

VECTOR MESON MODELS OF STRONGLY INTERACTING SYSTEMS

THESIS FOR DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS AND MATHEMATICAL PHYSICS

Ву

Heath B. O'Connell B.Sc. (Hons)

Supervisors: Prof. A.W. Thomas and Dr. A.G. Williams

October 1996

Abstract

The consequences of current conservation for vector meson models are examined. As an example of this, the $\rho-\omega$ mixing model for the isospin violation seen in the pion electromagnetic form factor is studied in detail. Assuming current conservation, we predict a strong momentum dependence for vector mixing. As this result also applies to photon-vector meson mixing, in contradiction to traditional photon-hadron models, we describe an equivalent model which includes a momentum dependent coupling of the photon to vector mesons. To ensure that the information obtained previously from the pion form-factor is consistent with conserved current picture, we redo the fit to data and find a considerable model dependence to the quantities of interest that is *not* a consequence of momentum dependence.

Contents

\mathbf{A}	bstra	ct	iii
St	atem	nent	\mathbf{v}
A	cknov	wledgements	vii
1	Intr	roduction	1
	1.1	Historical development of VMD	2
	1.2	Gauge invariance and VMD	4
	1.3	The electromagnetic form-factor of the pion	7
	1.4	Summary	9
2	Sta	ndard treatment of ρ - ω mixing	11
	2.1	The theoretical beginning of $\rho-\omega$ mixing	11
	2.2	The experimental discovery of $\rho-\omega$ mixing	12
	2.3	$ ho - \omega$ mixing and $F_\pi(q^2)$	13
	2.4	Intrinsic ω_I decay in $e^+e^- \to \pi^+\pi^-$	15
	2.5	The use of $\rho-\omega$ mixing in nuclear physics	17
3	Beł	naviour of ρ - ω mixing	21
	3.1	Models for ρ – ω mixing	22
	3.2	QCD Sum Rules	24
	3.3	Chiral Perturbation Theory	27
	3.4	Discussion	28
4	Effe	ective models and momentum dependence	29
	4.1	The node theorem	29
	4.2	The consequences of momentum dependence for VMD	33
	4.3	Sakurai and the two representations of VMD	
	4.4	The use of VMD1	

	4.5	A VMD1-like model	42
	4.6	Discussion	46
5	Ísos	pin violation in $F_{\pi}(q^2)$ with ChPT	47
	5.1	An introduction to ChPT	48
	5.2	The standard ChPT treatment of $F_\pi(q^2)$	51
	5.3	The $(m_u - m_d)$ contribution	52
	5.4	Discussion	55
6	Nev	v analysis of the pion form-factor	57
	6.1	An S-matrix approach	57
	6.2	Mixing Formalism	58
	6.3	Contributions to the pion form-factor	61
	6.4	Numerical results	65
	6.5	A word on transformations between bases	67
	6.6	Conclusion	68
7	Con	nclusion	71
		graphy	71 73
Bi	bliog		
Bi A	bliog Fiel	graphy d current identity	73 79
Bi A	bliog Fiel App	graphy d current identity pendix	73 79 83
Bi A	Fiel App B.1	graphy Id current identity Dendix Chiral Perturbation Theory expressions	73 79 83 83
Bi A	Fiel App B.1 B.2	graphy d current identity pendix	73 79 83 83 84
Bi A	Fiel App B.1 B.2 B.3	graphy Id current identity pendix Chiral Perturbation Theory expressions Useful Integrals Calculation for $A^8 \to \pi^+\pi^-$	73 79 83 83 84
Bi A B	Fiel App B.1 B.2 B.3 His	graphy Id current identity pendix Chiral Perturbation Theory expressions Useful Integrals Calculation for $A^8 \to \pi^+\pi^-$ torical perspective on $\rho - \omega$ mixing	73 79 83 83 84 85
Bi A B	Fiel App B.1 B.2 B.3 His	graphy Id current identity pendix Chiral Perturbation Theory expressions Useful Integrals Calculation for $A^8 \to \pi^+\pi^-$ torical perspective on $\rho - \omega$ mixing Historical perspective	73 79 83 83 84 85 89
Bi A B	Fiel App B.1 B.2 B.3 His	graphy Id current identity pendix Chiral Perturbation Theory expressions Useful Integrals Calculation for $A^8 \to \pi^+\pi^-$ torical perspective on $\rho - \omega$ mixing Historical perspective.	73 79 83 83 84 85 89 89