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Statistical analysis of the velocity field in a mechanical precessing jet flow
J. Mi and G. J. Nathan
School of Mechanical Engineering, University of Adelaide, South Australia 5005, Australia

(Received 24 June 2004; accepted 1 October 2004; published online 1 December 2004)

An experimental investigation of a precessing jet issuing from a mechanically rotating nozzle
directed at an angle ofa=45° relative to the axis of rotation is reported. Both conventional and
conditional statistics of the velocity field of the jet were measured using a combined hot-wire and
cold-wire(to identify any reverse flow) probe. Three distinct values(<0.005, 0.01, and 0.02) of the
precession Strouhal number Stp ([ rotation frequency3 nozzle diameter / jet exit bulk velocity)
were used to assess the effect of varying Stp. The measurements reveal that the Strouhal number in
general has significant influence on the entire mixing field generated by a precessing jet. The
occurrence of precession at all the Strouhal numbers of investigation produces a central recirculation
zone atxø7d, wherex is a distance measured from the rotating nozzle exit. A critical Strouhal
number, i.e., Stp,cr<0.008 for the present case, is identified: at StpùStp,cr the core jet converges to
the axis of rotation while at StpùStp,cr it does not. The characteristics of the turbulent flow in the
near and intermediate regions are quite different and depend upon the magnitude of Stp. The
near-field region,x/dø10–15, is dominated by a regime of global precession of the entire jet. As
a result, the large-scale entrainment of the ambient fluid is substantially enhanced while the
fine-scale turbulent mixing is suppressed. Under the supercritical regime(i.e., StpùStp,cr), the jet in
the far field resembles some features of the nonprecessing counterpart. Nevertheless, significant
differences still retain in the statistical properties. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1824138]

I. INTRODUCTION

The statistically steady turbulent jet issuing from a round
nozzle into a large stagnant or low speed coflowing sur-
roundings has been investigated extensively by means of ex-
periments, numerical simulations, and analysis. The turbu-
lent mixing characteristics of this flow has been a dominant
theme of such research because it is relatively simple in ge-
ometry and also a basic component in many practical sys-
tems. In the meantime, numerous investigations have also
sought to substantially alter the mixing characteristics of a jet
with view to benefiting performance for a range of applica-
tions. This has resulted in more complex systems which in-
clude features such as swirl(e.g., Syred and Beer,1), bluff
body recirculation(e.g., Gutmarket al.2) and various types
of “excited” jet devices(e.g., Refs. 3–6).

One method for manipulating jet mixing is by large-
scale, low-frequency oscillations of the entire jet of which jet
precession is one example. The term “precession” originates
from planetary motions and describes the periodic motion of
one axis (that of the jet) about another(here that of the
nozzle). This term appears to have first been discussed with
regard to jet flows by Nathan7 although it was used earlier to
describe the unsteady motion of a vortex core in swirling
flows.1 The Strouhal number of these low-frequency oscilla-
tions, St=fd/Ue (where f, d, and Ue denote the oscillation
frequency, exit diameter, and mean velocity of the jet, re-
spectively), is one to two orders of magnitude lower than that
of the dominant frequency of the vortex formation within the
shear layer of an emerging jet, St<0.3–0.5(e.g., Refs. 8 and
9). In contrast to acoustic excitation, which seeks to excite

the “preferred mode” of these dominant vortex shedding pat-
terns, low-frequency excitation causes a large-scale oscilla-
tion of the entire jet. There is some evidence that such oscil-
lations may be naturally present, although weak, within an
unexcited jet.10

Precessing jet(PJ) flows can be generated through a self-
exciting, fluid-mechanical(fluidic) device that has found ap-
plication as an industrial burner.11,12 In unconfined gaseous
flames, it acts to increase the radiant fraction, or radiant heat
transfer from a flame, so reducing the global flame tempera-
ture and thermal NOx emissions relative to a wide range of
flames produced by equivalent swirl, bluff body, and simple
jet burners.13 Pilot-scale trials14 have demonstrated similar
benefits in higher temperature environment with the air pre-
heated to temperatures of up to 840 °C. Full-scale installa-
tions of commercial PJ burner systems in rotary kilns
(15–120 MW) have consistently demonstrated that, relative
to the flames from the burners they replaced, NOx emissions
are reduced by 30%–70% while the fuel saving is typically
5% (e.g., Refs. 15–18). More recently this flow has also been
shown to provide benefits in applications involving pulver-
ized solid fuels.19–21

While the efficacy of the PJ flow is proven in practice, it
is a flow that is extraordinarily difficult to study at the fun-
damental level. Primarily this is due to the underlying sig-
nificance of a large-scale unsteady oscillation which neces-
sarily also results in the flow being statistically unsteady.
While recent progress has been made in quantifying the
phase-averaged flow within, and emerging from, the fluidic
PJ nozzle,22,23 it remains difficult to analyze. The complexity
of the flow within the chamber results in an emerging jet
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which is highly noncircular and oscillates with large cycle-
to-cycle variations. In addition, the Strouhal number of the
oscillation cannot be varied significantly without changing
nozzle dimensions(e.g., chamber length24) and this change
also alters other aspects of the flow, such as jet exit “diam-
eter.” To allow a more fundamental investigation of the ef-
fects of precession on the mixing and combustion character-
istics of a well-defined jet, the Turbulence, Energy &
Combustion Group of the University of Adelaide has devised
a mechanically rotated PJ nozzle. Unlike the flow from the
fluidic PJ nozzle, the mechanical precessing jet(MPJ) has
well-defined initial conditions, each of which can be varied
independently.

The MPJ has been investigated in both reacting and non-
reacting conditions. Nathanet al.25 investigated the effect of
varying the Strouhal number of precession, Stp= fpd/Ue

(where fp, d and Ue denote the precession frequency, exit
diameter, and mean velocity of the jet, respectively) on the
global performance of open jet flames of methane and pro-
pane. They found that, by changing Stp with all other param-
eters held constant it is possible to produce a wide range of
different flame types from yellow to blue. They classified the
short, broad, blue flames as having a “low” Strouhal number,
and the longer, yellower flames as having a “high” Strouhal
number. In the high Stp regimesStp.0.01d the radiant frac-
tion was increased by,15% and the NOx emissions reduce
by 25% relative to a conventional jet diffusion flame. In this
regime the flame shape and global characteristics are similar
to those obtained from comparable measurements with the
fluidic PJ burners.13

Schneider26 and Schneideret al.27,28 have investigated
the nonreacting velocity and pressure within the flow from a
MPJ nozzle using both laser Doppler anemometry(LDA )
and a miniature four-hole “Cobra” Pitot-tube probe. They
employed a phase-averaging scheme, referenced to the phase
of the nozzle, to identify flow patterns and structure for
Red =26 600 and Stp<0.015. They showed that the jet spi-
rals out from the nozzle to form a helix around a recircula-
tion flow zone. They identified large gradients in the trajec-
tory of the emerging jet, both in the azimuthal and radial
directions, associated with the presence of a low-pressure
core that precesses with the jet, but with a slight phase lag.
While the entire near-field flow, typicallyx/dø6, was found
to precess with the jet, no evidence of the precession fre-
quency, or a subharmonic, was found further downstream.
They also found that the nozzle does not impart any signifi-
cant net azimuthal velocity to the flow, although azimuthal
gradients exist locally. More details of the near-field helical
flow were identified by Nobes,29 who measured the scalar
(mixture fraction) field of a MPJ using a planar Mie scatter-
ing technique. He identified a vortex pair, presumably coun-
terrotating in a manner analogous to a jet in crossflow, within
the near-field helix. He concluded that the near-field helix
“collapses” upon itself after approximately one turn of the
helix for a wide range of Stp. Further downstream, the jet
undergoes a transition to a state resembling a simple-jet flow.

