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THE PRECISION OF DISCRIMINANT FUNCTIONS *
% See Author's Note, Paper 155.

1. INTRODUCTORY

IN a paper (1938a) on ‘‘The statistical utilization of multiple measurements’” the author
considered the general procedure of the establishment of discriminant functions, or sets of
scores, based on an analysis of covariance, for a battery of different experimental deter-
minations. In general, these functions are those giving stationary values to the ratio of
apportionment of sums of squares between %, chosen and n, résidual degrees of freedom.
In the simplest application n, is unity, and, as was first shown by Hotelling, the primary
test of significance as to whether the set of measurements available are effective in making
any significant discrimination, is exactly reducible to a simple analysis of variance in which
p—1 degrees of freedom (for p variates) are transferred from the residual. In the general
cage the underlying problem of distribution has also now been solved (Fisher, 1939).

In both the simpler and in more general cases the question of the precision of the scores so
ascertained is of immediate importance. Obviously, this presents certain peculiar features.
If all coefficients of a discriminant function are increased or decreased in proportion, the
function is effectively unchanged. No standard error can therefore be assigned to such a
coefficient, considered singly. Partial standard errors, on the other hand, in which all other
coefficients are given fixed values, will certainly exist, although it is not at first sight obvious
how they should be calculated.

In the case of the coefficients of a multiple regression equation, the author has often felt
that the total standard errors ordinarily calculated were somewhat artificial, and certainly
they are frequently misinterpreted. Thus, in the prediction of capacity to resist high altitude
from data on individuals obtainable at sea level, it appeared in a recent study (Fisher, 1938 b),
that when seven sea-level characteristics were employed in the prediction, not one of the
coefficients was significant, although an apparently good prediction was obtained from the
multiple regression formula. All that the non-significance meant, however, was that if any
one of the coefficients were given the value zero and the other coefficients readjusted, the pre-
diction formula was not significantly impaired. The sea-level characteristics showed, in
fact, sufficiently close mutual correlation for any one of them to be capable of replacement
by an appropriate linear function of the others, so as to compensate nearly completely for
its absence from the prediction formula. Actually a prediction based on only four sea-level
values was preferable to one based on all seven. Similar situations ften arise in economics.

It is clear from this example that all questions relevant to the precision of the coefficients
of a multiple regression formula may be expressed comprehensively in terms of a rule or
test of significance as to whether any alternative formula proposed is significantly contra-
dicted by the data. For multiple regression such a test is immediately available by multi-
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plying the rows and columns of the c-matrix by the deviations between the coefficients
arbitrarily chosen and those evaluated empirically.

In the paper referred to (19384), I applied this concept of a generalized test of significance
applicable to any function a,rbitrdrily proposed, and showed that the sum of squares corre-
sponding with Hotelling’s 7' became T2(1 —#2), where 7 is the correlation between the dis-
criminant function proposed and that indicated by the data, within the samples which it is
proposed to discriminate. This I carelessly interpreted to mean that Hotelling’s 7' was
simply reduced to 7%1 —r2), forgetting that, in Hotelling’s notation, 7' also appears in
the total sum of squares, which is unaffected. The numerical example, p. 386, is therefore
incorrect, and the inconsistency of my formula has been pointed out by Bartlett (1939).
The form in which Bartiett expresses the true relationship is, however, that my formula
is correct if for the correlation within samples is substituted the correlation obtained when
both samples are thrown together. This is true, but confusing, for while the correlation within
homogeneous groups is an appropriate and natural method for measuring the similarity of
two linear functions of the observations, the correlation when heterogeneous material is
thrown together is of no intrinsic interest, its application being limited to the particular pair
of samples under test.

The following section gives a simple demonstration of the correct formula from two
complementary standpoints, with a view to exhibiting how the two correlations in question
are related in any particular batch of data.

2. THE TEST OF SIGNIFICANCE OF A PROPOSED DISCRIMINANT

In testing the significance of a diseriminant function built of a number of different variates
Zy, ... %, the analysis of variance appears in two different guises. We may consider the
analysis of variance of a dummy variate y distinguishing the two contrasted samples,
dividing the portion expressible in terms of z,, ... z, as independent variates, from a residue
not so expressible. Alternately, regarding our discriminant itself as a variate, we may
analyse its variation between and within the samples.

Thus, if, for samples of N, and N,, we take

Yy = N/(N+ )
for objects of the first sample, and

y=—N/(N+N,)
for objects of the second sample, then the expected value of y for given values of z;, ... x,,
will be Y = X = Xbiz,

in which the coefficients b are given by the equations
Zsibl = S(x,y) = A4,
where A2 = N NJ(N +D,), s;; = S(x;—F;) (2, —F;),

and d; is the difference between the means of the samples for variate 3.
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The analysis of variance for y is then

Degrees of

freedom Sum of squares

S(Y2) = A25(bd) = A?R?
S{y— ¥)? = A1 - Z(bd)} = A1 ~ R?)

S(y?y=A?

