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The properties of the momentum space quark propagator in Landau gauge are examined for the overlap
quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice
spacings and similar physical volumes to explore the approach of the quark propagator toward the continuum
limit. We have calculated the nonperturbative momentum-dependent wave-function renormalization function
Z({%;p) and the nonperturbative mass functibh(p) for a variety of bare quark masses and perform an
extrapolation to the chiral limit. We find the behavior BtZ?;p) and M(p) are in reasonable agreement
between the two finer lattices in the chiral limit, however the data suggest that an even finer lattice is desirable.
The large momentum behavior is examined to determine the quark condensate.
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[. INTRODUCTION independent, i.e., sinc&(£?;p) is multiplicatively renormal-
izable all of the renormalization-point dependence is carried
The quark propagator is one of the fundamental quantitieby Z(£2;p?). For sufficiently large momenta, the effects of

in QCD. By studying the momentum-dependent quark massgynamical chiral symmetry breaking become negligible, i.e.,
function in the infrared region we can gain valuable insightfor large p?, and we haveM (p?)—m(¢) up to logarithmic
into the mechanism of dynamical chiral symmetry breakingcorrections, wheren({) is the perturbative running mass.
and the associated dynamical generation of mass. There have When all interactions for the quarks are turned off, i.e.,
been several studies of the momentum space quark propagahen the gluon field vanishéer the links are set to ongthe
tor [1-9] in Landau gauge using different fermion actions. quark propagator has its tree-level form
Here we focus on the overlap fermion action and extend
previous work 8] to three lattices with different lattice spac-
ing a at fixed physical volume. This allows us to study the SO (p)=
approach of the Landau gauge quark propagator to the con-
tinuum limit. The study of the overlap quark propagator in

the Gribov copy-free Laplacian gauge is underway and will 0. ) . _
be reported elsewhere. wherem” is the bare quark mass. When the interactions with

the gluon field are turned on we have

ip+m°’ )

II. QUARK PROPAGATOR ON THE LATTICE

(0) bare 5. ) — 2. 2.
In a covariant gauge in the continuum, the renormalized SP(p)—S*a;p)=Z,({%5a)S(L5p), (4)

Euclidean space quark propagator has the form
where a is the regularization parameter—in this case, the
, 1 Z(%p?) lattice spacing—andZ,(¢%a) is the quark wave-function
S(E5p) = = » (D renormalization constant chosen to end(&;p?
ipA(2:p2) +B(¢%p?)  ip+M(pd) enorma on cons osen so as to end(&;p°)
=1. For simplicity of notation we suppress the
where £ is the renormalization point. The renormalization &dependence of the bare quantities.

point boundary conditions fo (p?) andZ(¢,p?) are cho- On the lattice we expect the bare quark propagators, in

sen to be momentum space, to have a similar form as in the con-
tinuum, except that th&(4) invariance is replaced by a

Z2(%0%=1, M(®=m(?). (2)  four-dimensional hypercubic symmetry on an isotropic lat-

o o . tice. Hence, the inverse lattice bare quark propagator takes
where, at sufficiently large renormalization poihtm(£?) is  the general form

the usual renormalize@unning quark mass. The functions
A(Z%p?) and B({%;p?), or alternatively Z(£%p?) and
M (p?), contain all of the nonperturbative information of the (Sbare)l(p)zi(z C,(p)y
2 I
M

i rmation of +B(p). )
quark propagator. Note tha (p“) is renormalization point
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We use periodic boundary conditions in the spatial directions At tree-level, the inverse bare lattice quark propagator
and antiperiodic in the time direction. The discrete momenbecomes the tree-level version [&q. (5)]

tum values for a lattice of sizB>XN,, with n;=1, ... N,
andn,=1,... N,, are
2w N; q 27 1 N
pi_N_ia =% an pt_N_ta tT5 7
(6)

The overlap fermion formalisril0,11] realizes an exact
chiral symmetry on the lattice and is automaticatfi{a)

+BO)(p). (13

<s<°>>1<p>zi<2 cp)y,
M

We calculateS(p) directly by setting the links to unity in
the coordinate space quark propagator and taking its Fourier
transform. It is then possible to identify the appropriate ki-
nematic lattice momentum directly from the definition

9,=C(p) (14)

improved. The massive overlap operator can be written as

[12]

