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THE LOGIC OF INDUCTIVE INFERENCE

Author's Note (CMS 26.38a)

In giving this general explanatory account of advances in statistical
methods at that time comparatively recent, the opportunity was
taken to add a few novelties which might make the evening more in-
teresting to those few among the audience who were already familiar
with the general ideas. Of these the modern reader may still find
interest in the second half of Example 1. The discussion here may
serve to distinguish statements of fiducial probability proper from
the “confidence belts” based on tests of significance applied to dis-
continuous data, which in reality represent inequality statements as
to fiducial probability.
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Tae Locic or INDUCTIVE INFERENCE.

By Proressor R. A. Fisuewr, Sc.D., F.R.S.

[Read before the Royal Statistical Society on Tuesday, December 18th, 1934,
the PRESIDENT, PROFESSOR M. GREENWOOD, F.R.S., in the Chair.]

WHEN the invitation of your Council was extended to me to address
this Society on some of the theoretical researches with which I have
been associated, I took it as an indication that the time was now
thought ripe for a discussion, in summary, of the net effect of these
researches upon our conception of what statistical methods are
capable of doing, and upon the outlook and ideas which may usefully
be acquired in the course of mathematical training for a statistical
career. I welcomed also the invitation, personally, as affording an
opportunity of putting forward the opinion to which I find myself
more and more strongly drawn, that the essential effect of the
general body of researches in mathematical statistics during the last
fifteen years is fundamentally a reconstruction of logical rather than
mathematical ideas, although the solution of mathematical problems
has contributed essentially to this reconstruction.

I have called my paper “ The Logic of Inductive Inference.” It
might just as well have been called “ On making sense of figures.”
For everyone who does habitually attempt the difficult task of making
sense of figures is, in fact, essaying a logical process of the kind we
call inductive, in that he is attempting to draw inferences from the
particular to the general; or, as we more usually say in statistics,
from the sample to the population. Such inferences we recognize
to be uncertain inferences, but it does not follow from this that they
are not mathematically rigorous inferences. In the theory of
probability we are habituated to statements which may be entirely
rigorous, involving the concept of probability, which, if translated
into verifiable observations, have the character of uncertain state-
ments. They are rigorous because they contain within themselves
an adequate specification of the nature and extent of the uncertainty
involved. This distinction between uncertainty and lack of rigour,
which should be familiar to all students of the theory of probability,
seems not to be widely understood by those mathematicians who
have been trained, as most mathematicians are, almost exclusively
in the technique of deductive reasoning; indeed, it would not be
surprising or exceptional to find mathematicians of this class ready
to deny at first sight that rigorous inferences from the particular to
the general were even possible. That they are, in fact, possible is, I
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suppose, recognized by all who are familiar with the modern work.
It will be sufficient here to note that the denial implies, qualitatively,
that the process of learning by observation, or experiment, must
always lack real cogency.

My second preliminary point is this. Although some uncertain
inferences can be rigorously expressed in terms of mathematical
probability, it does not follow that mathematical probability is an
adequate concept for the rigorous expression of uncertain inferences
of every kind. This was at first assumed; but once the distinction
between the proposition and its converse is clearly stated, it is seen
to be an assumption, and a hazardous one. The inferences of the
classical theory of probability are all deductive in character. They
are statements about the behaviour of individuals, or samples, or
sequences of samples, drawn from populations which are fully known.
Even when the theory attempted inferences respecting populations,
as in the theory of inverse probability, its method of doing so was to
introduce an assumption, or postulate, concerning the population
of populations from which the unknown population was supposed to
have been drawn at random ; and so to bring the problem within the
domain of the theory of probability, by making it a deduction from
the general to the particular. The fact that the concept of probability
is adequate for the specification of the nature and extent of uncer-
tainty in these deductive arguments is no guarantee of its adequacy
for reasoning of a genuinely inductive kind. If it appears in induc-
tive reasoning, as it has appeared in some cases, we shall welcome it
as a familiar friend. More generally, however, a mathematical
quantity of a different kind, which I have termed mathematical
likelihood, appears to take its place as a measure of rational belief
when we are reasoning from the sample to the population.