These previous studies have increased our knowledge of
the MPJ flow. Nevertheless, like its fluidic counterpart, this
flow is extremely complex so that understanding of the tur-

bulent mixing processes in it is still in its infancy. For ex-
ample, measurements of velocity given by Schneideret
al.26–28 were limited to the regionx/dø12 and did not in-
clude energy frequency spectra nor a set of reliable high-
order statistics such as skewness and flatness factors. Fur-
thermore, previous measurements have phase averaged the
flow relative to the rotation of the nozzle, rather than to the
local position of the jet. That these local and phase-averaged
trajectories can be quite different is evident from the planar
images of Nobes.29 To address these gaps in knowledge, the
present study provides a more detailed investigation of the
velocity field using a combined hot/cold-wire probe. The use
of a cold-wire can minimize the directional ambiguity asso-
ciated with a single hot-wire probe if the probe is carefully
oriented relative to a known flow direction. Flow reversal is
indicated by the measurement of a temperature rise by the
coldwire. Importantly, the probe, although more poorly re-
solving flow direction, has significantly better spatial and
temporal resolution than both LDA and particle image ve-
locimetry (PIV). Hence it is well suited to provide measure-
ments of frequency spectra and probability density functions
of the fluctuating velocity. Some preliminary results of the
present measurements have been reported in two conference
papers by Mi et al.,30,31 mainly for Stp=0.02. Here we
present a more detailed and complete analysis of the velocity
field in a MPJ flow. The specific aims of the present study
are (1) to investigate the effect of Stp on the streamwise
evolution of the flow in more detail and further downstream
than has been done previously,(2) to characterize the domi-
nant flow structure using a phase-averaging scheme based on
the temporarily-determined local maximum of the instanta-
neous velocity over each cycle of precession, and(3) to ex-
tract detailed information of the near-field precessing jet
based on this conditionally phase-averaged data.

II. EXPERIMENTAL DETAILS

A. Experimental conditions

The present study is performed using the mechanically
rotating nozzle of Schneideret al.,26–28shown schematically
in Fig. 1. This nozzle produces a well-defined initial flow in

FIG. 1. A sketch of a rotating nozzle and the coordinate system.
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which all of the parameters that characterize the flow field
(i.e., the frequency of jet precessionfp, the nozzle exit diam-
eterd, the jet-exiting anglea relative to the axis of rotation,
the bulk exit velocityUe, and the jet exit eccentricity) can be
varied independently. The initial velocity profile at the
nozzle exit fora=0 is “top-hat” shaped.26 The external tip of
the nozzle is covered by a nonrotating shroud to prevent the
external boundary layer of the rotating nozzle from exerting
a significant influence on the flow. Likewise the rotating
components of the motor and tooth belt are isolated from the
jet flow by a cover-plate system.

For the present investigation,d is 10 mm,a is 45°,Ue is
about 20 m/s, and the jet exit is centered on the axis of
rotation. Correspondingly, the exit Reynolds number Red

s;Ued/vd is Red <13 300. Three precession Strouhal num-
bers, i.e., Stp<0.005, 0.01, and 0.02 are investigated for
which the corresponding values of rotating frequency,fp, are
10, 20, and 40 Hz. The bulk exit velocityUe is measured by
a variable area flow-rate meter with an accuracy of ±2% and
the frequency is controlled to an accuracy of ±0.1 Hz by a
frequency-controlled 300 W electric motor.

B. Hot-wire anemometry

Hot-wire anemometry is used for the velocity measure-
ments. The measuring probe, Fig. 2, combines a 5mm tung-
sten hot wire, to measure velocity, and a 2.5mm tungsten
cold wire, to detect possible flow reversal by the thermal
wake of the hot wire following Antoniaet al.32 The hot wire
is oriented perpendicular to the cold wire. The hot wire is
aligned and traversed radially, as shown in Fig. 2, based the
phase-averaged measurements of Schniederet al.27 that were
obtained with a three-component LDA. In this orientation the
hot wire measures the projection of the total velocity in the
sx,rd plane, i.e.,U=sVx

2+Vr
2d1/2, where Vx and Vr are the

axial and radial components of the total velocity. This orien-
tation enables the cold wire to identify reversed flow for
which Vx,0. The measurements of Ref. 27 show that for
Stp<0.015 andr /dù2, ukVrlu / kVxl<0.1–0.35 atx/dù2
and ukVulu / kVxl,0.05 at x/d.4 (see their Fig. 19). This

implies that overall kUl / kVxl<100.5% –106%. In other
words, with the present orietation of the probe, the assump-
tion that kVxl<kUl results in a minimum overestimation of
about 6%. This is only slightly larger than the measurement
uncertainty. Hence, the velocity-related results are presented
in terms ofU, noting thatkUl<kVxl.

The hot wire is operated at an overheat ratio of 0.8 by an
in-house constant temperature circuit, while the cold wire is
operated at 0.1 mA with an in-house constant current an-
emometer. The sign of the velocity componentVx is deter-
mined from the cold-wire signal when processing the data.
Original signals from both wires are offset before being am-
plified, low-pass filtered at 2.8 kHz to eliminate high-
frequency noise, and digitized at 5.6 kHz using a 12 bitA/D
converter on a personal computer. The data record duration is
about 30 s, a time that is sufficient for the spectral calcula-
tion. Calibration of the hot wire was carried out using a
standard Pitot tube at the exit plane of a smoothly contract-
ing round nozzle. It should be noted that measurements are
limited to the regionx/dø20–30, depending the magnitude
of Stp. Because reliable data are not possible beyond this
region due to the rapid decay in jet velocity.

