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Papers 155 and 175 attempt to-bring under a common point of view
diverse researches, of which the most important had been initiated
by Hotelling in the United States and by Mahalanobis in India.
The author’s own researches had approached essentially the same
problems by a technique known as discriminant functions. The re-
sults have here been compared in a common notation, and the first
steps taken to advance the theory of discriminant functions so far
as to test their significance and the collinearity or coplanarity of ob-
served aggregates.

The slip alluded to in Paper 175 has been corrected in the pre-
sent edition of Paper 155, and the treatment brought into line with
that of Paper 175.
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THE STATISTICAL UTILIZATION OF MULTIPLE
MEASUREMENTS

By R. A, FISHER

I. INTRODUCTORY

It has been shown (Barnard, 1935; Fairfield Smith, 1936; Fisher, 1936) that a set of multiple
measurements may be used to provide a discriminant function, linear in the observations,
having the property that, better than any other linear function, it will diseriminate between
any chosen classes such as taxonomic species, the two sexes, plants giving more or less
desirable progeny, and so on. Its use in metrical psychology has been illustrated by Wallace
& Travers (1938).

In discussing the application of this process to a taxonomic problem, I was led to point
out its formal analogy with the process of fitting an equation of multiple regression. The
type of problem involved is also closely related to problems earlier discussed, on the one
hand, by P. C. Mahalanobis (1927, 1930, 1936) and cn the other by H. Hotelling (1931).
It may, therefore, be of some value to show the connexion between these three different
lines of work, and to distinguish between the objects for which they were developed.

If we have samples of N, and N, objects respectively, and make p measurements z,, ... x,
on each, the analogy between the calculations of a discriminant function (written now with
upper affices) X = blay + 0%, + ... +bvx,,
which shall best distinguish objects of one class from those of another, and the procedure of
multiple regression, is brought out by introducing a formal dependent variate y, which is
given the value N,J/(N,+ N,) for objects of the first, and — N, [(N, + N,) for objects of the
second class.

These conventional values ensure that the average values of ¥ in the two classes shall
differ by unity, and that S(y) =0,

T N1N2 2
St) = e =
where the summation is taken over all the objects observed.

The multiple regression equation for predicting the value of y from observed values

@y, ..., %, is now of the form »
Y =3 bl(xi*‘cz):
i=1
where the regression coefficients, b, ..., b¥ are given by the equations

¥y

Al 4 i — 2
AP N
i=1
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where siy = Sl —F,) (2, — &),
z; stands for any of the variates x;, ..., x, and d, for the difference between the mean of z;
in the first sample and that in the second.

To demonstrate that we may take the coefficients b obtained from these regression
equations as the coefficients of the diseriminant function, note that

8i; = ms;;+ A2d,d,

where s;; stands for the mean product of the variates x; and z; taken within the two samples,
and n for the degrees of freedom within samples.

Substituting this expression for s}; in the regression equations, they take the form

S5 (nsiy + Aedydy) b1 = Xed,,

i=1
whence n S sybi = A2, (1 S bidj),
i=1 i=1
showing that the coefficients obtained differ only by the constant factor
A1 —-Z(bd)}

P
from the solution of the equations  n 3] ;07 = d;
i=1

obtained (Fisher, 1936, p. 181) for the coefficients of the discriminant function.

II. THE ANALYSIS OF VARIANCE
By fitting the regression equation the variation observed in the variate y has been analysed
in two portions. The sum of the products of the regression coefficients, b, and the right-hand

side of the regression equation, A%d, is
A2Z(bd),

and this is the portion accounted for by regression, out of the total A2 Consequently we

have the analysis
Degrees of freedom Sum of squares
P A23(bd)
Ny+Ny—p—1 A2{1 — 5(bd)}
TN #N-1 e
If R stand for the multiple correlation of y with x,, ..., x,, evidently
R? = %(bd).

This same quantity is the difference between the mean values of X in the two samples
observed.