Mathematical likelihood makes its appearance in the particular
kind of logical situation which I have termed a problem of estimation.
In logical situations of other kinds, which have not yet been explored,
possibly yet other means of making rigorous our uncertain inferences
may be required. In a problem of estimation we start with a
knowledge of the mathematical form of the population sampled, but
without knowledge of the values of one or more parameters which
enter into this form, which values would be required for the complete
specification of the population; or, in other words, for the complete
specification of the probabilities of the observable occurrences which
constitute our data. The probability of occurrence of our entire
sample is therefore expressible as a function of these unknown para-
meters, and the likelihood is defined merely as a function of these
parameters proportional to this probability. The likelihood is thus
an observable property of any hypothesis which specifies the values
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of the parameters of the population sampled. Neyman and Pearson
have attempted to extend the definition of likelihood to apply, not to
particular hypotheses only, but to classes of such hypotheses. With
this extension we are not here concerned. The best use I can make
of the short time at my disposal is to show how it is that a considera-
tion of the problem of estimation, without postulating any special
significance for the likelihood function, and of course without intro-
ducing any such postulate as that needed for inverse probability,
does really demonstrate the adequacy of the concept of likelihood for
inductive reasoning, in the particular logical situation for which it
has been introduced.

In the theory of estimation we proceed by building up a series of
criteria for judging the merits of the estimates arrived at by different
methods. Each criterion is thus a method of forming a judgment
that some one estimate or group of estimates is better than others.
An initial difficulty here arises, best expressed in the question, “ Better
for what ? ” and it is remarkable that this preliminary difficulty does
not frustrate our enquiry. Whatever other purpose our estimate
may be wanted for, we may require at least that it shall be fit to use,
in conjunction with the results drawn from other samples of a like
kind, as a basis for making an improved estimate. On this basis, In
fact, our enquiry becomes self-contained, and capable of developing
its own appropriate criteria, without reference to extraneous or
ulterior considerations.

This logical characteristic of our approach naturally requires that
our edifice shall be built in two stories. In the first we are concerned
with the theory of large samples, using this term, as is usual, to mean
that nothing that we say shall be true, except in the limit when the
size of the sample is indefinitely increased; a limit, obviously, never
attained in practice. This part of the theory, to set off against the
complete unreality of its subject-matter, exploits the advantage that
in this unreal world all the possible merits of an estimate may be
judged exclusively from its variability, or sampling variance. In
the sccond story, where the real problem of finite samples is con-
sidered, the requirement that our estimates from these samples may
be wanted as materials for a subsequent process of estimation is found
to supply the unequivocal criteria required. Let me sketch the two
stages, with special emphasis on the staircase, relegating all mathe-
matical demonstrations to the written word.

First, we may distinguish consistent from inconsistent estimates.
An inconsistent estimate is an estimate of something other than that
which we want an estimate of. If we choose any process of estima-
tion, and imagine the sample from which we make our calculations
to increase without limit, our estimate will usually tend, in the
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special sense in which that word is used in statistics, to a limiting
value, which is some function of the unknown parameters. Qur
method is then a consistent one for estimating this particular para-
metric function, but would be inconsistent for estimating any different
function. The limiting value is easily recognized by inserting for
the frequencies in our sample their mathematical expectations.

Having satisfied ourselves that our method is consistent, we may
now confine our attention to the class of estimates which, as the
sample is increased without limit, tend to be distributed about their
limiting value in the normal distribution; that is, to the class to
which the theory of large samples is applicable. The normal dis-
tribution has only two characteristics, its mean and its variance.
The mean determines the bias of our estimate, and the variance
determines its precision.

The consideration of bias need not detain us. With consistent
estimates it must tend to zero; if we wish to use our estimates for
tests of significance it is as well that it should tend to zero more
rapidly than n-*. We can always adjust our estimate to make the bias
absolutely zero, but this is not usually necessary, for in estimating
any parameter we must remember that we are at the same time
estimating its reciprocal, or its square, or any other such function, and
zero bias in one of these usually implies bias of the order of #-! in the
others. This is therefore the normal rate for the bias to approach zero.

Vartance is a more serious affair; for a knowledge of the variance
of our estimate does not provide us with any means for producing one
which shall be less variable. In the cases which we are considering
the variance falls off with increasing size of sample always ultimately
in inverse proportion to n. The criterion of efficiency is that the
limiting value of nV, where V stands for the variance of our estimate,
shall be as small as possible. The first point which needs mathe-
matical proof is that the limiting value of % is necessarily less than
or equal to a certain quantity, 4, which is independent of the method
of estimation used.