C. The conditional averaging scheme

In the present study, we performed the conditional aver-
aging based on the temporally local maximumUm, of instan-
taneous velocity signals over each cycle of precession. The
mean and rms ofUm, i.e., kUml and kum8 l=ksUm−kUmld2l1/2,
were estimated at different radial locations in the region
1.5øx/dø10. The average center of the jet is assumed to be
located atr =Rm, which is the maximum ofkUml across the
entire measurement plane. We also chooset= ti as the origin
of the phase angle, i.e.,w=2pst− tidfp, where ti −0.5fp

−1

ø tø ti +0.5fp
−1 and the indexi denotes theith detection of

Um. Based on the samew values varying between −p andp,
the phase averages ofU and its fluctuating component are
obtained over all the detected precession cycles within the
measurement duration, forming the phase-averaged velocity
mean and rms as below

kUuwlsrd =
1

N
o
i=1

N

Uisw,rd s1d

and

ku8uwlsrd =H 1

N
o
i=1

N

fUisw,rd − kUuwlsrdg2J1/2

. s2d

In (1) and (2), N is the total number of detections ofUm,
which is about 300, 600, and 1200, respectively, forfp=10,
20, and 40 Hz for the present measurements atx/dø7. Note
that, whenw=0, Eqs. (1) and (2) reduce tokU uw=0lsrd
=kUmlsrd and ku8 uw=0lsrd=kum8 lsrd.

D. The experimental uncertainty

We have calculated experimental uncertainties for the
measured quantities from estimated inaccuracies in the cali-

FIG. 2. The measuring probe vs the nozzle. Here, HW and CW denote “hot
wire” and “cold wire,” respectively.
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bration data and particularly from the observed scatter in the
measurements. The results are summarized as follows:

(1) The unconditional time averages: The uncertainty for
the mean velocity isfkUlg< ±1.5% and that for the rms
velocity is fku2l1/2g< ±2.0%.

(2) The conditional averages: The mean velocities
fkU uwlg and fkUmlg are ±4.5% and ±3.5%, respectively,
while the rms velocitiesfkum8 lg and fku8 uwlg are both
<±0.8%.

III. THE PRECESSING FLOW FIELD

Figure 3 shows the instantaneous velocity signalsUstd
for each of the three values of Stp measured atx/d=3 and
r =rm, i.e., the radius at which the local maximum of the

time-averaged velocitykUlm is found (details are presented
later). Several features are evident. First, each cycle exhibits
a rapid rise in theUstd followed by a much more gradual
decrease. Each cycle is caused by the cyclical passage of the
jet tangentially through the measurement probe, with the
dominant frequency matching the frequencyfp (=10 Hz,
20 Hz, or 40 Hz) of rotation of the nozzle. The asymmetric
nature of the rise and fall inUstd is consistent with the cross
section of the jet being highly skewed, as found by Schneider
et al.27 It is also clear from Fig. 3 that there are cycle-to-
cycle variations, with the peak magnitudeUm varying by up
to a factor of 2 for Stp=0.02.

A close check of the velocity signals forr =rm at all
measuredx/d suggests that precession of the flow field is
still evident to a downstream distance of about 10d, with
some dependence upon Stp. This is verified unambiguously
by the velocity power spectrumFu, defined byeFusfddf
=ku2l, where f is frequency. Figures 4 and 5, respectively,
display the spectra obtained atr =rm and r =0 (the axis of
rotation) in the region 1.5øx/dø15. They demonstrate that
a strong primary peak inFu occurs atf = fp, followed by a
number of higher order harmonics whenx/dø7. The
strength of the primary and secondary peaks decrease rapidly
in the range 7øx/dø10. At x/d=10, several harmonics of
the primary peak are still evident at both radial locations for
Stp=0.005 while only the primary peak is discernible atr
=rm for Stp=0.02. This implies that the rate of decay in
significance of the precession increases with Stp. For x/d
ù15, none of the spectra exhibit any distinct peak at any
discrete frequency relating to the precession. It follows that
there exists a transition region which separates the upstream
region, in which the entire flow oscillates at the frequency of
precession, from the downstream region, where it does not.
For all the three values of Stp, the onset of the transition
region is located betweenx=10d andx=15d. As further de-
duced from Figs. 4 and 5, the exact location slightly up-
stream with an increase in Stp. This dependence on Stp is
consistent with the concentration measurements of Nobes.29

FIG. 3. Instantaneous velocity signalsUstd for all three values of Stp ob-
tained atx/d=3 andr =rm.

FIG. 4. Frequency spectraFusfd of
the fluctuating velocityu obtained at
r =rm in the region fromx/d=1.5 to
x/d=15.
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It is interesting to compare the location of the transition
region determined by the present method with that obtained
in Ref. 27 where the researchers phase averaged their LDA
measurements based on mechanical triggering from the loca-
tion of the nozzle. They deduced the end of the upstream
precessing region to bex/d<6 for Stp<0.015, which is
much closer to the nozzle than the present values ofx/d
<12. This difference suggests that the instantaneous trajec-
tory of the precessing flow exhibits a substantial deviation
from the previous phase-averaged value(which is necessar-
ily linked directly to the phase of the rotating nozzle), the
extent of which increases with the downstream distance.

IV. CONVENTIONAL STATISTICS OF THE
PRECESSING JET FLOW

Figures 6(a) and 6(b) show the axial evolution of the
radial distributions of the convetional time-averaged velocity
kUl and rms velocity fluctuationu8;ku2l1/2, normalized by

Ue, in the region 1.5øx/dø20 for Stp=0.005, 0.01, and
0.02. Both figures use the same scales to assist in compari-
sons. Consistent with the trends measured in Refs. 27 and 28,
Fig. 6(a) identifies a central recirculation zone in the time-
averaged flow for all the values of Stp in the region 1.5
øx/dø7. The size of the central recirculation zone in-
creases as Stp decreases, while the magnitude of the maxi-
mum reverse velocity decreases with decreasing Stp. How-
ever, Schneideret al.27,28 reported a shorter zone than
determined here from Fig. 6(a). The radial profiles of their
time-averaged axial velocity component, their Fig. 19(a),
suggest that the mean reverse flow is located in the region
x/dø6.

Figure 6(a) also shows that, as expected, the time-
averaged velocity decays much faster than a nonprecessing
jet flow. For example, atx/d=15, the local maximum ofkUl,
denoted bykUlm, is only 7.5% ofUe for Stp=0.02 and less
than 5.5% for both Stp=0.005 and 0.01. By comparison,
kUlm/Ue is greater than 40% at the same relative down-
stream distance in the nonprecessing round jet(presented
later in Fig. 20). The low level of the time-averaged velocity
is caused, at least to a great extent, by the high initial en-
trainment of low-velocity ambient flow induced by the pre-
cession in the near field forx/d,15 (see Fig. 13).

Figure 7 shows the fractionsgd of time occupied by the
precessing jet, obtained at the locations for the local maxi-
mum velocitykUlm, corresponding to the local jet center. The
criterion used to determine the time occupied by the jet was
Uù0.1UM, whereUM =maxhUstdj. As expected, the value of
g increases with Stp andx/d and asymptotes to unity at the
location where the jet converges to the nozzle axis. The
asymptotic value ofg<1 has been gained atx/dù15 for
Stp=0.01 and 0.02. However, for Stp=0.005 the value ofg is
below unity through the measured region. This low fraction
(thus high intermittency of induced ambient fluid) in the near
field results in the rms velocityu8 being comparable with the
meankUl. Indeed, the magnitude ofu8 is greater than that of
kUl in the regionx/dø3 [Figs. 6(a) and 6(b)]. Bearing this
in mind, the magnitude ofu8 in the near-field region should

FIG. 5. Frequency spectraFusfd of the
fluctuating velocityu obtained atr =0
in the region fromx/d=1.5 to x/d
=10.

