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MOMENTS AND CUMULANTS IN THE
SPECIFICATION OF DISTRIBUTIONS

Author's Note (CMS 30.a)

The paper was intended as a compact summary of the more useful
properties of those symmetric functions variously known as mo-
ments, semi-variants, cumulants, etc. To write it was a most en-
joyable collaboration, since so much seemed worth doing. On re-
reading it now appears to be a great deal too compact. Without
expanding the material to its “natural size” (a monograph text-
book), I have in this edition ventured to ease the compression by
inserting in a few places rather more explicit explanations. Table I1I
has been added also for this edition.

Revue de 1'Institut Interational de Statistique, 5: 307-320, (1937).

13



Reproduced with permission of the International Statistical Institute

14

MOMENTS AND CUMULANTS IN THE SPECIFICATION OF
DISTRIBUTIONS.

By E. A. Cornish and R. A, Fisher F.R.S.

1.

The very considerable statistical literature which has grown up on the use
of the moments of populations and samples, and on other quantities allied to
these, is rendered confusing by variations in notation and terminology, and by
the different aims which authors have had in view in using these quantities.
The following notes aim at clarifying the subject by suggesting a uniform
and consistent notation, specifying briefly the relations between the different
quantities ordinarily used, and summarising the results which have been obtained.

The distribution of a variable quantity z can he specified by means of
a frequency function f, often termed the probability integral, specifying the
total frequency in the population for which the variate is less than an
assigned value z. For discontinuous distributions f will be a step function,
increasing discontinuously at the values of x at which finite fractions of
the total frequency are concentrated, and remaining constant between these
values. For certain other distributions f is econtinuous and differentiable so that
—%—represents the frequency density in the element of range dz, or, the
ordinate of a frequency curve at this point. These are the two common cases,
but it is also possible for f to be continuous, but not differentiable, and so
incapable of representation by a frequency curve.

2. The Characteristic Function.

In all cases we may define a function of a real variable ¢ in the form
M (8 n:/ eite df,

which is known as the characteristic function of the distribution. The absolute
value of M never exceeds unity for any real value of t. M (¢) and M (—1¥)
are equal, if real, and conjugate quantities, if ecomplex. If, in the neighourhood
of t==0, M can be ecxpanded in a scries of powers of ¢, this series will be
()
2 55 e

r=20 -0

N @,
AR Hory
re==y

where u/, is the rth moment of the distribution of x about the origin. The
characteristic function may, therefore, he spoken of as the moment generating
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function. ' is, of course, the average value of 27 and when this is finite, the
characteristic function is differentiable r times at the origin.
If 4/, is the mean, the factor ¢i'® may be resolved into the product

et | it (B—pt)

of which the first factor is constant, while the average value of the second
factor gives a characteristic function referred to the mean of the distribution,
and therefore formally expansible as a generating function of the moments
about the mean. The relation between the moments about zero and the moments
about the mean of the distribution may therefore he obtained by equating
coefficients of powers of ¢ in the identity

t? 8 {4
Tt gr tpgr T gy o
" ’ 4 £ : ’ t.‘ 4 ..___t‘ L
:e—.’-xt(1+,u1t+ygTzT-rpg*g‘T+/L44! F o )

giving the servies of relations

g === P"o - /L’12 y

Py == "L’R — 3w, Wyt 2 /"’13 y

g == :U"A — 4 .‘i',g :“',1 + 6 M,z /1/12 —3 :U',14 »
by which the moments about the mean may be obtained from those about
any other origin.

3. The Cumulative Function.

In studying the distributions of quantities compounded of ingredients,
each distributed independently in a known distribution, Laplace was led to
introduce a function known as the cumulative funetion, which is simply the
logarithm of the characteristic funection.

