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1. Introduction.

The problem of the enumeration of the different arrangements
of n letters in an n x n Latin square, that is, in a square in which
each letter appears once in every row and once in every column,
was first discussed by Eulert1). A complete algebraic solution has
been given by MacMahon () in two forms, both of which involve
the action of differential operators on an expanded operand. If
MacMahon’s algebraic apparatus be actually put into operation,
it will be found that different terms are written down, corresponding
to all the different ways in which each row of the square could
conceivably be filled up, that those arrangements which conflict
with the conditions of the Latin square are ultimately obliterated,
and those which conform to these conditions survive the final
operation and each contribute unity to the result. The manipulation
of the algebraic expressions, therefore, is considerably more laborious
than the direct enumeration of the possible squares by a systematic
and exhaustive series of trials. It is probably this circumstance
which has introduced inaccuracies into the numbers of 5 x 5 and
6 x 6 Latin squares published in the literature.

The problem of the Latin square has become of practical interest
in recent years in connection with the development of an adequate
theoretical basis for the design of biological experiments, for as
soon as the underlying principles of such design began to be
understood, it appeared that the Latin square arrangement was in
many respects extremely suitable to a large class of field trials
with agricultural crops. The reason for its special suitability lies
in its satisfactorily fufilling two distinct requirements: (1) in equal-
ising more thoroughly than can be done in other ways the fertility
of the land on which the different treatments are to be tested,
and (2) in allowing, subject to the fixed restrictions of the Latin
square, of a random choice among the different possible squares
which could be laid down on the same area. This element of
randomisation is now recognised to be a necessary condition for
the vaJility of the estimate of error by which the results of the
experiment are to be judged, and it is the fact that it is not
a particular Latin square but a ra:ndom selection from an aggregate
of possible squares which is required for agricultural practice, that
has given a renewed interest to Kuler’s problem of their enumera-
tion-
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For the numbers of reduced squares MacMahon had given

n l12345

Number |1 1 1 4 52

but on constructing the possible 5x 5 squares for agricultural
use it was at once found that there were 56 and not 52 possible
reduced squares. The corrected number was communicated by one
of the authors in 1924 to Professor MacMahon in time to be
incorporated in the copies of Combinatory Analysis then unsold.
As will be seen below, this number, 56, was actually given
“d’aprés un dénombrement exact” by Euler in 1781.

The 6 x 6 squares are too numerous to be enumerated seriatim
without risk of error. Since this size is eminently suitable for
agricultural purposes the method of enumeration given in subse-
quent sections was developed. In this case also it has been found
that the number given by a previous author is incorrect, for
Jacob), using a systematised method of progressive trial, had
arrived at the number 8192, whereas, as will be shown, there are
in reality 9408 reduced 6 x 6 squares.

The enumeration of the 6 x 6 squares is particularly apposite
to Euler’s main concern, which was to solve or to demonstrate the
insolubility of the problem of constructing a 6 x 6 Graeco-Latin
square (quarré magique complet). He uses a method of trans-
formation similar to that which we shall call intramutation, but
not possessing the invariant diagonal properties which we shall use,
in order to show that the 6 x 6 Latin squares may be treated in sets
such that of each set all or none are eligible as a basis for forming
Graeco-Latin squares. Without making an exhaustive enumeration
of the different sets, which must be at least as numerous as the
12 sets which may be generated by a transformation more general
than Euler’s, Euler argued as follows (p. 229):

“De la il est clair, que §'il existoit un seul quarré magique
complet de 86 cases on en pouarroit déduire plusieures autres
moyennant ces transformations, qui satisferolent également aux
conditions du probléme. Or ayant examiné un grand nombre de
tels quarrés, sans avoir rencontré un seul, il est plus que probable,
qu'il 0’y en ait aucun; Car le nombre des latins ne sgauroit étre si
énorme, que la quantité de ceux que jal examiné n’en devroit
avoir fourni un qui admet des directrices, 8’1l y en avoit; vl que le
cas n=2 et n=3 ne fournit qu’un seul, le cas de n =4 quatre, le
cas de n=>5 cinquante six, d’aprés un dénombrement exact, d’olt
on voit que le nombre des variations pour le cas de n=6 ne
scauroit étre si prodigieux, que le nombre de 50 ou 60, que je
pourrois avoir examiné n’en fut qu’une petite partie.”
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Had Euler realised that the number of 6 x 6 Latin squares of