1
D(ﬂ)=5[1+u+(1—u)756(HW)], (7)

whereH,,(X,y) = ysD(X,Y) is the Hermitian—Wilson-Dirac

operator, the mean-field improved Wilson-Dirac operator can

be written as
1
Du(6y) =[(~mua) +4r]6.,~ 5 2 {(r =7,

XU L (X) 8y st (T, UL (x—aum) 8y« 1}

u U ,(X)
_ﬁ 5x,y_K§ {(r_’yu)’:—o‘sy,x-#,&
Ul(x—au)
+(r+'yM)M—Iu yx—;},]} 8

The negative Wilson mass—(m,,a) is then related toc
by
Uo
2(—mya)+(1/ke)’

©)

K=

and mean-field improvement allows the use of the tree-lev
value k.= 1/(8r). The Wilson parameter is typically chosen

to ber=1, and we will also use=1 here in our numerical
simulations. The dimensionless quark mass parameter is

0

3

m= (10

N

My

The overlap quark propagator is given by the equation

sPm®)=Dg (), (11)
where
5;1<mzﬁ6—1<m
and
Blw)zﬁ[olw—l]. (12)

The form ofq,(p,) is shown and its analytic form given in
Ref.[8]. Having identified the appropriate kinematical lattice
momentumg, we can now define the bare lattice propagator
as

Z(p)
ig+M(p)

This ensures that the free lattice propagator is identical to the
free continuum propagator. Due to asymptotic freedom the
lattice propagator will also approach the continuum form at
large momentum. In the gauge sector, this analysis approach
dramatically improves the gluon propagaf@B,14].

The two Lorentz invariants can now p24]

S p)= (15

Z-Y(p)= — TS Hp)} 16
12ig?
Z
M(p)= 22 115 ). a7

While Z is directly dependent on our choice of momentgm

the mass functio is indirectly dependent on this choice.

In the case of staggered quarks it has been seen that the
kinematic momentum derived from tree-level analysis of the
action is a good choice of momentum for the mass function
[5,6]. This is an empirical result. The tree-level behavior of
etlhe Overlap quark propagator is rather different, however,
and a different approach may be needed. We investigate this
issue by analyzing the scaling behavior of the propagator
over three values of the lattice spacing at constant physical
volume.

IIl. NUMERICAL RESULTS

We present results from three lattice ensembles, each with
a different lattice spacin@, but having the same physical
volume. Lattice parameters are summarized in Table I. The
gauge configurations were created using a tadpole improved
plaguette plus rectanglgtscher-WeisZ 15]) gauge action.
Each ensemble consists of 50 configurations. The lattice
spacing was determined by the static quark potential using
the string tension/o=440 MeV[16].

The gauge field configurations were gauge-fixed to the
O(a®) improved Landau gaudéd.7]. Our calculation begins
with the evaluation of the inverse of the Dirac operator in
Eq. (7). We approximate the matrix sign functiefH,,) by a
14th-order Zolotarev approximatiofil8]. The coordinate
space propagator, E¢L1), is calculated for each configura-
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TABLE |. Lattice parameters.

Action Volume N-herm Nsamp B a (fm) Ug Physical volume (frf)
Improved 16x32 5000 500 4.80 0.093 0.89650 %83.00
Improved 18x 24 5000 500 4.60 0.123 0.88888 453.00
Improved $x16 5000 500 4.286 0.190 0.87209 ¥53.00

tion. A discrete Fourier transform is then applied to the eachurbative value of 1. This is mass independent. We investi-
of the coordinate space propagators, and the momentungated the effect of including the smallest quark masses in the
space bare quark propaga@¥'{p) is finally obtained from  chiral extrapolation and found that eliminating the lightest
the ensemble average. two made little difference to the extrapolated result. The re-

In the Wilson action we use=0.19163 for the regulator sulting estimate of the chiral limit is shown in Fig. 3. These
mass. We calculate the Overlap quark propagator for teare shown against bofmandq, renormalized as before. We
quark masses on each ensemble by using a shifted Conjugatee that botiM (p) and Z(F(p) deviate strongly from their
Gradient solver. The quark mass parametewas adjusted tree-level behavior. In particular, as in earlier studies of the
to make the tree-level bare quark mass in physical units, theandau gauge quark propagaf8r5,8, we find a clear sig-
same on three lattices. For example, we choese0.018, nal of dynamical mass generation and a significant infrared
0.021, 0.024, 0.030, 0.036, 0.045, 0.060, 0.075, 0.090, ansuppression of th&®(p) function. At the most infrared
0.105 on ensemble 1, i.e., the®»632 lattice witha=0.093  point—the lowest nonzero momentum available on this
fm. This corresponds to bare masses in physical units dfattice—the dynamically generated mass has the value
m®=2um, =127, 148, 169, 211, 254, 317, 423, 529, 634,