If z is distributed in a distribution specified by the frequency element
df,, and vy is independently distributed in a distribution specifed by the
clement df,, the frequeney of the simultaneous occurrence of any particular
pair of values z and y will be df, df,, and the characteristic funetion of the
sum, x -+ y, will be

[ [etwsoap,ar,,

— w0 —®

which is eclearly the product of the characteristic functions of z and y
separately. Consequently, if K =log M, be written for the cumulative funec-
tion, the cumulative funetion of z + y is simply the sum of the eumulative
funetions of « and y separately. Iividently this relationship holds for any
number of ingredients and is fundamental in the study of distributions of
compound quantities.

The identity of these functions for all values of ¢ carries with it the
identity of their coefficients when M and K are expressible by power series.
We are therefore led to recognise the coefficients of the expansion of K in
powers of { as quantities of peculiar significance in the specification of the
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distribution. We shall call these quantities cumulants, denoted by
Kiy Kpy Kz eeeeee , and defined by the identity

t* {8 it
xlt'"l-x,’i'!"’r'x, —3—T+K‘-;1-T+ ......

4

t* t3 ¢
= log %1 + it +p.'2'§!‘ + Wy 37 + i, o 4+

by which the moments about zero may be expressed in terms of cumulants,
or viee versa, or by

12 3 [Ad
k2 3T T x5 37 +K4'ZT+ ......

{2 3

t
= log 1+y2—2—!'+p.3——!‘+p4';1'!‘+ ...... %

giving the corresponding relations with the moments about the mean. The
latter are of great simplicity for

Mo == Kq

Pz =Kz,

e =x, + 3,7,
ps=xy T 10k, x,

and so on. The numerical coefficients may be written down at sight for the
coefficient of «,? is the number of ways in which 4 objects may be divided
into two groups of 2 each, and that of «,«, is the number of ways in which
5 objects may be divided into a group of 3 and a group of 2. The same rule
holds generally.

For, if

stand for any partition of a number r, the coefficient of x:fll le ...... in the
expansion of

2 3
6K2 st kg T

is seen to be

i
)
(P D™ 7 L (P D™ myt ol
so that the coefficient of x™ «"2 ...... in u, is
P Pe
r!

(D) ! (p) ey,
or the number of ways of distributing » objects into undifferentiated recepta-
cles w, containing p, each, =, containing p, each, and so on,

3. Average effects of grouping.

When, by reason of the limited accuracy of instrumental measurements,
for convenience of record, or to simplify the caleulations, variates are grouped
so that to all values lying in the range £ — 34 h to x + 3 h is assigned the
conventional value z, the cumulants of the distribution will be somewhat
affected.
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To any true value £ the process of grouping adds a grouping error
z— &, where z is the centre of the group in which ¢ falls. Knowing the
group limits, we know also the actual error introduced for each possible
value of £ With equal intervals this error will be a periodic funection of £,
and an exact study of the effects of grouping must involve the phase relation-
ship between the group limits and any such characteristic of the population
as its mean. With moderately fine grouping, the periodic corrections are, how-
ever, small; and it is often sufficiently accurate to consider only the average
effects of grouping, when for a given grouping interval, h, the group limits
are supposed to fall with equal frequency in any equal lengths in which the
interval may be divided.

In this case the error of grouping is distributed with uniform frequency
over the range from —3h to + 4% so that its frequency distribution is

1 ;
df = " de, —3h<z<i}h

for all values of £ independently.

