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The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark
action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings
and similar physical volumes to explore the approach of the quark propagator towards the continuum limit. We
have calculated the nonperturbative momentum-dependent wavefunction renormalization function Z(p2) and the
nonperturbative mass function M(p2) for a variety of bare quark masses and extrapolate to the chiral limit. We
find the behavior of Z(p2) and M(p2) are in good agreement for the two finer lattices in the chiral limit. The
quark condensate is also calculated.

1. INTRODUCTION

There have been several studies of the momen-
tum space quark propagator [1,2,3,4,5] using dif-
ferent gauge fixing and fermion actions. Here we
focus on Landau gauge fixing and the overlap-
fermion action and extend previous work [5] to
three lattices with different lattice spacings a and
very similar physical volumes. This allows us to
probe the scaling behavior and the continuum
limit of the quark propagator in Landau gauge.

2. QUARK PROPAGATOR ON THE

LATTICE

In the continuum the renormalized Euclidean-
space quark propagator must have the form

S(ζ; p) =
1

ip/A(ζ; p2) +B(ζ; p2)
=

Z(ζ; p2)

ip/+M(p2)
, (1)

where Z(ζ; p2) is the wavefunction renormaliza-
tion function, M(p2) is the nonperturbative mass
function, and ζ is the renormalization point.

On the lattice the bare quark propagator can
be written as

Sbare(p) ≡ −i

(

∑

µ

Cµ(p)γµ

)

+ B(p) . (2)

∗Presented by J. B. Zhang at Lattice 2003
†This work is supported by the Australia Research Council

We use periodic boundary conditions in the spa-
tial directions and anti-periodic in the time di-
rection. The discrete momentum values for a
lattice of size N3

i × Nt, with ni = 1, .., Ni and
nt = 1, .., Nt, are

pi =
2π

Nia

(

ni −
Ni

2

)

, pt =
2π

Nta

(

Nt −
1

2
−

Nt

2

)

.

We can perform a spinor and color trace to iden-
tify

Cµ(p) =
i

12
tr[γµS

bare(p)], B(p) =
1

12
tr[Sbare(p)] .

The general approach to tree-level correction[2]
utilizes the fact that QCD is asymptotically free
and so it is the difference of bare quantities from
their tree-level form on the lattice that contains
the best estimate of the nonperturbative infor-
mation. For the overlap fermion, the tree-level
correction is nothing but to identify appropriate
kinematic lattice momentum q. We can identify
the appropriate kinematic lattice momentum q di-
rectly from the definition of the tree-level quark
propagator numerically,

qµ ≡ C(0)
µ (p) =

C
(0)
µ (p)

(C(0)(p))2 + (B(0)(p))2
. (3)

We can also obtain the kinematic lattice momen-
tum q analytically [4].
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Having identified the lattice momentum q, we
can now define the bare lattice propagator as

Sbare(p) ≡
1

iq/A(p) +B(p)
=

Z(p)

iq/+M(p)

= Z2(ζ; a)S(ζ; p) , (4)

where S(ζ; p) is the lattice version of the renor-
malized propagator in Eq. (1), and Z2(ζ; a) is
the quark wave-function renormalization con-
stant chosen so as to ensure Z(ζ; ζ2) = 1.

The overlap fermion formalism [6,7] realizes an
exact chiral symmetry on the lattice and is au-
tomatically O(a) improved. The massive overlap
operator can be written as as [8]

D(η) =
1

2
[1 + η + (1 − η)γ5ǫ(H)] , (5)

where ρ is the Wilson mass with negative sign,
and the quark mass parameter η ≡ m0/2ρ. Writ-
ten according to bare quark mass m0, we have

D(m0) =
1

2ρ

[

ρ+
m0

2
+ (ρ−

m0

2
)γ5ǫ(H)

]

, (6)

and the overlap quark propagator is given by

Sbare(m0) ≡ D̃−1
c (η) , (7)

where

D̃−1
c (η) ≡

1

2ρ
D̃−1(η) , (8)

D̃−1(η) ≡
1

1 − η

[

D−1(η) − 1
]

. (9)

3. NUMERICAL RESULTS

Here we work on three lattices with different
lattice spacing a and very similar physical vol-
umes using a tadpole-improved plaquette plus
rectangle gauge action. For each lattice size, 50
configurations are used. Lattice parameters are
summarized in Table 1.

In the calculations, κ = 0.19163 was used for
all three lattices, which gives ρa = (8− 1/κ)/2 =
1.391. We calculate for 10 quark masses on each
lattice by using a shifted Conjugate Gradient
solver. The 14th order Zolotarev rational ap-
proximation is used to evaluate the matrix sign
function ǫ(Hw). The ten bare quark masses we

Table 1
Lattice parameters.

Action Volume β a (fm) u0

Improved 163 × 32 4.80 0.093 0.89650
Improved 123 × 24 4.60 0.125 0.88888
Improved 83 × 16 4.286 0.194 0.87209

use in our calculation are m0 = 2ρη = 106, 124,
142, 177, 212, 266, 354, 442, 531, and 620 MeV
respectively.

The detailed results will be presented else-
where. Here we focus on the comparison of the
results on these three lattices. All data has been
cylinder cut [9] and extrapolated to the chiral
limit using a simple linear extrapolation. The
mass function M(p) in the chiral limit for the
three lattices is plotted in Fig. 1 and the renor-
malization function Z(p) of the three lattices is
plotted in Fig. 2. We can see that when the mass
function M(p) is plotted against the discrete lat-
tice momentum p the results of the three lattices
are in good agreement, while for the renormaliza-
tion function Z(p), good agreement is reached on
the three lattices if it is plotted against the kine-
matical lattice momentum q. The overall agree-
ment between the two finer lattices is good.

In the chiral and continuum limits, the asymp-
totic quark mass function has the form

M(p2)
p2

→∞

= −
4π2dM

3

〈ψψ〉

[ln(µ2/Λ2
QCD)]dM

×
[ln(p2/Λ2

QCD)]dM−1

p2
(10)

where the anomalous dimension of the quark mass
is dM = 12/(33− 2Nf). Using the momentum p,
in the fitting range ap ⊂(1.3, 2.5), on the 163×32
lattice, the resulting value for the quark conden-
sate is

〈ψψ〉 = −(288 ± 24MeV)3. (11)

This is in excellent agreement with the value
〈ψψ〉 = −(268±27MeV)3 extracted from the Asq-
tad action using the same method [10].

4. SUMMARY

In this report, we have considered tadpole-
improved quenched lattice configurations, and the



3

Figure 1. Comparison of the mass function M(p) of

three lattices in the chiral limit. The upper graph

is plotted against the discrete lattice momentum p

and the lower graph is plotted against the kinematical

lattice momentum q.

overlap fermion operator with the Wilson fermion
kernel. The momentum space quark propagator
has been calculated in Landau gauge on three lat-
tices with different lattice spacing a and similar
physical volumes to explore the scaling property.
The continuum limit for Z(p) is most rapidly ap-
proached when it is plotted against the kinemati-
cal lattice momentum q, whereas the quark mass
function, M(p), should be plotted against the dis-
crete lattice momentum p. The good agreement
between the two finer lattices suggests that we
are close to the continuum limit.
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