To show that if 7 be an estimate of an unknown parameter 6,
normally distributed with variance V, then the limit as n ——> «, of
-7;1-7 cannot exceed a value, ¢, defined independently of methods of
estimation.

Let f stand for the frequency of a particular kind of observation,
¢ for that of a particular kind of sample, and @ for that of all the
kinds of sample which yield a particular value T' of the statistic
chosen as an estimate. Then in general

log ¢ = S(log f),
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where S stands for summation over the sample; next

@ = 3()
where 3 stands for summation over the possible samples which yield
the same estimate; and finally
1 = X(D),
where ¥ stands for summation over all possible values of the
statistic. When continuous variation is in question, symbols of

integration will replace the symbols of summation X and X",
If T is distributed normally about 6 with variance V,

oL %% ar
— 2 [« .
VorV ¢
Hence
o2 . 1
%2 log ¢ = :V

Since this is independent of 7, we may take the average for all
values of 7, and obtain

1 . O
T/—:——Z(D—%-zlogd)
1 /@
==Xz 3 (D+E <60>
Hence
1 o 170D
vV ¥ (ae)

since '(®) is independent of 6.
Now consider

. gl

1e
¢
as a variate, among the samples which lead to the estimate 7.
Each value of z occurs with frequency ¢, so the variance of x is

L 3(dat) — 2, )

0]

_ 1y o 1 /o0\2)

K l2¢< ) 5(567)1’
but the variance of z is positive, or, the limiting case zero; in
taking the mean for ali values of T' it follows that

a¢> = 1 <6(I> 2
L g <ae 3\ 20 )
is positive or zero. In other words,

Il,szzd)(?:)
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where it is to be noted that the quantity on the right is the average
value for all possible samples of

<1 P\

a6/’

and is therefore independent of the method of estimation. To
evaluate it we may note that

o4
zz(ﬁ( ) —225686210 4,
which is the average value in all possible samples of
o2
— 6—«-6210g &,
or the average value for all possible individual observations of
o2
"R log f,
»(3%)-
f a6

It appears then that, in large samples in which the statistic is
normally distributed,

or of

L <
—

where ¢ is the average value of

(73

or, if =" stand for summation over all possible observations,

= (&)

We shall come later to regard ¢ as the amount of information
supplied by each of our observations, and the inequality

%S n =1,
as a statement that the reciprocal of the variance, or the invariance,
of the estimate, cannot exceed the amount of information in the
sample. To reach this conclusion, however, it is necessary to prove
a second mathematical point, namely, that for certain estimates,
notably that arrived at by choosing those values of the parameters
which maximize the likelihood function, the limiting value of

1
7V
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Of the methods of estimation based on linear functions of the
frequencies, that with smallest limiting variance is the method of
maximum likelihood, and for this the limit in large samples of

1. .

b T equal to ¢.

Let & stand for the frequency observed of observations having

probability of occurrence f and let m = nf, the expected frequency

in a sample of n. Consider any linear function of the frequencies,
X = S(kz),

the summation being for all possible classes of observations, occupied

or unoccupied.
If the coefficients k are functions of 0, the equation,

X =0,
may be used as an equation of estimation. This equation will be
consistent if

S(kf) =0
for all values of 6. Differentiating with respect to 0 it appears that

() +5(:5) .

Since the mean value of X is zero, the sampling variance of X is
S(k*m) = nS(k*),
but as the sample is increased indefinitely, the error of estimation
bears to the sampling error of X the ratio

—1 -1
X ok
% S(%)
If, therefore,
—n
ok
§(5)
tends to a finite limit,
-1

the sampling variance of our estimate is
SEY)
"_"75'
2
ns (/5 g
or, using the condition for consistency,

Iczf

ns? (b f)
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We may now apply the calculus of variations or simple differen-
tiation to find the functions of k, which will minimize the sampling
variance. Since the variance must be stationary for variations of
each several value of k, the differential coefficients of the numerator
and the denominator, with respect to &£, must be proportional for all
classes. Hence,

b oc ao’

which is satisfied by putting
_1y
]C —‘77 56-
This also satisfies the requirement that
S(kf) =0

for all values of 6. The equation of estimation

2ol _
5 ( fao) =0
is the equation of maximum likelihood. The limiting value of the
sampling variance given by the analysis above is

1
{f@g)f

1 NENE A
VA \f<afo) j =0

The condition for the validity of the approach to the limit is seen
to be merely that ¢ shall be finite. Cases where 7 is zero or infinite
can sometimes be treated by a functional transformation of the para-
meter; other cases deserve investigation. The proof shows, in fact
that where ¢ is finite there really are I and no less units of information
to be extracted from the data, if we equate the information extracted
to the invariance of our estimate.