The average cumulants of the grouped distribution will therefore differ
from those of the original ungrouped distribution by the ecumulants of the
grouping error,

The characteristic function is

- %h
“‘—l?—t sin 4 At
R (it)® her (it)2r
=1+ T F o + S (o TD) (2r)] + o
Hence
QL it ) S i U ) MW A ()
12 21 120 4! 252 61 Ut

Since, with group interval smaller than the standard deviation, the higher
cumulants expressed in group units increase rapidly, the effects of grouping
on them are extremely small, even when the second cumulant is materially
affected.

h? IS

The deduction of the coefficients T~ 190 55y

lants estimated from grouped data is equivalent to Sheppard’s adjustments
of the moments,

from the ecumu-

4. The symmetric function of a finite sample of observations of
which the mean value is «,,.

It is easy to see that the condition that the mean value of a symmetric
function of the observations shall be equal to one of the cumulants, or some
function of the cumulants, for samples of all sizes, is sufficient to determine
the symmetrie function completely. This property was, however, long over-
looked, and the series of statisties which afford unbiassed estimates of the
cumulants was, in fact, only introduced in connection with a study of the
sampling distributions of such estimates, which are found to be greatly simpli-
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fied, both in their form and their derivation, by using the appropriate series
of statistics. Corresponding with any partition

P=(p,"1p,7% ...... Y, S {=)=np, S (pr) = w,

of the partible number w there exists a monomial symmetric function of a
sample of n observations. If of the n observations =, are chosen to be raised
to the power of p,; of the remainder we choose =, to be raised to the power
of p,, and so on, leaving n— p observations not involved, the product of the
powers of the chosen observations constitutes a typical term of the symmetrie
function. The number of similar terms that can be formed is

n!
mlom (n—p)!
and the sum of these will be designated by the symbol G (P).
Thus @ (221) stands for

3 § }S"' §1 (2%, 2% Zr)

r=1s=1t=

)

in which 7, s and ¢ may take any three different values from 1 to n. The
factor 4 is required since interchange of the values r and s leaves the mono-

mial funetion unaltered.
Since the observations are independent, the mean value of any term is

Kol Wiz
so that
e n' 7r ,T
G (P) = Ry ] M'ml [ mz ......
But we know that
(Dt LWl

szfv 1 vt

(p,!) "(p, 1) ™., I 0
the summation extending over all partitions of w.
Hence to obtain a statistie &, such that k, ==« it is sufficient to put

—yr=1 (1)1 !
—3 (=) (p )! w: G (P).
ra(n—1) ... (n—p+1) (p,))™1(p,) "2 ...

-The set of symmetric functions most easily caleulated from the obser-
vations, at least if these are grouped, or have many repetitions of the same
value, are the sums of powers s;==28 (x4).

. From these, corresponding with any partition @ of the partible number w,
where

it is easy to construet the symmetric funetion

S (@) :Sffl‘ S?: ..... .
To express G (P) in terms of § (Q) we require the bipartitional funetion

Gs (P, Q) defined by the identity
G(P) = %Gs (P, Q) S(Q).

Gs is found to be an integer divided by =,!m,!...... ; for values of w
from 2 to 6 the values of = !=,!...... Gs (P, @) are tabulated below.
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w==2 w==3.
S (@) S (9)
P (2) (@9 P 3y (21 (1%
G(2) 1 G(3) 1 . .
2G(1*) —1 1 G211 —1 1 .
6G(13) 2 —3 1
w=4 w=>5
S (@) S(@)
P (4) (31) (2% (211 (1% P (5) (41) (32) (317) (221) (21%) (1°)
G(4) 1 . . G(5) 1 . . . . . .
G(31) —1 1 . . . G411 —1 1 .
2G(2%) —1 . 1 . . G(32) —1 1 .
2G(212) 2 —2 —1 1 2G(312) 2 —2 —1 1 .
24G(1*) —6 8 3 —b6 1 2621 2 —1 -2 . 1 .
6G(213) —6 6 5 —3 —3 1 .
120G(1°) 24 —30 —20 20 15 —10 1
wW=06
S (Q)
r (6) (51) (42) (3% (41») (321) (2°) (31%) (271%) (21%) (1%)
G(6) 1 . . . . . . . . . .
G5Bl  —1 1 .
G42) —1 . 1 .
2G(32) —1 . . 1 .
2G (41?) 2 -2 —1 . 1 .
G(321) 2 —1 —1 —1 . 1 .
6G(28) 2 . —3 . . . 1 .
6G(313) —6 6 3 2 —3 —3 . 1 .
4G(2212) —6 4 5 2 —1 —4 —1 . 1 .
24G'(21%) 24 —24 —18 —8 12 20 3 —4 —6 1 .
720G (19) —120 144 90 40 —90 —120 —15 40 45 —15 1

In the expression for k, the coefficient of @ (P) for partitions of a
fixed number of parts p, is proportional to

w!
(P ) ™1 (P, ™2 ...

