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THE COMPARISON OTF SAMPLES WITH POSSIBLY
UNEQUAL VARIANCES

Author's Note (CMS 35.173a)~

* Reproduced from "Contributions to Mathematical Statistics" (1950) by permission of John Wiley &
Sons, Inc.

In republishing this paper I should like to invite the reader’s atten-
tion to the first section, in which the logic of the test is discussed.
The principles brought to light seem to the author essential to the
theory of tests of significance in general, and to have been most un-
warrantably ignored in at least one pretentious work on ‘“Testing
statistical hypotheses.” ! Practical experimenters have not been
seriously influenced by this work, but in mathematical departments,
at a time when these were beginning to appreciate the part they
might play as guides in the theoretical aspects of experimentation,
its influence has been somewhat retrograde.

With respect to the particular problem, first discussed by Behrens,?
who arrived, I believe, essentially at the right solution, the origin of
the controversy may be distinctly recognised. Pearson and Neyman
have laid it down axiomatically that the level of significance of a
test must be equated to the frequency of a wrong decision “in re-
peated samples from the same population.” This idea was foreign
to the development of tests of significance given by the author in
19253 for the experimenter’s experience does not consist in repeated
samples from the same population, although in simple cases the nu-
merical values are often the same; and it was, I believe, this coinci-
dence of values in simple cases which misled Pearson and Neyman,
who were not very familiar with the ideas of ‘“‘Student” and the
author. It was obvious from the first, and particularly emphasised by
the present writer, that Behrens’ test rejects a smaller proportion of
such repeated samples than the proportion specified by the level of
significance, for the sufficient reason that the variance ratio of the
populations sampled was unknown.

This point was early emphasised (Fisher, 1937) * by giving in a
simple case the exact formula for the proportion rejected; it is ir-
relevant to the purpose of the test, for the experimenter is not con-
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cerned with repeated samples from the same population. The popu-
lation of cases which concern him is specified by the properties of
his sample, not by the functions of an entirely hypothetical popu-
lation. The objection raised against Behrens’ test thus seemed
merely irrelevant. Later 8. Wilks® has stated that he has proved
that no test can exist in this problem, satisfying the conditions laid
down by Neyman and Pearson. This, one might have thought, would
have settled the matter. It is obviously not an objection to a test
of significance that it does not satisfy eonditions which cannot pos-
sibly be satisfied! However, as the point seems still to be disputed
on these grounds, ignoring Wilks’ note, the opening section of this
paper may still serve a useful purpose. Perhaps. also, Professor
Wilks may be induced to publish the proof of his statement, and so
clarify the nature of the “requirement” which Neyman and Pearson
have, apparently inadvertently, introduced.
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THE COMPARISON Ol SAMPLES WITH POSSIBLY
UNEQUAL VARIANCES

By R. A. FISHER

1. THE NATURE OF THE PROBLEM
For many years, prior to the introduction of exact tests of significance, it was customary,
when a number of mean values had been obtained, as in a replicated experiment, each based
on two or more independent observations, to calculate independently a standard error for-
each mean, and thence to obtain a different standard error for each possible comparison
to be made.

This procedure, besides being laborious, is open to the objection, in many cases, that the
observed estimates of standard errors, ascribed to different treatments, or varieties, do not
differ more than would be expected merely from errors of random sampling. When this is
the case, it is reasonable to conclude that the greater part of the observed differences is in
fact due to random sampling, and that a more nrecise, as well as a simpler, analysis would
be possible by pooling the sums of squares of deviations obtained from different varieties,
and using the pooled estimate for all the tests of significance required.

This change (Fisher, 1525-38), which made it possible to make exact tests of significance,
had the advantage of giving precision to the null hypothesis, which the tests were required
to substantiate, or to diseredit. For the null hypothesis is now simply that all treatments
or varieties, or those of them chosen for comparison, are equivalent in the circumstances
of the test, and in respect of the measurements used. Consequently, the pooling of the
estimates of error is now habitual in all experimental trials,

Critics concerned to uphold the older biometrical tradition, misunderstanding the nature
of the hypothesis to be tested, argued that such tests were invalid on the ground that the
variances of the different varieties were assumed to be equal. The equality of the variances is,
however, a characteristic of the null hypothesis chosen. This hypothesis is never assumed
to be true, and the whole point of the procedure is to give the facts an opportunity of demon-
strating its falsity if, in fact, it is not true. It is an hypothesis particularly appropriate to
experimental trials, in that, if a treatment has any effect on the variances of the observed
values, it must in some circumstances increase them, and in others diminish them; so that
any hypothesis involving a difference in variances is only of interest when it is already
admitted that the treatment has any relevant effect at all.

