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CP-violating theta parameter in the domain model of the QCD vacuum
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A nonzero CP-violating 6 parameter is treated in the domain model which assumes a clusterlike
vacuum structure whose units are characterized, in particular, by a topological charge which is not
necessarily an integer number. In the present paper we restrict consideration to rational values of the
charge. The model has previously been shown to manifest confinement, spontaneous chiral symmetry
breaking and the absence of an axial U(1) Goldstone boson. We find that the specific structure of the
minima of the free energy density of the domain ensemble forces a 27 periodicity of observables in 6 for
any number of light quarks, that vacuum doubling occurs at # = 7 for any Ny > 1 and any value of
topological charge g. These features are in agreement with expectations based on anomalous Ward
identities and large N, effective theories. We find also additional values of 6 depending on g for which

vacuum doubling occurs.

DOI: 10.1103/PhysRevD.71.054002

L. INTRODUCTION

Explicit CP violation can be introduced in quantum
chromodynamics by the inclusion of the so-called theta
term in the action. In Euclidean space this amounts to

g2

S, = iqo,
6~ 32772

qg= f d*xF,,,F". (1)
A remarkable feature of such a term in the presence of
spontaneously broken chiral symmetry is the Dashen phe-
nomenon [1]: this explicit breaking of CP can become
spontaneous due to vacuum doubling at the point 6§ = 7.
This value falls outside the physically relevant range 0 =
6 = 107 to which 6 is constrained by the neutron dipole
moment [2] and current algebra [3]. Nonetheless, the
Dashen phenomenon is a constraint on self-consistent
models of the nonperturbative QCD vacuum. The state-
ment of the problem related to the Dashen phenomenon as
well as the question about periodic dependence of observ-
ables in 6 acquires full sense only if the values of ¢ are not
restricted to integers. In this paper we use the domain
model [4] of the QCD vacuum to show how specific
properties of quark field configurations summed up in the
partition function can lead to the periodic dependence on 6
and to the Dashen phenomenon for any rational values of g.

The approaches which originally demonstrated the
Dashen phenomenon in the context of QCD are those of
anomalous Ward identities [5] and effective -chiral
Lagrangians [6] in the limit of a large number of colors
N., which we shall describe below in more detail.
Subsequent discussions of the Dashen phenomenon in-
clude [7-11]. This phenomenon for # # 0O is intimately
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related to both the mechanism of spontaneous chiral sym-
metry breaking and the nonappearance of an axial U(1)
pseudoscalar Goldstone boson as shown by the original
works revealing it in QCD. In [5] the key tool is the
generalization to the axial U(1) channel of Ward identities
in which the true vacuum of the theory is unknown, but for
which divergences of current-current expectation values in
this vacuum can be related to hadron spectroscopy via
vacuum symmetry properties. For example, the light pion
mass as input into the flavor SU(2); X SU(2)z Ward iden-
tity (which gives the Gell-Mann—Oakes—Renner relation)
leads to a nonzero chiral condensate as the output. In the
axial U(1) channel (where the anomaly figures) and 6 = 0
the phenomenological input is now the absence of a light
meson, with the output that topological charge ¢ must be
fractional. With § # 0 the corresponding output starting
with the same phenomenological input is 27 periodicity in
6 and the property of vacuum doubling and spontaneous
CP breaking at § = 7. In the large N, approach the same
data are turned around. An effective Lagrangian for me-
sons is written down for N, — oo which assumes chiral
symmetry breaking and the anomaly. The output for § = 0
includes the famous relation between the topological sus-
ceptibility and various meson masses. For 8 # 0 again the
Dashen phenomenon emerges.

However these approaches do not unveil the actual
mechanism of nonperturbative vacuum properties such as
confinement and spontaneous chiral symmetry breaking.
The domain model [4] is a bottom up approach to these
features: a particular vacuum structure is introduced into
the formalism explicitly, here based on a statistical en-
semble of domainlike gluon fields, and out of this both
vacuum and mesonic properties are derived. In previous
works both confinement [4] and chiral symmetry realiza-
tion [12,13] have been studied for this vacuum ansatz. The
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anomaly contribution to the free energy suppresses con-
tinuous axial U(1) degeneracy in the ground state, leaving
only a discrete residual axial symmetry. This discrete
symmetry and flavor SU(Ny), X SU(Ny)g chiral symme-
try in turn are spontaneously broken with a quark conden-
sate arising due to the asymmetry of the spectrum of the
Dirac operator in the domain background. An estimate of
pseudoscalar and vector meson masses has been computed
showing the typical pattern of spontaneous breakdown of
SU(Nf), X SU(Ny)g chiral symmetry with the correct
splitting between 7, 7 and %’ mesons [13]. In this paper
we test the model against the above predictions of sponta-
neous CP breaking and generally explore its features for
the nonzero 6 parameter. The Dashen phenomenon is
studied by directly computing the 6 dependence of the
free energy density and chiral condensate within the do-
main model.