This quantity 4, which is independent of our methods of estima-
tion, evidently deserves careful consideration as an intrinsic property
of the population sampled. In the particular case of error curves,
or distributions of estimates of the same parameter, the amount of
information of a single observation evidently provides a measure of
the intrinsic accuracy with which it is possible to evaluate that
parameter, and so provides a basis for comparing the accuracy of
error curves which are not normal, but may be of quite different
forms.

We are now in a position to consider the real problem of finite
samples. For any method of estimation has its own characteristic dis-

nV =

or
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tribution of errors, not now necessarily normal, and therefore its own
intrinsic accuracy. Consequently, the amount of information which it
extracts from the data is calculable, and it is possible to compare the
merits of different estimates, even though they all satisfy the criterion
of efficiency in the limit for large samples. It is obvious, too, that in
introducing the concept of quantity of information we do not want
merely to be giving an arbitrary name to a calculable quantity, but
must be prepared to justify the term employed, in relation to what
common sense requires, if the term is to be appropriate, and service-
able as a tool for thinking. The mathematical consequences of
identifying, as I propose, the intrinsic accuracy of the error curve,
with the amount of information extracted, may therefore be sum-
marized specifically in order that we may judge by our pre-mathe-
matical common sense whether they are the properties it ought to
have.

First, then, when the probabilities of the different kinds of observa-
tion which can be made are all independent of a particular parameter,
the observations will supply no information about the parameter.
Once we have fixed zero we can in the second place fix totality. In
certain cases estimates are shown to exist such that, when they are
given, the distributions of all other estimates are independent of the
parameter required. Such estimates, which are called sufficient, con-
tain, even from finite samples, the whole of the information supplied
by the data. Thirdly, the information extracted by an estimate can
never exceed the total quantity present in the data. And, fourthly,
statistically independent observations supply amounts of information
which are additive. One could, therefore, develop a mathematical
theory of quantity of information from these properties as postulates,
and this would be the normal mathematical procedure. It is,
perhaps, only a personal preference that I am more inclined to
examine the quantity as it emerges from mathematical investigations,
and to judge of its utility by the free use of common sense, rather than
to impose it by a formal definition. As a mathematical quantity
information is strikingly similar to enfropy in the mathematical theory
of thermo-dynamics. You will notice especially that reversible
processes, changes of notation, mathematical transformations if
single-valued, translation of the data into foreign languages, or
rewriting them in code, cannot be accompanied by loss of information;
but that the irreversible processes involved in statistical estimation,
where we cannot reconstruct the original data from the estimate we
calculate from it, may be accompanied by a loss, but never by a gain.

Having obtained a criterion for judging the merits of an estimate
in the real case of finite samples, the important fact emerges that,
though sometimes the best estimate we can make exhausts the



48 Figaer—The Logic of Inductive Inference.

information in the sample, and is equivalent for all future purposes
to the original data, yet sometimes it fails to do so, but leaves a
measurable amount of the information unutilized. How can we
supplement our estimate so as to utilize this too? It is shown that
some, or sometimes all of the lost information may be recovered by
calculating what I call ancillary statistics, which themselves tell us
nothing about the value of the parameter, but, instead, tell us how
good an estimate we have made of it. Their function is, in fact,
analogous to the part which the size of our sample is always expected
to play, in telling us what reliance to place on the result. Ancillary
statistics are only useful when different samples of the same size can
supply different amounts of information, and serve to distinguish
those which supply more from those which supply less.

Ezample 1.

