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ABSTRACT

Time-independent thermoelastoplastic and time-dependent creep stress and damage
analysis of thick-walled cylinders have been investigated using incremental theory of
plasticity in conjunction with improved material elastoplastic and creep constitutive

models. The results are validated experimentally and numerically.

For time-independent thermoelastoplastic analysis thick-walled cylinders of SUS 304
stainless steel have been selected. The material’s loading and unloading properties
including the Bauschinger effect factor (BEF) are obtained experimentally and rep-
resented mathematically as continuous functions of effective plastic strain. The ma-
terial’s model and the BEF have been incorporated in an analytical-numerical model
to predict the cylinders plastic and residual stresses as well as the critical pressures
of direct and reverse yielding. The analytical-numerical models for the prediction of
critical inner pressure, plastic stress distributions and the subsequent residual stresses
of thick-walled cylinders are validated experimentally. Several experiments are carried
out on thick-walled cylindrical test specimens in which internal hydraulic pressure has

been increased and the outer surface deformations are measured by the strain gauges.



Abstract 2

Subsequently the load has been released and the residual strains are again measured at
the outer surface of the cylinder. These experimental measured values are compared
with the predicted values of the analytical-numerical model and, in most cases, the

model predictions are accurate.

For time-dependent creep stress and creep damage analysis, thick-walled tubes of
%C r,s Mo, %V ferritic steel have been considered. Improved material creep and rup-
ture properties are obtained from the available literature. A numerical model has been
developed for the computation of creep stresses and strains and the creep damages in
a thick-walled tube which is subjected to an internal pressure and a thermal gradient.
The model predicts histories of stresses and strains as well as the damage history dur-
ing the life of the tube due to variation in stresses with time and through-thickness
variations. The creep damage accumulation is based on the Robinson’s linear life frac-
tion damage rule which has been incorporated in a non-linear time-dependent stress
analysis. Following the stress histories the damages are calculated and cumulatively
summed during the life of the tube. From the effective stress histories a reference time
has been identified when the effective stress distributions become uniform throughout
the tube wall. Effect of internal pressure on this reference time is investigated. The
accuracy of the results has been examined by comparing the theoretically predicted
creep curves and the numerically followed curves. Deviation of the followed paths from

the predicted paths is small.
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NOTATION
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Notation

AT Temperature gradient
Aegg Effective creep strain increment
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rs052 Cylindrical coordinates
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Chapter 1

INTRODUCTION

1.1 General Introduction

The application of high-pressure technology in high temperature environment has un-
dergone a tremendous growth in the areas of oil, chemical, power jgeneration and in
defence industries. All of these industries use pressure vessels, piping systems and
thick-walled cylinders and in general, failures that arise in their systems are always
catastrophic. Therefore, there is a strong need for studies relating to non-linear de-
formations of these systems due to high pressure in the presence of high temperature
environment. Experimental modeling with careful analytical and numerical research is
necessary to investigate the non-linear response of these systems in order to develop
reliable procedures for the safe design against catastrophic failures. Time-independent
non-linear deformation analysis of thick-walled cylinders will provide information con-

cerning the through-thickness yielding characteristics of thick-walled vessels. This is
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important when intentional-yielding introduces beneficial residual stresses into the ves-

sel wall and improves the performance characteristics of the operating systems.

As a thick-walled cylinder is pressurized, the bore material, which is the most highly
stressed portion of the cylinder, begins to yield. The yield surface begins to propagate
through the thickness of the vessel until it reaches the outer surface. When more and
more of the cylinder material is entering the plastic regime, the bore material begins to
strain harden. If the yielded cylinder is unloaded, the compressive residual stresses will
be developed at the inner surface of the cylinder. Highly compressive residual stresses
can cause reverse yielding to take place at the inner surface of the cylinder. An impor-
tant ingredient of the non-linear and residual stress analysis is the material constitutive
model. Metals initially overstrained in tension have a significantly lower elastic limit
in compression (Bauschinger phenomenon). This phenomenon must be considered in
the material model for a more realistic prediction of residual stresses and the onset
of reverse yielding. It is also necessary to know the stress and strain histories during
overloading to calculate the subsequent residual stresses. There is however considerable
disagreement among solutions obtained by different investigators for the residual stress
distribution in the cylinder (for example, Koiter (1953), Bland (1956), Franklin and
Morrison (1960), Parker and Andrasic (1981), Chen (1986), Rees (1987a), Stacey and
Webster (1988)). All the solutions presented by these investigators are obtained with
some simplifications in the geometry constraints, material models, yielding criteria and

the associated plastic flow rules. Determination of the residual stress distribution is
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important in the fracture analysis and the fatigue life estimation of thick-walled cylin-
drical pressure vessels (for example, Hussain et al. (1980), Throop and Reemsnyder
(1982), Parker et al. (1983), Pu and Chen (1983), Findley and Reed (1983), Koh and
Stephens (1991), Rees (1987a, 1991a, 1991b), Perl and Arone (1994a,1994b) and Se-
shadri (1994)). Therefore, an accurate prediction of residual stresses by using a realistic
material model including the Bauschinger phenomenon and a more realistic geometri-
cal constraint can have a significant contribution to improve the fracture analysis of

thick-walled cylinders.

In the presence of a high-temperature, non-linear deformation of cylinder becomes a
time-dependent process known as creep. Creep mechanism causes micro-structural
damages such as dislocation movement, cavity formation and spacing. The history of
creep stresses and the consequent creep damages of thick-walled tubes are extremely
important in the life assessment and for the routine inspection of high-temperature
high-pressure tubes to avoid unexpected failures. The development of reliable proce-
dures for design and prediction of remaining life of thick-walled tubes that operate
at creep ranges has been an activity of considerable research interest because of rele-
vance to plant safety and reliability (for example, Simonen and Jaske (1985), Seshadri
(1988), Cohn (1990), Jaske (1990), Viswanathan et al. (1994), Ibarra and Konet
(1995), Nogata and Takahashi (1995) and Jaske (1995)). Realistic tube-life predictions

are essential to economical design, inspection strategy and tube retirement evaluations.
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A major difficulty in the design of tube life or remaining tube life is that the rate of
creep damage changes during the life of the tube due to time-dependency of stresses
and variation in stresses through the tube wall thickness. While in-service exami-
nations of these components can provide useful information about material condition,
greater understanding of the component’s non-linear deform@tion behaviour is essential
before the information obtained from the inspection procedures can be used to provide
accurate predictions of future component performance. Furthermore, if an improved
damage model can be predicted for the vessel then the component examinations and

inspections can be scheduled in a selective manner.

One of the ingredients of a time-dependent non-linear stress and damage analysis is
the material’s constitutive model. A constitutive model for the prediction of long-
term creep behaviour of low alloy steels from a relatively short term data has been
introduced by Evans et al. (1984). The model known as “the Theta (©) projection”
has been adopted internationally (for example, Parker (1985), Maruyama and Oikawa
(1987), Maruyama et al. (1990) and Zamrik (1990)). The model accurately predicts
the material behaviour and the changes in the shapes of the creep curves with changing
stress and temperature. However, due to the complex mathematical representation of
the proposed material model, application of the model in practical problems is not yet

well developed.

The aim of this project is to develop, improve and validate the analytical-numerical
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models for a more realistic prediction of the time-independent and time-dependent non-
linear response of thick-walled cylinders subjected to an internal pressure and thermal
gradients by using a detail incremental deformation analysis and the improved mate-
rial properties in elastic, plastic and creep regimes. The outcome of this study will
be specially valuable to thermal power generating industries, pipe lines and in defence

research where efficient and safe design of pressure vessels and cylinders are crucial.

1.2 Problem Definition

A thick-walled cylinder of strain-hardening material has been considered in this study.
Loading of the cylinder is assumed to consist of a temperature gradient and a monoton-
ically increasing internal pressure . The cylinder ends are assumed to be closed for the
case of time-independent elastoplastic and subsequent residual stress analysis and are
assumed to be open for the case of time-dependent creep stress and damage analysis.
The material’s strain-hardening properties and the Bauschinger phenomenon will be
considered for a more realistic prediction of plastic stresses and the consequent residual
stresses and the onset of reverse yielding. The material’s time-dependent properties are
considered as full creep curves up to rupture defined by the theta projection concept.

Other assumptions used in the analysis are as follows:

1. For both time-dependent and time-independent non-linear analysis, von Mises

criterion and its associated flow rule is adopted
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9. The material is assumed to be incompressible in the plastic and creep regimes

3. A generalized plane strain case is considered in which the strain in the axial
direction is constant (e,=constant). This assumption is a more realistic constraint
than the plane strain for a closed ended cylinder because the cylinder is permitted
to expand in the axial direction while surfaces normal to the longitudinal axis

remain plane during deformation.

4. None of the plastic and creep strain increments are assumed to be zero and all
the three-dimensional plastic and creep strain components are considered in the

analysis.
5. The temperature gradient is constant and the heat flow is assumed to be outward.

Details of the material properties used in both time-dependent and time-independent

analysis are introduced below.

1.8 Material Consideration

Material’s time-independent constitutive model and the Bauschinger effect factor as
well as the time-dependent creep properties and the creep rupture criterion used in

this investigation are introduced here in this section.
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1.3.1 Material Time-Independent Constitutive Model

The material for time-independent thermoelastoplastic deformation and the subse-
quent residual stress analysis is selected as SUS 304 stainless steel. This material is
commonly used in high pressure and high temperature environment. In this investiga-
tion the material non-linear properties are obtained experimentally. A large number
of test specimens have been loaded up to a specific strain beyond the elastic limit and
then reverse loaded down to zero strain by using a computer controlled testing ma-
chine. The stress-strain diagram of the material during loading up to 0.75% overstrain

and unloading down to zero strain obtained from the experiment is shown in Figure 1.1.

-
©
[+ 7]
=
n 4
1]
[
o]
2
w
o_
[ =] =
I'?L. | .
0 0.005 0.010

Strain (mm/mm)

Figure 1.1: Experimental loading-unloading stress-strain curve obtained for SUS 304
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Using the material’s data file in conjunction with a curve fitting software the strain-

hardening is mathematically represented by the following constitutive equation:
oo = 232.68187 + 689.01541(g,, )*21#171%0 (1.1)

where o, and €, are the effective stress and effective plastic strain respectively. The
material high-temperature properties and constitutive models are selected from the
experimental results of Niitsu and Tkegami (1990).

Effect of the amount of overstraining on reverse yielding is also investigated experi-

mentally in this work and represented by the Bauschinger effect factor.

1.3.2 The Bauschinger Effect Factor (BEF)

Metals initially overstrained in tension have a significantly lower elastic limit in com-
pression. This is known as the Bauschinger phenomenon. By definition, the Bauschinger
effect factor (BEF') for a specimen initially overstrained in tension is the ratio of the
compressive yield stress upon reverse yielding to the initial yield stress in tension. If
o4 is the initial yield stress in tension and op is the yield stress in reversed direction

of loading as shown in Figure 1.1, then the BEF' is

BEF =22 (1.2)

g4
The definition of Bauschinger effect factor has been modified by Milligan et al. (1966)

to take into account the strain hardening as follows:

BEF =22 (1.3)

0B
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where o is the subsequent yield stress.

In this work the BEF is obtained experimentally based on the above modified definition
of Milligan. Determination of yield point in tension and compression is based on the
ASTM standard procedure of “offset method”. In this work 0.1% offset is used to obtain
the material’s yield strength. From the experimental data of each specific overstraining
condition the respective BEF is calculated from equation (1.3). Elastic strains have
been subtracted from the total overstrains to give the plastic strains. A functional
relationship between the BEF and the percentage amount of plastic strain has been

established by using a curve fitting software as follows:

BEF = 1.0170029 + 0.36592732(e, %) — 0.0025343135(£, %) — 0.97738304(e, %)
(1.4)
where €,% is the percent plastic overstrain. The experimental BEF and its approxi-

mated function are compared in Figure 1.2.

1.3.3 Material Time-Dependent Creep Properties

The material considered in this study for the time-dependent creep stress and creep
damage analysis is composed of %C T, %M o, iV ferritic steel. This composition is widely
used in electricity generating power plant for high-pressure and high-temperature com-
ponents. The material creep and fracture properties are obtained from the experimen-

tal results of Evans et al. (1984). The strain-time behaviour of the material has been
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Figure 1.2: Comparison of the experimentally obtained Bauschinger effect factor and

the approximated function for SUS 304

described by Evans et al. (1984) by introducing the theta projection concept as follows:
e = 0y(1 — e ) 4 O3(e® — 1) (1.5)

where ¢ and t are creep strain and time respectively. Variables ©1,0,,0; and 04 are

dependent on stress and temperature and are mathematically represented as follows:
Log109; = a; + b;T + cio + d;oT i=1,2,3,4 (1.6)

where o and T' are stress and temperature and the coefficients a;, b;, ¢; and d; are mate-
rial constants. For this particular material these constants are obtained experimentally

by Evans et al. (1984) and written in Table 1.1.
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Table 1.1: Constant coefficients of material constitutive equation.

Parameter a b d d
0, -0.8736%101 | +0.4604*%1072 | -0.4489*101 | +0.6814*107*
0, -0.2346%1072 | 40.2225%10 | 4-0.2195*107* | -0.1951*10~*
0 -0.1869%10" | -0.2034*10~% | -0.5497*10~" | +0.7990*10~*
0,4 -0.1643%102 | 4+0.9149*%1072 | -0.4723*10~" | 4+0.7139*10~*

18

Based on this tabulated data, units of time, temperature and stress are seconds, 9K and

MPa respectively. Evans & Wilshire (1985) showed that strain-time behaviour of the

material could be represented accurately using equation (1.5). The full creep curves

predicted by equation (1.5) for %Cr, %Mo, iV ferritic steel are shown in Figure 1.3.

Creep strain
0.10 0.15 0.20

0.05

0

T=550°C
1

10

Time(years)

15

Figure 1.3: Creep curves predicted by the © projection for %Cr, %Mo, iV ferritic steel.
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A creep failure criterion which can either be the rupture strain (¢;) or rupture time
(t,) is necessary for the creep damage estimation and the remaining life assessment of

high-pressure high-temperature tubes and is described below.

1.3.4 Creep Failure Criterion

For any creep curve a failure criterion may be defined by specifying either the rupture
time or rupture strain. It has been shown by Evans and Wilshire (1985) that the
material fracture strains () can be represented as a function of temperature and
stress as

gf = as + bsT + cso + dsaT (1.7)

The coefficients in this equation for the C'r, %M 0,1V steel are shown in Table 1.2.

Table 1.2: Constant coefficients of material rupture constitutive model.

Parameter as bs Cs ds

Ef -0.1123*10* | +0.1517*%1072 | +0.5473%10~% | -0.4721*107°

On this basis, equations (1.5) and (1.6) can be used to construct a predicted creep
curve at any stress and temperature. The relevant rupture life is then defined as the
time taken to reach the appropriate failure strain as given by equation (1.7). In this

case equation (1.5) may be rewritten in terms of fracture strain and fracture time as:

O1(1 — @) + O3(e®*r — 1) —e; =0 (1.8)
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where t, is the rupture time and e; is the fracture strain. Based on the data shown
in Table 1.2 the rupture times of %Cr, %M o, iV ferritic steel are calculated for a wide
range of stress levels and temperatures using equation (1.8). Results are illustrated in

Figure 1.4.

LOGy, (Stress, MPa)
1.6 1.8 2.0 2.2 2.4 2.6

10

LOG,,(Rupture time, sec)

Figure 1.4: Calculated rupture time data for %Cr, 1Mo, %V ferritic steel

1.4 Scope of the Thesis

A review of the classical and recently published research work on the non-linear de-
formation analysis of thick-walled cylinders is discussed in Chapter 2. Effect of the
material constitutive model, boundary and end conditions, yielding criterion, tempera-
ture and time on the non-linear stress distribution of thick-walled cylinders are reviewed

in Chapter 1. Theoretical improvement and a general numerical procedure suggested
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for the calculation of the accumulated plastic and creep strains in a loaded thick-walled
cylinder are introduced in Chapter 3. Step by step numerical procedure to calculate
the non-linear plastic stresses and the consequent residual stresses as well as the time-
dependent creep stress and creep damages are introduced in Chapter 4. Experimental
set up and specifications of the cylindrical test specimens and procedures are described
in Chapter 5. In Chapter 5 the developed analytical-numerical procedure is justified by
comparing the model predicted deformations and the experimentally measured values
by the strain gauges. The results obtained in this investigation are discussed and inter-
preted in Chapter 6. A conclusion is derived and a recommendation for the future work
is described in Chapter 7 followed by appendices and references. A list of publication

generated from this research work is cited at the end of the thesis.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

A considerable amount of work has been done on the problem of time-dependent and
time-independent non-linear stress analysis of thick-walled cylinders under internal
pressure, with and without the effect of temperature gradients. There are also many
closed form solutions available in the literature which are obtained by simplifying the
geometry, boundary and end conditions, material constitutive equations and the yield-
ing criterion. This review is divided into two major categories one of which deals with
the time-independent elastoplastic deformations and the subsequent residual stresses

while the other considers time-dependent creep deformations of thick-walled cylinders.

9.7
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2.2 Time-Independent Elastoplastic Deformation

Many solutions have been put forward from time to time for the elastoplastic and the
consequent residual stress distribution in a thick-walled cylinder subjected to an inter-
nal pressure sufficient to cause yielding at the cylinder wall. The first classical solution

to this problem was presented by Nadai (1931).

Nadai (1931) considered a thick-walled cylinder under internal pressure assuming that
the stresses are independent of deformation. He assumed a zero strain in the axial
direction and that the sum of the three total strain components in the radial, tangential
and axial directions. is: equal to zero to satisfy the material incompressibility condition.
With these assumption Nadai established expressions for the radial, tangential and

axial stresses in a fully plastic cylinder in the following form:

—20’0l b
oy = n—
V3 o

2,
oy = ﬂ(l—lné)

— —In-) (2.1)

where a,, 0g and o, are plastic stresses, og is the yield stress, b is the outer radius
and r is the radius. In the case of a partially plastic cylinder, Nadai assumed that
the cylinder is composed of a fully plastic and a perfectly elastic cylinder. Therefore,
parametric equations of stresses in a fully plastic vessel in conjunction with a fully elas-
tic solution were used to obtain the stress distribution in a partially plastic cylinder.

Parameters were obtained using boundary conditions at the inner and outer surfaces
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and the condition of continuity at the elastic-plastic interface. For the unloading case
of a plastically deformed cylinder under internal pressure Nadai subtracted an elastic
stress distribution with the same internal pressure from the plastic stress distributions
and obtained an estimate of residual stress distribution in the cylinder wall. Solution
presented by Nadai was approximate because the stresses were assumed to be inde-
pendent of plastic strains. The material’s hardening effect and the Bauschinger effect

phenomenon were also neglected.

Another solution to the problem of elastoplastic stress distribution in a thick-walled
cylinder was obtained by Cook(1934) assuming a constant shear stress throughout the
plastic material. Based on the hypothesis of Tresca, in which a constant value of the
maximum shear stress was assumed to exist throughout a plastic material in a state of
plastic flow, Cook (1934) assumed that a constant shear stress existed over the plastic
region of a partially plastic cylinder. This shear stress was assumed to be equal to the

shear stress observed during plastic yielding in uniaxial tension which means:
og — 0, = Oy. (2.2)

Cook described a theoretical and experimental study of the stress distribution across
the walls of thick cylinders of mild steel under internal pressure and overstrained con-
dition. Based on the above assumption Cook calculated the possible internal pressure
which prodhces overstrain throughout the wall thickness. However, the results of cook
are not significant because the assumption of constant shear stress during plastic flow

is only correct for a perfectly plastic material (constant op) and neglects the hardening
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effect.

The overstraining of cylinders by internal pressure was investigated by Manning (1945).
He assumed that the axial stress is of magnitude lying between the radial and hoop
stress components, then the maximum shear stress depended on these two principal

stress components (o and o) as follows:

09— Or = 2Tmag (2.3)

where T,,q4p is the maximum shear stress. Furthermore, he assumed that the area of
cross section of the cylinder does not change during elastic-plastic deformation which
is equivalent to the material’s incompressibility condition in both elastic and plastic
region. With these assumptions the distributions of radial and tangential stress compo-
nents were obtained and the axial stress component was neglected. The assumption of
incompressibility in both, elastic and plastic regimes made by Manning is permissible
when the plastic strain component is large compared with elastic strain component

and the cylinder is in a fully plastic condition.

Combined effect of elastic and plastic strain components on the stress distribution in
thick-walled cylinders was investigated by Hill et al. (1947). Hill et al. (1947) devel-
oped the theory of the deformation of material under combined stresses in which both
elastic and plastic components of strain were involved. The relationship between stress
and strain was represented on a plane diagram which was graphically used to evaluate

the elastic and plastic components of strain. They applied the theory to the defor-
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mation of a long thick tube under internal pressure with zero longitudinal extension.
They showed that while plastic flow is constrained by surrounding elastic material, the
correct stress distribution of the thick tube can be obtained by considering the elastic
part of the total strain in the material flowing plastically. In the particular case of a
thick tube an error of up to 60% resulted in the determination of the longitudinal stress
on the assumption of zero elastic strain in the plastic region. All the above solutions
to the elastoplastic stress distribution in thick-walled cylinders were independent of
the cylinder ends condition. However, effect of the ends condition on the stresses and

progress of plastic zone were introduced by Hill (1950) .

Hill (1950) considered elastic and elastoplastic deformation of tubes under internal
pressure. He derived expressions for the elastic stresses in tubes. Hill considered three
possible cases: plane strain, open and closed end condition. Using the elastic stresses
Hill obtained the critical internal pressures of cylinders using both Tresca and von
Mises yielding criteria. Hill showed that all cylinders with various end conditions have
the same critical pressure, according to Tresca’s criterion. The critical pressure based

on Tresca’s criterion was obtained as follows:

1 a?
Py = 50-0(1 - ﬁ) (24:)

where P..;; is the critical pressure, a and b are the inner and outer radii respectively.
Hill pointed out that if von Mises criterion is adopted, the cylinders end condition

affects the critical pressure. Using the von Mises criterion, the critical pressures of
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cylinders were obtained for the three possible cases as follows:.

Periv = \/—( 72 ) (closed — end)
Poiy = \/%( )/ (1+ 3b4) (open — end)
J— \/_ (1-— /\/ 1+ (1—2v) 364) (plane — strain) (2.5)

It was indicated that the tube with open ends yields at the lowest pressure. The critical
pressures for the closed-end and plane-strain conditions differ by less than three per
cent. Assuming a perfectly plastic material Hill established a closed form solution for
radial and tangential stress components expressed in the following form:

Oy Tc ?"2

v —0.5 — ln(:) + 252 (a <7r<Te)
2
Z—z = 405 — ln(%) + 27"52 (a<r<ry) (2.6)

where r, is the elastic-plastic interface. Hill, for the first time used an incremental re-
lationship (Reuss incremental stress-strain relationship) to obtain axial stresses while
his solution for the radial and tangential stress components (equation (2.6)) were in-
dependent of plastic strains. Effect of the incremental stress-strain law and the total

plastic stress-strain law on the elastoplastic stress distribution of thick-walled cylinders

were considered by Hodge and White (1950).

Hodge and White (1950) considered an infinitely long hollow cylinder under inter-
nal pressure. Stresses were obtained for a perfectly plastic material according to the
Prandtl-Reuss incremental stress-strain law and the Hencky deformation law (total

strain theory). In both cases the von Mises yield condition was used. It was shown
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that the two theories yield substantially to close results for this particular problem.

Although Hodge and White used the von Mises criterion to obtain the solution for the
stress components but the effect of axial stress on von Mises criterion was neglected.
In fact the von Mises condition was reduced to a relationship between the radial and

tangential stress componentsin both cases to obtain the solution.

A review of many solutions available in the literature for the stress distribution in a
thick tube subjected to an internal pressure was presented by Allen et al. (1951). To-
tal strain solutions with the Hencky-Mises flow condition as well as incremental strain
solutions were reviewed. They presented a new total strain solution making fewer as-
sumption and developed into a form suitable for practical application. Their analysis
assumed that the strain at any stage depends only on the stress system and not on how

that stress system is reached. The search for simple practical solution was continued

by Steele (1952)

In a search for assumptions leading to a simplified theory for design purposes all the
previous theories for partially plastic thick-walled cylinders under internal pressure
were reviewed by Steele (1952). Steele concluded that the solutions using incremental
theory vary a small amount from those solved by total strain theory. However, the
Hencky total strain theory was preferred because of the mathematical convenience.
Based on the comparison, a theory was presented by Steele to include the Hencky

stress-strain relations and Tresca’s criterion in conjunction with the Ludwik’s shear
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stress-strain diagram of a linear hardening type as shown in Figure 2.1.
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Figure 2.1: Ludwik’s linear strain-hardening diagram (Steele (1952)).

The Hencky total strain theory was rewritten as follows:

& = %[Jr —v(o. + 09)] + Aloy — %(az + o9)]
1 il
gy = E[aa —v(o, +0,)] + Mog — 5(02 + a,)]
., = %[02 — (0 + 0,)] + Aos — -;—(a,. + 09)] (2.7)

where )\ was called plastic flow function. The Ludwik’s linear shear stress-strain hard-

ening relationship incorporated in Tresca’s criterion was written as follows:

op — o, = 2f(7) (2.8)
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where + is the maximum shear strain which was linearly related to the shear stress as

follows:

T =10+ mG(y — Y0) (2.9)

where 7o and 4o are the shear stress and strain at yield, G is the shear modulus and
m@ is the slope of the linear strain hardening as shown in Figure 2.1. Material was
assumed incompressible in both elastic and plastic regimes. Closed form solutions were
presented for the stresses and strains the value of which could be obtained for specific

applied pressures.

There are several review of the elastoplastic stress analysis of thick-walled cylinders in
the literature one of which is of Koiter (1953). Koiter (1953) discussed the solutions
to the problem of stress distribution in an elastoplastic thick-walled tube which had
been presented by Hill (1950), Hodge and White (1950), Allen and Sopwith (1951),
and by Steele (1952). These solutions differed in the yield criterion and the plastic
stress-strain relations which they assumed. Koiter adopted the Tresca yield criterion
and its associated flow rule. Koiter determined the stresses in radial, tangential and
axial directions (o,, op and o) for a tube of non-hardening material in both elastic
and plastic regions. He showed that his solutions agreed well with the few available
solutions based on the Mises yield criterion and the associated flow rule except for
the axial stress and strain. However, as the axial stress and strain were very small
compared to the radial and tangentialstressesand strains, Koiter concluded that the

differences were of minor practical importance.
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Effect of temperature on stress distribution which was neglected by previous inves-
tigators was first considered by Whalley (1956). Whalley (1956) considered elastic
and plastic behaviour of thick-walled cylinders of perfectly plastic material subjected
to internal and external pressures and a temperature distribution across the cylinder
wall. He established equations for critical pressure in a thick-walled cylinder with
closed ends under pressure and thermal loading using Tresca’s criterion. In a vessel
subjected to both pressure and thermal stresses he assumed that the thermal stresses
are not sufficiently high relative to the pressure stresses and the axial stress never be-
comes a major or minor principal stress. With these assumptions Tresca’s criterion
became independent of axial stress and the equilibrium equation was also independent
of axial stress. Therefore, a closed form solution for the radial and tangential stress
components was established. Whalley obtained the residual stresses by subtracting an
elastic solution from the above closed form solution. He concluded that the onset of
yielding, the plastic flow and the residual stresses are affected by thermal stresses. The

axial stress was not obtained and the effect of hardening was not considered by Whalley.

Bland (1956), using Tresca’s criterion, established stress and displacement equations
for a tube of linear strain-hardening material subjected to pressure and steady state
heat flow. His analysis is the only closed form solution available in the literature for

a work-hardening material. The material hardening was given as a linear function of
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effective stress and effective plastic strain as follows:

oe = oo(l + nep) (2.10)

where o, and €, the effective stress and the effective plastic strain were given based

on Tresca’s criterion in the following form.

0, = 0g— 0y (2.11)

Ep = —=€5 (2.12)

The closed form solution presented by Bland was based on the linear strain-hardening
material rather than a perfectly plastic model of previous investigators. Residual
stresses in a closed end tube were given for elastic unloading by subtracting the elas-
tic stress obtained from the imposed pressure and temperature from the elastoplastic
stress system. However the Bauschinger effect was not considered by Bland. There
are a number of investigators who used the shear stress-strain data to predict the non-

linear behaviour of thick-walled cylinders (Crossland et al. (1959)).

The strength and non-linear behaviour of thick-walled steel cylinders subjected to an
internal pressure were investigated in a number of publications by Crossland et al.
(1955, 1958, 1959). The complete theoretical non-linear behaviour of the cylinder was
computed from shear stress-strain data obtained from torsion tests and was shown
to be in close agreement with the experimental results. Using the shear stress-strain
data in non-linear analysis was not followed by other investigators because theories of

plasticity attempted to predict the non-linear behaviour of a member from the uniaxial
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tension test results.
Although conditions for the start of the plastic yielding in thick-walled cylinders has
generally been considered by many investigators but the combined effect of tempera-

ture and pressure on the start of yielding has rarely been considered by researchers.

Derington (1962), using Tresca’s criterion, described the onset of yielding in thick-
walled cylinders subjected to pressure and thermal gradients with open and closed end
conditions. Derington showed that when combined pressure and thermal loads are ex-
erted, yielding may start everywhere according to loading conditions. He also showed
that yielding is not always due to radial and tangential stress components, and that
there are loading combinations in which the axial stress becomes a minor or major
principal stress. In this case, even with Tresca’s criterion the elastoplastic analysis

becomes history dependent and the problem must be solved numerically.

Sidebottom et al. (1975) used a total-strain, incompressible, analytical solution to
predict load-strain relations for thick-walled cylinders as the loads were increased from
zero to the bursting pressure. Loading function represented by a finite number of
straight lines and the material was assumed to obey the von Mises yield condition
and its associated flow rule. Unloading of thick-walled cylinders that had been plas-
tically deformed were also investigated by Sidebottom et al. (1976). The predicted
residual-stress distributions and deformations of the unloaded cylinder were obtained

by superposition of the previous solution and the unloading solution, provided that the
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stress-strain diagram for unloading and reverse loading of tension specimens represents
the loading function for unloading. The Bauschinger effect was not considered in Side-
bottom work. The solution for the residual stress distribution without considering the
Bauschinger effect is not a realistic one particularly when significant amount of plastic

strains has been developed in the cylinder wall.

There are also a few closed-form solutions and simulation for residual stress distribution
in thick-walled cylinders available in the literature. Hussain et al. (1980) showed that
an active thermal load can be used to produce thermal stresses equivalent to residual
stresses. In fact, they realized that there were many similarities between residual stress
distributions and the thermal stress distributions (due to a steady state outward flow
of heat). For example, residual tangential and axial stresses were compressive at the
inside surface of the cylinder and were tensile at the outer surface which were similar to
thermal stresses. Residual radial stresses were zero at the inside and outside surfaces
and were compressive throughout the thickness which were the same as radial ther-
mal stresses. They obtained a thermal gradient which could produce thermal stresses
equivalent to residual stresses of an autofrettaged cylinder. The Bauschinger effect was
neglected in this simulation and therefore the simulation was correct only for small

amount of overstrained condition.

Chen (1986) presented a closed form solution for the residual stress distribution in a

cylinder of high strength steel. He proposed a theoretical constitutive material model
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for high strength steel in which he used a perfectly plastic loading condition and a
linear hardening unloading function including the Bauschinger effect. The material
was assumed to obey Tresca’s yield criterion and its associated flow rule for both
loading and unloading conditions. In the case of reverse yielding the Tresca’s criterion

was written in the following form:

g — o, = fog (2.13)

where f was the Bauschinger effect factor. Using this material model and following the
procedures in Bland’s (1956) work, Chen obtained a closed form solution and calcu-
lated residual stresses and strains in the reverse yielding zone as well as in the elastic
zone. Results of Chen showed that the magnitude of the compressive residual stresses
at the inner surface of the cylinder were significantly decreased when reverse yielding
took place in the vessel. Therefore, the advantage of the compressive residual stresses
will be significantly decreased if reverse yielding occurs in the cylinder. Closed form
solution of Chen for residual stresses including the Bauschinger effect was significant,
however, he simplified the material model into a perfectly plastic loading condition and

therefore neglected the hardening effect on residual stresses.

Rees (1987a), using von Mises criterion, considered closed-end cylinders of hardening
and non-hardening material subjected to an internal pressure. He assumed that the
axial plastic strain is zero, and radial and tangential plastic strain increments are equal

in magnitude but opposite in sign. With this assumption the effective plastic strain
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increment was reduced to a function of tangential plastic strain increment as follows:

2
Ae? = 7§Aa§ (2.14)

He also assumed that the axial stress is the average of the radial and hoop stresses.
With this assumption the von Mises yield condition was reduced to a relation between

the radial and hoop stress components as follows:

2
0§ — Or = —F=
8 7

With these assumptions the history dependent problem of elastic-plastic stress anal-

o (2.15)

ysis was reduced to a numerical integration using uniaxial stress-strain data. Using
the above analysis Rees compared the residual stress distribution from the above men-
tioned two different material models and showed that the residual stresses were affected

by the strain hardening and that the hardening model was more realistic.

An investigation into the prediction of the deformation and the residual hoop stress
distribution in autofrettaged thick-walled tubing of high-strength low-alloy steel with a
diameter ratio of 2.07 was presented by Stacey et al. (1988). Analytical and numerical
estimates were compared with the experimental measurements. Using Tresca’s criterion
in conjunction with a perfectly plastic material model, a closed form solution, similar
to Hill (1950) was obtained for radial and hoop stress components. A solution was also
obtained by using the simplified von Mises yield criterion (og — o, = 72—500 = 1.15509).
Stacey concluded that the closed form solution obtained with Tresca’s criterion remain

valid for the von Mises criterion, provided that og is replaced by 1.155 ao.
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2.2.1 Conclusion (Time-Independent Analysis)

All the solutions presented for the non-linear time-independent stress analysis and the
subsequent residual stresses in thick-walled cylinders are obtained with some kind of
simplifications in geometry, material model, yielding criterion and the associated plas-
tic flow rules. The plane strain case has been considered in all the solutions available
in the literature. Thisimplies that the total strain in axial direction must be zero
(e, = 0). On the other hand, the cylinder is not permitted to expand in axial di-
rection. Deformationst and stresses in the radial and tangential directions are affected
by imposing this constraint because of the relationship between the longitudinal and
lateral deformations defined by Poisson’s ratio and its contribution in the three di-
mensional stress-strain relationship. In a more realistic approach, the cylinder can
have deformation in axial direction while planes normal to the axial direction remain
plane. A generalized plane strain case in which the total strain in axial direction is a
constant (e, = constant), is a more realistic approach for the closed ended cylinders.
Many solutions have also ignored the material strain hardening effect and instead they
have used a perfectly plastic material model or a kind of linear hardening model. Us-
ing the material’s hardening effect exactly the same as obtained from the experiment
can significantly improve the analytical-numerical results. Another important material
property is that the metals initially overstrained in tension have a significantly lower
elastic limit in compression (Bauschinger phenomenon). This phenomenon must be
considered in the material model for a more realistic prediction of residual stresses and

the start of reverse yielding in thick-walled cylinders resulted from unloading of the
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overstrained vessel. Although it is understood that the material reverse yielding point
depends on the amount of accumulated plastic strain during overloading, but this is not
yet fully incorporated into the available material models. The conventional kinematic
hardening material models exhibit the Bauschinger effect phenomenon but the reverse
yielding points in these models are defined with the assumption that the total elastic
range (200) remains constant irrespective of the amount of prior plastic strain. Al-
though finite element methods and softwares have used the material non-linearities in
the non-linear stress analysis, but the material models considering the Bauschinger ef-
fect phenomenon are limited to the conventional models in the available softwares. The
ANSYS finite element program (version 5.0) provides seven options to characterize dif-
ferent types of material behaviours; two of which exhibit the Bauschinger phenomenon.
These are bi-linear kinematic hardening model designated by BKIN and multi-linear
kinematic hardening model designated by MKIN both of which are defined based on
the conventional assumption that the total elastic range (200) remains constant ir-
respective of the amount of prior plastic strain and the material’s actual behaviour
during reverse loading. This study incorporates the material model in a manner which
considers the Bauschinger effect phenomenon as a function of the amount of irreversible
effective plastic strain rather than the conventional models. This is a more realistic
material model and will significantly improve the accuracy of the solution particularly

the residual stresses and the reverse yielding predictions.
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2.2.2 Objective 1

Following the above conclusion the specific objectives of the non-linear time-independent

analysis are defined as follows:

e Improvement of the analytical-numerical model for the prediction of non-linear
stresses by considering a realistic geometrical constraint for the case of a closed

ended thick-walled cylinders (generalized plane strain).

o Using the material strain hardening as obtained from the experiment for the
loading function of the non-linear analysis without any simplification to improve

the accuracy of the results of plastic stresses and deformations.

e Improvement of the analytical-numerical model for prediction of residual stresses
as well as the onset of reverse yielding by considering the material Bauschinger
effect factor. The material’s Bauschinger effect factor is obtained experimentally
and is represented as a continuous function of the amount of irreversible plastic
strains during overstraining rather than the conventional kinematical model in

which the reverse yield point is related to the forward yield point.

e Experimental verification of the analytical-numerical model for the prediction of

critical pressures, plastic stresses and the subsequent residual stresses.
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2.3 Time-Dependent Creep Deformation of Tubes

Thick-walled tubes are often used in high-pressure high-temperature environment. The
most important influence of high-temperature is to bring in the factor of time which
must be considered in the tube’s stress and deformation analysis. One of the impor-
tant ingredients of a time-dependent structural stress and deformation analysis is the
material’s behaviour and its constitutive model. Therefore, some of the important
material creep constitutive models and creep-rupture properties are also considered in

this review.