FIG. 6. Radial distributions of the normalized time-averaged velocity and
rms fluctuation for Stp=0.005, 0.01, and 0.02.(a) The meankUl /Ue; (b) the
rms u8 /Ue, whereu8;ku2l1/2.
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not be regarded as the measure of turbulence intensity of the
local jet flow. Further evidence of the transition to a more
conventional “fully developed jet” flow with axial distance
can be seen by comparing the ratio of the rms to the mean. In
the regionx/dù15, the normalized rms,u8 / kUlm, for Stp
=0.02 is found to match reasonably well with the far-field
value of a nonprecessing jet(Fig. 9). (Note that this “far-
field” comparison is not meant to suggest that the far field
completely forgets the near-field precession—later results
show that this is clearly not the case). A gradual transition
between the near-and far-field values is evident in the inter-
vening region.

It is also instructive to assess the effect of variations in
Stp on the radial component of the trajectory of the time-
averaged jet in the near field. It is clear from Fig. 6(a) that
the radial location of the peak in the mean velocity depends
strongly on Stp, suggesting that the trajectory does so as well.
Further details of the trajectory can be found in Fig. 8 which
presents the radial locationrm of the maximum local velocity

kUlm. It is clear that two different classes of trajectory exist.
For Stp=0.005, rm increases monotonically withx and the
radial trajectory never converges to the axis of rotation. In
contrast, for Stp=0.01 and 0.02,rm increases first and then
decreases until it becomes zero, suggesting the presence of a
critical Strouhal number separating two regimes(this issue is
to be discussed in more detail later).

Figure 8 also demonstrates that the present measure-
ments of the radial trajectory agree reasonably well with
those earlier reported by Schneider26 for Stp=0.002, 0.01,
and 0.015, although his measurements were obtained only
for x/dø12. The two independent measurements ofrm for
the same value of Stp=0.01 are in close agreement, despite
the somewhat different Reynolds numbers(Red=13 500 for
the present flow versus Red=26 600 for Schneider’s flow).
This is consistent with previous investigations on nonprec-
essing round jets where the effects of Red are found to be
negligible for Red.10 000(e.g., Refs. 33 and 34). It is also
consistent with previous work for precessing jet flows where
it is found that Red has a much weaker influence on the
characteristic features of the flow than does Stp.

24,26,29

Figure 9 shows the radial profiles ofkUl / kUlm and
u8 / kUlm obtained atx/d=20 and 30 for the case of Stp

=0.02. For comparison, the corresponding profiles for a cir-
cular nonprecessing jet obtained atx/d=30 are also pre-
sented on the plot. Hereh=r / r1/2 andr1/2 is the half-velocity
radius at whichkUl=0.5kUlm. The fact that both the normal-
ized mean and rms profiles atx/d=20 agree reasonably well
with those atx/d=30 suggests that the flow is approaching a
fully developed state atx/d.30. Further evidence for this is
found in the collapse of the centerline velocity spectraFu,
here normalized byx andkUlm for x/d=20 and 30(Fig. 10).

Importantly, the far-field profiles ofu8 / kUlm (Fig. 9) and
spectra ofu (Fig. 10) for Stp=0.02 differ significantly from
those of the nonprecessing jet case, even though the mean
values for both cases are reasonably well described by the
Gaussian distributionkUl / kUlm=exps−h2 ln 2d. This is con-
sistent with the knowledge that different initial and upstream
boundary conditions propagate downstream. Previous studies

FIG. 7. The fraction of timesgd occupied by the precessing jet fluid atr
=rm.

FIG. 8. The radial locationrm of the maximum mean velocitykUlm. Present:
best-fit curves. Schneider[Ref. 26]: symbols.

FIG. 9. Radial profiles ofkUl / kUlm andu8 / kUlm for Stp=0.02 obtained at
x/d=20 and 30.
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(e.g., Refs. 34 and 35) have demonstrated that different ini-
tial conditions have influence on the entire scalar field of a
circular jet, so that a multiplicity of self-preservation can and
does occur.

Several other important issues can be observed from the
spectral data shown in Fig. 10. It is evident that, in addition
to the Stp=0.02 case, there is also a good collapse for Stp

=0.01 atx/d=20 and 30. However, the normalized distribu-
tions of Fu for the two values of Stp are distinct and also
different from that for the nonprecessing jet. First, there is
less high-frequency energy for the precessing than for the
nonprecessing jet, and this difference becomes more signifi-
cant as Stp decreases. This implies that the upstream jet pre-
cession results in a redistribution of the turbulence scales,
i.e., the simultaneous increase in large-scale mixing and de-
crease in small-scale turbulence generation. This redistribu-
tion depends upon the Strouhal number. Second, there ap-
pears to be a power-law region in the spectrum, i.e.,Fu

, f−m, apparently for all the cases with the exponentm

<1.45 being about identical. However, the extent of this
power-law region is clearly wider for the nonprecessing jet.
In addition, the value ofm=1.45 is quite different from the
well-known Kolmogorov value of 5/3s<1.67d, as noted pre-
viously in Ref. 36.

Figure 11 shows the influence of the precessing Strouhal
number Stp on the probability density function(PDF) of the
fluctuating velocitypsud measured atr =rm. Here, psud is
defined bye−`

+`psuddu=1 ande−`
+`unpsuddu=kunl. In the near

field the PDF is highly spiked and slightly bimodal. How-
ever, the shape ofpsud changes dramatically withx/d, evolv-
ing to a nearly Gaussian distribution atx/d=20. The evolu-
tion toward a Gaussian distribution occurs more rapidly with
increased Stp. The transition to Gaussian distribution accom-
panies the transition to fully developed turbulence and re-
flects the decaying significance of the precession and the
increased significance of fine-scale turbulence. To further in-
vestigate the transition to fully developed turbulence atr
=rm, Fig. 12 compares the skewnessSu;ku3l / ku2l3/2 and
flatnessFu;ku4l / ku2l2 of u measured atr =rm. Data is pre-
sented for different Strouhal numbers including the case for
the nonprecessing round jet(a=0; r =0). The Gaussian val-
ues(Su=0 andFu=3) are also indicated for reference. Sev-
eral observations can be made from Figs. 11 and 12.

(1) In the near field atx/dø10, the global precession
(large-scale motion) controls the turbulent statistics. As a re-
sult, the shape ofpsud, characterized bySu and Fu, for the
precessing jet is very different from that for the nonprecess-
ing jet. The turbulent statistics for the nonprecessing jet
along the centerline become approximately Gaussian atx/d
ù8. In contrast, the near-field skewness in the PJ flow is as
high as 3.8 and the flatness as high as 17.