The use of ancillary statistics may be illustrated in the well-worn
topic of the 2 X 2z table. ILet us consider such a classification as
Lange supplies in his study on criminal twins. Out of 13 cases
judged to be monozygotic, the twin brother of a known criminal is in
10 cases also a criminal; and in the remaining 3 cases he has not been
convicted. Among the dizygotic twins there are only z convicts
out of 17. Supposing the data to be accurate, homogeneous, and
unselected, we need to know with what frequency so large a dis-
proportion would have arisen if the causes leading to conviction had
been the same in the two classes of twins. We have to judge this
from the z X 2 table of frequencies.

Convictions of Like-sex Twins of Criminals.

1 Convicted. ‘ Not Convicted. ) Total.
Monozygotic ‘ 10 ‘ 3 ‘ 13
Dizygotic | 2 l 15 ' 17
Total 1 12 ' 18 ‘ 30

To the many methods of treatment hitherto suggested for the
2 X 2 table the concept of ancillary information suggests this new
one. Let us blot out the contents of the table, leaving only the
marginal frequencies. If it be admitted that these marginal fre-
quencies by themselves supply no information on the point at issue,
namely, as to the proportionality of the frequencies in‘the body of the
table, we may recognize the information they supply as wholly
ancillary ; and therefore recognize that we are concerned only with
the relative probabilities of occurrence of the different ways in which
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the table can be filled in, subject to these marginal frequencies.
These ways form a linear sequence completely specified by giving to
the number of dizygotic convicts the 13 possible values from o to 12.
The important point about this approach is that the relative fre-
quencies of these 13 possibilities are the same whatever may be the
probabilities of the twin brother of a convict falling into the four
compartments prepared for him, provided that these probabilities
are 1 proportion.

For, suppose that, knowing him to be of monozygotic origin, the
probability that he shall have been convicted is p, it follows that
the probability that of 13 monozygotic (12 — ) shall have been
convicted, while (1 -+ ) have escaped conviction, is

13! -
PR N R A U

But, if we know that the probabilities are in proportion, the
probability of a criminal’s brother known to be dizygotic being
convicted will also be p, and the probability that of 17 of these
shall have been convicted and (17 — ) shall have escaped conviction
will be

1+x

17! .
T PP

17 -2

The probability of the simultaneous occurrence of these two events,
being the product of their respective probabilities, will therefore be

131 17! " N
a0t e @2 —2%

in which it will be noticed that the powers of p and 1 — p are
independent of z, and therefore represent a factor which is the same
for all 13 of the possibilities considered. In fact the probability of
any value of « occurring is proportional to
1
2 —a) (1 +a)yte! (17T —a)l

and on summing the series obtained by varying z, the absolute
probabilities are found to be

13117112118 1
30! A2 —2)! (T +2) 2! (17T —x)
Putting = o, 1, 2, . . . the probabilities are thercfore
l3!18!f1 12.17 12 .11 .17 .16 \
30! o 27131 A
1 .
= 5 E53.3% {1,102,2992, . . .}
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The significance of the observed departure from proportionality is
therefore exactly tested by observing that a discrepancy from pro-
portionality as great or greater than that observed, will arise, subject
to the conditions specified by the ancillary information, in exactly
3,005 trials out of 6,653,325, or approximately once in z,150 trials.
The test of significance is therefore direct, and exact for small samples.
No process of estimation is involved

The use of the margins as ancillary information suggests a more
general treatment. Had the hypothesis we wish to examine made
the chances of criminality different for monozygotic and dizygotic
twins, e.g. p in one case and p’ in the other, the probability of
observing any particular value of # would have included an additional

factor
(Z4)"
Py
If
ri_,
T

the frequency distribution is determined by the parameter 4, and
for each value of  we can make a test of significance by calculating
the probability,

(1 -+ 102¢ -+ 299242)/(1 + 1024 + . . . + 476412),

the ratio of the partial sum of the hypergeometric series to the
hypergeometric function formed by the entire series. This prob-
ability rises uniformly as ¢ is diminished, and reaches 1 per cent.
when y is just less than o-48. We may thus infer that the observations
differ significantly, at the 1 per cent. level of significance, from any
hypothesis which makes y greater than o-4798. That is to say, that
any hypothesis, which is not contradicted by the data at this level
of significance, must make the ratio of criminals to non-criminals at
least 2-084 times as high among the monozygotic as among the
dizygotic cases.

Similarly, the probability rises to 5 per cent. when y = 28496, so
that any hypothesis which is not contradicted by the data at the
s per cent. level of significance must make the ratio of criminals to
non-criminals at least three and a half times as high among the
monozygotic as among the dizygotic.