The first major step toward the analysis of stress and deformation of structures working
at high temperatures was taken by Bailey (1929) and Norton (1929). They introduced
a uniaxial relationship between creep strain rate (€) and stress (o) in the following

form:

£ = Ac" (2.16)

where A and n are temperature dependent constants. This equation was suggested by
Bailey and Norton to replace Hook’s law in analyzing the stresses and strains in loaded
bodies. The major problem was that the relation was a uniaxial state of creep while

in practical problems the situation was multi-axial.

The above uniaxial equation (Eq. (2.16)) was later generalized to the multi-axial state
of creep by Bailey (1935). The major objective was to offer a basis for solving the

creep problems under multi-axial system of stress in a form that was linked directly
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with the case of simple creep tension test. General relationships were suggested by
Bailey for creep in the direction of principal stresses such that for simple tension they
were reduced to uniaxial creep equation (2.16). For example, the creep strain rate in

the principal direction of X (i.e. éx) was represented by

. Al 1 1
€X:='§{§(UX-UY)2+-5(02——0x)2+-E(oy-—oz)ﬂnﬂ(ox——ay)”'%”——(oZ——oX)"‘”ﬂ

(2.17)
where A, m and n are temperature dependent material constants and ox, oy and oz
are principal stresses. For simple tension (07 = 0, oy = 0) the above equation was
reduced to éx = Ao% which is the same as equation (2.16). Experimental data were
obtained from the creep deformation of lead tubes under combined internal pressure
and axial torsion to verify the suggested model. The model was complex and approxi-
mate and the experimental data were interpreted based on the uniform tangential and

axial stresses for thin tubes.

In another attempt, to interpret the creep deformation of tubes with the uniaxial creep
deformation, an experimental study of creep in tubular pressure vessel was performed
by Norton (1939). He carried out experiments on the tangential and longitudinal creep
under internal pressure and high temperature in steel tubes such as boiler tubes. He
compared with the creep properties of uniaxial tensile specimens of the same type of
steel at the same temperature and under a stress equal to the tangential stress in the
tube. Norton concluded that the creep strain rate in the tangential direction is about

half of the uniaxial tensile specimens and the axial creep strain rate is negligible. No
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specific formula or model was suggested in this work to relate the uniaxial data and

multi-axial deformation.

Previous work of Bailey (1935) had indicated a theoretical basis (equation (2.17)) that
metals under combined stresses had a lower rate of creep deformation than when under
a pure tensile stress of the same magnitude. However, some experimental work had
shown close agreement between the flow under tensile conditions and the flow under
combined stresses. It was, therefore, desired to make more careful creep tests on tubes
to investigate the relationship between the multi-axial and uniaxial creep deformation.
Norton (1941) conducted creep tests on tubular specimens and indicated that the lon-
gitudinal creep deformation of the tubes is substantially zero and the tangential creep
deformation rate is approximately the same as the creep in the tensile specimen with
a stress equivalent to the tangential stress in the tube. There was no time-dependent
analysis of stress and strain in this work and the conclusion was based on experimental

results only.

In another attempt, to relate the creep deformation of tubes with the uniaxial creep
deformation, Soderberg (1941) used the theory of yielding and the concepts of “inten-
sity of strain” and “intensity of stress” introduced by Hencky (1933). Soderberg (1941)
related the principal creep strain rates in a three-dimensional stress system with the

creep strain rate of a tensile creep specimen in the following form:
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where, €1, &, and €3 are the rate of principal creep strains, o1, 0y and o3 are the
principal stresses, s is the intensity of stress and € is the rate of the intensity of strain.

The intensity terms were defined as follows:

2

(61 —€2)? + (62 —e3)? + (€5 —€1)?

s = \/_\/ 01— 03)2 — (09 — 03)? — (03 — 01)? (2.19)

Soderberg (1941) applied the above theory to a thin tube under internal pressure with
the assumption that the creep curves approach straight lines (constant strain rate)
with a minimum slope which depended on the stress. Soderberg concluded that the
tangential creep strain rate is v/3/2 times the creep rate of a uniaxial creep tensile
test. Finally he stated that the analysis of creep of a thick-walled tube is a matter of
considerable difficulty. He showed that the postulates of creep did not conflict with
those of stationary plastic flow. In fact, Soderberg modified the available plasticity
theory (Hencky deformation theory) in a manner which was suitable to use in a rate

dependent analysis and used this concept in an stationary analysis of thin tubes.

Later, Norton and Soderberg (1942) modified the solution to include the thick-walled
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tube by introducing a deviation factor in the following form:

1? (2.20)

where t is the tube thickness and R is the mean radius. This factor was multiplied by
the intensity of stress of a thin tube to give the intensity of stress at the mean radius
of a thick-walled tube. The deviation factor, f, was obtained with these assumptions
that the creep rate varies as the nth power of the stress intensity (¢ = Ao™) and that
the radial displacement varies inversely with radius and the tangential creep rate varies

inversely with the square of the radius.

So far, all the above investigators have considered the case of thin tubes or they have
modified the thin tube formula to include the thick-walled tube. Furthermore, they
have all considered the steady state creep (secondary creep regime) in their stress anal-
ysis which is evident from the strain rate equation (¢ = Ac™) which has been adopted

by all of them.

The first non-steady creep stress analysis of thick-walled cylinders was given by Coffin et
al. (1949). They evaluated the stresses and creep strains at a particular time resulting
from loading a thick-walled cylinder under constant internal pressure and a constant
clevated temperature throughout the thickness. It was assumed that in the creep test,
time (t), temperature (1) and strain (e*) are independent variables represented by the

following function:

o* = f(e*,1,T) (2.21)
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where o* and &* were called effective stress and effective strain defined in the following

form:

ot = o0y—0;

e = €g—ér (2.22)

in which o5 and o, were tangential and radial stresses and &g and e, were tangential
and radial strains. Only primary creep characteristic of a given material was taken
into account. A family of conventional creep curves of strain versus time at constant
stress were re-plotted by Coffin as stress-strain curves for a given time (isochronous
curves). The procedure for plotting the isochronous curves is schematically shown in

Figure 2.2.

Coffin assumed that during small time intervals these isochronous curves represent the
effective stress and effective strain relationship and solved the problem similar to a
plasticity problem. Result of stress distributions after 25hr, 100hr and 1000hr were re-
ported by Coffin. Although the distribution of stresses were reported for short periods

of time, but it was shown that the stresses were redistributed and changed with time.

Tt was understood that the stress and deformation of tubes working at creep ranges are

time-dependent, but the design of tubes was based on the maximum tangential creep

stress obtained from an stationary analysis.

Bailey (1951a) considered several principal matters which should be taken into account
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Figure 2.2: (a) Primary creep strain; (b) Schematic figure of isochronous curves

in steam piping design for high pressure and high temperature. Principles such as stress
redistribution as a result of creep and the creep strain allowable for design and the
design temperature were generally discussed. Creep test results for Mo —V steel for
high stress level and high temperatures from 630°C' to 700°C' were reported by Bailey
(1951a). He selected temperature as ordinate and logarithm of time to attain creep
strains of 0.001, 0.002 and 0.003 as abscissa and showed a linear relationship between

temperature and the logarithm of time as illustrated in Figure 2.3.
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Figure 2.3: Creep test results on Mo-V steel steam pipe for stresses of 3 Ton per square

inch (45.6 MPa).

These lines were extended to a time of 100,000 hours to give the extrapolated value
of design temperatures. In order to obtain the design temperature for a tube, stress
distribution and creep of tubes under internal pressure were investigated in a separate
paper by Bailey (1951-b). He derived expressions for the principal stresses in a thick-
walled tube provided that a single stage of creep were applied across the tube wall and
that the creep strains were sufficient to ignore elastic strains. He used the previously
defined formula for the creep strain rate in three principal directions (equation (2.16))

and obtained a relationship for the design temperature of the tube which was related
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to the internal pressure.

It was not feasible to run experiment for a long time duration at operating condition
(temperature and stress) of a steam tube to introduce a design life for the tube after
which the tube would be retired. Therefore, for the first time Bailey carried out exper-
iments at very high temperatures (accelerated creep test) and applied stress to attain a

certain amount of accumulated strain and linearly extrapolated a design temperature

and life.

The concept of linear relationship between temperature and the logarithm of time
to achieve a certain creep strain introduced by Bailey (1951a) was later developed by
Larson and Miller (1952). They established a time-temperature relationship for rupture
and creep stresses. They showed that the lines of logarithm of time-to-rupture versus
(1/T) converge to a constant value for different constant stresses. They introduced
the Larson-Miller parameter (Pras which was the product of temperature (T) and

a function containing logarithm of time-to-rupture (tg) as follows:

Poa(0) = T(C + logiotr) (2.23)

Larson and Miller selected ¢ = 20 for most materials in the above equation. They
showed that the parameter depends only on stress and introduced the Larson-Miller
parameter curves. Larson-Miller parameter is used extensively in structural creep rup-
ture analysis. Many investigators questioned the use of C' = 20 for all materials and
therefore other parameters were proposed. Manson and Haferd (1953) plotted loga-

rithm of time-to-rupture as a function of temperature and showed that for different
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stress levels all the lines converge to a point which is material dependent. They intro-
duced a parameter which was somewhat more general than Larson-Miller parameter
for each material. Finally Manson (1963) introduced a generalized parameter from

which Larson-Miller and Manson-Haferd parameters could be obtained.

The concept of design life and rupture life were already introduced by Bailey (1951-b)
and Larson and Miller (1952). The expenditure of life when temperature or stress
varies with time was first considered by Robinson et al. (1952). Robinson calculated
the factor of safety of a structural member with reference to a stated life for the system
operating under stress and at high temperature and the stress or temperature varies
moderately according to some definite pattern. The formula presented is based on the
assumption that the expenditure of each particular fraction of the life span at elevated
temperature is independent of and without influence upon the expenditure of all other
fraction of life to rupture and thus can be accumulated to give the total expenditure of
life. To facilitate the calculation of this quantity, the expenditure of life (F)was defined

as follows:
E =Y '.:_+—+—+ ..... (2.24)

in which t; and L; are time and the time-to-rupture at any particular condition of stress
and temperature. The concept of damage was not introduced at that time but later

this rule became famous as the Robinson’s life fraction damage rule.

The concept of expenditure of life did not draw attention until the life assessment of
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fossil fueled power stations became an active area of research in mid 1980’s. However,
the analysis of thick-walled tube was continued by approximate analytical techniques

the most important of which was the reference stress method.

Schulte (1960) observed that in a creep solution of beams there were points in the cross
section at which the stress did not change as the solution progressed from initial elastic
to stationary solution at constant bending moment. This constant stress was called
reference stress. By running a creep test at this constant stress Schulte was able to
predict the beam deflections. Basically, the idea of the method was that a given struc-

ture could be analyzed with data obtained from a single creep test at its reference stress.

Marriott and Leckie (1964) observed that there are points in components undergoing
transient creep at which the stress does not change with time. In a pressurized thick
cylinder this point was called “skeletal point” which is shown in Figure 2.4 (point A).

However they did not use this skeletal point in any particular analysis.

A method for establishing the reference stress was suggested by Mackenzie (1968)

provided that the material obey a power creep law of the following form:

€ = Bo" (2.25)

The steady state solution for the stresses using the above creep law in particular struc-
tures such as beams and thick walled cylinders were known, the reference stresses were

obtained by comparing the stationary solution with the elastic solution. Using the
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Figure 2.4: Effective stress redistribution from the initial elastic to stationary creep

reference stress (0,.¢) and the corresponding strain rate (Eref), the power law equation

was rewritten by Mackenzie in terms of o, and ég as follows:

L (T (2.26)

éref Oref

Mackenzie applied the above equation and the stress-strain rate equations (Egs. (2.18))
to a number of structures including the thick-walled cylinder and obtained an estimate
of their deformation rate in terms of reference parameters. The tangential creep strain

rate at the outer (£4,) and inner (é¢;) surfaces of the cylinder were given in terms of
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Eres as follows:

. Nerer 2
. = LEserl
Eg )(ﬂ.2 — J)
. )\'7'6
E I (2.27)

(#*—-1)
where £ is the radii ratio (R,/R;) and X is a parameter which depends on . Variations
of )\ versus f were given on a graph which could be used to obtain the tangential creep

strain rates of different cylinders.

The creep problems of pressurized cylinders and spheres with a negative temperature
gradient in the radial direction were analyzed by Sim (1973). A reference temperature
was defined for the vessel. Knowing the reference stress and also the reference tem-
perature, it was shown that the stationary state radial displacement of the vessel wall
was approximately proportional to the creep strain which occurs in a tensile specimen
loaded by a stress equal to the reference stress and at a temperature equal to the
reference temperature of the vessel. Consequently the creep displacement of cylinders
and spheres under internal pressure with a negative temperature gradient in the radial
direction may be predicted if the creep strain-time behaviour of a material specimen

loaded at the reference stress and reference temperature is known.

Kraus (1980) presented the stationary creep stress distribution in a thick-walled cylin-
der. It was assumed that the creep strain rate in axial direction is zero and that the
radial and tangential creep strain rates are equal in magnitudes and opposite in signs.

For the stationary state the effective creep strain rate and the effective creep stress



Chapter 2. Literature Review 53

were related by the Bailey-Norton uniaxial relation for steady creep as; € = Ao™. In
a comparison of the stationary solution with the elastic solution Kraus showed that
when n was set to unity the elastic solution was resulted. He concluded that this was
consistent with the elastic analogy introduced by Hoff (1956). He also concluded that
redistribution has occurred for the stresses from their initial elastic to their final sta-
tionary distribution. To see how the initial elastic stress state redistributed into the
stationary state, Kraus showed that the non-stationary stress analysis is a statically
indeterminate problem and cannot be done in closed form. The non-stationary stress
analysis gives the history of stresses and strains which are important and necessary in

the damage analysis and the life assessment of thick-walled tubes.

A computational method for predicting the life of tubes used in petrochemical heater
service has been introduced by Simonen et al. (1985). The model uses conventional
numerical approaches to solve finite element models of two dimensional creep prob-
lems. The Larson-Miller parameter is used to represent stress rupture data for tube
material. This paper also addresses the practical difficulties of applying such models
to real service conditions and real commercial alloys. The result given in this paper
shows that the maximum damage occurs near the mid-wall of the tube (heater tube
with an inward flow of heat) while there is no damage in the outer surface of the tube

even when the tube approaching the end of its service

In view of practical difficulties in using the above model, Seshadri (1988) introduced
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an analytical method in which upper-bound estimates of creep deformations and creep
damages of fired heater tubes are obtained using a linear elastic analysis. The method
is based on the concept of the elastic-core developed by Bree (1967) and O’Donnell et
al. (1974), and evaluations of time-dependent inelastic effects can be carried out by
using linear elastic calculations. However the effect of stress redistribution isignored
by using an average value of the upper limit hoop stresses at the inside and outside

tube wall as a conservative value of the effective hoop stress for the whole thickness.

Traditional life prediction methods involve the calculation of stress using the mean
diameter equation based upon the design pressure. The computed stress is then used
to calculate the life of the tube (API recommended practice (1978)). This approach
is simple but the results are not reliable due to ignoring the stress redistributions.
Although it is well understood that the stresses in general and the hoop stress in par-
ticular are changed with time in a thick-walled tube operating at high temperature,
but the mean diameter formula for calculating hoop stress is still used in estimating the
remaining life of high-energy piping system (Seshadri (1988) and Ripley et al. (1995)).
A better estimate of the remaining life was introduced by Cohn (1990) using the equiv-

alent stress formulas rather than the mean diameter formula.

Cohn (1990) used several equivalent stress formulas for the life assessment of high-
energy piping system. These systems are subjected to multi-axial state of stress, but

creep rate and stress rupture data are based on uniaxial load tests. Several cor hined
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stress equations or equivalent stresses have been postulated by Hayhurst (1972), Brown
et al. (1982) and Huddlestone (1985). These equivalent stresses together with the avail-
able time-dependent design stress values for Cr-Mo steels were used to predict time to
rupture of these components. In fact, design or applicable stresses were converted in
time in hours. In this method, total life was computed and the past operating life was
subtracted from the computed total life to obtain an estimate of the remaining life.
Cohn concluded that the prediction of rupture life is complicated in a multi-axial state
of stress due to stress redistributions and variation of stresses with time. He suggested
that a more accurate prediction can be obtained using an incremental life exhaustion

procedure.

Current remaining life assessment of the creep exposed components is based on the ac-
celerated post-exposure creep rupture tests of the service exposed material, Tolksdorf
(1995). Accelerated creep tests are carried out at service stress (iso-stress tests) but at
higher temperatures so that extrapolation to the service temperature gives an estimate

of the remaining useful creep life of the component as shown in Figure 2.5.

Accelerated tests at higher stress and the service temperature (isothermal tests) or
tests at both higher stress and higher temperature have also been commonly used for
the remaining life evaluations (Tolksdorf (1995)). In these methods sufficient material
for the manufacture of several miniature test specimens has to be removed from the

component which means that these methods are destructive and more importantly the
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Figure 2.5: Accelerated post-exposure stress-rupture test data at higher temperatures
and the service stress are extrapolated to the service temperature to obtain an estimate

of the remaining life.

test specimens are not necessary representative of the bulk of material or the mostly

damaged material.

Recent creep damage evaluations are based on the in-service inspection methods, visual
and non-destructive examinations, surface hardening, surface metallography and repli-
cation to assess the micro-structural changes, Nogata and Takahashi (1995). However,
the information obtained from the in-service inspection may not necessary be repre-
sentative of the bulk of material. Furthermore, current surface assessment methods
neither provide a quantitative estimate of the damage nor give any information about

the damage gradients.
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While in-service testing and non-destructive examinations of thick-walled tubes can
provide useful information about material condition, greater understanding of the com-
ponent non-linear time-dependent stress and damage behaviour is essential before the
information obtained from the inspection procedures can be used to provide predic-
tions of future component performance. In fact, the first step in all these methodologies
must be a detailed creep stress and damage analysis of the component. If an improved
damage model can be predicted for the vessel then the component examinations and
inspections can be scheduled in a selective manner. A complete creep deformation
and creep damage analysis must consider the incremental deformation and life exhaus-
tion. As the stress relaxes from the initial elastic state to the present condition, the
calculated damage and life exhaustion are cumulated in incremental periods at the

applicable stress.

An important ingredient of the non-stationary stress and damage analysis is the ma-
terial constitutive model and rupture properties. The accuracy of life predictions is
currently limited by the wide variation in short-term available materials data. The use
of parametric techniques such as larson-Miller procedure allows data extrapolation of

only three times as the longest rupture life according to ASTM standards.

A potential solution to the problem of data description and long-term extrapolation

was obtained by Evans et al. (1982) introducing the “Theta () projection” concept.
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The theta projection concept considers the creep strain to be the sum of a primary or

decaying and a tertiary or accelerating creep strain rate components as follows:
e =011 —e ") 4 03(% - 1) (2.28)

The theta projection concept has been successfully applied to %Cfr', %Mo, iV ferritic
steel which is the selected material in this investigation. However, due to the complex
mathematical representation of the proposed material model, application of the model

in practical problems is not yet well developed.

2.3.1 Conclusion (Time-dependent Analysis)

Creep is an important damage mechanisms to be considered for the life assessment
of power plants high-pressure high-temperature piping systems. Creep damage and
the life exhaustion analysis of thick-walled tubes is not yet well developed due to the
combined effect of loading, time and temperature. A major difficulty in the damage
analysis of thick-walled tubes and the consequent life exhaustion of these components
is that the stresses are changed with time and redistributed across the wall thickness
of the tubes. For an accurate analysis of damage and life exhaustion, the history of
stresses is:necessary and therefore a non-stationary creep stress analysis is inevitable.
As the stresses change with time from their initial elastic state to the present condi-
tion, the increments of damage and life exhaustion must be calculated and cumulated

in incremental periods of time at the applied stresses.
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2.3.2 Objective 2

According to the above conclusion the main objective of the time-dependent stress

analysis is itemized as follows:

e Introducing a non-stationary creep stress analysis of thick-walled tubes by using
an improved long-term material creep constitutive model defined by the theta
projection concept which can significantly improve the long-term prediction of

stress and deformation histories.

e Incorporating the Robinson’s linear life fraction damage rule, which has been
adopted by the ASME Code (Case N47), into the above non-stationary analysis to
predict the creep damages across the thickness of the tube as well as its variation

with time (damage histories).

e Using the damage histories and the material’s rupture properties to evaluate the

remaining life of the component.

e Verification of the analytical-numerical procedure.
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THEORETICAL ANALYSIS

3.1 Introduction

In the elastic range strains are linearly related to the stresses by Hooke’s law. In the
plastic and creep regimes the stress-strain relationship is generally non-linear. An im-
portant distinction between the elastic and plastic stress-strain relations is that in the
elastic range the strains are uniquely determined by the stresses using Hooke’s law,
but in the plastic and creep regimes the strains are not uniquely determined by the
stresses and depend on the complete loading history (path dependent) or on how the

state of stress is reached.

Because of this history dependence of the plastic and creep strains, it is necessary to
compute either the differentials or the increments of plastic and creep strains through-

out the loading history and then obtain the total plastic or creep strains by integration

60
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or summation. To determine the actual magnitude of the plastic or creep strain incre-
ments in a multi-axial state of stress and strain, the non-linear incremental stress-strain
relationships are employed. In these relationships, increments of plastic or creep strains
are related to the multi-axial state of stress and the loading history. It is difficult to
follow the loading path in the stress space of a multi-axial state of stress condition.
Therefore an effective stress and an effective plastic or creep strain increment are de-
fined in order to facilitate the use of material’s uniaxial property in a multi-axial
state of stress and strain. In this Chapter non-linear plastic and creep deformation of
thick-walled cylinders are being formulated and general procedures for the solution are
suggested. However, details of the proposed analytical-numerical procedures and their

experimental verification will be discussed in the next two Chapters.

3.2 Formulation of Thermoelastoplastic Problem

in Thick-Walled Cylinders

A thick-walled cylinder which is loaded with an internal pressure and a thermal gra-
dient is considered. For each element of the cylinder the equilibrium of forces and
compatibility of displacements must be satisfied regardless of the elasticeplastic or
creep situation. However, stresses and strains are influenced by plasticity or creep
through the stress-strain relationship in which plastic or creep strains are considered.
In a thick-walled cylinder containing high internal pressure the middle section of the

vessel is the most susceptible to failure area as it has been shown by many investigators



Chapter 3. Theoretical Analysis 62

(Crossland et al. (1958), Roach and Priddy (1994)). Therefore a cylindrical element

at the middle section of the cylinder is shown in Figure 3.1 and has been considered

for the analysis.

Figure 3.1: Location of a cylindrical element at the mid-center of the cylinder

The equation of equilibrium and compatibility for such an element are written in the

following form:

Equilibrium:

d r T
T ET% g (3.1)
dr r
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Compatibility:

deg €9 — &y
dr r

=0 (3.2)
where o, and 04 are radial and tangential stresses and ¢, and ey are radial and tangential
strains.

The stress-strain relations depend on plasticity and creep. In the general case it is

adopted in solid mechanics that the total strain is the sum of elastic, plastic, creep and

thermal strain components as follows:
gij = €5, + e + €5 + aTéy; (3.3)

where the superscripts ‘e’, ‘p’ and ‘¢’ refer to the elastic, plastic and creep strain
respectively. The coefficient of linear thermal expansion is represented by «, T is
the temperature change and §;; is the Kronecker delta. In cylindrical coordinate this

equation is rewritten as follows:

1
Gy E= —E,—[O'T —v(og+0.)]+el +e + T

1
€g = E[O’g —v(o, +0,)]+ep+eg+al

1
£, = E[UZ —v(oy +09)] + 8 +e;+ T (3.4)

where €,, €9 and €, are total strains, €7, €} and €% are total plastic strains, €7, €§ and €
are time-dependent creep strains, o,, g4 and o, are normal stresses, I is the material’s
modulus of elasticity and v is the Poisson’s ratio. In this section the thermoelasto-
plastic deformation of thick-walled cylinders will be considered and therefore the creep
strains will be ignored. Therefore the stress-strain relation in this case is rewritten

from the equation (3.4) as follows:
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(o0 —v(og+ 0.)] + €2 + T

gg = E[O’g —v(o, +o,)] + e+ T

1
€x = E[Uz —v(o, +09)] + 2+ aT (3.5)

Effect of the creep strains will be considered in the next section which is devoted to

time-dependent creep stress and damage analysis of thick-walled tubes.

A major difficulty in the above stress-strain relationship is the history dependency of

the total plastic strains, e? e} and e?. If the cylinder develops some plastic region as

a result of high internal pressure or any other loading condition, then the total plastic

strains must be calculated in the plastic region of the vessel. Therefore, it is necessary

to introduce the incremental stress-strain relationship or plastic flow rule which facilitates
the computation of plastic strain increments. These increments can be integrated

along the loading path to give the total accumulated plastic strains.

3.2.1 Plastic Flow Rule

The total plastic strains in equation (3.5) depend on the loading history, therefore
they can be calculated by integration or by summation of the plastic strain increments
throughout the loading history. If the load is applied during a large number of loading
steps, then the total plastic strains e?, e} and €2 can be obtained by summation of the

plastic strain increments in the following form:
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n
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Er = ZAEM
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r p
ep = > Acp,
1=1

el = ) Ae; (3.6)
i=1

where AeP, Ael and Ae? are radial, tangential and axial plastic strain increments
and the subscript ¢ represents the loading step. To determine the plastic strain incre-
ments in equation (3.6) the incremental plastic stress-strain relationship is necessary.
From the theory of plasticity, the incremental stress-strain relationship depends on the
yield criterion. On the other hand a yield criterion is associated with an incremental
stress-strain relationship which is usually called its associated flow rule. The material
yield criterion and its associated flow rule will be employed for calculation of plastic
strain increments. The material selected in this time-independent non-linear analysis
is stainless steel SUS 304. The material strength can be best described by the von
Mises yield criterion. Therefore, the von Mises yield criterion and its associated flow
rule are selected and introduced here. The yield criterion determines the stress level
at which yielding will take place. In multi-axial state of stress, a function containing
the individual stresses which can be interpreted as the effective stress is a measure of
plastic yielding. The von Mises effective stress in a multi-axial stress state of a cylinder

is written as follows:
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where o, is the von Mises effective stress. According to the von Mises criterion yielding

starts when the effective stress is equal to the material’s yield stress (og) as follows:
T, = 09 (3.8)
Then the von Mises yield criterion may be written in the following form:
(0, — ag)* + (06 — 0.) + (0, — 0,)? = 203 (3.9)

The associated flow rule of the von Mises criterion is known as Prandtl-Reuss equations.
The Prandtl-Reuss equations relate the increments of plastic strain to the loading
history and the state of stress. In this case, the Prandtl-Reuss equations are written

in terms of radial and tangential plastic strain increments, Ae? and Aej as follows:

Ag, 1 -~
Asf = 0_—6[0'1-_5(0'9—'—0'2)] /
1
Ael = A;P 00 = 5(02 + 7] (3.10)

where Aeg, is the effective plastic strain increment and will be defined later in this sec-
tion. The fraction Ae, /0. in equation (3.10) is the history dependent part of non-linear
stress-strain relationship. The axial plastic strain increment can be written in terms of
radial and tangential plastic strain increments by using the material incompressibility
condition in plastic regime. Although in elastic regime the material’s incompressibility
is not an acceptable assumption, but in the plastic regime metals are more or less
incompressible. Therefore, the plastic strain increment in the axial direction may be

obtained from the incompressibility condition as follows:

Ae? = —(Ael + Aeh) (3.11)
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The effective plastic strain increment in equation (3.10) is defined in the following form:

Bey = L((Ack - AP + (A - AP + (A — AP (312

The effective stress and the effective plastic strain increment in a multi-axial state of
stress and strain will facilitate to reduce the history dependent part of the non-linear
stress-strain relationship (Ae,/o.) to the history of a uniaxial loading. A functional
relationship between the effective stress and the effective plastic strain increment can

be written in the following form:

o, = Hlep)

Ep = /dsp (3.13)

where H is the material’s hardening function. This functional relationship given by
equations (3.13) can be obtained from the uniaxial tensile stress-strain data plotted
in Figure 3.2. The uniaxial stress-strain data obtained from experiment is based on
the stress and total strain. In order to find the functional relationship represented by
equation (3.13), it is necessary to convert the stress-strain data into a new format based
on the stress and plastic strain. Therefore, in this investigation a computer program
is written which transforms the material’s data file obtained from the experiments,
into a new data file based on the effective stress and effective plastic strain. In fact
the computer program subtracts the elastic strain from the total strain to obtain the
effective plastic strain. The new formatted data file is then used as an input of a curve
fitting software to find the best continuous function representing the new data file. The

best function representing the effective stress and effective plastic strain relationship is
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Figure 3.2: The material stress-strain curve obtained by experiment.

obtained as follows:

0. = 232.68187 + 689.01541 (g, )% 184218 (3.14)

A plot of the new data file represented by the above equation is shown in Figure 3.3.

So far the equations of equilibrium, compatibility and stress-strain as well as incremen-
tal stress-strain relations and their relationship to the loading history are introduced.
To obtain a solution for the non-linear plastic stresses and strains the above mentioned

equations plus the boundary and end conditions must be satisfied.
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Figure 3.3: Relation between effective stress and effective plastic strain.

3.2.2 Boundary and End Conditions

It is assumed that the cylinder ends are closed which is also consistent with the exper-
imental model incorporated in this study. It is also assumed that the internal pressure
of the cylinder is P, and there is no external pressure present on the cylinder outer
surfaces. However, for the generality of the analytical-numerical model an outer pres-
sure, P, is supposed to exist at the outer surface of the cylinder. It will be set to zero

whenever there is no outer pressure acting on the surface. The radial stress at the inner
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and outer surfaces of the cylinder must be equal to the compressive stress of internal
and external pressures. Therefore the boundary conditions at the internal and external

surfaces of the cylinder are written in the following form:

o, = —PF, at r=a

o = —b at r=b% (3.15)

where a and b are the inner and outer radii of the cylinder and the negative sign is for
the compressive stresses.

For a closed end cylinder the integration of axial stress o, over the cross-sectional
area must be equal to the longitudinal force caused by the internal pressure. The
longitudinal force generated by an internal pressure F, in a cylinder with the inner
radius of a is F = P,ma?. Therefore the end condition is mathematically expressed as

follows:

b
/ 0,dA = P,wa? (3.16)

Before presenting a solution to the non-linear stresses and strains in the cylinder it
is convenient to summarize the above governing equations and the boundary and end

conditions and then set off for a solution.
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3.2.3 Summary of the Governing Equations

All the above governing equations which must be satisfied for the plastic stresses and

strains in a thick-walled cylinder are summarized here as follows:

Equilibrium:

do, o, — 0g

= 1

dr r 0 (3
Compatibility:

deg €¢— €,

— = 3.18

dr T 0 ( )
Stress-strain:

1
g = —=lor—viog+o0,)]+el 4+l

E
1 P
gy = E[O‘o —v(o, +0.)]+ey+ T

6 = %[02 — v(or + 09)] + €8 + oT (3.19)
Total plastic strains:
& = Z Aer;
=1
ef = Z Acgj;
=1
el = Y Ael; (3.20)
=1
Yield criterion:
(or — 04)® + (09 — 0.)} + (0, —0,)* = 200 (3.21)
Incremental stress-strain relations:
A 1
At = =2, — (op+0.)]
o 2
A 1
A = “2loy— (o, + 0,)] (3.22)
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Incompressibility:

Ael = —(Ael + Agy)
Effective stress and effective Plastic strain increment:

70 = —=l(on = 0u)? + (00 = 0.)* + (o — o))

V2

Ae, = g[(Ae” — A + (Al — AD)® + (Ae? — Ae?)Y)?

P

Material hardening function:
oo = 232.68187 + 689.01541 (¢, )0-21842186
Boundary condition:

o, = —PF, at r—=a

o, = —F at r=5b

end condition:

b
/ o,dA = P,wa?

72

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

There is no closed form solution for the set of equations of equilibrium, compatibility

and stress-strain (Eqgs. (3.17), (3.18) and (3.19)) with the above boundary (Eq. (3.27))

and end conditions (Eq. 3.28)) to obtain stresses and strains. Stresses are functions of

total plastic strains in equation (3.19). The total plastic strains are the sum of plastic

strain increments, equation (3.20). The plastic strain increments are again depended

on the stresses and history of loading defined by equation (3.22) which is the incremen-

tal stress-strain relationship and the associated flow rule of von Mises yield criterion
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(equation (3.21)). Loading history is obtained from the material’s uniaxial stress-strain
data and mathematically represented by equation (3.26). To obtain a solution for the
stresses and plastic strains, a successive elastic approximation method has been devel-
oped. The method will be simplified as the functional relationships between stresses

and total plastic strains are derived.

3.2.4 Successive Elastic Approximation Method

A successive elastic approximation method for this particular problem has been devel-
oped as follows. The load is applied in a large number of increments. For the first
increment of load, a distribution is assumed for the plastic strain increments in radial
and tangential directions, Ae? and Aej . At this initial loading step the total plastic
strains ?, € and €? are zero. The set of equations of equilibrium (3.17), compatibility
(3.18) and stress-strain (3.19) can now be solved like an ordinary elasticity problem,
and a first approximation can be obtained for the stresses and total strains. At the
same time, using the assumed values of plastic strain increments, an effective plastic
strain increment Aeg, is computed from equation (3.25). From the material’s hard-
ening function (equation (3.26)) the corresponding value of effective stress o. can be
determined. This is shown graphically in Figure 3.4. At initial loading step the total
effective plastic strain, ¢, is equal to the effective plastic strain increment. Now a new
approximation can be obtained for the individual plastic strain increments using equa-

tion (3.22). Using these new plastic strain increments, equations (3.17), (3.18) and
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Figure 3.4: Determination of effective stress from the effective plastic strain.