The advances of statistical science have consisted largely in the provision of exact tests
of significance appropriate to an increasing variety of useful hypotheses, and occasionaily,
though not characteristically in experimental work, some interest attaches to hypotheses
implying that the means of two populations are equal, while their variances are unequal.
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At least a theoretical problem of this sort can be framed. The solution has been known for
nearly ten years (Behrens, 1929), though it has been obscured by some controversy (Bartlett,
1936), arising. I believe, from a misunderstanding of the nature of the problem. Useful
tables of the solution have recently been published (Sukhatme, 1938), and it is the purpose
of the present note to clarify the hypothesis of which they furnish the exact test.

In putting forward hix test of significance “Student™ (1908) specifies that the problem
with which he is concerned is that of a unigue sample. His clear intention in this is to exclude
from his discussion all possible suppositions as to the “true” distribution of the variances
of the populations which might have been sampled. If such a distribution were supposed
known, “Student’s” method would be open to criticism and to correction. In following his
example it is not necessary to deny the existence of knowledge based on previous experience,
which might modify his result. Lt is sufficient that we shall deliberately choose to examine
the evidence of the sample on its own merits only. This has not only the advantages of giving
simplicity and definition to the problem, it has the profoundly important effect that modern
tests of significance, treating each body of data as unique, can thereby derive from them
independent evidence which may be compared, knowing it to be independent, with evidence
from other sources. In applying this principle, there is, of course, nothing to prevent us from
combining the evidence of several different samples. We can do so and at the same time treat
the whole budy of available material as a unique body of data. Without methods of treating
unique saruples, we should have no real guidance in these more complex cases.

This principle is important for our problem, because it might be thought, that in testing
the significance of the difference between two means of normal samples, when the hypo-
thetical equality of the variances of the populations from which they are drawn is deleted,
it is to be replaced by some supposition, based on previous experience, as to the true ratio of
the variances, or as to the distribution of this true ratio. On the contrary, when any such
previous experience, sufficiently valid to demand inclusion, exists. I suggest that it should be
treated in exactly the same way as the evidence supplied by a unique pair of samples. In
this way it will, of course, add to our information and, in consequence, allow of the rejection
of the hypothesis that the means are equal, in cases in which such a rejection would otherwise
be inadmissible, but its possible existence does not supply any reason for neglecting the
problem of a pair of samples regarded as unique.

For the case in which the variances are by hypothesis equal, any difference between the
estimated variances is evidence only of sampling error. The element of our hypothesis by
which the equality of the variances is replaced, is that the obscrved ratio between the
variances is no evidence that this ratio is in error in one direction, rather than the other.
We suppose, indeed, that it will be affected by sampling error, but the increment or decre-
ment in the logarithm of the estimate due to errors of random sampling will be supposed, in
the material to which the test is applied, to be distributed exactly as such errors ave known
to be distributed in general, for estimates based on the same numbers of degrees of freedom,
i.e. in the z distribution.
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176 SAMPLES WITH POSSIBLY UNEQUAL VARIANCES

The implication of this supposition is that whereas, supposing the variances of and o
equal, the estimate s2 derived from one sample is equally relevant to the estimation of of
as to that of o2, now, when the variances are no longer supposed equal, we specify for exacti-
tude that the value s2is of no relevance for the estimation of o3, nor is sj of relevance for the
estimate of o%. In this precise sense the unknown variances o} and o} may be spokern of as
“independent by hypothesis . Such variances may, of course, be near to equality, or may
differ to any possible extent.

In contrasting this hypothesis with that of equality, it is worth noting that, just as the
latter is appropriate when the variances of the populations sampled are not exactly equal,
but differ by an amount small compared with the errors of sampling, so that hypothesis of
independence implies that real differences are to be expected which are large compared
with the sampling errors. Evidently, in the same material, we may be more interested to
test the hypothesis of equal variances when the samples are small, and the hypothesis of
independent variances when the samples are large. Equally, the investigator will be free,
without incurring the charge of inconsistency, to test the same body of data from these two
contrasted standpoints.

2. ANALYTIC PROPERTIES OF THE SOLUTION
mtl
Let ny(ny+1) 8§ = ‘? (x-2)%

N1
Ny(ny+ 1) 83 = L? (' —Z')%

A statistician who also knew the true variance ratio of the populations would know the
true relative weights of the means z, Z’; let these be as 1 :w.

