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AN EXAMINATION OF THE DIFFERENT POSSIBLE
SOLUTIONS OF A PROBLEM IN INCOMPLETE BLOCKS

By R. A, FISHER

1. INTRODUCTION
AECENT papers in the Annals of Bugenics by Yates (1936) and Bose (1939) have drawn
attention to the importance of the combinatorial problem which arises when it is desired
to compareanumberof “ varieties ’, orexperimental treatments, on *“ blocks” ofexperimental
material, which, for the sake of greater homogeneity contain fewer units than the number of
varieties to be used. The practical importance of this type of experimental arrangement
has been demonstrated by Yates, who also provides a series of practically valuable solutions.
A somewhat larger collection has been since published by Fisher & Yates (1938). Bose,
while adding further solutions to those so far discovered, has discussed the intimate con-
nexion of this problem with other branches of mathematics, notably with finite geometries.

Although the greatest practical importance attaches to the first solution of such a problem,
it is also of some theoretical interest to discover what other types of solution may exist.
The chief purpose of the present paper is to report the results of such an exploration of one
of these problems, chosen as being in itself comparatively simple, while at the same time
furnishing a multiplicity of solutions.

As a preliminary let us set out the primary arithmetical requirements, and demonstrate
an important inequality.

If each block contains a selection of & different varieties out of the number » available, we
require a set of b blocks, such that in the whole solution each variety shall ocour r times,
while each pair of varieties shall occur together A times. Then the five variable integers
are connected by two primary equations:

vr=%kb, (1)
w-DA=&k-1)». (2)

Sets of numbers fulfilling these two conditions may be thought of as constituting a dis-
continuous assemblage in three dimensions.

Corresponding to any solution, there will be an infinite series of other solutions obtained
by merely repeating the arrangement arrived at n times. In such a series the values of &
and v are unchanged, but those of A, r and b will be multiplied by ». The existence for such
a series of problems of solutions corresponding with all solutions of the primary problem is
thus assured. Further, if A, » and b have any common factor, n, there may exist a solation
for the same value of v and £ and for values Afr, rfn and bfn, and this will be so if, and only
if, & solution of the primary problem exists consisting of sets of n identical blocks. For the

Annals of Fugenics, 10: 52-75, (1940). 259



260

R. A. FISHER 53

practical purpose of obtaining a single solution, therefore, the whole series of problems is
solved when it is ascertained that the terminal member has a solution. Any problem with
A = 1 stands at the head of its series. The types of solution may, however, become much
more numerous as the number of replications is increased.

A different type of correspondence is shown by the complementary solution. If, keeping
v and b unchanged, we replace each block of k variates by a block of the remaining v~k

varieties, then
EF=v—k or k+k =vw,

also, since vr' =k'b = (v—k)b = vb—wr,

it follows that r'=b—r, or v+7 =0b.

Again, since w—DA =E-1)r"=@w-k-1)¢

and (v—-1)A = (k—1)7,

we have (=1 (A"—A) =o' —kb—(r'~7r)
= (v—1)(r' —7).

Hence AM=A=7r"—1, or r—A =r—A.

Since to every solution of a problem in which 2k > v there thus corresponds a solution of
a corresponding problem in which 2k < v, the number and structure of systems of solutions
of the two complementary problems are identical.

If all possible selections of k from v varieties were made we should have

b=vllk!(v-1F)!
r=(@~—DYlk-1){v—k)!
A= =2 (k—2)! (v—F)!

If H is the highest common factor of these expressions, and if a solution exists for b, »
and A equal each to 1/H of the expression above, then all problems associated with the values
v and k form a single series. If, however, no solution exists for the highest common factor,
all prime multiples will belong to different series. It is important that the smallest pro-
portional set of possible values, b, r, A may be incapable of giving a solution through having
r < k. We shall now prove that in no such case is a solution possible.

In relation to any block, let us consider as a variable quantity, x, the number of varieties
which any other block has in common with it. There will be b — 1 such other blocks. The
sum of the b—1 values of z, which we may write S(z), is easily found; for each of the &
varieties in the block appears r— 1 times in other blocks. Consequently

S8x) = k(r-1. . (3)

The ratio of S(2?) to S(z) will be the average value of x in blocks chosen to contain one
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variety in common with the first block. For any chosen variety there will be r—1 8
blocks, and each of the other (k— 1) varieties will occur in these (A — 1) times. Hence

s — -1

S@S@) = 1+ W

Then S =k(r—1)+kk-1)A=-1). .. €]

But, the sum of the squares of the (b — 1) (b — 2) differences between two values of ,
(b —1) S(x?) — S¥x)

is necessarily positive or zero. Since from (1),

ur

b—1= A 1,
we have vrr— D) +or(k—1)(A—1)~k{r—1)—k(k—1) (A= 1)—k2r—1)2
But vr(r—1)—wor(k—=1) = vr(r—k)
and vr{k—1)A = r¥k—12+r(k—1)A, from (2)

2 k-1 =k (r—1)t = (r+k—2rk) (r— k),
rk—DA—k(k—1)A = (k—1)A(r—k),
—k(r—1) +k(k—1) = — k(r—k).
Hence (r—k){or+r—2rk+(k—1)A}
cannot be negative, but
(k—DA=(k-1)r—(v—k)A, from (2)
and vwr—rk = (@-k)r,
hence the chosen expression is factorized in the form
(r—k)(v—Ek)(r—A), ceeee (B

which, divided by (b— 1)%, gives the variance of the b —1 values of x corresponding w
any block.

Now, in all cases, v > £ and r > A, hence r > k.

Also, in the limiting case where r = £, it follows that x is constant, and evidently is eq
to A. In this limiting type of problem, blocks and varieties are equal in number and fi
the same condition.

Observe that when the blocks are complete, the factors (v —k) and (r - A) both vani
so that » may be less than k, while still satisfying the requirement that the variance ¢
cannot be negative,

When A = 1. equations (3) and (4) reduce to

Sx) = S(a?) = k(r—1),
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so that 2 is always O or 1, and in fact takes the value unity just 4(» — 1) times. In other cases
more than one distribution of z is possible, and more than one may be realized for different
blocks of the same solution.
In the case r =8, v =9, k=4, b= 18, A = 3 (no. 11 of Statistical Tables), it appears
that
b—1 =17,
S(x) = k(v—-1) = 28,
L+ (k=) A=1)f(r—1) = 1+6/7,
S(x?) = 52,
There are two possible distributions of 17 values of x such that their sum is 28, and the
sum of their squares 52, namely,

) Frequency Frequency
z distribution (a) | distribution (b)
o X —
1 4 7
2 12 9
3 e I
Total 17 17

Since in the solution given blocks abgh and edef appear, having no letter in common, these
must both have the frequency distribution (a), while the blocks abed and bedg having three
letters in common must both have the frequency distribution (b).