The results of this paper are that indeed the vacuum
doubling at # = 7 occurs in the domain model for any
rational values of the topological charge ¢ and any number
of flavors. Thus the domain model provides an explicit
example of simultaneous realization of confinement and
chiral symmetry breaking where the Dashen phenomenon
is manifest. Within the model, the topological charge is not
restricted to any ad hoc value, and in the general case there
are critical values in addition to # = 7, which disappear
when g is set to 1/N, (which is the value of g emerging in
[5] for the case of N, degenerate quark flavors). In par-
ticular, in [4] the domain model parameters were fixed
from the string tension giving g = 0.15. For this topologi-
cal charge, the critical values 8§ = —7/3, 7/3, m(mod27)
appear for which the vacuum doubling occurs. As with [5],
vacuum degeneracy for discrete 6 and 27 periodicity of
observables such as the condensate arises as output rather
than being assumed. Unlike [5,6], these results emerge
without the absence of a massless U(1) boson being input.

We first briefly review the domain model for # = 0 and
thereafter examine the realization of chiral symmetry for
6 # 0. In the Appendixes we review and compare our
results with the approaches of [5,6].

II. REVIEW OF CHIRAL SYMMETRY IN THE
DOMAIN MODEL

For motivation and a detailed description of the domain
model we refer the reader to [4]. The essential definition of
the model is given in terms of the following partition
function for N — oo domains of radius R:

00 N
— 3 . @) 7)y,7,(0)
Z= N lim _mdag fzda, fﬂ DYDY
X ] DOSIDBN QAR B, 001
7,

— D[ o) 4 B ) gD
X e Sv; QU+ BUY Y] )
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where the functional spaces of integration j:iQ and :]-"f// are
specified by the boundary conditions (x — z;)*> = R?

1,00x) =0, iffi(x)ersypli(x) = 9 (x),
POeirsigh(x) = =g (x).

Here 7ii; = n¢t® with the generators t* of SU.(3) in the
adjoint representation and « is a random chiral angle
associated with the chiral symmetry violating boundary
condition Eq. (3) in the presence of one species of quark.
The generalization to Ny flavors is given in the next sec-
tion. The thermodynamic limit assumes V, N — oo but
with the density v~! = N/V taken fixed and finite. The
partition function is formulated in a background field
gauge with respect to the domain mean field, which is
approximated inside and on the boundaries of the domains
by a covariantly constant (anti-)self-dual gluon field with
the field-strength tensor of the form

3)

N
Fi () = 3 B0l — (x = 2)*/R)
J=1

with B%Bﬁ{)p = B?5,,. Here z;‘ are the positions of the
centers of domains in Euclidean space.

In order to reflect continuity of colorless quark currents
at the positions of pure gauge singularities in the picture of
quark and gluon configurations, which is approximated by
the domain model, the chiral angle « is taken to be the
same for all domains in the representation Eq. (2). This is a
refinement of the formulation presented in [4,12,13]. The
measure of integration over parameters characterizing do-
mains is

1 d4z< 21 T
do. - = ! do: d9: sinf;
Jodri e =ggn [ [ e [ avising,

« [Tae S ofe -0

1=0,1,2 6

Trd. Nw; — k) -, 4
Xfo w; > 8(w; — k) )

k=0,1

where (6,, ¢;) are the spherical angles of the chromomag-
netic field, w; is the angle between chromoelectric and
chromomagnetic fields and ¢; is an angle parametrizing the
color orientation.

This partition function describes a statistical system of
domainlike structures of density v~ 1, where the volume of
a domain is v = 72R*/2. Each domain is characterized by
a set of internal parameters and with internal dynamics
represented by fluctuation gluon Q) and quark ¢ fields.
It respects the symmetries of the QCD Lagrangian, since
the statistical ensemble is invariant under space-time, color
gauge and particularly chiral symmetries. Thus the model
involves two free parameters: the mean field strength B and
the mean domain radius R. These dimensionful parameters
break the scale invariance present originally in the QCD
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Lagrangian. In principle, they should be related to the trace
anomaly of the energy-momentum tensor [14,15] and,
eventually, to the fundamental scale Agcp. Knowledge of
the full quantum effective action of QCD would be re-
quired for establishing a relation of this kind. Within this
framework the gluon condensate to lowest order in fluctu-
ations is 4B? and the topological charge per domain is g =
B’R*/16.

An area law is obtained for static quarks. The reason for
this is the finite range of gluon correlations implicit in the
model which will figure in all the phenomena we consider.
Computation of the Wilson loop for a circular contour of a
large radius L > R gives a string tension o = Bf(7BR?)
where f is given for color SU(2) and SU(3) in [4].
Estimations of the values of these quantities are known
from lattice calculation or phenomenological approaches
and can be used to fit B and R. As described in [4] these
parameters are fixed to be VB = 947 MeV, R =
(760 MeV)~! = 0.26 fm with the average absolute value
of topological charge per domain turning out to be g =
0.15 and the density of domains v~ ! =42 fm~*. The
topological susceptibility then turns out to be y =
(197 MeV)*, comparable to the Witten-Veneziano value
[6]. The eigenvalue problem

Pip(x) = Ap(x), )]

with boundary condition Eq. (3) was studied in [12]. With
the domain background field the solution to this problem
reveals an asymmetric spectrum, exhibiting the broken
chiral symmetry through the baglike boundary condition,
and thus none of the eigenmodes is chiral. However at the
center of domains all modes are chiral and the sign of their
chirality depends on whether the underlying gauge field is
self-dual or anti-self-dual. In [12] we computed the distri-
bution of values of the local chirality parameter of [16] in a
chirally symmetric ensemble revealing qualitatively simi-
lar behavior to the double-peak structure seen on the lattice
[17], which is taken to be indicative of spontaneously
broken chiral symmetry.