The table of the analysis of variance suggests, though by itself it does not demonstrate,
that the significance of R? could be tested by applying the ordinary z test to the analysis.
Ordinarily, in multiple regression the population postulated has a normal distribution for y
for each set of values z; ... z,,. The distribution of the independent variates is then irrelevant.
The population postulated in our present problem has fixed values of y, but a simultaneous
normal distribution for z,, s X Hotelling’s earlier work shows, however, that the test of

significance is exactly that which the analysis of variance suggests.
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111, HOTELLING'S TEST OF SIGNIFICANCE

The title of Hotelling’s paper (1931) shows that he was not concerned with estimates,
but with a test of significance. The “‘eneralization of ‘Student’s’ ratio” at which he
arrived is derived from the matrix s;; of dispersion within samples. In connexion with
this he uses the vector of differences with a factor reducing it to the precision of a single
observation; in our notation £ =M.

If s% stand for the element corresponding with s,; in the reciprocal matrix, then Hotelling
chooses a form invariant for all linear transformations of xy, ..., x,, and puts
. 2 D
TZ = Z Z sugiij
i=1j=1
where n (=N, + N, —2) is the number of degrees of freedom within samples.
Now, from the equation

03 sybl = M(1- B2)d,

j=1
p
it follows that nbt = A¥1—R?) 3 s'd,;
i=1
p o
= X1- R ¥ sV¢;
=1

Multiplying by d; and adding, these equations give
2bd = (1— R?) T¥n,
or 7% = nR*(1— R?).
If we calculate the z test of significance from the analysis of variance, we find
1 —R3
0f ————.
Ni+Ny—p-1
Substituting for B in terms of T, and for N, + ¥, in terms of n, this is
7

1
z =1log —7 Slog (l + —'—;) (n—p-1)
oy l -
pn( +— )

2
z=4log——11

712

= Ylog T*n—p+1)—Llognp,
with degrees of freedom n, = p, n, = n—p+ 1, in accordance with the test of significance
given by Hotelling (1931, p. 377).

IV. MAHALANOBIS' GENERALIZED DISTANCE

The test appropriate for the significance of the discriminant function, that is for significant
contradiction of the hypothesis that the samples are from populations undifferentiated in
respect of the variates x, to x,, was thus given by Hotelling so early as 1931. Naturally,
the scalars 7 and R give no indication of the direction in p-space in which the two samples
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are most distinct; they do, however, indirectly measure the distance, or the extent to which
the two sets of multiple measurements differ. This is the object of a third series of researches
initiated by Mahalanobis in 1927.

If o,; is a typical element of the dispersibn matrix of the populations sampled, and o'/ is
the corresponding element of the reciprocal matrix, the property of the population of which
Mahalanobis proposes an estimate is

A=t S %gisgs,
Pi=1j=1
where 8 stands for the difference in each variate between the population means.

This resembles Hotelling’s test of significance in being invariant for all linear trans-
formations of the variates z; evidently also it is only zero if §; vanishes for all values of 7.
Tt differs from Hotelling’s form in being a population parameter capable of estimation.
The factor 1/p is a convention due to the fact that Mahalanobis, like Hotelling, was led
to investigate the subject through recognizing the shortcomings of the various forms of
coefficients of racial likeness which had been used by Pearson and his followers.

The practical estimation of A? takes two forms appropriate to the cases in which the dis-
persion matrix is taken as known (as are the variances in one form of Pearson’s Coefficient
of Racial Likeness), and in which it is estimated from the two samples. The first or “un-
studentized” form was investigated by R. C. Bose (1936). He used
N S B
pE= pizz..”}lf’ s N, Ny

The sampling distribution found by Bose is equivalent to the limiting distribution for
the multiple correlation coefficient to which I have called attention (Fisher, 1928). If we
consider the distribution of a variate B dependent on a population value, g8, in such a way
that the frequency element of the distribution is

GO e [ BE L Laasy, ()
{}p-2)}! p 2 p(p+2)2.4.
then the distribution of the multiple correlation coefficient, R, calculated from a large

sample from a population having true correlation p, will be found by substituting
g% = np?, B?=nRe

the distribution being exact when n is increased indefinitely, and p is the number of in-
dependent variates. :

The distribution of the unstudentized statistic D? is found equally by making the sub-
stitutions B = A2pA?,

B2 = X*pD*+p,

where A2 stands for N, N,/(N, + N,).

The B distribution is also, as was shown in 1928, closely linked with a double Poisson
series. A table of the 5 9, points is here reproduced from my 1928 paper.