//7>%%’?
(3.19) are solved again as a new updated elastic problem. A second, and presumably
better, approximation is obtained for the stresses and total strains. At the same time,
using these last values of the plastic strain increments, a new approximation can be
computed for the effective plastic strain increment Ae, {rom equation (3.25). Using
this value of Ag,, a new value is obtained for o from the materials hardening function
shown in Figure 3.4. New approximations are now obtained for the plastic strain incre-
ments Ae? and Ae} using the Prandtl-Reuss equations (3.22). The process is continued

until convergence is obtained. The flow diagram for the calculation of plastic strain

increments is illustrated in Figure 3.5.
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Figure 3.5: Flow diagram for the computation of plastic strain increments.

In the above flow diagram the subscript ¢ denotes the ith loading step and j denotes the
jth layer across the thickness of the cylinder. In this manner the solution is obtained
for the first increment of loading. For the next increment of load an exactly similar
calculation is performed except that P, ¢f and €2 are no longer zero but are equal
to the known values of Ae?, Ae} and A€l obtained for the first increment of loading.
The complete stress and strain history can thus be obtained when the complete load

is applied.
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This successive approximation method can be simplified by deriving the functional rela-

tionship between the stresses and the plastic strains as will be shown in the next section.

3.2.5 Derivation of Thermoelastoplastic Stresses

The set of equations of equilibrium (equation (3.17)), compatibility (equation(3.18))
and stress-strain (equation(3.19)) are solved simultaneously for the stresses to obtain
the functional relationship between the stresses and the total plastic strains. From
the third equation of the stress-strain relationship (equation (3.19)), the axial stress
o, is substituted into the first two relations of equation (3.19). Then ¢, and &4 are
substituted into the compatibility equation (3.18). The result is a differential relation
between radial and tangential stress components which can be solved in conjunction
with the equilibrium equation (3.17). The procedure is indicated below. The third

equation of stress-strain relationship equation (3.19) is rewritten in the following form:

Ee, = [0, — v(o, + 09)] + Eel, + EaT (3.29)

Then the axial stress o, from the above equation may be derived in terms of the other

two stress components, o, and oy as follows:

o, = Ee, +v(o, +0¢) + E(e? +¢§) — Eal’ (3.30)

Substituting o, which is in terms of o, and o4 into the first and second relations of

equation (3.19) gives the following relations for the radial and tangential total strains,
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€g and ¢, as:

1
g = ;V[(l —v)o, —vogl+ (1 +v)aT —ve, + [(1 — v)el — vey]
14+v 7 B
& = —% (1 = v)oy — vor] + (L +v)ad —ve, + [(1 —v)eh —vel]  (3.31)

Now, four variables of o,, g4, €, and €4 can be obtained in terms of the total plas-
tic strains using four equations of equilibrium (3.17), compatibility (3.18) and equa-
tions (3.31). In this way, the following two equations are obtained by differentiating
the second relation of equations (3.31) with respect to r and subtractions of both

equations (3.31),

dey 14v doyg do, dT dej deP
- P acd 1 e B sl AP .
dr E (1) dr g dr J+ (1 +v)e dr +{(1 =) dr v dr ) (8237
and
gg—€ l+v a9—o; gh — b
— =7 ()t (3.33)

The above two equations are obtained in terms of the radial and tangential stresses (o,
and 04) and the total plastic strains. Substituting equations (3.32) and (3.33) into the
compatibility equation (3.18) results in a differential equation which is a relationship

between the o, and oy and the total plastic strains written as follows:

Eo dT E ] deh de? n gh —eb

dr I _V)W_Vdr

1—vdr 1-—02 ) (3-34)

d
d—r(o'H + Ur) =

r
The above equation and the equation of equilibrium may be solved simultaneously for
the radial and tangential stresses, o, and og. In this way, by integrating equation (3.34),

the sum of the radial and tangential stress components is obtained as follows:

EoT E

11—y 12

gf — eP

[(1—v)ef —vel + [: dr] + Cy (3.35)

oy + a0 =
T
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where C; is an integration constant. The functional relationship between stresses
and plastic strains may be obtained by using equation (3.34) and the equation of

equilibrium (3.17). The equilibrium equation is rewritten in the following form.

do,
dr

ocpg=0,+7T

(3.36)

Substituting g from equation (3.36) into equation (3.35) results in the following dif-

ferential equation which must be solved for the radial stress (o).

do, 20,
o = K(r) (3.37)
in which,
EoT E £y e 1 [reh—ef C
) =Gy ~ToA T R e T (39)

The above differential equation (3.37) can be solved for the radial stress (o,) using
the following procedure. Writing o, as the product of two homogeneous (A) and non-
homogeneous (¢) components, then o, = A.(, and differentiating both sides with re-
spect to r gives

dor d¢

= % +A5> (3.39)

Equation (3.37) can now be written in the following form

a |

= Le® - Ay A)—K(r) (3.40)

Setting the coefficient of ¢ equal to zero, the above differential equation may be written

in terms of A and (¢ in the following form as:
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dX
—+ r)\ =0 (3.41)
% = K(r) (3.42)

Since A = A;/r? satisfies the equation (3.41) a solution for ¢ may be obtained by

integration of equation (3.42) as

X 1 —FEa [r E - L
¢ = Il{l—u | T?“olr—l_lﬂ[(l—z/)/(1 rsedr—V/“ rebdr
r r P _ P
+/ 'r'/ = - S drdr] + %-(ﬂ — )} + Ay (3.43)

Substituting for A and ¢ into o, = A.( and introducing Cy = A A, the radial stress

can be expressed as follows:

g = (T:%-/ Trdr — G_Lyz)[(l—l/)f[: reedr—l//arref,’dr
-I—/ar/a _"dd]-l—cl( )}+C2 (3.44)

The double integral in the above equation is simplified by using integration by parts:

T reb _ gp — gP
/ 'r'/ 0= °r drdy = —/ Z 6’"d - —/ b —eDyrdr (3.45)
a a T

Inserting the simplified integral from equation (3.45) into equation (3.44) the result for

o, and then oy are as follows:

—Ea T r
o, = =) r2/ Trdr — ) = il _21/)(-/(; rggdr+fu re?dr)
2 60 €'r gl_ . 22_ gz
+r (/a i)+ (- )+
Ea L EaoT E r » »
70 (1 —v)r? /a iy = 1—v + 2(1 — v?)r? [(1- QV)/CL r(eg + €7)dr

y P __ 2P F C i C
(O] — (- ) —vell + S+ )= 7 (346)
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Constants C; and C, in the above relations are obtained using the boundary condition

equations (3.27), the results are as follows:

2Fo E b
= d — 14 P
< (1-— 1/)(62 — / Trdr + (1 —v2)(b2 — a2)[(1 2’/)/(1 (ep + €X)rdr
2P a2 2P
2 er B
i [T g R 2R
G = —ha (3.47)

Substituting C; and Cy from equations (3.47) into equations (3.46) the radial and tan-

gential components of stress are expressed as follows:

—EO[ r r
o, = 1 — f Trdr — 1/2)7"2 ——[(1 - 21/)(/’1 repdr —I—fﬂ refdr)
g — P E L
+7r? / dr] + [(1-— 21/)/ (ef + eB)rdr
a T a

21 — v?) (1% — a?)
s f° 55 =g a®
+b / D)1 - %) +1

P,a? b2 P,b? a?
b — a2( - 1*_2) E —a2(1 1"2)

_|_

5 q_ T P\ 2 [T SR

—|—2(1 = u2)r2[(1 2v) j& r(eg +el)dr —r f“ " dr]
E b P p

sl —2) [ (e +eyrdr

, [beb —eP o Fa b a2
+b / d2](1-|— )2+[( 2 )(bz—a2)/a Trdr)(1+ %)
N b2Pb_ba?(1 + ) (3.49)

b2 —a r

~ (1 - v)eh - vell +

The axial stress (o,) must satisfy the equation (3.30) derived from the stress-strain

relationship as well as the end condition equation (3.28). These equations are rewritten



Chapter 3. Theoretical Analysis 81

here as follows:

o, = Ee, +v(o, + 09) + E(¢? + €}) — EaT (3.50)
b
/ o,dA = P,mwa* (3.51)

It is necessary to point out that the axial strain in equation (3.50) is not zero but it has
been assumed zero by all the previous investigators. Since all the surfaces normal to the
cylinder longitudinal axis remain plane, the most accurate and reasonable assumption is
to consider a constant axial strain rather than zero (plane strain). It is also validated by
the experiment performed in this investigation; and that the assumption of zero axial
strain (plane-strain) is not accurate. Therefore a constant axial strain (generalized
plane-strain) is assumed in this investigation. Substituting o, from equation (3.50)
into the end condition equation (3.51) and integrating across the wall from the inner
to the outer surface of the cylinder and considering the generalized plane strain case,

(e, =constant), the following relation is obtained for the constant value of €, as,

b
Ee, = 2?22/ Trdr— /(0'9+0T)rdr
2F ” P,a?
o [ (e erdr + 5T (3.52)

Substituting this constant value, which also depends on the internal pressure, from
equation (3.52) into equation (3.30) the expression for the axial stress is obtained as:

—EaT 9Ea b
- Trd
7z 1~u+(1—u(b2—a2)/ e

vE eb
~ (1 = v)eh —ve +/ S0 g
vE . , [Peh—eP
+(1_V2)(bz_a2)[(1_2y)A(59+6T)rdr+b / 2= g

P,a?

b2_a2

2F
'_bz _ 2

/b(sg + eP)rdr + E(e} + ) + (3.53)
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Equations (3.48), (3.49) and (3.53) describe the general stress distribution for any inter-
nal and external pressures and any arbitrary axi-symmetric temperature distribution.
Assuming a steady state outward flow of heat through the cylindrical wall, the differ-

ential equation for temperature distribution is given by

d*T 14T

5+ oo =0 (3.54)

If temperature at the inner and outer surfaces of the cylinder are designated by T, and

T, respectively, then the thermal boundary conditions can be written as follows:
T = T, at r=a
T = T at r="b (3.55)

Solving the differential equation (3.54) with the above thermal boundary conditions

the temperature distribution is obtained as follows:
b
= lnb(T In— — Tyln— ) (3.56)

Substituting the above temperature distribution into the expressions obtained for the
stresses, equations (3.48), (3.49) and (3.53), the following solution for the radial, tan-

gential and axial stresses is obtained.

Ea(T, —Ty) a?b® b T T
(l—u)(bZ—a2)n9[ . In —{—blnb alna]

o =

p

PE — 8
2(1—1/2)7“2 [(1-2v (/ rsedr+/ reldr) +’F(/ €0rerd’r']

b . [P eh—ed a?
+ 2(1 — V2)(b2 )[(1 - 2’/)/(1 (55 + el)rdr + b /ﬂ T(ﬂ?](l — ;3)
P.a? b? By o2
te - -~ poal- ) (3.57)
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252 p r

Ea(T, — Ty) a 0 T
= _ In— In— — 27, 2 2
70 2(1—u)(b2—a2)lng[ T2 na+b "y lna + (b — )]
E T 4 Ep — Ep
S _ D P 2 {4 T .
-|—2(1 — ) [(1 21/)/‘1 r(eh +eb)dr —r /a " dr
) 2 1— P P ] FE 1 9 b » P\rd
r (( V)59 - 1/67.) + 2(1 _ 1/2)(b2 _ ag)[( - V) i (60 + 67‘)T r
bl —ef a’ P.a? b? P,b? a’
2 [/ r hedll a oy b a”
+b / P+ ) 4 (Ut ) m gt g)  (3.59)
Eo(T, — Ty) 9, T 0, T ) )
z — 2b°In— — 2 In— b —
7 2(1 —v)(b% — a2)ln§[ T + @)
vE reh — €P vE
_ 1 — D __ P [4 T d
1—v? (= v)eg —ver + /a. r T]+ (1—v2)(b? — a2)[
b b P _ P 2R b
(1 —20) [ (e etprdr+ 8 [ L=Zar) - =g [+ etrar
I b P,a?
— a2 / (5 + eD)rdr — (¥ — a®)(eh + D] + 7= (3.59)

The functional relationship between stresses and total plastic strains are established
in equations. (3.57), (3.58) and (3.59). Then the suggested numerical procedure for
calculating plastic strain increments can be simplified as shown in the following flow

diagram.
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Figure 3.6: Simplified flow diagram for the computation of plastic strain increments.

The above solution for the stresses depends on the dimensions of the cylinder. It is
useful to introduce a dimensionless solution for the stress functions which can be used

for any cylinder. The dimensionless solution is derived in the next section.

3.2.6 Dimensionless solution

For a general solution it is convenient to introduce the following sets of dimensionless

quantities S,, Sy, S;, ©, P;, Ps, p, &, €, ¢, and €o, such that
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S, =o,/00 Sey =0g/00 S, =0,/00 0 =(EaAT)/(1—v)og
P, =P,/oo P, =P,/oy p =r/a B =bja
€. =¢€,/€o €9 =€q/€o0 €, =&,/€o €0 =o0o/FE

where S,, Sy and S, are dimensionless stresses, © is the dimensionless temperature
gradient, P; and P, are dimensionless internal and external pressures, p is the dimen-
sionless radius, €,, € and ¢, are dimensionless strains, og is the material’s yield stress
and € is the yield strain.

If both sides of equations (3.57), (3.58) and (3.59) are divided by oy and the above
defined dimensionless quantities are incorporated into the resulted equations, then the

following dimensionless results for the radial, tangential and axial stresses are obtained.

0 ’ 27, P F;
= ——[=In In- —In - —
Se = SE—Dmplp TG el e (=)
Pﬁ2 1 1 e
1(1—2) 2(1_—1/%[(1—2’/)/1 (€5 + €7)pdp

i / - 65 T ,,2%(52 —plt =) /1ﬁ(€'5 +&)pdp

/82

eh i
2 P9 S g0 - = 3.
4 [ =Ll - ) (3.60)
_ 0 :8_2 2;. P " 2 F; p?
S = W[— 2lnﬂ+ﬂlnﬂ Inp+B°—1] + 62—1(1+ o3,
P, 1 R
—o+ >+2(1_V2)(ﬁ2_1[<1—2v> | &+ iy

+ﬂ2/ G~ ; 9 S (1 + 2) 2—(1_1V—W[(1—2y)/19(e§+e§)pd,,

2 (PO 221 — 1) — v 3.61
tot [ Sy - 21 - )G - vl) (3.6
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= _®_ 21, P 2 i
S, = 2(ﬂ2—1)lnﬂ[+2ﬂ ln,@ 2lnp + B 1]+ o1
v A ﬁep_ep
TaoaE o1 ) [+ &pdp+ 8 [ = dp]
14 ﬁe _617
[ﬁ,,z[/ 9p Ldp + (1 — v)ey — vel] +
B2 — 1[2/ &+ )pdp — (B —1)(ef + )] (3.62)

It is obvious from the above equations that the stresses are functions of total plastic
strains which are non-linear and history dependent. It is convenient to define the his-
tory dependent part of the stresses in separate functions of U(p, 8,2, ¢}), V(p, B, b, €5)
and W (p, 8, €?, €h) which are the history dependent part of radial (S,), tangential (Sp)
and axial (S,) stresses respectively. Then, equations (3.60) to (3.62) can be represented
in terms of the following history dependent and non-history dependent functions.

History dependent functions:

Vi fene) = —2_(1_—1;/2)?[ ) [((&+ &)pdp+* / efdp]
1 8, ,
= ) (1= 20) [ (e + odp

2 1' _i
4 [ =Sl - )
8
VipBochel) = 2(1_V2§(ﬂ2_1)[<1—2u> [ @+ edn+
ol =20) [(( G+ )pdp

ﬂ /ﬂ 6.9 rd (1 + _) (__—_2
+ [ %—pﬂdp —20%((1 - v)eh — vel)]

v?)p

v B
WinB,eheh) = qoomrmi(1=2) | &+ Dodp

B el — P v B ef— ¢
2 4 rd [’} rd
+8 [ : o+l dp
¢}
2 [ (& + D)pdp— (7 = 1)(& + )]

1
+(1_V)65—V61:]+162_1
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Non-history dependent functions:

0

/32 2; P
————[—=In et —=
2 —Dinpl P TP

1 B
S
e . p
2(ﬂ2 — l)lnﬁ

1 _ ﬂ2
},37_—1(1 + F)

© 2, P
2P —Dimg P g

1

2

Inp] +

P,p?

F-1

2lnp + % — 1]

-

[—?lnﬁ n ﬂ%n% —lnp+ BE—1]+

F,p?
F -1
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1
(1+ﬁ)

The non-history dependent functions are a combination of mechanical stresses due to

internal pressure and thermal stresses due to thermal gradient. Therefore, the general

solution for the non-linear radial, tangential and axial stresses may be rewritten in

terms of the above defined functions as follows:

Sy

SH

W(p,B,€7,€4) + M(p, 8,0) + N(B) I

U(p, B,€2,€5) + F(p, 8,0, P,) + G(p, B) P;

V(p,B,et,ep) + H(p, 8,0, P,) + R(p, B)P;

(3.63)

where superscript p denotes the plastic solution. The above non-dimensional results

for the stresses are used in the previous developed numerical model for the stresses

which will be discussed in the next Chapter, devoted to the numerical analysis.

If a cylinder, which has developed plastic strains, is unloaded from the loads which
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have caused plastic flow over part of the cylinder, residual stresses will result.

3.2.7 Residual Stress

To increase the maximum pressure that a cylinder can contain, it is a common practice
to produce a compressive residual tangential stress near the bore by autofrettage treat-
ment of the cylinder prior to use. As a thick-walled cylinder is pressurized, the bore
material, which is the most highly stressed portion of the cylinder, begins to yield. The
yield surface begins to propagate through the thickness of the vessel until it reaches the
outer surface. If at any stage of elastic-plastic deformation of the cylinder the internal
pressure is released, then there will be a residual stress distributions throughout the

thickness of the vessel. This is known as the autofrettage process.

The reason for such a residual stress distribution is that the plastic region of the cylin-
der has developed irreversible plastic strains and can not return back to its original
configuration, while the elastic portion of the cylinder is trying to return back to its
original condition. The action of the elastic region is counteracted by the plastic re-
gion. On the other hand, the plastic region will be compressed by the elastic region
until a self-equilibrium condition is reached throughout the thickness of the cylinder.
Developing a compressive region at the inside wall of a cylinder is useful to protect
the vessel against the fatigue crack growth at the highly stressed inside region of the

cylinder. The other important point is that the material located at the plastic portion
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of the cylinder has a much higher elastic limit than the material located at the elastic
region because of the material’s hardening effect. Therefore, it is not only the com-
pressive region at the inside wall of the cylinder which is beneficial, but also the higher
elastic limit of the inside material which has taken advantage of the material’s strain-
hardening effect is another important privilege of the overstraining process. Therefore,
this kind of residual stresses can significantly improve the performance characteristics

of thick-walled cylinders.

The advantage of the compressive residual stresses will be decreased if reverse yielding
occurs in the cylinder (Chen (1986)). For metals, the stress-strain curve in a simple
compression test is usually identical with that in a simple tension test. But, if the
material is first loaded in tension and develop plastic strain and then unloaded and
reverse loaded in compression, the stress-strain curve of the material in compression
has a significantly lower yield point than the curve that would be obtained directly
from a simple compression test without prior tension loading. This is known as the
Bauschinger effect phenomenon. An actual unloading behaviour of the material in-
cluding the Bauschinger effect factor must be considered for an accurate prediction of
reverse yielding and the residual stresses in the cylinder. In this investigation the mate-
rial’s Bauschinger effect factor incorporated in the analysis is obtained experimentally

and this has already been discussed in previous Chapter.

The determination of residual stresses is important in the analysis of fracture, and in
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fatigue life estimation of thick-walled cylinders. Consider a cylinder which has devel-
oped plastic strains as a result of an internal pressure of P, and a thermal gradient of
AT and the residual stresses are to be determined upon the release of load. It is obvi-
ous that, if the unloaded cylinder is loaded again with the same internal pressure and
thermal gradient, it will return back to its configuration right before unloading because
this loading-unloading is within the yield surface and is reversible and path indepen-
dent. On the other hand, if the residual stresses are added to an elastic stress system
due to P, and AT, it will result in the plastic stress distribution before unloading.

This can be mathematically represented in the following non-dimensional form:

S? = ST+ 5

5P o= S5+5;

St = S, +5; (3.64)
where SP, S} and S? are initial plastic stresses, 57, Sg and 57 are residual stresses and

S¢, S5 and S¢ are elastic stresses. Residual stresses can be written in terms of the

elastic and plastic stresses as follows:

ST o= SP— 8
S1 = §%—S¢
ST o= §P— 3§ (3.65)

This formulation is correct as long as yielding in the reverse direction does not occur.
Since reverse yielding has a negative effect on the cylinder performances, it is impor-

tant to obtain the condition in which reverse yielding may occur. Therefore in this
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investigation the condition for reverse yielding is investigated. The reverse yielding is
predicted using the von Mises yielding criterion including the Bauschinger effect factor.

In dimensionless form the condition is written as follows:
(87— Sp)2+ (S5 — S1)? + (] — S1)* = 2(BEF? (3.66)

where BETF is the Bauschinger effect factor. There are significant differences between
the results of residual stress distribution with considering the Bauschinger effect and
ignoring it. Therefore, neglecting the actual loading and unloading behaviour of the
material results in an inaccurate distribution for the residual stresses. The significance

of the results are discussed in Chapter 6.

The actual material’s loading and unloading properties and the Bauschinger effect fac-
tor of the material are obtained experimentally in this investigation. The experimental
results are represented by the following function using a curve fitting software and

selecting the best possible curve as it has already been discussed in Chapter 1.

BEF = 1.0170029 + 0.36592732(%e,) — 0.0025343135(%e,)® — 0.97738304(%e, )"
(3.67)

where %e, is percent overstrain.

Equations (3.65), (3.66) and (3.67) are incorporated in the analytical-numerical model
introduced by the flow diagram of Figure 3.6 in order to obtain an accurate prediction
of residual stresses and the onset of reverse yielding in thick-walled cylinders. Step-by-

step procedure for computation of plastic and residual stresses and the onset of reverse
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yielding and their experimental verification are discussed in Chapter 4 and 5. However,
before introducing the details of the procedure it is necessary to establish the loading
condition which will cause plastic flow to occur in the cylinder wall. This critical
loading condition may be established by using expressions for the elastic stresses and
the yielding criterion. If the history dependent functions of U(p, 8, €?,€5), V(p, B, €%, €})
and W (p, 3, €, €}) are ignored in the general equation (3.63) , then elastic stresses can

be written as follows:

Se = F(p,B,0,P,)+G(p,B)F:
Ss = H(p,B,0,P,)+ R(p,B)P;

S; = M(p,B3,0)+ N(B)P; (3.68)

where superscript e stands for the elastic solution. It is obvious that the elastic stresses
are functions of dimensionless variables p, 3,0, P, and P;. Effects of these variables on

the critical condition are investigated.

3.2.8 Critical Condition

When pressure and thermal loads are both present in the cylinder, any combination of
these loads may cause yielding to take place in the cylinder wall. The loading condition
in which yielding starts in the cylinder thickness is called the critical condition. When

yielding starts at a point the von Mises condition must be satisfied at that point. The
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dimensionless form of the von Mises criterion is written as follows:
(87— 55) + (S5 — S22 + (55 — S2)? =2 (3.69)

Substituting expressions for the elastic stresses from equation (3.68) into equation (3.69)

the following equation for the critical condition is obtained.
A(p, )P + B(p, 8,0, P.)P; + C(p, 8,0, P,) = 0 (3.70)

The functions A,B and C in equation (3.70) can be represented in terms of previously

defined functions F, G, etc. as follows:

Alp,B) = 2(G*+ R*+ N*—G*R—R*N—-NxGQ)
B(p,8,0,P,) = 4F+G+H*R+M+N)—2(F+R+Fx*N+
H+G+H+*N+M+R+M*G)

C(p,5,0,F,) = 2F2—|—H2+M2—F*H—H*M—M*F—o2
P 0

Variables p, 8, ©, P; and P, are related in equation (3.70). Any combination of these
variables which satisfy equation (3.70) can produce the critical condition for plastic
yielding. Numerical results of the critical pressures using this equation as well as the
experimental results obtained for the critical pressures are discussed later in Chapter 6.
If internal pressure is increased beyond the critical value calculated from equation (3.70),
then plastic flow will progress in the cylinder wall. If the load is released, then the

cylinder will develop residual stresses across the thickness.

So far in the analysis of time-independent plastic and residual stress distributions

of thick-walled cylinders the effect of time-dependent material deformation has been



Chapter 3. Theoretical Analysis 94

ignored. As long as the temperature is below 0.3, (where T, is the absolute melt-
ing temperature) the time-dependent deformations are negligible (Fessler and Hyde
(1978)). However, at temperatures above the creep threshold, deformation of the

cylinder is dominated by the time-dependent process of creep.

3.3 Creep Stress and Damage Analysis

3.3.1 Introduction

With a full understanding of the non-linear plastic (time-independent) deformation of
thick-walled cylinders and because of the strong need and demand of the power gen-
erating industries to an accurate prediction of the creep stress and damage histories
of high energy piping components, which is necessary for their safety and reliability, it
was attempted in this investigation to complete the analysis of thick-walled cylinders

in both time-dependent and time-independent aspects.

The pressure containing high-temperature components of power plants, are mainly
deteriorated by creep mechanism. Creep is due to time-dependent deterioration of
material under constant service condition. According to the current understanding
of damage to high-pressure and high-temperature components, creep is the most fre-
quently observed damage mechanism which should be carefully investigated (Tolksdorf

(1995)). In analysis of creep stress and damage histories the creep strains which are
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time, temperature and stress dependent must be considered. Considering the creep
strains in the stress-strain relationships makes the non-linear analysis of thick-walled
tubes much more difficult. Because, it is not only non-linear but also the deformation
is a time-dependent process as well. The rate of deformation in creep regime depends
on the stress level and temperature. In a thick-walled tube, loaded with an internal
pressure and a thermal gradient, a variable stress and a distributed temperature field
are encountered throughout the tube wall which must be considered in the non-linear

time-dependent analysis.

3.3.2 Formulation of the Creep Deformation of Thick-Walled

Tubes

Thick-walled tubes are the main elements of all high-pressure and high-temperature
apparatus and pipeworks employed in power generating industries. Therefore, in this

section the time-dependent creep deformation of thick-walled tubes is formulated.

A long thick-walled tube loaded with an internal pressure and a thermal gradient
similar to the practical situation during the normal operation of a power plant has
been considered. The equilibrium of forces and compatibility of deformations must
always be satisfied for all the tube elements at all the times. So the equilibrium and

compatibility equations which are the same as previous time-independent analysis are
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rewritten here for the time-dependent creep analysis as follows:

do, o, — 0y

= — = 0 (3.71)
deg €9 — & B
o T =V (3.72)

In this case, the stress strain relationships contain the time-dependent creep strains as
follows:

1
€ = —E—[O'T —v(og+0,)] +ei+al

1
gy = E[O’o —v(o,+0,)| +e5+aT
1
€, = E[UZ —v(oy +04)] + 5+ ol (3.73)
where €¢, €5 and €S are total creep strains. These total creep strains are time, tem-

perature and stress dependent (path dependent) and are accumulated incrementally

during the life of the tube.

The boundary conditions for a thick-walled tube loaded with an internal pressure F,
and no external pressure are written as:

o = —PF, at r=a

o = 0 at T=15 (3.74)
where a and b are the inner and outer radii of the tube and the minus sign stands for

the compressive stress due to the pressure P, on the internal surface of the tube.

The condition of an open end tube can be mathematically expressed as follows:

b
/ o.rdr =0 (3.75)
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In which the integration of the axial stress across the thickness of the tube is set to

zero to satisfy the open end condition.

The temperature distribution for the steady state outward flow of heat in a tube with

an internal temperature T, and an external temperature of T3 is rewritten as follows:
T = n4(Toinl — Tyin%) (3.76)
= In—(T,In— — Thln— :
b r o

Stresses and strains must satisfy the equations of equilibrium, compatibility and stress-
strain relationships as well as the boundary and end conditions. The stress-strain
relationship contains the total accumulated creep strains which are path dependent.
A numerical procedure for the computation of total accumulated creep strains in a
variable stress and a distributed temperature field of a thick-walled tube has been de-
veloped by using an improved long-term material creep constitutive model known as
theta projection. However derivation of functional relationships between stresses and
the total accumulated creep strains will facilitate computation of the creep stress and

damage histories as well as the remaining life estimation of the tube.

3.3.3 Derivation of Creep Stresses

In a similar manner to that of the time-independent stress analysis, the set of equa-
tions of equilibrium, compatibility and stress-strain are solved simultaneously for the
stresses. Using the above boundary and end condition and the temperature distribu-

tion the following functional relationships are obtained for the creep stresses.
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o

o f‘;gzﬂ _1;”2)) 5= 2ln-2 + b%% - a2ln§]

_2_(1_%)?[(1 _21/)(/a regdr+/: ref;dr)+r2(/ £~ - €68 )

toi VZJ)E(N —ml1-2) /ﬂb(eg—i-ei)rdr—l— 52/ 59 6 g1 - f)
RS (3.77)

0 Ejgﬁ‘z_ Tb))zng [~ a:2b2 lng + bzln% - a2znf + (8% — a?)]

+W—E—Mﬁy[(l — ) / r(e§ + €°)dr — r2/a 2] . €~ Cr gy _

(1 = ) = vel)] + 5= u??;((ﬂ —l-2) Lb(e; + eYrdr

+b? /ab i;ﬁdr](l + :f—z) + %(1 + f—z (3.78)

Ea(T, —T3) B
20°In—
2(1 = w)(b? — az)lng[ "

vk T el — €’ vE
1— c _ c / [ 'I‘d
e e e A A (e )

b c c beg— 6? 2E b c c
(1- 21/)/(L (e§ +ep)rdr + b2/a err] — m/a (e§ + es)rdr

—2alnl + (6% — a*)]
a

e [ (e e — (8 — )5+ £9) (379

where ¢¢, 0§ and o¢ are creep stresses and e, €j and €5 are total creep strains.

Creep stresses may be represented in terms of mechanical, thermal and history depen-

dent stresses in the following form:

¢ = U'(r,e%e§) + F'(r,AT) + G'(r, P,)
o5 = V'(r,ese5) + H (r,AT) 4+ R'(r, P,)

of = W'(re,eq) + M'(r, AT) (3.80)
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where functions U’, V!, W', F', H', M', G’ and R’ are defined below.

1- History-dependent functions:

E

€g —

U'(r,e8,e5) = _m[u_m)(/a regdr + [ recdr) +1%( [ =g
E o €G — €x a’
s a2 [, S+ erdr 4 8 [ 3 %a0 -5
. E ] c c 2 69 Er
V/(r,es,e5) = m[@-n)/ﬂ e +=5)dr — v [ = 2l

207((1 = )~ veb) + g gyl — 20 | 5 + e

2

€f — €2 a
8 [ S )

vk €5 —EZT vE
W(T:5m5o) = T1_ [(1_’/) — V] +/ ~—Tdr ]+ ( 1/2)(b2—a2)[
°F b
- 2 "‘ o C €
1 2,/)/ (5 + €%)rdr + b / 0 rdr) - b2_a2/a(s€+q)rdr
E b c [od C
— ol [ (65 + 5)rdr — (B — a®) (5 + )]

9- Thermal stress functions:

Eo(T, — T) a’>. b, or ki
! = In—+ b*ln+- — a’ln—
Fi(r, AT) 2(1 — v)(b% — az)lns[ g i "y na]
Ea(T, — Ty) a®* b o, T T .
! = — In=+ b%ln— — a*ln— + (b* —
H'(r, AT) 2(1 — v)(b% — a2)ln£[ 7z g + "M +( @)
Ea(T, — T) r r
"r, AT) = 20%In— — 2a*In— + (b* — a*
M AT) = 3570 )k 20 Ing — 2 ne T —d)]
3- Mechanical stress functions:
P,a? b?
k) = gmal-3)
P,a? b?
R'(r,P,) = T a2(1 + 3
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Functions U’, V' and W' are containing the creep strains. These total accumulated
creep strains can be calculated by integration or summation of creep strain increments
throughout the loading history during the life of the tube. To determine the creep
strain increments, the non-linear time-independent incremental stress-strain relation-
ship must be modified to include the material’s time-dependency. Thus non-linear

time-dependent stress-strain relationship or the creep flow rule is introduced here.

3.3.4 Creep Flow Rule

Creep stresses are functions of total creep strains defined by equations (3.80). Creep
strains are time, temperature and stress dependent. In an incremental approach the
total accumulated creep strains can be calculated by integration or summation of the
creep strain increments over the loading path during the life of the tube. If variation
of radial, tangential and axial creep strains during a short increment of time (At) are
defined as Ae?, Ae§ and AeS, then the incremental stress-strain relationship may be

written as follows:

AN 1
Ae7 = 0—:[% = 5(00 + 03]
Aet 1
Ae = Jee[ag — 5(os + 7)) (3.81)

where o, and Ae¢ are the effective stress and the effective creep strain increment.

Dividing both sides of the above equation by At will result in the non-linear stress-
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strain relationship in the rate form as follows: N AR
- 1
& = lov =300+ 02)
e 1
£ = Z—Z[Ug — 5(% + o,)] (3.82)

where £ and €5 are radial and tangential creep strain rates and &7 and o are effective
creep strain rate and effective stress. The fraction term (&g /c.) in the above equation is
the path-dependent (history dependent) part of the non-linear time-dependent stress-
strain relationship. The creep strain rate in axial direction can be obtained by using
the incompressibility condition in creep regime. Therefore it can be written in the rate

form as follows:

g = —(€+¢€g) (3.83)

c

The effective stress (o,) and the effective creep strain rate (e

) in equation (3.82) are

defined as follows:

=

0o = —=[(07 — 09)? + (05 — 0.)* + (02 — 7,)7]

(3.84)

2

Wl

(&5 — €5)* + (€5 — €9)" + (&5 — €D)°]". (3.85)

*C
ee

of% &

The material uniaxial creep curves represent the effective stress and the effective creep
strain relationship. Mathematical representation of this relationship is the material
creep constitutive equation. In this case, the material creep constitutive equations are

rewritten from Chapter 1 as follows:

£ =01(1—e ) 4+ 03(e® — 1) (3.86)
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E = @1@26—e2t+®3@4664t (387)

where

Logm@i =a; 4+ b;T + c;o + d;aT 1=1,2,3,4 (388)

coeficients a;, b;, ¢; and d; are material constants which have been introduced in Chap-
ter 1 (Table 1.1).

Creep stresses are obtained as functions of total creep strains, the creep strain rates are
related to the stresses and the loading history by the incremental stress-strain relation-
ship and the material creep properties. It is necessary to introduce a damage model
and the material’s creep rupture properties in order to obtain the damage history and

the remaining life of the tube.