This is not a probability statement about 4. It is a formally
precise statement of the results of applying tests of significance. If,
however, the data had been continuous in distribution, on the hypo-
thesis considered, it would have been equivalent to the statement
that the fiducial probability that ¢ exceeds 0-4798 is just one chance
in a hundred. With discontinuous data, however, the fiducial
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argument only leads to the result that this probability does not
exceed oor. We have a statement of inequality, and not one of
equality. It is not obvious, in such cases, that, of the two forms
of statement possible, the one explicitly framed in terms of prob-
ability has any practical advantage. The reason why the fiducial
statement loses its precision with discontinuous data is that the
frequencies in our table make no distinction between a case in which
the 2 dizygotic convicts were only just convicted, perhaps on venial
charges, or as first offenders, while the remaining 15 had characters
above suspicion, and an equally possible case in which the 2 convicts
were hardened offenders, and some at least of the remaining 15 had
barely escaped conviction. If we knew where we stood in the range
of possibilities represented by these two examples, and had similar
information with respect to the monozygotic twins, the fiducial
statements derivable from the data would regain their exactitude.
One possible device for circumventing this difficulty is set out in
Example 2. It is-to be noticed that in this example of the fourfold
table the notion of ancillary information has been illustrated solely
in relation to tests of significance and fiducial probability. No
problem of estimation arises. If we want an estimate of ¢ we have
no choice but to take the actual ratio of the products of the fre-
quencies observed in opposite corners of the table.

Example 2.

On turning a discontinuous distribution, leading to statements of
fiducial inequality, into a continuous distribution, capable of yielding-
exact fiducial statements, by means of a modification of experimental
procedure.

Consider the process of estimating the density of micro-organisms
in a fluid, by detecting their presence or absence in samples taken at
different dilutions. A series of dilutions is made up containing
densities of organisms decreasing in geometric progression, the
ratios most commonly used being tenfold and twofold. We will
suppose, to simplify the reasoning, that the series is effectively
infinite, in the sense that it shall be scarcely possible for the organism
to fail to appear in the highest concentration examined, or for it to
appear in the highest dilution. A number, s, of independent samples
are examined at each dilution. The dilution ratio we shall call a,
and we shall suppose the dilutions to be numbered consecutively,
with the number » increasing as dilution is increased.

If ¢ is the density of the organisms to be estimated, then the
density in the nth dilution, reckoned on the size of the sample taken,
is

m = pa".
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The chance of a sterile sample is, therefore,
p=-em,

The probability of securing ¢ sterile and w fertile cultures at this
dilution will therefore be

s!
TP d =o'

and the probability of a complete series of observations specified by
t, and u, at each dilution will be

n=w gl

AU T p = pas
which, regarded as a function of g, gives the likelihood of any
particular value of the unknown density.

The form of the likelihood function, and therefore the amount of
information supplied by a series of observations, depends very
greatly on the distribution of the numbers of sterile and fertile
samples in that part of the range of dilutions in which both occur.
Thus, if there were three samples at each dilution, an experiment in
which all were fertile before the nth dilution, and all of the nth and
higher dilutions were sterile, would give a higher precision to the
estimate than if there were one sterile at the (» — 1)th dilution, and
one fertile at the nth. Consequently, it would be advantageous, if
possible, to take account of the configuration of the observed series,
that is, of the succession of numbers of sterile samples from the first
observed, irrespective of the particular dilution in which this appears,
as information ancillary to the interpretation of our estimate, which
itself must depend greatly on where the series starts.

The objection to doing this is that, for a given series of dilutions,
the frequency with which any particular configuration appears will
not be entirely independent of p, but will be a periodic function of
log g, since it evidently does not change when log p is increased or
diminished by a multiple of log @. In order to make these frequencies
entirely independent of p it is, however, sufficient that the particular
series of dilutions used should themselves be chosen at random by a
process equivalent to the following :—A number, 6, is chosen at
random between o and 1. In the first dilution, instead of the
dilution ratio @ we use the dilution ratio af, using the dilution ratio a
for all subsequent dilutions. The probability of any particular con-
figuration occurring is now wholly independent of p, and, for any
configuration the probability of the first sterile sample being drawn
from the dilution :—

n-t+0=2z
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will be a continuous function of the variate
log p —x log a,

which can be completely calculated from the configuration. Con-
sequently, fiducial limits of any chosen probability could be calculated
for p, merely by observing at what dilution the first sterile sample
occurs. For any chosen values of @ and s to be used in such tests,
the fiducial limits of the commoner configurations could be listed in
advance, 5o reducing the calculation tolittle more than looking up an
anti-logarithm. The artifice of varying the initial dilution in
accordance with a number chosen at random for each series thus
obviates the need for expressing our conclusions as to the fiducial
probability of any proposed density in the form of an inequality.