‘reduced form was as high as 9408, and especially that a number of

the transformation sets contain less than a hundredth of the total,
he would probably not have judged his conclusion plus que probable.
On this point a rigorous test 1s now available by examining for
possible systems of directrices members of the 12 adjugate sets
chosen from the 17 examples given in Section 4. This test has
been made, and 1t was found that none of the 12 sets gave any
concordant system of directrices. It follows, therefore, as Kuler
confidently predicted, that no 6 x 6 Graeco-Latin square can exist.

The discussion of the present paper may be contrasted with
those of Cayley(@), MacMahon, and Jacob in turning not on the
conditions to be satisfied by a permutation by which one line of
the square may be transformed into the next, but on the intrinsic
symmetry which each solution of the problem of the Latin square
presents asa whole. We are therefore concerned with the operations
by which a square can be transformed into other squares having
the same structural symmetry, whereas the above-mentioned
authors have considered the Latin square as a special case of the
Latin rectangle.

2. Definitions.

1. Reduced Latin squares. A square with the first row and
first column in alphabetical order ABCDEF ... has been named by
MacMahon a reduced Latin square. The diagonal passing through
the intersection of the first row and column of a reduced square
will be called the leading diagonal. A pair of squares is said to be
conjugate when one is the mirror image of the other in the leading
diagonal. Self-conjugate squares are symmetrical about the leading
diagonal.

2. Adjugate squares. Just as the interchange of the rows and
columns of a square will give the conjugate square so the inter-
change of rows and letters in each element (the letters being
regarded as possessing, like the rows, a serial order) or of columns
and letters will generate a series of squares which may be spoken
of as mutually adjugate.

8. Transformations. Any permutation of the rows, columns,
or letters of a square, amorz;%L themselves, or combination of such
permutations, generates another square (possibly identical with the
original square). Any rearrangement of this nature will be called

a transformation.
4. Intramutations. In a reduced Latin square any permutation

of all the letters other than A may be made, and the rows and columns
(excluding the first) then rearranged go as to give another reduced
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Latin square by arranging the letters of the first row and first
column 1n the standard order. A transformation of this type will
be styled an inframutation.

Any square of order » can be transformed in (n!)® ways
(including no change). All these transformations do not necessarily
give different squares, but all possible squares of order n can be
clagsified in sets of squares which are derivable from one another
by some transformation.

It is easily seen that a sequence of transformations is itself
a transformation, and that for each transformation there exists a re-
ciprocal transformation which reverses its effect. From these
properties it follows that every square of a transformation set is
derivable from every other square of the set by the same number
of transformations. Thus if there are s and only s transformations
which when applied to a square P give square @, every square in the
set is connected to every other square by s transformations, and to
itself by s — 1 transformations (excluding no change); and there
are consequently (n!)®/s squares in the sef.

The same property holds good also for intramutation sets of
reduced Latin squares: if there are ¢ and only ¢ intramutations
connecting any pair of reduced squares then they must be members
of an intramutation set containing (n — 1)!/¢ reduced squares.

Each reduced square generates a set of n!(n~ 1)! squares, all
different, by permutation of all the columns, and all the rows
except the first. Only the original square is a reduced square.
It is therefore sufficient to enumerate all the reduced squares of
the size under consideration,

8. Enumeration of the 6 x 6 squares.

There does not appear to be any generating process which when
applied to a reduced square will generate a fixed number of other
reduced squares, all different. The process of intramutation, how-
ever, enables the enumeration to be carried out by sets of varying
sizes, of which 120 is the largest and most frequent, members of
the same set having certain characteristics of the leading diagonal
which are unaltered by intramutation. The actual enumeration
consists of three stages.