3.3.5 Creep Damage Model

The life time of components operating at elevated temperature is limited by creep
mechanism. Creep damage which is a time-dependent process depends on the history of
stresses and temperature applied to the component. Many damage models using either
mechanical or micro-structural constitutive relations have been proposed in the past.
The mechanical models are based on stress, strain, strain rate, time and temperature
whereas the micro-structural models are based on surface energy, grain size, dislocation
movement, cavity formation and spacing, crack initiation and growth. In this study
the Robinson’s creep damage model known as the Robinson’s life fraction rule has been

adopted for creep damage accumulation and this has also been adopted in the ASME
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Code Case N47. In a variable stress and temperature field, similar to the case of a tube
subjected to an internal pressure and a thermal gradient, validity of the Robinson’s life
fraction rule is justified experimentally by Viswanathan et al. (1994). The Robinson’s

life fraction rule states that

LA

B = Do

=1

(3.89)

1

where D is the creep damage, At; is the time spent at any given stress and temperature
and t,; is the rupture time under those conditions. When the damage fractions under
different sets of stress-temperature conditions add up to unity failure will occur. Based

on the above definition the remaining life is then given by the following equation
RL = (1 - D)ty (3.90)

where RL is the remaining life and ¢, ¢ is the creep-rupture life at expected future op-

erating temperature and stress.

The rupture life is the time taken to reach the failure strain and can be obtained by

the numerical solution of the following equation:
O1(1 — e™2) 4 O3(e® — 1) —e5 =0 (3.91)
where £, is the rupture time and ¢; is the fracture strain. The fracture strain 1s a
function of stress and temperature as follows:
e; = a; + 0T + c;o + d;oT 1=25 (3.92)

The coefficients in this equation are already introduced in Chapter 1 (Table 1.2). The

above damage model in conjunction with the material’s creep rupture properties has
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been incorporated in a non-linear time-dependent stress analysis to predict the creep
stress and damage histories as well as the remaining life of thick-walled tubes. Before
introducing the procedure a summary of the governing equations involved in the pro-

cedure are introduced below.

3.3.6 Summary of the creep Governing Equations

Stresses:

o¢ = U'(r,elef) + F'(r, AT)+ G'(r, )
o5 = Vi(reles) + H(r, AT) + R(r, P

¢ = W'(r,ee5) + M'(r,AT) (3.93)

Non-linear stress-strain relationship in the rate form:

. €e 1
& = Zlo,— (orton)
e Fop 1
€g = ;—[09 - E(Uz + o)) (3.94)
Incompressibility:
g = —(&+¢€3) (3.95)

Effective stress and the effective creep strain rate:

(00 — 09)% + (09 — 02)* + (0. — 0,)?]* (3.96)

)
®
il

<% Sl

[(85 — €5)% + (€5 — €207 + (€2 — €2)15. (3.97)

€.
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Material constitutive model:

£ = 0y(1 — e 92") 4 O3(e® - 1)

é = @1@26_®2t—|—®3®46®4t

Damage model:

Remaining life:

RL = (1 — D)t,

Material creep rupture properties:

@1(1 — 6_92“) + @3(6®4tr . 1) — €5 = 0

Efzai-l—biT-i—ciO'-l-diO'T 1=95

105

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

Based on the above governing equations a numerical procedure has been developed

which gives the stress and damage histories and the remaining life of the tube.

In this method a time increment At is selected and a distribution is assumed for the

creep strain increments Ae and Aej at the end of this time increment. Total creep

strains at this stage are equal to the initial estimated values of creep strain increments.

Integrals of total creep strains in equation (3.93) are evaluated and a first estimate

of stresses o,, os and o, are obtained. The effective stresses are then obtained using

equation (3.96). These values of effective stresses and the temperature distribution in

conjunction with the material creep constitutive model (equation (3.99)) are used to
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obtain the effective creep strain rates. Creep strain rates are then calculated using
equation (3.94). New values are obtained for the creep strain increments using the
creep strain rates and the time increment. Using these new values of creep strain in-
crements a second and presumably better approximation is obtained for the stresses
and total creep strains. The process is continued until the differences between two
successive sets of strain increments are less than the convergence criterion. Having the
converged stresses at the end of this time increment and the temperature distribution,
creep rupture strains and the time to ruptures are calculated using equations (3.102)
and (3.103). Using the Robinson’s life fraction rule the damages are calculated from
equation (3.100) for this time increment. The remaining life can then be calculated
using equation (3.101). Therefore, the solution is obtained for the first time incre-
ment. Time is increased incrementally and in a similar manner the complete stress,
strain and damage histories as well as the remaining life are calculated during the life of

the tube. A block diagram of the proposed numerical procedure is shown in Figure 3.7.

Numerical models of the calculation of plastic and creep strains which were introduced
here will be completely expanded in next Chapter which is devoted to numerical pro-

cedures.
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Figure 3.7: Flow diagram for the computation of creep stress and damage histories



Chapter 4

NUMERICAL PROCEDURE

In previous chapter numerical procedures for computation of thermoelastoplastic and
residual stresses as well as the creep stress and damage histories were introduced briefly.

Details of the procedures are discussed in this Chapter.

4.1 Numerical Procedure for the Computation of

Thermoelastoplastic and Residual Stresses

In this section step-by-step procedure for the computation of plastic stresses resulted
from an internal pressure and a thermal gradient and the subsequent residual stresses

as well as the progress of elastic-plastic boundary is discussed as follows:

1. For a fixed temperature gradient the critical pressure (Pit) and the radius at

which plastic yielding begins are calculated from the equation of critical condition

108
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rewritten here as follows:
A(paﬁ)Pi2+B(pa/8)®aPo)Pi+O(P7ﬁ,®,Po):0 (41)

If the applied pressure is less than the critical pressure the cylinder remains
elastic. However, for pressures more than the critical pressure plastic flow will

take place in the cylinder wall.

2. A final pressure of P which is more than the critical inner pressure of the cylin-
der has been considered. The pressure beyond the critical pressure is applied

incrementally such that the pressure increment Ap is

Py — cre

where P..; is the critical pressure and N is the number of loading steps. There-

fore, the internal pressure at the ith loading step is given by

P; = Pyau+ixAp (4.3)

3. Initial values are assumed for radial and tangential plastic strain increments A7 ;;
and Aéz,ij and are added to the accumulated plastic strains obtained from the
previous loading steps at all divisions of radius in the plastic zone. In the ini-
tial loading step, the accumulated plastic strains are zero. The plastic strain

distribution at the 7th loading step can be written in dimensionless form as:

1—1

€ = dOA L+ A
k=1
|
iy = D Achyi+ Aey i (4.4)

k=1
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where the subscripts 7 and j refer to the loading step and the layer along the
radius respectively.
The plastic strain increment in the axial direction is obtained from the incom-

pressibility condition in plastic regime which can be written as follows:

Aep = —(Aﬁfﬂ']’ + Aesyi]‘) (45)

2,1]
In this study, the initial values of -0.00003 and +0.00004 are assumed for the

radial and tangential plastic strain increments, respectively.

4. The effective plastic strain increments for all divisions of radius in the plastic

zone are then computed as follows:

v2

Aépyij 3

(AL — AL + (Ads; — AL )P + (A, — A )7

Tyij

(4.6)

5. The effective stresses are obtained for all divisions of radius in the plastic zone

using the material’s constitutive model. The procedure is shown in Figure 4.1.

The material’s constitutive model in a dimensionless form is mathematically rep-
resented as follows:

Seii =1+ H(epis)" (4.7)
where H and 7 are temperature dependent constants. The constitutive model at
room temperature which is obtained experimentally is written in the following

form.

Se,ij =1 + 2.92(6p)0,21842186 (48)
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Figure 4.1: Determination of effective stress from the effective plastic strain.

in which €,;; = > A¢; . High-temperature material constants are selected

from the experimental results of Niitsu and Tkegami (1990).

6. The radius of the elastic-plastic boundary at the ith loading step, p.; is found by
setting the boundary conditions at this radius. At the plastic zone boundary the
von Mises condition must be satisfied. If yielding starts from the inside radius,
then the radial stress at elastic-plastic boundary is equal to the critical pressure

of the outer elastic cylinder. In this case equation (4.1) can be written in the
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following form:

A[Pci,ﬁ]sg(,oci) + B[pCia/Ba ®7PO]ST(pCi) + C[Pci,ﬂ, GaPO] =0 (49)

For the case in which yielding starts from the outer surface, equation (4.1) takes

the form:

A(pcia :H)Piz + B[pci7 18’ 67 S"‘(pCi)]Pi + C[IOCi7 ﬂ: 67 ST(pCi)] =0 (410)

Solving equations (4.9) or (4.10) will give the radius of elastic-plastic boundary

at the 7th loading step (pei)-

7. With p.; known, the integrals of plastic strains in equations (3.60), (3.61) and (3.62)
can now be evaluated numerically and plastic stresses S?, S§ and S? can be cal-

culated.

8. Having calculated the stresses from step 7, and the effective plastic strain and
effective stress from steps 4 and 5, a new and better approximation is obtained
for the latest increment of the plastic strains by employing the incremental stress-

strain relationship (Prandtl-Reuss equations) as follows:

ew A i
Aef,(z‘? ) = Sep,'.J (2575 — Sg,ij - 8%i)
e,
new A i
Aez,(ij ) = ___ep.,.J (QSg,ij - Sf,ij - Sg,ij) (4.11)
e,zn]

9. New values of axial plastic strain increments are obtained using incompressibility

condition in plastic regime as follows:

Acp(.new) = _(Aep(new)_l_Aez(;‘,ew)) (412)

£ ij 13
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10.

11.

12.

113

The solution is iterated from step 4 until it converges for the ith loading step.

If the internal pressure and the thermal gradient are removed at the :th loading
step, then residual stresses will be distributed throughout the cylinder wall which

can be calculated as follows:

r _ P e
i = Orig — Org
r . 2 _ e »
SB,ij — 8,23 Sﬂ,z]
r i p e
mii = Ozii — Onij (4.13)

? . and S?

T
and 57 ;; 6,ij s

r T
where ST ., 5§

o are residual stresses, S, represent the
H

and S¢,; are an elastic stress system due

current plastic stresses and Sy, 5§,

7,47

to pressure (P;) and temperature gradient (AT') which can be written as
Te,ij = F(pijaﬂaG)aPo) + G(Pij,ﬂ) * P

Soi; =

H(pijaﬂ,G)’PO) +R(pijaﬂ)*Pi

Cy = M(pi,,0)+ N(B)* I; (4.14)

Reverse yielding is predicted by the von Mises yield condition including the

Bauschinger effect factor as follows:

( el Sg,ij)Z + (Sg,ij - S;,ij)2 + ( i S:,ij)z = 2(BEFij)2 (4.15)

in which the Bauschinger effect factor BEF;; is obtained experimentally and
represented mathematically as follows:
BEF;; = 1.0170029 + 0.36592732(%ep,:;) — 0.0025343135(%ep,i;)° —

0.97738304(%ep:;)>° (4.16)
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where %e,;; is the percent overstrain.

13. The loading step is advanced one increment (to +1) and the numerical procedure
for calculation of plastic stresses and the residual stresses is repeated until the

full load is applied (P;; = Py).

The above numerical method is validated experimentally the procedure of which is
discussed in the next Chapter. A block diagram of the above developed procedure is
shown in Figure 4.2.

In the next section, details of the procedure developed for the computation of creep
stress and damage histories as well as the remaining life of the thick-walled tubes are

discussed.
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!

Oe,ij (Flg 4.1)
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702,17

P . i—1 ¥4 p
€hii = gt D + Ay

. k 1A€€k]+A6er

6913 e

!

A[p0i7 ﬂ]SE(pCZ) + B[pCiJ 18’ 0) i

]Sr(Pcz) + C[Pcia/Ba ®7Po:| =0

fﬁ

1

P 9112 rzz

”J dp? fl (60 7 + € U)Pfl;‘)

dpa fl (60 \i7 + ¢ ”)pdp

!

P
SO,iJ? Sz 7

SP

p(new)
]A 'r0zz_7 Ae'r@z zgl
Tolerance

Figure 4.2: Block diagram for calculation of plastic and residual stresses
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4.2 Numerical Procedure for Computation of Creep

Stresses and Creep Damages

A numerical procedure for the computation of creep stress and damage histories as well
as the remaining life evaluation of thick-walled tubes was briefly introduced in previous
Chapter. A full description of the procedure has been considered for this section. Step

by step procedure is explained as follows:

1. For a fixed temperature gradient of 7°C which is selected according to the oper-
ating condition of a boiler header tube of a fossil fueled power plants, the critical

pressure (Pe.it) is calculated from equation (4.1).

2. Initial elastic stress distribution throughout the wall of the tube is calculated
using the operating pressure and operating temperature of the tube. Operating
pressure is usually lower than the above calculated critical pressure. In this study
the internal pressure of the header is 20 MPa and the inner temperature of the
header is 557°C in the presence of a 7°C thermal gradient. This initial elastic

stress distribution varies with time.

3. An appropriate time increment is selected. The total time is the sum of time

increments as the creep process is progressing.
i—1
7 = Z Aty + At; (417)
k=1

where 7 is the timing step.

The time increment selection depends on the creep strain rate. Considering the
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Figure 4.3: (a) Creep curves predicted by the © projection for the 2C'r, %M o, %V ferritic

steel; (b) Time incrementation pattern at later stages of creep process.

strain-time behaviour of the material in Figure 4.3(a), at early stages of the
creep in which the creep strain rate is small the numerical procedure converges
with large steps of time increment for example 10,000 sec (2.77 hours) , because
large steps of time are followed by small changes in the creep strain (curve is
flat). But later in the tube life when there is a sharp rise in the creep strain
rate near the rupture time (where small steps of time are followed by significant
rise of creep strain) the time increment should be very small for convergence of
the procedure (even less than 20 sec). A pattern of time incrementation which
is variable during the life of the tube due to variations in creep strain rate is

illustrated in Figure 4.3(b)
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4. Initial values of -0.00001 and 0.00001 are assumed for radial and tangential creep

strain increments Aef;; and Aeg ;; and are added to the accumulated creep
strains obtained from the previous timing step at all division points through-
out the tube wall. In the initial timing step the accumulated creep strains are

zero. The radial and tangential creep strains at the ith timing step are

i—1
erig = DL Aey A
k=1
i—1
k=1
The subscripts i and j refer to the timing step and the division point across the

thickness respectively. The creep strain increment in axial direction is obtained

from the incompressibility condition in creep regime which is

A€ ;i = —(Ael;; + Acg ;) (4.19)

Z,1]

5. With the assumed creep strain distribution the integrals in equations (3.80) are

evaluated. Therefore  initial €simates of creep stresses are calculated.

6. Effective stresses at all division points along the radius is then calculated as
follows:

1 1
Oeii = —=(0rij — 00;)2 + (004 — 02i) + (0235 — 0vi)"]7 (4.20)

V2

7. Temperature distributions at all division points along the tube radius are calcu-

lated as follows:

T; i=s ln%(Talni—Tblnﬁ) (4.21)
. e

rj j
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8. with the above temperature and effective stress distributions the effective creep
strain rates at all the division points are obtained using the material’s creep

constitutive equation as follows:

€ e @1,1'3'@2,1']'6_@2’”7:‘ + @311,3,@4’“6@4,.‘]'151‘ (4.22)

e,
where 01, ©,, O3 and O4, are written as follows:

L0910®k,ij = ap+ kaj + k0, i; + dkde,ijTj k=1,2,3,4 (4.23)

9. Radial and tangential creep strain rates are obtained using the incremental stress-

strain relationship (Prandtl-Reuss) in the rate form as follows:

€ri; = UZ’Z[UT,U—g(ae,ij-l-ffz,ij)]
!
€6, = —2Loeij — 5(04:5 +0vij)] (4.24)
! Teij 2

10. Axial creep strain rates are calculated by using the incompressibility condition

as follows:

€5 = —(€r:; +€5,) (4.25)

11. Having the strain rates, new and better approximations are obtained for the lat-

est creep strain increments at all division points along the tube radius.

7,17 7,4]
et 1 €4 ;5 * At;
Al = & x Al (4.26)
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| 28

13.

14.

15.

16.

17.

The method is iterated from step 4 until it converges for ¢th timing step.

Creep-fracture strains at all divisions throughout the tube wall are calculated
using the material’s creep rupture properties, temperature distribution and the

effective stress histories as follows:

erii = a5+ bsTj+ c50c;5 + ds0eii T (4.27)

Creep-fracture times #,;; are then calculated numerically using the material creep

constitutive model in the following form
€15 — O15(1 — e7%29900) — Oy (e — 1) = 0 (4.28)

Having the creep rupture times for all the division points along the radius the
damages are calculated and summed throughout the life of the tube using the

Robinson’s life fraction damage rule as follows:

At
Dy = >, (4.29)

bryij

The remaining life is then computed for all divisions across the tube thickness

using equation (3.101) as follows:

RLij = (1 . Dij)t'r,ij (430)

Material creep rupture properties:

The time is advanced one increment (to i+ 1) and the numerical procedure is
repeated and the stress and damage and the remaining life are recorded.

A block diagram of the numerical procedure is shown in Figure 4.4.
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Figure 4.4: Block diagram for calculation of creep stress and damage histories



Chapter 5

EXPERIMENTAL

INVESTIGATION

5.1 Introduction

The analytical-numerical models developed in previous Chapters for the critical inner
pressure and the spread of plastic yielding as well as the subsequent residual stress
distributions in thick-walled cylinders are validated experimentally. A high pressure
(284 M Pa, 2800 bar) hand pump designed for laboratory high pressure tests is used
to produce high pressures required in this investigation. A digital pressure transducer
(model EPXH-M10JIW-1400G) with sensitivity of 0.0854 mV/bar is used to provide
the internal pressure measurements. The maximum permissible pressure is limited to
172.37 MPa (1700 bar) which is the maximum range of the pressure transducer. Rosette

strain gauges are mounted at the axial center of the test specimens and are oriented

122
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such that the two legs measure strains in axial and tangential directions.Specifications
of test specimens and experimental setup and procedures are described in this Chapter.
However, since the material’s model is one of the important ingredientsof the proposed
analytical-numerical model, experimental investigations for the material constitutive

model and the Bauschinger effect factor are also described here in this Chapter.

5.2 Material’s Constitutive Model Tests

In the proposed analytical-numerical model the material loading and unloading func-
tions are used as the relationship between the effective stress and the effective plastic
strain in a multi-axial stress-strain situation. Moreover, the model also considers the
effect of Bauschinger phenomenon on the residual stress distributions and the reverse
yielding predictions of thick-walled cylinders. Therefore the material’s model plays a
significant role in this non-linear stress analysis. Test specimens for loading-unloading
tests are produced from the as received stainless steel SUS 304 with the following com-

position and mechanical properties specified by the manufacturer.

Table 5.1: Chemical composition of testing material % basis

C |[Mn| Ni|Cr

0.06 [ 1.7 9.5 18
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Table 5.2: Mechanical properties of testing material

oo (MPa) | U.T.S. (MPa) | %EL | Hardness (HB)

230 590 50 170

5.2.1 Specifications of Test Specimens

The test specimens for loading-unloading tests are designed with a smaller gauge length
than the standard tension test specimens. Based on the manufacturer specified me-
chanical properties the critical buckling load for an ASTM E-8M-89b (1989) standard
round (d=12.5 mm) test specimen of this material, with 10 centimeter length of the
reduced section, is about 750 kN. This critical load is computed by using Euler’s buck-
ling equation which is recommended by the ASTM (1989) standard compression test
method as follows:

Bl
P, =n T2 (5.1)

where P,, is the critical buckling load, E is Young’s modulus, I is the moment of inertia
of the cross section about centroidal axis, L is the column length and n is the end-fixity
coefficient which is 4 for both ends fixed condition. The critical buckling load for a
similar test specimen with 8 centimeter length of the reduced section designed for this
experiment is about 1171 kN which is 36% more than the critical buckling load of the
standard test specimen. The critical buckling stress for the standard and the designed

test specimens are 6107 MPa and 9543 MPa respectively. Since the buckling stress
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is greater than the proportional limit of the material (230 MPa) the critical inelastic
buckling load must be calculated using the modified Euler equation. According to the
ASTM (1989) suggestion the modified Euler equation is represented as follows:

’/T2Et_[
L2

P,=n (5.2)

where E, is tangent modulus at buckling stress (Se; = Per/Area). The tangent modulus
of the material at compressive yield point is approximately 63.3 GPa. The critical
inelastic buckling load is then calculated as 468 kN for the designed test specimens and
300 kN for the standard test specimen. These are obtained by using equation (5.2).
Taking into account that the machine load has never exceeded 60 kN during all the tests
it is concluded that the experimental magnitudes of the Bauschinger effect factor are
not influenced by the buckling. Buckling was not observed during all tests. A schematic

of the designed test specimen is shown in Figure 5.1. These test specimens are designed

80 mm 80 mm 80 mm

d=12.5 mm
\’Jﬁ‘@

20mm

Figure 5.1: Loading-Unloading Round test specimen for material property

for material’s loading-unloading property and the Bauschinger effect factor.
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5.2.2 Material Loading-Unloading Tests

A series of 10 test specimens with the above specification are tested using a computer
controlled uniaxial testing machine. The machine configuration menu is set up such
that the test specimens were overstrained to prescribed values of 0.1%, 0.25%, 0.50%,
0.75%, 1.0%, 1.5%, 2.0%, 3.0%, 4.0% and 5.0% and then reverse loaded until the zero
strain is reached. The straining speed is 0.1 mm/sec during each second of which 20
series of data are recorded in the data file. Each series of data are composed of time
(sec), length (mm), load (kN) and strain (mm/mm). A sample of data recorded during
half a second of a test is rewritten from the data file into table 5.5 located at the end
of this Chapter. The experimental stress-strain curve of 0.75% overstrained condition
obtained from the corresponding data file is shown in Figure 5.2. The material’s
constitutive model and the Bauschinger effect facto?gfbbtained from these experiments.
A summary of the material’s experimental properties obtained from these tests are

written in table 5.3.

In this table, o is the yield stress and 4 and op are the direct and reverse yield point
based on 0.1% offset method as are shown in Figure 5.2. The Bauschinger effect factor
(BEF) written in table 5.3 is calculated based on the modified formula introduced in

Chapter 1 and rewritten here as follows:

BEF =22 (5.3)

OB
Elastic strains have been subtracted from the total overstrains to give the plastic

strains. To find the best mathematical function representing the variation of BEF
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Figure 5.2: Experimental loading-unloading stress-strain curve obtained for SUS 304

with respect to the percentage amount of plastic overstrain, a curve fitting software
has been employed (The Jandel Scientific Table Curve version 3.03 (1991)). The varia-
tion of BEF can be best represented as a continuous function of the amount of plastic

overstrain by the following function:

BEF = 1.0170029 + 0.36592732(¢, %) — 0.0025343135(¢,%)° — 0.97738304(¢, %)
(5.4)
In a similar manner the material’s data files are modified by subtracting the elastic

strains from the total strains to give the plastic strains. By using the same software the
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Table 5.3: Material constants calculated from the materials data file

Test case | E (MPa) | oo (MPa) | 04 (MPa) | op (MPa) | BEF
0.1% | 157824.17 | 236 358 286 | 0.798
0.25% || 156147.09 | 235 350 210 | 0.600
0.50% || 159390.63 | 237 366 175 | 0.478
0.75% | 164100.45 | 234 363 159 | 0.438
1.0% | 152162.06 | 236 370 148 | 0.400
1.50% | 159162.67 | 240 369 136 | 0.370
2% || 159557.59 | 237 366 131 | 0.358
3% | 160341.32 | 233 365 120 | 0.353
4% || 158879.63 | 235 368 128 | 0.347
5% | 159692.13 | 236 364 127 | 0.349
Average | 158725.81 | 236 363.8 s -

strain-hardening is mathematically represented by the following constitutive equation:
oo = 232.68187 + 689.01541 (g, ) 21842186 (5.5)

The above actual material model and the Bauschinger effect factor have been incorpo-
rated in the analytical-numerical procedure for an accurate prediction of the non-linear
response of thick-walled cylinders. Experimental verification of the procedure is dis-

cussed below.
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5.3 Thick-Walled Cylinder Tests

5.3.1 Introduction

In order to verify the results of the analytical-numerical method developed in this study
for the prediction of critical pressures as well as the elastic-plastic stress distributions
and the subsequent residual stresses, several experiments are carried out on thick-
walled cylindrical test specimens. These experiments are critical pressure tests and
the pressure expansion tests as well as the residual stress distribution tests. All the
manufactured test specimens have the same total length of 140 mm, gauge length of

60 mm, identical end geometry and bore diameter of 6 mm (Figure 5.3).

140 mm
30 mm ‘ &80 mm ‘ 30 mm
60 — —————
15mm | 3.5 Ao o |
' |_ D=12 mm
el E ke
& o | d=6 mm ‘
=1 i P i \

Figure 5.3: Thick-walled cylindrical test specimen

However, they have different outer diameters which cover a wide range of radii ratios.
Roark (1975) suggests that the hollow cylinders with radii ratio greater than 1.105

must be considered as a thick-walled component. Therefore the outer diameter of the
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designed cylindrical test specimens starts from 7.2 mm and ended with 12 mm which
gives a scatter of radii ratios from 1.2 (7.2/6) up to 2 (12/6). Specifications of the test
specimens are introduced here before discussing procedures of each individual experi-

ment.

5.3.2 Specifications of specimens

Cylindrical test specimens of the same material, stainless steel SUS 304, with different
wall thicknesses are produced in order to investigate the effect of radii ratio on the
critical pressure and progress of plastic zone and the consequent residual stresses. In
order to produce an accurate and constant wall thickness, the cylinder bore is ma-
chined into the 40 mm bar first. Then the cylinder is machined down to its final outer
dimension using the two ends of the bore as the turning axis. The test specimens are
designed such that the gauge length are at least equal to 5 times as their diameters.
This is because early studies (Crossland et al. (1958)) have shown that the end effect
is negligible in thick-walled cylinders having a length-to-diameter ratio of 4. In order
to prevent leakage of fluid from the specimen under the high applied internal pressure,
female cone and thread fittings are machined into the end of the cylinder. High pres-
sure hydraulic systems, above 71.4 MPa (700 bar), require special fittings and tubing.
These fittings and accessories are designed by the hydraulic pump manufacturer to be
used with the high pressure hand pump. These high pressure fittings seal on a cone

surface and do not require pipe sealer. Female cones and threads of the machined test
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specimens are consistent with the manufacturer supplied fittings. Figure 5.3 shows a
drawing of the thick-walled test specimens which are designed for this experimental
investigation. These test specimens are used in critical pressure, pressure expansion

and the residual stress tests which are discussed here.

5.3.3 Critical Pressure Tests

When internal hydraulic pressure of a cylinder is increased, then the cylinder will re-
spond it by deformation. If the internal pressure is less than the critical pressure, then
the cylinder deformation is elastic and it will return back to its original configuration
upon the release of internal pressure. However, if the internal pressure is greater than
the vessel critical pressure, then plastic strains will be developed in the cylinder wall
which are irreversible. It means, the cylinder will not return back to its original config-
uration after releasing such an internal pressure. This physical phenomenon has been
considered for the critical pressure investigations. It is difficult to obtain the critical
pressures by measurements of the inside surface deformations of the cylinder because
of the sealing problem under such a high internal pressures. Therefore, the critical
pressure of the cylinder :is: investigated by loading-unloading tests of the cylinder,

while the outer surface deformations are carefully measured by the strain gauges.
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Experimental Procedure

A series of nine thick-walled cylindrical test specimens within the range of the most
commonly used radii ratios of 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0 are tested

in this experiment. Specification of each test specimen is shown in table 5.4. Other

Table 5.4: Specification of test specimen used in critical pressure tests

Specimen 1 2 13| 4] 5 6 7 8 9

gauge length mm 60 | 60 | 60 | 60 | 60 | 60 60 | 60 |60

Inner diameter mm 6 6 6 6 6 6 6 6 6

Outer diametermm || 7.2 [ 7.8 [ 84| 9 | 9.6 | 10.2 | 10.8 | 11.4 | 12

Radii ratio 12113141516 1.7 | 1.8 | 1.9 | 2

specifications are exactly the same as shown in Figure 5.3. These specimens are con-
nected to the hydraulic pump supply tube such that the both ends of the specimens
are supported on the levelled bearings as shown in Figure 5.4. After the specimens
are connected to the supply tube, the air is evacuated from the piping system and the
specimen using full strokes several times as necessary to purge air from the system and
cylinder while the end of test specimen is not yet closed tightly. Care was taken to
evacuate the air completely from the system because the air is compressive and the
failure can be followed by throwing the fragments of the failed specimen.

To prevent any possible residual stress development during the air evacuation and

tightening of the specimen’s end cap, the cylinder is clamped to the bearings and base
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plate during this period of time. However, after the air evacuation, the cylinder is free
to expand in axial direction similar to the generalized plane strain assumption which
has been made in the theoretical analysis of this investigation. A schematic diagram

of the experimental setup is shown in Figure 5.4

| 0.0842 Di gital
Di gital | Voltmeter Ij__lgtr\qin gauges
Voltmetenr Amplifier
‘A
M
Selector

LConditioning
Amplifier

Pressure

Transducer
Strain

Specimen

o Cauges
|J—|—‘ i l End Cap
L AN
Hydraulic Pump JT v

Hi gh Pressure
Tubes, Fittings

Base Levelled Bearings

Figure 5.4: Schematic diagram of the experimental setup for critical pressure tests

After the air evacuation from the system, it is ready for the test. Taking into account
that the pressure transducer sensitivity is 0.0854 mV/bar (0.8422 mV/M Pa) and the

maximum permissible range of pressure transducer is 1700 bar (172.37 MPa), then the



Chapter 5. Experimental Investigation 134

maximum permissible output voltage is 145.18 mV or 0.14518 V which should never
be exceeded.

Internal pressure is increased step-by-step and released when the pressure transducer’s
output voltage is stabilized. The outer surface tangential strain is recorded after the
pressure is released and the stabilized value of strain is monitored by the digital volt-
meter connected to the strain gauge amplifier. A sample of experimental data obtained
for the third test specimen (b/a=1.4) is written in table 5.6 located at the end of this

Chapter.

As long as the internal pressure is not high enough to yield the cylinder, then the outer
surface tangential strain will be zero after the pressure is released. The tabulated data
shows that the tangential strain is zero for the first seven steps of loading-unloading
tests. Variation of internal pressure versus residual tangential strain is shown in Fig-

ure 5.9.

The procedure for critical pressure evaluation is illustrated in this figure. In this man-
ner, critical pressures of all nine test specimens are obtained. The results are compared
with the numerical model predictions to be discussed in the next Chapter. After the
critical pressures are obtained the progress of plastic zone is investigated by pressure-

expansion tests.
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Figure 5.5: Internal pressure and its subsequent residual tangential strain at the outer

surface of the cylinder.

5.3.4 Pressure Expansion Tests

In order to verify the numerical procedure for the prediction of non-linear deformation

of the cylinder, a series of three test specimens with radii ratios of 1.2, 1.3 and 1.4

are selected. These are exactly the same as the first three test specimens described

in table 5.4. The lower radii ratios are selected for this experiment because the max-

imum permissible pressure of the pressure transducer is 172.37 MPa (1700 bar, 0.73

00). With this maximum pressure limit, it is impossible to create significant amount

of plastic strains at the cylinders with higher radii ratios.
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The specimens arc connected to the hydraulic pump, n the same way as the previous
critical pressure tests, and step by step, their internal hydraulic pressure is increased.
The axial and tangential strains are recorded [or the outer surlace of the specimens. A

photograph ol the experimental sctup is shown in Figure 5.6

Figure 5.6: Photograph of the experimental setup for cylinder critical pressure lests

A sample of the experimental data obtained for the third test specimen (b/a=1.4) is
written in table 5.7 located at the end ol this Chapter.
In this way, pressure-expansion of the cylinders are oblained experimentally. These

experimental results are compared with the numerical predictions of the outer surface
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deformation in Figure 5.7. The numerical procedure accurately predicts the non-linear

0
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Figure 5.7: Internal pressure versus outer surface total tangential strains

deformation of the cylinder. Therefore the results of the numerical procedure can be
used with confidence. The numerical procedure has also been developed to predict the
subsequent residual stresses generated in the cylinder wall upon the release of internal

pressure. Experimental verification of which is considered below.

5.3.5 Residual Stress Tests

If at any stages of plastic flow in the cylinder, the internal pressure is released, then
there will be a distribution of residual stresses throughout the thickness of the vessel.

In fact, the action of the elastic region to return back to its original configuration is
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counteracted by the plastic region which has developed irreversible plastic strains. On
the other hand, the plastic region will be compressed by the elastic region until a self-
equilibrium condition is obtained throughout the cylinder thickness. For any particular
internal pressure, beyond the critical pressure of the cylinder, a corresponding distri-
bution is predicted for the residual stress-strain throughout the cylinder wall by the
proposed analytical-numerical model. The numerical predicted values of the residual
axial and tangential strains at the outer surface of the cylinder will be compared with
the experimentally measured values of these two components in order to validate the
proposed analytical-numerical model for the prediction of residual stress and strain.

