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THE ASYMPTOTIC APPROACH TO BEHRENS'S
INTEGRAL, WITH FURTHER TABLES FOR THE
d TEST OF SIGNIFICANCE

By R. A. FISHER, F.R.S.

1. THE NATURE OF FIDUCIAL INFERENCE

To the present generation of statisticians, familiar with ‘Student’s’ distribution and with the
process of ‘Studentizing’ unknown parameters, it has for some time appeared to be a some-
what puzzling historical fact that this advance in simple statistical procedure was not made
long before, and was not made rather by a mathematician than by a research chemist. Light
is perhaps thrown on this puzzle by the contrast, which has been striking during the last
twenty years, between the facility, confidence and skill with which the new tests have been
applied by practical men in research departments, and the embarrassment and confusion
of rany discussions, in journals devoted to mathematical statistics, by mathematically
minded authors lacking contact with practical research.

I have at various times suggested that the advance reserved for ‘Student’ would, in all
probability, have been made early in the nineteenth century, were it not for the preoceupation
of writers on mathematical probability with discontinuous distributions, and their com-
parative neglect of variable quantities which, unlike frequencies, can take any value within
their ranges of variation. It is certain that the analytic power of the mathematicians in-
terested in Probability and the Theory of Errors was sufficient to makter the particular
problem broached by ‘Student’. Helmert (1875), for example, determined the true dis-
tribution in samples of the sum of squares

S(x—7)?
from which the estimatc of error s? is calculated. He did not, however, make ‘Student’s’
use of this knowledge. Again, W. Burnside (1923), in evident ignorance both of Helmert’s
and of ‘Student’s’ work, gives the same solution, and arrives almost at ‘Student’s’ dis-
tribution. His result differs from ‘ Student’s’ by one degree of freedom, through his feeling it
necessary to introduce a Baysian a priori probability distribution for the precision constant,
B2 = 1/202,
for which he assumes the frequency element to be proportional to dh. This discrepancy is
instructive on the historical question, for it illustrates well how progress in this field in the
nineteenth century was inhibited. Firstly, that the widespread teaching of inverse prob-
ability in mathematical textbooks had practically excluded the possibility of an approach
involving different logical concepts from those of Bayes, while, secondly, the criticisms and
doubts which in the latter half of the century Bayes’s theorem had engendered, removed all
confidence from conclusions in which it was implicated. Burnside, for example, leaves the

Annals of Engenics, 11: 141-172, (1941).

323



324

142 ASYMPTOTIC APPROACH TO BEHRENS'S INTEGRAL

subject with the words: ‘It is a matter of individual judgment which form of second assump-
tion is the more reasonable.’

Burnside gives a table of the quartiles (50 %, points) of ‘Student’s’ distribution. It evi-
dently did not occur to him that a 5 or 19, table would be more useful; or perhaps he was
satisfied to use some arbitrary multiple of his quartile deviation, though this would at once
throw away the value of having obtained the true distribution. The numerical values of this
table of quartile deviations are also incorrect, which by itself may be taken to indicate that
he regarded his solution rather as a matter of academic interest than as meeting a need for
guidance in practical decisions.

This example, together with others arising from extensions of ‘Student’s’ method,
suggests that H. Jeffreys (1940), whose logical standpoint is very different from my own,
may be right in proposing that ‘Student’s” method involves logical reasoning of so novel a
type that a new postulate should be introduced to make its deductive basis rigorous. The
postulate he frames is that, if, from a sample we obtain the mean

- 1
= S(x),
and the estimated variance of the mean
1
2 _F)2
s (n—l)nS(x z)?,
z—p

and set t= ,

where y is the hypothetical true mean of the population sampled, then the distribution of ¢,
subject to the observational data T and s, and the non-observational data that the n values
are drawn independently from a normal population, itself depends only on the size of the
sample x.