In general if, in any distribution, four consecutive frequencies can be increased or
diminished by the series 1, —3, +38, —1, without introducing negative frequencies, the
values of 8(z) and 8(x?) will be unaltered, and a new solution will be obtained.

2. STANDARD SOLUTIONS AND SETS

Given any solution of a problem of incomplete blocks, we may designate the varieties by
letters, supposedly unlimited in number, and arrange the letters in each block in alpha-
betical order. Since the blocks may themselves now be arranged in alphabetical order, using
the same convention as for words in a dictionary, it is obvious that corresponding with any
golution there is one and only one solution in standard order. This is called a standard
solution. From it a permutation of the blocks will generate a number of solutions, the
number being b! if the blocks are all different, as they must be when A = 1, but which is a
submultiple of b! for solutions containing sets of two or more identical blocks.

Given astandard solution, we may permute the letters, and rearrange the blocks in standard
order, 8o as to obtain either the same or another standard solution. Permutation of the
letters, then, will generate a set of v!, or some submultiple of v!, different standard
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solutions. Corresponding to any member of a set of less than »! standard solutions there will
be a group of permutations of the letters which is inoperative in changing the solution. The
number of standard solutions in the set is v! divided by the order of this inoperative per-
mutation group. Any permutation of the letters which gives a new standard solution may
be applied to the inoperative group in order to find the inoperative group of the new solution.

We may wish to consider solutions subject to some further restriction. For example,
where b is a multiple of 7, and therefore v of k, the blocks may be divisible into r divisions,
each comprising a complete replication. Such restricted solutions must also have inoperative
permutation groups, which must be subgroups (including in that term the two extremes,
the identity and the entire group) of the group inoperative for the corresponding unrestricted
solution. When the subgroup is a proper subgroup its order must be a factor of the order of
the group, and the ratio of these two orders represents the number of ways of subdividing
the solution in question into replications of this set. The same unrestricted solution may, of
course, be capable of subdivision in two or more ways belonging to different sets, just as a
Latin square may have Graeco solutions belonging to different sets of Graeco-Latin squares.

3. METHOD OF SPECIFICATION APPROPRIATE TO BLOCKS OF 3, A =1

In specifying a solution it is useful to determine some character of the individual varieties
in which they may be the same or different. With blocks of three this may be done by deter-
mining a character of each pair of varieties. Thus we choose two varieties @ and b, then when
A = 1, these uniquely determine a third variety ¢, with which they constitute a block. The
remaining varieties will each oceur with @ in one block and with b in another. Thus we may
find a chain of blocks such as

pag gbr ras sbt taw wbv ...

in which » must differ from p, and ¢ from », though ¢ may be the same as p. At whatever point
recurrence occurs we shall have a pair of closed chains consisting of letters other than a, b
and ¢. The number of varieties must, of course, be odd, since v— 1 = 2r, and we see that each
pair of letters will be associated with some partition of the partible number L(v —3), or
(7 — 1), into parts of 2 or more. In the case we shall investigate, v = 15, the partible number
is 6, and the possible partitions are

(6), (42), (3% and (2%).

Since parts of magnitude 2 have a special convenience for generating new sets, our primary
interest in the partition lies in the number of these it contains. Thus a partition (23) may be
marked 3, a partition (4 2) is marked 1, while partitions 6 and (32) which have no part 2 are
denoted by the symbols — and x, since there is also a real advantage in distinguishing them.

In order to classify rapidly a number of pairs of varieties appearing in any given solution,
it is convenient to write out the » x » Latin square corresponding with the solution. If the
rows, columns and letters of a square arve all made to correspond with varieties, then the
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existence of a block abe requires six entries corresponding to a general permutation of the
categories, i.e.
Row a meets column b at letter ¢

, @ ' c " b
, b ' a ¢
s b ' c ” a
» € 1 a 7

c b ’ a

b2 ] "

The square is therefore itself self-adjugate. As an illustration I give the 15 x 15 square
corresponding to Savur’s (1939) solution of the problem v = 15,k =3, =35 r =7, A = L.

Table 1. Self-adjugate 15 x 15 Latin square corresponding to the problem of
selecting 35 incomplete blocks of 3 out of 15 varieties (Savur’s solution)

a o n m I k 5 2 h g f e d ¢ b
o b m I k 7 ¢« n g f e d ¢ h a
n m e k j ¢ o L f e d h b a gq
m | k d ¢ o n j e h ¢ b a g f
! ¥ 5 ¢+ e nm o d ¢ b a g f h
k 7 ¢ o n £ I m ¢ b a g h e d
j i o n om I g k b a h f e d ¢
i n L 5 o m k h a d g ¢ f b e
h g f e d ¢ b a i o n m L k j
g [ e h ¢ b a d o §j m n k 1 i
f e d ¢ b a b g n m kK o j i h
e d h b a ¢g f ¢ m n o 1 i § k
d ¢ b a g h e f Ul k 7 ¢ m o n
¢ h a g f e d b k U & 5 o mn m
b «a g f h d ¢ e § © k h n m o

Letters in heavy type on the diagonal indicate with which variety each row or column is taken to
correspond. In use this diagonal may be left blank.

From such a square it is easy to read off the entries of the triangular diagram in which each
pair of letters is characterized. To do this we fix attention on the two chosen rows and
alternate between them following the same column and the same letter alternately. If a
cycle of 6, 4 or 3 letters is encountered the partition is determined without further inspection;
if a eycle of two, it will be necessary to start with a third letter to determine whether it
belongs to a cycle of two (scoring 3), or of four (scoring 1). Thus from rows a and b of the
square above, we may read the cycle ..nmlkji. . ; similarly, from rows a and h the cycle
..nlo. ., from a and ithe cycles . .nf.. and . .og.., while from a and j the cycle . .ofmh. .,
these being representatives of all four partitions possible.

The triangular table representing the relations of the 105 pairs of varieties is then easily
filled. The lines of such a table are read down to the diagonal, and then across horizontally.

