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A THEORETICAL DISTRIBUTION FOR THE APPARENT
ABUNDANCE OF DIFFERENT SPECIES

Author's Note (CMS 43.53a)

The matter reprinted constitutes Part 3 (by R. A. Fisher) of a triple
communication from the author, A. Steven Corbet, and C. B. Wil-
liams to the Journal of Animal Ecology. The tables are therefore
numbered starting with Table 9.

The author would like to emphasise that the chief initiative in
this discussion was taken by C. B. Williams, to whom also is due the
great variety of applications in which the distribution and the dis-
cussion have been found useful. The author has been concerned only
with establishing the relationship of the new distribution to others
previously studied, notably the Poisson series and the negative bi-
nomial; to demonstrating the fundamental mathematical relation-
ships; to providing tables of sufficient accuracy and range to facili-
tate to the utmost the numerical calculations which workers were in-
clined to make, and to illustrate the use of these tables as applied
to actual experimental data.

The function ¢/S given in Table 10 is somewhat intricate analyti-
callv. It may be expressed in terms of the function

S
— = —log (1 —x) =1t
(3

in the form

1t2+ 2 +21<1+2>_£ 2 1—e
= — Sg — ~8 — —)eTrt — ————————
12 2 2 rt 40— 1+e

| .

Journal of Animal Ecology, 12: 54-58, (1943).
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(where s and s are the sums of the inverse squares and cubes of the
natural numbers), a form useful for the larger values of ¢; or, in as-
cending powers of ¢ as

1 1 1 1 1 341
___th_____t3_|_ t4+ t5"“ t6________wt7
12 144 1080 32400 27216 228,614400

which may be used for values below the range of the table. The

argument of the table is
et — 1

logo —S‘ = logio

The discussion of the appropriate standard error of « calculated
from the two observational values N and S raises questions of some
interest, since it would seem possible to adopt either N or S as rep-
resenting the “size of the sample.”” The formula given in Section 4
is calculated for simultaneous variations of. N and S associated with
a fixed degree of sampling activity, this being such that the average
values of specimens, N, and of species, S, are taken to be equal to
the values observed. A full discussion of this point would have to
go rather deep into the foundations of statistical inference.
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PART 3.

A THEORETICAL DISTRIBUTION FOR THE APPARENT

ABUNDANCE OF DIFFERENT SPECIES

By R. A. FIsHER

(1) The Poisson Series and the Negative
Binomial distribution
In biological sampling it has for some time been
recognized that if successive, independent, equal
samples be taken from homogeneous material, the
number of individuals observed in different samples
will vary in a definite manner. The distribution of
the number observed depends only on one para-
meter, and may be conveniently expressed in terms
of the number expected, m, in what is known as the
Poisson Series, given by the formula
m'l-
—m
e (1)

Here 7 is the variate representing the number
observed in any sample, m is the parameter, the
number expected, which is the average value of #,
and need not be a whole number. Obviously, m will
be proportional to the size of the sample taken, and
to the density of organisms in the material sampled.
For example, # might stand for the number of bac-
terial colonies counted on a plate of culture medium,
m for the average number in the volume of dilution
added to each plate. The formula then gives the
probability of obtaining 7 as the number observed.

The same frequency distribution would be ob-
tained for the numbers of different organisms
observed in one sample, if all were equally frequent
in the material sampled.

If the material sampled were heterogeneous, or if
unequal samples were taken, we should have a mix-
ture of distributions corresponding to different values
of m. The same is true of the numbers of different
organisms observed in a single sample, if the different
species are not equally abundant.

An important extension of the Poisson series is
provided by the supposition that the values of m are
distributed in a known and simple manner. Since
m must be positive, the simplest supposition as to its
distribution is that it has the Eulerian form (well
known from the distribution of x?®) such that the
element of frequency or probability with which it
falls in any infinitesimal range dm is

df = ("kTIIT! pEmk—le=m g, (2)

If we multiply this expression by the probability,
set out above, of observing just z organisms, and
integrate with respect to m over its whole range
from o to 00, we have

@

Jy =i?

m"l
FmEle P e — dm,
n!

which, on simplification, is found to have the value
(k+n—1)! p
(k=) 1n! (1+pF’ (3)
which is the probability of observing the number »
when sampling from such a heterogeneous popula-
tion. Since this distribution is related to the negative
binomial expansion
(1-L Y= § Etnont p oy
\ 1+p) T ap (k—=1)Inl \1it+p/’
it has become known as the Negative Binomial distri-
bution. It is a natural extension of the Poisson series,
applicable to a somewhat wider class of cases.

