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This paper, the opening lecture of the Harvard Tercentenary Con-
ference, is an outline of the history leading to recent developments
in the logic of inductive reasoning. The role of mathematics in this
field has scarcely been appreciated by pure logicians, whose formula-
tions take no account of the functional form' of the problem.

The author submits that the existence or non-existence of solu-
tions, or, in general, the conditions of solubility, of the problem of the
Nile stated on the last page, must supply the key to the nature of
the inductive inferences possible in each type of problem.
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AT A Tercentenary Celebration we shall do well to look both to the
past and to the future. In undertaking to address a mathematical
audience, at the present time, on the subject of Uncertain Inference
my chief care will naturally be to set forth, at least in outline, those
very recent advances which have resolved effectively and conclusively
the doubts, confusions, and ambiguities which we can now see clouded
the views, and arrested the progress, of those great predecessors to
whom our subject owes its gradual development. But just as, behind
the Harvard of to-day, the fully developed alma mater where future
generations of Americans will train their minds, and form their
characters, we - perceive the struggling college of the seventeenth
century, without which this other could not have been what it is;
so we can only gain a just perspective of my present topic by recalling
the steps, some hesitating, some even false, by which men have
come gradually to understand how their reason may be applied
to uncertainties, yet applied with logical rigour, and how, in par-
ticular, it may be applied to observational facts with all their limita-
tions, their paucity in number and their imperfect precision, and
yet draw from them precisely those inferences which the observations
warrant.

The first great step was the development of the concept of mathe-
matical probability. Much as this word has since been misapplied,
to the writers of the seventeenth and eighteenth centuries its meaning
was plain and unequivocal. For centuries, no doubt, expectations had
been deemed capable of evaluation. Expectations under wills, and
expectations from uncompleted trading ventures, had been bought
and sold. In games of chance such expectations seemed capable of
rigorous calculation. The structure of the game, and its condition

when broken off, made it possible to assign to each player a calculable -

fraction of the amount at stake. This fraction, the ratio of the ex-
pectation to the prize which might be won, supplied the essentially
new concept of probability. To Thomas Bayes, indeed, this was its
definition.

The idea of probability seems to have been an essentially new one
in mathematical thought. So far as we know it was unknown to the

1 A paper delivered at the Tercentenary Conference of Arts and Sciences at
Harvard University, September, 1936.
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Greek and to the Islamic mathematicians. It was a concept st
generis, rather like the notion of temperature in Physics, and it was
novel particularly in this, that it brought uncertain consequences
within the domain of exact or rigorous thought. If the apparatus
used in gambling were true or unbiassed, and were fairly used, the
probabilities of the game could be calculated with exactitude. From
this point in time there was no excuse for mathematicians to confuse
rigour with certainty. In the discussions on probability the un-
certainty remained an integral part of the situation, but the concept
of probability allowed the nature and extent of this uncertainty to be
specified with rigour.

The possibilities of this situation were, of course, only slowly ap-
preciated. Not until our own days has it been realized that the fact
that some uncertain inferences are rigorously expressible in terms of
probability does not imply that the same concept is capable of pro-
viding an exact specification of the nature of uncertainty in all cases.
We are now, indeed, familiar with logical situations of a different
type which require to be specified in terms of mathematical likelihood;
and there is, as yet, no assurance that even probability and likelihood
together will suffice for the specification of every kind of logical un-
certainty which may be profitably discussed.

For centuries, however, it was assumed that if uncertain inferences
were to be made they must be made in terms of mathematical proba-
bility. It was, I believe, this assumption, more than any other factor,
which has led to efforts to define probability in more general, and
usually in psychological, terms, and has introduced infinite confusion
into the use of this once well defined concept.

Thomas Bayes’ paper of 1763 was the first attempt known to us to
rationalize the process of inductive reasoning. From time immemorial,
of course, men had reasoned inductively; sometimes, no doubt, well,
and sometimes badly, but the uncertainty of all such inferences from
the particular to the general had seemed to cast a logical doubt on the
whole process. By the middle of the eighteenth century, however,
experimental science had taken its first strides, and all the learned
world was conscious of the effort to enlarge knowledge by experiment,
or by carefully planned observation. To such an age the limitations
of a purely deductive logic were intolerable. Yet it seemed that
mathematicians were willing to admit the cogency only of purely
deductive reasoning. From an exact hypothesis, well defined in
every detail, they were prepared to reason with precision as to its
various particular consequences. But, faced with a finite, though
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representative, sample of observations, they could make no rigorous
statements about the population from which the sample had been
drawn.