The a-dependent part of the free energy density was
computed in [13] using zeta function regularization, with
an imaginary part arising

ImF = i% arctan[tan(a)] (6)

where ¢ is the absolute value of topological charge in a
domain, and overall sign (—)+ corresponds to an (anti-
)self-dual domain. The charge is not integer here in general
but the anomalous term is nonetheless 7rn periodic in a.
This is the Abelian anomaly as observed within the context
of baglike boundary conditions by [18] and is consistent
with [19] albeit not generated from purely chiral zero
modes but the chiral properties of nonzero modes.

The part of the free energy density F relevant for the
present consideration of an ensemble of N — oo domains
with both self-dual and anti-self-dual configurations takes

PHYSICAL REVIEW D 71, 054002 (2005)

the form
e VNF — j\[foo dafcosv ImF(a)]¥

=N Z exp(N In[cos(v ImF(a))]) + O(1/N).

a€ayy

Here the summation goes over the infinite set a;, of
degenerate minima of the free energy density, which are
achieved at

vImF(a,,;,) = 0(mod 2).

In the thermodynamic limit N — oo the solutions to the
above equation for a,,, correspond to a degenerate set of
vacua connected by discrete chiral transformations, which
will be given in the next section.

Thus for massless quarks, a discrete subgroup of U,(1),
rather than the continuous U, (1) itself, represents a sym-
metry of the vacua. The anomaly defines those chiral
angles which minimize the free energy so that the full
U, (1) group is no longer reflected in the vacuum degener-
acy. It should be stressed here that this residual discrete
degeneracy ensures a zero value for the quark condensate
in the absence of mass term or some other external chirality
violating sources.

In the presence of an infinitesimally small quark mass
the a dependent part of the free energy of a self-dual
domain is modified by the term linear in mass and takes
the form (for details see [13])

F=i4 arctan[tan(a)] — mRe'® + O(m?),
v
= —1 S —k M1, k+2
K= m 3 g MOET2D )
,2=21,21,22

_z
k+2

MO k+3,—2) — 1}

where the quantity X > 0 comes from the spectral asym-
metry term (1),

n(s) = Y sen(D)/IAl",
A

appearing due to the asymmetry of the spectrum [20]. The
free energy of an anti-self-dual domain is obtained via
complex conjugation.

This discrete chiral symmetry of the massless case is
spontaneously broken and switching on the quark mass
selects one of the vacua. For our conventions of boundary
condition and mass term the selected minimumis at o = 0.
It is important that values for the angles «,,;, are not
modified by the leading order term, linear in m. The quark
condensate is extracted from the free energy in the standard
way

] = —1 i ii —uNF(m) = —
FP(0) = ~lim lim — e X ®)

and takes the value (/(x)i(x)) = —(237.8 MeV)? for the
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values of field-strength B and domain radius R fixed earlier
by consideration of the pure gluonic characteristics of the
vacuum—string tension, topological susceptibility and
gluon condensate.

For Ny > 1 quark flavors the fermion boundary condi-
tion in Eq. (3), explicitly breaks all chiral symmetries,
flavor singlet and nonsinglet (see also [18]). Thus integrat-
ing over all « does not suffice to provide for the full chiral
invariance of the ensemble of quark configurations con-
tributing to the partition function. Rather, the boundary
condition must be generalized to include flavor nonsinglet
angles, a — a + B9T%/2, with T* the N)% — 1 generators
of SU(Ny). Then integration over N]% angles « and 8¢ must

be performed for a fully chiral symmetric ensemble. The
spectrum of the Dirac operator can be found now quite
analogously to the one-flavor case, except that the bound-
ary condition mixes flavor components and an additional
projection into flavor sectors is required in order to solve
Eq. (5). The calculation from this point will be repeated for
nonzero 0 in the next section, but it suffices to summarize
here the result for § = 0 emerging in [13]: the Abelian
nature of the anomaly meant that the nonsinglet chiral
angles implicit in this procedure drop out of the ensemble
free energy. Thus there are only Nj% — 1 continuous direc-
tions in the vacuum. The expectation that there should be
only Nj% — 1 pseudo-Goldstone bosons has been verified in

[13] for Ny = 3 by an estimation of the meson spectrum.