Then (g + 1) (ny 53+ wnysh)
would be the sum of n; +n, homogeneous squares, from which, by dividing by », +n, and

ny+ 1, the sampling variance of Z can be estimated. Hence the sampling variance of the

difference 7 — %’ is 1

Ny + 7y

1
14— s2 2y,
( +'w) (g 83+ wny 83)

If any limit, Z—Z = d.J(s3+53),
where d depends on 7, and n,, and also on the ratio s, : s,, were proposed, such a statistician
could calculate 5

o _Pny ) (51 +3)

- 1
( 1+ E) (n183 + wnys3)

]

and from this value, and the number of degrees of freedom, n, + n,, could read the probability
that a pair of samples, from populations having the same mean, should give a difference
between the observed means greater than the limit proposed.



R.OA FISHER 177

The inclusion of the sum of squares, s3+«% in the formula above is not arbitrary, but
merely conventional, since d is supposed to vary when the ratio s, :s, is changed. Any limit
of the kind proposed could therefore be put into the form chosen.

The probability obtained by this process clearly involves w, and cannot be ascertained
so long as w is unknown. We may, however, suppose that in the material to which the test
is to be applied w takes different values in accordance with a known law. The average value
of the probability will then be the probability, on repeated trials with varying values of w,
that a statistician, knowing for each trial the frue relative weight but ignorant of the
absolute variability, would find the limit proposed to be exceeded by chance, by the means
of samples from populations having in fact the same mean.

If »; and », are the population variances, then

v = (ny+ 1) '1;1;
(ny+ 1),

and, whatever the values of »; and v, may be, if

2

§

1 1
2 =1log —L
2R s’

then z will be distributed in its familiar distribution with n, and n, degrees of freedom.
Hence fiducially w may be taken to be distributed as is
s3fs2e=.

For example, consider the case n; = n, = 6, 8; = s,, for which according to Sukhatme’s
table, based on Behrens’ formula, d = 2-435.

As typical of the variation of w we may take the medians of sixteen ranges of equal
frequency, for which £ is an odd number over 32; as the case is symmetrical, only 8 values,
from 1/32 to 15/32, need be tabulated (Table I). The second column then gives the fraction
of the total weight contributed by the less weighty sample, either

w 1 1 e%
wil &1 Y Wyl &l

(n

Table I. Frequencies with which the tabulated values of d are exceeded
Sfor various possible values of the true relative weight

> -.w_,, i [

! w1 d ¢ 0
1/32 015906 073146 17811 502
3/32 0°24050 085477 20814 2:98
5/32 020479 0'9I190 22205 233
7/32 033927 094692 2-3058 199
9/32 037865 0977010 23622 1-80
11/32 G'41505 098546 2:3996 1-68
13/32 044966 000492 2:4226 161
15/32 048332 ©'99944 24336 1'59
1900
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178 SAMPLES WITH POSSIBLY UNEQUAL VARIANCES

. 2,

Knowing w, we can calculate - = —Nz)-,
d w+l

the values of ¢ are obtained by using Sukhatme’s value of d, and those for the percentage

falling outside the fiducial limits, from “Student’s” (1925) table in Metron. The average

of the eight values is 2:38 9. Seeing that a finer graduation would doubtless have increased

the contribution of the tails, the agreement with 2:50 %, is entirely satisfactory.

3. EQUIVALENCE WITH PREVIOUS SOLUTION.
The analytic equivalence of the two approaches is most easily perceived by means of the
analysis of variance.
We have to consider the independent variation of ¢ for n, +n, degrees of freedom, and of
z for n; and n, degrees of freedom, and in this double distribution to calculate the total

probability that
d*(ny +ny) (51 4 83)
(s +s3e%) (ny+mpe%)’

2

Nowif 4, B and C are the sums of squares respectively of 1, 7, and n, homogeneous degrees

f
of freedom, (ny +715) 4
B+C

=2

for n, + n, degrees of freedom, while
ny 3

= 22
n C

for n, and n, degrees of freedom. Consequently, the inequality defining the region of
significance may be written in terms of 4, B and C as
d?(s? +s3) BC
(n,83C +nys¢ B)’
. dst+sf) _msi mes
or, more simply, as y < g + o (2)
Using trilinear coordinates 4, B, C the boundary is a conic through the vertices of the
triangle of reference.
We obtain the same analysis of variance, and therefore the same simultaneous distribution
of 4, B and C by putting
B = ny(ny+ 1) 83/vy,
C = ng(ng+ 1) s3/vy,

- - 2 Y1 b

A = (81— 8yty) /(n1+1+n2+1)’

where ¢, and f, have respectively n, and n, degrees of freedom, and are distributed
independently.
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Substituting these values for 4, B and € in equation (2), we find

(818, — 89ty)? > A2(8% + 83),
which is the inequality given by Fisher (1935) and used by Sukhatme.