The parameter p of the negative binomial distri-
bution is proportional to the size of the sample. The
expectation, or mean value of #n, is pk. The second
parameter k measures in an inverse sénse the varia-
bility of the different expectations of the component
Poisson series. If k is very large these expectations
are nearly equal, and the distribution tends to the
Poisson form. If heterogeneity is very great & be-
comes small and approaches its limiting value, zero.
This second parameter, &, is thus an intrinsic pro-
perty of the population sampled.

(2) The limiting form of the negative binomial,
excluding zero observations

In many of its applications the number 7 observed
in any sample may have all integral values including
zero. In its application, however, to the number of
representatives of different species obtained in a col-
lection, only frequencies of numbers greater than
zero will be observable, since by itself the collection
gives no indication of the number of species which
are not found in it. Now, the abundance in nature
of different species of the same group generally varies
very greatly, so that, as I first found in studying
Corbet’s series of Malayan butterflies, the negative
binomial, which often fits such data well, has a value
of k so small as to be almost indeterminate in magni-
tude, or, in other words, indistinguishable from zero.
That it is not really zero for collections of wild
species follows from the fact that the total number
of species, and therefore the total number not in-
cluded in the collection, is really finite. The real
situation, however, in which a large number of
species are so rare that their chance of inclusion is
small, is well represented by the limiting form taken
by the negative binomial distribution, when % tends
to zero.

The limiting value k=0 cannot occur in cases
where the frequency at zero is observable, for the
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distribution would then consist wholly of such cases.
If, however, we put k=0 in expression (3), write x
for p/(p + 1), so that x stands for a positive number
less than unity, varying with the size of the
sample, and replace the constant factor (k—1)! in
the denominator, by a new constant factor, %, in
the numerator, we have an expression for the ex-
pected number of species with » individuals, where
n now cannot be zero,

2, (4)
n

These two relationships enable the series to be
fitted to any series of observational data, for if .S is
the number of species observed, and N the number
of individuals, the two equations

S=—ulog, (1—x), N=oaxf1—x),

are sufficient to determine the values of « and x.
The solution of the equations is, however, trouble-
some and indirect, so that to facilitate the solution
in any particular case I have calculated a table
(‘T'able 9) from which, given the common logarithm

Table 9. Table of log,y N/« in terms of log,, NS, for solving the equation
S=u log, (1 +§>, given S and N

logyo N/S o 1 2 3 5 6 7 8 9
o4 061121 63084 65023 66939 68832 70701 72851 74382 76195 77990
o5 079766 81526 83271 85002 86717 88417 90105 91779 093442 95002
o6 0'96730 98356 99973 101579 03174 04759 06335 07902 09460 11010
o7 1'12550 14083 15607 17124 18634 20136 21631 23120 24602 26077
o8 1°27546 29008 30465 31916 33361 34801 36234 37663 39087 40506
o9 1'41920 43329 44733 46133 47528 48919 50305 51688 53066 54440
10 155810 57177 58539 59898  6r2s4 62605 63954 65299 66640 67979
1 169314 70646 71975 73301 74623 75943 77261 78575 79886 81193
12 1-82501 838053 85106 86404 87700 88994 90285 01574 92860 04144
13 1'95426 96706 97984 99259 2'00532 01804 03073 04340 05605 06869
14 208130 09389 10647 11902 13156 14409 15659 16908 18155 10400
15 220644 21886 23126 24365 25602 26838 28072 29305 30536 31766
16 2'32994 34221 35446 36670 37893 39114 40334 41553 42770 43986
17 245201 46414 47627 48838 50048 51256 52464 53670 54875 56079
18 257282 58484 59684 60884 62083 63280 64476 65672 66866 68059
19 2:69252 70443 71633 72822 74011 75198 76385 77570 78755 79939
2°0 2-81121 82303 83484 84664 85843 87022 88199 89376 90552 91727
21 292901 94075 95247 96419 97590 98760 99930 3-01099 02267 03434
22 304600 05766 06931 08095 09259 10422 11584 12745 13906 15066
23 3-16225 17384 18542 19699 20856 22012 23168 24323 25477 26630
24 327783 28936 30087 31238 32380 33539 34688 35837 36985 38133
2's 339280 40426 41572 42717 43862 45006 46150 47203 48436 49578
26 3'50719 51860 53001 s4141 55280 56419 57558 58696 59833  6ogyo
27 362106 63242 64378 65513 66648 67782 68915 70048 71181 72313
28 373445 74577 75797 76838 77968 79097  8o227 81355 82484 83611
29 384739 85866 86992  88rrg 89244 90370 91495 92619 93743 94867
30 3'95991 97114 98236 99358 4'00480 01602 02723 03843 04964 obo84
31 4'07203 08322 09441 10560 11678 12795 13913 15030 16149 17263
32 4-18379 19494 20610 21725 22839 23954 25068 26181 27295 28408
33 429520 30632 31744 32856 33967 35079 36189 37300 38410 39520
34 4:40629 41738 42847 43956 45064 46172 47280 48387 49494 50601
3's 4'51707 52814 53920 55025 56131 57236 58340 59445 60549 61653