III. FREE ENERGY IN THE PRESENCE OF
NONZERO 6

Now we include the CP-violating parameter in the
model by the additional term Eq. (1) in the action, which
contributes a pure phase to the weight factor in Euclidean
space. Integrating over N, fermions with infinitesimally
small masses m; = - - - = my = m in a domain ensemble
gives for the free energy density per domain

Ny
F=—-v!In cosq[WNf — 0] — mR Zcosd),-, 9)
=1

where
Ny
Wy, = Zarctan(tanfl),-), (10)
i=1
CI>,~=a+B,~, Blzo, fOI'Nf:L (11)
Bl=@ Bz=_@ fOI'N =2 (12)
2 ) 2 ’ f 2]
and

B, =0+ b8/\B,  By,=—b+b3/\3,

(13)
B3 = _2b8/\/§,

for Ny = 3.

PHYSICAL REVIEW D 71, 054002 (2005)

Here « is the U(1) chiral angle, E are the nonsinglet chiral
angles for Ny = 2, and b3 and bg are certain functions of
the eight nonsinglet chiral angles B¢ for Ny = 3. For Ny =
1, Eq. (11) is just the result discussed in the previous
section. For Ny = 2 the quantities B; and B, in Eq. (12)
arise from the projection of the quark boundary condition
into SU(2) flavor sectors. For Ny > 2 the analogous func-
tions are By, ..., By,. For any number of flavors Ny the
functions B; have the property that

> B =0 (14)

which manifests the tracelessness of the flavor generators
in any basis. Thus
Ny

> ®; = Nya. (15)
i=1

The “arctantan” structure in Eq. (10) manifests the peri-
odicity of the free energy for arbitrary topological charge
q. We could write

N
Wy, = Z arctan[tan®; ] = Nya(mod 7) (16)

i=1

which is independent of the B¢. This is the Abelian prop-
erty of the anomaly leading to the expectation of NJ% -1
Goldstone bosons.

The central effect is the chiral Abelian anomaly contri-
bution denoted as AL under the cosine in Eq. (9). It
should be noted that

qWy, = Nyqa + 0(a?) for a —0, (17)

which coincides with the standard form of axial anomaly in
the Fujikawa derivation (note that « here is twice the angle
of chiral transformation used in Fujikawa’s calculation of
anomaly [19]).

The mass term is introduced as a small perturbation
violating explicitly the chiral symmetry of the system. In
the absence of the mass term, the minima of the free energy
are determined by the solutions

0 2wl 7k

ay(0) =—+

S (kezlez), (18
Ny gNy Ny

to the equation
cos(qWNf —qf)=1. (19)

Evidently there are multiple solutions arising from the
various periodic functions appearing in Eq. (9). The index
k in the solutions reflects periodicity of tan while [/ corre-
sponds to the periodicity of cos in Eq. (19). Note that these
solutions do not depend on the flavor nonsinglet chiral
angles, as discussed above, and thus the free energy dis-
plays continuous degeneracy with respect to these angles.
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The solutions Eq. (18) give an infinite discrete set of
degenerate minima of the free energy density. For given N
and ¢ a finite subset of these minima can be extracted such
that all other minima are 27-periodic copies of one of the
already identified vacua. For instance, for Ny = 1 and ¢ =
0.15 the six different vacua correspond to all combinations
of k =0,1and /=0, 1,2, while for N, = 2 set of “differ-
ent”” minima is given by combinations of k = 0, 1, 2, 3 and
[=0,1,2. It is clear that the system of minima is 27
periodic with respect to 6:

a0 + 27m) — ay(6), K =k+2m, (20)

and the shift in  can be undone by reenumerating the
infinite set of minima. This periodicity does not depend on
the value of ¢ at all since it is ensured by reenumerating of
index k without use of /. All minima are degenerate (the
free energy is equal to zero) for zero quark mass.

Switching on the infinitesimal mass term in Eq. (9) lifts
the degeneracy due to different values of the symmetry
breaking term

Ny
V,, = —mR Z cos®X(6) (21)
in the free energy for different ¥ = a;,(0) + B;(B%).
This introduces nonsinglet angle dependence into the free
energy, which must now also be minimized with respect to
the B¢. To this end we expand V,, in small fluctuations in
the B; and look for minima, bearing in mind the constraint
Eq. (14). The condition that V,, have stationary points
leads to the condition

sin®; independent of i (22)
while the condition that this leads to a minimum forces
(23)

Equation (22) leads to ®; = a + B; being independent of i
which means B; = 0(mod 27). On the other hand, Eq. (23)
is fulfilled by restricting —7/2 < ®;(mod27) < /2.
However, we observe that for these values of ®;

cos®; > 0.

arctan[tan®;] = ®,(mod 27).

Thus to guarantee a minimum with respect to nonsinglet
angles, we must have

Ny
Wy, = Zl arctan[tan®;] = N a(mod 2).

Comparing to Eq. (16), we see that of the vacua of the
massless free energy, ay(0), only those with k an even
integer correspond to true minima with the mass term
switched on. Note that these arguments only apply for
Ny > 1. For the single flavor case the available values are
k=0,1. A similar consideration shows that for rational
g = n,/n, the minima selected by the mass term corre-
spond to [ any integer if n; is odd but [/ even if n; is even.