Each individual letter is now characterized by the score of each of the fourteen pairs into
which it enters. Thus d, f and g each enter into three pairs scoring 1 and one pair scoring x ,
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they may be characterized by the formula (13x ). The classification of all fifteen letters is
then as follows:

1¥x 31%x 313x7 112 318 3218 310190 1

dfyg abee h ino Jkm ¢ Total

Table 2. Triangular diagram showing the character of the double chains
associated with each pair of varieties (Savur’s solution)

4 - =—-— —-— - - - X 3 1 1 - 1 - -
» - - - - - x - 3 1 I - 1 -
¢ - - —-— —-— X — — 3 1 I - 1
d - - X - - - 1 - 1 1
€ — — X — 1 - — 3 1 I

f - x - — — 1 - I 1

g X —- - - I - 1 I

h 3 - —-— 1 —~— 1 1

i 1 1 1 1

i r 1 1 1 1

E ¥ 1 1 1

1 1 1

m 1 I

n I

0

Since A and ¢ are unique, it follows that the same is true of the letter a with which they
make a block. The twelve other letters fall in four groups of three. It is then easy to find
that when b is replaced by c, ¢ by ¢ and e by b, it is necessary, if we are to maintain the same
solution, to make the similar cyclic substitutions (dgf), (jkm), (lon), and that no other
permutation than this will leave the solution unaltered. The inoperative group is therefore
the cyclic group of order 3,

(bee) (dgf ) (jkm) (lon),

and the number of standard solutions in the set is 151/3.

4, INTERCHANGES

Any cycle corresponding to a part 2 implies the existence of four blocks, such as

pax, abg, qay, ybp,
which may be thought of as a set of four out of the eight possible successions of choices,
aorb,porg,xory.

When a set, of four such blocks occurs in a solution it implies the existence of a part 2 in
the partition corresponding with the three pairs of letters ab, pg and zy. It will, therefore,
contribute 6 to the total for all the letters. Thus, if taking the total of all the formulae for
the fifteen individual letters we have, as in this case, 31 190 x 14, we may obtain the number of
such sets of four blocks in the solution by dividing (3 x 10) + 90 = 120, by 6. There are thus 20
such sets of four blocks in Savur’s solution.

e
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Evidently in such a set of four, if we interchange either « and 6. or p and ¢ or v and y,
we shall obtain a complementary set of four blocks, e.g.

apy, aqzr, bpx, bqy,
in which, as before, the fifteen pairs of these six letters, except the three pairs ab, pg and 2y,
all oceur once. This new set of blocks may therefore replace the old in the complete solution,
thus supplying a convenient method of generating new solutions from any given one. Such
an interchange is sufficiently designated by the formula

{(ab) (pq) (xy)},

implying that whichever set of four blocks occurs in the old solution is to be replaced by its
alternative. The outer brackets are only required to distinguish an interchange limited to
four blocks, from a permutation applied to all.

It is not in general necessary to examine all possible interchanges individually, since the
symmetry implied by the existence of any inoperative group of permutations shows that
some of them may be equivalent. Thus Savur’s solution in the form in which I have taken it
from his paper (only replacing numbers by the corresponding letters of the Latin alphabet),
contains the four blocks

abo, agj, bgi, jo,
and is therefore susceptible to the interchange

{(at) (b)) (o)}

applying the inoperative permutation
(bee) (dgf) (jkm) (lon),

it is clear that the set of three interchanges

{(ai) (b7) (go)}, {(@i) (ck) (fn)}, {(a2) (dI) (em)},
are all equivalent, and must lead to members of the same set of solutions,
To express the argument more formally, if S stand for Savur’s solution, then we have
shown that
(bee) (dgf) (jkm) (lon)S = 8.
Hence, applying the interchange,

{(at) (b)) (go)} S = {(az) (b)) (go)}.(bee) (dgf) (jkm) (lon)S
= (bee) (dgf) (jkm) (lon).{(ar) (dl) (em)}S.

In this manner the twenty possible interchanges are reduced to six triplets of equivalent
interchanges, and two single interchanges, which are unaltered by the inoperative per-
mutation. The reversal of each of these symmetrical interchanges generates only 15!/3
standard solutions, so that not more than this number can be different. In consequence,
they must lead to sets of at least threefold symmetry. A triplet of equivalent interchanges,
on the other hand, might lead to a set without symmetry containing the full number of 15!
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different solutions, and indeed four of the six do so. The two other triplets, which lead
sets of threefold symmetry, necessarily account for similar triplets in the sets to which they
lead.

An interchange occasionally leads to a member of the same set as the solution to whicht
is applied. We may then distinguish between cases in which it re-enters by the same or b
a different interchange; both types occur among these solutions.

5. THE SETS FOUND
In all, seventy-nine distinct sets of solutions were encountered. This was more than I hac
expected, since the problem with v = 13, & = 3, r = 6, b = 26 has only two sets. Classifiec
according to the two simple characteristics (i) the symmetry number, the order of th
permutation group for which each solution is invariant, and (i) the number of possibl
reversals, they are shown distributed in the following table (Table 3).

Table 8. Distribution of 79 sets in two characters

Symmetry number

I 2 3 4 5 6 8 12 21 24 32 36 96 168 192 288 2016

Reversals

N =N OB W
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In its general character the table resembles that of H. W. Norton for the sets of 7x 7
Latin squares, with which it should be compared. The distribution of reversal number is
remarkably level with a preference for odd numbers, especially among the larger numbers.
As with the Latin square the higher reversal numbers are associated with high symmetry.