Similar to the previous pressure-expansion test, a series of 3 test specimens with radii
ratios of 1.2, 1.3 and 1.4 are selected. Again, the lower radii ratios are selected due to
the limited maximum permissible pressure of the pressure transducer which is 1700 bar
(172.37 MPa, 0.73 o). However, with this pressure limit, it will be possible to create
significant amount of plastic deformation at these three low radii ratio test specimens.
Therefore, the subsequent residual strains can be easily measured by the strain gauges
located at the outer surface of the test specimens. The specimens are connected to the
hydraulic pump, in the same way as the previous tests, and their internal hydraulic
pressure are increased. In these experiments, the internal pressure is released several
times and the residual strains are measured by strain gauges. The unloading path and
the subsequent residual strains at a particular loading condition for the second and

third test specimens are shown in Figure 5.8.
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Figure 5.8: Residual tangential strains resulted from unloading of two different test

specimens

It is necessary to point out that the residual strains are not recorded immediately after
releasing the internal pressure as it takes at least 5 minutes for the strain gauges to
monitor a stabilized value of axial and tangential strains. Only stabilized values are
considered for the analysis. Experimental values of the residual tangential and axial
strains are recorded in table 5.8 located at the end of this Chapter. These results are
compared with the predicted values of the axial and tangential strains by the proposed

numerical procedure in Figure 5.9 (a) and (b). which shows good agreement between
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Figure 5.9: (a) Variation of the internal pressure versus residual tangential strain; (b)

Variation of the internal pressure versus residual axial strain

the experimental and numerical results. The proposed numerical procedure which is
justified experimentally has been used to predict the thermoelastoplastic and residual
stress distribution of thick walled cylinders the result of which is fully discussed in the

next Chapter.
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Table 5.5: Sample data obtained during half a second of loading-unloading test

Time (sec) | Length (mm) | Load (kN) | Strain (mm/mm)
0.52259994 | 0.000446614 | 0.353802145 0.0000034522
0.57259995 | 0.005617315 | 0.745849431 0.0000241369
0.62259996 | 0.005617315 | 1.000033975 0.0000327555
0.67259997 | 0.008202666 | 1.538560390 0.0000568876
0.72239995 | 0.015958721 | 2.003847122 0.0000724011
0.77259994 | 0.023714775 | 2.555298090 0.0000965333
0.82259995 | 0.023714775 | 3.063667059 0.0001206654
0.87259996 | 0.028885478 | 3.610810041 0.0001361789
0.92259997 | 0.034056179 | 4.110562801 0.0001672060
0.97259992 | 0.039226882 | 4.623239994 0.0001827195
1.02259994 | 0.044397585 | 5.101451397 0.0002016805
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Table 5.6: Data obtained for the critical pressure investigation

P (V) | P (MPa) | Plog |ej (V)| e (mm/mm)

0.0112 | 13.298 | 0.0563 | 0.0000 | 0.000000000

0.0208 | 24.697 | 0.1046 | 0.0000 | 0.000000000

0.0318 | 37.758 | 0.1599 | 0.0000 | 0.000000000

0.0403 | 47.850 | 0.2027 | 0.0000 | 0.000000000

0.0461 | 54.737 | 0.2319 | 0.0000 | 0.000000000

0.0517 | 61.386 | 0.2601 | 0.0000 | 0.000000000

0.0573 | 68.0183 | 0.2882 | 0.0000 | 0.000000000

0.0627 | 74.4251 | 0.3154 | 0.0027 | 0.000001661

0.0681 | 80.8318 | 0.3425 | 0.0088 | 0.000005457

0.0735 | 87.2386 | 0.3697 | 0.0183 | 0.000011295

0.0789 | 93.6453 | 0.3968 | 0.0310 | 0.000019051

0.0843 | 100.0521 | 0.4239 | 0.0465 | 0.000028614

0.0897 | 106.4588 | 0.4511 | 0.0649 | 0.000039884

0.0951 | 112.8656 | 0.4782 | 0.0858 | 0.000052763

0.1005 | 119.2723 | 0.5054 | 0.1093 | 0.000067187
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Table 5.7: Data obtained for pressure-expansion test of the third specimen

P (V) | P (MPa) | Plog |eo (V) |ep (mm/mm) | e, (V) | e, (mm/mm)
0.0000 0.000 0.0000 | 0.0000 0.000000 0.0000 0.000000
0.0168 | 20.021 | 0.0848 | 0.0364 0.000224 0.0101 0.000053
0.0337 | 40.042 | 0.1697 | 0.0728 0.000448 0.0202 0.000105
0.0506 | 60.063 | 0.2545 | 1.0927 0.000671 0.0303 0.000158
0.0635 | 75.368 | 0.3194 | 1.3725 0.000843 0.0381 0.000198
0.0744 | 88.315 | 0.3742 | 1.6147 0.000992 0.0448 0.000233
0.0853 | 101.262 | 0.4291 | 1.8615 0.001144 0.0517 0.000269
0.0962 | 114.209 | 0.4839 | 2.1438 0.001317 0.0596 0.000310
0.1072 | 127.156 | 0.5388 | 2.5182 0.001547 0.0647 0.000336
0.1181 | 140.103 | 0.5937 | 2.9948 0.001840 0.0719 0.000374
0.1290 | 153.050 | 0.6485 | 3.8382 0.002358 0.0796 0.000414
0.1326 | 157.366 | 0.6668 | 4.2775 0.002628 0.0823 0.000428
0.1399 | 165.997 | 0.7034 | 5.4108 0.003324 0.0880 0.000458
0.1435 | 170.313 | 0.7217 | 6.1262 0.003764 0.0909 0.000473

143
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Table 5.8: Data obtained for the residual tangential and axial strains

P (V) | P (MPa) | Ploo | (V) |es (mm/mm)|e; (V) | es (mm/mm)
0.0599 | 71.053 | 0.3011 | 0.0004 0.000000 0.0001 0.000000
0.0927 | 109.894 | 0.4657 | 0.0400 0.000025 0.0005 0.000000
0.0999 | 118.525 | 0.5022 | 0.0992 0.000061 0.0011 0.000000
0.1145 | 135.787 | 0.5754 | 0.3486 0.000214 0.0089 0.000004
0.1218 | 144.419 | 0.6119 | 0.5815 0.000357 0.0308 0.000014
0.1254 | 148.734 | 0.6302 | 0.7736 0.000478 0.0392 0.000019
0.1290 | 153.050 | 0.6485 | 1.0544 0.000648 0.0477 0.000025
0.1327 | 157.366 | 0.6668 | 1.4159 0.000870 0.0822 0.000043
0.1363 | 161.681 | 0.6851 | 1.8612 0.001144 0.1244 0.000065
0.1400 | 165.997 | 0.7034 | 2.3955 0.001472 0.1724 0.000090
0.1436 | 170.313 | 0.7217 | 3.0335 0.001865 0.2241 0.000117

144



Chapter 6

RESULTS AND DISCUSSIONS

6.1 Introduction

Results of the proposed analytical-numerical methods developed for the prediction of
critical condition and the non-linear time-dependent and time-independent deforma-
tion of thick-walled cylinders are discussed in this Chapter.

Effect of variables such as radii ratio and temperature gradients on the critical pres-
sure are investigated and the results are discussed. Progress of plastic zone with and
without the effect of temperature gradient is investigated and the results of stress
redistributions during plastic flow are discussed and interpreted in terms of physical
nature of the problem. Results of residual stress distributions with and without the
Bauschinger effect factor are compared and the effect of Bauschinger phenomenon on
the predictions of reverse yielding is investigated and discussed.

Results obtained for the time-dependent creep stress and damage as well as the remain-

145
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ing life evaluations of thick-walled tubes are also discussed in this Chapter. However,
for a better understanding of the critical condition and the effect of plastic flow on the
stress distributions of thick-walled cylinders, a brief discussion of the results obtained

for the elastic stress distributions is considered here.

6.2 Elastic Stress Distribution

Elastic stress distributions of thick-walled cylinders are investigated using equations of

elastic stresses (derived in Chapter 3) rewritten here as follows:

S: . F(P,,B,G))"}-G(P,ﬁ)PZ
‘Sg . H(paﬂ,®)+R(p>IB)Pi

S = M(p,B,0)+ N(B)P, (6.1)

where 5¢, S§ and S¢ are radial, tangential and axial stresses respectively. Taking into
account that P, is the dimensionless internal pressure and © is the non-dimensional
temperature gradient, then the elastic stresses are the sum of a mechanical and a
thermal stress component. If functions containing © are ignored in the above equation

then the results are only mechanical stresses due to P; written in the following form:

Sy = G(p, AL
S5 = R(p,B)P:

S; = N(B)F (6.2)
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If the terms containing P; are neglected in equation (6.1) then the remaining is only

thermal stresses represented by the following equation:

Sy = F(p,8,0)
S; = H(p,B,0)

S; = M(p,5,0) (63)

In this study mechanical stresses resulted from the critical inner pressure and thermal
stresses resulted from a thermal gradient of AT = 60°C as well as the combined effect
of internal pressure and thermal gradient on the elastic stress distributions of thick-
walled cylinders are considered. Critical pressure determines the maximum possible
elastic stresses in the cylinder which will be compared with plastic stresses. A temper-
ature gradient of 60°C can produce significant amount of thermal stresses and it will
be shown that this can cause plastic yielding to start from the outside surface of the

cylinder.

6.2.1 Mechanical Elastic Stress Distribution

Purely mechanical elastic stress distribution across the thickness of two different thick-
walled cylinders due to their critical inner pressures are calculated from equation (6.2)
and shown in Figures 6.1 (a) and (b). Radii ratio of these two cylinders are g = 1.2
(b/a=1.2) and B = 2 (b/a=2) which are the minimum and maximum radii ratio of
test specimens used in experimental investigations. The critical inner pressure of these

two cylinders are 0.176 oo and 0.433 op respectively. It is evident from Figures 6.1
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Figure 6.1: (a) Elastic stress distribution in thick-walled cylinders of radii ratio of

B =1.2and; (b) 8 =2.

(a) and (b) that the maximum tensile tangential stresses (¢¢) and the maximum com-
pressive radial stresses (o) are located at the inside surface of the cylinders (r/a=1).
The maximum compressive radial stresses at the inside surface of both cylinders are
equal to their respective internal pressure which is expected from the boundary con-
dition. Taking into account that the radial, tangential and axial stresses in a cylinder

are the three principal stress components, then the maximum shear stress, which is
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(06— 0,)/2, is also located at the inside wall of the cylinder (r/a=1). Therefore, in the
absence of thermal gradient, it is expected that plastic yielding will start at the inside
surface of the cylinder if internal pressure goes beyond the critical pressure. It is also
evident from the Figures 6.1 (a) and (b) that the axial stress (o) is the average of the
radial and tangential stress components. If the stress distribution across the thickness
of both cylinders are compared, a significant variation in radial and tangential stresses
are observed for the cylinder of 8 = 2 while the other cylinder (8 = 1.2) does not
exhibit any significant variation. In fact, the cylinder of §# =1.2is close to the margin
of thin cylinders (8 = 1.105, Roark (1975)) in which a uniform stress distribution have

been recommended by Roark (1975) for design purposes.

6.2.2 Thermal Elastic Stress Distribution

Thermal elastic stresses resulted from a 60°C thermal gradient due to an outward flow
of heat in the same thick-walled cylinders are illustrated in Figures 6.2 (a) and (b).
In the case of a pure thermal load, there is no tension or compression on the inside
and outside surfaces of the cylinders. Therefore, the radial stresses (o) are zero on
the boundary surfaces which satisfy this condition. It is evident that the thermal tan-
gential (o) and axial (o,) stresses are equal and compressive at the inside surface of
the cylinders and are equal and tensile at the outer surface of the vessels. To describe
this distribution, the cylinder can be considered as combination of a large number of

thin cylindrical shells. The interior layers of the cylinder which are located at higher
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Figure 6.2: (a) Elastic thermal stress distribution in thick-walled cylinders of f = 1.2

and; (b) g =2.

temperatures than the outer layers would have more expansion due to their higher
temperature if there was no constraint. However, the geometrical constraints imply
that the surfaces normal to the axial and tangential directions must remain plane. It
means, the higher expansion of the inside layers in axial and tangential directions are
counteracted by the less expansion of the outer layers located at lower temperatures
forcing the inner layers in compression while leaving the outer layers in tension until

a self-equilibrium condition is reached. The boundary at both inside and outside sur-



Chapter 6. Results and Discussions 151

faces is free of any external tension or compression and therefore, the expansion will be
equal in both axial and tangential directions which will produce equal tangential and
axial thermal stresses on both inside and outside surfaces. Finally, expansion in radial
direction is dominated by the contractions induced by the Poisson’s ratio due to the
net expansions in axial and tangential directions, thereby leaving a small compressive

radial stress throughout the cylinder wall.

6.2.3 Combined Mechanical and Thermal Elastic stresses

Combined effect of mechanical stresses due to the critical inner pressure and thermal
stresses due to a 60°C temperature gradient in the same thick-walled cylinders are

shown in Figures 6.3 (a) and (b).

To understand these stress distributions one can superpose the pure mechanical stresses
shown in Figures 6.1 on the pure thermal stresses shown in Figures 6.2 to obtain the
combined effect of mechanical and thermal stresses. Highly compressive axial and tan-
gential thermal stresses at the inside surface of the cylinders have decreased the effect of
high tensile tangential mechanical stresses at these surfaces. Effects of thermal stresses
at the outside surface of the cylinders are to increase the magnitudes of the tensile axial
and tangential stress components. It is clear from Figures 6.3 (a) that, in this loading
combination, the maximum shear stress (05 — 0,)/2) is located at the outside surface

of the thinner cylinder (8 = 1.2) which means plastic flow is more likely to start at the
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Figure 6.3: (a) Elastic thermal stress distribution, (b) Elastic stress distribution in the

presence of a thermal gradient

outside surface of this cylinder. This is not the case for the thicker cylinder (8 = 2) as
Figures 6.3 (b) indicates that the maximum shear stress is located at the inside surface

of this cylinder.

The elastic stress distribution of thick-walled cylinders with and without the effect of
thermal stresses is helpful in understanding the critical conditions. Critical conditions

of thick-walled cylinders are investigated for a wide range of thermal gradients and
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radii ratios which are important for practical applications and are discussed below.

6.3 Results from Critical Condition

The critical condition for many practical loading combinations and radii ratios is inves-
tigated using the critical condition equation rewritten here (discussed earlier in chapter
3) as follows:

A(p, B)P + B(p, 8,0, P.)P: + C(p, ,0,P,) = 0 (6.4)

Many variables such as p (dimensionless radius), § (radii ratio), © (dimensionless
temperature gradient), P, (dimensionless outer pressure) and P; (dimensionless inner
pressure) are involved in this equation. In general, any combination of these vari-
ables which satisfies the above equation can cause the critical condition for plastic
yielding to occur anywhere in the cylinder wall thickness. In practice, most of the
thick-walled cylinders are used as a pressure vessel component containing high internal
pressure without any external pressure. For this reason, the effect of external pressure
on the critical condition is not considered in this investigation. Therefore, there are
four variables: P;, p, # and © involved in the equation (6.4). Since the values of O,
dimensionless temperature gradient does not indicate the magnitudes of temperature
gradients, it was decided to use the specific values of temperature gradients in °C on

all graphs and discussions rather than its non-dimensional representation 0.

In a thick-walled cylinder with a uniform outward flow of heat © and § are constant

and P; and p are variables in equation (6.4). Then the minimum value of the inter-
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nal pressure (P;) satisfying the equation (6.4) is called the critical pressure and the
value of p in which this minimum condition occurs is the starting surface of plastic
yielding. For a better understanding of the critical pressure, the variable internal pres-
sure (P;), which satisfies equation (6.4), is plotted against p (dimensionless radius) at
various constant temperature gradients from 0°C' to 100°C' and a constant radii ratio

of B = 1.2 (Figure 6.4 (a)).

This figure shows that at lower temperature gradients
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Figure 6.4: (a) Internal pressure satisfying von Mises condition at various temperature
gradients; (b) Critical condition for simultaneously yielding (p = 1 represents the inner

surface and p = 1.2 represents outer surface of the cylinder).

minimum values of the internal pressure which satisfy the critical condition are located
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at p = 1 which means yielding starts at the inner surface of this cylinder in these load-
ing conditions. It can be interpreted that, in these loading conditions the combined
effect of thermal and mechanical stresses is such that the Mises effective stress at the
inside surface of the cylinder is greater than or equal to the material uniaxial yield
stress and therefore, yielding starts at the inside surface of the cylinder. However, at
higher temperature gradients, the minimum values of the internal pressure are located
at p = 1.2 and therefore yielding starts at the outer surface of the cylinder for higher
thermal gradients. In fact, the resultant effect of thermal and mechanical stresses is
an effective stress which is greater than or equal to the yield stress at the outer surface
of the cylinder in these loading conditions and therefore yielding starts at the outer
surface of the vessel. These results are also consistent with the results of the elastic
stress distribution already shown in Figure 6.1 (a) and 6.3 (a). It is also concluded
from Figure 6.4 (a) that there is a loading condition in which the whole thickness of the
cylinder will yield simultaneously. This loading condition is shown in Figure 6.4 (b)
in which an internal pressure of 0.210500 and a temperature gradient of 36.5 °C will
cause the whole thickness to yield simultaneously. In this case, the combined effect of
thermal and mechanical stresses is such that the effective Mises stress is uniform across
the thickness and its magnitude is greater than or equal to the yield stress. A reference
pressure(0.210507), independent of temperature, has been identified in Figure 6.4 (a)
and (b) which represents the critical pressure for the condition in which the whole

thickness will yield simultaneously.
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A similar plot of the internal pressure satisfying equation (6.4) for a cylinder of 8 =2

is shown in Figure 6.5. The temperature gradients are the same as those selected for
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Figure 6.5: Internal pressure satisfying von Mises condition at the same temperature

gradients in thick-walled cylinder of 3 = 2

Figure 6.4(a). The reference pressure can also be identified as the pressure of point
“A” which indicates the critical pressure at which the whole thickness of the cylinder
will yield simultaneously. Furthermore, the figure shows that, for the case of g = 2,
yielding starts at the inner surface of the cylinder for all selected temperature gradi-
ents, because all minimum values of the internal pressure are located at p = 1 for the
selected temperature gradients. This is also consistent with the results of the elastic

stress distribution already shown in Figure 6.1 (b) and Figure 6.3 (b).
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A computer program has been developed in this investigation to calculate the critical
pressures for a wide range of practical temperature gradients and radii ratios (Appendix
A). In order to show the effect of radii ratio on the critical pressure, the critical inner
pressures at various temperature gradients, obtained from the computer program, are

plotted against radii ratios in Figure 6.6. This figure shows that, except for a small

Critical pressure (P.i./oq)

Radii ratio B

Figure 6.6: Critical pressures versus radii ratio for various temperature gradients

range of low radii ratios, higher temperature gradients tend to increase the critical pres-
sure. An important and identical characteristic among all the above curves is that the
changing rate of the critical pressure with respect to radii ratio substantially decreases

with increasing radii ratio and finally approaches to zero where the curves approach to
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a constant value. In the case of zero temperature gradient this constant value is shown
in Figure 6.6 and is about 56% of the yield stress. It means that, il inner pressure is
56% of the yield stress, yielding is definitely to take place in the cylinder, no matter
what the wall thickness of the cylinder is. In cylinders of lower radii ratios (ranging
from 1.2 to 2.4), in which the changing rate of critical pressure is high, increasing the
radii ratios of the cylinders significantly increases their critical pressures and improves
their performances. While in cylinders of high radii ratios increasing the radii ratios of

the cylinders do not substantially improve their performances.

As an example, let us consider a cylinder with an inner radius of 10 cm and an outer
radius of 12 cm, the radii ratio of which becomes 1.2. The critical pressure of this cylin-
der in the absence of a thermal gradient is 0.1764¢, (calculated from equation (6.4)).
To improve the critical pressure of the vessel if we consider a cylinder with the same
inner radius of 10 cm and an outer radius of 24 cm, the radii ratio of which is 2.4,
twice of the previous vessel, then the critical pressure of the new improved vessel in the
absence of thermal gradient is 0.4771c,. Therefore, the critical pressure is improved to
2.7 times of the previous vessel which means a 170% increase in the critical pressure.
However, if a cylinder with the same inner radius of 10 cm and the outer radius of 48
cm, twice of the second cylinder, is considered, then the critical pressure of the third
cylinder is 0.55230¢ which is just 15% more than the critical pressure of the second
vessel. Therefore, increasing the radii ratio of the cylinder in this case does not sub-

stantially improves the critical pressure.
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Effect of temperature gradient on the critical condition is also investigated and illus-

trated in Figure 6.7. In this figure critical pressures are plotted against temperature
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Figure 6.7: Critical pressures versus temperature gradient for a wide range of radii

ratios.

gradients for a commonly used range of radii ratios. All the curves exhibit a maximum
critical pressure which is, in fact, the previously identified reference pressure and be-
longs to the condition in which the whole thicknesses yield simultaneously. The locus
of these maximum critical pressures is a straight line (AB) which divides the graph
into two distinct regions. All points to the left of this straight line, AB (left region)

represent conditions in which yielding starts at the inner surface of the cylinder. In



Chapter 6. Results and Discussions 160

these loading conditions the combined effect of compressive thermal stresses and the
mechanical stresses at the inside surface of the cylinder is such that the resultant Mises
effective stress is greater than the yield stress in this region. Therefore, yielding starts
at the inner surface. All points to the right of the dividing line (i.e, right region) belong
to conditions in which yielding starts at the outer surface of the cylinder. It means, in
these loading conditions the combined effect of thermal and mechanical stresses at the
outer surface of the cylinder is such that the resultant Mises effective stress is greater
than yield stress and therefore yielding starts at the outer surface of the cylinder. Along
this border line between the regions the whole thickness yields simultaneously. This
means, the resultant of thermal and mechanical stresses is a uniform effective stress
across the thickness which is greater than or equal to yield stress and therefore the
whole thickness yield simultancously. Furthermore, it is evident from Figure 6.7 that
the normal distances (Ah) between the lines of critical pressures for various radii ratios
are decreasing with increasing radii ratio, while in general, critical pressure is increas-
ing with increasing radii ratio. It has already been shown (in the example discussed
earlier) that increasing the radii ratio at lower levels substantially increases the critical
pressure of the cylinder, while this rate is low at higher radii ratios. Therefore, the
higher normal distance Ah between the lines of critical pressures at lower radii ratios
can be best described by the changing rate of critical pressure with respect to radii
ratio (Figure 6.6). Critical pressures for a wide range of radii ratios from 8 = 1.2 to
B = 2 are investigated experimentally and the method of experimentation has already

been discussed in previous Chapter 5. The results are compared with the theoretical
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values obtained from equation (6.4) as shown below in Figure 6.8. Experimental results

are in good agreement with the theoretical values predicted by equation (6.4).
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Figure 6.8: Comparison of the experimental critical pressures and numerical values

However, as the figure shows, for the cylinders of lower radii ratios the accuracy of the
results is higher than the vessels with higher radii ratios. To describe this, a plot of
the axial and tangential total strains (e, and eg) of the minimum and maximum exper-
imented radii ratios of 8 = 1.2 and 8 = 2 are shown in Figure 6.9. If the outer surface
strains at points A and B in Figures 6.9 (a) and (b) are compared , the value of axial
and tangential strains of the thinner cylinder (8 = 1.2) are three times greater than

the thicker one (8 = 2), both of which are at the onset of yielding from their inside
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Figure 6.9: (a) Axial and tangential elastic strain distribution across the thickness of

the cylinders with 8 = 1.2 and; (b) 8 =2

surfaces. Therefore, the measurements of strains at the outer surface of the thinner

cylinderaremuch more accurate than the thicker one. So we must expect less accurate

results for the critical pressure of thicker cylinders, because the prediction of critical

pressure is based on the outer surface strain measurements.

If internal pressure greater than the critical pressure is applied to the cylinder, then

plastic flow will occur in the cylinder wall. Numerical procedure for the computation
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of plastic stresses and the subsequent residual stresses have lready been verified exper-
imentally and the results obtained from this procedure are discussed in the next two
sections. The result of plastic flow and the residual stresses can be obtained for any
radii ratio, temperature gradient and internal pressure. However, the results reported
in the next section is mainly discussed for a special radii ratio of 8 = 2 which is similar
to a gun barrel. Then the results can particularly be used for the autofrettage of gun
barrels since the real material properties including the Bauschinger effect phenomenon
have been used to predict the elastoplastic and residual stress distributions as well as

the onset of reverse yielding in this particular cylinder.

6.4 Plastic Stress Distribution

Results of the analytical-numerical method developed for the prediction of plastic stress
and strains as well as the residual stress distribution are discussed in this section. It is
difficult to verify the plastic stress and strain distribution throughout the wall thickness
of the cylinder by direct measurements. Measurements of the internal surface deforma-
tion of the cylinder are also difficult because of the high applied internal pressure and
the problems of cylinder sealing. The only way to verify the results of the proposed
procedure is by measurements of the outer surface deformation of the cylinder while
internal pressure is increasing monotonically. In this way experimental values of axial
and tangential strains at the outer surface of the cylinder are measured by the strain

gauges while the internal pressure is measured by a digital pressure transducer. Experi-
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mental results of the pressure-expansion tests are compared with those values predicted
by the numerical model. There is a good agreement between the experimental results
and the numerical results predicted by the proposed procedure as it has already been
shown in Figure 5.8 (a) and (b) in the previous Chapter. It is also justified to assume
that the axial plastic strain is not zero as it has been assumed by all the previous in-
vestigators. It is true that the axial strain is small while comparing with the tangential
plastic strain component; however, the experimental results show that it is not zero
(Figure 5.8 (b)). Therefore the numerical model based on the generalized plane strain
case, developed in this investigation, can be best satisfied by the experimental results.
Elastoplastic stress distribution across the thickness of the cylinder is shown in Fig-
ure 6.10 (a). In order to compare the results of elastic-plastic and elastic cylinder, the
clastic stress distribution of the same cylinder at the onset of plastic yielding is re-
plotted with the same scale in Figure 6.10 (b). Let’s first consider the effect of plastic
flow on the stress distribution of the plastic region of the elastic-plastic cylinder. To
justify this distribution, suppose the cylinder is made up of a large number of thin
co-axial cylinders and the internal hydraulic pressure is increasing step by step using
a high-pressure hydraulic pump (similar to the way we carried out the experiments).
As a result of high internal pressure, which is more than critical pressure, a number
of inside layers of the cylinder are in plastic regime, while the bulk of the cylinder
material is still in elastic regime. Therefore, there is an elastic and a plastic region at
the same time in the cylinder both of which have a different rate of deformation. Apart

from the irreversibility of plastic strains in plastic regime, another important distinc-
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Figure 6.10: (a) Elastoplastic stress distribution across the thickness of a 45% over-

strained cylinder; (b) Elastic stress distribution of the same cylinder

tion between plasticity and elasticity is that the rate of deformation is much higher
in the plastic regime than the elastic regime because the tangent modulus (slope of
the stress-strain curve beyond the elastic limit) is less than the modulus of elasticity.
It means, the inside layers of the cylinder must experience more deformation, in the
tangential and axial direction, than if they would be in the elastic situation. This
is not consistent with the elastic part of the cylinder. Deformations in the plastic and

clastic region are not consistent, while the geometrical constraint imply that the planes
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normal to the axial and tangential directions must remain plane. Therefore the plastic
region, with higher rate of deformation will be pressed down by the dominant elastic
region, decreasing its tensile stresses, while the elastic region itself will be stretched
by the reaction force until a balance is reached and the geometrical constraint is satis-
fied. This can be clearly seen by comparing Figures 6.10 (a) and (b). At early stages
of the plastic flow, when the bulk of the cylinder material is in elastic regime, then
the elastic region will significantly hamper the higher deformation rate of the small
plastic region at the inside layers. , thus decreasing the axial and tangential stresses
significantly. That is why the tangential and axial stresses are decreasing at the inside
layers. However, when the plastic region progresses more and more then the higher
plastic deformation will dominate the lower elastic deformation. So stretching up the

elastic layers and progressing toward the outer surface of the cylinder can be seen

Let’s now consider the contribution of radial stresses in the elastic-plastic deformation
of the cylinder. Obviously the radial compressive stress at the inside surface of the
cylinder must always be equal to the internal hydraulic pressure and at the outer sur-
face must be zero because there is no external pressure acting on the outer surface of
the cylinder and is distributed throughout the wall between these two extremes. There-
fore increasing internal hydraulic pressure beyond the critical values will increase the
magnitude of the compressive radial stress at the inside surface of the cylinder. More
compression in radial direction from the inside surface will give more lateral extension

in the other two principal directions, axial and tangential, and giving more potential
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for plastic flow to progress through the cylinder wall. Another important point here
is that the lateral extension resulted from the radial compression is 72.4% higher in
the plastic region than the elastic region. This may be more clear by comparing the
non-linear incremental stress-strain relationship used to obtain the above solution and

the elastic stress-strain relationship in the following form:

(a) non-linear incremental stress-strain relationship:

de 1
it = Lo, Lor+o)
de 1
del, = Plog — 5(02 + a,)]
d 1
del = oz~ 5(or+00)] (6.5)

e

(b) elastic stress-strain relationship:

€ = E[UT —v(og + 0,)]
€g = %[0’9 —v(o, + 0,)]
5 = %[02 _ v(or +0)] (6.6)

In equation (6.6), the Poisson’s ratio v defines the contribution of deformation in one
principal direction to the deformation of the other two principal directions. The Pois-
son’s ratio of the cylinder material is v = 0.29. Comparing with the above non-linear
incremental stress-strain relationship (equation (6.5)), one can realize that, in plas-
tic regime, the contribution of deformation in one direction to the lateral directions

is given by the fraction 1 or 0.5 instead of v, which is 72.4% (%5222 higher than
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elastic situation. Now it is clear that increasing the internal pressure of the cylinder
will increase the compressive radial stress. More compression in radial direction will
give more lateral extension to the axial and tangential directions thus giving further

potential to plastic region to overrun the elastic region.

Elastic-plastic boundary can be easily identified in Figure 6.10 (a) as shown with a
vertical dashed line. On the elastic-plastic boundary, the material is at the verge of
yielding, the condition which has been used to locate the elastic-plastic interface. Elas-
tic stress distribution in the elastic region of the elastic-plastic cylinder (Figure 6.10 (a))
is similar to the elastic stresses of an elastic cylinder (Figure 6.10 (b)). An important
conclusion can be made here from the stress distribution pattern in the plastic region
of the cylinder. Taking into account that the radial, tangential and axial stresses (o,
o¢ and o) are three principal stress components, then it can be concluded from the
Figure 6.10 (a) that the maximum shear stress ((op — 0v)/2) is uniformly distributed

throughout the plastic region of the cylinder.

For the case of a fully plastic cylinder (the stress distribution of which is shown in Fig-
ure 6.11) this uniform shear stress is distributed throughout the wall thickness of the
cylinder. The initial elastic stress distributionsshown in Figure 6.10 (b) are compared
with the fully plastic stress distributions shown in Figure 6.11. As a result of plastic
flow, the maximum tensile tangential and axial stresses are shifted from the inside sur-

face of the cylinder to the outer surface of the vessel. The maximum compressive radial
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Figure 6.11: Fully plastic stress distribution across the thickness of the cylinder.

stress is always located at the inner surface of the cylinder and is equal to the internal
pressure of the cylinder regardless of elastic or plastic condition. The axial stress is

nearly the average of radial and tangential stress components in both elastoplastic and

fully plastic condition of the cylinder.

To show the effect of plastic flow on each individual stress component, the tangential
stress distributions at four subsequent loading steps from the initial elastic to fully
plastic condition are plotted across the thickness of the cylinder (Figure 6.12). As

a result of plastic flow in the cylinder, the tangential stress component at the inside
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Figure 6.12: Elastoplastic tangential stress distributions across the thickness of the

cylinder at four subsequent loading steps

surface of the cylinder is decreased comparing with its initial elastic situation. This
has already been interpreted as the effect of geometrical constraint which imposes a
balance between the higher plastic deformation rate of the internal layers and the
lower elastic deformation rate of the outer layers. . and, pushing down the plastic lay-
ers, while stretching up the elastic layers. It is also interesting to compare the elastic
tangential stresses in the elastic region of the elastic-plastic cylinder with their initial
elastic distribution (Figure 6.12). Because of the higher deformation rate in plastic

region and the effect of geometrical constraint, the elastic layers of the elastic-plastic
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cylinder are stretched up and therefore the elastic tangential stresses in elastic-plastic
vessel are higher than the initial elastic situation and ready to yield. The maximum
tangential stress is located at the inside surface of the initial elastic cylinder (point A
in Figure 6.12) while in the fully plastic condition it is located at the outer surface
of the cylinder (point B in Figure 6.12). The maximum tangential stress at the outer
surface of the fully plastic cylinder is very high in magnitude. It is almost four times of
its initial elastic value and nearly twice of the initial maximum elastic tangential stress
and 1.2 times of its material yield stress. Therefore, it is clear that any longitudinal
crack at the outer surface of a fully plastic cylinder, normal to the tangential direction,
can be quickly propagated throughout the thickness of the cylinder because of very
high tensile tangential stress at the outer surface of the cylinder as well as its high

tensile magnitude throughout the whole thickness.

Variations of radial stresses across the thickness of the cylinder during the process of
plastic flow are shown in Figure 6.13. Radial stress must satisfy the boundary condi-
tion at the inner and outer surfaces, therefore it must be zero at the outer surface of
the cylinder and must be equal to the internal pressure aft the inner surface. It is dis-
tributed in compression between these two extremes. This distribution can be justified
in two ways. First of all, there is a significant rise in magnitude of the radial stress
component (Ao, in Figure 6.13) as the plastic flow progresses from the initial elastic
situation to a 45% overstrained condition. While this rise in radial stress is much less

when plastic flow progresses from the 45% overstrained condition to the fully plastic
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Figure 6.13: Elastoplastic radial stress distributions across the thickness of the cylinder

during plastic flow

situation (Figure 6.13). It is because, at early stages of plastic flow in the cylinder, de-
formation is controlled by the dominated elastic region which is larger than the plastic
region and therefore strongly hampers the progress of plastic zone. On the other hand,
at early stages of plastic flow, the rate of pressure rise must be higher to overcome the
elastic domination. Therefore, the radial stresses at the inner surface of tube shows a
higher increase at early stages of plastic deformation. However, at later stages of plas-
tic flow when deformation is controlled by the dominated plastic region, small increase

of the internal pressure can have a significant progress of plastic zone. Furthermore
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Figure 6.13 shows that a 32% increase in internal pressure from 0.420¢ at point B to
0.740 at point C (0.74-042=0.32), will cause 45% of the cylinder to deform plastically.
But the remaining 55% elastic region will collapse to plastic regime just by a 16% rise
in internal pressure from 0.740q at point C to 0.90¢ at point D (0.9-0.74=0.16), which
is half of the previous growth in internal pressure. This can also be interpreted by the
decreasing rate of internal pressure with progress of elastic-plastic boundary shown in

Figure 6.14. The progress of plastic zone can be justified by considering point A in
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Figure 6.14: Variation of internal pressure versus elastic-plastic boundary

Figure 6.13 representing the elastic-plastic boundary of 45% overstrained cylinder. If

45% of the cylinder is yielded, the remaining 55% is in elastic condition. If we con-

sider the remaining elastic cylinder as a new elastic cylinder with a radii ratio of 1.38
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(2/1.45=1.38), then the critical inner pressure of this new cylinder is calculated from
equation (6.1) and is equal to 0.280¢. The radial stress at the elastic-plastic boundary
(the value of radial stress at point A) must be equal to the critical pressure of this new
clastic cylinder. And this is the case, because the radial stress at point A is also equal
to 0.280,. Therefore, the radial stress distribution and the progress of plastic zone are

justified.

Variation of elastic and fully plastic axial stresses across the cylinder thickness are

compared in Figure 6.15. As a result of plastic flow, the axial stress component has
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Figure 6.15: Elastic and fully plastic axial stress distributions across the thickness

been increased at the outer surface while its magnitude has been decreased at the inner
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surface of the cylinder. The reason has already been discussed and will not be repeated
here again.
Effects of temperature gradient on the plastic flow of thick-walled cylinders are dis-

cussed in the next section.

6.4.1 Effect of Temperature Gradient on Plastic Stresses

Effect of temperature gradient on the elastic stress distribution of thick-walled cylinders
has already been discussed by superposing a pure thermal stress on the mechanical
stress distribution resulted from an internal pressure. For understanding the result of
plastic flow in the cylinders subjected to an internal pressure and a thermal gradient,
one should consider the combined effect of thermal stresses and the mechanical stresses.
Thermal stresses are resulted from an outward flow of heat with a 60°C' temperature
gradient. Tt is clear that the inner layers of the cylinder which are located at higher
temperatures should have a higher deformation than the outer layers of the cylinder,
thus helping the inside plastic layers to progress much quicker. To show this, variation
of internal pressure with progress of plastic zone across the thickness of the cylinder
with and without the effect of a thermal gradient are compared in Figure 6.16. In the
presence of a temperature gradient smaller pressure differential is needed for an equal
progress of plastic zone. On the other hand, with an equal increase of internal pressure
the cylinder with temperature gradient will develop a larger plastic zone than the

cylinder without thermal gradients. Thermal stresses increase the critical pressure of
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Figure 6.16: Progress of plastic zone across the thickness of the cylinder with and

without the presence of a thermal gradient

the cylinder, as Figure 6.16 shows the critical pressure of the above cylinder is 0.57800
(point A) with the effect of thermal stresses and is 0.4330¢ (point B) without the effect
of it. However, thermal stresses will facilitate the progress of plastic zone. To show
the effect of thermal stresses on the plastic stress distribution of thick-walled cylinders,
elastoplastic and fully plastic stress distributions of the same cylinder in the presence

of a thermal gradient are shown in Figure 6.17 (a) and (b).

Let’s first consider the case of a 45% overstrained condition shown in Figure 6.17 (a).
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Figure 6.17: (a) Thermoelastoplastic stress distribution across the thickness of a 45%

overstrained cylinder; (b) Fully thermoplastic stress distribution across the thickness.