For the case, of greater practical importance, in which the dispersion matrix within
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samples is not known in advance, but is replaced by s;; obtained by pooling the sums of
stquares and products from the two samples, D? is defined by the equation

» P

pD? = 3 ¥ s7dd;,

i=1j=1
in which the allowance for bias (1/A2) included in the unstudentized form has been dropped.
Such adjustments are, of course, unnecessary when the correct sampling distribution is
available. This point deserves emphasis, since some statisticians, unfamiliar with the use
of exact distributions, still seem to regard the discussion of bias as relevant to problems of
estimation.

In a very brilliant research R. C. Bose & S. N. Roy have demonstrated that the distri-

bution of D2, so defined, takes a form derivable from distribution (C) of my 1928 paper, of
which the frequency element is

Im—1)! ; v , { n+ 1 R2B* (n+l)(n+3)(1‘32/32)2 }
Rp—2(] — R2)n—p-D ¢- 1728 | : + ),
3p-2)t4n—p-1)! ( ) ) TTr 2 T TZppr )\ 72

which reduces to distribution (B) when n— o , and n R2— B2, but for finite n differs from that
distribution in replacing the Bessel function by a confluent hypergeometric function.

Table of 5 %, points of the distrihution of B*

Values Value of n;
of B 1 2 3 4 5 6 7
00 1-9600 2.4477 27955 3-0802 3-3272 3.5485 3-7506
0-2 1-9985 2-4720 2-8140 3-0955 3-3405 3-5602 3-7613
04 2:1070 2-5419 98680 3-1405 3-3796 3-5051 3-7930
06 22654 2-6497 2-9533 32125 3-4426 3-6517 3-8445
08 24505 27855 30640 3-3076 3-5268 37278 3-9144
10 26461 2-0393 3-1941 34216 3-6291 3-8210 4-0005
12 2-8451 3-1059 33386 35505 37462 3-9289 4-1008
14 3-0449 3-2796 3-4935 3-6911 3-8756 40491 42134
16 3-2449 3-4584 36561 3-8408 40148 41796 4-3363
18 3-4449 3-6410 3-8246 3-9978 41620 43184 4-4681
20 36449 3-8263 3.9976 41604 43158 44645 4-6074
22 3-8449 4-0137 41743 43278 44750 46166 47531
24 40449 42027 43539 44990 4-6388 47738 4-9043
2.6 4-2449 4-3932 45359 46735 48065 49353 5-0603
2.8 44449 4:5847 £7199 £8506 49774 51006 5-2204
30 4-6449 47772 49055 50301 51512 5-2691 5-3840
32 48449 49705 50926 52115 53273 54404 5-5508
34 5-0449 51644 52809 5-3046 55056 56142 57204
36 52449 5-35%9 54703 5-5792 56857 57901 5-8924
3-8 54449 54914 56606 57650 58675 59679 6-0665
40 5-6449 57493 58516 59521 6-0506 61475 6-2426
42 5-8449 59451 60434 61401 6-2351 63285 64204
44 6-0449 61412 62350 63290 6-4206 6-5109 6-5998
46 6-2449 6-3376 64288 65187 6-6072 66945 67805
48 6-4449 65342 66223 67091 67947 6-8792 6-9625
50 6-6449 67311 6-8162 6-9002 69831 70649 7-1457

* T am indebted to the Council of the Royal Society for permission to reproduce this table, which appeared
in Proc. Roy. Soc. A, 121, 665.
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The translation of the solution of Bose & Roy into distribution " is now merely
XpA? = B2,
XpD? = nR¥(1— R?) = T%
and, as in the case of Hotelling’s formula,
N +Ny=2=ma.

For large samples it will therefore be usually sufficient to caleulate T, or perhaps
T|J(1 + T?%n), and to enter the (B, B) table with this value for 5; the value of g for which
a significant value is just attained will give a fiducially limiting value for AX|p.