While this statement will serve for the particular test of significance proposed by ‘Student’,
the conditions on which analogous postulates should be introduced in analogous reasoning
deserve consideration. The properties on which we rely are clearly: (a) that the distribution
of tis independent of the true mean (x) and variance (o%) of the population sampled, (b) that
there is nothing about our particular statistics, Z and s%, or the way they were obtained, to
bias the test. If, for example, there were reason to think that the mean # were higher than
usual from samples of the same population, the test would obviously be biased. The same is
true if there were reason to think that s were higher or lower than usual. Since the distribu-
tion of s/o is independent of the population sampled, and is known, this implies that we regard
our sample with given value of s as one of a population of similar samples drawn from
populations having values of o distributed according to the standard distribution of the
ratio s:0. The fiducial distribution of o (Fisher, 1933) and the simultaneous fiducial dis-
tribution of o and ¢ which I have discussed elsewhere (Fisher, 1935) are thus inherent in the
logic of ‘Student’s’ approach.

The generalizations of ‘Student’s’ method with which T was first concerned were the
wider applications of the ¢ distribution to more than one sample, and to regression coefficients
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(Fisher, 1924, 1925, 1926a), and those of the z distribution for the logarithmic ratio of two
estimates of a variance. It was obvious that these involved no logical principle beyond that
of “Student’s’ original test, but were the fruits of the exact solutions of problems of dis-
tribution which I had arrived at in the meanwhile. No misunderstandings were apparent
at this period; perhaps because writers without sufficient logical penetration had not at that
time undertaken the elaborate theories of ‘testing hypotheses’ which have appeared in
recent years.

In 1931, in the introduction to the Hh function published by the British Association in
the first volume of their Mathematical Tables (Fisher, 1931), I gave the solution of an
allied problem closely akin to the more recent developments.

1f & is the true deviation of a value in terms of the true standard deviation o, and a is the
apparent deviation in terms of the estimate s, then

fAao =T +as,

and for each value of & the quantity a will have a determinate sampling distribution de-
pending only on the sample number 7 and the deviation . The solution is of value in a number
of practical problems, for, given «, the percentile values of @ are calculable, and given @ the
corresponding percentile values of «. For an industrial product, @ may determine the
percentage of the total output which fails in a specific test, and if @ is designed to set the
limits of a test included in a specification in such a way that the probability of failure to meet
the specification is controlled, so as not to exceed some known value, the corresponding value
of @ shows how far the specification can go, even on the basis of a limited number of routine
tests.

The solution given in the British Association Tables (Fisher, 1931), and for which the fine
table of the hyperbolic Hermite function Hk was specially caloulated by Dr J. R. Aivey, was
adopted without acknowledgement by a pupil of Dr Neyman, a certain . Kolodziejezyk,
who published a note (Kolodziejezyk, 1933) in the Comptes Rendus of the Académie des
Sciences. As I had previously rather pressed this solution ‘on Neyman’s notice, owing to
its important industrial applications, I was led to inquire why no acknowledgement was
given of the origin of the solution, but acknowledgements only to Neyman’s writings.
Dr Neyman assured me, however, that in the original form of the note, reference to my
introduction had been inserted, but had been cut out by the editor of Comptes Rendus, in
shortening Kolodziejezyk’s note. So far as I know, neither Neyman nor his follower has
done anything to rectify the invidious position in which they have been placed. It would
appear, however, that in this case at least Neyman did not feel any general objection to the
logic of fiducial inference.

The principle of fiducial inference is very conveniently illustrated with reference to the
variance of a normal distribution. If % is the true variance of the distribution, and if from

a sample of n’ observations we calculate the estimate,

8% = S(x—%)?,

n —1
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(Fisher, 1924, 1925, 1926a), and those of the z distribution for the logarithmic ratio of two
estimates of a variance. It was obvious that these involved no logical principle beyond that
of ‘Student’s’ original test, but were the fruits of the exact solutions of problems of dis-
tribution which I had arrived at in the meanwhile. No misunderstandings were apparent
at this period; perhaps because writers without sufficient logical penetration had not at that
time undertaken the elaborate theories of ‘testing hypotheses’ which have appeared in
recent years.