Bayes perceived the fundamental importance of this problem and
framed an axiom, which, if its truth were granted, would suffice to
bring this large class of inductive inferences within the domain of the
theory of probability; so that, after a sample had been observed,
statements about the population could be made, uncertain inferences,
indeed, but having the well-defined type of uncertainty characteristic
of statements of probability. Bayes’ technique in this feat is ingenious.
His predecessors had supplied adequate methods, given a well-defined
population, for stating the probability that any particular type of
sample might result. His problem was: given a particular kind of
sample, to state with what probability a particular type of population
might have given rise to it. He imagines, in effect, that the possible
types of population have themselves been drawn, as samples, from a
super-population, and his axiom defines this super-population with
exactitude. His problem thus becomes a purely deductive one to
which familiar methods were applicable.

There is one point for which Bayes is seldom given enough credit.
He had doubts as to the necessary truth of his axiom. So serious were
these doubts that he withheld his entire treatise from publication
until they should be resolved; and it appears that they never were
resolved, for his paper was published by his friends after his death.

That Bayes’ axiom was designed to meet a real need is shown by
the eagerness and rapidity with which his work became the common
property of European mathematicians. Laplace, in particular, in-
corporated it into the foundations of his “Théorie Analytique des
Probabilités,” cruelly twisting the definition of probability itself in
order to accommodate the doubtful axiom. It is certain that Laplace
had no appreciation of Bayes’ scientific caution. He says of Bayes,
“Et il y est parvenu d’une manigre fine et trés ingenieuse, quoi qu'un
peu embarrassée.”’

Substantial errors are so rare in the history of mathematics that
mathematicians are remarkably unsuspicious of the work of their
greater predecessors. The illustrious authority of Laplace thus ex-
plains in some sort why Bayes’ doctrine in its new dress was embodied
without a query into the mathematical teaching of full two generations.
To practical thinkers it seemed to meet a practical need. To mathe-
maticians it appeared robed in the authority and in the analytic
elegance of Laplace’s “Théorie.”” To De Morgan in 1838 it was still
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unquestioned gospel, and one of the great steps forward in the history
of his subject.

The first serious criticism was developed by Boole in his “Laws of
Thought” in 1854. In that extraordinary work Boole anticipated
many subsequent attempts to develop a symbolical logic, with par-
ticular reference to problems in probability. He recognizes the
contradictions and inherent arbitrariness of Bayes’ axiom, as de-
veloped by Laplace, and quite properly treats it as an attempt to
supply by hypothesis something which the data themselves lack.

He writes: “ These results only illustrate the fact, that when the
defect of data is supplied by hypothesis, the solution will, in general,
vary with the nature of the hypotheses assumed; so that the question
still remains, only more definite in form, whether the principles of the
theory of probabilities serve to guide us in the election of such hypo-
theses. I have already expressed my conviction that they do not.”
Boole gives fresh reasons and adds:—* Still, it is with diffidence that I
express my dissent on these points from mathematicians generally, and
more especially from one who, of English writers, has most fully entered
into the spirit and the methods of Laplace; and I venture to hope
that a question, second to none other in the theory of probabilities in
importance, will receive the careful attention which it deserves.”

Boole’s criticism worked its effect only slowly. In the latter half of
the nineteenth century the theory of inverse probability was rejected
more decisively by Venn and by Chrystal, but so retentive is the
tradition of mathematical teaching that I may myself say that I
learned it at school as an integral part of the subject, and for some
years saw no reason to question its validity. Mathematicians were
averse from abandoning a theory, which often led to plausible con-
clusions, and, above all, which they had nothing to replace. Its
acceptance as orthodox effectively concealed from the majority the
fact that, not a mere restatement in more accurate terms, but a
fundamentally new approach, was required. As late as 1908 we find
Edgeworth, vague but definitely defensive: “I submit that very
generally we are justified in assuming an equal distribution of a priore
probabilities over that tract of the measurable with which we are
here concerned.”