(a) The exhaustive enwmeration of the possible types of leading
diagonals. These are listed for the 6 x 6 squares in the first and
last columns of Table I. For example, diagonals containing two
different letters other than A4 and four A4’s can all be derived from
diagonals containing four A’s, one B and one C. All diagonals
containing these letters are not, however,derivable from one another;
for if, for example, B falls in the column headed by C'and C in the
column headed by B this property is invariant, and intramutations
of the other letters, or B and C, will not change it. It will be seen
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that any diagonal con‘taining two different letters other than 4 and
four A’s can be derived from one of the diagonals ACBAAA,
ACAAAB, or AAAABC, in which respectively both, one, or
neither letter falls in the column headed by the other letter.
These three diagonals are therefore taken as examples of the three
diagonal types containing two different letters other than A.

(b) The determination of the number of distinct diagonals which
can be generated by intramutation from each typical diagonal.
This presents no difficulty. There are, for example, 10 possible
diagonals of the type ACBAAA, and 60 of the type ACAAAB.

(¢c) The enumeration by trial of all possible reduced squares
hawing the given typical diagonals. This task, though it appears
considerable, is not really onerous for 6 x 6 squares. In some cases
intramutations which leave the diagonal unchanged may be used to
shorten the enumeration,

When these operations have been performed the number of
squares is determined. The number of squares having the typical
diagonal ACBAAA, for example, is 8, and since the number of
diagonals derivable from the typical diagonal (including the
diagonal itself) is 10, this diagonal contributes 80 squares to the
total.

Intramutations which leave the diagonal unaltered may give
a different square, and consequently all the squares having a given
typical diagonal do not necessarily belong to different intramutation
sets. Thus by applying a suitable selection of those intramutations
which leave the diagonal ACB.A4.AA unchanged to the 8 squares
having this diagonal (4 squares and their conjugates) it is found
that two squares are connected by intramutation to their con-
jugates, and the other two each to the conjugate of the other.
There are thus four intramutation sets, all of 20 squares; two of
these include conjugates, and the other two form a conjugate pair
of sets, every square of one set being conjugate to a square of the
other. The four sets are thus representable on three cards. The
complete classification is set out in Table I There are in all,
as will be seen from the table, 8 self-conjugate sets, 25 sets including
conjugates and 39 conjugate pairs of sets.

To obtain a general permutation of letters, intramutation must
be supplemented by a change of anotber type. This consists of
bringing any chosen one of the 36 letters to the top left-hand
corner by permutation of the rows and columns, at the same time
interchanging this letter with 4. The rows and columns can be
rearranged in the appropriate order to give a reduced square, and
with this restrietion there will be 86 such changes (which we
call change of corner element). The 36 changes of corner element,
together with the 6! 51 permutations of rows and columns giving
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non-reduced squares, combine with the 5! possible intramutations
to give the whole (6!)® permutations of the general transformations.

The determination of the connections between the intramutation
sets of the 6 x 6 squares is fairly easily performed, for when once
the 86 diagonals generated by change of corner element have been
written down for any one square, and identified with typical
diagonals, the number of squares with which the given square can
possibly be connected is seen to be very limited, and only a few full
transformations are necessary. There cannot be any connection
between two squares which give a different set of 36 typical
diagonals, so that there are few cases where there is any danger of
overlooking a connection. The whole process forms an excellent
check on the original enumeration.

These connections are also exhibited in Table I, by means of
the Roman numerals. The whole of the 111 intramutation sets are
comprised by 22 transformation sets, 10 of which form 5 conjugate
pairs. Examples from each of these sets are exhibited in the next
section. The pair of conjugate sets with diagonal ACBAAA, for
instance, belongs to the pair of conjugate transformation sets
illustrated in Example XI. The only other two pairs of intramuta-
tion sets in this pair of transformation sets are the pairs (containing
60 and 40 squares) with diagonals ACBBCA and ACBBBB. Each
of the pair of transformation sets therefore comprises 120 squares.