PHYSICAL REVIEW D 71, 054002 (2005)

The result is that the # dependence of the quark conden-
sate is given by

(POP(x)) ayy0) = —NpRcosay(6)

for k even and [ any integer except if ¢ = n;/n, with n,
even for which then [ is also even. This is plotted in Figs. 1
and 2 for Ny =1 and Ny = 3 respectively, where the
cosine in Eq. (21) is plotted as a function of # for the
minima which are not 27 equivalent. Critical values of 6
correspond to the points where two minima become
degenerate.

The two degenerate vacua at such critical points are
distinguished by their CP properties, which can be seen
from the behavior of the pseudoscalar condensate as a
function of 6

@(X))’slﬂ(x))ak,(a) = —NXsina/(0),

as derived for the domain model in Appendix A. As
expected, the scalar [see Eq. (21)] and pseudoscalar con-
densates depend on 6 through cosine and sine of ay,;(0)
respectively.

The plots for one and three flavors, respectively, are
given in Figs. 3 and 4 again with ¢ = 0.15. The pseudo-
scalar condensate is discontinuous at the critical values of
6 and takes values opposite in sign for the two degenerate
minima: parity is thus spontaneously broken.

In other words, we can see that for most values of theta
the mass term selects a unique minimum of the free energy.
However, there are critical values of 6 where two different
minima are degenerate, thus displaying a twofold degen-
eracy of the vacuum in the presence of a mass.

There are two conditions for critical 6. The first one is
obviously

1 —. N TN TN T Ny TN
7‘\ 7\ 7\ /\ /
rN A2 WP \
/ \/ \/ \y/ \, \,

0.5 — A X \ A
\ /\ '\ / / / /
A A N N o N

N \ 7/ / \ ! vy \ oy, >y,

N o e e e e
N , ,\ | I\ LN "\

vV \ \ vy / /

/ / / \ \ \
\ \ \ N7 / /
—7C \/ A/ \O \/ \/ \TT
0.5 — v v X WX
\ A I\ 7\ / / ;
2NN \ \ \
\ / / \ / \ 7
/\/\/M

FIG. 1. The scalar quark condensate as a function of the
parameter 6 for Ny = 1 and ¢ = 0.15 in units of X. The dashed
lines correspond to discrete minima of the free energy density
which are degenerate for m = 0. The solid line denotes the
minimum which becomes global for a given 6 in the presence
of an infinitesimally small mass term.

054002-5



ALEX C. KALLONIATIS AND SERGEI N. NEDELKO

7\

A // 7
‘>|, \ 7/
X / \3In

\N/ \

R Nt
7 T\

WY
I TN
/Ny, \

VA

A
//O\\

FIG. 2. The scalar quark condensate as a function of 6 for
Ny =3 and g = 0.15 in units of X. The meaning of dashed and
solid lines is the same as in Fig. 1. Qualitatively the picture is the
same as for Ny = 1: the same periodicity and critical values of 6,
which is achieved by an increased number of different discrete
minima.

@0o(Ocrit) = — agy(Ocip) (mod 277)

where k and [/ should not be equal to zero simultaneously
and without loss of generality we have taken «(, on the
right-hand side. Thus

crit

O =k + l—ﬂ-(mod 27r).
q

For a given g this defines a set of values of 6%, where

several vacua are degenerate. This set is independent of a
number of flavors Ny. Furthermore, we are interested only

1— TN TN, TN T TTN 2T
v / 7 v N

/ N N /]

N
/

\
\

\

\ \
NN N /N
/ /7 N\ /
0.5 Yy N AN
* \ \ \ \
\ \ \ N \
\ \ \ \ \
0 \ \ \ \ \ 3

A

2

= | L

\

& | \\ \ \\ \ \

v TE \ \ \ \ \ T
0.5 \ \ AWALAN A \
U5 —/ 7 /

AN N AN N O Y
/ \// \\/ s NV
v/
A
-1 —<\—’)\~11\\.—/ AV NP AN

0

FIG. 3. The pseudoscalar quark condensate as a function of
for Ny = 1 and ¢ = 0.15 in units of X. The meaning of dashed
and solid lines is the same as in Fig. 1.
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05 A X A e 4 £
\ / N \ /' \ / N\
\ \\ \ \ \ \
A \ \ \ \
o \
) A S ANEYA
o [ A [\ W\
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FIG. 4. The pseudoscalar quark condensate as a function of 6
for Ny = 3 and ¢ = 0.15 in units of X. The meaning of dashed
and solid lines is the same as in Fig. 2.

in those 6. which minimize the term linear in mass,

which is the second condition for 6. It is easy to check
that independently of ¢ the value 6 = 7 satisfies both
conditions. Other critical values depend on topological
charge of the domain ¢. In general if ¢ = n;/n, then there
are n; critical values of theta. For the value ¢ = 0.15, as
was fit in the domain model, we find

O = {—7/3, w/3, w}(mod 27),

where the Dashen phenomenon occurs. We conclude that
for any N, and rational g there is a finite number of critical
points in the interval [0, 277] including 6 = 7.