In 1931, in the introduction to the HA function published by the British Association in
the first volume of their Mathematical Tables (Fisher, 1931), T gave the solution of an
allied problem closely akin to the more recent developments.

If « is the true deviation of a value in terms of the true standard deviation o, and @ is the
apparent deviation in terms of the estimate s, then

Jt+oo =T+ as,

and for each value of « the quantity « will have a determinate sampling distribution de-
pending only on the sample number » and the deviation a. The solution is of value in a number
of practical problems, for, given «, the percentile values of @ are calculable, and given a the
corresponding percentile values of «. For an industrial product, « may determine the
percentage of the total output which fails in a specific test, and if @ is designed to set the
limits of a test included in a specification in such a way that the probability of failure to meet
the specification is controlled, so as not to exceed some known value, the corresponding value
of a shows how far the specification can go, even on the basis of a limited number of routine
tests.

The solution given in the British Association Tables (Fisher, 1931), and for which the fine
table of the hyperbolic Hermite function H4 was specially calculated by Dr J.R. Airey, was
adopted without acknowledgement by a pupil of Dr Neyman, a certain S. Kolodziejezyk,
who published a note (Kolodziejezyk, 1933) in the Comptes Rendus of the Académie des
Sciences. As I had previously rather pressed this solution on Neyman’s notice, owing to
its important industrial applications, I was led to inquire why no acknowledgement was
given of the origin of the solution, but acknowledgements only to Neyman’s writings.
Dr Neyman assured me, however, that in the original form of the note, reference to my
introduction had been inserted, but had been cut out by the editor of Comptes Rendus, in
shortening Kolodziejezyk’s note. So far as I know, neither Neyman nor his follower has
done anything to rectify the invidious position in which they have been placed. 1t would
appear, however, that in this case at least Neyman did not feel any general objection to the
logic of fiducial inference.

The principle of fiducial inference is very conveniently illustrated with reference to the
variance of a normal distribution. If o2 is the true variance of the distribution, and if from
a sample of n’ observations we calculate the estimate,

1
n' -1

8% =

S(x—%)3,
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then it has been demonstrated by a variety of methods that

" 1) g2

(n 0-21)8 —

for n"— 1 degrees of freedom, where ¥? is distributed in random samples, from the same or

from different populations, as in the sum of the squares of ' — 1 independent quantities, each
normally distributed about zero with unit variance.

This distribution is therefore capable of tabulation for different known values of the
degrees of freedom, and has in fact been tabulated rather thoroughly. For any value of n’
the values exceeded by x2 in 99, 98, ..., 1 9%, of trials, or, in general, with a probability p,
are therefore determinate.

If, then, we accept s% as an unbiased or unprejudiced estimate of o2, we must recognize
that the values of o® in the populations which in fact supply samples providing the estimate
s* must be distributed as is (n—1)s

XZ
where x? is given this distribution. Le. that if p is the probability that any given value x?
will be exceeded by chance, then p is the probability that o will exceed
(n—1)s?
—
where s? is the estimated variance observed. For distinctness the probabilities arrived at
by this and analogous arguments are known as fiducial probabilities.

The condition that s* is unbiased is most clearly satisfied if the sample from which it was
derived constitutes the whole of the available information concerning the variance in
question. It was doubtless an apprehension of this point which led ‘Student’ in his original
paper to entitle it ‘On the probable error of a unique sample’. The uniqueness postulated
for the sample precludes the application of this method to cases in which the estimated
variance can be compared with other estimates obtained by a series of repeated samplings.
The condition of uniqueness may in such more complicated cases be satisfied by combining
all the available information to form a single estimate. The criterion of Sufficiency is relevant
here, since only sufficient estimates contain the whole of the information available. Alter-
natively, as I have stressed in an earlier paper (1939), we may take the respounsibility for
assuring the validity of the method by deciding to examine the inferences to be drawn from
a given body of data, as if ¢t were unique, that is, to ignore pro tempore any additional infor-
mation, often of a vague and uncertain character, which may be available about the unknowns