S P a (P)

where a (P) is the elementary partitional ‘function

w!

(P D™ ! (p, !)"2 myl

We may therefore use the property of the function Gs (P, @), namely that

3o,
P/Pl 2

...... a(P) Gs (P, Q)

is @ (@) times the coefficient of z’ in the produet, for all parts ¢ of @, of
the polynomials

F (q) ———xr?«__o(—x A)r(1e-1),
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For the smaller values of ¢ we have

q F

1 z

2 r— x°

3 z— 322+ 24°

4 g— T2+ 122°— 62°

5 z—15z2+ 50z — 60x*+ 242°

6 z—31 22+ 18028 — 390 z* + 3602° — 120z°

7 z— 63 22 + 602 2 — 2100 z* + 3360 z° — 2520 2° + 720 z7.

The expression for %, thus reduces to

= (—‘)P_l (p—1)! )
kw—i % n(n—1) ... (n—p+1) v a (Q) S(Q)S

where u, is given by
FX (q,) F*2(q,) ...... =5 u, .

The process of simplification may be illustrated by determining the coefficient
of s,5,2 in k,. We have
Q= (322), ¢ (Q) =105, F(3) F2(2) =a* — bzt + 92° —Ta° + 22" =3 u, ¢,
so that the coefficient of s,s,? is
(p—1)! (=)t
A ey oo S
. 21 3!
=105 (’n ) (n—2) ' T nn—1) (n—2) (n—3)
4! 5! .
A (—2) () (D) ° T w 1) (n2) (n—3) (n—A) (n—5)
6! 210

Up

+

n (n—1) (n—2) (n—38) (n—4) (n—>5) (n—~6) 2) = (n—3) (n—4) (n—5) (n—=6)

5. Transformation of the characteristic function.
If £ is any function of z capable of expansion in a power series
E(x)=a,taz+ax®+...

then the characteristic funection of ¢, is the average value of et
The coefficient of (ir)7/r! is the average value of

or, if the characteristic function M (¢) is differentiable

dz

d r
a, + a, TG0 + a, 4 (D) + o M (%).

Hence, the characteristic function of any function £ () may be expressed
in terms of that of z in the form

ME(T) = éq:’rs"(ll(i(;l)} Mx(t), when t = 0.

6. The operational properties of the cumulants.

If the element of frequency is ydx, and y and its differential coefficients
vanish at the limits of the range

See Author's Addendum at end of paper (page 28).
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i [ &=t N
fﬂlm’ (d—j; .7/) dg == Le”x der =1 ?/] o f@“’ (dx’“1y> i
R
— il
Eo— @tje (M,;'— y) dx

— (—it)T M.

Hence

. (_ 4\ :
fe‘lta: eaq E“i) ydx: Metq and

It thus appears that the cumulative function of the distribution

df — 6"‘1(— j_%‘)q ydx

differs from that of

df =ydx
by
aq (1) ;
or that the operator
R DAY
e;/' dx

merely increases the gth cumulant by a,

d
The action of the operator ¢ ~ “d% merely transforms a function f (x)
into f (x—aea,); when acting on a frequency function, it thus simply in-
creases the mean by a,, leaving the distribution otherwise unchanged. Similarly
it appears that

simply increases the variance by a,, leaving the mean and other cumulants
unchanged, as would be done by seattering each element of frequency in a
normal distribution with variance @,. Similarly, the other operators of the form

a d\q
i (- =
may be used to adjust any of the other cumulants to desired values.