IV. SUMMARY AND DISCUSSION

The central result of this paper is that 27 periodicity of
amplitudes in # and vacuum doubling with spontaneous
CP violation at certain critical values of 6, in particular
0 = mr, are obtained for any number of light flavors N and
arbitrary rational topological charge ¢. This is achieved in
a model whose input is a particular class of nonperturbative
gluon configurations. From this model have been derived
both confinement, the correct pattern of chiral symmetry
breaking, certain static characteristics of the vacuum
(string constant, condensates, topological susceptibility)
as well as properties of the meson spectrum (correct split-
ting between masses of isovector and isosinglet states). The
most important qualitative feature of this class of vacuum
fields is that it can be seen as an ensemble of densely
packed lumps of (anti-)self-dual gluon fields, characterized
by a finite correlation length. In this paper and in previous
works it has been shown on a semiquantitative level that
such vacuum fields can reproduce all of the qualitatively
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important features of the QCD vacuum associated with
confinement and chiral symmetry realization.

We discuss now our results in light of the two main
approaches, that of anomalous Ward identities and of the
effective chiral Lagrangian at large N, which originally
predicted the Dashen phenomenon in the presence of a
theta term. For convenience, we have summarized the
salient features of these approaches in Appendix B.

The first point of comparison is the minimization with
respect to nonsinglet angles. In both [5,6], this is referred to
as “Dashen’s theorem.” In the domain model context,
precisely the same conditions Egs. (22) and (23) have
arisen by considering the free energy as a function of the
dynamical variables B¢ associated with the flavor non-
singlet angle dependence of fermion boundary conditions.
In [5,6] the corresponding angles are denoted ¢, corre-
sponding to the phases of an N; X N, matrix, either the
matrix of scalar condensates (;4;) in [5] or the chiral field
of [6]. In all cases, these results (for the degenerate mass
case) emerge because of the structure of the symmetry

breaking term —mX Zf/:fl cos®,;. The significance of this
structure for the domain model is that it emerges precisely
from the spectral asymmetry of the Dirac operator in the
domain field background as computed via zeta function
regularization [12]. The analogs of the ¢; in [5,6] are our
functions ®; associated with the flavor dependence of the
fermion domain boundary conditions.

The second point of contact relates to the existence or
otherwise of an axial U(1) Goldstone boson in the spec-
trum. In both [5,6], the input that there be no such boson
leads to a constraint on the sum of the aforementioned
angles ¢; and the theta parameter:

Ny
Z ;= 0.
i=1

In the domain model approach, as mentioned at the outset,
the anticipated absence of such a boson is a consequence of
the lack of continuous axial U(1) degeneracy of the ground
state of the free energy for the massless case. But this
ground state is determined by

(24)

Ny
Z arctan(tan®;) = 6

i=1

(25)

from Eq. (19). Resolving the arctantan structure brings us
to the same form as in Eq. (24), when ¢; and ®; are
identified, again consistent with our observations above.
Certainly the reason for these coincidences is most
transparent in the comparison to the large N_. approach,
reviewed in Appendix B: the effective singlet and non-
singlet meson fields there are contained in U (N f) matrices
but diagonalized by SU(N) X SU(N) transformations. In
the domain model, where the conditions on quark fields at
domain boundaries also involve the U (N_ f) flavor matrices
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FIG. 5. The scalar quark condensate as a function of 6 for
Ny =3 and ¢ = 1/N; in units of X, which is equivalent to a
corresponding plot from [5]. The meaning of dashed and solid
lines is the same as in Fig. 1.

expli(a + BT%/2)ys] which are similarly diagonalized
by special unitary matrices.

The main difference with [5] is the specific value of the
topological charge. For a more direct comparison with [5]
we set ¢ = 1/N in our formula, Eq. (18). The /-dependent
term is then 277 which is inconsequential under the cosine
for the condensate. Thus our results completely agree with
[5] for this case. For the Ny = 3 case, we plot the scalar
and pseudoscalar condensates in Figs. 5 and 6 which are
identical to corresponding plots in [5].

The significance of our result in comparison to [5,6] is
that the domain model assumes the dominance of a specific
class of nonperturbative gluon configurations in the QCD
functional integral and thereby provides the 27 periodicity
in theta dependence and the existence of critical values of
theta parameter as output simultaneous with the correct
resolution of the axial U(1) problem. In [5,6] the absence
of a pseudoscalar U(1) boson is input in order to obtain the

FIG. 6. The pseudoscalar quark condensate as a function of
for Ny = 3 and ¢ = 1/N/ in units of X. The meaning of dashed
and solid lines is the same as in Fig. 1.
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theta dependence, while the responsible vacuum structure
is unknown.

The present work can be generalized for the case of
nondegenerate quark masses in the presence of the theta
term for which an analysis using anomalous Ward identi-
ties is given in [5]. Because of the above-noted similarities
with the domain model the condensate dependence on 6
will be identical.