For a physical interpretation of the elastic-plastic stress distribution of this case, it
is assumed that the cylinder is made up of a large number of thin cylinders free of
constraint. Then the inner layers of the cylinder which are subjected to higher tem-
peratures should have more expansion than the outer surface layers located at lower
temperatures. Furthermore, yielding also starts at the inner layer of the cylinder in
this loading condition as it has already been discussed. So the inside layers would have

again more deformation than the outside elastic layers due to the higher deformation of
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the plastic region. However, the geometrical constraintimpliesthat the surface normal
to the axial and tangential directions must remain plane. Thus the elastic region will
be more stretched up while the plastic region will be more compressed down until a
balance is obtained and the geometrical constraint is satisfied. Comparing this case,
with the similar case in which there is no thermal stresses, Figure 6.10 (a), one can
find that the axial and tangential plastic stresses with the effect of a thermal gradient
are lower at the inside surface of the cylinder due to more constrainted compression
on this region. It is pointed out that the combined effect of higher thermal expansion
and higher plastic deformation at the inside layers of the cylinder will give a higher
potential for plastic flow to progress toward the outer surface of the cylinder as it has
already been discussed and shown in Figure 6.16. However, the plastic flow has the
same effect of uniform maximum shear stress distribution throughout the plastic region
of the cylinder. In the case of a fully plastic vessel the maximum shear stress is uni-
form throughout the thickness of the cylinder (Figure 6.17 (b)). Stress distribution in
the elastic region of the elastoplastic cylinder is similar to an elastic cylinder with the
combined effect of thermal and mechanical stresses which has already been discussed

and shown in Figure 6.3 (b).

To show the effect of plastic flow on each individual stress component in the presence
of a thermal gradient, radial and tangential stress distributions of four loading steps
(from the initial elastic to fully plastic condition) are plotted across the thickness of the

cylinder in Figure 6.18 (a) and (b). As the result of plastic flow, maximum tangential
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Figure 6.18: (a) Thermoelastoplastic tangential stress distributions across the thick-

ness; (b) Thermoelastoplastic radial stress distributions across the thickness.

stress at the outside surface of the fully plastic cylinder (point A)is almost twice of its
initial elastic value (point B). Although there is a significant increase in the tangential
stress component at the outer surface of the cylinder, but a small reduction of this
component has occurred at the inside surface of the cylinder (Figure 6.18 (a)). How-
ever, the designers of pressure vessel must consider the existence of such a high tensile
tangential stress which is distributed throughout the wall thickness of the cylinder, and

the maximum of which is located at the outer surface.
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Radial stress is equal to the internal pressure at the inside surface of the cylinder and is
equal to zero at the outer surface of the cylinder which satisfies the boundary condition.
In this case also, there is a substantial rise in magnitude of the radial stress component
as the plastic flow progresses from the elastic situation to a 45% overstrained condi-
tion. While this is much less when plastic flow progresses from the 45% overstrained
to the fully plastic condition. This can also be interpreted as the domination of elas-
ticity at early stages of plastic flow and the plastic domination at later stages of plastic
flow. However, in this case the growth in magnitude of the radial stresses between
the subsequent loading steps is less than the case of zero thermal gradient shown in
Figure 6.13. This is because, progress of plastic zone with the presence of thermal
gradients is higher, as it has already been discussed and shown in Figure 6.16.

The residual stresses resulted from the subsequent unloading of the elastoplastic cylin-

ders are considered in the next section.

6.4.2 Residual Stresses and the Bauschinger Phenomenon

If at any stages of plastic flow in a cylinder, the internal pressure is released, then
there will be a distribution of residual stresses throughout the thickness of the vessel.
In fact, the action of the elastic region to return back to its original configuration
is counteracted by the plastic region which has developed irreversible plastic strains.

On the other hand, the plastic region will be compressed by the elastic region until a
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self-equilibrium condition is obtained throughout the cylinder thickness. Introducing a
compressive region at the inside wall of a cylinder which is the location of a high tensile
tangential stress resulted from an internal pressure (Figure 6.1 (b)) is beneficial to the
life extension and durability of the cylinder. It is not only the compressive region at
the inside wall of the cylinder which is beneficial, but also the higher elastic limit of
the inside material which has taken advantage of the material’s strain-hardening effect
is another important privilege of the residual stresses. This can be more clear by com-
paring the initial yield stress at point A and the subsequent yield stress atpoints B and

C of the material behaviour shown in Figure 6.19. The advantage of the compressive
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Figure 6.19: Initial and subsequent yield stress of the material

residual stresses will be decreased if reverse yielding occurs in the cylinder, as it has
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been shown by Chen (1986). An important parameter which should be considered in
reverse yielding predictions is the Bauschinger effect factor (BEF"). The material’s
BEF is obtained experimentally as it has already been discussed in previous Chapter.
To show the significant effect of the Bauschinger phenomenon on the residual stress
distribution, residual stresses with and without the effect of Bauschinger phenomenon
are compared in several figures in this section.

Residual stress distributions resulted from unloading of a 45% overstrained cylinder
as well as the fully plastic vessel are shown in Figure 6.20 (a) and (b). Let’s first
consider the residual stress distribution shown in Figure 6.20 (a). Distribution of
residual stresses can be clearly distinguished in the plastic and elastic regions of the
elastic-plastic cylinder by the vertical dotted line shown on this figure. The residual
tangential and axial stresses are highly compressive at the inner surface of the cylinder.
This can be interpreted by the irreversibility of plastic strains in the plastic region of
the cylinder. Suppose the cylinder is made up of a large number of thin cylinders
free of constraint. When the load (internal pressure) is released in an elastic-plastic
situation, the outer layers of the cylinder which are still in an elastic condition would
return back to their original configuration while the inner layers of the cylinder which
have developed plastic strains would not be able to return back to their original con-
figuration. However, this incompatibility of deformation can not be tolerated by the
geometrical constraint. The constraint imply that the planes normal to the axial and
tangential directions must remain plane. On the other hand, the plastic region with

larger deformation will be compressed down by the elastic region, while the elastic
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Figure 6.20: (a) Residual stress distribution at the onset of reverse yielding with the
consideration of the Bauschinger effect factor; (b) Residual stress distribution by ig-

noring the Bauschinger effect factor.

region will be stretched up by the reaction force until a self-equilibrium condition is
reached. For this reason, the inner layers of the cylinder which have developed more
plastic strains during elastic-plastic deformation, will be highly compressive as shown
in Figure 6.20 (a). Residual stress distributions in the elastic region of the cylinder is

similar to the distribution of elastic stresses in an elastic cylinder.
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The residual radial stress must satisfy the boundary condition of an unloaded vessel.
There is no internal and external pressure on the inner and outer surfaces of an unloaded
cylinder and therefore the radial stress will be zero on both surfaces. It is compres-

sive throughout the thickness the reason of which will be discussed later in this section.

In the light of such a residual stress distribution, it is clear that the inner surface of the
cylinder is more likely to yield because the maximum value of shear stress ((o, —09)/2)
is located at this surface. If the effective Mises stress at the inner surface of the cylinder
becomes equal to the reverse yielding stress of the material then the inner surface of
the cylinder is at the onset of reverse yielding. The reverse yielding stress depends on
the BEF. The BEF depends on the amount of effective plastic strain in the plastic
region of the cylinder as it has already been formulated in Chapter 1 and represented

by the following continuous function.

BEF = 1.0170029 + 0.36592732(e, %) — 0.0025343135(¢, %) — 0.97738304(e,%)"°

(6.7)
The BEF is variable during loading history of the cylinder, because the amount of
effective plastic strain is variable for the plastic region of the cylinder during loading.
Variation of BEF at the inner surface of the cylinder during progress of plastic zone
is shown in Figure 6.21. For the particular case of 45% overstrained condition the
magnitude of BEF at the inner surface of the cylinder is represented by its value at
point E in this figure. Variation of the BEF" at the inner surface of the cylinder has been

calculated during the loading history and the reverse yielding has been investigated
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Figure 6.21: Variation of the Bauschinger effect factor at the inside layer of the cylinder

versus the location of elastic-plastic boundary

using the von Mises criterion as follows:
(ST — )2 + (S5 — ST + (S — S1)? = 2 BEF)? (6.9)

This equation has been satisfied for the residual stresses obtained from 45% overstrained
condition. Therefore, it is concluded that the residual stress distribution obtained from
45% overstrained condition (Figure 6.20 (a)) is at the onset of reverse yielding at the

inside surface of the cylinder.

If the Bauschinger effect factor is ignored, even residual stresses obtained from the fully
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plastic cylinder (Figure 6.20 (b)) are not at the onset of reverse yielding with all the

same that their magnitudes are nearly twice of the 45% overstrained condition.

Variations of residual tangential stresses obtained from three different overstrained con-

ditions are shown in Figure 6.22 (a) and (b). Figure 6.22 (a) representing progress of

o o
. o) : T
! AT=0°C - AT=0"C
14% overstrain 45% overstrain
S 30% overstrain | oo 75% overstrain
| ————— 45% overstrain, L - fully plastic

| and onset of reverse _|
| yielding considering
| Bauschinger effect

0.5
0.5

0
0

.5
.5

=0
-0

Residual tangential stresses ogy/0,
Residual tangential stresses oy/0,

-1.0
-1.0

(=Y
=
-

(=]
(=Y
(8]
N

.0 1.5 2.0 .0

r/a r/a

(a) (b)

Figure 6.22: (a) Residual tangential stress distribution at the onset of reverse yielding
with the consideration of the Bauschinger effect factor; (b) Residual tangential stress

distribution by ignoring the Bauschinger effect factor.

residual tangential stresses with considering the Bauschinger effect factor. In this case

the maximum permissible tangential component of residual stresses at the onset of re-
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verse yielding, which belongs to a 45% overstrained condition, is shown with a dashed
line in this figure. As it is expected, when the plastic region progresses more and more
during loading, then the subsequent residual stresses will also be more compressive at
the inside layers of the cylinder and will be more tensile at the outer layers. This is
because, there will be more incompatibility of deformation between the inner plastic
region and the outer elastic region which implies more constraint compression on the
inside layers and thus more stretching of the outer layers of the cylinder. However,
if the normal distances between the two subsequent residual stress distribution shown
in Figure 6.22 (a) are considered, then it can be concluded that the growing rate of
compressive tangential stresses at the inside layers of the cylinder is decreasing, while
it is increasing in the elastic region with progress of plastic zone. This can be inter-
preted as the domination of plastic deformation at later stages of plastic flow in the
cylinder and thus a decreasing rate of deformation incompatibility between the inside
and outside layers. The elastoplastic interface is clearly distinguishable in these figures
where the slope of the curves change significantly. Residual stress distribution in the
elastic region is similar to an elastic cylinder stress distribution. If the Bauschinger ef-
fect factor is ignored then the elastic residual tangential stresses at higher overstrained
conditions are shown in Figure 6.22 (b). In this case the subsequent residual stresses
of a fully plastic cylinder are not at the onset of reverse yielding as it has already been
discussed. Therefore, there will be a great mistake in the residual stress distributions

if the Bauschinger effect factor is ignored.
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Residual radial stresses of the same overstrained conditions are compared in Figure 6.23

(a) and (b). Residual radial stresses are zero at the inside and outside surfaces of the
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Figure 6.23: (a) Residual radial stress distribution at the onset of reverse yielding with
the consideration of the Bauschinger effect factor; (b) Residual radial stress distribution

by ignoring the Bauschinger effect factor.

cylinder because there is no internal or external pressure on the cylinder surfaces, after
the load is released. These residual radial stresses are all compressive throughout the
cylinder thickness. These compressive stresses can be described in the following way.
When an elastic-plastic cylinder is unloaded, it will never return back to its original

configuration because of the irreversible plastic strains. Therefore, the net deforma-
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tion is extension in axial and tangential directions. Extension in these two directions
will cause contraction on the lateral radial direction proportional to the Poisson’s ra-
tio. Therefore the resultant residual radial stresses will be compressive throughout the

whole thickness of the cylinder for all unloading stages.

The maximum permissible elastic residual radial stress with the Bauschinger effect is
shown in Figure 6.23 (a) with a dashed line. This relatively small magnitude of residual
radial stress belongs to a condition which is at the onset of reverse yielding because
of the Bauschinger effect factor. While, higher magnitudes of residual radial stresses
(Figure 6.23 (b)) are not even at the verge of reverse yielding because of ignoring the
Bauschinger effect factor. Therefore, Bauschinger effect factor has a significant effect
on the prediction of reverse yielding in thick-walled cylinders. A plot of critical pres-
sures for direct and reverse yielding with the effect of Bauschinger phenomenon for
prediction of reverse yielding in the most commonly used radii ratios is shown in Fig-
ure 6.24. The normal distance between these two extreme lines of direct and reverse
critical pressures (AP, in Figure 6.24) is the maximum permissible range of pressure

growth beyond which reverse yielding will take place in the cylinder wall.

In the next section the results obtained for the time-dependent creep stresses and the

subsequent creep damages as well as the remaining life evaluations are discussed.
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Figure 6.24: Critical pressures for direct and reverse yielding

6.5 Results of Creep Stress and Damage Analysis

6.5.1 Introduction

Thick-walled tubes are often used to withstand the high operating pressures and high
temperatures of power stations. In such an environment deformation of the tube is
dominated by the time-dependent process of creep. During normal operation of the
plant the temperature between the inner and outer surfaces of the tube reach a steady
state condition similar to the assumption which has been made in the formulation of

the creep problem in this investigation. Results of the proposed analytical-numerical
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model which has been developed in this investigation for the computation of creep
stress and damage histories are discussed in this section. The history of creep stresses
and creep damages of thick-walled tubes are important in the life assessment and for
the routine inspection of high-temperature high-pressure tubes to avoid unexpected

failures.

6.5.2 Creep Stress Redistributions

Results of the creep stress redistributions are presented for a boiler header tube with
a radii ratio of 8 = 1.65 (inside diameter is 508 mm and outside diameter is 304.8mim,
B = 508/304=1.65). Internal pressure is 20 MPa which is the design pressure of this
component (operating pressure is 17.24 Mpa (Ripley (1995)). Internal and external
temperatures are 557°C' and 550°C respectively. Through-thickness variation of initial
elastic and distribution of stresses after 317 months (26.4 years) are shown in Fig-
ure 6.25 (a). It is evident that the variation of radial and axial stresses with time
are not significant, while the major stress redistribution occurs for the tangential stress
component. It is clear from the Figure 6.25 (a) that the creep process 1s directed toward
the generation of a uniform maximum shear stress distribution across the thickness of
the tube. Redistributions of tangential creep stress across the thickness of the tube at
two progressive steps of creep process are shown in Figure 6.25 (b). The tangential
stress component at the inner surface of the tube has decreased while its magnitude

at the outer surface of the tube has increased substantially during the process of time-



Chapter 6. Results and Discussions 192

(321 n
" I | I N i ] I
o L
i Initial elastic <l
—————— After 317 month o
i Sol
N -

0.2

15 0

.1

0
_0.10 0

0

Elastic and creep stresses (0:,05,0:/00)
Tangential stress redistributions

1

|

b
77 :_ Initial elastic
o,// e Time=T77 months
! ¥4 j ————— Time=317 "
H' /,/ :
= I I | N PSS BRI (NSO
1.0 1.2 1.4 1.6 1.8 1.0 1.2 1.4 1.6 1.8
r/a r/a

(a) (b)

Figure 6.25: (a) Initial elastic and distribution of creep stresses after 317 months; (b)

Tangential creep stress redistributions

dependent creep deformation. This is because, the maximum effective stress (to be
discussed later in this section) and the maximum temperature are both located at the
‘nside surface of the tube and therefore the inside layers of the tube have a higher
deformation rate. This higher deformation rate is not consistent with the lower rate of
deformation at the outer layers of the tube. However, since planes normal to the tan-

gential direction remain plane during deformation it can be concluded that the inner
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layers will be pressed down while outer layers will be stretched up resulting the above
stress redistribution. The maximum tangential stress at the outer surface of tube is
nearly twice of its minimum value located at the inside surface of the tube. Through-
thickness variation of radial and axial stresses at some stages of creep progress are

shown in Figure 6.26 (a) and (b). Radial stress at the inner and outer surfaces remains
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Figure 6.26: (a) Radial stress redistributions; (b) Axial stress redistributions.

unchanged due to the constancy of the pressure on the boundary surfaces while its cur-
vature throughout the thickness decreases and approaches to a linear distribution due
to the multi-axial creep deformation of the tube. The axial stress redistribution is not

also significant and its redistribution can be interpreted with the higher deformation
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rate of the inside layers of the tube and the geometrical constraint.

6.5.3 Effective Stress Histories

One of the major problems in the tube life assessment is that the stresses are changing
with time throughout the thickness of the tube. If the thick-walled tube is subdivided
into a large number of thin cylindrical layers, then any layer of the tube continuously
experiences a variable stress field with time. On the other hand, each layer of the tube
is at a different stage of creep which depends on its temperature and stress level. A
variable multi-axial state of stress exists at each layer of the tube, while the material’s
creep dataareobtained from the uniaxial creep tests. Therefore it is necessary to select
an effective stress in this multi-axial stress state to identify the creep situation of each
layer of the tube. In this study, the Mises effective stress is selected which is also
adopted by the ASME Code Case N47. Variations of effective stresses through the |
thickness of the cylinder during progressive steps of redistributions are shown in Figure 6.27.
at some progressive steps of redistributions is shown in Figure 6.27.

Effective stress histories for all layers of the tube are computed using the history of
stresses as the creep process is progressing with time. Effective stress histories of the
inner, middle and outer layers of the tube are shown in Figure 6.28. At initial stage
of the creep process, maximum effective stress is located at inner surface of the tube
while its minimum value is located at the outer surface of the tube. As a result of stress
redistribution, maximum effective stress at the inner surface of the tube is decreasing

and the minimum effective stress at the outer surface of tube 1s increasing with time.

Consequently a reference time has been identified in which the effectivestressesat the
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Figure 6.27: Effective stress redistribution from the initial elastic to stationary creep

inner, middle and outer layers of the tube are identical (point “A” in Figure 6.28
(a) and (b)). On the other hand, at this reference time the effective stress is uniform
throughout the tube wall as it has already been shown in Figure 6.27. At this reference
time the radial, axial and hoop stress distributions become parallel throughout the tube
wall thickness. It means that the maximum shear stress distribution also becomes
uniform throughout the thickness. After this reference time the maximum effective
stress will be located at the outer surface of the tube. Therefore, this reference time
is a turning point in creep stress redistributions. The reference time depends on the

internal pressure and temperature gradient. It has been found in this investigation
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Figure 6.28: Inner, middle and outer surface effective stress histories for two different

tubes and loading conditions.

that this reference time existed for all different loading conditions and radii ratios (two
different cases of which are shown in Figure 6.28). Effect of internal pressure on the
reference time is investigated and the results are shown in Figure 6.29. The reference
time significantly decreases with increasing internal pressure. When the tube is loaded
with the critical inner pressure, the reference time is less than four months (116 days),
while its magnitude is about 132 months (11 years) when internal pressure is reduced

to 40% of the critical pressure (Figure 6.29).
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6.5.4 Damage Histories and Remaining Life Evaluation

Since the effective stress histories are established, then the damage histories and dam-
age distribution across the tube wall can be calculated. It is assumed that the effective
stress distribution across the thickness of the tube remains unchanged during a short
increment of time, At;. Then the rupture times, ¢, ;, can be calculated for all cylindri-
cal layers using the effective stress and temperature distributions in conjunction with
the material’s creep-rupture properties as it has already been shown in numerical anal-
ysis. Having the rupture times of all cylindrical layers at those effective stress levels

and temperatures and the short increment of time as a duration time for all the layers,
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then the increments of damage, AD;; = At;/t,;;, are calculated and the remaining life
of the layers are evaluated. These increments of damage are accumulated to give the
total accumulated damage of each cylindrical shell during the life of the tube as the life
is exhausting. When the total accumulated damage at a cylindrical layer approaches
to one, then all the life of that layer is exhausted. Results of this investigation for
the damage histories as well as the remaining life variation with damage are shown in

Figure. 6.30 (a) and (b).
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Figure 6.30: (a) Variation of damage at inner, middle and outer surfaces of the tube

with time; (b) Remaining life of inner, middle and outer layers of the tube.
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The results show that the inner layer of the tube is the mostly damaged layer and
the outer cylindrical layer is carrying the minimum damages at this loading condition
(Figure. 6.30 (a)). The life exhaustion rate at the outer surface of the tube is much
higher than the inside surface of the tube because its effective stress is increasing with
time. However, later in the tube life, when the effective stress becomes uniform across
the thickness the rate of life exhaustion becomes constant and the remaining life curves

linearly approach to one as shown in Figure. 6.30 (b).

Through-thickness variation of damages with time are shown in Figure. 6.31. This
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Figure 6.31: Through-thickness variation of damage at different times

figure also shows that the maximum damaged layer is located at the inner surface of



Chapter 6. Results and Discussions 200

the tube for this loading condition. It is because the temperature at the inner surface
is higher than outer surface and the maximum effective stress is also located at the
inner surface of the tube during a long period of the tube life (Figure 6.28 (a)). Due to
changes in the creep strain rate (slope of the creep curves) a variable time incremen-
tation has been employed for rapid convergence of the numerical procedure. The time

increment history is shown in Figure 6.32 (a).
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Figure 6.32: (a) The time increment history; (b) The © predicted path and the nu-

merically followed curves.

At early stages of the creep progress, the numerical procedure converged with a At =
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10,000 seconds. While later in the tube life, when the creep strain rates are high,
the procedure converged with a 20 seconds time increment. However, after such a low
time increment it was decided to stop the solution although the procedure could go
ahead with lower time increments. The numerical procedure converged for all situations
regardless of the size of the tube, loading condition and material’s creep stages. The
creep strain rates (slope of the creep curves) have a major effect on the convergence
of the numerical solution. The creep strain rates are variable along the creep curves.
Therefore, an appropriate time increment should be selected for any stress level and
timing step. The accuracy of the numerical solution has been examined by plotting
the © predicted path and the numerically followed path at the inner and outer surfaces
Fig. 6.32 (b). Temperatures of 557°C and 550°C' belong to the inner and outer surfaces
respectively. In fact a family of curves between these two extremes have been followed
for each individual point along the tube wall thickness. A good consistency exists
between the © predicted path and the numerically followed path which means that the

results of this numerical solution are reliable.
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SUMMARY, CONCLUSIONS

AND FUTURE WORK

7.1 Summary and Conclusions

Time-independent thermoelastoplastic and residual stress analysis of thick-walled cylin-
ders as well as the time-dependent creep stress and damage analysis of thick-walled
tubes have been investigated using incremental theory of plasticity in conjunction with
the improved material elastoplastic and creep constitutive models. The results are

validated experimentally and numerically.

A cylindrical element at the middle section of the cylinder has been considered. The
equations of equilibrium, compatibility and stress-strain are written in cylindrical coor-

dinates for this element. The stress-strain relationships are containing the irreversible

202
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total plastic and creep strains. These irreversible total strains are assumed to be the
accumulation of plastic and creep strain increments during the loading history and
the life of the cylinder. To calculate these total irreversible strains, the incremental
stress-strain relationships are employed. Increments of plastic and creep strains are
related to the stresses and the loading history in these non-linear incremental stress-
strain relationships. Numerical procedures have been proposed in which the material
loading-unloading and time-dependent constitutive models represent the history de-
pendent parts of the incremental stress-strain relationships in the plastic and creep
regimes. The numerical models are simplified by derivation of functional relationships
between stresses and the total plastic and creep strains. In fact, a direct relationship
between stresses and the total irreversible plastic and creep strains have been estab-
lished by simultaneously solution of the equilibrium, compatibility and stress-strain
equations for the stresses. Expressions for the elastic stresses are obtained by neglect-
ing the functions containing the plastic and creep strains. Critical condition of the
cylinder has been investigated using this elastic solution in conjunction with the von

Mises yield criterion.

For time-independent thermoelastoplastic and residual stress analysis, thick-walled
cylinders of stainless steel SUS 304 have been selected. The material’s loading and
unloading properties including the Bauschinger effect factor (BEF) are obtained exper-
imentally. A large number of loading-unloading test specimens have been specifically

designed and manufactured in order to reduce the effect of buckling on material prop-
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erties during reverse loading. These test specimens have been loaded up to a specific
strain beyond the elastic limit and then reverse loaded down to zero strain by using a
computer controlled testing machine. The machine configuration menu was set up such
that 20 series of data were recorded at each second of the test into the material data
file. Using these data files in a scientific table-curve software (The Jandel Scientific
Table Curve version 3.03 (1991)) the material strain-hardening and the Bauschinger
offect factor are mathematically represented by continuous functions of effective plastic
strain. This realistic material’s model including the BEF have been incorporated in
the analytical-numerical model to predict the cylinders non-linear and residual stresses
and the critical pressures of direct and reverse yielding. The material high-temperature
properties and constitutive models are selected from the experimental results of Niitsu

and Tkegami (1990).

The analytical-numerical models for the prediction of critical inner pressure, plastic
stress distributions and the subsequent residual stresses of thick-walled cylinders are
validated experimentally. A high pressure hydraulic hand pump has been employed to
produce high pressures required in this investigation. A digital pressure transducer is
used to provide the internal pressure measurements. Rosette strain gauges are mounted
at the axial center of the specifically designed test specimens and are oriented to mea-
sure strains in axial and tangential directions. Several experiments are carried out
on thick-walled cylindrical test specimens in which the internal hydraulic pressure has

been increased and the outer surface deformations are measured by the strain gauges.
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Subsequently the load has been released and the residual strains are again measured
at the outer surface of the cylinder. These experimentally measured values are com-
pared with the predicted values of the analytical-numerical model and in most cases

the model predictions are accurate as it has been shown in Chapter 5.

For time-dependent creep stress and damage analysis, thick-walled tubes of ferritic
steel %Cr, %M o, iV have been considered as this composition is often used in high
temperature components of fossil fueled power stations. Improved material creep and
creep rupture properties are obtained from the literature. The material long-term creep
properties up to rupture and the creep rupture data are defined by the © projection
concept. For time-dependent creep stress and damage analysis, a numerical model has
been developed for the computation of creep stresses and strains and the creep damages
in a thick-walled tube subjected to an internal pressure and a thermal gradient. The
model predicts the history of stresses and strains and the changes in the creep damage
rates during the life of the tube due to variation in stresses with time and through-
thickness variations. The creep damage accumulation is based on the Robinson’s linear
life fraction damage rule which has also been adopted by the ASME code (case N47)
which governs the design of high-temperature nuclear components. The Robinson’s
rule has been incorporated in this non-linear time-dependent stress analysis. Following
the stress histories, the damages are calculated and cumulatively summed during the
life of the tube. Furthermore, from the effective stress histories a reference time has

been identified when the effective stress distributions become uniform throughout the
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tube wall. Effect of internal pressure on this reference time is investigated. The accu-
racy of the results has been examined by comparing the theoretically predicted creep
curves and the numerically followed curves. Deviation of the followed paths from the

predicted paths is small.

Important conclusions of this investigation are itemized as follows:

e It is concluded from the experimental results of Chapter 5 that the analytical-
numerical model developed in this investigation considering the generalized plane
strain and the improved material model can accurately predict the non-linear

response of thick-walled cylinders to loading and unloading.

e Graphs of critical condition are provided such that the critical pressure of the
cylinders can be obtained for the most practical radii ratios and loading combi-
nations. It is concluded from these graphs that the higher temperature gradients
tend to increase the critical pressure of the cylinders except for a small range of

low radii ratios.

e It is also concluded that the critical pressure of thick-walled cylinders of low radii
ratios can be significantly improved by increasing their radii ratio. However, this

is not significant for high radii ratio cylinders.

e A loading combination has been identified in which the whole thickness of the

cylinder yields simultaneously.

e Effect of plastic flow on thick-walled cylinders is such that the maximum shear
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stress distribution becomes uniform across the wall of the fully plastic vessel.

o Progressesof plastic zoneswith and without the effect of temperature gradient
are compared and it is concluded that the temperature gradient facilitates the
progress of plastic zone. On the other hand, in the presence of a temperature
gradient smaller pressure differential is needed for an equal progress of plastic

zone,

e Residual stresses with and without the effect of Bauschinger phenomenon are
obtained and compared. In the case study of a specific cylinder, it has been
concluded that the residual stresses subsequent to a 45% overstrained condition
are at the onset of reverse yielding when BEF is considered. However, residual
stresses resulted from unloading of the same cylinder at a fully plastic overstrained

condition are not at the onset of reverse yielding when BEF is neglected.

e The nature of creep deformation in thick-walled tubes is such that the maximum
shear stress distribution becomes uniform throughout the tube thickness and is

similar to the plastic deformation of the tube in this respect.

o A reference time has been identified in which the effective stress distribution
becomes uniform across the tube wall. This reference time depends on the internal

pressure and the temperature gradient.

e The maximum tensile tangential stress is located at the inside surface of the tube
at early stage of the tube life. However, it will be located at the outer surface of

the tube later in the tube life as a result of stress redistribution.
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e In the damage analysis of a tube subjected to an internal pressure and a thermal
gradient, it has been concluded that the maximum damage is located at the
inner surface of the tube while the outer surface of the tube is carrying minimum

damages.

7.2 Recommendations for Future Work

The work presented in this thesis has succeeded in incorporating a realistic material
model including the Bauschinger effect factor in the non-linear time-independent stress
distribution analysis of thick-walled cylinders. The experimental results proved that
the analytical-numerical model developed in this investigation can accurately predict

the non-linear response of thick-walled cylinders to loading and unloading.

Furthermore, a long-term creep constitutive model known as the “ Theta (©) projec-
tion ” has been successfully employed in a non-linear time-dependent analysis for the
prediction of creep damages of a thick-walled tube. The creep damages have been
used to evaluate the remaining life of the tube. A significant body of work exists in
this research work on the effective stress and damage histories and the remaining life

evaluation of thick-walled tubes which needs to be extended.

Results of the remaining life evaluations using the long-term creep constitutive model
defined by the Theta projection concept can be validated as follows. Using the current

methodology, the accelerated post-exposure creep rupture tests are to be carried out
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at the service stress (iso-stress accelerated tests) but at higher temperatures so that
extrapolation to the service temperature gives an estimate of the remaining useful creep

life as shown in Figure 7.1

o
[ T T T T
I\-
of
o ==
Sf
v [
°n
O - —
N WO
= L
':so: \\
O = o
O W ~
g | =~
. ~
35;,';"_5___&@@1_1:_11_22________\+\ -
of
n 1 g 1 o | 1 | i i
1 2 3 4 5 6
LOG (Time)

Figure 7.1: Accelerated post-exposure stress-rupture test datas at higher temperatures
and the service stress are extrapolated to the service temperature to obtain an estimate

of the remaining life.

Meanwhile, the above post-exposure test datas in conjunction with the “Theta (O)
projection” concept can also be used to obtain an estimate of the remaining life of the
tube as shown in Figure 7.2 (Evans et al.(1992)) and explained below.

Since the material’s constitutive model defined by the “Theta (©) projection” is
known, then the full creep curves up to rupture for the service condition (curve OC in
Figure 7.2) and for the accelerated test condition (curve OB) can be constructed. The

creep data recorded in a post-exposure test for a sample taken from the tube (cure
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Figure 7.2: Iso-stress creep curves of %C T, %M o, %V ferritic steel at service temperature

of 557 °C and accelerated test temperature of 600 °C

AB) corresponds to the final portion of the full creep curve expected for non-exposed
material at the accelerated test condition. The post-exposure test therefore identifies
the creep strain (¢* at position A) accumulated under the service conditions which can
be used to obtain the remaining life of the tube as shown in Figure 7.2. The remanent
life estimates obtained using © analysis can then be compared with those derived from

the above method to validate the remaining life estimations.

The reference time which has been identified in this investigation (from the effective
stress histories) needs to be investigated for a wide range of operating temperatures.
Effect of internal pressure on this reference time has already been investigated in this

research work. Then a family of curves similar to Figure 6.29 can be generated for a
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wide range of internal pressures and operating temperatures. These family of curves
can be used by the designers to obtain an estimate of the time during which the major
stress redistribution occurs for the tube. It is necessary to point out that the effective
stress at the reference time is uniformly distributed across the thickness of the tube

and in fact is the stationary effective stress.



Appendix A

The computer programs which have been developed in this investigation for the compu-
tation of critical pressures and the spread of plastic yielding as well as the subsequent

residual stress distributions of thick-walled cylinders are introduced in this appendix.