The greatest number of reduced squares found in any one set
1s 1080. If every transformation gave a different square there
would be 6%2.5!=4820 reduced squares in the set. The least
number of connections found in sets of 6 x 6 squares is therefore 4.

The adjugacy of transformation sets, i.e. the connections in-
troduced by the interchange of rows with columns or either with
letters, is easily established and will be discussed in the next
section.

The grand total of all reduced 6 x 6 Latin squares is 9408, and
therefore the total number of 6 x6 squares 1s 9408.6!5!=
812,851,200. Jacob) obtains 8192 as the number of reduced 6 x 6
squares. He based his enumeration on the enumeration by trial of
all reduced squares having given typical second rows. Since this
grouping cuts across the intramutation grouping on which our
enumeration is based it is not possible to locate the discrepancies
without considerable labour. It is, however, certain that the true
number is not less than that of those which we have enumerated,
even 1if we consider the remote possibility that any set has been
omitted. On this latter point the reader will, we think, find little
diﬁ‘i(:iulty in verifying that the typical diagonalshave beencompletely
listed.

It is interesting to notice that the number 9408 is 3 times 562,
56 being the number of 5 x 5 reduced squares. Similarly 56 is
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3% times 4% 4 being the number of 4 x 4 reduced squares, and 4 is
4 times 12, 1 being the number of 8 x 3 reduced squares. This
consideration, for what it is worth, suggests that the number of
7 x T reduced squares may be expected to be of the order of two
hundred and fifty million.

4. The twenty-two transformation sets.

We now give 17 examples illustrating the 22 transformation sets
which have been found.

I II
No. of squares: 1080, 1080 (180s + 450 + 450c)
ABCDEF ABCDEF
BCFADE BCFEAD
CFBEAD CFBADE
DEABFZC DEABFC
EADFCRB EADFCB
FDECBA FDECBA
0001-1080 2161-3240

Serial-numbers: 1081-2160

Example I stands for a conjugate pair of sets of 1080 reduced
squares, and Example II for a set adjugate to this pair, contdining
180 self-conjugate pairs, one of which is chosen as our example,
together with 450 unsymmetrical squares with their 450 conjugates.
This trio of sets comprises 3240 reduced squares, which is the
largest number that can be illustrated by a single example.

In respect of the occurrence of self-conjugate squares it is worth
noting that the elements of the leading diagonal in any of the
self-conjugate membersareinvariant in the sense of being unchanged
by intramutation, or by change of corner element within the elements
of the diagonal. The number of self-conjugate squares in any
transformation set must therefore be one or more sixths of the
number of squares in the set.

ITI Iv

(540 + 540c) (540 + 540c)
ABCDEF ABCDEF
BAFECD BAFEFCD
CFBADE C FBADE
DC EBVF A DEABVFC
EDAFBZC EDFCBA
FEDCUCARB FCDEAB
3241-4320 4321-5400



Messrs Fisher and Yates, The 6 x 6 Latin squares 499

Examples III and IV each stand for a set of 1080 reduced
squares. Both the sets comprise all squares conjugate or adjugate
to any of their members, and consequently, since there are no self-
conjugate squares in either group, each comprises 540 squares and
their conjugates.

Adjugacy can connect only transformation sets of the same
number of reduced squares, and might theoretically connect either
six, three, two, or one such set. In the case of only two sets these
may be a conjugate pair, but not a pair of sets containing con-
jugates, such as those of Examples III and IV. This can be shown
by considering the effects of successive interchanges of rows with
columns and rows with letters.

In the case of the 6 x 6 squares, the only possible adjugate
sets which include more than one transformation set are those
consisting of a conjugate pair of transformation sets and one
set including conjugates. Examples I and II, already given, are
illustrative of this grouping, and, as will be seen as we proceed,
all conjugate pairs of transformation sets form parts of adjugate
trios of this nature, though there does not appear to be any reason
why this should hold universally for squares of higher orders.