Finally, we mention that the model under consideration
with rational topological charges g reflects the strong CP
problem in the usual way, but certainly cannot resolve it.
As in several other approaches (for instance [21]) we notice
that the free energy in the model is minimized by 6 = 0,
but there is no reason within the model to demand the
minimization of the free energy with respect to 6, which is
an external parameter here. However, allowing irrational
values of ¢ can drastically change the status of the strong
CP problem in the model due to the appearance of infi-
nitely many critical values of # in any finite interval. We
shall analyze this intriguing possibility in a separate
publication.
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APPENDIX A: PSEUDOSCALAR CONDENSATE

We treat here Ny = 1 and the integral for one domain for
simplicity; the generalization is straightforward. Consider

(BT, = TGP + (7))
ey = limv~ ' Z: (m, ),

ZZ(m, B) = fo Dz//Dt/_/exp{—S—i-mf dxtﬁeiﬁ%t//},
where (—)+ corresponds to an (anti-)self-dual domain. A
chiral transformation:

= e 1B/Dvsy! (A1)
for a field ¢ belonging to F,, namely, satisfying
in(x)e“rsih(x) = (x),
leads to the transformed field ¢’ satisfying
if(x)e @Byl (x) = o (x),

so that ¢’ belongs to F,_ 5. Performed in the integral, this
chiral transformation results in

Zz(m, B) = e PZZ_4(m, 0) (A2)
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where the phase I is fixed by B8 independence of Z (0, B)
and the result for the fermionic determinant

Z(0,0) = exp(*iq arctan[tan(a)]),
which gives
I'(B) = *2 arctan[tan(8)]. (A3)
Thus, collecting all together, we get
Z;, (m, B) = exp{*iq arctan[tan(a)]
+ vmexp( = i(a — B))R}.

In the presence of the 6 term this gives

et =

_eiiq(arctan[tﬂn(a)]—ﬁ)[Cos(a _ B)

+ isin(a — B)IR,

which finally, after summing self-dual and anti-self-dual
configuration, leads to

<&eiﬁy5 w)a = —¢ln cos{q(arctan[tan(a)]f0)}}{ COS(CY _ :8)

Finally using this result for the complete calculation with
N — oo domains and integration over angles « ; associated

J
with the jth domain, we get

(Pe'Prsyy = _NZ cos(ay () — B),
7

where the sum spans all 277-inequivalent minima a;(0) of
the free energy density, explicitly given in Eq. (18).

In particular, the pseudoscalar condensate corresponds
to B = 7r/2 and thus reads

(Piysip) = NfNZ sin(a(6)).
77

It should be stressed here again, that for any 6 and 8

ZCOS(O’M(@) - p)=0.
7

We see that the # dependence of the scalar condensate
(B = 0) for different minima of the free energy density is
given by cos(ay,(6)) while the dependence of the pseudo-
scalar condensate (8 = 77/2) is described by sin(ay,;(6)),
as shown in Figs. 3 and 4.

The crucial point in this derivation is that the chiral
transformation Eq. (A1) changes the space of integration
and simultaneously generates a phase I in Eq. (A2). This
phase is fixed in the form of Eq. (A3) by substituting m =
0 into Eq. (A2)

240, B) = e"PZ;_5(0,0),

and taking into account the known explicit form of
zZ_ 5(0,0) and Z2 (0, B), where the latter does not depend

on S by construction.
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APPENDIX B: OTHER DERIVATIONS OF THE
DASHEN PHENOMENON

1. Anomalous Ward identities

We summarize the salient aspects of [5] and related
works. Denote by J,s the singlet axial vector current
renormalized gauge invariantly. Its divergence gives the
anomaly. Inserting this current into Green’s functions with
a composite operator consisting of a product of local ob-
servables Oy(x;), taking the divergence and using the
anomaly one obtains

3ffT<0|JM5(x)l_[0k(xk)|0> = 2N35T<0|K,L(x)l_[0k(xk)|0>
k k
- ZX15(4)(X —x)T
7

xOJortxnloy.  B1)
k

The quantity K, in the first term of the right-hand side is
the well-known Chern-Simons current arising from the
anomaly. The second term arises from commuting the
divergence through the T product, which generally gives
a commutator of the operators O; with the axial charge,
and then rewriting that commutator in terms of chiralities
X corresponding to O, which are defined via the eigenva-
luelike relation

[0s, Or] = — x4Ox.

The charge Qs does not correspond to J ;5 but rather to the
gauge-dependent, conserved axial current. Despite the
gauge dependence of (s, chiralities of Eq. (B2) are renor-
malization group and gauge invariant [5]. For a right-
handed quark field y = 1. The condition for avoiding a
U(1) boson is that the left-hand side of Eq. (B1) vanishes at
zero momentum transfer. Taken between 6 vacua, one can
rewrite the Chern-Simons current contribution (due to its
connection to topological charge density) on the right-hand
side via a derivative with respect to 6 yielding

.0
0= [2Nflaa - le}nm]:[ok(xk)lm.