The total number of species expected is conse-
quently © o
2 -xt=—alog, (1 —x),

n=1"

so that our distribution is related to the algebraic
expansion of the logarithm, as the negative binomial
distribution is to the binomial expansion. Next, it
is clear that the total number of individuals ex-
pected is o

Y oax"=

n=1

xAX

I—x'
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of N/S, we may obtain that of N/u. Five-figure
logarithms are advisable, such as those in Statistical
Tables. If x be eliminated from the two equations,
it appears that

N=o (%% ~1), Szalog,(l +§>,
and

JE'Y= (€ — 1)+ S/a,

from which Table g has been constructed.



56 Relation between numbers of species and individuals in samples

(3) Fitting the series
The use of the table is shown, using Williams’s
extensive data for the Macrolepidoptera at Har-
penden (total catch for four years). Symbols +
and — are used to indicate numbers to be added

and subtracted respectively.
Common

Symbol Number logarithm

S 240 —2-38021

N 15609 +4'19338

NIS — 1-81317

From the table log (N/.S) log (N/x)
—1-81 —2:58484

+ 182 +2'50684

Difference o'or1 0'01200
Proportional parts 000317 000380
181317 258864

Then Common
Number logarithm

N — — 258864

N — +419338

o 40°248 1-60474

For constructing the distribution we should then

calculate
N 15609
Nta 15649248 © 9974281.

The quantity « is independent of the size of
sample, and is proportional to the number of species
of the group considered, at any chosen level of
abundance, relative to the means of capture em-
ployed. Values of o from different samples or ob-
tained by different methods of capture may therefore
be compared as a measure of richness in species. To
this end we shall need to know the sampling errors
by which an estimate of « may be affected.

(4) Variation in parallel samples

Whatever method of capture may be employed,
it is to be expected that a given amount of activity
devoted to it, e.g. a given number of hours exposure
of a light-trap, or a given volume of sea water passed
through a plankton filter, will yield on different
occasions different numbers of individuals and of
species, and, consequently, varying estimates of a.
The amount of variation of these kinds astributable
to chance must form the basis of all conclusions as
to whether variations beyond chance have occurred
in the circumstances in which two or more samples
were made.

In strictly parallel samples, i.e. equivalent sam-
ling processes applied to homogeneous material, the
numbers caught of each individual species will be
distributed in a Poisson series, and it easily follows
that the same is true of the aggregate number, N,
of all species. Since N is a large number of hundreds

or thousands, this is equivalent to N being normally
distributed with a variance equal to its mean, so that
to any observed value N we may attach a standard
error (of random sampling) equal to ++/N.

For the variation of S we must obtain the distri-
bution of species according to the number m ex-
pected in the sample; modifying expression (2) in
the same way as (3) has been modified, this is found
to be

oe " ¥ dmim. (5)

The probability of missing any species is e~™, so
that the contribution to the sampling variance of S
due to any one species being sometimes observed
and sometimes not, is

e (1 —e ™).

Multiplying this by the frequencies in (5) and
integrating over all values of m, we have

® _m(zv'+a)/1v< _m ﬁz__ > _ <2N+°‘
OC./(; e I 2+6 dm-—oclog‘, —m>,
which is the sampling variance of S. For large
samples this is approximately (0:6931) «.