7. The probability integral of a distribution having given cumulants.

Since the frequency element of the distribution of a variable £ having

given cumulants x;, k, Ky ..oe.. can be represented formally by
—(E — m)2
d 1 d? 1 A 1 —
dp = exp M(Kl—wm)w‘f—'z-(xz———'v) ae -'6K3 s + o 1/271-1) 4

where m and v are the mean and variance of any normal distribution chosen
for convenience, we may use this choice to simplify the determination of the
probability integral.

Sometimes the exact values of x, and x, may be used; in this case the
expression will only involve the higher eumulants «g, «, ...... . More frequently
the successive cumulants are expressed in power series of the reciprocal of
some number #, so that the order of magnitude of x, is that of =1,

dé

21



22

315

If m and v be chosen to agree with the leading terms of the series for «,

1, — -
and «,, the ratio of «, to v?" will be of the order of = G- 1), when 7
exceeds 2, and the expansion takes the form
d ) o 1o { — (£ ~m)?
— . — e O AT | 2v
dp == exp av 7 + 500 i ikl iE + V"é?;e dg

o

-1 _ _3
where a and ¢ are of order n ¢, b and d of order n 1, ¢ of order n 2,

f of order n~ % and so on.
Expanding the operator and integrating, we have for the frequency less

1
than m + £v?, the expansion, of which the first four adjustment terms have
been retained,

' p
_5(a+‘é‘ cgz)

1 1 1 1 1
+z(—2~ @, + 5 b, g ack, + 2—4'd$3+—2-02£,)

1 1 1
— 2 (—g o, + absz 5 @k, + 2 beé, + 57 adé, + = ac%,

g
+’1?4' odfs + 1598 csf‘)

1 1 1 1
t 2(57 0% -+ Dt - 0%k + g 0ok, + 15 abek, + g d, + b,

120 ¢, +

1 1 1 1

+ o5 b T gy fh t g O°% + gy b + 1152 & + 144 acds;

1
+--— ce&, + —m ac3¢, + c 2dg, + 37107 c‘§11>
where
— _...e—‘}‘t'2
l/ 2 ’
¢

p=f 2dE

-

and &, is the Hermite polynomial given by

-%; 2=1§,
or in full,
= £ =8 — 1
=+ 3¢ L =8 — 68+ 3
=+ 108 — 15¢ £, =8 —156¢#+ 45682 — 15
fr=—t& + 215 —105£ + 105¢ g =¢ —28£+ 2104 — 4208+ 105

£

— 8+ 364 37865+ 1260 £ — 045 £ £, ==£10— 45 5 + 630 £ — 3150 £4 + 4725 £

& =— £+ 55 £— 990 £7 + 6930 £ — 17325 £ + 10395 £,

945
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8. The expansion for the abscissa corresponding to any given level
of probability.

Although it is sometimes of interest to work out the aectual value of the
probability corresponding with a given deviation, it is of much more general
utility to know the values of the deviates corresponding with the assigned
levels of probability. If now we write z for the normal deviate having the
same probability integral, the difference £ —x may he found by equating
the expression above for the probability to

P—(E—a) et 5 () tr—n (f—0) et o (E—0)

By equating terms of each order of magnitude in succession, as in the
inversion of power series, we find the polynomials are much simplified, giving

f—z=—a+ ic(gz_—n

+§b&—aw+ A(E—38 — gt (48 —T8)

- ~ab + aZC— 5 be (5§2~——3)-—-é—ab (& —1)

g ¢ (68 +3) + ac (126 —7)

144cd(ll.g64 42 & + 15)+——c3(69§4—187$2+52)

—-—b2$ + —5-abc$ + ~a2d£——~— bd (7T£—15§&) »--l-ae (88— §)