The values calculated in Table I show that the reason why d is as high as it is, is that it
makes allowance for the possibility that the relative weight of the two means compared
differs materially from what the samples indicate. In that example, however, the apparent
weights are equal, and to obtain a clear understanding of the test it is worth while to con-
sider a case in which we can distinguish between the effects of two different possibilities,
which the experimenter will certainly wish to consider: (@) that the true variances are unequal,
and (b) that their ratio differs from that of the estimates derived from the samples.

If, in the general formula,

tz o dz(n1+n2) (8%‘*-8%)
(L+ Lfw) (ny s} +wnys3)’

we consider first the supposition that the variances are equal, we shall put

Ny + 1
W == e
ny+1

<o that P +ny+ 2 ' {ny(ny+ 1) 83 +ng(ny+1) 83} ,
mmy (D, +1) (1)

Note that d? is not in general equal to #2 in this case, though it is so when n, = n,. Thus, if
n; = 6, ny, = 8, the 5 9, value of ¢ for 14 degrees of freedom is 2-145. Taking s3/s3 equal succes-
sively to 3, 1 and 1/3, we find

d = 2:033, 2-109, 2-320.

If, in the second case, it were supposed that the real relative precision of the two means

were exactly equal to the apparent relative precision, we should have
w = s}Jsz,
whence 82 = d2.

If, on the contrary, we allow for the possibility that the apparent relative precision
differs from the true precision by sampling errors given by the 2 distribution, the appro-
priate values of d are those given in Sukhatme’s table, with which we may compare the
values obtained above.

It will be seen from this table that the possibility that the true ratio of weights differs
materially from what it appears to be, is the major factor in requiring a larger value of d

Table II. Values of d appropriate to different suppositions, ny = 6, ny = 8

sifss 3 1 1/3
Equal variances 2'033 2°109 2'320
Estimated variances 2145 2°145 2°145
Independent variances 2398 2:364 2:332




198

180 SAMPLES WITH POSSIBLY UNEQUAL VARIANCES

when the samples are small. To take into consideration only the possibility that the true
variance ratio is equal to that observed is quite insufficient. When the smaller apparent
variance is associated with the smaller number of degrees of frecdom, this test may actually
diminish the value of d below that obtained for equal variances. The problem of a test of
significance for samples with possibly unequal variances has, however, often been conceived
as though in this case the only danger to be considered was that the true variances should
differ from equality as much as appeared from the estimates. The danger that, owing to
randomsampling, the estimated ratio should be in error, has not apparently been appreciated.

This may explain why Bartlett (1936) should have thought it could be inferred (for the
case n, = ny) that the probability of exceeding d must always be greater when s, = s,, than
when s, or s, = 0. He says: (p. 565)

An examination of Behrens’ complete table (r; = n,) might be sufficient to make us suspect its
validity, for in all cases the fiducial probability given is less for s;/s, =1 than s,/s, =0 or oo,
whereas given T, we should expect to be more sure that the observed difference is significant if
8,/85 = 1, since in that case there is evidence that o} + o} is more efficiently estimated.

Sukhatme’s work has now shown that at the 5 %, level the facts are the reverse of Bartlett’s
statement when » > 5. It is probable, however, in any case that Bartlett would not now be
inclined to press an argument of this sort, for the errors of s} + s} regarded as an estimate of
0%+ ot fail to specify the errors of s§/s3. It would be impossible, without entering exactly
into the analysis, to make inferences as to the relative values of d appropriate to different
observed ratios. There seems to be no justification for Bartlett’s procedure of taking the
value of d when s;, or s,, is zero as an upper limit for other cases. At the time of writing,
however, Bartlett was evidently under the impression that an analytic error of some kind
underlay Behrens’ formula, and this perhaps made him expect to find some unreasonable
feature in the table.

There can be now no doubt that the supposed error was non-existent. Behrens proposed
and gave the correct solution of a perfectly definite problem. Opinions may differ as to the
occasions in practical research to which this problem is appropriate, but a discussion of this
topic cannot be furthered by the suggestion that the numerical results to which his solution
leads are inaccurate. It is probable that, at the time he wrote, Bartlett imagined that he
had found a better approach to the same problem, but, as has already been shown (Fisher,
1937), the test of significance on which he relied is irrelevant to the work he was discussing.
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