H

’

involved.
To extend this form of reasoning to the simultaneous distribution of the two parameters
of a normal distribution, the mean and the variance, one need only note that if

X1 = (2—1”’)'\'/0_&! (1)
o ,_‘1 2
¢ =T @
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4 being the mean of the population, then x; will be distributed about zero with unit variance,
while y2 will have the same distribution as before, these two distributions being independent
when simultaneous variation of both variates is considered. Since jointly they determine the
values of both x and o2 in terms of their unprejudiced estimates & and s%, the simultaneous
fiducial distribution is determined.

It is possible to resolve the distribution into factors in several ways. Instead of equations

(1) and (2), we might equally have written
= @w)i;i, 3)

2 i ’ 1= 9

X = EE{(?L — )82+ n'(Z— 1)}, (4)

in which y2 has n' degrees of freedom, and ¢ is distributed in ‘Student’s’” distribution for
7' — 1 degrees of freedom. The simultaneous distributions defined in these two ways are, of
course, strictly equivalent. We may note that in (2) x has been eliminated so as to give the
marginal distribution of o in (3) likewise o is eliminated so that we have the marginal
distribution of . These equations give the fiducial distributions of the two statistics singly.

Expression (1), complementary to (2), shows that if o is known, the fiducial distribution
of u is normal, and not of ‘Student’s’ form, as is the general, or marginal, distribution.
Similarly, expression (4), complementary to (3), shows that if z is known, o may be estimated
from 7’ instead of n’ — 1 degrees of freedom, and its fiducial distribution depends on X2,
whereas the marginal distribution is derived from x%._;. It is not in any way surprising or
embarrassing that the distributions should be thus mutually dependent.

Bartlett (1937) has thrown doubt on the validity of the simultaneous distribution for
reasons which appear to be obscure. I must therefore quote the passage:

‘It has been noted (Bartlett, 1936a) that if our information on a population parameter ]
can be confined to a single degree of freedom, a fiducial distribution for & can be expected to
follow, and possible sufficiency properties that would achieve this result have been enumer-
ated. A corresponding classification of fiducial distributions is possib le.

Since recently Fisher (1935) has put forward the idea of a simultaneous fiducial distribu-
tion, it is important to notice that the sufficient set of statistics T and s* obtained from a
sample drawn from a normal population (usual notation) do not at once determine fiducial
distributions for the mean m and variance 2. That for o follows at once from the relation

P(z,s*| m,0?) = p(Z | m,0?) p(s*|?), (1)

but that for Z depends on the possibility of the alternative division
PE@=m)?o p0) @)
where ¢ depends only on the unknown quantity 7. No justification has yet been given that

because the above relations are equivalent respectively to fiducial distributions denoted by
fo(m/o?) fp(c?) and fp(c?/m) fp(m), and hence symbolically to fp(m, o?), that the idea of a

simultaneous fiducial distribution, and hence by integration the fiducial distribution of
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either of the two parameters, is valid when both relations of form (1) and (2) do not exist
(Bartlett, 1936b). Moreover, even in the above example, the simultaneous distribution is
only to be regarded as a symbolic one, for there is no reason to suppose that from it we may
infer the fiducial distribution of, say, m+o.’

In spite of this opinion I can see no more than analytical difficulty in obtaining the
fiducial distribution of any function f(x,) of the two parameters, by integration of the
simultaneous distribution. In particular, the fiducial distribution of #+o, chosen by
Bartlett, follows from the special case & = 1, of the problem of a and @ mentioned above,
which was obtained by just such an integration. The known distribution of @ when o = 1, i.e.