\' VI

540, 540 (90s + 225 + 225¢)
ABCDETF ABCDEF
BAECVFD BAFECD
C FBADE CFBADE
DEF BC A DEABFZC
EDAFBC ECDFBA
FCDEAB FDECARB

5401-5940 64817020

5941-6480

After the five sets containing 1080 squares each, come four sets
each containing 540, these comprising an adjugate trio, and a further
single set. Example V illustrates the conjugate pair of sets of 540
squares each, and Example VI the set of 540 which is adjugate
to this pair. Of this set one-sixth are self-conjugate (as is the
example shown) and the remainder consequently constitute 225
conjugate pairs. This trio therefore comprises 1620 reduced

squares.
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TasLe 1,

Possible Number of
diagonals Self-conjugate sets Sets including conjugates

(1) @) @)
444444 6 (XVI) 30 (IV)
A4AABB 60 (VI) 60 (IX)
AAAABC — —
ACAAAB — 120 (VII)
ACBAAA — 20 (XII, XVIY
AAABBC 120 (IX)
ACAABB — 120 (IV)
AABABC -
AABACD — -
AABCDA — -
ACBADA — 120 (11, VII)
AABBBB 30 (VD) 30 (1V), 120 (I1T)
AABBCC 120 (II) 120 (IV)
4CBBCA |60 (11, X, XII, XIII) 120 (II)
AABBCD — —
AABCBD — _
ACABBD — —
AADCBB — 60 (11, VII)
ADACBB — —
ACDBAB — —
AABCDE _ —_
AABEDC 120 (VI, IX)
ACDEBA — —
ACBEDA . 30 (VI, XVI), 60 (VI, IX)
ACBBBB — 40 (XTI, XIV), 120 (II, III)
ADBCBC — —
ACBCBD — —
AEBCDB — —
ADBCBE -— —

29 8 25




TaBLE 1. (continued)

squares in Impossible
Sets belonging to conjugate pairs| Cards Sets Squares diagonals
4 (5 {6) 0 ®)
6 (XVY) 3 4 48
AAAAAB
— 2 2 120
60 (V, VIII) 2 4 240
—_ 1 1 120
20 (XI) 3 4 80
AAABBB
— 1 1 120
— 1 1 120 ACBAAB
120 (1, IV) 2 4 480
120 (VII) 1 2 240
120 (VIII) 1 2 240 ADBCAA
—_ 2 2 240
ACABBD
AABBBC
ACBABB
30 (V) 4 5 240
—_ 2 2 240
60 (I, X, XI) 8 11 720
60 (V, VIII) 2 4 240
120 (VIII) 1 2 240
120 (I, I1I) 2 4 480 ACBABD
60 (I) 3 4 240 ACBBAD
60 (11I) 1 2 120
120 (I, V) 2 4 480
120 (IV) 1 2 240
— 2 2 240
30 (V, XV) 2 4 1a0 | 4DBCAE
30 (1IV) 5 6 240
40 (XI), 120 (I) 6 8 640
ACBCBB
ADBCBB
ACBBDB
120 (I, I, V) 3 6 720 ,
120 (I, 1L, 111, 1V, VI) 5 10 | 1200 | ADBBCC
120 (V) 1 2 240 ACBEDB
120 (I, 11, III) 3 6 720 ACBBDE
ACDEFB
ACBEFD
39 72 9408 18

111
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VII
(270 + 270c)
ABCDEF
BCDETF A
CEAFBD
DFBACE
EDFBAC
FAECDRB

70217560

There remains one set of 540 squares, illustrated by Example VIL
This set comprises all squares conjugate or adjugate to any of its

members,

VIII IX

360, 360 (180 + 180¢)
ABCDEF ABCDETF
BAEFCD BAEFCD
CFAEDB C FABDE
DCBAFE DEBAFC
EDFCBA EDFCBA
FEDBATC FCDEARB

7561-7920 - 8281-8640

7921-8280 .