This procedure brings into relief the desirability of two further extensions of the tables
available; (@) my table gives only the upper 5 % B for given values of 8, the lower values
will now also be required; (b) it would be most valuable in addition to have tables of distri-
bution €, in the form of T for given B, or some other form which will tend to the available
limiting form given by the B table. A few suitably chosen values of n, such as 24, 12, 8, 6,
would doubtless suffice to show over what parts of the field the limiting distribution is of

sufficient accuracy.
V. EXTENSION OF DISCRIMINANT ANALYSIS

We have seen that the Calcutta School have elucidated the notion of generalized distance
in fields of multiple variates, and have advanced their researches to a point at which only
a moderate extension of existing tables is needed to apply exact tests of significance to this
measure. Work on the discriminant functions is not so far advanced. Using the same
geometrical analogy, the discriminant function is a unit vector specifying the direction of
one population from another. It is true that when two populations are indistinguishable in
respect of the measurements available, no significant estimate can be made either of the
distance or of the direction. Hotelling’s insight thus led him to the appropriate basic test
of significance for both problems. When, however, Hotelling’s test of significance is satisfied,
the relevant problems which suggest themselves diverge. Measuring distance, we naturally
will ask whether one observed distance significantly exceeds another. Measuring direction,
we shall likewise be led to test whether three or more populations are collinear, or coplanar.
The relevance, or even urgency, of such questions in all fields in which populations are
discriminated by multiple measurements is obvious.

Let us suppose we have s populations designated by m = 1, ..., 8 represented by samples of
N7 individuals. The means of the p variates in sample = willbe Z,;, ¢ = 1, ..., p.

Any component of the set of possible comparisons among samples may be defined by a set
of values A7 such that s\

Zw b
we may speak of different comparisons as orthogonal if they are specified by A and p satis-
fying the condition s AT

%

= 0.
=1 N7
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If s
2 N7=N,
==
we may choose ag our first component
& = N*[N.

Then « will not represent a comparison among populations, but by virtue of the ortho-

gonal property its inclusion ensures that
g
X A=0,
m=

so that all components after the first will, properly speaking, be comparisons among popu-
lations. These comparisons are analogous to the second set of variates x, ...z, discussed
by Hotelling (1936). Hotelling, however, is considering a set of normal variates, whereas
A7[N7, which may be regarded as a.variate, varying from sample to sample, need make
no approach to a normal distribution.

For any such comparison we may now put

&
dy= X NE,;
a=1

and obtain the corresponding discriminant function

p .
X = bix,
4

1

P p s
i alati P — NY oiid . = NN T
by using the relations bi= ¥ sid; = ¥ % §HT A
j=1 j=la-1
& .
= X A",
w1
.on
p— )
w here &= Y sE,,

=1
In the analysis above, s has its former meaning as an element of the information matrix
within samples; it is seen that £ is independent of the comparison chosen. A set of (s—1)
functionally independent comparisons thus gives a set of (s — 1) vectors defining the general
discriminant space appropriate to the s samples.
If now P .
by Ez')( g:r = thi
i=1
the sum of squares among populations for any chosen comparison is
» » P
‘ L= 3 Y, 8id,d;

i=1 i=1j=1

S
<
i

8 3 A
= LAY ¥V, X,

7=1x=1 imlj=1

s 8§

¥ OX AN,

r=1x=1

i
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Now the set of values A7[,/N7, including «, may be regarded as defining s mutually orthogonal
sets of direction cosines; hence
KX um 4 L = N7,

KTRX+ XA+ u X+, = 0,

Adding now the expressions for the sums of squares among populations, the total for a
complete orthogonal set of comparisons is found to be
8

2 N
1

=

but the component « gives

3 8 1 8 8
2 X KRR, = 7 Y ¥ NTNx,

r=1x=1 m=1yx=1
so that the remaining s — 1 comparisons contain together

S N% LS S NN

"bon— 7 ) TNXE
=1 N ﬂél x§1 X
It follows that no component can be chosen so that

8 8

O3 AT,

r=1x=1
exceeds this amount.

Each comparison has p degrees of freedom, so that in testing for collinearity we may
maximize the sum of squares of X among samples, deduct this amount from the total, and
test whether the remaining (s — 2)p degrees of freedom contain a larger sum of squares than
the variation within samples will account for. Likewise coplanarity will be tested by
deducting the largest pair of mutually orthogonal components.