It will be noticed that a large number of sets, thirty-six in all, are without symmetry. In
these no two varieties are related alike to the others. As these sets contain the full number of
15! standard solutions, while the remaining forty-three sets each contain at most half that
number, it appears that the majority of all solutions belong to such complete sets. Actually,
of about 60 billion* standard solutions over 47 billion, or 78-12 9, belong to sets without
symmetry. The distribution of numbers of sets and standard solutions by symmetry number
and number in set is shown in the following table:

Table 4. Distribution of sets in relation to symmetry

Svm. 3 Percentage
I?l}(;:;rl{y No. of solutions )(I)(;' No. of Percentage | With as high
no. in each set sets solutions or higher

symmetry
1 1,307674,368000 36 47,076277,248000 7812
2 653837,184000 6 3,023023,104000 6:510 21-88
3 435891,456000 12 5,230697,472000 8:682 15370
4 326918,592000 8 2,615348,736000 4341 6-688
5 261534,873600 I 261534,873600 04340 2'3473
6 217945,728000 I 217945,728000 03617 19133
8 163459,296000 2 326918,592000 05425 1°5510
12 108972,864000 3 326918,592000 075425 1'0091
21 622770,208000 I 62270,208000 01033 04666
24 54486,432000 2 108972,864000 01808 03633
32 40864,824000 I 40864,824000 006781 0-18254
36 36324,288000 I 36324.288000 006028 011473
96 13621,608000 I 13621,608000 002260 0'05445
168 77837776000 I 7783.776000 001292 003185
192 6810,804000 I 6810,804000 001130 001893
288 4540,536000 1 4540,536000 0007518 00070626
20160 64,864800 I 604,864800 00001076 00001076
79 60,259918,118400

The cumulative percentages in the right-hand column show that about one solution in
100 has symmetry of 12-fold or more, about one in 1000 of 36-fold, while only one in a million
belongs to the set with highest symmetry (20160). The graph (Fig. 1) shows the relationship
between the symmetry on a logarithmic scale, and the negative logarithm of the probability
of finding symmetry as high or higher.

Table 3 shows also the number of interchanges available in each set. In the thirty-six
sets without symmetry these are liable all to lead to different sets. The 363 interchanges of
which these sets are capable lead predominantly to sets without symmetry, but a minority
lead to smaller sets, in such cases they correspond with a number of equivalent interchanges

* This seems to be the correct English word for 10'% In journalism, and unfortunately even in
mathematical works in America, the word is used for ro’.
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in the sets to which they lead. Table 5 shows the distribution of the totaliby of 1390 inter-
changes according to the symmetry of the sets from which they originate, and that of the
sets to which they lead. The right-hand vertical margin gives the former distribution, and
the lower margin the latter.

The entries in the diagonal, representing cases in which the symmetry number is un-
altered, include all cases in which an interchange leaves the set unaltered. Thus of the 291

7 | I | 1

6+ @® —

5+ —

4 @ —
R ®
~ ®
& ®
= 3 ® ]

®
2= ® 0] —
&
x
. (O]
® —
@
X
x
06 | % | | J
1 10 100 1000 10000
Symmetry

Fig. 1. The relation between the relative frequency, P, of solutions having as high or higher symmetry, and
the symmetry number of the sets concerned. Both are plotted logarithmically. © Solutions of the un-
restricted problem. x Solutions of the restricted problem.

cases in which both sets are without symmetry in 25 the sets are identical. In seven of these
the interchange also is identical, while the remaining 18 cages represent 9 pairs of reciprocal
interchange.

With respect to sets showing symmetry certain variations may be noted in the permutation
groups to which they are invariant. Innearly all cases these contain only even permutations.
No. 21 is an exception. Of the six sets with twofold symmetry the four with 23 interchanges
or less involve six pairs of equivalent varieties, and three unique, while the two sets with
31 interchanges have seven unique varieties, and only four pairs involved in the inoperative

permutation.

26
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Ten out of the twelve sets with threefold symmetry have three unique varieties and four
triplets which may be cyclically permuted. The remaining two, one with two interchanges
and one of those with seven, have five triplets. Of the eight sets with inoperative groups of
order four, six have cyclic groups. Those with six interchanges are of the form (4% 2), that
with eight of the form (43), those with 10 and 18 of the form (4* 2). One with 25 is of the form
(4%22), while the other, and that with 37, are non-cyclic.

Symmetry of final set

Table 5

1 2 3 4 5 6 8 12 =21 24 32 36 o6 168 192 288 20160 Total
1| 201 20 37 Ir 2 . I 1 . . . . . . 363
2| 40 32 10 18 2 7 4 I b¢ . . . . 115
- 3| 111 15 32 3 . 3 1 . . . . . . 167
2 41 44 36 4 32 2 6 3 5 1 . 1 1 . 135
_ 5| 10 . . . . . . . . . . . . 1o
2 6| . 6 . 3 S N . 1o
E 8 8§ 28 8 12 . 10 6 4 3 . 1 . 2 82
- 12 12 24 4 9 . 9 ¢ . . 1 . . 6o
° 2X . 14 . . . . . . . . . 14
B 24 12 . 30 .12 . 3 3 . . . . 62
s 32 16 8 . I2 . 4 4 . 2 . 2 I 49
36 . . 6 . . . . . . . . 6
96 24 .12 8 6 . . 4 3 57
o 168 42 . . . 7 . . 49
192 . 48 . R ¢ 6 6 1 73
288 . . 24 9 . . 33
20160 . . . . 105 105
516 189 109 192 2 10 120 24 41 39 1 18 5 118 3 I J1390

270

6. RESTRICTED SOLUTIONS

Of the 79 sets of solutions of the incomplete block problem, four yield solutions of the
more restricted problem in which the 35 blocks are divisible into seven separate replications.
These give the sets of solutions of Kirkman’s problem, of which a long discussion is given by
Rouse Ball. Unless T have overlooked any, there are seven such sets, which accords with
Rouse Ball’s statement (p. 218) that they are not less than seven nor more than eleven.
Another of his remarks, ‘“ the number of solutions is said to be 65 x 13!,but I do not vouch for
the correctness of this result’’ seems, in fact, to be accurate.

Two different sets may be formed on the solution (No. 79) having the highest symmetry.

Thus in

abe
chl
djo
fkem

grn

acd
bmo
et]
fhn
gkl

afg
bhj
cko
dil
emn

ahi
bef
dkn
elo

gjm

ajk
bln
ceg
dhm
fio

alm
bik
cjn
def
gho

ano
bdyg
cim
ehk
fil



64 INCOMPLETE BLOCKS

each column is a complete replication. The blocks, and their grouping by replications, are
unchanged by the permutations
(ah) (bl ) (ce) (dk) (fo) (jm)
(be) (cl) (dm) (fo) (gn) (k)
(wb (cdf) (bjk) (lom)
(acogjlb) (dkhmfre)

These generate a group of order 168, so that the same blocks may be subdivided in 120
ways all belonging to the same set, of solutions. This group is transitive for all letters save 1.
The number of solutions in the set is 15!/168 or 13! x 1}.