' ! B l
(n' —1)! (1+a2)4n'e-n'/2<1-e-az)IILIAI(M)da’

TS ) T+
o0 1 ee}
= T em—— ~4t2
where 1(2) f L, 5 = T f S
supplies the fiducial distribution, which he seems to seek, merely by substituting
_ J n—1
p+o = Z+as

The representation is, of course, symbolical, and the concepts are abstract, like other
mathematical concepts, but the numerical probabilities supplied by the distribution are
none the less definite, and are as capable as any other of experimental verification and of
practical application.

2. THE STGNIFICANCE OF THE DIFFERENCE BETWEEN THE MEANS OF SAMPLES
FROM POPULATIONS HAVING VARIANCES IN AN UNKNOWN RATIO

It has been seen that the difficulties which stood in the way of an early discovery of
‘Student’s’ test lay largely in the logical concepts involved, and that in the modern period
both Burnside and Bartlett have failed to grasp the essential reasoning needed to argue from
the data presented, without the introduction of prior knowledge. It is not surprising that
Bartlett also found difficulties with the application of the same methods to the more intricate
problem of the comparison of the means of samples having unequal variances, or more
correctly from populations, of which the variance ratio is unknown, and itself constitutes
one of the parameters which require to be ‘Studentized’. For it is obvious that if we use this
method to eliminate the sampling errors of the estimates of both of two variances, this
process is equivalent to the similar elimination of the unknown variance ratio, and of an
estimate of either of them hased on the two samples and on a known variance ratio.

This solution, first given in a different form by W.-V. Behrens (1929), may be developed
very simply; for, if 4 is the mean common to the two populations, we have from ‘Student’s’
work By —p = 84y,

Zy— = Syly,

where s2 and s% arc the variances of the means, cach estimated from its own sample, and ¢,
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and {, arc distributed in repeated sampling in ‘Student’s” distribution for n; and n, degrees
of freedom respectively. Morcover, ¢, and ¢, are distributed independently. Consequently,
the difference between the observed means
flfl — Xy
will be distributed as is St —8yts,
where s, and s, arc known, and ¢, and ¢, have a known simultaneous distribution.
Sukhatmé (1938) has tabulated the 5 and 1 %, levels of significance in terms of
_% by — 8oty
Visi+si)’

He was thus able to utilize the fact that the values of d to be tabulated do not change

0 = tan=1(s,/fs,).

very rapidly with change of angle, so that intervals of 15 are sufficiently close; a considera-
tion of great importance, seeing that even at a single level of significance the table is one of
triple entry.

The objections raised by Bartlett to this solution do not seem to be the same that weighed
with him in the fiducial distribution of the parameters of a single normal distribution,
though doubtless they arise from a similar underlying misapprehension of the argument.

(@) Tt was for a time claimed that an alternative test of significance was available giving
different numerical values from that obtained above (Bartlett, 1936). An examination of the
particular case adduced showed that the proposed test was defective, and as it has now been
abandoned it need not be further discussed.

(b) Tt was argued that in repeated sampling from populations having variances in a fixed
ratio, the value of d tabulated would not be exceeded by chance with the frequency in-
dicated by the test of significance. One or other of two misapprehensions seems to be involved
here. In ‘Student’s’ test the quantity ¢ appears in two roles. First, it is the pivotal quantity
the distribution of which is independent of the population sampled, and the distribution of
which is therefore accepted for the particular sample under consideration, if this sample is
unprejudiced, by selection, or in any other way. Secondly, it is the quantity tabulated. In
our present problem it is the pair of quantities ¢, and ¢, the simultaneous distribution of
which is independent of the parameters of the population sampled. 1t was never imagined
that d also preserved this property. The tabular value d is only introduced as a means of

testing the significance of 8yty — Syt
by integrating the frequency of simultancous values of ¢ and ¢, over the region for which

this exceeds d\J(s3+53).
By a parallel but less suitable convention the same quantity might have heen equated to,
for example, d' (s +8,),

and the tabulated values of d’ would then have supplied the test of significance. The distribu-
tion of d or of d’, or whatever might be used in place of them, in successive samples from a

fixed population is entirely irrelevant.
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The other misapprehension which may be involved is that Bartlett does not perhaps
perceive that the unknown ratio of the variances of the two populations sampled has been
‘Studentized’, i.e. has been eliminated in a manner analogous to ‘Student’s’ elimination
of the unknown variance of a single sample.