The nine sets illustrated so far comprise 7560 squares, leaving
only 1848 for the remaining 13 smaller sets. Of these three sets
have 360 each, and form an adjugate trio accounting for more
than half the remainder. Example VIII represents the conjugate
pair of this trio and Example IX the single set of 360, which in
this case contains no self-conjugates but 180 conjugate pairs.

X
(60s + 60 + 60c)

(@) ®)
ABCDEF ABCDEF
BCFADE BADCVFE
C FBEAD C DFEBA
DAEBFC DCEFAGB
EDAFCRB EFBADUC
FEDCBA FEABCD

8641-8820
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Only one of our sets, that illustrated in X (a) and X (}), com-
prises 180 reduced squares, every two of which are therefore
connected by 24 distinct transformations. One-third of the squares
in this set are self-conjugate, there being two invariant sets of
elements each of which may constitute a diagonal of symmetry.

A mnew feature is introduced in this transformation set in
that twelve of the arrangements, such as that illustrated in
Example X (b), consist of nine 2 x 2 squares. These nine 2 x 2
squares must of course consist of three groups of three squares
each, arranged in a 8 x 3 Latin square, squares of the same group
containing the same pair of letters. The squares of any group may
be all oriented alike or two may be oriented alike and the third
at right angles to them. In the set of squares under discussion
the 2 x 2 squares of the same group are never oriented alike for
all three groups. For this reason the squares termed by Euler
squares & double marche cannot oceur in this group.

XI XII1

120, 120 (60s+ 30 + 30c¢)
ABCDEF ABCDEF
BCAFDE BCAEVFD
C ABEFD C ABFDE
DFEBAC DEFBAC
EDFCBA EFDACHB
FEDACB FDECBA

8821-8940 9061-9180

8941-9060

There are three sets of 120, forming an adjugate trio. The two
forming the conjugate pair are shown in Example XI, and the
third, which includes 60 symmetrical squares, in Example XIL
In this set, therefore, there are three sets of six elements each
capable of appearing as diagonals of symmetry. These transforma-
tion sets (Examples XI and XII) all comprise arrangements
consisting of four 3 x 8 Latin squares, as is shown in the examples
chosen.
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XIII
60s
(a) (b)

ABCDEF ABCDEYF
BC AFDE BCDEFA
C ABEVFD C DEF AB
DF EBAC DEFABC
EDF ACRB EF ABCD
F EDC BA F ABCDFE

9181-9240

The remaining sets comprise only 228 squares in all. The set
of 60, Example XIII, illustrates the possibilities of symmetry about
the diagonal in the highest degree, for every element of the square
belongs to one or other of six sets, each of which is capable of
appearing as a diagonal of symmetry, and consequently every
reduced square of the set is self-conjugate. This set 1s remarkable
in that four members consist of nine 2 x 2 squares (of which one is
Euler’s square & double marche) and six other members of four
3 x 3 squares (including Euler’s ¢riple marche), but the properties
of this peculiarly simple class of Latin squares may be most easily
developed by throwing it into the form shown in Example XIII(0),
in which each line is shifted one place from its position in the line
above, and all lines at right angles to the leading diagonal contain
only a single letter. This is Euler’s arrangement d sumple marche.
The whole transformation set comprises what Jacob has termed
“complete cycle” squares (if his definition is taken to include, as
he implies, the production of the rows in any order by the “complete
cycle” operator). Jacob gives a formula for the number of reduced
“complete cycle” squares of side n, namely (n—1)!/® (n), where
® (n) is the number of integers, including unity, less than n and
prime to it.
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There is one set of 40 squares, Example XIV, which comprises
20 squares and their conjugates. Four members of the set consist
of four 8 x 3 squares. This set is interesting in that, like the set
represented by Example X111, it and all adjugate squares formed
from its members comprise only a single intramutation set.