VI. SIGNIFICANT DIFFERENCES IN DIRECTION

If this procedure is applied to three samples, two orthogonal comparisons are found,
containing respectively the maximal and the minimal sums of squares among samples.
These may be conveniently found from the symmetric functions

0140, = Nty + N3ty + N3tgs— %(letu + N¥tp + N¥g,)
NIN2N3
N

+tggtyy — 13y — ooty + 2by05

and 6,6, = {taolas — 3 — 2ty1lny + 2t10t15

+byitas — 812 — 255t 1a + 2b5ta5)

For author's revised version of paper from this point on, see end of paper (page 142).
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The question whether the contrast in the available measurements between two given
samples differs in direction from that supplied by a hypothetical discriminant function

» .
E = Z /3".’11{
f=1

may be solved by considering the limiting case in which a third sample is introduced, very
distant from the other two in the required direction, i.e. if

p .
&= Bsy
i=1

we let Xy = Q8,,

where (2 shall be increased without limit. The question whether the discriminant function

observed for the two given populations differs significantly from & may be recognized to be

the same as the question whether the three populations depart significantly from collinearity.
For resolving this question, we have

» p
b= 2 2, 89%,;%y;
i=15=1
» o
i=1 j=1
» .
- £2 > ﬁlfh.
i=1
. . p 3
Similarly, byy = Q X By,
i=1
L
and finally lg =23 3 BBlsy;;
i=14=1

since the absolute magnitude of the coefficient 8 is so far arbitrary, we may equate f,; to
Q2 by adopting the convention that

% % BBlsy; = 1.

i=1j=1

AsQ is increased, the larger root of the quadratic, 8;, also increases indefinitely. Signific-

ance of departure from collinearity is tested by the smaller root. The limiting value of this
smaller root may be conveniently found from the ratio 6,8,/(6, + 6,). The numerator and the
denominator of this each contains a portion proportional to Q2.

Thus, NY(N — N
us (01+02)/92“>""(“W—-)t33
_ NYN - N9
TN
NIN2ZN3
and 0,8,/€2— “NOE {(811 — 2byq+ Log) tag— (33— 2t15t05 + 153}

_ NN
TN

p v _ _ _ p _
{ 'Zl ’Zl S“(ili _xzi) (x],j - xzj) - Z: ﬁl(xli - xz.‘)} N
1=13= i=
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Hence, NIN2
02> NN

where, as in the previous work with two samples, d stands for the difference between their
means in any measurement.

Replacing N — N3 by N'+ N2, we observe that the number N, has disappeared, as irrele-
vant to the analysis; the factor outside the bracket is now A? of our previous sections. The
first term is recognizable as T'2, and the whole may be written

— A& - By
which simply replaces 72 in Hotelling’s test of significance.
In the form of the analysis of variance we have

S % sid,d,— (5~ 5],

ge=lg==1

Degrees of freedom Sum of squares
p-1 T2 - X(E, - B,)?
n—p+1 n

The significance of the deviation of the observed discriminant function from any pro-
posed function of the same kind is thus easily tested. The test may, however, be thrown into

another form of great simplicity.
IfbY, ..., b7 are the coefficients of the discriminant function obtained from the two samples

by the regression method, we have seen that

nz siyb = A%, (1— 5 b'd)

i=1
Hence n Z E EMEDLD) bidi(l -¥ b"fdi>
i=15=1 i=1 i=1
= A2R¥1— R?),
Also n E L 8;;bI8Y = A¥(1 — R?) 2‘, B3,
i=1j=1 i=

= A1 - R2) (5, — 5,).
Hence if r is the correlation coefficient within samples between the discriminant function
proposed, and that obtained,

P 2/ B P YRR N

=2 £ o) [(£ £ sorv)( 2 spp)

i=1j=1 gs1j=1 i=1j=1 /
A21 - R2% _

= ; Rz =1 52)2-
Now, we have already shown that
7%  R®

n  1-R¥
so the expression for the smaller root may be written simply as
T(1 —1r2).
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We should thus reject any proposed discriminant function, if its correlation » within
samples with the best discriminant obtainable is so low that the variance ratio

TH1—7) n—p+1
- p—-1 " =
is significant for n; = p— 1, ny, = n—p+ 1; 7% being Hotelling’s generalization of Student’s
ratio.

