (6% — %) L5 (..
3 1] — e~ + 3 (e-—a‘ — 2a,—3a,) + 5( }

This value will differ greatly from sample to sample, Thus, if ¢, and a’;
were both large, so that the median lies in a considerable range otherwise
unoccupied by observations, the amount of information approaches unity ;
at the other extreme if @, and o', were both so small that ™% is near to unity,

then
A~ 2/(2s + 1),

and the amount of information rises to (2s + 1)%, or x2,

To find the average value of the amount of information derivable from the
median, in conjunction with the configuration of the sample, we may note
that the probability for a given configuration that s + p observations shall
exceed, and s — p + 1 fall short of the true value is

1 26 4203+ ... — (2P ~3) 0~y __ 20/ 428"+ ... — 2p=~1)0a'p
@p—1A (e ’ )
and that the amount of information is obtained by multiplying this probability
by (2p — 1)? and adding for all values of .
The average information for all configurations may, therefore, be found
from the total probability for all configurations that exactly s 4 p cbservations
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shall exceed the true value; since the probability of exceeding 0 is % inde-
pendently for each observation, the probability is

1 n!

PGs+p!—p+1)!

and this, multiplied by (2p — 1)%, and added for all values of p, will give the
average amount of information. The probabilities are the terms of the

expansion of (5 -+ 1",

and (2p — 1) is twice the deviation from the mean corresponding to each value
of p. The variance of the binomial is well known to be exactly }n, and the
average amount of information used is consequently found to be exactly n, equal
to the total amount known to be contained on the average in the sample.

The process of taking account of the distribution of our estimate in samples
of the particular configuration observed has therefore recovered the whole of
the information available. This process will seldom be so convenient as the
use of an estimate by itself, without reference to the configuration, for instead
of replacing the n observations by a single value, we now have to take account
of all their values individually. Actually, indeed, in this case only the central
group of values matters greatly, but in general the theoretical process illustrated
here uses the available information exhaustively, only at the expense of
abandoning the convenience of disregarding all properties of the sample beyond
the best estimate it can provide. The reduction of the data is sacrificed to its
complete interpretation.

The frequency distribution, which makes this complete interpretation
possible, is the mirror image of the likelihood function. Thus if T, is the
estimate (the median) derived from the actual sample observed, and L (6 — T))
is the likelihood derived from this sample of any value of 0, then the sampling
distribution of T for any value of 6, in samples of the same configuration is

given by df « L (6 —T) dT.

This is an extremely simple derivation of the sampling distribution of the
estimate of maximum likelihood from the form of the likelihood function.

4. The Simultaneous Estimation of Location and Scaling.
In a very frequent class of cases not only the origin but the scalo of the
distribution is also represented by a parameter to be estimated from the
observations. The frequency element is then of the form

f @),
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where
e 6, .
8

In such cases it is obvious that the sample of values £ in relation to any
values o, and «, of the paramsters corresponds in the sense of section 3 to the
sample of values of z in relation to the values 6; -+ o;0, and 8,x,, and a double
series of samples exists corresponding to any sample observed.

The samples will have all the same configurations in the sense that sup-
posing any two observations of the sample, such as the lowest and the lowest
but one in value, have values @, @ - b then the other members of the sample

will be
, a - bt, p=1.,n—2

where the # — 2 values of ¢, specify the configuration, and are the same for
all samples of which the configuration is the same.

The frequency element
Ldwy, ... dz,,

giving the frequency with which the n observations fall within assigned values,
may then be replaced by

0 (zy, ... Tp)
0 (a” b; t ... t”_z) da db dt’ b dtn-z:

where the Jacobian is simply

1 0 0
1 1 0

1 ., 0 .. b
or b2, The simultaneous frequency distribution of @ and b is therefore given
by

df < Lb""2da db.

Now, it is evident that the estimates of 6; and 6, from such a sample will be

T, =a -+ A,
T’:—-— y.b,
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where A and p depend only on the conﬁguration of the sample. Hence

(T, Ty) ‘___

8 (a, b)
and the distribution of these estimates in samples of the same configuration
will be

df o LT,"2dT, dT,, (4)

where in L, T; + u,T; is substituted for z,, p =1, ..., n, the n values of u
being known for the configuration observed.

If, therefore, we choose to take into account not merely the sampling dis-
tribution of our estimates for samples of all configurations, distributions which
will involve, apart from the parameters of the population, only these two
statistics, but rather the special simultaneous distribution for the particular
configuration observed, we may obtain this special distribution directly from
the form of the likelihood function.

Since, moreover, the whole course of the likelihood function is taken into
account, it is, from this point of view evident that no information can be lost.
An independent analytical proof of this is as follows ; it is equally applicable
to information in respect of 0; and of 0,.

The information respecting 0, contained in a single observation from the
distribution (4) is numerically equal to the average value of

< 8?)1 log L)

for all values of (T, — 6,) from — o to w0, or, otherwise, to the average value
of

{%s og )}’

where f (x — 0,) is the frequency of an observation falling in the range dx.
The average for all values of T, is, for any particular observation, the average
for all values of z. Now the average value of

9
56, = log f

I8 zero, for

- 2
9 w=|" L. 4
I 50, 08/ S dw= j.wae1 v

which is zero, since the total frequency is unity, independent of 6,. But the
average value for all values of (T, — 0,) and for all configurations including
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variations of T,, is the average value for all possible samples. We may apply
this principle to the expression

g2 Q“ log f)

when all the values of x are independent. Then the average value of the square
of the sums of n terms, independent and all having a mean value zero, is n
times the mean square of each of them, or # times the mean value of

<aae1 log f >

for all values of z from — to ©, which is, by definition, the amount of
information supplied by a sample of n observations. Hence the average
amount of information respecting 6, supplied by (4) for all configurations is
the entirety of that supplied by the data.

With respect to 0,, we require the average value of

o5 vai)

for all values of Ty from 0 to «o. The average of this for all configurations and
for all values of T,, again reduces to the mean value of

(aae 1°gf>

for all values of z from — to @, and so to the average amount of informa-
tion contained in a sample of » observations.

Summary.

(I) Reasons are given for the use of mathematical likelihood in problems
of inductive inference.

(II) When a statistic exists, satisfying the criterion of sufficiency, the
likelihood function involves only that statistic.

(III) An example is given of a sufficient statistic, and its sampling distribu-
tion is expressed in terms of the likelihood function.

(IV) This property is generalized for all cases of simple estimation, where
a sufficient statistic exists.

(V) It is shown that these cases and only these supply tests of significance
of the kind termed by Neyman and Pearson “ uniformly most powerful ” with
regard to a class of alternative hypothesis.
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(VI) Where no sufficient statistic exists the precision of estimation may in
general be enhanced by the use of ancillary statistics. A class of cases is
defined and illustrated in which the totality of the ancillary information supplied

by the observations may be utilized.
(VII) This process gives a very simple derivation of sampling distributions,

in which there is no loss of information, even for small samples,
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