Why should a mathematician defend a procedure for which he can
say no more than that? And why, to take another example, should
Karl Pearson, a few years later (1920) put forward what he, and I
believe he alone, regarded as a proof of the disputed axiom. Such
stubborn unwillingness to abandon a false position, to admit ignorance,
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and to start again, can only be due to mathematicians having so
seldom experience of situations which call for an orderly retreat!

The need for an exact procedure of inductive inference was essen-
tially a practical one, and the means for meeting it were being prepared
by mathematicians having practical interests beyond those discussed
by specialists in the academic theory of probability. Let us turn to
Gauss and the foundations of the theory of estimation. As is well
known, Gauss, at one time, developed his method of least squares by
a formulation identical with that now used in the method of maximum
likelihood, but which he justified as taking for the estimate the value
of the unknown which had the highest probability. That would be,
of course, the mode of its frequency distribution, if any such distri-
bution could be assigned to it. Later, as he explained in a letter to
Bessel, he let this argument fall into the background, through the
conviction that maximizing the probability was less important than
minimizing the injurious effects of the actual errors of estimation. To
measure these injurious effects by the square of the error he regarded
as arbitrary, though convenient.

Modern research has reconciled the two aims discussed by Gauss.
If, for any frequency distribution of a variable z,

df = y(x)d,

where the frequency density y depends on some unknown parameter

0, we calculate
2
l(fl_y i,
y \db

over all possible values of z; then this quantity is invariant for transfor-
mations of x, and measures the amount of information which a single
observation x contains respecting 0. If z is itself an estimate of 0 de-
rived from a sample, the expression measures the intrinsic accuracy of
an estimate having the sampling distribution given. For the particular
and important case of the normal or Gaussian distribution, the
intrinsic accuracy is the invariance, or the reciprocal of the mean
square. Error curves of forms other than the Gaussian can then be
compared in their precision. When this is done it appears that the
estimate obtained by maximizing the likelihood is in general the one
for which the intrinsic accuracy is greatest.

A knowledge of the likelihood function thus takes the place of
knowledge of a probability distribution in that type of uncertain
inference with which the theory of estimation is concerned. This
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logical situation is one of wide occurence in the discussion of scientific
theories of all kinds. It presupposes a hypothesis containing one or
more arbitrary parameters. The hypothesis is capable of specifying
the probability or frequency of occurrence, of each of the observational
facts which can be distinguished. The probabilities of the observable
occurrences are then functions of the parameters, and functions of
known mathematical form. Only the values of the parameters are
unknown. The theory of estimation discusses the advantages of the
different methods by which these values can be estimated from an
observational record. Clearly, there can be no operation properly
termed “estimation,” until the parameter to be estimated has been
well defined, and this requires that the mathematical form of the
distribution shall be given. Nevertheless, we need not close our eyes
to the possibility that an even wider type of inductive argument may
some day be developed, which shall discuss methods of assigning from
the data the functional form of the population. At present it is only
important to make clear that no such theory has been established.
The direct assessment of the amount of information supplied by a
body of data, the sample of observations, and by a parallel and
independent process, of the amount of information extracted from the
data, and contained in the estimate, brings to light the important
fact that in some special, but specially important cases, these amounts
are equal. The estimate exhausts the whole value of the data; once
the estimate has been calculated, the remaining facts which the data
provide are entirely irrelevant to the value of the unknown parameter.
Their distributions are, in fact, independent of the value of this
parameter, so that we have the enlightening situation, of which the
arithmetic mean of a normal sample, or of a sample from a Poisson
Series, are examples, in which, given the value of the first, or Sufficient
estimate, the sampling distribution of any alternative estimate is
independent of the quantity of which it is designed to indicate the
value. All such alternative estimates are therefore worthless. The
existence of Sufficient statistics, in the sense defined above, is not
only of theoretical interest as a possibility, but of great practical
importance, for the cases in which they exist cover many of the forms
most used by statisticians in practice. :
Theoretically, however, the existence of sufficient statistics is ex-
ceptional, dependent as it is from a special functional relationship.
When no sufficient statistic exists then no single estimate can contain
the whole of the information supplied by the sample. There appears
to be an inevitable loss, and, in these cases, the method of maximum



UNCERTAIN INFERENCE 251

likelihood is only preeminent in making this loss as small as is possible.
The next task of the theory is to trace the cause of this loss, and to
discover in what way it may be made good.