A second set of subdivisions of the same thirty-five blocks is represented by

abe acd afg aki ajk alm ano
chl bik bmo bef bln bdg bhj
djo emn cjn dkn ceg cko cm
fkm fjl dil elo dhm eij def
gin gho ehk gim fio fhn gkl

Three of the replications are the same as in the first example, the contents of the remaining
four having been redistributed. Here also the inoperative group is of order 168, but is
transitive for sets of 7 and 8 letters; it may be generated from

(afnz) (beje) (dlmk) (gh)
(ago) (bel) (dkm) (fim)
(agnohfti) (blekmed)
The number of restricted solutions from these two sets is thus 13!x 2},
"Two more sets may be formed on solution no. 70, which has 288-fold symmetry:
abec ade afg ahi ajk alm ano
dhl bik bhj bmo bln bdf beg
ejo ecmn clo cdg cef cij chk
fkm fho dkn ekl dio ehn djm
gin gjl ein fjn ghm gko fil
and abe ade afg ahi ajk alm ano
dhl bik bhj bwmo bin bdf beg
ejo clo cmn cef cdg cij chk
fkm fin dio dkn eim ehn djm
gin ghm ekl gjl fho gko fil

271
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The inoperative groups of these two solutions have in common a subgroup of 8, which is
inoperative for both solutions,
(ab) (dnj'o) (elgm) (hikj)
dJ ) (€f) (ki) (jk) (In) (mo)
(de) (fg) (hy (ik) (lo) (mn)
(ab) (dm) (eo) (fl) (yn) (hEk)
(ab) (dl) (en) (fm) (go) (ij)
To complete the inoperative group for the first solution it is sufficient to introduce the
new element
(abe) (dlk) (enk) (for) (gmj),
while that for the second solution is completed by

(abc) (efg) (ijk) (mmo).

Both these groups are isomorphic with the complete permutation group of four objects.
Each set of solutions therefore provides 12 methods of dividing the same blocks into replica-
tions. The common subgroup is transitive for the set of 8 letters defylmno, and for the set of
4 letters hijk; in the first solution these sets are combined in a set of 12, but in the second
solution they remain separate. As each set has 24-fold symmetry it provides 83 x 13!
distinct solutions. The two sets together give 17} x 13!, and these added to the two sets
based on no. 79, make 20 x 13!.

Set no. 52, with only 12-fold symmetry, yields two solutions belonging to different sets;
these sets are twins, and may be represented as follows:

aeg afj aho aim |ejn |elm | eko

bfm bgk bin beh |bcj| cdm | ack
cto chl cef cgn |adn | abl | bdo
dhj des. dgl dfk |gij | ghm | fgo
kin mno jkm jlo | fhn |fil| hik

Four replications are common to the two arrangements; the remaining 15 blocks may be
divided into three replications by following either the Latin or the Greek letters of the 3 x 3

Graeco-Latin square

da Bf Cy
By Ca Ap
Cp Ay Bo

These two solutions are both invariant to the same group of permutations as the unre-
stricted set on which they are formed. They therefore each contribute 15!/12, or 17} x 131,
to the number of restricted solutions. The six given so far consequently total 55 x 13!.
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The last set of restricted solutions is provided by no. 48 having 21-fold symmetry, and
is the only subdivision of this solution. '

abn aco adi aej afk agl ahm
cgj bym bel hbdo bhj bek bfi
dem dhk chn cofm cei dfj cdl
fhl efn fgo ghi dgn eho egk
iko ij1 jkm kin Imo wmn jno

The inoperative permutation group is of order 21. The number of solutions provided by
this set is therefore 15!/21 or 10 x 13!. The whole number is therefore 65 x 13! as reported
so doubtfully by Rouse Ball. More than half of these are contributed by the twin sets based
on no. 52. Table 6 shows the actual numbers and their distribution by symmetry number:

Table 6. Distribution of restricted solutions

. . Percentage
Sym- No. of solutions No. . N with as high|
metry in cach seb of No. of solutions | Percentage} .. higher

no. sets symmetry

12 108972,864000 2 217945,728000 5385 —
21 622770,208000 I 62270,208000 1538 4615
24 54486,432000 2 108972,864000 2692 30747
168 7783,776000 2 15507,552000 3846 3846
7

The relation between frequency and symmetry is also shown, in comparison with the

unrestricted solution in Kig. 1.

SUMMARY

The paper reports the results of an exploration, and is of interest principally as a study in
method. The study of the types of configuration meeting specified requirements, must take
account of the possibility of a multiplicity of solutions, and it would seem from this example,
and from that of the 7 x 7 Latin squares, enumerated in the last volume of this journal, that
the greater number of solutions are likely to belong to sets having no symmetrical relation-
ships whatever.

Methods of specifying the invariant characteristics of a solution will vary much with the
size of the blocks, and even for blocks of 3 with the frequency (A) with which each pair of
varietiesis tested together. Anincomplete specification may well suffice to distinguish all the
solutions which actually exist, and to determine the size of the set, and other properties of
practical value. Inaddition to such a specification, it is important to possess a ready method,
such as that provided by interchange of equivalent sets of blocks, of developing new 8olubicns
from any one given.

Seventy-nine sets of solutions have been found for the particular problem of selecting
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35 blocks of 3 out of 15 varieties, in such a way that each varicty appears seven times and
each pair of varieties once in the same block. 1t is difficult to assess the probability that any
further set has escaped detection. Examples of each of these sets, and particulars of sym-
metry, numbers of simple interchanges, ete., are set out in full in the following table. The
inoperative permutation group is indicated by a selection of generators, though no attempt
has been made to specify it systematically.

Seven sets also have been found of the more restricted problem, formerly widely known
as Kirkman’s problem. Only four of the unrestricted solutions lead to solutions of this
problem, which are enumerated in this paper.

Key to table of solutions

In the first column, following the serial number of the set, is given the total classifica-
tion formula for all 15 letters, e.g. (1 x ) in Number 1. Beneath this are the number
of interchanges (2) and the symmetry number (3), which is the order of the inoperative
permutation group. On the right the classification formulae of the fifteen letters used in
the example below are listed in three columns. Below are shown the 33 blocks of an
example of the set in question, and finally below that a generator or a selection of the
generators, of the inoperative group for this example.