. 5 3 L L oo _L .2 3 __
+7,—20-f($“——10§ %15&)——3~ac§+72bc (368 —49¢)

- 384 d2 (56 —32 £ + 35 £) - aed (11 & —21 ¢)

36
1

ce (T&£—488 +51¢) — 557

_ 3_61)_0_ ac® (138 £ — 187 &)

<a—cd (111 & — 547 £ + 456 £) — ”‘7176

+ 864

In these expressions it should be noticed that the polynomials involved
are in the deviate £ It is in many ways more convenient to use instead
polynomials in the normal deviate z, corresponding to the probability required.
This involves an awkward substitution, which may, perhaps, best be carried
out by observing that if

f—w=f(&) =flz + (¢—2)f,

then it may be written to the required degree of approximation as
1
f(®) + f(z) () + f(x) f*(x) + 5 f*(z) [ (x)
3 1
+ f(2) f*(2) + 5 1*(2) '(2) f"(2) + 5 f(x) [ (2).

2 3
or f@ et tr@mrtlpe stk Lrw e,

c* (948 £ — 3628 £ + 2473 £). j
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In the result of this substitution all but one of the terms involving a
must be eliminated, since a change of the mean leaving all other cumulants
unchanged, changes all points of fixed probability by the same amount. The
adjustment to the normal deviate  having the required probability integral is:

1
o+ T ¢ (x?—1)
—}— bx +—-d(x 3:c)~—-—cz(2x3——5a;)

1 1
- ~—6--bc (z2—1) + me(x*«6m2+ 3)—-§ch (xt—bz*+ 2)

1
+397 ¢ (12 2* — 53 2* + 17)
1 1 1
-*—Fb"’ww-l'gbd(aﬁ—-B:c) +-7-§()~f(a>5—10w3+ 15 )

1
+75 be? (10a°—25 ) — 384 dz (3a°—242° +291x)

1
— T80 ¢ (22°—172* + 21 2) + mczd (14 z° — 103 2* + 107 z)

1
— e ¢ (252 2° — 1688 #* + 1511 ).

For numerical work the polynomials in z required may very easily be
tabulated for chosen levels of probability (Table I). In Table II are given
the numerical values of the first five Hermite Polynomials over the range
of levels of probability chosen for Table I.

8. 1. The cumulants of the distribution of the test of significance, 2, and
the approximate values for different levels of significance.

For the purpose of obtaining its cumulants, we may write 2, which is
half the logarithm of the ratio of two estimated variances, in the form

2=} log x,*/n, —1% log x,*/m, .
Now the distribution of y, is given by

n1—2
. ] - %xlz le 2 'xlz
2
so that the mean value of exp |34t log x,%/n, {
= exp { yitlog (3 x,2) —34tlog $ ny }
is
2 exp (—4 it log § ny),
m—2
5 !

whence the cumulative function of 2 is seen to be

ny—2 t—}itlog 4 m,

K::log Mg:—_gl_log
_ (10g71L+_;L__2_ |~10g22-—'2-‘—2—!——1}it10g%n2 )
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The expansion of K in powers of f, riay therefore be found from the
differential coefficients with respect to n of

log n;Z |

Now with sufficient approximation

log 22'L::{;(n-——l)logf}nwén+§log(27r) + T

and its successive differential coefficients are:
1 1 1
glgin—or—Fn

2n + 2n? + 3ns

1 1
Y Y
1 3
ns nt
3
-
12
Yy

From these, writing r, and r, for the reciprocals of »n, and =, respectively,
we may obtain the cumulants

Ky == — '2— (r, — 1y )""‘ 1, (7 — %),

Ky = '21‘( i—/”z)"i" (?“+7’2)“'%( + 10,
== 21( '—72)— ("'1 — 1%},

Ky == () +1®) + 3 (rf + 1),

Ky == —3 (1* — 1),

ke== 12 (r,5 + 7,%).