In ‘Student’s’ case no one imagines that for any fixed value of &

p+st

will be exceeded by the mean of a sample, Z, in 2} %, of trials from a population with constant
variance, where ¢ is the tabulated value at the 5%, point, which itself is exceeded in just
21 9 of trials. In such a case % is, and has long been known to be, distributed normally, and
not in ‘Student’s’ distribution. It is to allow for the fact that the variance of this normal
distribution is unknown, that ‘Student’s’ distribution is introduced. The possibility of
eliminating the unknown variance is due to our knowledge of its fiducial distribution. The
notion of repeated sampling from a fixed population has served its sole purpose when the
distribution of ¢ has been established.

Similarly, it is not to be supposed that Behrens’s test of significance will represent the
frequency with which 8yt + 8yt

exceeds any chosen value in a population of samples drawn from populations having a
fixed variance ratio. The notion of repeated sampling from a fixed population has completed
its usefulness when the simultaneous distribution of ¢, and ¢, has heen obtained.

(¢) Finally, Bartlett developed a numerical argument in the following words (1936,
p. 565): ‘ An examination of Behrens’ complete table (n; = n,) might be sufficient to make us
suspect its validity, for in all cases the fiducial probability given is less for s;/s, = 1 than
$1/82 = Oor oo, whereas, given 7', we should expect to be more sure that the observed difference
is significant than if s, /s, = 1, sincein that case there is evidence that o3 + 0% is more efficiently
estimated.’

This comment seems to show no consciousness that the ratio of the true standard devia-
tions o /o, is not necessarily equal to that of the estimated values s, /s,. Recognizing that it
is the essential business of the test to allow for the sampling error in the estimate of the
variance ratio, we should not be inclined quickly to generalize on the contrast between the
cases f = 0° and ¢ = 45°, even when n, = n,.

In publishing his tables Sukhatmé (1938) has pointed out that at the 5 %, point (2% % in
each tail) d is less at 45° than at 0° in accordance with Bartlett’s expectation, when =, and
ny exceed 5, but that for the smaller values the reverse is true. Kven if Bartlett’s expectation
were justified for large samples, there is thus no ground for suspecting the accuracy of the
slight table given by Behrens. It will appear in the present paper that even the first correc-
tion from the normal value, in the asymptotic expansion appropriate to large samples, is
not of constant sign in this respect. At the 5 % point d for large samples is, as Sukhatmé
states, less at 45° than at 0°, but at the 10 9, point (5 9, in.each tail) the reverse is the case.
The contribution of the second approximation term is moreover greater at 45° than at
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0 or 90° as far as the 2 9% point. In the neighbourhood of the zero of the first term, the
second term will of course govern the sign of the difference.

The first impression derived from Bartlett’s criticism was that Behrens’s solution, which
I had confirmed later (1935) using a purely fiducial argument, was affected by an analytic
error of some sort. The careful examination of the problem, which his strictures provoked,
leaves no doubt that Bartlett’s difficulties were entirely of a logical character. There is no
error in the analysis. In the intervening period both Jeffreys (1940) and Yates (1939), from
entirely different standpoints, have explained the logic of the argument, and its close analogy,
or more properly identity, with that required for ‘Svudent’s’ original test.

3. THE TREATMENT OF THE PROBLEM BY ASYMPTOTIC APPROXIMATION

In 1926, in one of a series of papers written in collaboration with ‘Student’ for Metron
I developed the ordinate and integral of ‘Student’s” distribution in a series in powers of n1,
giving the polynomial coefficients so far as the fifth adjustment (Fisher, 19265). The purpose
of this expansion was to supply sufficiently accurate values of the probabilities corresponding
to any values of ¢ for values of n beyond the range, which it was proposed to tabulate. The
series was also used for computing and checking the values tabulated.