(2) The shape of the PDF, as characterized bySu andFu,
depends strongly on Stp. The lower the value of Stp, the
higher the values of bothSu and Fu and the further the de-
parture from Gaussian statistics. This reflects a tightening of

FIG. 10. The centerline velocity spectraFusfd normalized byx and kUlm

obtained atx/d=20 and 30.

FIG. 11. Probability density function
(PDF) psud of the fluctuating velocity
u obtained atr =rm.
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the near-field helix with increased Stp. For example, the PDF
of u at r =rm for Stp=0.02 evolves to a distribution not far
from Gaussian atx/d=10, while it may occur much farther
downstream for Stp=0.005.

(3) For Stp=0.01 and 0.02, the PDF in the flow region at
x/dù15 becomes nearly Gaussian along the axis of rotation
and are indistinguishable from the nonprecessing jet. For
Stp=0.005, the statistics trend toward Gaussian values atr
=rm, although conclusive results could not be obtained with
the present technique due to the mean velocity being too low
beyondx/d=15.

V. CONDITIONAL PHASE-AVERAGED STATISTICS
OF THE PRECESSING JET FLOW

To examine the near-field region of the local precessing
jet flow, contours are presented of both the phase-averaged
mean velocitykU uwl and rms velocityku8 uwl for x/d=1.5, 3,
and 5. These can be seen in Figs. 13–15 for Stp=0.005, 0.01,
and 0.02, respectively. The dimensionless abscissa and ordi-
nate arer /d and wRm/d. HereRm is the radial distance be-
tween the local jet center and the axis of rotation(see Fig.
22) so thatwRm represents the mean tangential distance tra-
versed by the jet center corresponding to an arc angle ofw.

It is evident from contours ofkU uwl (left-hand side) that
the cross section of the core region of the precessing jet is
approximately elliptical in shape atx/dø1.5 for all values of
Stp. This is due, in part, to the fact that the cross section of
the “slice” is perpendicular to the axis of rotation rather than
to the local jet centerline, which is initially aligned at 45° to
it. However, the shape of the cross section is increasingly
distorted from its initial ellipsoid with downstream distance
and forms a strong “tail” byx/d=5, features also observed in
Ref. 26. The axial distance required to achieve a given extent
of distortion increases with Stp, as can be seen from com-
parison between the contours ofkU uwlsrd for different Strou-
hal numbers, Figs. 13–15. For the highest Strouhal number
Stp=0.02, the elliptical shape is distorted even atx/d=1.5
and the long tail of the jet is evident fromx/d=3.

The presence of a wake-like tail has been observed in
other related flows, such as a jet in a cross flow(e.g., Ref.
37), even though aspects of the underlying mechanisms may
be different. The wake-like tail behind a jet in a cross flow
contains a “vortex bubble.”37 Similar features in the tail fol-
lowing the precessing jet can be observed from Figs. 13–15
of Ref. 27 for Stp=0.015, although the presence of the vortex
bubble was not discussed by the authors. It is evident too
from their Fig. 19 that significantly negative values of the
tangential mean velocity occur betweenr /d=0.5 and 2.5 in
the near-field region atx/dø6. Planar measurements of con-
centration by Nobes,29 using the Mie scattering technique,
also provide evidence of a vortex pair, presumably counter-
rotating in a manner analogous to a jet in cross flow.

Figures 13–15 also present the phase-averaged rms
ku8 uwl (right-hand side). In contrast to a nonprecessing jet,
the near-field rms of the precessing jet is far from axisym-
metric. Instead, it exhibits two peaks, located tangentially
“in-front of” and “behind” the jet center. The front peak is
stronger than the rear peak(also see Fig. 18). This is consis-
tent with physical reasoning in which it can be expected that
the precession would act to increase the strain rate tangen-
tially along the front edge of the jet and also, to a lesser
extent, behind the jet center. The locations of the two peaks
correspond approximately to those at which the gradient
]kU uwl /]r is maximum. With an increase in eitherx/d or
Stp, the two peaks merge and decay. For example, for Stp

=0.02 the double peaks have been replaced by a single peak
at x/d=5 (Fig. 15). In contrast, this transition occurs at
x/d<10 for Stp=0.005 andx/d<7 for Stp=0.01(not shown
here).

More details of the velocity-field development can be
found in Fig. 16 which shows the radial distributions of the
normalized mean(upper) and rms(lower) velocity, kUml /Ue

and kum8 l /Ue, obtained at 1.5øx/dø10. Note thatkUml
=kU uw=0l and kum8 l=ku8 uw=0l. Clearly, the conditionally
averaged velocity is much higher than the unconditionally
time-averaged value in the near field[see Fig. 6(a)], but the
differences reduce in the far field. It is of interest to note that
the mean profile shapes on the outer side of the local jet
sr .Rmd for all tested values of Stp have a similar shape to
that for the nonprecessing jet while the profile on the inner
side is very different. This can be demonstrated clearly in
Fig. 17 (upper) by plotting the renormalized datakum

* l*
=kum8 lsrd / kUmlsr =Rmd againsth=sr −Rmd /Y1/2

+r . HereY1/2
+r is

the half-width on the outer side of the jet, i.e.,kUmlsY1/2
+r d

= 1
2kUmlsRmd determined in the radial direction forr .Rm.

For comparison, the Gaussian distribution exps−h2 ln 2d, a
close approximation of the far-field distribution ofkUl /Uc

for the nonprecessing counterpart, is also included in the
plots. It is evident that the profile ofkUml* shd for h.0
obtained in the region at 3øx/dø10 closely follows the
Gaussian distribution for all the values of Stp. Upstream at
x/d=1.5, the measurement is within the potential core region
of the jet, as is discussed later in more detail, so that
kUml* shd is not expected to follow the Gaussian distribu-
tion. Moreover, the Strouhal number has a significant impact
on the overall shape of thekUml profile. As Stp increases, not

FIG. 12. Axial variations of the skewnessSu;ku3l / ku2l3/2 and flatnessFu

;ku4l / ku2l2 obtained atr =rm for precessing jets at different Strouhal num-
bers andr =0 for the nonprecessing round jetsa=0d.
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only does the radial positionsRmd of the maximum ofkUml
moves closer to the axis, but also the near-axis side of the
profile becomes steeper.