1. (112 x3) e  (x) f (%% k (1 x?) 4, (1% <) o (x® f  (* kE (1* x%Y)
b . q (1) 2 . b (1x) g (1*x) o (1*x)

2 ¢ . h . m (1% x1) 5 ¢ . h m (1% x2)

d (x%) 1 . n . d (x x3) 4 (1*x%) n (1®x3)

3 e § (1 x*) o . I 3 . 7 (12 x% o (1° x3%)
abl ahj bfn cfm dil fij him abo ain bym cfj dkm eio hjn
ack aio bgm cgl djm fhk gko ach ajl bhl cgl din fgi igm
adn bej bik chn egyy flo jin ade bei bkn cmn efl fhk ikl
aem bdh cdo def ehl gho kim afm bdf cdo dgy egn fno jko
afg beo cei dgk ekn gin mno agk bej cek dhi ewm gho Imo

(abe) (def ) (ghi) (7kl) (1nno)
2. (1% x?) a (x) [oG2x) k(12 <% 5. (1% <) a4 (xY)  f (2x) k (12 x%)
b (%% g (*x%) L (1Y) b (1) g . L (1® x1)
5 ¢ (1 x) h . m (1% 5 ¢ {(1x) h . m (1° x)
d (1*x) 1 . no (1* x%) d (xx%) 4 (1*x%) n .

I e j . o (1% x) 1 e (%) g . o (1% x%)
abk ahm bfl cfn dyh fgi hilo abl ain bgk cgl djn fhk gjm
acj ali bym chk djo fhyj ijk acf akm bhjyj chn dim fim hil
adn bco bhn cim ehi fmo ino a«do beco bmn cij egn fjo hmo
aef bdi cdl dem eko ¢qjl jmn wej bdi cdk deh etk fln jkli
ago bej ceg dfk eln gkn kim agh bef cem dfg elo gio kno

3. (1 x*®) e (x) f (1Fx*) k (1P r) 6. (321 x¥) a (x%) f (1®) k (1®x?)
b (x* g . { . b (1) ¢ . I (1% x}

5 ¢ (x*) h . m (1% = %) 5 ¢ (1 x? A (12x) m (1®x?)

d (1*x) i (1*¥% n . d (rx% 4 (12x%) n (3x%

I e . 7 . o (1t x") 1 e (1%) 4 . o (31 %)
abo ahl bfh c¢fl dhy fgi hik abme akl bhi cgk djm emo glo
acn aij bjm cho dno fjk hmn weci ano bjo cho dkn fgm hjk
adf beg bkn cim efn fmo iln ade bef bin emn efl fin him
aek bdi cdk dem egh gjn jlo afj bdg cdl dfh egi fko igl
agm bel cej dygl eio gko kim agh bek cej dio ehn gjn ikm
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68
7. (176 18 @ (%) / (12) % (13 %)
b . 17 .
6 e h . "
d / . It

30 e 7 (P =% 0
wbe arn bgo cgk dkk ehi gjn
ado ajm bhl chn dim elo hjo
aek bdj bkm cij din fhm ko
afl ben cde clm cfj fhn jki
ayh bfi cfo dfy eym gil mno
(abe) (dyfy (ehi) (GEL) ;. (bheg) (df ie) (jm) (koln)

8. (1% «®)  a (x*)  f (1= k(1% x)
b gk ()

6 c (1 x) h (%% m .

d (rf) i () n (1t )

1 e (1*x) 7 . o (17 %x?)
abl aygj by! cfhk dij fhi hko
acm ain bhy cgh dlo fjim him
adh beco bmn cjl eqgl fln (k!
achk bdk cdn dem chn ghm imo
afo bef cei dfy ejo gno kmn

9. (%6 )y g (x =% f (1*x) kb (1 )
b . g (1r =y !
6 e (1t ) R . un
o . ’ n .

4 e . 7 . o (1% x1)
abo ahj bfn cfy dik fhwm hil
ack aln bygi cin dmn [RIL hno
adi beh bkwm clm ef i ghk ijm
aem bdl ecdg deh eyl gjn iko
afg bej ceo dfo ekn gmo jlo

(ab) (cdef) (ghiy ) (klinn)
(00 x¥) @ (<) (1) k(0 x?)
b (1 <% gy . (1% x?)
6 ¢ . b (1® %% mo (1t x)
d (1 x} i (1) n .

10 1 e (1*x%) 7 (1 x) o (1t x?)
abj aym bfh chk djo fgi gkn
aco ahl bkm cil dkl fjk hin
adi beg blo c¢cjn efl fmo ijm
aek bdn cdf deg ehj gho ko
afn bet cem dhm eno gjl lmn

M (1) a (xY) f o (PxY) k(17 %)

b . g . I (x* x?¥)

6 ¢ . h m .

d . A n

4 e (1) J (1*x%) o
abm ahn bhj cgh dhi ein gno
ace ajo bio citk dkn ‘ejk hlo
adl ben bkl cjm efo fhk ilm
afi bde cdo dfj egl fmn jln
agk bfg cfl dgm ehm gij kmo

(abed) (fghi) (7k) (bmmo)

12.

13.

14,

15.

16.

(3717 x2) a {rx) [ (1* x)
b (1 x? ¢ .
6 ¢ . ho (1% x?)
d o (h i (x® x9)
te () (1Y
aby aio bfk cgl dhn fan
acf amn bgo cik dko fhm
adg bem bhi cno efo fjl
ael bdl cdj dem egi ghy
ahk ben ceh dfi ejk gkm
GUr k) @ (Bx) f o (1f %)
2 . g
6 c h
d )

12 [ i
abd ahn bho chm din eko
acl ajk bim cio djo eln
ael bee LRI cjn dem fgo
afm bfj cdf deg efh fkn
ago bgn cgk dhil. ejm flo

(abedefghijkl) (mn)
(i x4 (xYy f
2 . q
7 ¢ (%) h .
d . i (1)

3 ¢ g 1t x)
abi ayj bfj cgi dhi ejk
acm ahk bgk chy djl fgn
adn ben bhi ckl efi fhm
aeo bdo c¢de dfk eqgl gho
afl bem cfo dgm ehn ijn

(cde) (fgh) (7kt) (mno)
(s a (x) S ()
b (12x) g .
7 ¢ . h o (1)
d . i (1* x)
e (xxY) j (1)
abk agn bgo cgk dgh ein
acl ahit bil cij dik fgl
adj bed bmn cno dmo fio
aeo beh cem del efk gim
afm bfj cfh dfn egj hjm
(bed) (efg) (5kl) (mno)
(1 x®) @ (x) [ (%)
b (x4 g (0xh
7 o (1) h (XY
d (1*x) 4

1 e (1* x?%) j
abn agm bfg cgk dgi fhk
aco ahl bjo chm dhn fjn
adk bei bkl cln egn film
aej bdm cdj del eik ghy
afi beh cef dfo emo glo

(12 x) k& {(1*x)
. ! .

m {1

n
0

iko
ilm
jmo
kmn
‘no

03 ¥ o

hkn
hlo
Jko
Jjin
klm

(1%)

(1t %)
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17.