212
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*******************************************************************

This program has been developed for the computation of critical i
inner pressures for a wide range of radii ratios. The method is *
based on the computation of the minimum value of internal pressure*
gsatisfying equation (4.1) * *

*******************************************************************

PROGRAM pcrit
DIMENSION PCR(51),RC(51),FF(51),FH(51),FG(51),FR(51),FM(51),
SFN(51)
*******************************************************************
INPUT DATA: Elastic modulus, yield stress, coefficient of linear *
expansion, Poisson’s ratio, radii ratio, temperature *
gradient, number of divisions along radius, outer *
pressure. *
*******************************************************************
DATA E, SO,ALPHA,PR,BE,DT,N, PO /671.3,1.0,0.0000117,0.29,1.0,
$0.0,50,0.0/
*******************************************************************
In the following loop the temperature will be changed in 20 .
step from 0 to 100 degree centigrade .
*******************************************************************
DO 30 J=1,20
THETA=(E*ALPHA*DT)/((l—PR)*SO)
WRITE(20,1)DT, THETA
FORMAT(F6.2,5X,F8.4,5X,30(1H—))
*******************************************************************
In the following loop Radii ratio will be increased in 20 step .
and then critical inner pressure will be computed for each radii *
ratio for the specified temperature gradient. *
*******************************************************************

DO 37 I=1,20

BE=BE+0.2
DR=(BE-1) /N
NP=N+1

*******************************************************************

The cylinder thickness is divided into N number of division and *
the functions F, G, H, R, M and N are evaluated at all division *
points (N+1) across the thickness. *
*******************************************************************
DO 40 K=1,NP

RC(K)=1+(K-1)*DR

FG(K)=((1/(BE**2-1))*(l—(BE**2/RC(K)**2)))
FR(K)=((1/(BE**2-1))*(1+(BE**2/RC(K)**2)))

FN(K)=1/(BE**2-1)
FF(K)=((E*ALPHA*DT)/(2*(l—PR)*(BE**Z—l)*ALOG(BE)))*(((
$BE**2*ALOG(BE))/RC(K)**2)+(BE**2*ALOG(RC(K)/BE))—AEOG(
$RC(K)))-(PO**2*BE**2/(BE**2—1))*(1—1/RC(K)**2)
FH(K)=((E*ALPHA*DT)/(2*(1—PR)*(BE**Z—l)*ALOG(BE)))*(((—
$BE**2*ALOG(BE))/RC(K)**2)+(BE**2*ALOG(RC(K)/BE))—ALOG(
$RC(K))+(BE**2<1))T(PO**Z*BE**Z/(BE**Z—l))*(1+1/RC(K)**2)
FM(K)=((E*ALPHA*DT)/(2*(1—PR)*(BE**Z—l)*ALOG(BE)))*(2*BE**2
$*ALOG(RC(K)/BE)—Z*ALOG(RC(K))+(BE**2—1))
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A, B and C are the coefficients of the critical condition in *
equation (4.1) which are function of the history-independent *
functions of F, G, H, R, M and N and therefore can be evaluated *
for all division points across the thickness of the tube *

*******************************************************************

A=2*(FG(K)**2+FR(K)**2+FN(K)**2—FG(K)*FR(K)—FR(K)*FN(K)—FN(K)*FG(K
$))

B=4* (FF (K) *FG (K) +FH (K) *FR (K) +FM (K) *FN (K) ) -2* (FF (K) *FR (K) +FH (K) *FG (
$K) +FH (K) *FN (K) +FM (K) *FR (K) +FM(K) *FG (K) +FF (K) *FN (K) )

C=2* (FF (K) **2+FH (K) **2+FM (K) **2-FF (K) *FH (K) -FH(K) *FM(K) -FM(K) *FF (K
$)-80**2)
*******************************************************************

The pressure satisfying equation (4.1) is calculated for all *

division points across the thickness the minimum of which is the *

critical pressure and its location is the place in which yielding*
will first start to progress. Therefore the critical pressure for*

the specified radii ratio and temperature gradient is calculated *
*******************************************************************

IF(B**2-4*A*C)44,60,60

Pl=(-B+SQRT(B**2-4*A*C) )/ (2*A)

P2=(-B-SQRT(B**2-4*A*C) ) / (2*A)

IF(PL.LT.0..AND.P2.LT.0.)GO TO 44

IF(Pl.LT.O..AND.PZ.GT.O.)GO TO 150

IF(PZ.LT.O..AND.Pl.GT.O.)GO TO 140

IF(P1-P2)140,140,150

PCR(K)=P1
GO TO 40

PCR(K)=P2
GO TO 40
WRITE(30,82)RC(K)

FORMAT (12X,F6.4,5X, 'NEGATIVE OR IMAGINARY ')

STOP
CONTINUE
PCMIN=PCR (1)

RCC=RC (1)

PCRA=PCR (1)

PCRB=PCR (NP)

DO 51 IK=2,NP

IF(PCMIN—PCR(IK))51,51,17

PCMIN=PCR (IK)

RCC=RC (IK)

CONTINUE
WRITE(20,182)BE, PCMIN
FORMAT (F8.4,5X,F8.4)

CONTINUE
BE=1
DT=DT+5

CONTINUE

STOP

END
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* This computer Program has been developed for the computation of *
* thermoelastoplastic and residual stress distribution of thick- *
* walled cylinders based on the block diagram of Figure 4.2. *
* Tt contains five subprograms which will be introduced after the *
* main program. *
* M *
* Definition of arrays: *
* 1- FF(51),FH(51),FG(51),FR(51),FM(51),FN(51): In these arrays *
* magnitudes of non-history dependent functions of F, H, G, R, .
N M and N defined in Equation (3.62) at all 51 division points *
* across the thickness are stored. *
* 2- PCR(51): This array representing the magnitudes of internal *
* pressure satisfying Equation (3.69) at all division points td
* 3- R(51): Reriesenting magnitudes of radius at all divisions *
* 4- SRE(51),STE(51),SZE(51):Radial, tangential and axial elastic *
* stresses *
* 5. SR(50,51),8T(50,51),SZ(50,51) :Radial, tangential and axial *
* elastic stresses in the elastic region of elastic-plastic *
* cylinder *
* 6- SRP(50,51),STP(50,51),S2P(50,51): Radial, tangential and *
& axial plastic stresses. *
* 7- EPR(50,51),EPT(50,51),EPZ(50,51): Radial, tangential and *
* axial plastic strains. *
* 8.. DEPR(50,51),DEPT(50,51),DEPZ(50,51): Radial, tangential and *
* axial plastic strain increments. *
* 9- DEPRN(50,51),DEPTN(50,51),DEPZN(50,51): New obtained values *
* Radial, tangential and axial plastic strain increments. *
* 10- RSR(50,51),RST(50,51),RSZ2(50,51): Radial, tangential and ki
& axial residual stresses in the plastic region of the vessel *
* 11- SRR(50,51),STR(50,51),SZR(50,51) :Radial, tangential and &
* axial residual stresses in the elastic region of the vessel *
* 12- ER(50,51),ET(50,51),EZ(50,51): Radial, tangential and axial *
* total strains *
* 13- DEP(50,51),EP(50,51): Effective plastic strain increment *
. the total accumulated plastic strain. G
* 14- PEREP(50,51),BEF(50,51): Percentage overstrain and the *
* Bauschinger effect factor *
* 15- SEF(50,51): Effective stress N
* 16- YF(50,51): Yield function *
* 17 TTC1l(50,51),TTC2(50,51),TRC1(50,51),TRC2(50,51): Integrals *
* of radial and tangential total plastic strains *
* *****************************************************************

*******************************************************************

PROGRAM plastic

DIMENSION FF(51),FH(51),FG(51),FR(51),FM(51),FN(51),PCR(51),R(51),
$SRE(51),STE(51),SZE(51),SR(50,51),8T(50,51),8%(50,51) ,RE(50,51),
$EPR(50,51),DEPRN(50,51),EPT(50,51),DEPTN(50,51),P(Sl),SRP(SO,Bl),
$STP(50,51),82P(50,51),SEF(50,51) ,RC(51),TTC1(50,51),YF(50,51),
$TTC2 (50,51),TRC1(50,51),TRC2(50,51) ,DEP(50,51) ,EP(50,51),
$DEPZN(50,51) ,DEPR(50,51) ,DEPT(50,51) ,DEPZ(50,51) ,EPZ(50,51)
$,RSR(50,51),RST(50,51),RSZ(50,51),SRR(50,51),STR(SO,Sl),SZR(SO,Sl)
$ ER(50,51),ET(50,51),EZ(50,51),PEREP(50,51),BEF(50,51)
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. khkkkhkhkkhkhkhkhkhkkkhkhrhhrhkhkhhhohorhdkhkhkrhhhhkrhbhrrhhhkdhbhrkkhbhrhohokddhdkddrrhrrhrhkddrhxkks

INPUT DATA:Elastic modulus, yield stress, coefficient of linear *
expansion, Poisson’s ratio, inner radius, outer radius*
number of load step, number of divisions along radius, *
initial value of radial and tangential plastic strain *
increment, convergence criteria, Inner and outer *

temperature *
R R R R R R R R R E R 2 R R R R R R R R R E R R R R R EEEEEREE R R EE RS R RS SRR

DATA E,SO,ALPHA,PR,RA,RB,M1,N1,EPRI,EPTI,Q,TA,TB/671.3,1.0,
$ 0.0000127,0.3,1.0,2.0,50,50,-0.000035,0.000045,0.1E-5,60.0,0.0/

P R R R R R R R R R R EE R R R TR R R EEEEEEEREEEEEEREEE S SRR EEESE SRR R RS SRR

* THE RESULTS WILL BE WRITTEN INTO THE FOLLOWING OUTPUT FILES.

elstrs.dat: Elastic stress distribution
prc.dat: Pressure versus elastoplastic boundary
befr.dat: Bauschinger effect factor in the plastic region

plstra.dat: Plastic strain distribution
plstrs.dat: Plastic stress distribution
rpstrs.dat: Residual stress distribution in the plastic region
elestrs.dat:Elastic stress distribution in the elastic region
restrs.dat: Residual stress distribution in the elastic region
B R R R R R R R EE R E R E R R EERE R EREEREEEEEREEEE AR RS
OPEN(UNIT=10,FILE='elstrs.dat’, STATUS="0ld’)
OPEN (UNIT=11,FILE='prc.dat’,STATUS='0OLD’)
OPEN (UNIT=12,FILE='befr.dat’, STATUS='0ld’)
OPEN (UNIT=13,FILE='plstra.dat’, STATUS="0l1ld")
OPEN (UNIT=14,FILE='plstrs.dat’, STATUS='0ld’)
)

% o % o A A F
L S R S 2 R I

OPEN (UNIT=15,FILE='rpstrs.dat’,6 STATUS="o0ld’
OPEN (UNIT=16,FILE="elestrs.dat’,6 STATUS='0ld
OPEN (UNIT=17,FILE="restrs.dat’,6 STATUS='01ld"’)

P E R R R R E R R R R R E R EE AR E X RE R R R R EE SRR R R R R R R R R R ko ko

* ELASTIC SOLOUTION L
R R R R R R R ST R
DT=TA-TB

B R I R R R AR R EE RS SR SRR TR TR R EEEEEEEEEEEREEEEEE SR TSR

)

The critical pressure will be computed in PCRIT subprogram and *
the maximum elastic stress distribution will be computed. 4
R E E R R R R R R R R R R E R E R E R E R R EE R EREE SRR EEEEEE R R EREEE RS RS
CALL PCRIT(FF,FG,FH,FR,FM,FN,R,PCMIN, RCMIN, PCMAX, RMAX, PCR,DT,E,
$350,ALPHA, PR,RA,RB,N)

NP=N+1

DO 10 I=1,NP

SRE(I)=FF(I)+FG(I)*PCMIN

STE(I)=FH(I)+FR(I)*PCMIN

SZE(I)=FM(I)+FN(I)*PCMIN
)

WRITE(10,15)R(I),SRE(I),STE(I), SZE(I)
FORMAT (12X,F8.6,5X,F14.12,3X,F14.12,3X,F14.12)

CONTINUE

N e R R R A R R R R R E R E R R R R E R EEREEEEREEEEEEREEEREEE R SRR S EE
b ELASTOPLASTIC SOLOUTION *
N R R R E R R e R R R R R e E R R R E R E R R R EEEEEEEEEEEE R R RS
Define the final pressure (PF) and the pressure increment (PD) L
and apply the load in a large number of loading step (M1) b

B R R R R R R R EE R EEE R SRR EEEE SR EEEEEEEEEEEREEEREESEEEEE RIS R RSN



Q0000

0

143

o000 0Q0Q00000aO0

(o]

Appendix A: Computer Programs of Time-Independent Analysis 217

PF=PCMAX
PD= (PCMAX~-PCMIN) /M1
IF(RCMIN.EQ.RA)THEN
RC(1)=RA
ELSE
RC(1)=RB
ENDIF
PR R R R EEEERE S EREREEEREREEEEEEEEEEEEEESEEEERERERERSEEEEEEEREREEREEEEREREEE TR
The load will be applied in M1l number of loading step and the *
outer pressure is zero according to the boundary condition N
Akhkkhkhkkhkrkhkhkhkkhkhkkhkhkhkhkhkdhkdxhkkhkhkkhkhbhkhkhkhkhhkhkhkhhkrkdbkhthkhrdkhkhkthhrhdhdhhkhhrrkhbhkhhhdtxith
DO 100 I=1,M1
P(I)=PCMIN+I*PD
PI=P(I)
PO=0.0
IM=I+1

IR R R EEFEEEFEFEEESEEEEE LR E R SR ERE RS RS EREEEEEEREEESE SRS SRR SRS S

Initial values are assumed for the plastic strain increment *
R R R R e R R R R R R R . I I I I I I 3 I 3 b S 3 b b b b 3 b e P I b S I I S I R o

DO 143 X=1,I

IF(I .EQ. 1 .OR. K .EQ. I) THEN
DEPR(I,K)=EPRI
DEPT(I,K)=EPTI
DEPZ(I,K)=-(DEPR(I,K)+DEPT(I, K))
ELSE

DEPR(I,K)=DEPR(I-1,K)
DEPT(I,K)=DEPT(I-1,K)
DEPZ(I,K)=-(DEPR(I,K)+DEPT(I,K))
ENDIF
CONTINUE
DEPR(I,IM)=0
DEPT (I, IM)=0
DEPZ (I, IM)=-(DEPR(I,IM)+DEPT (I, IM))
PR I 2 3 b I SR I I L I DI I I b e S O I b T I S T R S I R T I
The plastic strain increments will be added to the previously E
converged value of plastic strains in EPSPL subprogram and the =
the integral of total plastic strains will be computed in AREA *
subprogram. The elastioplastic interface will be obtaind in the *
BISEC1l or BISEC2 subprogram. Then an estimate of stresses within *
the plastic region of the vessel will be obtained and a new &
value for plastic strain increments will be compouted by using i
the incremental stress-strain relatioship. The new value will i
be compared with its previous value for the convergence. &
PR R R R R R R R R E R E A R EE R R E R R R EEREE R EEEEEEEEEEEE IR EEE RS R R RS
DO 101 J=1,IM
CALL EPSPL(I,EPR,EPT,EPZ,DEPR,DEPT)
CALL AREA(I,TRB1,TRB2,TTBl,TTB2,TTCl,TTC2,TRC1l,TRC2,EPR,EPT,6RC)
IF(RCMIN.EQ.RB)GO TO 191
CALL BISEC1(I,RA,RB,RCC,SO,E,ALPHA,DT,PR,RCMIN,PI,PO,TA,TB,RC(I)
$,EPR(I,I),EPT(I,I),TRC1(I,I),TRC2(I,I),TTC1(I,I),TTC2(I,I),

S$TTB1,TTB2, TRB1, TRB2)

GO TO 193
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CALL BISEC1(I,RA,RB,RCC,SO,E,ALPHA,DT,PR,RCMIN, PI,PO,TA,TB,RC(I)
$,EPR(I,I),EPT(I,I),TRC1(I,I),TRC2(I,I),TTC1(I,I),TTC2(I,I),
S$TTB1, TTB2, TRB1, TRB2)

GO TO 193

CALL BISEC2(I,RA,RB,RCC,SO,E,ALPHA,DT,PR,RCMIN, PI,PO,TA,TB,RC(I})

RC (IM) =RCC

TRC1(I,IM)=TRC1(I,I)+0.5*(EPR(I,I)*RC(I))*ABS(RC(IM)-RC(I))
TTC1(I,IM)=TTC1(I,I)+0.5*(EPT(I,I)*RC(I))*ABS(RC(IM) RC(I))
TRC2 (I, IM)=TRC2(I,I)+0.5*(EPR(I,I)/RC(I))*ABS(RC(IM)-RC(I))
TTC2 (I, IM)=TTC2(I,I)+0.5*(EPT(I,I)/RC(I))*ABS(RC(IM)-RC(TI))
TRB1=TRC1 (I, IM)

TRB2=TRC2 (I, IM)

TTB1=TTC1 (I, IM)

TTB2=TTC2 (I, IM)

IF (RCMIN.EQ.RB)THEN
TRC1(I,J)=TRB1-TRC1(I,J
TRC2(I,J)=TRB2-TRC2(I,J
TTC1(I,J)=TTB1-TTC1(I ,J
TTC2(I,J)=TTB2-TTC2(I,J

ENDIF

*******************************************************************

)
)
)
)

Plastic stresses within the plastic region are calculated *
*******************************************************************
SRP(I,J):((E*ALPHA*DT)/(Z*(l—PR)*(RB**2—RA**2)*ALOG(RB/RA)))*(((
$RA**2*RB**2*ALOG(RB/RA))/RC(J)**2)+(RB**2*ALOG(RC(J)/RB))—(RA**Z*
$ALOG(RC(J)/RA)))+(PI*RA**2—PO*RB**2)/(RB**Z—RA**Z)+RA**2*RB**2*(
$PO—PI)/((RB**Z—RA**Z)*RC(J)**2)+(E/(2*(l—PR**2)*(RB**2—RA**2)))*
$((l—Z*PR)*TTB1+(1—2*PR)*TRB1+RB**2*TTBZ—RB**Z*TRBZ)*(l—RA**Z/RC(J

$)**2)—(E/(2*(1—PR**2)*RC(J)**2))*(+(1—2*PR)*TTCl(I,J)+(l—2*PR)*
$TRC1(I,J)+RC(J)**2*(TTC2(I,J)—TRC2(I,J)))

STP(I,J)=( (E*ALPHA*DT) / (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * ( ( (-
$RA**2*RB**2*ALOG(RB/RA))/RC(J)**2)+(RB**2*ALOG(RC(J)/RB))—(RA**Z*
$ALOG(RC(J)/RA))+(RB**2—RA**2))+(PI*RA**2—PO*RB**2)/(RB**Z—RA**Z)
$—RA**2*RB**2*(PO—PI)/((RB**Z—RA**2)*RC(J)**2)+(E/(2*(l—PR**2)*(
$RB**2—RA**2)))*((1—2*PR)*TTB1+(1—2*PR)*TRB1+RB**2*TTB2—RB**2*TRB2
$)*(1+RA**2/RC(J)**2)+(E/(2*(1—PR**2)*RC(J)**2))*(+(1—2*PR)*TTC1(I
$,J)+(l—2*PR)*TRCl(I,J)—RC(J)**2*(TTC2(I,J)—TRC2(I,J))—2*RC(J)**2*
$((l—PR)*EPT(I,J)—PR*EPR(I,J)))

SZP(I,J)=((E*ALPHA*DT)/(2*(l—PR)*(RB**Z—RA**Z)*ALOG(RB/RA)))*(2*
$RB**2*ALOG(RC(J)/RB)—2*RA**2*ALOG(RC(J)/RA)+(RB**2—RA**2))+PI*RA
$**2/(RB**2—RA**2)+(E*PR/((RB**Z—RA**Z)*(l—PR**Z)))*((l—2*PR)*TTBl
$+(l—2*PR)*TRB1+RB**2*TTBZ—RB**Z*TRBZ)—(E/(l—PR**Z))*PR*((TTCZ(I J
$)—TRC2(I,J))+(1—PR)*EPT(I,J)—PR*EPR(I,J))—(E/(RB**Z—RA**Z))*(2*
$TRB1+2*TTB1—(RB**Z—RA**Z)*(EPR(I,J)+EPT(I,J)))

DEP(I,J)=(2**0.5/3)*(SQRT((DEPR(I,J)—DEPT(I,J))**2+(DEPT(I,J)—
$DEPZ(I,J))**2+(DEPZ(I,J)—DEPR(I,J))**2))
********************************‘k**********************************
Effective plastic strain increments are accumulated to give the *
the total effective plastic strain *
**'k*'k**********************"k'k'k****’k********************************

IF(I .EQ. 1) THEN

EP(I,J)=DEP(I,Jd)
ELSE
EP(I,J)=EP(I-1,J)+DEP(I,Jd)
ENDIF
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‘*******************************************************************

Material’'s constitutive model and the Bauschinger effect factor ~*

are incorporated in analysis . *
*******************************************************************
BET=0.78

H=36.5/93.3

SEF(I,J)=1+H* (EP(I,J)**BET)

SEF(I,J)=1+2.9612* (EP(I,J)**0.21842186)
PEREP(I,J)=100*EP(I,J)
BEF(I,J):1.0170029+0.36592732*(PEREP(I,J))—0.0025343135*(
SPEREP(I,J))**3-0.97738304* (PEREP(I,J))**0.5

*******************************************************************

New values are estimated for the plastic strain increments *
*******************************************************************
DEPRN(I,J)=(DEP(I,J)/(2*SEF(I,J)))*(2*SRP(I,J)—STP(I,J)—SZP(I,J))
DEPTN(I,J)=(DEP(I,J)/(2*SEF(I,J)))*(2*STP(I,J)—SRP(I,J)—SZP(I,J))
DEPZN(I,J)=—(DEPRN(I,J)+DEPTN(I,J))

DELR=ABS(DEPRN(I,J)—DEPR(I,J))
DELT=ABS(DEPTN(I,J)—DEPT(I,J))

*******************************************************************

Convergence of the procedure is controlled. *
*******************************************************************
IF(DELR.LT.Q.AND.DELT.LT.Q)GO TO 209

DEPR(I,J)=DEPRN(I,J)

DEPT(I,J)=DEPTN(I,J)

DEPZ (I, J)=DEPZN(I,J)

GO TO 9

*******************************************************************

Residual stresses are computed for each converged loading step e
*******************************************************************
RSR(I,J)=SRP(I,J)—((P(I)*RA**2)/(RB**2—RA**2))*(l—RB**2/RC(J)**2)

$+((E*ALPHA*(—DT))/(2*(1—PR)*(RB**Z—RA**2)*ALOG(RB/RA)))*(((
$RA**2*RB**2*ALOG(RB/RA))/RC(J)**2)+(RB**2*ALOG(RC(J)/RB))—(RA**2*
$ALOG(RC(J) /RA)))

RST(I,J)=STP(I,J —((P(I)*RA**2)/(RB**2—RA**2))*(1+RB**2/RC(J)**2)
&+ ( (E*ALPHA* (-DT) )/ (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * ( ( (-
$RA**2*RB**2*ALOG(RB/RA))/RC(J)**2)+(RB**2*ALOG(RC(J)/RB))—(RA**2*
$ALOG(RC(J)/RA))+(RB**2—RA**2))

RSZ(I,J)=SZP(I,J)—((P(I)*RA**Z)/(RB**Z—RA**Z))+
$((E*ALPHA*(—DT))/(2*(1-PR)*(RB**2—RA**2)*ALOG(RB/RA)))*(2*
$RB**2*ALOG(RC(J)/RB)—2*RA**2*ALOG(RC(J)/RA)+(RB**2—RA**2))

*******************************************************************

Effective Mises stress is computed for the residual stresses *
across the thickness for the prediction of reverse vielding *
*******************************************************************
YF(I,J)=O.5*((RSR(I,J)—RST(I,J))**2+(RST(I,J)—RSZ(I,J))**2+
$(RSZ(I,J)-RSR(I,J))**2)

CONTINUE
*******************************************************************
Results are written into the appropriate files after the *
convergence is reached for each loading increment *
*******************************************************************
WRITE(11,9101)RC(IM),P(I)
WRITE(lZ,ZOS)RC(IM),BEF(I,l),YF(I,l),PEREP(I,l)



Appendix A: Computer Programs of Time-Independent Analysis 220

9101 ° FORMAT (2 (F14.12,2X))
WRITE(13,2031)I
2031 FORMAT('PLASTIC STRAINS’,10X,’'STEP OF LOAD INCREMENT="', I3/
$’RC/RA’,8X,’EPR’,5X,’EPT’,4X,’EPZ’/60(1H_))
DO 207 JJ=1,IM
WRITE(13,208)RC(JJ),EPR(I,JJ),EPT(I,JJ),EPZ(I,JJ)
208 FORMAT (F8.6,5X,F14.12,5X,F14.12,5X,F14.12)
WRITE(14,201)RC(JJ),SRP(I,JJ),STP(I,JJ),SZP(I,JJ)
201 FORMAT (F8.6,3X,F7.4,3X,F7.4,3X,F7.4)
WRITE(lS,ZOS)RC(JJ),RSR(I,JJ),RST(I,JJ),RSZ(I,JJ)
205 FORMAT (F8.6,3X,F7.4,3X,F7.4,3X,F7.4)
207 CONTINUE
IF(YF(I,1l) .GE. BEF(I,1l)**2) STOP
ENDIF
IF(ABS(RC(IM)-RB) .LT. 0.0001)STOP
IT=M1-I
IF(I.EQ.M1)STOP
*******************************************************************
Flastic and residual stresses in the remaining elastic region *
are computed and written into the appropriate files i)
*******************************************************************
IF (RCMIN.EQ.RA)THEN
DR=(RB-RC(IM))/IT
ELSE
DR=(RC(IM)-RA)/IT

a0a0a0

ENDIF

DO 73 KK=1,IT

T= (TA*ALOG (RB) -TB*ALOG (RA) ) /ALOG (RB/RA) + ( (TB-TA) *ALOG (RC (IM) )

$) /ALOG (RB/RA)

IF (RCMIN.EQ.RA) THEN
RE (I, KK)=RC (IM)+KK*DR
TD=T-TB
PII=ABS (SRP(I,IM))
P0O0=0.0
AR=RC (IM)
BR=RB

ELSE

RE(I,KK)=RC(IM)—KK*DR
TD=TA-T
POO=ABS (SRP (I, IM))
PII=P(I)
BR=RC (IM)
AR=RA

ENDIF

c *******************************************************************

c Residual stresses within the elastic region are computed. *
e} *******************************************************************
SRR(I,KK):—((P(I)*RA**Z)/(RB**Z—RA**Z))*(1—RB**2/RE(I,KK)**2)
+( (E*ALPHA* (-DT) )/ (2* (1L-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * ( ((
RA**Z*RB**Z*ALOG(RB/RA))/RE(I,KK)**2)+(RB**2*ALOG(RE(I,KK)/RB
) )= (RA**2*ALOG(RE(I,KK)/RA)))

Ur U
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STR(I,KK)=-((P(I)*RA**2)/(RB**2-RA**2))* (1+RB**2/RE(I,KK) **2)
$ + ( (E*ALPHA* (-DT) )/ (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * ( ( (-
$ RA**2*RB**2*AL,0G (RB/RA) ) /RE(I,KK)**2)+ (RB**2*ALOG(RE(I,KK)/RB
$ )) - (RA**2*ALOG (RE (I,KK)/RA) )+ (RB**2-RA**2))

SZR(I,KK)=-((P(I)*RA**2)/(RB**2-RA**2) )+
$ ( (E*ALPHA* (-DT) ) / (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * (2*RB*
$ * #2*AL0G (RE (I, KK) /RB) -2*RA**2*AT.0G(RE(I,KK) /RA) + (RB**2-RA**2))

*******************************************************************

Elastic stresses in the elastic region are computed d
*******************************************************************
SR(I,KK)=((E*ALPHA*TD)/(2*(1—PR)*(BR**2—AR**2)*ALOG(BR/AR)))*(((
$AR**2*BR**2*ALOG(BR/AR))/RE(I,KK)**2)+(BR**Z*ALOG(RE(I,KK)/BR))—
$(AR**Z*ALOG(RE(I,KK)/AR)))+(PII*AR**2—POO*BR**2)/(BR**2—AR**2)+(

SAR**2*BR**2* (POO-PII) )/ ( (BR**2-AR**2) *RE(I,KK) **2)

ST (I,KK)=( (E*ALPHA*TD) / (2* (1-PR) * (BR**2-AR**2) *ALOG (BR/AR) ) ) * (( (-
$AR**2*BR**2*ALOG(BR/AR))/RE(I,KK)**2)+(BR**Z*ALOG(RE(I,KK)/BR))—
$(AR**2*ALOG(RE(I,KK)/AR))+(BR**2—AR**2))+(PII*AR**2—POO*BR**2)/(
$BR**2—AR**2)-(AR**Z*BR**Z*(POO—PII))/((BR**Z—AR**Z)*RE(I,KK)**Z)

S7(I,KK)=((E*ALPHA*TD) / (2* (1-PR) * (BR**2~AR**2) *ALOG (BR/AR) ) ) * (
$2*BR**2*ALOG(RE(I,KK)/BR)—2*AR**2*ALOG(RE(I,KK)/AR)+(BR**2—AR**2))
$+(PII*AR**2—POO*BR**2)/(BR**2—AR**2)

SRR(I,KK)=SRR(I,KK)+SR(I,KK)

STR(I,KK)=8STR(I,KK)+ST(I,KK)

SZR(I,KK)=SZR(I,KK)+SZ(I,KK)
*******************************************************************

Elastic and residual stresses in the elastic region of the *

cylinder are written into the appropriate files. *
*******************************************************************
WRITE(16,77)RE(I,KK),SR(I,KK),ST(I,KK),SZ(I,KK)

FORMAT (F8.6,3X,F7.4,3%X,F7.4,3X,F7.4)
WRITE(17,771)RE(I,KK),SRR(I,KK),STR(I,KK),SZR(I,KK)

FORMAT (F8.6,3X,F7.4,3X,F7.4,3X,F7.4)

CONTINUE
CONTINUE

STOP
END
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A R R R R R R R R R R E R A E R R R R R RS SRS SRR EREREREREEESE S EE SRS S EES SIS

This subprogram has been developed to calculate the critical inner*
pressure of the cylinder beyond which the plastic flow will take *
place in the cylinder wall. The method is based on finding the .
minimum value of internal pressure which satisfies equation (4.1) *
R E R R e R R R R R R X R E R E R R R R R EE R X EE R SRR R R EE SRR R SRR I
SUBROUTINE PCRIT(FF,FG,FH,FR,FM, FN,RC, PCMIN, RCC, PCMAX, RMAX, PCR, DT,
$E, SO,ALPHA,PR,RA,RB,N1)
DIMENSION FF(51),FG(51),FH(51),FR(51),FM(51),FN(51),PCR(51),RC(51)
T N E e R E R R R E R EE R E R R R R E R R EEEEREREEEZEE R R RS R SRR R R R
The cylinder thickness is divided into N1 number of division and *
the functions F, G, H, R, M and N are evaluated at all division *

points across the thickness. *
N R R R R R R R E R R E R E R R RS R EEEEEEEREREEREEE SRR SRR R
NP=N+1

DR=(RB-RA) /N

DO 40 K=1,NP

RC(K)=RA+ (K-1) *DR

IF(K.EQ.NP)RC(K)=RB
FG(RK)=((RA**2/ (RB**2-RA**2) ) *(1-(RB**2/RC(K)**2)))
FR(K)=((RA**2/ (RB**2-RA**2) ) * (1+ (RB**2/RC(K) **2)))

FN(K)=RA**2/ (RB**2-RA**2)

FF (K)=( (E*ALPHA*DT) / (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * ( ( (RA**2

$*RB**2*ALOG (RB/RA) ) /RC(K) **2) + (RB**2*ALOG (RC (K) /RB) ) - (RA**2*ALOG (
SRC(K) /RA)))
FH(K) = ( (E*ALPHA*DT) / (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * (( (-RA**

$2*RB**2*ALOG (RB/RA) ) /RC(K) **2) + (RB**2*ALOG (RC(K) /RB) ) - (RA**2*ALOG (
SRC(K) /RA) )+ (RB**2-RA**2))

FM(K) ( (EXALPHA*DT) / (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * (2*RB**2
$*AT,0G (RC(K) /RB) -2*RA**2*ALOG (RC (K) /RA) + (RB**2-RA**2) )

R R R R R R R E R AR R E R R EREEREEEEEEEE SRS R E R R R R I

A, B and C are the coefficients of the critical condition *
equation (4.1) which are function of the history-independent i
functions of F, G, H, R, M and N and therefore can be evaluated *
for all division points across the thickness of the tube *

R R R R R R R R R EE TR R R EEEEEEEEEEEEEEEEREEE R R RS EEEE R R R R

A=2* (FG(K) **2+FR (K) **2+FN(K) **2-FG (K) *FR (K) -FR(K) *FN (K) -FN (K) *FG (K
$))

B=4* (FF(K) *FG(K) +FH (K) *FR (K) +FM(K) *FN(K) } -2* (FF (K) *FR (K) +FH (K) *FG(
$K)+FH(K)*FN(K)+FM(K)*FR(K)+FM(K)*FG(K)+FF(K)*FN(K))

C=2* (FF(K) **2+FH (K) **2+4FM(K) **2-FF (K) *FH(K) -FH (K) *FM(K) -FM(K) *FF (K
$)~S0**2)

R N T X R I R TR R R SRR EEEE R EEEEEERE SRR EEREEEE S SR RS S S
The pressure satisfying equation (4.1) is calculated for all *

division points across the thickness the minimum of which is the *
critical pressure and its location is the place in which yielding*
will first start to progress. *
B N R L R R R R R A E E E R R R R R R R R R R EXERXEEREREEEREER R ERE SRR
IF (B**2-4*A*C) 44,60, 60

Pl=(-B+SQRT (B**2-4*A*C) )/
P2=(-B-SQRT (B**2-4*A*C) ) /
IF(P1.LT.0..AND.P2.LT.0.)

(2*A)
(2*A)
GO TO 44
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IF(P1.LT.0..AND.P2.GT.0.)GO TO 150
IF(P2.LT.0..AND.P1.GT.0.)GO TO 140
IF(P1-P2)140,140,150
PCR(K)=P1

GO TO 40

PCR (K) =P2

GO TO 40

PCR(K)=0.0

CONTINUE

DO 61 KK=1,NP

IF(PCR(KK) .EQ.0.)RETURN
CONTINUE

PCMIN=PCR (1)

RCC=RC (1)

DO 51 IK=2,NP

IF (PCMIN-PCR(IK))51,51,17
PCMIN=PCR (IK)

RCC=RC (IK)

CONTINUE

PCMAX=PCR (1)

RMAX=RC (1)

DO 50 IT=2,NP

IF (PCMAX-PCR(IT))1,50,50
PCMAX=PCR (IT)

RMAX=RC (IT)

CONTINUE

RETURN

END

223
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R R R R R R R R R EE R R E R EEE R R RS RS RS R RS R R SRS RS EESEEEESEEEEES S EE SRS

This subprogram calculates the plastic strain distribution *
within the plastic region of the elastoplastic vessel by *
adding the converged value of plastic strain increments to *
the previously accumulated plastic strains. .
e E E R E R R R E R E R R E R R R E R E R EEREEREEERE R X E SRR R R E SRS E R R
SUBROUTINE EPSPL(I,EPR,EPT,EPZ,DEPR,DEPT)

REAL EPR(50,51),EPT(50,51),EPZ(50,51),DEPR(50,51) ,DEPT(50,51)
IM=I+1

DO 3 J=1,IM

IF(I.EQ.1)GO TO 1

IF(J.EQ.IM)GO TO 2

EPR(I,J)=EPR(I-1,J)+DEPR(I,J)

EPT(I,J)=EPT(I-1,J)+DEPT(I,J)

EPZ(I,J)=-(EPT(I,J)+EPR(I,J))

CONTINUE

EPR(I,J)=DEPR(I,J)

EPT(I,J)=DEPT(I,J)

EPZ(I,J)=-(EPT(I,J)+EPR(I,J))

EPT(I,IM)=0.
EPR(I,IM)=0.
EPZ(I,IM)=0.
RETURN

END

224
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L T R S L R EEEEE R R R R RE R R R R R R R R R EEE R RS i

This subprogram has been developed for the computation of the *
integrals of total plastic strains. Plastic strain distributions *
calculated in EPSPL subprogram are used to evaluate the integral *
of plastic strains. The procedure is based on trapezoid method. *
******************************************************************
SUBROUTINE AREA(I,TRB1,TRB2,TTB1l,TTB2,TTCl,TTC2,TRC1,TRC2,EPR, EPT,
$RC)
REAL EPR(50,51),EPT(50,51),RC(51),TTC1(50,51),TTC2(50,51),TRC1 (50
$,51),TRC2(50,51)
DO 20 J=1,1I
IF(J.EQ.1l) THEN
TRC1(I,J)=0.
TRC2(I,J)=0.
TTC1(I,J)=0.
TTC2(I,J)=0.
ELSE
TRCl(I,J)=TRC1(I,J—1)+O.5*(EPR(I,J—l)*RC(J—1)+EPR(I,J)*RC(J))*
ABS (RC(J)-RC(J-1))
TTCl(I,J)=TTC1(I,J—1)+O.5*(EPT(I,J—l)*RC(J—1)+EPT(I,J)*RC(J))*
" ABS(RC(J)-RC(J-1))
TRC2(I,J)=TRC2(I,J—1)+O.5*(EPR(I,J—l)/RC(J—1)+EPR(I,J)/RC(J))*
ABS (RC (J)-RC(J-1))
TTC2(I,J)=TTC2(I,J—l)+0.5*(EPT(I,J—l)/RC(J—1)+EPT(I,J)/RC(J))*
ABS (RC(J)-RC(J-1))
ENDIF
CONTINUE
TRB1=TRC1(I,TI)
TRB2=TRC2 (I, I)
TTBLl=TTC1(I,I)
TTB2=TTC2 (I, I)
RETURN
END

“wr W W
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B A R E E E R EEEE SRS R R E R SRR EEEE R EEEE R E RS RS R

This subprogram has been developed for the computation of the *
elastoplastic interface by using the boundary condition at thig *
surface. At this boundary the von Mises yield condition must be *
satisfied. The procedure is based on the bisection method to *
find the radius which satisfies the Mises equation. *
*****************************************************************
SUBROUTINE BISEC1(I,RA,RB,RCC,SO,E,ALPHA,DT, PR,RCMIN, PI,PO,TA
$,TB,RC,EPR,EPT,TRCl,TRCZ,TTCl,TTC2,TTBl,TTBZ,TRBl,TRBZ)
FG(R)=((R**2/ (RB**2-R**2))* (1- (RB**2/R**2)))

FR(R)=((R**2/(RB**2-R**2))* (1+(RB**2/R**2)))
FN(R)=R**2/ (RB**2-R**2)
FH (R) = ( (E*ALPHA* ( (TA*ALOG (RB) -TB*ALOG (RA) ) /ALOG (RB/RA) - ( (TA-TB) /

$ALOG (RB/RA) ) *ALOG (R) -TB) ) / (2* (1-PR) * (RB**2-R**2) *ALOG (RB/R) ) ) *
$ (-2*RB**2*ALOG (RB/R) +RB**2~R**2)

FM(R) = ( (E*ALPHA* ( (TA*ALOG (RB) -TB*ALOG (RA) ) /ALOG (RB/RA) - ( (TA-TB) /
$ALOG (RB/RA) ) *ALOG (R) -TB) ) / (2* (1-PR) * (RB**2-R**2) *ALOG (RB/R) ) ) *
$(-2*RB**2*ALOG (RB/R) +RB**2-R**2)

SR (R) = ( (E*ALPHA*DT) / (2* (1L-PR) * (RB**2~RA**2) *ALOG (RB/RA) ) ) * ( ((
SRA**2*RB**2*ALOG(RB/RA) ) /R**2)+ (RB**2*ALOG (R/RB) ) - (RA**2*
$ALOG (R/RA) ) )+ (PI*RA**2-PO*RB**2) / (RB**2-RA**2) +RA**2*RB**2* (
$PO-PI)/ ((RB**2-RA**2) *R**2)+ (E/ (2* (1-PR**2) * (RB**2-RA**2)))*
$((1=-2*PR) * (TTB1+0.5*% (EPT*RC) * (R-RC) ) + (1-2*PR) * (TRB1+0.5* (EPR*RC) *
$ (R-RC) ) +RB**2* (TTB2+0.5* (EPT/RC) * (R-RC) ) -RB**2* (TRB2+0.5* (EPR/RC)
&* (R-RC)) ) * (1L-RA**2/R**2) - (E/ (2* (L-PR**2) *R**2) ) * ((L-2*PR) *
$(TTC1+0.5* (EPT*RC) * (R-RC) ) + (1-2*PR) * (TRC1+0.5* (EPR*RC) * (R-RC) ) +
SR**2+* (TTC2+0.5* (EPT/RC) * (R-RC) -TRC2-0.5* (EPR/RC) * (R-RC) ) )

IF(RC .GE. RB)STOP

R2=RC+0.1

R1=RC

DO 108 K=1,50

R3=(R1+R2) /2.