Before turning to this fascinating enquiry, we must recall another
development of modern mathematical statistics, in which again the
practical requirements of research have moulded the mathematical
structure. I refer to the establishment of exact tests of significance.
These are now somewhat numerous, and of many kinds, designed to
cover the various cases which commonly arise in practice. They are
all of quite recent origin, and I may take as typical the test of signifi-
cance of the mean of a normal sample. This was published in 1908,
which year, you may notice, is the same from which I have quoted
Edgeworth’s defense of inverse probability. Its author was a young
man, then unknown, who chose to publish under the now celebrated
pseudonym of “Student.”

The classical procedure, dating at least from the time of Gauss, for
testing the significance of the difference between the observed mean of
a normal sample, and zero, or any other value chosen for comparison,
is to divide the difference by its standard error, as estimated from the
sample. If Z is the observed mean of n observations, and u the true
mean of the population from which the sample was drawn, then it
has long been known that Z is distributed in different samples in a
normal distribution, with its centre at y, and having a variance one
nth of that of the population sampled. If, therefore, we knew the
true standard deviation, o, of this population, we should know that

(@ —w) Vn

)

was distributed normally with unit variance, and so could assign with
exactitude the probability with which any chosen value would be
exceeded. In fact, the true value, o, is not known, but we have in its
place an entirely satisfactory estimate, s, defined by,

g L -5 — 2,

where § stands for summation over the sample. This estimate is, in
fact, a sufficient one; but it is, none the less, a fact that the value of s
arrived at will usually differ more or less from the true value, .
Consequently, if we substitute s for ¢, and calculate

t___(f-u)\/'?i,

8
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we are not justified in asserting that ¢ will be distributed in the normal
distribution. The originality of “Student’s” approach lay in en-
quiring how in fact the ratio ¢ is distributed, when calculated from
samples of n observations. The exact solution is found to be given by

‘the frequency element.

n—-2,
2 dt
df:n——3 ' {2 n/2
2 'V g(n — 1) (1+;?’—“_“*i> ’

a distribution very different in mathematical character from the
Gaussian, though progressively approaching this form as = is in-
definitely increased. The distribution is, however, exact, and capable
of tabulation for each size of sample possible. It has, indeed, at
various times been rather thoroughly tabulated. Consequently, in
place of asserting that there is a probability of one chance in forty
that

(&= Vn > 1.960,
o

an assertion which would only be directly useful if ¢ were known with
exactitude, it is equally open to us, if, for example, our mean were
based on fifteen observations, to assert that

& — u) v

=2 WVE

8

has a probability of one in forty of exceeding the value 2.145. This
statement is directly useful, for s is not unknown, but is calculable
with exactitude from the observations.

Armed with this new tool, it was natural for practical experimenters
to take a further logical step of great theoretical importance, namely
to use the ratio, e.g., 2.145, appropriate to the level of significance
chosen, to multiply this by the standard error of the mean as estimated,
to add or substract the product to or from the observed mean, and so
to obtain working limits for the values of the unknown mean of the
population.

In fact, since the distribution of ¢ is known with exactitude, and
since ¢ is given by the formula

t=(53——u)ﬁ,

8
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which involves, apart from g, directly calculable quantities only,
namely Z and s, both of which are sufficient statistics, we may infer,
without any use of probabilities a prior, a frequency distribution for
 which shall correspond with the aggregate of all such statements as
that made above, to the effect that the probability that w is less than
z — 2.145 s/ /7 is exactly one in forty.

It is, at first sight, easy to confuse probability statements respecting
unknown parameters, derived by arguments similar to the above, with
statements of inverse probability. Indeed, attempts have been made
to use these arguments, by identifying the results to which they lead
with statements of inverse probability, as a means of ascertaining
which particular hypothesis of probabilities ¢ prior: should be adopted
in order to lead to equivalent conclusions. In reality the statements
with which we are concerned differ materially in logical content from
inverse probability statements, and it is to distinguish them from these
that we speak of the distribution derived as a fiducial frequency
distribution, and of the working limits, at any required level of
significance, that may be derived from it as the fiducial limits at this
level. This distinctive terminology is not intended to suggest that
fiducial probability is not in the strictest sense a mathematical proba-
bility, like any other to which the term ought to be applied, but that
it has been derived by a form of argument very different from that
introduced by Bayes, and one which was unknown to all the early
writers on the theory of probability.