18,

19.

20.

21.

276

(1% x%) @ (xx) [ (2xY) k(177
b g (¥ x? | .
7 fi 12 x9) h . m (1% )
12 x3) 4 . n
3 e . J (Px% oo
abi agm bfj cfn dhm fgo hik
ach ajn bhn cito dij fhl jkm
ado becg bko clm egk fim jlo
ael bdl cdk def eho ghj kiln
afk bem cej dgn ein gil mno
(abe) (def ) (ghi) (jEL) (mno)
M) @ (1x) f (2xY) k(1)
b . g (1% xt) I .
7 Ccl (12><2) h ((113 xg)) m ((14 X_"s))
12x) ¢ (1*x%) n (371 x*
1 e (1*x?% 7 (1% o (31 x?
abj agh bfm cfj dhm fgn hin
aci amo bkl cgk djn fho hjk
adk bceh bno cln ehl fik ilm
aen bdi cdo def eij gio jlo
afl beg cem dgl eko gjm kmn
(3% 1% x%¥) lg (I( >2<)‘) S (1 %) ’; (KZ’ ?)2)
1 g . I
Vi ; (12 %) A ((123><3)) m((r5 x“u)
. i (1*x) n (31X
1 e (12 x%) 7 (17 x?) o (31 x?
abk agi¢ bfm cfj d fgl hil
ach amn bhn cik dko fin hijk
adl bel bjo c¢cno efk gho imo
aej bdg cdm den ehm gjn jlm
afo bei ceg dfh elo gkm kin
(321 x) @ (x4 f (12x%) k(0 xY)
b (1*x) g . I (1* x¥)
i 2 (2. \ h (1*x) m ((1-” x‘f‘))
1% x ) - n (31 x°
1 e (1% x3) § (1* x%) o (31% x%)
abl ajk bgk chk dik ejl gjm
ace ano bhm cil djn eko hjo
adm bed bijg emn dlo fgl hin
afi ben cfj deg efm fhkn imo
agh bfo cgo dfh ehi! gin kim
N NG Y
I ' . .
8 c . h . m .
d Z . ‘no (1t x?
4 e 7 (1Y) o (1 x¢®
abd aik bhm egh dgn ehn gjk
ace ano bin cij dht emo hkl
afl bel bjo cko dlo fho ilm
agm bek cdm dej efi fim jln
ahy bfg cfn dfk egl gio kmn
J
(bede) (fghi) (skim)

R. A. FISHER

22, (3FR M) oa o () f (19
' b (1 x) g (%)

8 ¢ (1 xY) h .

d (1% i (1%)

1 e . 7 .
abj ahk byo cgj dhil [fho
aci ano bhi chn din fil
adm bel bkn cmo eghk fil
ael bdf cdik deo ehy fmn
afy bem cef dgi ein ghm

23 (32101 @ (13 f (1% x)
b . g (17 x?)

8 ¢ (1%2x) h .

d . { .

2 e (*x) 7 (1Y
abo aym bfj efm dho fil
acj aln bhl cgo djm fkn
adi bei bmn ckl efo ghn
aek bdk cdn del eim gik
afh beyg ceh dfg ejn gl

(ab) (cd) (ef ) (gh) (k) (Im)
24, (371 ) 4 (1 x) f (1®x)
: b . g .
8 ¢ (12 x%) A
d (1 x®¥) i (1* x?)

1 e (1®) g
abm agjy bhi chk dim eko
acl ahn bjk cjn din fgi
ado becyg bno c¢mo efh fjo
aeci bdf cde dgk egn fmn
afk bel cfi dhj ejm ghm

25. (37 1™ x*M) a4 (x¥) f (17 %}
b (1 x) g (17 x¥)
8 ¢ (12 x) h (1® x3)

. i (1Y)

t e (' x?) g .
abf ahj bil cfo dkl fhl
acl ano bjo cgj dmo fjk
adi bem bkn chi efi fmn
aem bdh cdn dej ehn gho
agk beg cek dfg elo gim

26. (3% 1% x%¥) a (1 x?) f (1% x?)
b . q .
8 ¢ (xr x% h
d (1% x3%) 4 .

2 e . 7 (1t x?®)
abo ahk bfh cfl dm fgo
acj amn bij cgm djo fin
adl bek bln cno egjy fim
aef bdg cdi den erl ghn
agi bem ceh dfk eko gkl

(ab) (de) (fg) (h2) (jk) (Im)

ko (1Y
L (1)

m (1% x)
n (31° %)
o (3 1% xi)

gi0
hlo
igl
ihkn
kim

k(1% x)
U (1% x9)
m (L5 x)
n (31 %)
o (3 1% x)

gln
hlem
iJn
iko
jlm



28.

29.

30.

31.

70
( I'a»l w 2»1)
9
1
abi agh
acl ajn
adm b f
aeo bde
afk bgo

(32 8 2~1)

aby
acy
adm
aek

afi

(32 148 ,\'24)

aby
acy
ado
aef
ahn

2

(3% 1

abd
acl
aey
afh
agm

(34 142 26)

abl
acf
ady
aen
hy

9

I

9

L

48 % 3())

ahl
ano
bek
bdn
beh

i
akl
bei
hdl
bemn

9

1

atk
ano
bhel
beyg
bfmn

9

I

atk
amno
beh
bdy
bek

a (1 x)
b (1% x)
I (1%)
(1% %)
14 .
bhy cgk
bkm ¢ g
bin cwmo
edn dfi
ceh dyl
a  (x®)
b (1? %)
c (1)

d (1% %)
e (1% x?)
bfm efn
big cgo
blo cim
cdh def
cel dyl
a (1 )
bo(1® %3
¢ .