Variations of S and N in parallel samples are not,
however, independent. When present, a species must
contribute on the average mf(x —e~™) individuals,
which exceeds the expectation in all samples by

me ™
1—e ™

and as the frequency of occurrence is 1 —e™™, each
species must contribute m.e™™ to the covariance of
S and N. The covariance is thus found to be
aN
N+o’

From these three values it is possible by standard
methods to find the sampling variance of S in
samples having a given number of specimens N,
which is

V (S), given N, =« log,

2N +a o*N
N+a (N+a)?
and, the variance of «,
2N+a
o? {(N+ o)? log, Nie

(SN + Soo— Na)?

We may, therefore, complete the example of the
last section by calculating the standard error of o.
Using the values obtained, the vatiance comes to
11251, of which the square root is 1-0607.

The estimate obtained for «, 40:248, has, therefore,
a standard error of 1-0607, available for comparison
with like estimates.

—an |

V(=

(3) Test of adequacy of the limiting distribution

From the manner in which the distribution has
been developed it appears that we never have theore-
tical grounds for supposing that k is actually zero;
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but, on the contrary, must generally suppose that
in reality it has a finite, though perhaps a very small,
value. Our reasons for supposing this small value
to be negligible must always be derived from the
observations themselves. It is, therefore, essential
to be able to test any body of data in respect to the
possibility that in reality some value of & differing
significantly from zero might fit the data better than
the value zero actually assumed.

The most sensitive index or score by which any
departure of the series of frequencies observed from
those expected can be recognized, is found by the
general principles of the Theory of Estimation, as,
for example, in the author’s Statistical Methods for
Research Workers, to be

S {a,. <1+7}+1}+...+—I->},
n—1
when a, is a number of species observed with » indi-
viduals in each. If the values of a, conformed accu-
rately with expectation, the total score would be
equal to
S2
'2‘;~
If, on the contrary, the series were better fitted by
a negative binomial with a value of k differing from
zero, we should expect the difference

S{a,,<z+%+-.§+...+;£—l>} —;Eo-i

to show a positive discrepancy.

Applying this test to Williams’s distribution for
240 species of Macrolepidoptera, one finds, after a
somewhat tedious calculation,

S{an<1+%+%+...+;—};>} 72486
SZ
by 715'57

Difference +9-29

The series, therefere, shows a deviation in the direc-
tion to be expected for the negative binomial, though
apparently quite a small one. In order to test the

significance of such discrepancies, I give in Table 1o,
for the same range of observable values of the average
number of specimens in each species N/S, the values
of /S, where ¢ is the quantity of information, in
respect of the value of &, which the data supply.

Table 10. The amount of information respecting k,
supposed small, according to the numbers of indi-
viduals (N) and species (.S) observed

10g10 NIS l/‘s logy, N/S i/S

04 01971

o5 02882

o6 03914 21 3°1047
o7 05054 22 3:3606
o8 06295 23 36260
09 07639 2'4 3°9009
10 09070 2°5 41854
X 1'0608 26 474791
12 12232 27 47825
13 1°3950 28 570954
14 15762 2'9 5'4178
I'5 17665 30 57498
16 1-9661 31 60912
17 2'1751 32 64421
18 23934 33 6-8026
19 26211 3°4 71726
20 2-8582 35 7°5521

Entering the table with our value 1-81317 for
log,y N/S we have i/S=2-4656, or i=591-7. This
quantity may now be used for two purposes. In the
first place it is the sampling variance of the dis-
crepancy observed, so that, taking its square root,
the standard error is found to be 24-33. This suffices
to test the significance of the discrepancy, since
929 * 24°33 is clearly insignificant.

If, on the contrary, a significant discrepancy had
been found, an estimate of the value of k required
to give a good fit to the data could be made by
dividing the discrepancy by 7. In fact

would have been the value of % indicated by the
data, if any value other than zero had been required.
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SUMMARY

Part 3. A theoretical distribution is developed
which appears to be suitable for the frequencies
with which different species occur in a random
collection, in the common case in which many
species are so rare that their chance of inclusion is
small.

The relationships of the new distribution with the
negative binomial and the Poisson series are estab-
lished.
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Fisher, R. A. (1941). ‘Statistical methods for research

workers’ (8th ed.). Edinburgh.

Numerical processes are exhibited for fitting the
series to observations containing given numbers of
species and individuals, and for estimating the para-
meter « representing the richness in species of the
material sampled ; secondly, for calculating the stan-
dard error of «, and thirdly, for testing whether the
series exhibits a significant deviation from the
limiting form used.

Special tables are presented for facilitating these
calculations,
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