If we are satisfied of the logical soundness of the criteria developed,
we are in & position to apply them to test the claim that mathematical
likelihood supplies, in the logical situation prevailing in problems of
estimation, a measure of rational belief analogous to, though mathe-
matically different from, that supplied by mathematical probability
in those problems of uncertain deductive inference for which the
theory of probability was developed This claim may be sub-
stantiated by two facts. First, that the particular method of
estimation, arrived at by choosing those values of the parameters the
likelihood of which is greatest, is found to elicit not less information
than any other method which can be adopted. Secondly, the
residual information supplied by the sample, which is not included
in a mere statement of the parametric values which maximize the
likelihood, can be obtained from other characteristics of the likelihood
function; such as, if it is differentiable, its second and higher deriva-
tives at the maximum. Thus, basing our theory entirely on con-
siderations independent of the possible relevance of mathematical
likelihood to inductive inferences in problems of estimation, we seem
inevitably led to recognize in this quantity the medium by which all
such information as we possess may be appropriately conveyed.

To those who wish to explore for themselves how far the ideas so
far developed on this subject will carry us, two types of problem may
be suggested. First, how to utilize the whole of the information
available in the likelihood function. Only two classes of cases have
yet been solved. (a) Sufficient statistics, where the whole course
of the function is determined by the value which maximizes it, and
where consequently all the available information is contained in the
maximum likelihood estimate, without the need of ancillary statistics.
(b) In a second case, also of common occurrence, where there is no
sufficient estimate, the whole of the ancillary information may be
recognized in a set of simple relationships among the sample values,
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which I have called the configuration of the sample. With these
two special cases as guides the treatment of the general problem might
be judged, as far as one can judge of these things, to be ripe for
solution.

Problems of the second class concern simultaneous estimation,
and seem to me to turn on how we should classify and recognize the
various special relationships which may exist among parameters
estimated simultaneously. For example, it is easy to show that two
parameters may be capable of sufficient estimation jointly, but not
severally, because each estimate contributes the ancillary informa-
tion necessary to complete the other.

In considering the future progress of the subject it may be
necessary to underline certain distinctions between induetive and
deductive reasoning which, if unrecognized, might prove serious
obstacles to pure mathematicians trained only in deductive methods,
who may be attracted by the novelty and diversity of our subject.

In deductive reasoning all knowledge obtainable is already latent
in the postulates. Rigour is needed to prevent the successive
inferences growing less and less accurate as we proceed. The con-
clusions are never more accurate than the data. In inductive
reasoning we are performing part of the process by which new
knowledge is created. - The conclusions normally grow more and more
accurate as more data are included. It should never be true, though
it is still often sasd, that the conclusions are no more accurate than
the data on which they are based. Statistical data are always
erroneous, in greater or less degree. The study of inductive reasoning
is the study of the embryology of knowledge, of the processes by
means of which truth is extracted from its native ore in which it is
fused with much error.

Secondly, rigour, as understood in deductive mathematics, is not
enough. In deductive reasoning, conclusions based on any chosen
few of the postulates accepted need only mathematical rigour to
guarantee their truth. All statisticians know that data are falsified
if only a selected part is used. Inductive reasoning cannot aim at a
truth that is less than the whole truth. Our conclusions must be
warranted by the whole of the data, since less than the whole may be
to any degree misleading. This, of course, is no reason against the
use of absolutely precise forms of statement when these are available.
It is only a warning to those who may be tempted to think that the
particular precise code of mathematical statements in which they
have been drilled at College is a substitute for the use of reasoning
powers, which mankind has probably possessed since prehistoric
times, and in which, as the history of the theory of probability shows,
the process of codification is still incomplete.
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