6

If we write o for the sum (r, + r,) and § for the difference (r,—r,)
of these reciprocals, and if we choose

m==0, v=4%o
then

2 1
@ ==-— ?(%8-{*? 80),

82 1 y
b =% ((r+ *—o_—-')-f-"g' (02'{"38'2),

= l/—a+% 3sa+-—)g

d~( 84 S (e ),

o= |/ Zles (o 2,

5 8¢
— 2 2 290,
= 6 (o + 10 8% + )
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For any special values of n, and =, the six cumulant adjustments can
be evaluated numerically, and the values substituted in the general formula
given above. It is, however, also of interest to make the substitution algebraic-
ally and obtain the general form of the z values at different levels of signi-
ficance in terms of o and §. We then have

LY

1
~§8(x2+2)
— e 1 &
+ V3o %EZ (x3+3a:)+',72'7(x5+11m)§

~ l—z%'(z‘+9x2+8) + e (35t + T2 —16)

+Vis 1920 (z° + 202* + 15 z) + 2880 (2 + 44 2% + 183 1)
-+ m (9 2° —284 £ — 1513 z)
Ezxample.

When n, =24 and n,==60 the 5% value of z is .26534844. The value
obtained from the first approximation and the four correction terms above is

2809 1224 — .0196 0643 + (.0038 9559 + .0005 7292) — (.0004 8210 — .0000 0206)
+ (.0000 3805 + .0000 1886 — .0000 0046)
=.2653 5073.

The successive errors in this case diminish progressively, with alternating sign,
as shown in Table III, (CMS 30. 14a).

TABLE III
Successive Successive Successive
Degree Terms Totals Errors
0 28091224 228091224 +.01556380
1 — 1960643 26130581 — 404263
2 + 446851 26577432 + 42588
3 — 48004 26529428 - 5416
4 + 5645 .26535073 + 229
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Résumé: Les cumulants d’'une distribution sont définis et leurs relations avec les
moments ordinaires sont indiquées. On insiste sur I'importance de ces fonctions dans la
description des distributions.

La fonection symétrique d’un échantillon fini d’observations dont la valeur moyenne
est égale au cumulant correspondant de la population est défini et une expression con-
venable pour son évaluation est développée en termes de sommes de puissances des obser-
vations de ’échantillon.

Les propriétés opératives des cumulants sont discutées et le développement de I'inté-
grale des probabilités d’une distribution ayant des cumulants donnés en est dérivé. Ce
développement est transformé en une expression plus cotnmode, qui donne la valeur des
déviations correspondant & un niveaun donné de probabilité, en fonction de la déviation
normale ayant la méme intégrale des probabilités. Les valeurs numériques des polyndmes
dans la déviation normale considérés dans le dernier développement sont calculés pour
certains niveaux choisis de probabilité. De plus, les valeurs numériques des 5 premiers
polyndmes d'Hermite sont donnés pour les mémes niveaux de probabilité. Un exemple de
I'emploi des formules développées est donné par le calcul de la valeur approximative
de z pour le nivean de probabilité de 5 p.cent.

Author's Addendum (CMS 30.7a) - see page 313.

Since of the partitions of 7 only four are free from unitary parts, the complete
expression for k7 in terms of sums of powers, 84, of deviations from the mean, may
be quickly found to be

n
(n — 2)(n — 3)(n — 4)(n — 5)(n — 6)

87

{n(n3 + 42n? 4 119n — 42)

n 1

—21(n? + 13n — 18)sgsy — 35(n? + n + 6)s483 + 210(n — 2)sasa;.
‘ 2

If deviations are not measured from the mean of the sample, these terms are
unchanged, but the terms corresponding with the eleven partitions which involve
unitary parts will also be required. Full expression for the lower values of k
were given in Moments and Product Moments of Sampling Distributions, Proc.
London Math. Soc., Ser. 2, 30, pt. 3 (1928).
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