XV XVI
36, 36 (65 + 15 + 15¢)

ABCDEF ABCDETF
BAFEDC BAECFD
CDABFE C EAFDB
DFEACB DCFABE
ECBF 4D EFDBAC
FEDCB A4 FDBECA

9281-9316 9353-9388

9317-9352

The three sets of 86 squares, which form the fifth and last
adjugate trio, are represented by Examples XV and XVI, the
former illustrating the conjugate pair of sets, and the latter the
third set of the trio, of which in this ease one-sixth are self-con-
jugate. Although these sets are so small none of them contains
squares which can be broken up into 2 x 2 or 8 x 3 squares.

XVII
(10 + 10c)
ABCDEF
BCAFDE
CABEFD
DEF ABC
EFDCARB
FDEBC 4
9389-9408

Example X VII represents the smallest set of 20 reduced squares,
and concludes our enumeration of the 9408 reduced squares. Like
the sets of Examples XIIT and XIV it comprises only a single in-
tramutation set, and one-tenth of the members consist of four 3 x 3
squares. o

The classification of 4 x 4 and 5 x 5 squares, on lines similar to
those which we have employed with the 6 x 6 squares, may be given
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here for purposes of comparison. In the case of the 4 x 4 squares the
4 reduced squares, all of which are self-conjugate, form two intra-
mutation sets, one containing three squares (the “complete cycle”
squares) and the other a single square. Each of these sets, with
the corresponding non-reduced squares, constitutes a transformation
set. In the case of the 5 x 5 squares the 56 reduced squares form
six intramutation sets, of which five belong to a transformation set
containing the 25 unsymmetrical reduced squares and their con-
jugates, and the other forms a transformation set containing the
6 self-conjugate reduced squares, the set of “complete cycle”
5 x 5 squares: These are tabulated in Table II, an example from
each transformation set being given. It is clear that each trans-
formation set of both 4 x4 and 5 x 5 squares must contain all
squares adjugate to any of its members.

TasLE ]I

Intramutation sets for 5 x.5 squares.

Number of squares in
Diagonals | Self-conjugate | Sets including | Sets belonging to Sets Squares
sets conjugates conjugate pairs
AAAAA — 2 (I) — 1 2
AABBB — 8 (I) — 1 8
AAECD — — 8 (I) 2 16
ACBBB —_ 24 (I) — 1 24
AEBCD 6 (II) — —_ 1 ]
5 1 3 1 6 56
I II
(25 + 25¢) 6s
ABCDE ABCDE
B ADEZC BCDEA
CEABD C DEAB
DC EAB DEABC
EDBC A EABCD

5. Conclusions.

1. It has been shown that the number of reduced 6 x 6 Latin
squares can be enumerated without extravagant labour. This is
done by means of the special type of transformation which we term
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intramutation, and is made possible through the existence of
properties of the leading diagonal which are invariant under such
transformations, The number of reduced squares is thus enumerated
for the most part in sets or pairs of sets of 120, i.e. (n—1)!; only
a minority of the squares belong to smaller sets. If the same method
were t0 be applied to 7 x 7 squares, supposing there to be about
250,000,000 of these, we must anticipate nearly 200,000 sets or
pairs of sets, since the greatest number in any such pair will be
2.6! or 1440.

2. On the other hand, using the sets generated bya general trans-
formation involving independent permutations of rows, columns,
and letters, the aggregate of 6 x 6 squares has been shown to be
easily derivable from only 17 examples, representing only 12 distinct
types of squares. It is not easy to suppose that any similar grouping
could reduce the number of typical 7 x 7 squares below about 10,000,
so that their enumeration would, by any means at present available,
be exceedingly tedious.

3. The number of reduced 6 x 6 Latin squares given by Jacob,
namely 8192, is too small, for our complete enumeration gives 9408
reduced squares. This happens rather oddly to be 168 times 56,
the number of reduced 5 x 5 squares, or three times the square of
that number.

4. Euler’s conclusion that no Graeco-Latin 6 x 6 square exists is
easily verified from the 12 types of 6 x 6 Latin squares exemplified
in this paper. =
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