It is a matter of some historical interest to examine why a mode of
reasoning so essentially simple, and so cogent, as that outlined above,
should have escaped the penetration of the early writers, who include
some of the most illustrious of mathematicians. There are two
circumstances which may help to make clear this difficulty. The
distributions studied by the early writers were nearly all discontinuous
distributions, distributions in particular, of which the variates are
frequencies. When applied to these the fiducial type of argument
does not lead us to an exact frequency distribution of the unknown
parameters, but only to a series of inequalities which add little in
intelligibility to the tests of significance from which they may be
derived. The neglect of the frequency distributions of continuous
variates, until they were forced on the notice of mathematicians by
the requirements of the quantitative sciences, is, I believe, one potent
reason why early writers on probability were not led to use arguments
of the fiducial type. For such arguments to be fruitful, moreover, the
distributions considered must be not only continuous, but mathe-
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matically exact. Exact solutions of all the more important and
immediate problems were possible by analytic methods certainly
within the capacity of the greater writers of the last 150 years. That
their existence remained for so long unknown, can only, I believe, be
explained by the absence of any steady conviction that inferences
involving an element of uncertainty deserve anything better than
rough and approximate discussion.

Two subsidiary circumstances, also, have in our own time greatly
facilitated the new approach, and have, indeed, made its development
inevitable. One is the convenient practice of tabulating the distri-
butions required, at a series of definite levels of significance, i.e., of
expressing the variate in terms of the probability, in place of regarding
the probability as a function of the variate. The second circumstance
is the abandonment of the inverse type of argument, since, so long as
statements of inverse probability were held to be the aim, the possi-
bility of making inferences of fiducial probability, which differ from
the former in logical content, was very naturally overlooked.

There is one peculiarity of uncertain inference which often presents
a difficulty to mathematicians trained only in the technique of rigorous
deductive argument, namely, that our conclusions are arbitrary, and
therefore invalid, unless all the data, exhaustively, are taken into
account. In rigorous deductive reasoning we may make any selection
from the data, and any certain conclusions which may be deduced from
this selection will be valid, whatever additional data we may have at
our disposal. The more philosophic writers on probability, however,
such as Venn, have emphasized the fact that conclusions in this field
are relative, not only to what is known, but also to what is undeter-
mined. Venn, for example, contrasts the conclusions to be drawn
from such items of information as that the déath-rate of Englishmen
is higher in Madeira than in England, and that the death rate of
tuberculous patients is higher in England than in Madeira. The
probable effect of a change of residence is different for the contrasted
cases of a man chosen at random from the English population, as
against one chosen at random from the tuberculous patients of
that country. The additional datum that the individual chosen is
tuberculous must not be ignored in drawing inferences from the re-
maining data.

This peculiarity appears to be characteristic of uncertain inference
in general. It is certainly as important in inductive reasoning from
observational data, as in the purely deductive inferences of the classical
theory of probability. Every statistician is conscious that if he were
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to allow himself to make an arbitrary selection among the observa-
tional material available, then the most orthodox operations of his
craft could be made to lead to almost any desired conclusion. The
political principle that “ Anything can be proved by statistics” thus
enshrines a subtle truth, which requires to be the more carefully borne
in mind, the more we rely on mathematical techniques developed with
only certain inferences in view.

This consideration is vital to the fiducial type of argument, which
purports to infer exact statements of the probabilities that unknown
hypothetical quantities, or that future observations, shall lie within
assigned limits, on the basis of a body of observational experience.
No such process could be justified unless the relevant information
latent in this experience were exhaustively mobilized and incorpo-
rated in our inference.