In the case of Behrens’s extension of ‘Student’s’ test there are even stronger reasons for
using a similar method. The direct calculations carried out by Sukhatmé are very much
more laborious than those needed for ‘Student’s’ integral. At a single level of significance
values are needed, not as in ‘Student’s’ case, for a single series of numbers of degrees of
freedom, but for various values of three parameters provided by the two numbers of degrees
of freedom of the two samples, and the estimated ratio of the variances of the two means.
For functions of many variables there is a great advantage in the use of explicit formulae in
which the several variables may be substituted, and there is much to be gained by extending
the use of such formulae over regions too extensive for complete tabulation. Thirdly, it
should be noted that the logical situation in which we would prefer to rely on the separate
estimates of variances from the two samples, rather than on any process of pooling these
estimates, is of more frequent occurrence with large samples than with small, and is par-
ticularly applicable to cases, such as arise in Physics and in Astronomy, in which we wish to
compare estimates of the value of the same quantity (a) from relatively ample data of low
intrinsic accuracy, and (b) from a small series of observations of relatively high precision.
When, as often happens, the estimates of precision of the means obtained in these two ways
are of the same order of magnitude, the only satisfactory test of significance is that based on
Behrens’s solution. For the discrepancy between the two means will be interpreted as the
sum or difference of two errors, one distributed normally with a well-determined variance,
while the other is of ‘Student’s’ type. Tables 5 and 6 have been constructed from the asymp-
totic expansion with this special application in view.

The work of making Behrens’s test available in practical use has been admirably initiated
in Sukhatmé’s two excellently arranged tables for the 5 and 19, values (1938), for all

331



150 ASYMPTOTIC APPROACH TO BEHRENS'S INTEGRAL

combinations of n, and n, in the harmonic series 6, 8, 12, 24, co. We may expect the asymptotic
expansion to provide (i) A check onSukhatmé’s values, obtained by a completely independent
method, and applicable at least for the higher values of n, and n,. (ii) Values of higher
accuracy than could be obtained from Sukhatmé’s table for values of #, and n, above 12.
(iii) A wider range of levels of significance in the region to which the asymptotic expansion
is applicable. (iv) The theoretical guidance offered by the algebraic form of the leading terms
of the expansion.
The expansion of the ordinates of ‘Student’s’ distribution is of the form

- ettt § Pn-r
AJ(2m) T
where P, is a polynomial in 2 of degree 2r. In particular

B =1,

P = (=262 —1) =4,

P, = (318 — 2815 4 301* + 122+ 3) + 96,

P, = (12— 22¢10 4 11365 — 9266 — 33¢4 — 612 + 15) = 384,

P, = (156 — 600614 1 7100812 — 26616110 + 18330¢8
+ 636015+ 19804 — 180022 — 945) = 92160,

Py = (3120 — 190£18 4 402501° - 33976114 + 103702612 — 63444410
— 2127048 — 78005 + 445514 + 1890£2 — 17955) + 368640.

Integrating the expansion for the ordinate from ¢ to co we have the expansion for the
probability, which may be written
q+ ;/(‘—;ﬂ-) o4t }?, Q.n,
. . L [” e
in which q= Wﬁ e~ dt,
Q= (2+1)+4,
Qy = (88— Tt*— 5> — 3) + 6(42),
Qy = (19— 1168+ 1448 + 614 — 362 — 15) = 6(43),
Q, = (15614 — 37512 4 2225410 — 214145 — 93948 — 21364 4 9 L5¢* + 945) -+ 360(44),
Q5 = (318 —133¢16 + 1 764114 — 7516412 + 5994410 4- 24988
+ 114040 4 1808 + 535512 + 17955) + 360(45).

By calculating the maxima of the fifth correction, it was shown that this never exceeds
10-5 when » is greater than 18. For our present purpose it was therefore supposed that a
useful level of accuracy would be obtained by using the expansion up to P,.