and 740 MeV, respectively. 1.0 . . . 1
Results from ensemble 2 were presented in Rgf.and 09 . -
some results from ensemble 3 were also reported in[Rgf. 08 L+ Cree. 4
Here we will compare the quark propagators on each en- o L e, Trmmemeeme e s
semble to examine its behavior as the lattice spacing van- . =~ | . " .. e e e me e
ishes. First we present some results from ensemble 1, the § R T R
finest lattice of the three. All data has been cylinder[d3]. = 05 -3 : ‘e . L . ]
Statistical uncertainties are estimated via a second-order, ¥ 04 LI . T
single-elimination jackknife. 03 & B e
In Fig. 1 we show the results for all ten masses for both 02 L L H . M ;_
the mass and wave-function renormalization functions, o1 L R R LR LR RN 1
M(p) andZ®(p)=2z(£?;p), respectively, as a function of 0.0 , , | .
the discrete lattice momentum Z(®(p) is renormalized at 0 1 2 3 4 5
[=3.44 GeV. We see that bot (p) andZ(®(p) are rea- @ p GeV
sonably well behaved up to 5 GeV. In the plotsh{p) the L2
data is ordered as one would expect by the valueg.fdre., ' ' ' ' '
the larger the bare quark mas®, the higher is theM (p) 11r 7
curve. At small bare mass&s(p) falls off more rapidly with 1oL e w
momentum, which is understood from the fact that a larger wr '
proportion of the infrared mass is due to dynamical chiral __ 99 jeit ' ]
symmetry breaking at small quark masses. In the nonrelativ- £ ggl § g P i
istic limit, the mass function would be a constant. %

Z(®(p) on the other hand is infrared suppressed. The
smaller the quark mass, the more pronounced the dip at low 0.6 -
momenta. This behavior is qualitatively consistent with what
is seen in Dyson-Schwinger-based QCD mofi&%2(Q. It is
likely that some of the suppression, however, is due to the 0.4
finite volume[6]. In Fig. 2 we repeat these plots but now
using the kinematical lattice momentugn This only alters

the large momentum behavior of the propagator. FIG. 1. The functionsv (p) and Z®(p)=Z(¢2;p) renormal-

We perform an extrapolation to zero quark mass by dzed at;=3.44 GeV for all ten quark masses. Data are plotted
linear fit to the data. At sufficiently large momenta the massyersus the discrete momentum values defined in B, p
function will be proportional to the bare quark mass, in=3pZ, over the interva[0,5] GeV. The data correspond to bare
which case the linear extrapolation is appropriate. Nonlineaguark masse&rom bottom to top x=0.018, 0.021, 0.024, 0.030,
behavior is to be expected in the infrared, but this simple.036, 0.045, 0.060, 0.075, 0.090, and 0.105, which in physical
ansatz describes the present data adequately. In the ultravionits correspond tan®=2um,=127, 148, 169, 211, 254, 317,
let, the renormalized should—and does—approach its per- 423, 529, 634, and 740 MeV, respectively.

0.7 —% i 4
i

0.5 T

0 1 2 3 4 5
(b) p GeV
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FIG. 2. The functionsM(p) and Z(®P(p)=Z(£?;p) for renor-
malization point{=5.31 GeV for all ten quark masses. Data are
shown versus the discrete momentum values defined in(E&,
q=+=d?, over the interva[0,12] GeV. The data in both parts of
the figure correspond from bottom to top to increasing quar
masses. The values of the bare quark masses are in the caption ?)10'55(2)'
Fig. 1.

FIG. 3. Linearly extrapolated estimates Mf(p) and Z(®(p)
=Z(z%;p) in the chiral limit. Here the renormalization point afe
=3.44 GeV in thep scale and/=5.31 GeV in theq scale. At the

mallest accessible momentunM z=307(6) MeV and Zj

mass functionM(p), but as predicted by the tree-level

M g=307(6) MeV and the momentum-dependent wave-analysis, the agreement between the results on three lattices
function renormalization function has the valugg is better if Z(R(p) is plotted against the kinematical lattice
=0.552). These values are very similar to the results foundmomentumg. There are also the relatively small discrepan-
in previous studie$3—6,8 and are also similar to typical cies inZ(®(p) versusq in the infrared region on three lat-
values in QCD-inspired Dyson-Schwinger equation modelgices; it seems that in the continuum limit, the dip in the
[19,20. The results of Ref6] suggests that at least some of renormalization functionZ®(p) will be narrow, but the
the infrared suppression @®)(p) is due to finite volume depth of the dip will be unchanged. It suggests that an even
effects. finer lattice will be needed to confirm the continuum limit of