Regression

p
Remainder N+ Ny—p—1

Total N +N,—1

On the other hand, considering X as a variate, we have
S(X?) = A2R?,
and if X, X, are the means of X in the two samples,
22X, - X,) = S(Xy) = A2R2.
So that for the analysis of X we have

Sum of squares

Between samples A2R4
Within samples A2R%(1 — R?)
Total AZR?

an analysis equivalent, apart from a constant factor R2, to the first.
Consider now any proposed form £ = Spia,

for the true discriminant of the population from which our sample is drawn. We shall be
interested in its correlation with X within samples, denoted by 7, rather than the total
correlation " when both samples are thrown together. If, however,

S(€?) = 4%,
it follows that S(EX) = AARY.
Since, moreover, Y is the multiple regression prediction formula,
Sly—-Y)E=0,

whence
From this it follows that

S(&y) = AARY.
A¥(E,— &) = AARY,
and that the sum of squares between samples
N, — ;) = AR,
Hence the analysis for £ may be completed, with the corresponding values for covariance
with X, as follows:

Degrees of Sum of squares Sum of products
freedom 2 (xE)
Between samples 1 A2R2y’? AAR®
Within samples N +Ny~2 A¥1 — R¥'?) AARr' (1 — R?)
Total N +N,—1 42 AARr
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The correlation coefficient r within samples is therefore giver by

oy

Thus, the class of formulae specified by a fixed value of the correlation within sarples has
also a fixed value for the correlation when the ssmples are thrown together. Whereas,
however, for any chosen formula, 7 is an intrinsic property of homogeneons populations,
both & and v’ will depend on the relative, and sbsolute, sizes of the samples.

If now £ were used to predict y, we have for the analysis of y

Degrevs of cerres coF o .
feaodorn Bum of squares
Prediction F ARREE PR R S e )]
Remainder Ky Ny AH g = K22) Ay — B2Y {1 — B —2%)}
Total By Ny A? AF

and comparing this with prediction based on all p independent variates, we have, for testing
the significance of the contribution of the others, after £ has been taken aceount of,

%ﬁg;ﬁ;f Burn of squares
Additional p-1 ARRH g e B2 (4 - vy {1 BEq —~7%))
information
Remainder My Ny gy g Ay e BBy
Total N4 Ngwz A BRI o BY g e r?Y)

A similar analysis is found for X, if we eliminate vovariance with £,

The modification of Hotelling’s test nepded when we wish to examine whether the dis-
eriminant indicated by the data differs significantly from any proposed form consists then
in (i) reducing the number of degrees of freedom by unity, and (ii) substituting

R'? = RY1 1%
for R? as the ratio of the part to the whole in the sums of squares.

We should then reject any proposed discriminsnt formuls, if its vorrelation r within

samples with the best discriminant function obtainable is 8o low that

o wn-p+1 R
p—1 1-R*
Cm—p4l RMIer® omepa ] THI -1
h p—-1 1— R} ~¢%) - p-1 T

is gignificant for fy = g1, Ry s n—p+ L
The corrected rule gives a much more reasonable basiz for rejection. Thus the digcriminant
on four Hower measurements for [ris versicolor and I. setosa (Fisher, 1936, p. 184) gives

R® = (963416
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for 4 against 95 degrees of freedom. For n, = 8, n, = 95, the 5 9, value of z is 0-4968, the
variance ratio is 2:7015. Multiplying by 3/95, the ratio of sums of squares is
R'*(1— R'?) = 0-085312;
hence R'? = 0-078606.
Dividing by R? it appears that the limiting value of r is given by
1—72 = 0-081591
or r = (-95834.

The precision with which the coefficients of the discriminant function have been deter-
mined is thus sufficient to reject at the 59, level of significance any formula having &
correlation with that found less than 0-95834, within the species. In this way we have a
comprehensive and appropriate measure of the precision with which the discriminant
function has been determined by the data.

3. DISCRIMINANT FUNCTIONS BASED ON NON-LINEAR EQUATIONS

The method of approach used in the present paper, in which the precision of the coefficients
of a discriminant function is discussed through a test of significance of deviations from the
hypothesis that the function has some other assigned form, brings clearly to view the
complications that arise when more than a single degree of freedom is maximized.

For example, in a contingency table individuals are cross classified in two categories,
such as eye colour and hair colour, as in the following example (Tocher’s data for Caithness
compiled by K. Maung of the Galton Laboratory).

Hair colour
Eye colour .