Now one chooses the local operator product gg such that
the sum of chiralities is > ;x; = 2. One extracts then the
relation

(B2)

(B3)

a9
for example. This can be trivially solved for the conden-
sate. The next step is to recognize the condensate here as an
element of the matrix of condensates which break the
nonsinglet chiral symmetry

01(g1)i(qr);10) = CV;;.

This matrix can be brought by chiral rotations into a form
diag(e’®). The real angles ¢; parametrizing the matrix
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now carry the 6 dependence of the condensate. Inserting
this into Eq. (B4) gives

whose solution is

Ny
Z b, —0=0. (BS)
i=1

This equation should be understood here as a direct con-
sequence of the requirement that no zero mass boson
couple to the gauge-invariant axial vector current.

The above considerations should be repeated in the
presence of such a perturbation matrix of masses m; for
each flavor

Ny Ny
<EH/> = Z m,(Vl] + Vl-']-) = ZZ m; COS¢i. (B6)
i=1

i,j=1

According to Dashen’s theorem, the true vacuum is found
by minimizing a quark mass term with respect to small
chiral rotations about this configuration, meaning shifting
¢; under the cosine by infinitesimal w;. Minima are de-
termined by the conditions

m; sing; = independent of i = A, cos¢p; > 0. (B7)
To give an explicit solution assume Ny = 2 with degener-
ate quark masses. Then the consequence of Dashen’s theo-
rem Eq. (B7) gives sing; = A/m. Solutions consistent
with Eq. (B7) are ¢; = ¢ € [—7/2, 7/2] modulo 2,
with ¢ = arcsinA/m. The absence of a Goldstone boson
Eq. (BS) gives ¢; + ¢, = 6. Combining these gives the
result that the symmetry breaking term and thus the con-
densate is | cos(0/2)|. Essentially the absolute value ap-
pears because the cosine may not change sign, due to
Eq. (B7), as @ varies. Out of this emerges that the period-
icity of 6 is 27r. For general N, with degenerate quark
masses the corresponding result is that the condensate is
proportional to cos[#(mod27)/N].

2. Large N, approach

Now we briefly summarize how identical results are
obtained in the large N, approach of Witten and
Veneziano-Di Vecchia [6]. An Ny X N unitary field U,
parametrized as U = U, exp(i79t9) with N% meson (non-
singlet and singlet) fields 7, is considered: the U(Ny)
generators ¢ include the identity matrix as well as the
usual SU(Ny) generators. An effective Lagrangian for U
with chiral and axial U(1) symmetry broken is
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F2 a
L= 7(TraMUaMUT + Tr(MU + MtUt) - N

c

X (—iln detU)2>

where the first term is a kinetic term, the second a mass,
and the third term is designed to only yield a term quadratic
in the singlet field and is consistent with large N, counting
rules. The mass matrix M is then diagonalized by an
SU(Ns) X SU(Ny) transformation (corresponding to the
action on the quark mass matrix) to the form

M =Ny

with M = diag(u?). The w? are combinations of the
squares of the meson masses but are linear in the corre-
sponding quark masses m;, u? « m;, generalizing the Gell-
Mann—-Oakes—Renner relationship and containing the
quark condensates—see [22] for explicit formulas. The
diagonalization leads to a corresponding phase transforma-
tion on the U field: U — e~*/¥r U such that the Indet term
undergoes a shift #. The aim is now to minimize the
effective potential to find the vacuum configurations.
This is aided by considering a diagonal U parametrized
as diag(e’®') where the ¢; are complicated functions of the
meson fields 7. This leads to the potential

V(o) = Fi[—z,u? cos¢h; + %(Zgﬁ, - 0>2}

The terms with u? evidently arise from the separate phases
in U and thus after expanding the ¢; in powers of the
meson fields 7 will give mass terms for the N% — 1 non-
singlet mesons. The last term incorporates only informa-
tion about the overall phase of U; the corresponding
expansion to second order in 7¢ will reflect the mass of
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the singlet U(1) state. That this is taken to be large com-
pared to the other N? — 1 is now input at this point. One
now minimizes with respect to the angles ¢; (Dashen’s
theorem) giving

Ny
20— 4
- P = —0)
i sing; = (jzl b )
Evidently then one has again

wu?sing; = independent of i

identical to Eq. (B7). On the other hand, taking the first
NJ% — 1 mesons to be light, the only way to minimize the
potential for a heavy U(1) boson is to constrain the term
with factor a/N, to be exactly zero, namely

S¢i—6=0

i

which is identical to the condition from anomalous Ward
identities—no surprise since the effective Lagrangian is
engineered to satisfy these identities. Implementing these
conditions leads to the identical dependence on € discussed
in the previous section, which now appears in the potential
at its minima

V(¢i)min = _F%ZM% Cos¢i|min'

Since the quark condensates reside in the u? an identical
dependence on 6 as that found using anomalous Ward
identities emerges. The dependence involves cos(ﬁ/Nf)
now because of the way the U field transforms under chiral
transformations in terms of the 6 parameter: IndetU —
IndetU — i€ and there is no relative factor of 2 between
the sum of the phases of U and 6.
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