Now we present the results on three lattices for compariZ(®(p) in the infrared. It is possible that the linear chiral
son. These lattices have approximately the same physicaltrapolation is unreliable foz(R(p) in this regime or it
volume, but each has a different lattice spacing. Thus we caoould be that dynamical chiral symmetry breaking is cou-
study the Overlap propagator’s scaling properties. Wepling hypercubic lattice artifacts to finite volume effects.
present the results for the chiral limit. The mass function,This warrants further investigation with finer and larger lat-
M (p) for the three lattices in the chiral limit is plotted in Fig. tices.
4, using bottp andg. We see that if the mass functid(p) Thus we have resolved one of the key questions raised in
is plotted against the standard lattice momentpmthe the studies of Ref(8]. We see that the continuum limit ap-
agreement of the results among the three lattices is bettgrears to be approached most rapidly wi&é&R(p) is plotted
than the case in which the mass functib(p) is plotted againstgyandM(p) is plotted againsp. The better scaling of
against kinematical lattice momentugn Z®)(p) as a function ofg is natural and predicted by the

The results for the renormalization function®®(p) tree-level analysis. Thatl(p) is better againsp is purely
=Z({%p) of the three lattices is plotted in Fig. 5. Here the observation.
renormalization points are chosen to be 3.44 GeV inp Another way of studying scaling is by making compari-
scale andZ= 5.31 GeV inq scale. Contrary to the case of sons with known continuum results. In the chiral limit, in the
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FIG,' 4. _The_ mass functio (p) from a linear extrapolation to FIG. 5. The momentum-dependent wave-function renormaliza-
the chiral limit is shown for our three lattices. In the upper part of ;- ¢ 0 tion z(R(p)=2(¢%p) for renormalization point ¢

the figureM(p) is plotted aga_inst the discrgte Iattice_momept;mm —3.44 GeV in thep-scale and/=5.31 GeV in theg-scale from a
whereas in the lower partllt is plotted against the klngmatlcal MO%inear extrapolation to the chiral limit. In the upper part of the
mentumg. The results again suggest that we most rapidly approaclyy .o 7(R(p) is plotted against the discrete lattice momentam
the continuum limit by plottingV (p) againstp. whereas in the lower part it is plotted against the kinematical mo-
mentumg. The results again suggest that we most rapidly approach

) ) ) the continuum limit by plottingz(®(p) againstg.
continuum, the asymptotic quark mass function has the form

) p2—oo 47%dy, (%/,) the renormalization point is canceled by the dependence of
M(p9) = ——3 2 A2 dn the condensate, maintaining the renormalization point invari-
[In(w/Agep)] ance of the mass function. We fit this form to the lattice data
[|n(p2/AéCD)]dM—l obtained by both linear and quadratic chiral extrapolation. A
X 5 (18)  quadratic extrapolation was used on the AsqTad f&itao it
p is useful for comparing with those results. Some results are

presented in Table II.
[see Ref[19], Eq.(6.15] where the anomalous dimension of  The difference between the quadratic and linear extrapo-
the quark mass isly,=12/(33—-2N;) for N¢ quark flavors lations is no great surprise as our quark masses are rather
(N;=0 in the present caseThe dependence d¥l(p?) on heavy. This is a constraint of the volume. The relevant point

TABLE IlI. Extracted values of the quark condenséae)).

B extrapolation p fit region (GeV) _<J¢>1/3 (MeV) ¢ fit region (GeV) _<E¢,>1/3 (MeV)

4.60 linear 3.6-4.5 3339 4.3-8.6 62149)
4.60 quadratic 3.6-4.5 2065) 4.3-8.6 57672
4.80 linear 3.6-5.3 3222 55-11.4 49084)
4.80 quadratic 3.6-5.3 2636) 55-11.4 39664)
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is that there is good agreement between the two lattices whavlore the continuum limit with one or more additional finer-

p is the momentum, but not whenis the momentum. lattice spacings. In addition, it will be necessary to use both
finer and larger volume lattices, in particular to study the
IV. SUMMARY AND OUTLOOK infrared behavior 0Z(£?,q). One can also use other kernels

in the overlap fermion formalism, e.g., using a fat-link irrel-
The momentum space quark propagator has been calcdyant clover actiofi21] as the overlap kerngR2,23 in or-
lated in Landau gauge on three lattices with different latticeyer to further establish the robustness of our conclusions and
spacinga, but very similar physical volumes in order to €x- 5 provide more accurate data. These studies are currently

plore the approach to the continuum limit. We calculated the,ngerway and results will be reported elsewhere.
nonperturbative momentum-dependent wave-function renor-

malization Z(¢?;p) and the nonperturbative mass function

M (p) for a variety of _bare que}rk masses. We glso explgrgd ACKNOWLEDGMENTS
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