d (1 %)
e (1®x¥)
bfn cyk
bhk chl
bjo cno
cde dfh
cfm  dgm
@ (x?)
b (1 %%
¢ (r* x)
d (%)

e (1° x)
bhy cgn
bin chi
blo cjm
edf del
ceo dyi
a (1)

b (1% %)
c (1% x®)
d (1 x1)
e (1%)
bfm ¢ iy
bygi chm
bno c¢ln
cdo dei
cey dfn

INCOMPLETE BLOCKS

fo{?x)
g (1% =?)
/L (13 H)
b1t x)
7ot x®)
dho ekl
djk fgn
efm fhl
egy fio
ein glim
St =)
q .
o (1% x4
(1% %)
7 (I‘x, XIZ
dio fgh
dik fjl
egi fro
ejn gim
emo  ghkn
S <)
g (1)
Lo (1t )
{
J
din elo
djk fuo
eyl filk
eiy fil
ehnw gil
fooah
g (1t x)
b1t =)
i .
gt )
dhk eim
djio fuj
dmn fio
efk fln
ehn gho
S )
I -
e (1Y)
,
J
dhm fgk
dkl fio
efh fjl
ejm  yhn
elo yjo

hik
hjo
Tanen
iln
kel

k(1 x)
L (1t x?¥)
me (1% x)
{3 12 x¥)
o (317

qjn
hio
hjme
koo
lmin

(mn

Jkn

32.

33.

34.

35.

36,

(34122 x30) @ (x3)  f (1®x?) k (1% x?¥)
b (12 x3%) g (1*x% 1 (31*x)

9 ¢ (1x%) h (1Y) m .

d (1*x) © (1*x) n(31%x?)

1 e . 7 . o (3 1% x¥)
abf alo bgo cfi dhi fhn gjl
ach amn bhl cgm dkm fko hjo
adg bek bjm cno efg flm ikl
aek bdn c¢dl deo ehm ghk imo
aij bei cej dfj eln gin jkn

(1% <% e (*x? f () & (1%
b . q . ! .
10 ¢ . h m
d . P n

5 é J 0
abl ahj bfi cgj dim fgm hio
aci amn bgk chl dkl fjl1 hkm
adg bem bno cko egi fkn ijk
aek bdj cdn deo ejn ghn iln
afo beh cef dfh elm glo jmo

(abede) (fghig) (klmno)
(180 %y @ (x%)  f (P x? k {F
b (1¥x) ¢ . I (1% x)
io c . h . m
d . i (1% 7 .

3 e . J - o (1*x%)
abk agm bLfj c¢fo dgo fgh imo
aci ahn bgl cgk dhi fik jlm
ady) ben bho chm efm gij jno
aco bdm cdl dek egn hjk klo
afl bei cej dfn ehl (In kmn

(bed) (fgh) (k) (Imn)
(R a (1 x?) f (fx) k (15 x)
b (12 x) ¢ (1P x*) 1 .
10 ¢ . h  (1¥) m (17 x)
d (1% x?) ¢ . n (3 1* x9%)

1 e (1) o (319
abm ago bfi c¢fo dij fgh hjm
act akn bgj cgl dno fln hkl
adh bek bhn cjn efm gik ilm
ael bdl cdm deg ein gmn jlo
afj beo ceh dfk ejk hio kmo

G x®) e () f (1Y) k(1 x)
b . q . 14 .

10 ¢ . I . m (3 1% x?)
d . i (1*x) n .

4 e (1Y) J . o (3%
abi agm bgk cfy dgh fho him
aco akn bhn chil djym fil hjk
adl bej blm cin eqo fkm iko
aech bdo cdlk dei ejn gij jlo
afj bef cem dfn ekl gln mno

(ubed) (efgh) (ijkl) (mn)
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317.

38.

(34 148 Xlﬂ)
io

I

abk aln
acg amo
adh bej
aei bdi
afj beo

(3% 14 x12)
10
6
abi agl
ach ajn
adm bceg

aeo bdl
afk ben

e (x?)

b (1%

c (12 X?.)
d (12 X5)
e (1* x)
bfl cfi
bgm chm
bhn clo
cdk deg
cen dfo
a (1%

b .

¢

d

e

bfm cfo
bhj cik
bko c¢lm
cdn dei
cej dfh

R. A. FISHER

(x* x*) k(1% x)
g (P x) L (31)
ho (1% m (31 %)
[ n (3 1% x?)
i o (31 %)
djl fgn hio
dmn  fkm hjk
efh ghl ijn
egm gik ilm
ekl gjo kno
fooah k(3 X
g (1 x*) 1 .
h . m (3 1%)
i . n .
J(31Px¥o
dgk fij him
djo fln hkn
efg gho ilo
ehl gin jki
ekm gjm mno

(ae) (bd) (cf ) (gh) (gk) (mn); (abe) (def ) (ghi) (jRE) (mno)

39.

40.

41.

278

(34 154 XZS)
Ir

I

abk
acyg
adi
aej

afh

aln
amo
beid
bdo
bel

(32 186 X 18)

12

abk
acd
aem
afi

agn

(3% 190 x20)

12

abh
acd
aen
afi

agm

ajk
alo
bco
bdk
bem

(x?)
(12 x?)
(x® x9)
(x® x)
(1® x?%)

bfyg
bhn

RO TR

cfn
chm
clo
deh
dfk

f ot x?) k(7 x)
g (¥ 1 (3’
h (1% x) m (312 x¥)
i (8 xH) n (300 %)
jo(1% o (3r°x%)
dgl fim hil
dmn fjl hko
efo ghj ijk
egm ¢gio jno
ein gkn kim
foartx) k(1%
g (1* x%) 1 .
ko(1* x*) m (17 x)
i (%) n (31t %)
j (*x) o .
dgm ekl him
dhn fgo ijo
dil fln imn
efj gil jkn
egh hik kmo
fo(* x®) &k (1°x?)
g (1 x%) L (31)
h (13 x%) m (31%)
i (1% n (31®x)
J (18 x) o (31° %3
dhl ejl hio
dij fgl hjm
dmo fhk imn
efo ghn jno
etk gko kim

42,

43.

44.

45.

46,

(3.1 189 20y
1z
I

abh
ek
[43 d/
weyj

afl

wyn
amo
bhey
bdo
bey

3

(.‘x 48 W lli)

I
12
I

abf
ace
adn
agh
wio

ajm
akl
beg
bdl
bek

(3% 17 x1¥)
13
I

abm  ahl
acf ako
adi bek
acen bdy
ayj bel

(3‘.! I72 N 1!2)

I3

3
agl
ano
bed

bek
bfo

aby
ach
adi
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