Similar to the nonprecession case, the radial rms profiles
kum8 l* = kum8 lsrd / kUmlsr =Rmd for the precessing jet, Fig. 17
(lower), exhibit a double-peak pattern, although two peaks
are not symmetric with respect to the local jet center. This is,
in part, due to the fact that the plane of the measurement is
not perpendicular to the axis of the local jet in the near field.
For comparison, Fig. 17(lower) also presents by dashed
lines the nonprecession case with normalization by the local
maximum on the centerline, i.e.,ku2l1/2/Uc. The data for the
nonprecessing jet were obtained atx/d=3, 10, and 30. In the
near-field region atx/dø3, the relative rms for Stp=0.005 is

close to that for the nonprecessing jet. As the flow proceeds
further downstream, the relative rms increases more rapidly
in the precessing jet than in the nonprecessing jet. For Stp

=0.01 and 0.02, Figs. 17(b) (lower) and 17(c) (lower), the
axial increase inkum8 l* becomes more pronounced. It appears
that the rms level increases as Stp increases. Nevertheless, it
should be noted that, since an appropriate calculation ofkum8 l
requires a much larger number of samples ofUm, namely,N
in Eqs.(1) and(2), than does that ofkUml, the uncertainty of
kum8 l is certainly far greater than the latter. Therefore, the
accuracy ofkum8 l is limited.

Figure 18 shows the normalized tangential distributions
of the velocity mean(upper) and rms(lower) through the

FIG. 13. Contours of the phase-
averaged mean velocitykU uwlsrd and
rms velocity fluctuationsku8 uwlsrd ob-
tained atx/d=1.5, 3, and 5 for Stp

=0.005.
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local jet center, i.e.,skU uwl / kU uw=0ldm and sku8 uwl / kU uw
=0ldm againstwRm/d, for x/d=1.5, 3, 5, and 7. As expected,
the distributions change significantly with increasing down-
stream distance. It is also seen that the Strouhal number has
a significant impact on the distributions. The rms profile
peaks both in front and behind the jet center atx/d=1.5–5
for Stp=0.005 and 0.01 while showing double peaks only
when x/dø3 for Stp=0.02. In general, the front peak is
stronger than the rear one and this difference becomes more
significant as Stp increases. It is interesting that the front
peak appears to persist throughout the near-field region and
its magnitude varies only slightly for Stp=0.01 and 0.02.
Even the rear peak value(0.18–0.27, 0.18–0.2, and 0.16–

0.18 for Stp=0.005, 0.01, and 0.02) is obviously greater than
the equivalent value(0.08–0.14) for the nonprecessing jet
over the same region atx/dø7. At x/d=1.5, the local rms-
peak values are substantially higher along the tangential than
radial direction, due to the effect of precession. At further
distances downstream,x/d=7, the peak occurs only in front
of the jet center, with a value close to that for the radial
profile, reflecting a reduced significance of the local preces-
sion.

Figures 19(a)–19(c) show the radial profiles of the local
maximum of the instantaneous velocity,UM =max {U over
the entire data record} for Stp=0.005, 0.01, and 0.02, respec-
tively, obtained in the region 1.5øx/dø15. It is interesting

FIG. 14. Contours of the phase-
averaged mean velocitykU uwlsrd and
rms velocity fluctuationsku8 uwlsrd ob-
tained atx/d=1.5, 3, and 5 for Stp

=0.01.

015102-10 J. Mi and G. J. Nathan Phys. Fluids 17, 015102 (2005)

Downloaded 01 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



to compare the profiles ofUM /Ue with those of kUml /Ue

shown in Fig. 16. They are broadly similar in shape and of
greater magnitude as expected. However, there is an impor-
tant difference in their axial evolutions. Asx increases, while
kUml decreases monotonically,UM first increases and then
decreases rapidly downstream fromx/d<3. This difference
becomes more significant at higher Strouhal numbers. To in-
vestigate this difference in more detail, Fig. 20 compares the
axial variations of local maxima ofUMsrd, Fig. 20(a), and
kUmlsrd, Fig. 20(b), for both the precessing and nonprecess-
ing jet flows. The maximum value is obtained over all radii,
i.e., kUmlsRmd andUMsRMd, for the three Strouhal numbers,
whereRm andRM are the radial locations of maxima ofkUml

and UM, respectively. For the nonprecessing jetsa=0°d,
these are assumed to occur on the centerline, denoted bykUcl
andUcM.

As demonstrated in Fig. 20(a), UcM increases continu-
ously fromx/d=0 tox/d=3 by about 40%. This is due to the
behavior of vortex rings that are generated from the roll-up
of the initial axisymmetric vorticity sheet formed from the
smoothly contracting inside wall upstream of the nozzle exit.
The occurrence of these coherent vortical rings is indicated
by the primary peak present in the spectrumFu (not shown
here). These rings wrap around the central potential core,
move downstream, and interact with each other, thereby
spreading the vorticity. As a result of their mutual interac-

FIG. 15. Contours of the phase-
averaged mean velocitykU uwlsrd and
rms velocity ku8 uwlsrd obtained at
x/d=1.5, 3, and 5 for Stp=0.02.
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tion, the vortices merge at some downstream distance at
x/dù2. During a period of time when vortex pairings occur,
two adjacent in-phase ring-like vortices roll around each
other while moving downstream, thereby speeding up the
local flow so thatUcM.Ue even thoughkUcl<Ue. It has
been shown in Grinsteinet al.38 that in their simulated cir-
cular jet sRed,150 000d, the axial instantaneous maximum
velocity steadily increases along the potential core region,
reaching the highest value, i.e.,Uc=UcM, at x/d<3.5 [see
their Fig. 3.2.1(c)]. The steady growth ofUM until x/d,3

observed in the present precessing jets should also suggest
the occurrence of the ring-like vortices in the near region of
these flows. Indeed, these vortices have been seen evidently
in Fig. 4.2 of Schneider,26 who used the laser-induced fluo-
rescence(LIF) technique to visualize the precessing jet in a
water tank facility. (Note, however, that the existence of
these vortices is difficult to be detected in the power spec-
trum of u due to the high intermittency of ambient flow
induced by the precession.) In addition, Fig. 20(a) also dem-
onstrates that the near-field growth rate ofUM increases with
Stp. The reason for this is that, as Stp increases, the included
angle between the local velocity vector and the axis of rota-
tion decreases and, consequently, the axial velocity compo-
nent increases.

Figures 20(a) and 20(b) demonstrate that both local ve-
locities UMsRMd and kUmlsRmd of the precessing jet decay
substantially faster than do the equivalentsUcM and kUcl of
the nonprecessing jet atx/dø15. This implies that the oscil-
lation of the entire jet promotes entrainment of the ambient
fluid. The phase-averaged centerline measurements of the lo-
cal jet obtained by Schneider26 for Stp=0.01 and 0.015 are
also shown in Fig. 20(b) for comparison. As discussed ear-
lier, his data were obtained using a different phase-averaging
technique, based on the reference phase of the nozzle rota-
tion identified at the exit plane over multiple cycles, which
does not necessarily sample the local maxima for the calcu-
lation of kUml. It is therefore not surprising that thekUml
3sRmd /Ue data of Ref. 26 are consistently lower than the
present data at the same Strouhal number(e.g., Stp=0.01).
We note that this difference is unlikely to result from the
difference in Red used by the two studies(Red=13 300 ver-
sus Red=26 600) because, as indicated earlier, the influence
of Red is not significant, at least between these two values of

FIG. 16. Radial distributions of the normalized conditional-averaged mean
(upper) kUmlsrd / kUmlsRmd and rms(lower) kum8 lsrd / kUmlsRmd obtained at
1.5øx/dø10.