Fair Red Medium Dark Black Total
Blue 326 38 241 110 3 718
Light 688 116 584 188 4 1580
Medium 343 84 909 412 26 1774
Dark 98 48 403 681 85 1315
Total 1458 286 2137 1391 118 5387

Variation among the four eye colours may be regarded as due to variations in three
variates defined conveniently in some such way as the following:

Eye colour Ty y Z3
Blue o o o
Light I o °
Medium o I o
Dark o o I

We may then ask for what eye colour scores, i.e. for what linear function of z,, x,, z,,
are the five hair colour classes most distinet. The answer may be found in a variety of ways.
For example, by starting with arbitrarily chosen scores for eye colour, determining from
these average scores for hair colour, and using these latter to find new scores for eye colour.
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Apart from a contraction of scale by a factor R?for each completed cycle, this form tends to
a limit, and yields scores such as the following:

Eye colour z Hair colour y
Light —~09873 Fair ~ 12187
Blue —0'8968 Red —0'5226
Medium 00753 Medium —0'0941
Dark 1'5743 Dark 1-3189

Black 24518

The particular values given above have been standardized so as to have mean values
zero, and mean square deviations unity. In the sample from which they are derived each
score has a linear regression on the other, the regression coefficient being 0-44627; this is,
of course, equal to the correlation coefficient between the two scores regarded as variates.
Hotelh'ng has called pairs of functions of this kind canonical components. It may be noticed
that no agsumption is introduced as to the order of the classes of each category. In Tocher’s
schedule Light eyes come between Blue and Medium, but the discriminant function puts
Blue between Medium and Light, though near the latter.

The precision of the scores assigned to different eye colours must be judged by the con-
formity of the data to various possible hypotheses concerning these scores. For example, we
might test the hypothesis that the hair colour scores are correct, but that the apparent
difference in score between Light and Blue eyes is illusory, their true scores being the
same. The blue-eyed and the light-eyed children may here be compared directly, using the

vax}iate y:
Blue-eyed
Freq}lency Score fy it
Yy
" Fair 326 ~ 12187 —397°30 4842
Red 38 — 05220 — 19-86 10°4
Medium 241 —0°0941 — 2268 2°1
Dark 110 1-3189 14508 191°3
Black 3 24518 7:36 18-0
718 —287°40 7060
1150
g—o-40028  Sfly—7)* sor-0
Light-eyed
. Frequency Score fy Sy?
Fair 688 —12187 - 83847 1021°8
Red 116 —0°5226 ~ 6061 317
Medium 584 —0°0941 — 5495 52
Dark 188 1-3189 24795 3270
Black 4 24518 9-81 240
1580 —696°27 14097
. 306-8
§—044068  Sfy—#)* 1102°9

288
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The sum of squares for error is 1693-9 for 2296 degrees of freedom, giving a mean square
0-73776: dividing this by 718 and 1580 we have 0-001028 and 0000467, so that the variance
of the difference between the scores is 0-001495 and the standard error 0-03867. The actual
difference 0-04040 is therefore not significant.

In general, if we wish to compare the observed scores, derived from the data, with any
proposed values £, we may test the linearity of the regression of y on £.

Thus, if £ takes the values 0, 0, 1, 2 in the four classes for eye colour, we have

S(€) = 4404 £ =0-81752

S(£2) = 7034 S(E—£)2 = 3433-63
S(y€) = BS(xf) = 1907-83
S(y®) = 5387-00
S(y?) — S*(y&)[S(£?) 4326-95

Now the sum of squares for y within arrays is 5387(1 - R2) = 4313-67. So the analysis can
be set out as follows:

D.F. S.8. Mean square
Deviations from linear regression 2 1328 664
Within arrays 5383 431367 o-8o135
Total 5385 4326°95

Thus the data show a decidedly significant departure from linearity. So that, if the scores
for hair colour, y, be accepted, the data contradict significantly any set of values for £ for
which not only are Light and Blue eyes given equal scores, but Medium eyes are placed
exactly half-way between these and Dark.

The consistency of these two methods may be illustrated by finding the contributions to
the analysis above of two separate components. Of these one is the discrepancy between the
means for Blue- and Light-eyed children, while the second is found by taking the means of
Blue and Light together, adding the mean for the Dark-eyed, and comparing the sum with
twice the mean of the Medium-eyed.

For the first comparison, we have the difference between Blue- and Light-eyed children,
0:04040; dividing the square of this by the sum of the reciprocals of 718 and 1580, we have
0-808 as the contribution of this component to the sum of squares.

For the second component we have

Number S(y) Mean Reciprocal
Blue and Light 2298 —098373 - 0°42808 0°00043516
Mediam 1774 5063 003367 0:00056370
Dark 1315 92410 070274 0°00076046
Discrepancy 000 020744 0°00345042
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The divisor now is 1 4
3208 1774 ' 1315
dividing the square of 0-20744 by this, we have 12:471 as the contribution of the second
chosen component. The two components together give 13:28, checking with the value
obtained for deviations from linear regression in the analysis of variance. The two dis-
crepancies may thus be tested separately in succession. The significance of the two degrees
of freedom is clearly due only to the second component.

It might seem that the problem which we have discussed for simple discriminant analysis
was not analogous to that examined above, but to the wider question whether the data
are compatible with the chosen values £ for z, together with any set of scores for hair colour.
In considering this problem, however, we must remember that there are three pairs of
canonical components with corresponding correlations._If for the remaining two of them
the correlation is insignificant, the corresponding components are presumably arbitrary, so
that no significant deviation is to be expected from any £ arbitrarily assigned. The practical
question must involve the further stipulation that the correlation corresponding to our
chosen component shall be the largest of the three possible values. Such a problem is not
likely to have any easy solution.

= 0-00345042;
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