We may now appreciate the necessity of the condition I mentioned,

in connection with “Student’s” test of significance, for the mean of a:

normal sample; namely, that the quantities T and s, which, together
with the unknown parameter y, appear in the expression for ¢, should
be Sufficient estimates of the mean and standard deviation of the
population sampled. For this is a guarantee that they have, together,
tapped all the information the sample has to give respecting the nature
of the population. If alternative estimates had been used; if, for
example, we had found the median in place of the arithmetic mean,
%, or, if we had used Peter’s Formula, based on the mean deviation,
in place of Bessel’s formula, based on the mean square, we might have
derived an entirely valid test of significance; that is to say we could
have found a quantity t, with a distribution exactly known for
samples of a given size, and expressible, like ¢, in terms of the un-
known parameter, together with directly calculable quantities only.
But, if we had gone further, and, substituting for #' in terms of g,
had derived a fiducial distribution of the unknown parameter, the
distribution we should obtain would be based only on that part of the
information available, which our special estimates of the mean and
standard deviation had conserved. The distribution obtained would
differ from that found by using the sufficient estimates, and the
probability statements which it embodies would be discrepant. With-
out the requirement that the information available should be ex-
hausted, a host of discrepant inferences would appear equally admis-
sible, each dependent from the personal choice of the statistician,
through his choice of the method of estimation to be employed.
When Sufficient estimation is possible, there is here no problem;
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but the exhaustive treatment of the cases in which no Sufficient
estimate exists 1s now seen to be an urgent requirement. 'This at
present is in the interesting stage of being possible sometimes, though,
so far as we know, not always. I have spoken of the Sufficient esti-
mates as containing in themselves the whole of the information pro-
vided by the data. This is not strictly accurate. There is always
one piece of additional, or ancillary, information which we require,
in conjunction with even a Sufficient estimate, before this can be
utilized. That piece of information is the size of the sample; or, in
general, the extent of the observational record. We always need to
know this in order to know how reliable our estimate is. Instead of
taking the size of the sample for granted, and saying that the peculi-
arity of the cases where sufficient estimation is possible lies in the
fact that the estimate then contains all the further information re-
quired, we might equally well have inverted our statement; and,
taking the estimate of maximum likelihood for granted, have said
that the peculiarity of these cases was that, in addition, nothing more
than the size of the sample was needed for its complete interpretation.
This reversed aspect of the problem is the more fruitful of the two,
once we have satisfied ourselves that, when information is lost, this
loss is minimized by using the estimate of maximum likelihood. The
cases in which Sufficient estimation is impossible are those in which,
in utilizing this estimate, other ancillary information is required from
the sample beyond the mere number of observations which compose
it. The function which this ancillary information is required to per-
form is to distinguish among samples of the same size those from which
more or less accurate estimates can be made; or, in general, to dis-
tinguish among samples having different likelihood functions, even
though they may be maximized at the same value. Ancillary in-
formation never modifies the value of our estimate; it determines its
precision.

The procedure of this kind the most general possible would be, from .-

a sample of n observations, to specify (a) the estimate, or set of
estimates of the unknown parameters, having the greatest likelihood;
and (b) a set of functionally independent ancillary statistics, sufficient
in conjunction with (a) to allow the observations to be reconstructed
in their entirety, and having the additional property that these an-
cillary quantities shall be all distributed in samples in distributions
independent of the unknown parameters. It is easy to see that this
can be done in certain simple cases. For example, if u is the only un-
known parameter in a frequency distribution specified by the differ-
ential element
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df = ¢z — p)dz,

then the differences between successive observations, when these are
arranged in order of magnitude, supply n — 1 functionally inde-
pendent quantities, calculable from the sample, the sampling distri-
bution of each of which is evidently independent of pn. We may,
therefore, regard such a set of differences as specifying the configura-
tion of the sample, and, in interpreting our estimate, may take as its
sampling distribution that appropriate to only those samples which
have the actual configuration observed.

Here, then, is a second group of solutions, by which estimation may
be made exhaustive, like the Sufficient statistics in depending from a
special functional relationship, like them, also, in resolving a wide
class of the problems arising in practice. And my final word on this
topic is a query, the answer to which so far is unknown, and which is,
therefore, at present a challenge to our mathematical intuition.
May I put the problem in this form?:—

The agricultural land of a pre-dynastic Egyptian village is of
unequal fertility. Given the height to which the Nile will rise, the
fertility of every portion of it is known with exactitude, but the
height of the flood affects different parts of the territory unequally.
It is required to divide the area, between the several households of
the village, so that the yields of the lots assigned to each shall be in
pre-determined proportion, whatever may be the height to which
the river rises.

If this problem is capable of a general solution, then it is possible in
general to recognize something corresponding with the configuration
of the sample in the simple case discussed above, and one of the
primary problems of uncertain inference will have reached its complete
solution. If not, there must remain some further puzzles to unravel.
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