FIG. 17. Radial distributions of the
normalized conditional-averaged mean
(upper) kUmlsrd / kUmlsRmd and rms
(lower) kum8 lsrd / kUmlsRmd obtained at
1.5øx/dø10. In the lower plots,
dashed-lines represent the rms data for
the nonprecessing jet.
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Red. Moreover, the present data ofkUmlsRmd for Stp=0.005
agrees reasonably well atx/dù5 with that of Wonget al.22

for a naturally fluidic precessing jet(FPJ) confined in a cy-
lindrical chambersRed=84 500d. In the FPJ case, the initial
jet exiting angle ofa=0 results in quite different values of
kUmlsRmd /Ue for x/d,5. Their Strouhal number was esti-
mated to be Stp<0.002(not given in Ref. 22). Note also that
their phase-averaged measurements were based on a pressure
signal from a reference probe located near to the chamber
outlet.

Consistent with an increase in the velocity decay rates,
the averaged half-widthY1/2 of each precessing jet grows
more rapidly than does the half-radiusR1/2 of the nonprec-

essing round jet. This is clearly demonstrated in Fig. 21.
Here we have calculated the “average” half-width as follows:

Y1/2 = 1
4sY1/2

−r + Y1/2
+r + Y1/2

−w + Y1/2
+w d, s3d

whereY1/2
−r andY1/2

+r are the half-widths in the radial direction,
while Y1/2

−w and Y1/2
+w are those in the tangential direction, on

either side of the jet centersw=0d. All of these half-widths
are measured from the local jet center. It should be noted that
the path length of the precessing jetLT has been calculated
based on the trajectory path of the local centreline of the jet.
This trajectory is curved rather than a straight line. Figure 21
also suggests an increase in the overall spreading rate of the
precessing jet when Stp increases from 0.005 to 0.02. This

FIG. 18. Tangential distributions of
the normalized velocity mean(upper)
and rms (lower), skU uwl / kU uw=0ldm

and sku8 uwl / kU uw=0ldm.

FIG. 19. Radial profiles of the local
maximum velocity UM =max {Um

over all precession cycles} obtained in
the region 1.5øx/dø15.
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coincides with the Stp dependence of the velocity decay rate
observed in Fig. 20.

We now investigate the trajectory of the conditionally
averaged jet centerline to capture the “instantaneous” feature
of the precessing jet. Here the trajectory is defined as the
locus of those locations at which the conditionally averaged
velocity maximum occurs. The angular positionw can be
estimated from the axial and radial locations of the trajectory
sxm,Rmd along with the precessing frequencyfp and kUml,
via

w = 2pfpst − t0d = 2pfpE
0

x

kUml−1sxddx,

wherest− t0d is the time taken by the nozzle fluid “particles”
for passing a downstream distance ofx. The above equation
may be rewritten in a normalized form as

w = 2pStpE
0

x/d

skUml/Ued−1dsx/dd. s4d

The integral in(4) can be obtained from the experimental
data ofkUml /Ue reported in Fig. 20(b). Figure 22 shows the
axial variation of the radial locationRm of the trajectory. For
comparison, the corresponding locationsRM and rm for the
radial maxima ofUM and the time-averaged velocitykUl are
also included, as is the initial direction of the jet. It is appar-
ent that all data sets from three definitions of trajectory,
based onRm, rm, andRM, agree reasonably well, although not
perfectly. Importantly, the data provides more evidence of
the presence of a “critical” Strouhal number. For low Strou-
hal numbers at, say, Stpø0.005, the radial component of the
trajectory continually diverges from the axis of rotation. In
contrast, for the higher Strouhal numbers, Stpù0.01, the tra-
jectory of the local jet eventually converges with the axis of
rotation. According to this graph, for the case ofa=45°, the
critical Strouhal number Stp,cr occurs between Stp=0.005 and

FIG. 20. Axial variations of local
maxima of (a) UMsRMd and (b) kUml
3sRmd for the precessing jet and the
centerlinekUcl and UcM for the non-
precessing jetsa=0°d.

FIG. 21. Axial variations of the averaged half-widthY1/2 of the precessing
jets for Stp=0.005, 0.01, and 0.02.

FIG. 22. Axial variations of the radial locations of the maxima ofkUmlsrd
andUMsrd, denoted byRm andRM.
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Stp=0.01 at an estimated value of Stp,cr<0.008.
The angular component of the trajectoryw is presented

for each Strouhal number in Fig. 23, both in terms of the
axial variation[Fig. 23(a)] and the tangential variation[Fig.
23(b)]. One important observation is that, even for the case
of Stp=0.02, the trajectory atx/dø10 undergoes less than
one full helical turn of the jet(i.e., w,2p) before it
“merges” with itself or the spiral-like structure has “col-
lapsed” to be indistinguishable from the mean flow.(Refer
back to the velocity spectra in Fig. 4.) Specifically, the mag-
nitude of the trajectory arc in the regionx/dø10 is w
<2p /9, 5p /9, and 11p /9, respectively, for Stp=0.005,
0.01, and 0.02. Hence, under subcritical conditions
sStp,0.01d the extent of angular “deflection” of the jet tra-
jectory in the near field is less than 90°, which can be de-
duced to be too small to enable direct interaction of the jet
itself at different phases of the cycle. As a result, the central
recirculation zone is weak in strength and large in size for
Stp=0.005 and the negative pressure within it is insufficient
to modify the jet trajectory significantly(Ref. 26 and Fig.
22). In contrast, the angular “deflection” in supercritical con-
ditions is substantially greater than 90° and is evidently large
enough for different phases of the jet helix to interact
strongly and merge until the jet begins to entrain itself form-
ing a strong recirculation with a low-pressure central core
region.26

VI. FURTHER DISCUSSION

In the preceding sections, we have reported both condi-
tionally and unconditionally statistical properties of the ve-
locity field in a MPJ flow with the precession Strouhal num-
ber varying between Stp=0.005 and Stp=0.02. We have also
compared the MPJ results with those of a circular jet(not
precessing). For the MPJ flow, owing to the variation of Stp,
not only have significant differences been identified in the
near-field precession-dominated regionsx/dø10d but also
nonidentical states of the turbulent velocity field have been

observed in the far field. Here, we propose to relate these
differences in statistics to the differences in the underlying
structure.