Ezxample. Four measurements on the flowers of fifty plants each from the species Iris
versicolor and I. setosa (Fisher, 1936, p. 183) give a ratio of the sums of squares 26-335,
for 4 against 95 degrees of freedom. The 1Y%, z (2, 95) is 0-6926, and the corresponding
variance ratio is 3:995. The ratio of the sums of squares is therefore

e

3
95 % 3-995 = -1261.

This is only 0-004791 of that observed. Consequently, at a 19, level of significance we
should reject formulae having a correlation with that obtained less than ,/0-995209, or
0-99760. This is a convenient and direct measure of the precision of the discriminant
function as estimated.

VII. SuMMARY

The results of three independent lines of research on the treatment of multiple measure-
ments are set out in a consistent notation. The method is extended to the examination
of collinearity and coplanarity of samples, and to testing the significance of deviations in
direction.
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Each comparison has p degrees of freedom, so that in testing for collinearity
we may maximize the sum of squares of X among samples, deduct this amount
from the total, and test whether the remaining degrees of freedom contain a
larger sum of squares than the variation within samples will account for. Like-
wise coplanarity will be tested by deducting the largest pair of mutually orthog-
onal components.

In choosing the component making the largest contribution it will be observed
that s — 2 coefficients have been adjusted; consequently the number of degrees
of freedom to be ascribed to the first component is p + s — 2, leaving (s — 2)
(p — 1) for the remainder. Similarly, if the next largest component be separated,
it will contain p + s — 4 and leave (s — 3)(p — 2). It will be noticed that the
sum of the arithmetic series (p +s -2+ @ +s—H+---+(pPp—s5s+2)
adds to the total of p(s — 1) degrees of freedom for the (s — 1) components and
represents the partition of degrees Jf freedom among them if they are chosen in
order of magnitude.

VI. SIGNIFICANT DIFFERENCES IN DIRECTION

The question whether the contrast in the available measurements between two
given samples differs significantly in direction from that supplied by a hypotheti-
cal discriminant function

X' = Zph;
may be most simply resolved by eliminating the variate X', or by using the par-
tial variation only for all variates when X'’ is fixed.

Thus, in the regression problem of Section I, the sum of the products with y
becomes

S(X'y) = g, = \!D
where D is the difference between the mean values of X’ in the two samples.

The sums of squares of X' within samples may be simply expressed in terms of
the correlation within samples between X’ and X, the discriminant function
obtained from the observations; for the sum of squares within samples of X is

NRY1 — RY)
and the sum of the products XX’ is
ND(1 — RY)
whence, if r is the correlation of X with X', it follows that the sum of the squares

of X'1is
NDH1 — RY /R



whence adding A2D that for all observations must be
NDH1 — R¥ L — %)} /R¥2
We may see that thus the elimination of X’ reduces the sum of squares for y from
A2 to
A2 — (A2D)2-R%?/N\?D*(1 — R* + r’R?

— 32 (1 R%? )__ 2 (1 — R?)
1 - R®+ 2R 1 — R+ r°R?’

while the portion expressible in terms of the variates z is reduced from A’R? to
r2 _ NRM1 - RH(1 —~ )
1 — R + R2r2) 1 - R4+ rR?

The ratio of the part to a whole has thus been changed from R? to R%(1 — r?).
If when so reduced the multiple correlation is no longer significant, then the
hypothetical discriminant function X’ is not contradicted by the data. The
whole class of discriminant functions contradicted by the data at any chosen
level of significance is thus specified simply by the correlation coefficient within
samples between the function proposed, and that calculated from the data them-
selves.

Example. Four measurements on the flowers of fifty plants each from the
species Iris versicolor and I. setosa (Fisher, 1936, p. 180) give a ratio of the sums
of squares

AZR2 (1 —

R? = 963416,

for 4 against 95 degrees of freedom. The 19, 2(3,95) is -6926, and the corre-
sponding variance ratio is 3-995. Here R? is

3 X 3-995
—_— e = .112025.
95 + 3 X 3-995

The ratio of R? required for significance at the 19, level, to the value of R? ob-
served, is
1 — 7% = .116279
where
r = -94006

given the minimal value of the correlation within populations, such that any
discriminant function proposed having a lower correlation than this may be re-
jected at the 19, level. This is a convenient and direct measure of the precision
of the discriminant function as estimated.
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