Tn 1937 Cornish & Fisher discussed the problem of using a probability integral expressed
as a series of corrective terms to the probability integral of the normal distribution to obtain
explicit expressions for the percentile points at chosen levels of significance. If x is the
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normal deviate at any such level, and ¢ the corresponding deviate of the distribution to be
tabulated, then writing t—a = f(1)

we may equate the expression for the probability of falling beyond any value ¢ to
1 ; . \ . X
@+ T W= D030 ),
(2m)
where the coefficients involve the Hermite polynomials, and whence, substituting for each
order of magnitude in succession, as, for example,
f(t) = tQy+
tQy — §(Q1)* +,

we develop an expansion expressing f in terms of ¢. Since it is more convenient to use an
expansion in terms of x, the values of which are available in advance, we convert the expan-

sion by means of the very useful formula
2 3
FO = )+ 5o )+ 3 ) iy )
so obtaining the percentile deviate explicitly in terms of the corresponding deviate of the
normal distribution.

As a by-product of applying this process to Sukhatmé’s d the following expansion has
been obtained for ‘Student’s’ ¢: w
t= x+w§l]R,n"’,
where R is a polynomial in 2 of degree r, the first five being

R, = (2%+1)+4,

R, = (Bat+ 1622 + 3) + 6(42),

R, = (3a%+ 1924 + 1722 — 15) + 6(43),

R, = (7928 + 77628 + 148221 — 192022 — 945) + 360(41),

Ry = (2720 + 3392° + 9302° — 1782 — 76527+ 17955) + 360(4%).

In this expansion we may substitute, for example, = 1-959963985 for a 5 %, point, or
z = 2575829303 for the 1 %, point, to obtain the percentile values for any number of degrees
of freedom, beyond those for which tables are available.

4. THE EVALUATION OF BEHRENS’S INTEGRAL
We require to find the total frequency for which

81ty + 8385
exceeds d (s +s3)
when #, and t, are independently distributed, with frequency elements
di, . &
- g —r
NETRE R
dt, . O
—~4f =
and ,\/(271)8 2%1’,7&2'
respectively.
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If t, = xcosO+ysing, t,==zsinf-—ycosd, s/s,="tand,
then the limit of integration is simply ¥ = d. Moreover, the exponential terms may be at
once transformed, since B4 =a+y?,

- 80 that the integral may be written
g od 1 w0
By L — e ¥ g T P(xc+ys)ny T 2 Plxs ~ ye)ng "
Jomma] pmT S bl myoms

Neither stage of the integration offers difficulty. With respect to z, the integrals of all

odd powers vanish, while any even power z* is replaced by
(2s—1)(25—3)...3.1.

Since the polynomials are even in ¢, and f,, integration with respect to z removes all odd
powers not only of  but of y. For integration with respect to y we may use

J(znf yreidy = "I/T")[yzs eI )J(;n)f yeriehdy

= _Lﬂ_) e P21 4 (25— 1)d» 34 (25— 1) (25— 3)d*—5+ ...}

+(2s—1)(2s—3)... 3q(d).
Now, for all cases, the whole integral must take the limiting values zero when d is infinite,
and unity when d is negatively infinite, as does the function ¢(d). Moreover, at these limits

the expression in the upper line tends to zero. Consequently, the polynomials must be such
that the term in g(d) vanishes for all cases except the leading term

Fo(ty) Fy(ts)-
It follows that the integral is obtained in the form

Qd) + = eHES,

w/(2

in which the term in § involving ny g

has even powers of d only up to 4(r +s) — 2, and powers of cosf and sin @ up to 4(r +s).

For example, if, in the polynomial
(t% - Zt% - l)a

we substitute ty = xc+ys,
and integrate with respect to x, we obtain
(3% + 60252y + styY),
— 2(c?+ %),
-1.

Making this homogeneous in ¢ and s and arranging in powers of y, we have
sty
(— 25+ 45%c?) 32,
—s*—4s%c2

Click for pt. 2 of paper
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