The underlying structure of the MPJ is quite different
from that of a nonprecessing round jet issuing from a
smoothly contracting nozzle which has been well investi-
gated elsewhere. The physical picture for the nonprecessing
jet may be described as follows. When the jet is discharging
into a stagnant surroundings, a shear layer is formed imme-
diately downstream from the nozzle and then an early linear
instability region develops, involving exponential growth of
small perturbations of the velocity profile. As the flow pro-
ceeds downstream, the nonlinear Kelvin–Helmholtz instabil-
ity occurs, inducing the roll-up of vorticity, forming ring-like
vortices (large-scale coherent structures). Subsequently, the
merging or pairing of the rings occurs. Further downstream,
the ring-like structures break down due to their strong inter-
actions with each other and with induced ambient fluids, thus
followed by the transition region. In the far-field region, new
type of coherent structures have developed, as demonstrated
by a large body of previous investigations(e.g., Refs.
39–42). The far-field coherent structures are mainly in the
helical mode40 and present almost all the time.42

The MPJ flow may also be divided into three regions:
the near-field, transition, and far-field regions. However,
these regions differ significantly from those of the nonprec-
essing jet. In the near-field region, the path of the emerging
jet forms a three-dimensional helix-like structure which pre-
cesses with respect to the nozzle axis. This can be unequivo-
cally confirmed by two-dimensional phase-averaged images
of concentration of Nobes,29 and may also be deduced from
Figs. 4, 5, and 23(b). When the Strouhal number exceeds
Stp,T, a thresholds,0.005d, the strength of precession be-
comes high enough to form a central recirculation zone
(CRZ) in which the pressure is lower than ambient. As Stp

increases further, the CRZ pressure lowers further26 and the
“helix” is pulled closer to the nozzle axis(Fig. 22). Since the
occurrence of precession increases the large-scale interaction

FIG. 23. Mean trajectory of the pre-
cessing jet center.(a) In rectangular
coordinates,(b) in polar coordinates.
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between the jet and ambient fluids and thus large-scale en-
trainment, the rms(i.e., fluctuating intensity), the decay rate
and the half-width of the phase-averaged velocity field are all
increased in this region relative to the nonprecessing coun-
terpart(Figs. 17, 20, and 21). These properties also increase
with increasing Stp.

The near-field region ends where the precessing helix-
like structure entrains itself or “collapses.” The flow then
undergoes a transition to a far-field state that resembles some
features of a nonprecessing jet. Within the transition region,
there is a rapid decay in any features associated with the
entire-jet precession. The occurrence of the precession re-
sults in large “engulfment” of ambient fluid into the spaces
between the different phases of the helical jet. Although
within the envelope of the jet volume, this fluid is not truly
mixed with the original jet fluid. Such mixing occur mainly
in the transition region. The concentration measurements of
Nobes29 suggest that the flow in this region is characterized
by “layering” remnants of the helical structure collapsed. His
measurements also demonstrated high values of the concen-
tration gradient in the layers surrounding the remnants and
the low magnitude of the mean concentration across the flow.
It appears from Fig. 7 that, as Stp increases the transition
region shifts upstream.

The far-field structure configuration also depends on the
Strouhal number. When Stp is below or above the critical
value Stp,cr (<0.008 for the present case), the jet core is
located off or centrally around the nozzle axis(Fig. 6). That
is, in the subcritical regime the initially precessing jet does
not develop to a nonprecessing-jet-like flow, while in the
supercritical regime the jet does. For Stp.Stp,cr, the starting
point of the nonprecessing-jet-like region moves upstream as
Stp increases(Fig. 22). In this context, we can conclude that
the underlying structure of turbulence in the far-field region
is different under different Strouhal numbers. Even in the
supercritical regime, while the overall structure of turbulence
in the far field tends toward that of the nonprecessing jet,
detailed characteristic behaviors are not all identical with
those of the latter and also not all the same at different Strou-
hal numbers. In other words, the residual effect of the pre-
cession is still significant in the nonprecessing-jet-like re-
gion. This is well supported by comparison of the centerline
velocity spectra(Fig. 10) which demonstrate that the exis-
tence of precession redistributes turbulence scales relative to
the nonprecessing case. Furthermore, as Stp decreases, the
contribution to the kinetic energy from large scales grows,
while that from small scales falls.

VII. CONCLUSIONS

Using the hot-wire anemometry, the present study has
investigated a mechanical precessing air jet, initially exiting
into stagnant air surroundings at an angle ofa=45° with
respect to the axis of rotation of the nozzle. Three signifi-
cantly different values of the Strouhal number of precession,
i.e., Stp<0.005, 0.01, and 0.02, have been tested to assess
the impact of Stp on the downstream flow development. It
has been found that, in general, the Strouhal number has
significant influence on the entire mixing field of the MPJ

flow. More specifically, several conclusions can be made
from the present study.

(1) The MPJ flow has a regime of globally coherent
precession atx/dø10–15(depending upon Stp). When the
Strouhal number exceeds a threshold(,0.005 for the present
case), the strength of precession becomes high enough to
enable the formation of a CRZ in the near field. As the Strou-
hal number increases from the threshold, the CRZ pressure
lowers and consequently the CRZ size decreases while the
reverse flow velocity increases.

(2) Use of the conditionally phase-averaging scheme,
which is based on the local instantaneous maximum over
each cycle of precession, has been able to extract some im-
portant characteristics of the precessing jet in the near-field
region atx/dø10. It is found, for example, that the jet is
“squashed” on the front side in the direction of precession so
that its shape in cross section changes from an initial circle to
a largely deformed ellipse, with a long tail reflecting the
existence of a trailing counterrotating vortex pair. The strain
rate is increased tangentially on the front side of the jet and
also, to a lesser extent, on the trailing side. Correspondingly,
the rms of the conditional velocity within the jet exhibits a
strong peak in the leading edge and a weak peak behind the
jet center.

(3) The precessing jet itself behaves like a three-
dimensional helix until the structure has broken down at
x/d=10–15(depending on Stp). However, the jet, even for
Stp=0.02, can only undergo less than a complete helix turn
before the collapse of the precession.

(4) The occurrence of precession promotes the interac-
tion between the jet and ambient fluids and thereby increases
large-scale mixing. As a result, the relative fluctuation inten-
sity (i.e., normalized rms), decay rate, and half-width of the
conditional velocity field of the precessing jet are all consid-
erably increased in the region atx/dø10–15, relative to the
nonprecessing counterpart(Figs. 17, 20, and 21). These
properties increase with increasing Stp.

(5) Despite enhancing large-scale entrainment of the am-
bient fluid, the occurrence of precession concurrently sup-
presses the generation of the fine-scale turbulence(and thus
the molecular-level mixing). Hence, the spectrum of turbu-
lence scales is redistributed from that of the nonprecessing
counterpart. That is, the precession leads to an increase in the
fraction of contributions of large and small scales to the ki-
netic energy of turbulence. The redistribution becomes less
significant as the Strouhal number increases.

(6) For the present case(the initial jet deflection angle
a=45°), the critical Strouhal number is around Stp=0.008.
At lower values the mean flow never behaves like a nonprec-
essing jet, whereas at higher values it develops eventually
into a regime in the far field where it resembles some fea-
tures of the nonprecessing counterpart. The flow for Stp

=0.02 appears to become fully developed atx/dù30. It is
anticipated that, at higher values of Stp the jet should attain
the fully developed state at smaller downstream distances.
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