IF(ABS(R1-R2) .LT.0.0001)GO TO 109

Al1=2* (FG(R1) **2+FR(R1) **2+FN(R1) **2-FG(R1) *FR(R1)
$-FR(R1) *FN(R1)-FN(R1) *FG(R1))

A2=2* (FG(R2) **2+FR(R2) **2+FN(R2) **2-FG (R2) *FR (R2)
$-FR(R2) *FN(R2) -FN(R2) *FG (R2))

A3=2* (FG(R3) **2+FR(R3) **2+FN(R3) **2-FG(R3) *FR(R3)
$-FR(R3) *FN(R3) -FN(R3) *FG(R3))

Bl=4* (FH(R1) *FR(R1)+FM(R1) *FN(R1))-2* (FH(R1) *FG(R1)
$+FH(R1) *FN(R1) +FM(R1) *FR(R1) +FM(R1) *FG(R1))

B2=4* (FH(R2) *FR(R2)+FM(R2) *FN(R2) ) -2* (FH(R2) *FG (R2)
$+FH(R2) *FN(R2) +FM(R2) *FR(R2) +FM(R2) *FG (R2) )

B3=4* (FH(R3) *FR(R3)+FM(R3) *FN(R3) ) -2* (FH(R3) *FG(R3)
$+FH(R3) *FN(R3) +FM(R3) *FR(R3) +FM(R3) *FG(R3))

C1=2* (FH(RL1) **2+FM(R1) **2-FH(R1) *FM(R1) -SO**2)

C2=2* (FH(R2) **2+FM(R2) **2-FH(R2) *FM(R2) -SO**2)

C3=2* (FH(R3) **2+FM(R3) **2-FH(R3) *FM(R3) -S0**2)

Y1=A1*SR(R1)**2+B1*ABS(SR(R1))+C1

Y2=A2*SR(R2) **2+B2*ABS (SR(R2) ) +C2

IF((Y1l*Y2).GT.0.)GO TO 11

Y3=A3*SR(R3)**2+B3*ABS (SR(R3))+C3

~— N~
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IF((Y1l*Y3).GT.0.)GO TO 104
R2=R3

GO TO 108

R1=R3

CONTINUE

RCC=R3

IF(RCC .GE. RB)RCC=RB
RETURN

WRITE (30,12)
FORMAT (2X, ' INITIAL VALUE ARE NOT TRUE'’)
STOP

END

227
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This subprogram has been developed for the computation of the b
elastoplastic interface for the case in which yielding starts o
from the outside surface of the cylinder by using the boundary *
condition at the elastic-plastic boundary *

At this boundary the von Mises yield condition must be *

satisfied. The procedure is based on the bisection method to Ed

find the radius which satisfies the Mises equation. L]

*****************************************************************

SUBROUTINE BISEC2(I,RA,RB,RCC,S0O,E,ALPHA, DT, PR,RCMIN, PI,PO,TA
$,TB,RC)

FR(R)=(RA**2/ (R**2-RA**2) ) *2

FN(R)=RA**2/ (R**2-RA**2)

FF(R)=-( (R**2/ (R**2-RA**2) ) * (1-RA**2/R**2) ) *ABS ( (
$((E*ALPHA*DT)/(2*(l—PR)*(RB**Z—RA**Z)*ALOG(RB/RA)))*(((
$RA**2*RB**2*ALOG(RB/RA))/R**2)+(RB**2*ALOG(R/RB))—(RA**Z*
$ALOG(R/RA)))+(PI*RA**2-PO*RB**2)/(RB**Z—RA**Z)+RA**2*RB**2*(
SPO-PI)/ ((RB**2-RA**2)*R**2)))

FH(R)=((E*ALPHA*(TA—(TA*ALOG(RB)—TB*ALOG(RA))/ALOG(RB/RA)+((TA—TB)
$/ALOG(RB/RA))*ALOG(R)))/(2*(1—PR)*(R**Z—RA**2)*ALOG(R/RA)))*
$(-2*RA**2*ATL0G (R/RA) +R**2-RA**2) - ((R**2/ (R**2-RA**2) ) * (L+RA**2 /R**
$2)) *ABS ( ( ( (E*ALPHA*DT) / (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * ( ((
$RA**2*RB**2*ALOG(RB/RA))/R**2)+(RB**2*ALOG(R/RB))—(RA**Z*
$ALOG(R/RA)))+(PI*RA**2—PO*RB**2)/(RB**2—RA**2)+RA**2*RB**2*(
$PO—PI)/((RB**Z—RA**Z)*R**Z)))

FM(R):((E*ALPHA*(TA—(TA*ALOG(RB)-TB*ALOG(RA))/ALOG(RB/RA)+((TA—TB)
$/ALOG (RB/RA) ) *ALOG(R) ) ) / {2* {1-PR) * (R**2-RA**2) *ALOG (R/RA) ) ) * (-2*
$RA**2*ALOG(R/RA)+R**2—RA**2)

R1=RC-0.03

R2=RB

DO 108 K=1,50

R3=(R1+R2) /2.

IF(ARS(R1-R2).LT.0.0001)GO TO 109

A1=2* (FR(R1)**2+FN(R1) **2-FR(R1) *FN(R1))

A2=2* (FR(R2) **2+FN(R2) **2-FR(R2) *FN(R2) )

A3=2* (FR(R3) **2+FN(R3) **2-FR(R3) *FN(R3) )

Bl=4*(FH(Rl)*FR(R1)+FM(R1)*FN(R1))—2*(FF(R1)*FR(R1)
$+FH(R1)*FN(R1)+FM(R1)*FR(R1)+FF(R1)*FN(Rl))

BZ=4*(FH(R2)*FR(R2)+FM(R2)*FN(RZ))—2*(FF(R2)*FR(R2)
$+FH(R2) *FN(R2)+FM(R2) *FR(R2) +FF (R2) *FN(R2) )

B3=4*(FH(R3)*FR(R3)+FM(R3)*FN(R3))—2*(FF(R3)*FR(R3)
$+FH(R3) *FN(R3)+FM(R3) *FR(R3) +FF(R3) *FN(R3))

C1=2* (FF(R1) **2+FH(R1) **2+FM(R1) **2-FF (R1) *FH(R1) -FH(R1) *FM(R1)
$-FM(R1) *FF(R1)-SO**2)

C2=2* (FF(R2) **2+FH(R2) **2+FM(R2) **2-FF (R2) *FH(R2) -FH(R2) *FM(R2)
$-FM(R2) *FF (R2)-S0**2)

C3=2* (FF(R3) **2+FH(R3) **2+FM(R3) **2-FF (R3) *FH(R3) -FH(R3) *FM(R3)
$-FM(R3) *FF (R3)-S0**2)

Y1=A1*PI**2+B1*PI+C1l

Y2=A2*PI**2+B2*PI+C2

IF((Yl*Y2).GT.0.)GO TO 11

Y3=A3*PI**2+B3*PI+C3
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IF((Y1*Y3).GT.0.)GO TO 104

R2=R3

GO TO 108

R1=R3

CONTINUE

RCC=R3

IF (ABS (RCC-RA) .LT. 0.001)RCC=RA
RETURN

WRITE(30,12)

FORMAT (2X, ' INITIAL VALUE ARE NOT SUITABLE’)
STOP

END

229
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The computer program which has been developed for the computation of creep stress
and damage histories as well as the remaining life evaluation of thick-walled tubes

subjected to an internal pressure and a thermal gradient is introduced in this appendix.

230
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This computer Program has been developed for the computation of *
creep stress and damage histories as well as the remaining life *
evaluations of thick-walled tubes subjected to an internal *
pressure and a thermal gradient. *
The program is written based on the block diagram of Figure 4.4.*
Tt contains four subprograms which will be introduced after the *
main program. *

*

*

*

* % o+ ok 3k o X X

T N E L E L LR R EE R E AR R EEEEEEEEEEE EEEE SRR SRR

Definition of arrays:

1- FF(51),FH(51),FG(51),FR(51),FM(51) :These arrays representing
magnitudes of non-history dependent functions of F’, H', G’,
R’ and M’ defined in Equation (3.80) at all 51 division
points across the thickness of the tube.

2- PCR(51): This array representing the magnitudes of internal
pressure satisfying Equation (3.70) at all division points

3- R(51): Representing magnitudes of radius at all divisions

4- SRE(51),STE(51),SZE(51):Radial, tangential and axial elastic

*
*
*
*
*
*
*
stresses *

5- T(51): Temperature distribution *
6- SRC(20001,51),STC(20001,51),82C(20001,51) :Radial, tangential *
and axial creep stresses. *

7- ECR(20001,51),ECT(20001,51),ECZ(20001,51): Radial, tangential*
and axial total creep strains. *

8- DECR(20001,51),DECT(20001,51),DECZ(20001,51): Radial, N
tangential and axial creep strain increments. .

9- DECRN(20001,51),DECTN(20001,51),DECZN(20001,51) :New obtained *
values of Radial,tangential and axial creep strain increments*
10- ECDR(20001,51),ECDT(20001,51): Radial and tangential creep *
strain rate *

11- TET1(20001,51),TET2(20001,51),TET3(20001,51),TET4(20001,51) : *
representing functions defined by the theta projection. tJ

12- ITME(20001): increment of time *
13- TMON(20001): Time (month) *
14- DEC(20001,51),EC(20001,51): Effective creep strain B
increment and the total accumulated effective creep strain. *

15- SEF(20001,51): Effective stress *
16- EPF(20001,51): Creep rupture strain *
17_ TTC1(20001,51),TTC2(20001,51),TRC1(20001,51),TRC2(20001,51) :*
Integrals of radial and tangential total creep strains *

18- DM(20001,51),RL(20001,51): Creep damage and remaining life *

*****************************************************************

% & A ok ok %k ok ok ok ok ok o %k % ok ok sk 3k F ok X F F ok F L R T

*******************************************************************

PROGRAM creep

DIMENSION FF(Sl),FH(51),FG(Sl),FR(Sl),FM(Sl),PCR(51),R(51)
$,SRE(51),STE(51),SZE(Sl),T(Sl),RC(Sl),ITME(ZOOOl),ECE(20001,51),
$ECR(20001,51),DECRN(20001,51),ECT(20001,51),DECTN(20001,51),
$SRC(20001,51),STC(20001,51),SZC(20001,51),SEF(20001,51),TTC1(20001
$,51),TTC2(20001,51),TRCl(2000l,51),TRC2(20001,51),DEC(20001,51)
$,DECZN(20001,51),DECR(20001,51),DECT(20001,51),DECZ(20001,51)
$,TET1(20001,51),TET2(20001,51),TET3(20001,51),TET4(20001,51)
$,ECDT(20001,51),ECDR(ZOOOl,Sl),EC(20001,51),ECZ(ZOOOl,Sl)
$,EPF(20001,51),SF(51),DM(20001,51),RL(20001,51),TMON(20001)



naanoaoanonQ0ao00n

oo

no0oaQaao0an

Appendix B: Computer Program of Time-Dependent Creep Analysis 232

.*******************************************************************

INPUT DATA: Dimensionless elastic modulus, dimensionless yield

stress, coefficient of linear thermal expansion, *
Poisson’s ratio, inner radius, outer radius, number *
of timing step, number of divisions along radius, .
initial value of radial and tangential creep strain *
increments, convergence criteria, Inner and outer &
temperature, time increment, constant coefficient of *
material creep properties as; Al,A2,A3,A4,A5,B1,B2, *
B3,B4,B5,C1,C2,C3,C4,C5,D1,D2,D3,D4,D5. LJ

*

******************************************************************

DATA E,SO,ALPHA,PR,RA,RB,M1,N1,ECRT,ECTI,Q,
$TA,TB,IDTIME,Al,AZ,AB,A4,A5,B1,B2,B3,B4,B5,C1,C2,C3,C4,C5,D1,D2
$,D3,D4,D5/702,l.0,0.0000117,0.3,1.0,1.65,50,20001,—0.00001,
$0.00001,0.1E-10,557,550,10000,
$—8.736,—0.002346,—1.869,—16.43,—1.123,0.004604,0.02225,—0.002034,
$0.009149,0.001517,—0.04489,0.02195,—0.05497,—0.04723,0.0005473,
$0.00006814,—0.00001951,0.00007990,0.00007139,—0.0000004721/

*******************************************************************

* OQUTPUT DATA WILL BE WRITTEN INTO THE FOLLOWING OUTPUT FILES. *
* elstrs.dat: Elastic stress distribution .
* cstrs.dat: Creep stress distribution *
* esd.dat: Effective stress distribution *
* csd.dat: Creep strain distribution *
* esh.dat: Effective stress histories *
* aecsh.dat: Effective Creep strain histories =
* dh.dat: Damage histories *
* dd.dat: Damage distribution *
* fdd.dat: Final damage distribution *
* rlh.dat: Remaining life histories *
* fcesd.dat: Final creep strain distribution *
*******************************************************************

OPEN (UNIT=10,FILE='elstrs.dat’,6 STATUS='0OLD’)
OPEN (UNIT=20,FILE='cstrs.dat’,STATUS='0OLD")
OPEN (UNIT=25,FILE='esd.dat’, STATUS='OLD")
OPEN (UNIT=30,FILE='csd.dat’, STATUS='OLD"')
OPEN (UNIT=40,FILE='esh.dat’, STATUS='OLD"')
OPEN (UNIT=50,FILE='ecsh.dat’,6 STATUS='OLD’)
OPEN (UNIT=60,FILE='dh.dat’, STATUS='0OLD")
OPEN (UNIT=65,FILE="'dd.dat’, STATUS='OLD")
OPEN (UNIT=70,FILE='fdd.dat’, STATUS='OLD")
OPEN (UNIT=75,FILE='rlh.dat’, STATUS='OLD’)
OPEN (UNIT=80,FILE='fcsd.dat’, STATUS='0OLD’)

*******************************************************************

* ELASTIC SOLUTION i
*******************************************************************
Critical pressure of the tube will be calculated in subprogram bl
PCRIT and the elastic stress distribution will be calculated N
******************************************************************

DT=TA-TB
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CALL PCRIT(FF,FG,FH,FR,FM, RC, PCMIN,RCMIN, PCMAX, RMAX, PCR, DT, E,
$S0,ALPHA, PR, RA,RB,M1)
NP=M1+1
DO 11 I=1,NP

c PI=PCMIN
PI=0.5*PCMIN
SRE (I)=FF(I)+FG(I)*PI
STE(I)=FH(I)+FR(I)*PI
SZE(I)=FM(I)+FN(I)*PI
SF(T)=((1/(2**0.5))* (SQRT ( (SRE(I)-STE(I))**2+ (STE(I)-
$SZE(I)) **2+ (SZE(I)-SRE(I))**2)))
WRITE(10,15)RC(I),SRE(I),STE(I),SZE(I),SF(I),PI

15 FORMAT (F8.6,3X,F7.4,3X,F7.4,3X,F7.4,3%X,F7.4,X,F7.4)

11 CONTINUE

e} ******************************************************************
C CREEP SOLUTION had
c ******************************************************************
c The above elastic stress distribution has been considered as the *
E stress distribution which will be changed with time. A short *
& time increment (IDTIME) will be selected and a variation of *
@ stresses and strains will be computed for this time increment L
e} ******************************************************************

DO 100 I=1,N1
ITER=0
IF(I .EQ. 1) THEN
ITME (I)=IDTIME
ELSE
ITME(I)=ITME(I-1)+IDTIME
ENDIF
TMON (I)=ITME(I)/2592000.0
TIME=ITME (I)
DR=(RB-RA) /M1

IM=M1+1
c ******************************************************************
C Initial values are estimated for the creep strain increments &
c ******************************************************************

IF(I .EQ. 1) THEN
DO 420 K=1,IM
DECT(I,K)=EPTI
DECR (I,K)=EPRI
DECZ(I,K)=-(DECR(I,K)+DECT(I,K))
420 CONTINUE
ELSE
DO 402 K=1,IM
DECR(I,K)=DECR(I-1,K)
DECT(I,K)=DECT(I-1,K)
DECZ(I,K)=-(DECR(I,K)+DECT(I,K))
402 CONTINUE
ENDIF
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The creep strain increments will be added to the previously i
converged values of creep strains in ECSPL subprogram and the *
integral of total creep strains will be computed in the AREACR *
subprogram. Then an estimate of stresses will be obtained *

******************************************************************

DO 101 J=1,IM

R(J)=RA+(J-1) *DR

CALL ECSPL(I,M1,ECR,ECT,ECZ,DECR,DECT)

CALL ARFACR(I,Ml,TRB1,TRB2,TTBl,TTB2,TTCl,TTC2,TRC1, TRC2,ECR,ECT,
$R,DR,RA)

IF(ITER .GT. 20) STOP

SRC(I,J)=SRE(J)+(E/(2* (L~-PR**2)* (RB**2-RA**2)))*

& ((1-2*PR) * (TTB1+TRB1) +RB**2* (TTB2-TRB2) ) * (L-RA**2/R(J
§)**2) = (E/ (2% (L-PR**2) *R(J) **2) ) * (+ (1-2*PR) * (TTC1(I,J)+TRC1(I,J))
$+R (J) **2* (TTC2 (I,J)-TRC2(I,J)))

STC(I,J)=STE(J)+(E/ (2% (L-PR**2) * (
SRB**2-RA**2)))* ( (1-2*PR) * (TTB1+TRB1) +RB**2* (TTB2-TRB2)

&) * (1+RA**2/R(J) **2) + (E/ (2% (1-PR**2) *R(J) **2) ) * (+(1-2*PR) * (TTC1 (I
$,J)+TRCL (I,JT))-R(J)**2* (TTC2(I,JT)-TRC2(I,J))-2*R(J)**2*
$((1-PR)*ECT(I,J)-PR*ECR(I,J)))

SZC(I,J)=SZE(J)+ (E*PR/ ( (RB**2-RA**2) * (1-PR**2)) ) *((1-2*PR) * (TTB1
$+TRB1) +RB* *2* (TTB2-TRB2) ) - (E/ (1-PR**2) ) *PR* ( (TTC2 (I ,Jd
$)-TRC2(I,J) )+ (1-PR) *ECT(I,J)-PR*ECR(I,J))-(E/(RB**2-RA**2))*(2*
$TRB1+2*TTB1l- (RB**2-RA**2) * (ECR(I,J)+ECT(I,J)))

SEF(I,J)=((1/(2**0.5))* (SQRT( (SRC(I,J)-STC(I,J))**2+(STC(I,J)-
$8ZC(I,d) ) **2+(S2C(I,JT)-SRC(I,J))**2)))

******************************************************************

Temperature distribution and the effective stresses will be cd
computed across the thickness and the effective creep strain *
will be calculated from the material constitutive model. i

******************************************************************

T(J) = (TA*LOG10 (RB) -TB*LOG10 (RA) ) /LOG10 (RB/RA) + ( ((TB-TA) *
$LOG10 (R(J))) /LOG10 (RB/RA))+273.15
SE=SEF(I,J)*200

TET1(I,J)=10.0%** (A1l+B1l*T(J)+C1l*SE+D1*SE*T (J
TET2 (I,J)=10.0** (A2+B2*T (J)+C2*SE+D2*SE*T (J
TET3(I,J)=10.0** (A3+B3*T(J)+C3*SE+D3*SE*T(J
TET4(I,J)=10.0** (A4+B4A*T (J)+C4*SE+DA*SE*T (J
EPF(I,J)=A5+BS5*T(J)+C5*SE+D5*SE*T (J)
ECE(I,J)=TET1(I,J)* (1-EXP(-TET2(I,J)*(TIME)))+
$TET3(I,J)* (-1+EXP(TET4(I,J)*(TIME)))

******************************************************************

))
))
))
))

Creep strain rate in radial and tangential directions will be *
computed and new values will be calculated for the previously *
estimated creep strain increments and will inspected for the *
convergence. *
******************************************************************
ECDR(I,J)=((TET1(I,J)*TET2(I,J)*EXP(-TET2(I,J)* (TIME+IDTIME/2)))+(
$TET3 (I,J) *TETA (I,J) *EXP (TET4 (I,J) * (TIME+IDTIME/2))))*(2*SRC(I,J) -

$STC(I,J)-SZC(I,J))/(2*SEF(I,d))

ECDT(I,J)z((TETl(I,J)*TETZ(I,J)*EXP(—TETZ(I,J)*(TIME+IDTIME/2)))+(
$TET3(I,J)*TET4(I,J)*EXP(TET4(I,J)*(TIME+IDTIME/2))))*(Z*STC(I,J)—
$SRC(I,J)-82C(I,J))/(2*SEF(I,J))
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DECRN(I,J)=ECDR(I,J)*IDTIME
DECTN(I,J)=ECDT(I,J)*IDTIME
DECZN(I,J)=-(DECRN(I,J)+DECTN(I,J))
DEC(I,J)=((2**0.5)/3)*(SQRT((DECRN(I,J)—DECTN(I,J))**2+
$(DECTN(I,J)—DECZN(I,J))**2+(DECZN(I,J)—DECRN(I,J))**2))
IF(I .GT. 1)THEN
' EC(I,J)=EC(I-1,J)+DEC(I,J)
ENDIF
DELR=ABS (DECRN(I,J)-DECR(I,J))
DELT=ABS (DECTN(I,J)-DECT(I,J))
IF(DELR.LT.Q.AND.DELT.LT.Q) THEN
ITER=0
GO TO 101
ELSE
DECR(I,J)=DECRN(I,J)
DECT{(X,J)=DECTN(I,J)
DECZ(I,J)=DECZN(I,J)
ITER=ITER+1
GO O S
ENDIF
01 CONT'INUE
******************************************************************
After the convergence the effective stress histories will be used*
in DAMAGE subprogram and the damage history and the remaining &
1ife of the tube will be obtained and the results will be written*
into the output files. *
******************************************************************
CALL DAMAGE(I,DM,EPF,TETl,TETZ,TET3,TET4,TIME,SEF,IDTIME,RL)
100 CONTINUE
DO 189 K=1,N1,2000
WRITE (40,158)TMON (K) , SEF (K, 1) ,SEF (K,26),SEF(K,51),STC(K,1),STC(K,
$51)
158 FORMAT (F12.6,2X,5(E10.4,2X))
WRITE(50,158) TMON(K) ,ECE(X,1),ECE(K,26),ECE(K,51) ,EC(K,1),
SEC(K,51)
WRITE(60,158)TMON(K),EPF(K,l),EPF(K,51),DM(K,l),DM(K,26),DM(K,51)
WRITE(65,58)DM(K,1),RL(K,l),DM(K,26),RL(K,26),DM(K,51),RL(K,51)
WRITE(75,158)TMON(K),EPF(K,l),EPF(K,Sl),RL(K,l),RL(K,26),RL(K,51)
58 FORMAT (3 (E10.4,2X,F10.4,2X))
189 CONTINUE
DO 139 I=N1,N1
DO 207 JJ=1,IM
IF(I .EQ. N1)THEN
WRITE(80,311)ECR(I,JJ),ECT(I,JJ),EC(I,JJ),ITME(I)
311 FORMAT (3 (2X,E15.8),2X,I12)
IF(JJ .EQ. IM) THEN
DO 2020 JK=1,IM,5
2020 WRITE(70,104)R(JK),DM(I,JK),ITME(TI)
104 FORMAT (E12.5,2X,E20.14,2X,I12)
ENDIF
ENDIF
207 WRITE(30,208)R(JJ),ECR(I,JJ),ECT(I,JJ),ECZ(I,JJ),EC(I,JJ)
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FORMAT (5 (E13.6,X))

DO 202 JJ=1,IM

WRITE(25,204)R(JJ),SEF(I,JJ), TMON(I)

FORMAT (E12.5,2X,E12.5,2X,F12.6)
WRITE(20,201)R(JJ),SRC(I,JJ),STC(I,JJI),SZC(I,JJ), TMON(I)
FORMAT (E12.5,2X,E12.5,2X,E12.5,2X,E12.5,2X,F12.6)
CONTINUE

STOP

END

236
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4 *******************************************************************

This subprogram has been developed to calculate the critical inner*
pressure of the tube and is similar to subroutine PCRIT already *
discussed in Appendix A and therefore no further comment will be *
written on this subprogram. *
*******************************************************************
SUBROUTINE PCRIT(FF,FG,FH,FR,FM,RC,PCMIN,RCC,PCMAX,RMAX,PCR,DT,
$E,SO,ALPHA,PR,RA,RB,M1)
DIMENSION FF(51),FG(51),FH(51),FR(51),FM(51),PCR(51),RC(51)
NP=M1+1
DR=(RB-RA) /M1
DO 40 K=1,NP
RC (K)=RA+ (K-1) *DR
IF (K.EQ.NP)RC(K)=RB
FG(K)=((RA**2/(RB**Z—RA**Z))*(l-(RB**Z/RC(K)**Z)))
FR(K)=( (RA**2/ (RB**2-RA**2) ) * (1+(RB**2/RC(K) **2)))
FF(K):((E*ALPHA*DT)/(2*(l—PR)*(RB**2—RA**2)*ALOG(RB/RA)))*(((RA**2
$*RB**2*ALOG(RB/RA))/RC(K)**2)+(RB**2*ALOG(RC(K)/RB))—(RA**Z*ALOG(
SRC(K)/RA)))
FH(X) = ( (E*ALPHA*DT) / (2* (1-PR) * (RB**2-RA**2) *ALOG (RB/RA) ) ) * { ( (-RA**
$2*RB**2*ALOG(RB/RA))/RC(K)**2)+(RB**2*ALOG(RC(K)/RB))—(RA**Z*ALOG(
$RC(K) /RA) ) +(RB**2~RA**2))
FM(K)=((E*ALPHA*DT)/(2*(l—PR)*(RB**Z—RA**Z)*ALOG(RB/RA)))*(2*RB**2
$*ALOG(RC(K)/RB)—2*RA**2*ALOG(RC(K)/RA)+(RB**2—RA**2))
A=2*(FG(K)**2+FR(K)**2-FG(K)*FR(K))
B=4*(FF(K)*FG(K)+FH(K)*FR(K))—2*(FF(K)*FR(K)+FH(K)*FG(
$K)+FM(K) *FR(K) +FM(K) *FG (K) )
C:2*(FF(K)**2+FH(K)**2+FM(K)**2-FF(K)*FH(K)—FH(K)*FM(K)—FM(K)*FF(K
$)-S0**2)
IF (B**2-4*A*C)44,60,60
60 P1l=(-B+SQRT(B**2-4*A*C) )/ (2*A)
P2=(—B—SQRT(B**2—4*A*C))/(2*A)
IF(P1.LT.0..AND.P2.LT.0.)GO TO 44
IF(Pl.LT.O..AND.PZ.GT.O.)GO TO 150
IF(P2.LT.0..AND.P1.GT.0.)GO TO 140
IF(P1-P2)140,140,150

140 PCR(K)=P1

a0 n0aaan

GO TO 40
150 PCR (K) =P2

GO TO 40
44 PCR(K)=0.0
40 CONTINUE

DO 61 KK=1,NP

IF{PCR(KK) .EQ.0.)RETURN
61 CONTINUE

PCMIN=PCR (1)

RCC=RC (1)

DO 51 IK=2,NP

IF (PCMIN-PCR(IK))51,51,17
17 PCMIN=PCR(IK)

RCC=RC (IK)
51 CONTINUE
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PCMAX=PCR (1)

RMAX=RC (1)

DO 50 IT=2,NP

IF (PCMAX-PCR(IT))1,50,50
PCMAX=PCR(IT)

RMAX=RC (IT)

CONTINUE

RETURN

END
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T e L s 22 A R E R R E R EEERE R R R EE SRR R

This subprogram calculates the creep strain distribution G

across the thickness of the tube by adding the converged *

value of creep strain increment to the previously *

accumulated creep strains. *

************************************************************

SUBROUTINE ECSPL(I,M1,ECR,ECT,ECZ,DECR, DECT)

DIMENSION ECR(20001,51),ECT(20001,51),ECZ(20001,51),

$DECR(20001,51) ,DECT(20001,51)

IM=M1l+1

DO 3 J=1,IM

IF(I .EQ. 1) THEN
ECZ(I,J)=—(ECT(I,J)+ECR(I,J))

ELSE

ECR(I,J)=ECR(I—1,J)+DECR(I,J)
ECT(I,J)=ECT(I—1,J)+DECT(I,J)
ECZ(I,J)=—(ECT(I,J)+ECR(I,J))

ENDIF

CONTINUE

RETURN

END
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c R R T R R R R E R R R A E AR R E R R R E R R RS EREEEEEEEEEREEEREE R EE R RS LR SRS R
c This subprogram has been developed for the computation of the .
c integrals of total creep strains. Creep strain distributions *
c calculated in ECSPL subprogram are used to evaluate the integral *
c of creep strains. The procedure is based on the trapezoid method.*
C B R R R I S R R R R EE R SRR R R RE R R R R RS R R R
SUBRDUTINE AREACR(I,M1,TRB1l,TRB2,TTBl,TTB2,TTCl,TTC2,TRC1l,TRC2,
SECR,ECT,R,DR,RA)
DIMENSION ECR(20001,51),ECT(20001,51),TTC1(20001,51),
$TTC2(20001,51),TRC1(20001,51),TRC2(20001,51),R(51)
IM=M1+1
DO 20 J=1,IM
IF(J.EQ.1) THEN
TRC1(I,J)=0.
TRC2(I,J)=0.
TTC1(I,J)=0.
TTC2(I,J)=0.
ELSE
R(J)=RA+(J-1)*DR
TRCl(I,J)=TRCl(I,J—1)+0.5*(ECR(I,J—1)*R(J—l)+ECR(I,J)*R(J))*DR)
TTCl(I,J)=TTC1(I,J—1)+0.5*(ECT(I,J—l)*R(J—l)+ECT(I,J)*R(J))*DR)
TRC2(I,J)=TRC2(I,J—1)+O.5*(ECR(I,J—1)/R(J—l)+ECR(I,J)/R(J))*DR)
TTCZ(I,J):TTCZ(I,J—l)+0.5*(ECT(I,J—1)/R(J—l)+ECT(I,J)/R(J))*DR)
ENDIF
20 CONTINUE
TRB1=TRC1 (I, IM)
TRB2=TRC2 (I, IM)
TTB1=TTC1l (I, IM)
TTB2=TTC2 (I, IM)
RETURN

END
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L E E R R R R R A AR E R E R EE R E R R EEEERE SRR R R R R SRR R

This subprogram has been developed for the computation of creep *
damages and the remaining life evaluations thick-walled tubes *
by using the effective stress histories and the materials creep *
*
*

constitutive model and rupture properties.
*****************************************************************

N0 a000n

SUBROUTINE DAMAGE (I,DM, EPF,TET1,TET2,TET3,TET4,TIME, SEF, IDTIME
$,RL)

DIMENSION TET1(20001,51),TET2(20001,51),TET3(20001,51),RL(20001,
$51),TET4(20001,51),EPF(20001,51),Y0(20001,51),DM(20001,51),
$Yl(20001,51),Y2(20001,51),SEF(20001,51),DDM(20001,51)

ITER=60

DO 35 K=1,51,5
*****************************************************************
Time to rupture has been computed by numerical solution of
equation(4.28) and the increments of damage are calculated using
the time increment and the rupture time in conjunction with the
Robinson’s damage rule. The damage increments are then
accumulated to give the total damages. Furthermore, remaining
life of the tube are calculated using the damage and the rupture

imes.
E**fi************************************************************
TES1 and TES2 are initial values for a bisection method to find
the rupture times across the thickness.
*****************************************************************

TES1=0.1E+06

TES2=0.1E+12

DO 102 M=1,ITER
YO0(I,K)=-EPF(I,K)+TETL(TI,
$TET3(I,K)*(—1+EXP(TET4(I,
Y1(I,K)=-EPF(I,K)+TET1(I,K (1l-EXP (-TET2(I,K)*(TES2)))+
$TET3(I,K)*(—1+EXP(TET4(I,K (TES2)))

IF((Y0O(I,K)*Y1(I,K)) .GT. 0.0) THEN

WRITE (10,321)
321 FORMAT (5X, ' STARTING VALUE UNSUITABLE')
STOP
ELSE

TNEW= (TES1+TES2) /2.0
Y2(I,K)=—EPF(I,K)+TET1(I,K)*(l—EXP(—TETZ(I,K)*(TNEW)))+

S TET3(I,K)*(—1+EXP(TET4(I,K)*(TNEW)))

ENDIF

c *****************************************************************

% oF b & ok ok ok ok F X

noooonooQ0a0000aan

(1-EXP(-TET2(I,K)*(TES1l)))+

K)*
K) *(TES1)))
) *
) *

c Convergence of the method for the rupture time 1is controlled &
c *****************************************************************
DEF=ABS (TES2-TES1)
IF(DEF .LT. 150)THEN
DDM(I,K)=IDTIME/TNEW
IF(I .EQ. 1)THEN
DM(I,K)=DM(1l,K)+DDM(I,K)
RL(I,K)={(1-DM(I,K))*(TNEW/2592000.0)
ELSE
DM(I,K)=DM(I-1,K)+DDM(I,K)
RL(TI,K)=(1-DM(I,K))*(TNEW/2592000.0)
ENDIF
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GO TO 35
ENDIF
IF((YO(I,K)*Y2(I,K)) .GT. 0.0)THEN
TES1=TNEW
ELSE
TES2=TNEW
ENDIF
102 CONTINUE
35 CONTINUE
RETURN

END
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